Development Services

From Concept to Construction

Phone: 503-823-7300 Email: bds@portlandoregon.gov 1900 SW 4th Ave, Portland, OR 97201 More Contact Info (http://www.portlandoregon.gov//bds/article/519984)

Status: Decision Rer	ndered				
Appeal ID: 31454		Project Address: 6123 N Marine Dr			
Hearing Date: 4/12/2	3	Appellant Name: Jessie Reeves			
Case No.: B-001		Appellant Phone: 3604335154			
Appeal Type: Building]	Plans Examiner/Inspector: Joe Thornton			
Project Type: comme	rcial	Stories: 1 Occupancy: 10 Construction Type: Tenant Improvement			
Building/Business Name: Rodda Paint Appeal Involves: other: Fire		Fire Sprinklers: Yes - Warehouse LUR or Permit Application No.: IVR Number: 4892439			
					Plan Submitted Opti
APPEAL INFORM Appeal item 1 Code Section	ATION SHEET				
Requires	and standby power generators rec	OSSC 2702.1.1/PFC 1203.1.1 Stationary generators. Stationary emergency and standby power generators required by this code shall be listed in accordance with UL 2200.			
Code Modification o	The intent behind the appeal is to get approval to use the Wacker G25 in lieu of the permanent generator until the permanent generator is received in June 2023.				
Alternate Requested	generator until the permanent gen	erator is received in June 2023.			

 Reason for alternative
 The Wacker g25 is similar to the permanent unit being offered. The intent behind the appeal is to get approval to use the Wacker G25 in lieu of the permanent generator until the permanent

generator is received in June 2023. CSA C282, 2009 Emergency Electrical Power Supply for Buildings

APPEAL DECISION

Use of temporary emergency generator until the permanent generator is received in June 2023: Granted as proposed.

The Administrative Appeal Board finds that the information submitted by the appellant demonstrates that the approved modifications or alternate methods are consistent with the intent of the code; do not lessen health,

safety, accessibility, life, fire safety or structural requirements; and that special conditions unique to this project make strict application of those code sections impractical.

Pursuant to City Code Chapter 24.10, you may appeal this decision to the Building Code Board of Appeal within 90 calendar days of the date this decision is published. For information on the appeals process, go to www.portlandoregon.gov/bds/appealsinfo, call (503) 823-6251 or come in to the Development Services Center.

G25 Mobile Generators

Versatile and reliable power, when and where you need it

The G25 mobile generator offers contractors and rental houses an excellent power solution. The compact, sound-attenuated model provides single and three-phase power for construction, commercial, industrial and special event applications where quiet, reliable power is needed. A digital controller monitors and protects the generator and engine while providing continuous operating data on an easy to read LCD display. Large capacity fuel tank for long run times and durable features for long life.

- Ideally suited for construction sites where durability, reliability and flexibility are required to supply continuous power for applications such as lighting, cranes, concrete mixers and conveyor belts.
- Brushless, oversized alternators with separate excitation winding and AVR (Automatic Voltage Regulation) provide superior motor starting and enhanced ability to run non-linear loads.
- Single switch start and simple, uncluttered control panel provide unmatched ease of use.
- Automatic remote start capability standard which is ideal for temporary standby applications.
- Factory-installed customized options are available. These include, but are not limited to, a fluid containment system, cold weather options, a camlock panel, etc. Also available are optional trailers that are fully equipped and highway ready.

