

MiTek USA, Inc.

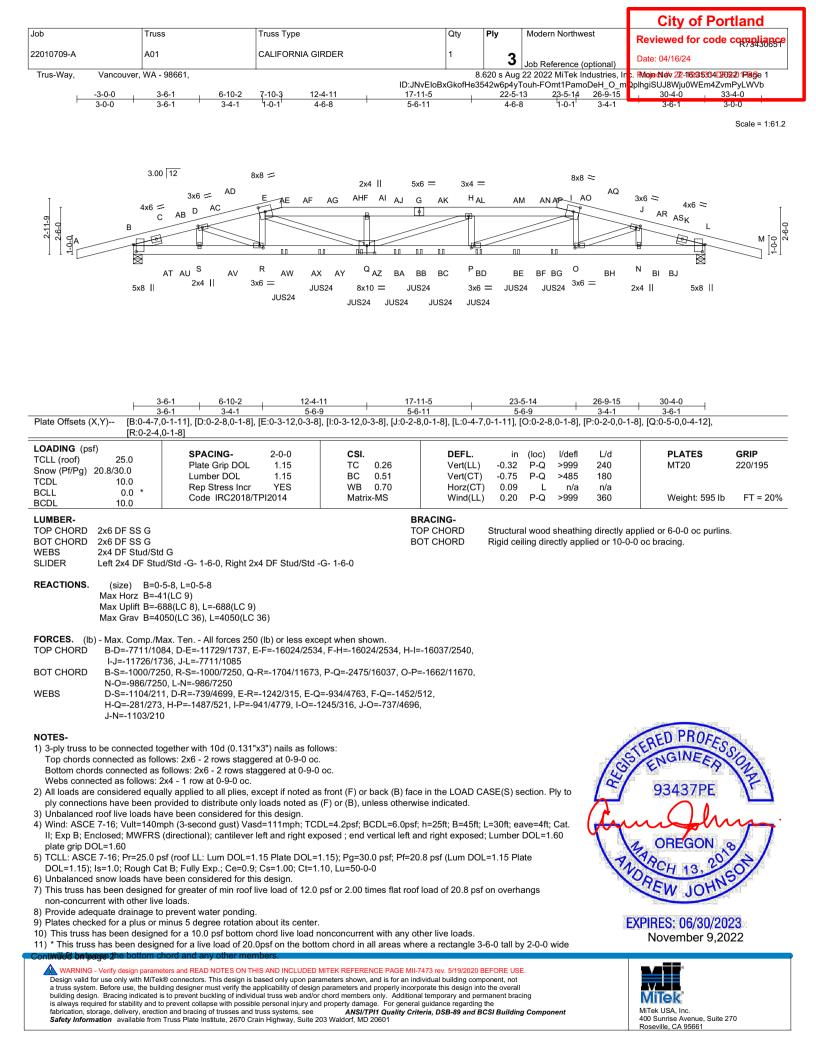
MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661 Telephone 916-755-3571

> SUBMITTED 11/30/2023

Re: 22010709-A Modern Northwest

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Trus-way Inc.

Pages or sheets covered by this seal: R73430651 thru R73430753


My license renewal date for the state of Oregon is June 30, 2023.

November 9,2022

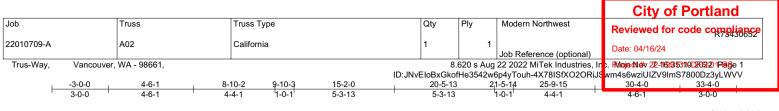
Johnson, Andrew

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

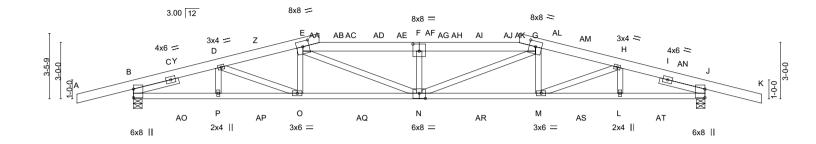
						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
00010700 4						R73430651
22010709-A	A01	CALIFORNIA GIRDER	1	3	lah Dafamana (antianal)	Date: 04/16/24
				•	Job Reference (optional)	
Trus-Way, Vanco	uver, WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, In	c. RMojecNé v 222-1169:353014D2703-2011Pla6ye 2
			ID:JNvEloBxGkofHe35	542w6p4y1	ouh-FOmt1PamoDeH_O_m	QplhgiSUJ8Wju0WEm4ZvmPyLWVb
NOTEO						