Technical specifications

	G25 (T4i)	G25 (T4F)	G25 (T4i) 600V- Canada Only
Dimensions			
L x W x H Operating (Skid) in	76.6 x 35 x 44.5	76.6 x 35 x 44.5	76.6 x 35 x 44.5
$L \times W \times H$ Shipping (Skid) in	81 x 37.5 x 56.6	81 x 37.5 x 56.6	81 x 37.5 x 56.6
$L \times W \times H$ Shipping/Operating (Trailer) in	133 x 60 x 69	133 x 60 x 69	133 x 60 x 69
Weights			
Weight Dry (Skid) Ib	1,911	1,952	1,911
Weight Operating (Skid) lb	2,332	2,373	2,332
Weight Shipping (Skid) lb	2,031	2,072	2,031
Weight Operating (Trailer) Ib	2,802	2,843	2,802
Weight Shipping (Trailer) Ib	2,381	2,422	2,381
Operating data			
Trailer coupling Type	2in Ball	2in Ball	2in Ball
Standby output kW	20.4	21.4	19.5
Prime output kW	19.5	19.5	18.7
Voltage 3 Phase V	240/480	240/480	240/480/600
Current 3 Phase (Prime) A	58/29	58/29	58/29/23
Current 1 Phase (Prime) A	120/240	120/240	120/240
Voltage 3 Phase V	208, 220, 240, 416, 440, 480	208 / 220 / 240 / 416 / 440 / 480	208, 220, 240, 416, 440, 480, 600
Voltage 1 Phase V	120, 127, 139, 240, 254, 277	120, 127, 139, 240, 254, 277	120, 127, 139, 240, 254, 277, 346
Circuit breaker (Main) A	70	70	70
Frequency Hz	60	60	60
Power factor 1 Phase $\cos \Phi$ 1~	1	1	1
Power factor 3 Phase $\cos \Phi$ 3~	0.8	0.8	0.8
Sound level (LwA) at Prime (23 ft / 7 m) dB(A)	65	65	65
Receptacles -20 Amp GFI Duplex	2	2	2
Receptacles -50 Amp Twist Lock	2	2	2
Engine / Motor			
Engine / Motor	Liquid-Cooled, 4 Cylinders	Liquid-Cooled, 4 Cylinders	Liquid-Cooled, 4 Cylinders
Engine / Motor manufacturer	Isuzu	lsuzu	Isuzu
Emissions Certified	Tier 4i	Tier 4	Tier 4i

	G25 (T4i)	G25 (T4F)	G25 (T4i) 600V- Canada Only
Displacement in ³	133	133	133
Operating performance SAE J1995, ISO 8528-1 hp	35.4	31.5	35.4
at rpm rpm	1,800	1,800	1,800
Coolant Capacity US qt	11.9	13.3	11.9
Engine oil Capacity US qt	8.5	11	8.5
Fuel type	Diesel	#1/#2 ULSD	Diesel
Fuel consumption (Prime Load) US gal/h	1.8	1.8	1.8
Tank capacity -Fuel US gal	58.4	58.4	58.4
Quantity (Battery)	1	1	1
Battery V	12	12	12
Generator model	Mecc Alte, Brushless w/AVR	Mecc Alte, Brushless	Mecc Alte, Brushless w/AVR
Voltage control No Load to Full Load +/- %	1	1	1
Voltage control Steady State +/- %	0.2	0.2	0.2
Generator insulation (class)	Н	Н	Н
Frequency (Generator Speed) Hz	60	60	60
Runtime at 100% Prime Load h	32.2	28.2	32.2
Runtime at 75% Prime Load h	24.15		

Please note

that product availability can vary from country to country. It is possible that information / products may not be available in your country. More detailed information on engine power can be found in the operator's manual; the stated power may vary due to specific operating conditions. Subject to alterations and errors excepted. Applicable also to illustrations. Copyright © 2017 Wacker Neuson SE.

wackerneuson.com - compiled on 09.08.2017

Occupancy Change for Rodda Paint, Portland, Oregon

Structural Calculations: Generator Attachment 1-7

Revision 03/16/23 Project Number: 220090.00

Generator

Project: Rodda Project Number: 220090.00 By: CSN Page: 1

Seismic, ASCE 7-16

$$S_{DS} := 0.663$$

13.3, Table 13.5-1 Generators, batteries, ...
 $a_p := 1$ $R_p := 2.5$ $\Omega := 2$
13.1.3
 $I_p := 1.0$
13.3.1
 $F_p := \frac{0.4 \cdot a_p \cdot S_{DS}}{\left(\frac{R_p}{I_p}\right)} \cdot (1 + 2 \cdot 0) = 0.11$
 $F_{p_max} := 1.6 \cdot S_{DS} \cdot I_p = 1.06$
 $F_{p_min} := 0.3 \cdot S_{DS} \cdot I_p = 0.2$ Governs
 $F_p := F_{p_min} = 0.2$

24 *in*

Generator

$$W_p := 2373 \ Ib$$
 $X := 50 \cdot in$ $Y := 33 \ in$ $Z :=$

$$\overline{F_{\rho}} := F_{\rho} \cdot W_{\rho} = 472 \ Ib$$

Overturning

LC: 0.9D-Ev+Eh = > [0.9-0.2(0.663)]D+E = > 0.77D+E

$$M_{ot} := F_{\rho} \cdot Z = 944 \ Ib \cdot ft$$
$$M_{res} := 0.77 \cdot \left(W_{\rho} \cdot \frac{Y}{2}\right) = 2512 \ Ib \cdot ft$$
$$\frac{M_{ot}}{M_{res}} = 0.38 \qquad < 1.0. \text{ no overturning}$$

Soil Bearing

LC: 1.0D+0.7Ev+0.7Eh=>[1.0+0.7(0.2)0.663]D+0.7E=>1.09D+0.7E

 $M := 0.7 F_{p} \cdot Z = 661 \ Ib \cdot ft$

$$P := 1.09 \ W_p = 2587 \ Ib$$

$$e := \frac{M}{P} = 3 \ in \qquad

$$SB := \frac{\frac{P}{Y \cdot X} + \frac{6 \cdot P \cdot e}{Y^2 \cdot X}}{2} = 176 \ \frac{Ib}{tt^2} \qquad <1500 \text{psf}$$$$

Anchorage

LC: 0.9D-Ev+Eh = > [0.9-0.2(0.663)]D+2E = > 0.77D+2E

$$TC := \left(\frac{M_{ot} \cdot \Omega}{Y \cdot 2}\right) = 343 \ Ib \qquad \text{tension force, divide by 2 anchors}$$

$$\widehat{P} := 0.77 \ \frac{W_p}{4} = 457 \ Ib \qquad \text{divide by 4 locations}$$

$$T := P - TC = 114 \ Ib \qquad \text{uplift}$$

$$V := \frac{r_p}{4} = 118 \ lb$$

r

resisted by 4 anchors

--by calculation use Simpson Strong-Tie 1/2" dia. Titen HD, nominal height 4"

SIMPSON Strong-Tie

Anchor Designer™ Software

Version 3.1.2301.3

Company:	Date:	3/16/2023
Engineer:	Page:	3
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.500 Nominal Embedment depth (inch): 4.000 Effective Embedment depth, her (inch): 2.990 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No hmin (inch): 6.25 cac (inch): 4.50 Cmin (inch): 1.75 Smin (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 1/2"Ø Titen HD, hnom:4" (102mm) Code Report: ICC-ES ESR-2713

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'_c (psi): 4500 $\Psi_{c,v}$: 1.0 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

SIMPSON Strong-Tie

Anchor Designer™ Software Version 3.1.2301.3

Company:	Date:	3/16/2023
Engineer:	Page:	T <u> </u>
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (d) is satisfied Ductility section for shear: 17.2.3.5.3 (c) is satisfied Ω₀ factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

Nua [lb]: 114 V_{uax} [lb]: 118 V_{uay} [lb]: 0

<Figure 1>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 3.1.2301.3

Company:	Date:	3/16/2023
Engineer:	Page:	5
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

ON Anchor Designer™	Company:	Date:	3/16/2023
	Engineer:	Page:	. 6
Tie Software	Project:		
Version 5.1.2501.5	Address:		
®	Phone:		
	E-mail:		

3. Resulting Anchor Forces

Stron

Anchor	Tension load, Nua (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (Ib)	Shear load combined, √(V _{uax})²+(V _{uay})² (Ib)
1	114.0	118.0	0.0	118.0
Sum	114.0	118.0	0.0	118.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 114 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Ny} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
20130	0.65	13085	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