NOTES-

- 12) A plate rating reduction of 20% has been applied for the green lumber members.
- 13) Two RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B and L. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) Use MiTek JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-0-0 from the left end to 22-4-0 to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.
- 18) Double installations of RT7 require the two hurricane ties to be installed on opposite sides of top plate to avoid nail interference in single ply truss.
- 19) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1047 lb down and 214 lb up at 7-11-0, 330 lb down and 158 lb up at 10-0-0, 395 lb down and 192 lb up at 12-0-0, 373 lb down and 197 lb up at 14-0-0, 349 lb down and 197 lb up at 15-2-0, 373 lb down and 197 lb up at 16-4-0, 395 lb down and 192 lb up at 18-4-0, and 330 lb down and 158 lb up at 20-4-0, and 1047 lb down and 214 lb up at 22-4-15 on top chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: A-E=-62, E-I=-62, I-M=-62, T-X=-20
 - Concentrated Loads (lb)


Vert: G=-291 ÁE=-1005 AH=-276 AI=-337 AJ=-315 AK=-315 AL=-337 AM=-276 AP=-1005 AW=-53(B) AY=-54(B) AZ=-52(B) BA=-50(B) BB=-49(B) BC=-50(B) BD=-52(B) BE=-54(B) BG=-53(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:61.2

L	4-6-1	8-10-2	15-2-0	21-5-14		25-9-15	30-4-0	
Plate Offsets (X,Y) [E:0-4-0	4-6-1 0-3-81 [E·0-4-0 (<u>4-4-1</u>)-4-8], [G:0-4-0,0-3-8], [6-3-14 N·0-4-0 0-3-41	6-3-14		4-4-1	4-6-1	
	<u>,0 0 0], [1 .0 4 0,0</u>	, + 0], [0.0 + 0,0 0 0], [
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACINO Plate Grip Lumber D Rep Stree	DOL 1.15 DOL 1.15	CSI. TC 0.35 BC 0.76 WB 0.48	DEFL. i Vert(LL) -0.3 Vert(CT) -0.6 Horz(CT) 0.1	9 N-O	>999 24 >531 14	L/d PLATES 40 MT20 80 n/a	GRIP 220/195
BCLL 0.0 * BCDL 10.0		C2018/TPI2014	Matrix-MS	Wind(LL) 0.1			60 Weight: 177 Ib	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/St	d G	Right 2x4 DF Stud/Std	T(B(rectly applied or 3-8-14 oc purl or 7-4-12 oc bracing.	ins.
Max Horz B=-4 Max Uplift B=-3	-5-8, J=0-5-8 47(LC 11) 365(LC 14), J=-3 949(LC 38), J=1							
FORCES. (lb) - Max. Comp./M TOP CHORD B-D=-3316/71 H-J=-3316/71	16, D-E=-3987/95		ept when shown. G=-4761/1157, G-H=-398	7/953,				
	35, O-P=-575/308	5, N-O=-825/3918, M-N	I=-825/3918, L-M=-575/3	085,				
	D-O=-260/935, E 5, H-L=-55/262	E-N=-205/1092, F-N=-6	13/244, G-N=-206/1092,					
 NOTES- Unbalanced roof live loads h. Wind: ASCE 7-16; Vult=140r II; Exp B; Enclosed; MWFRS, Interior(1) 13-3-6 to 17-0-10 cantilever left and right expose Lumber DOL=1.60 plate grip TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to Plates checked for a plus or B) This truss has been designed * This truss is designed in ac referenced standard ANSI/T 	mph (3-second gu (directional) and performation of the second gu content of the second gu pole of the second gu pole of the second gu performation of	ust) Vasd=111mph; TCl C-C Exterior(2E) -3-0- -0-10 to 25-9-15, Interi- left and right exposed; DOL=1.15 Plate DOL= Ce=0.9; Cs=1.00; Ct=1 d for this design. in roof live load of 12.0 wonding. otation about its center ottom chord live load no of 20.0psf on the bottom of members. plied for the green lumb f truss to bearing plate	0 to 0-0-0, Interior(1) 0-0- or(1) 25-9-15 to 30-3-10, C-C for members and force 1.15); Pg=30.0 psf; Pf=20 10, Lu=50-0-0 psf or 2.00 times flat roof onconcurrent with any oth n chord in all areas where her members. capable of withstanding f	0 to 4-6-1, Exterior(2R) Exterior(2E) 30-3-10 to 3 ses & MWFRS for reacti 0.8 psf (Lum DOL=1.15 I 7 load of 20.8 psf on ove er live loads. e a rectangle 3-6-0 tall b 100 lb uplift at joint(s) ex	4-6-1 to 1 33-4-0 zo ons show Plate thangs y 2-0-0 w cept (jt=lt	13-3-6 ne; n; ride	SSTERED PROFES 93437PE 93437PE 0REGON WHOREGON WHOREGON WHORE 13, 20 EXPIRES: 06/30/20 November 9,2)23
Continued on page 2 WARNING - Verify design param Design valid for use only with MiTe								

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

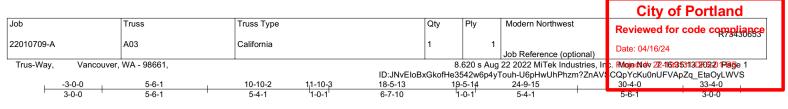
						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	A02	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouve	r, WA - 98661,		8	620 s Aug	22 2022 MiTek Industries, Ir	. RMoje N dv 22-116:3531002:02:20 1Plage 2
		ID:JNv	EloBxGko	He3542w6	ip4yTouh-4X78ISfXO2ORiJS	wm4s6wziUIZV9ImS7800Dz3yLWVV
NOTES-						

13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 72 lb down and 83 lb up at 9-11-0, 100 lb down and 101 lb up at 12-0-0, 106 lb down and 107 lb up at 14-0-0, 106 lb down and 107 lb up at 15-2-0, 106 lb down and 107 lb up at 16-4-0, and 100 lb down and 101 lb up at 18-4-0, and 72 lb down and 83 lb up at 20-4-15 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

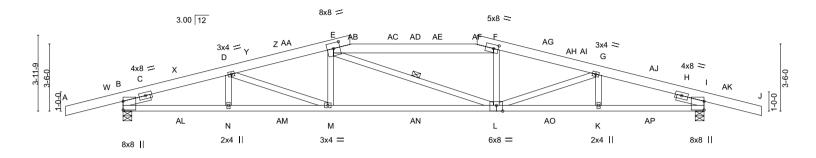
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: A-E=-62, E-G=-62, G-K=-62, Q-U=-20

Concentrated Loads (Ib)

Vert: F=-50 AB=-31 AD=-47 AF=-50 AG=-50 AI=-47 AK=-31

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:60.2

MiTek

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

 	5-6-1	<u>10-10-2</u> 5-4-1	19-5- 8-7-1		24-9-		<u> </u>	
Plate Offsets (X,Y) [E:0-4-0,	0-3-8], [F:0-3-0,0-2-8], [L		0-7-	15	3-4-	-1	3-0-1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.77 BC 0.93 WB 0.32 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.32 L-M -0.82 L-M 0.19 I 0.16 M-N	l/defl L/d >999 240 >443 180 n/a n/a >999 360	PLATES MT20 Weight: 171 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Bi WEBS 2x4 DF Stud/Sto		4 DF Stud/Std -G- 1-6	T(B' W	OT CHORD		sheathing direct ectly applied or 2 E-L	ly applied or 2-6-11 oc purli -2-0 oc bracing.	าร.
BOT CHORD B-N=-620/335	lax. Ten All forces 250 2, D-E=-3960/941, E-F=- 3, M-N=-620/3353, L-M= D-M=-195/715, E-M=-77	-3632/904, F-G=-3739 -797/3869, K-L=-618	9/895, G-I=-3584/7 //3331, I-K=-618/33	31				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=140m II; Exp B; Enclosed; MWFRS , Interior(1) 23-9-6 to 30-3-10 exposed; C-C for members ar 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough Ca 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) Plates checked for a plus or r 8) This truss has been designed will fit between the bottom ch 10) A plate rating reduction of 21 11) Provide mechanical connect B=362, I=362. 12) This truss is designed in acc referenced standard ANSI/T 13) This truss has been designed panel points along the Top 0 	nph (3-second gust) Vasa (directional) and C-C Ex , Exterior(2E) 30-3-10 to d forces & MWFRS for r sf (roof LL: Lum DOL=1. at B; Fully Exp.; Ce=0.9; been considered for this f or greater of min roof li b loads. o prevent water ponding. minus 5 degree rotation at f for a 10.0 psf bottom ch ed for a live load of 20.0p ord and any other memb 0% has been applied for tion (by others) of truss to cordance with the 2018 la PI 1.	d=111mph; TCDL=4.2 terior(2E) -3-0-0 to 0- 33-4-0 zone; cantilev eactions shown; Lum 15 Plate DOL=1.15); Cs=1.00; Ct=1.10, Lu s design. ve load of 12.0 psf or about its center. ord live load noncond osf on the bottom choicers. the green lumber me o bearing plate capab international Resident ated load of 250.0lb li	0-0, Interior(1) 0-0- ver left and right exp ber DOL=1.60 plat Pg=30.0 psf; Pf=20 u=50-0-0 2.00 times flat root current with any oth rd in all areas wher embers. ole of withstanding ial Code sections F ive and 3.0lb dead	0 to 6-8-6, Exteric posed ; end vertica e grip DOL=1.60 0.8 psf (Lum DOL= f load of 20.8 psf c her live loads. e a rectangle 3-6-1 100 lb uplift at join 2502.11.1 and R80 located at all mid p	r(2R) 6-8-6 to 2 al left and right =1.15 Plate on overhangs 0 tall by 2-0-0 w t(s) except (jt=lt 02.10.2 and	23-9-6 ride	SSERED PROFES 93437PE 93437PE 0REGON NOREGON 93437PE 1000 1000 1000 1000 1000 1000 1000 10	
Continued on page 2 WARNING - Verify design parame	eters and READ NOTES ON TH	IS AND INCLUDED MITEK F	REFERENCE PAGE MII-	7473 rev. 5/19/2020 BE	FORE USE.		natif [.]	