ϕ	0.75 <i>¢Ncb</i> (lb)
0.65	2874
-	0.65

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

Vsa (lb)	ϕ_{grout}	ϕ	$\phi_{grout} \phi V_{sa}$ (lb)	
4790	1.0	0.60	2874	

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}^{1.5}}; 9\lambda_a \sqrt{f_c c_{a1}^{1.5}}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$

le (in)	da (in)	λ_a	f'₀ (psi)	Ca1 (in)	V _{bx} (lb)			
2.99	0.500	1.00	4500	8.00	10744			
$\phi V_{cbx} = \phi (A)$	vc / Avco) Ψed, v Ψc,	vΨh,vVbx (Sec.	17.3.1 & Eq. 17.	5.2.1a)				
A_{Vc} (in ²)	A_{Vco} (in ²)	¥ed, V	Ψc, v	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbx} (lb)	
288.00	288.00	1.000	1.000	1.000	10744	0.70	7521	

Shear parallel to edge in y-direction:

$V_{bx} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}^{1.5}}; 9\lambda_a \sqrt{f_c c_{a1}^{1.5}}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$						
<i>l</i> _e (in)	da (in)	λ_a	f′₀ (psi)	Ca1 (in)	V _{bx} (lb)	

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.stronglie.com

	SON And	chor Desi	anerM	Con	npany:			Date:	3/16/2023
Contraction of the second	Cal	gnei	Eng	ineer:			Page:	7	
Strong	-Tie Sot	Proj	ect:				5+		
	Vers	ion 3.1.2301.3	3	Add	ress:				
	0			Pho	ne:				
				E-m	ail:				
2.99	0.500	1.00	4500	8.00	107	44			
$\delta V_{cby} = \phi(2)$)(Avc/Avco) Yed,	v ¥c, v ¥h, v Vbx (Sec. 17.3.1, 17	.5.2.1(c) & Eq	. 17.5.2.1a)				
Avc (in²)	Avco (in²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx}	(lb)	ϕ	ϕV_{cby} (lb)	
288.00	288.00	1.000	1.000	1.000	107	44	0.70	15042	
0. Concre	te Pryout Stro	ength of Anc	hor in Shear (<u>Sec. 17.5.3)</u>					
$V_{cp} = \phi K_{cp} \Lambda$	$V_{cb} = \phi K_{cp} (A_{Nc} / A_{cp})$	ANCO) Yed, N YC, N	Ψ _{cp,N} N _b (Sec. 17	7.3.1 & Eq. 17	′.5.3.1a)				
	1 (1-2)	A. (in2)		177			4		
Kcp	A _{Nc} (in²)	A _{Nco} (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	<i>N</i> ₅ (lb)	φ	ϕV_{cp} (lb)	
	80.46	80.46	9 ^{ed,N} 1.000	Ψ _{c,N} 1.000	<i>Ψ_{cp,N}</i> 1.000	5896	φ 0.70	<i>φν_c</i> ρ (ID) 8254	
2.0	80.46	· ·						, , , ,	
2.0 1. Results	80.46	80.46		1.000				, , , ,	
2.0 1. Results Interaction	80.46	80.46	1.000 :es (Sec. 17.6)	1.000				, , , ,	
2.0 1. Results Iteraction Tension	80.46	80.46 d Shear Ford	1.000 :es (Sec. 17.6)	1.000	1.000	5896		8254	
2.0 1. Results Interaction Tension Steel	80.46 of Tensile an	80.46 d Shear Ford Factored Lc	1.000 :es (Sec. 17.6)	1.000 Design Stre	1.000	5896 Ratio		8254 Status	overns)
Tension Steel Concrete I	80.46 of Tensile an	80.46 d Shear Ford Factored Lo 114 114	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874	1.000 ength, øNn (Ib)	5896 Ratio 0.01 0.04		8254 Status Pass Pass (Go	overns)
2.0 1. Results Interaction Tension Steel Concrete I Shear	80.46 of Tensile an	80.46 d Shear Ford Factored Lo 114 114 Factored Lo	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre	1.000	5896 Ratio 0.01 0.04 Ratio		Status Pass Pass (Go Status	
2.0 1. Results Iteraction Tension Steel Concrete I Shear Steel	80.46 of Tensile an breakout	80.46 d Shear Ford Factored Lo 114 114 Factored Lo 118	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre 2874	1.000 ength, øNn (Ib)	5896 Ratio 0.01 0.04 Ratio 0.04		Status Pass Pass (Go Status Pass (Go	
2.0 1. Results teraction Fension Steel Concrete I Shear Steel Concrete	80.46 of Tensile an breakout	80.46 A Shear Ford Factored Lo 114 114 Factored Lo 118 118	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre 2874 7521	1.000 ength, øNn (Ib)	5896 Ratio 0.01 0.04 Ratio 0.04 0.02		Status Pass Pass (Go Status Pass (Go Pass (Go Pass	
2.0 1. Results teraction Fension Steel Concrete I Shear Steel Concrete Concrete	80.46 of Tensile an breakout	80.46 Bout States of the second seco	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre 2874 7521 15042	1.000 ength, øNn (Ib)	Ratio 0.01 0.04 Ratio 0.02 0.01		Status Pass Pass (Go Status Pass (Go Pass Pass Pass	•
2.0 1. Results <u>iteraction</u> Tension Steel Concrete I Shear Steel T Concrete Concrete	80.46 of Tensile an breakout	80.46 A Shear Ford Factored Lo 114 114 Factored Lo 118 118	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre 2874 7521	1.000 ength, øNn (Ib)	5896 Ratio 0.01 0.04 Ratio 0.04 0.02		Status Pass Pass (Go Status Pass (Go Pass (Go Pass	
2.0 1. Results iteraction Tension Steel Concrete I Shear Steel T Concrete	80.46 of Tensile an breakout breakout x+ breakout y+	80.46 d Shear Ford Factored Lo 114 114 Factored Lo 118 118 118 118 118	1.000 :es (Sec. 17.6) ad, N _{ua} (Ib)	1.000 Design Stre 13085 2874 Design Stre 2874 7521 15042	1.000 ength, øNn (Ib)	Ratio 0.01 0.04 Ratio 0.02 0.01 0.02 0.01		Status Pass Pass (Go Status Pass (Go Pass Pass Pass	

1/2"Ø Titen HD, hnom:4" (102mm) meets the selected design criteria.

<u>12. Warnings</u>

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

CITY OF **PORTLAND, OREGON** BUREAU OF FIRE & RESCUE **BUREAU OF DEVELOPMENT SERVICES** 1900 SW 4TH Avenue Suite 2100 Portland, Oregon 97201

FIRE SAFETY PLAN REVIEW CHECKSHEET

Application #: 21-042315-DFS-01-CO

	Commercial Bu	uilding Permit	Review Date:	March 2, 2023
То:	PWP CONTRACT	JH KELLY LLC *JESSIE REEVES* JH KELLY LLC	Work	(360) 423-5510
	OR	821 3rd Ave Longview, WA 98632	Home	(503) -
			Email	jreeves@jhkelly.com
From:	Fire Inspector	Joe Thornton	Phone/Cell	503-209-5977
			Email	Joe.Thornton@portlandorego n.gov
cc:	OWNER	PORT OF PORTLAND 6107 N MARINE DR #3 PORTLAND, OR 97203-6409		

PROJECT INFORMATION Street Address: 6123 N MARINE DR Description of Work: SINGLE PDF - DFS FOR GENERATOR & ITS FOUNDATION & ATTACHMENTS

The foll	The following items are in apparent violation of the specific codes or laws noted.				
ltem #	Location on plans	Code Section	Clarification / Correction Required Please submit a written plan of correction for each review comment. If major revisions are required, revised plans for that portion may be necessary to resubmit. All comments should be responded to in the drawings (not just the written plan of correction) unless otherwise indicated. Please indicate where in the drawings the requested information may be found. Please cloud or highlight changes to the plan set for identification of corrections made.		
1.	S101	City of Portland, Title 31	Application for separate permits shall be obtained from the Fire Marshal's Office, 1300 SE Gideon Street, prior to the installation of the following: fire sprinklers, fire alarm systems, fire pumps, underground fire lines, fixed extinguishing systems, in-building radio enhancement systems, stationary generators and hazardous material tanks and related equipment. Please list the separate permit from the Fire Marshal's Office for the hazardous materials tank (diesel) permit.		
2.	S101	PFC 312	 Guard posts shall comply with all of the following requirements: 1. Constructed of steel not less than 4 inches (102 mm) in diameter and concrete filled. 2. Spaced not more than 4 feet (1219 mm) between posts on center. 3. Set not less than 3 feet (914 mm) deep in a concrete footing of not less than a 15-inch (381 mm) diameter. 4. Set with the top of the posts not less than 3 feet (914 mm) above ground. 5. Located not less than 3 feet (914 mm) from the protected object. 		

FIRE SAFETY PLAN REVIEW CHECKSHEET	Application #	21-042315-DFS-01-CO
	Review Date:	March 2, 2023

			Please show bollards installed in accordance with this code section. Please provide a section view detail of the bollard installation.
3.	S101	PFC 5704.2.7.3.1 No Action Required at this time. Information only	The drawings do not show the covered outdoor storage area to the east as indicated in the reference only approved set. The tank vents are required to be 5' from building openings including this outdoor storage area if is open on the west side. This will be vetted with the FS permit for the hazardous materials tank requested above in comment #1.
4.		PFC 105.4.1.1	Examination of Documents Additional clarification and/or corrections may be required upon further review and may appear as new items in subsequent review comments.

To respond to this Checksheet, you may need to revise your plans, your supporting documents, or provide additional information. Please see BDS website directions located here: https://www.portland.gov/bds/permit-review-process/submitting-corrections. When you finish with your changes, please submit your updated plans and supporting documents. Make sure to include the attached Checksheet Response Form. Visit the BDS Permit Review Process website for more helpful information and available services: https://www.portland.gov/bds/permit-review-process

If you want to report a delay, a regulatory conflict or other issue that you have been unable to resolve with your City review team, please visit https://www.portland.gov/bds/development-permit-processes/report-problem

If you have questions about this Checksheet, please contact me at the email address or phone number listed above. To check the status of your project, go to https://www.portlandmaps.com/advanced/?action=permits. Or you may request the status to be faxed to you, by calling 503.823.7000 and selecting option 4. Please have your IVR number and fax number available.

Appeals: Pursuant to City Code Chapters 31.10 and 28.03, you may appeal any code provision cited in this Checksheet to the Administrative Board of Appeals within 180 calendar days of the review date. For information on the appeals process, costs, including forms, appeal fee and payment methods, the following information is available: For Fire Code appeals go to www.portlandoregon.gov/fire/31187, call (503) 823-3712 or come in to the Fire Marshal's Office, 1300 SE Gideon St. For Building Code appeals go to www.portland.gov/bds/file-appeal or call (503) 823-7300 for assistance. If you have questions or are not sure if your appeal should be a Fire Code or Building Code appeal, please call the Fire Plan Reviewer listed above. Permit application expiration will not be extended pending resolution of any administrative appeal.

Fire Safety Plan Review Checksheet Response

Permit #: 21-042315-DFS-01-CO

Date: 03/02/2023

.....

Customer name and phone number: Katey Glibert 503-892-3002 x 111

Note: Please number each change in the '#' column. Use as many lines as necessary to describe your changes. Indicate which reviewer's checksheet you are responding to and the item your change addresses. If the item is not in response to a checksheet, write **customer** in the last column.

#	Description of changes, revisions, additions, etc.	Checksheet and item #
1	Tank permit not needed; generator's tank is less than 60 gallons.	1
2	See revised 1/S1.01 and 3/S1.01.	2
3	See 'note' added adjacent to equipment pad.	3

(for office use only)