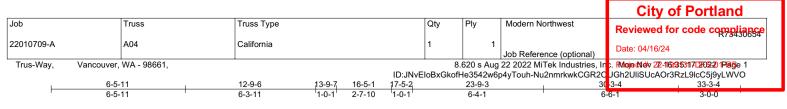
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	A03	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancou	ver, WA - 98661,		8	.620 s Aug	22 2022 MiTek Industries, Ir	: RMoje (Nie/v 272-116):353114D2403-20 1P1a6je 2
NOTES-			ID:JNvEloBxGk	ofHe3542v	/6p4yTouh-yJNf7qi1SHusBxl	1?wx24ps3mAqUEd3i3e_R6qyLWVR

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 101 lb down and 94 lb up at 11-11-0, 104 lb down and 105 lb up at 14-0-0, 110 lb down and 111 lb up at 15-2-0, and 104 lb down and 105 lb up at 16-4-0, and 101 lb down and 94 lb up at 18-4-15 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

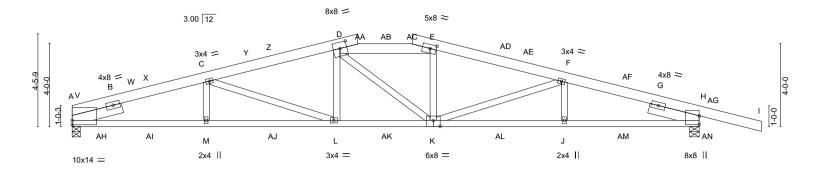
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: A-E=-62, E-F=-62, F-J=-62, O-S=-20 Concentrated Loads (lb)

Vert: AB=-60 AC=-49 AD=-51 AE=-49 AF=-60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:55.6

MiTek

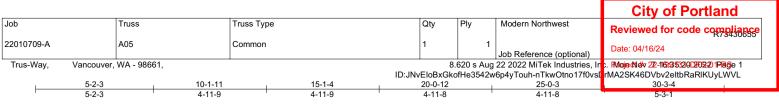
MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

6-5-11 Plate Offsets (X,Y) [A:0-0-0,0-2-4] LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL TCDL 10.0 10.0	6-3-11 -9], [D:0-4-0,0-3-8], [E:0-3-8,0-2-4], [4-7-13 H:0-4-15,0-0-1], [K:0-4-0,		6-4-1		1	6-6-1	Ι	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0	<u> </u>	1.0-4-10,0-0-1], [1.0-4-0,	J-J-U]						
TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0									
Snow (Pf/Pg) 20.8/30.0	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	Plate Grip DOL 1.15	TC 0.70	Vert(LL)	-0.33	L-M	>999	240	MT20	220/195
	Lumber DOL 1.15	BC 0.94	Vert(CT)	-0.71	L-M	>509	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.34	Horz(CT)	0.20	н	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	0.16	L-M	>999	360	Weight: 171 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G WEBS 2x4 DF Stud/Std G SLIDER Left 2x6 DF SS -G-2	2-6-0, Right 2x6 DF SS -G- 2-6-0	тс					g directly appliec ied or 2-2-0 oc b	d or 2-9-5 oc purlins racing.	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD A-C=-4439/1052, C-D=-4321/1091, D-E=-3971/1039, E-F=-4102/1033, F-H=-4322/960 BOT CHORD A-M=-907/4190, L-M=-907/4190, J-K=-808/4066, H-J=-808/4066 WEBS C-M=0/327, C-L=-409/385, D-L=-11/319, D-K=-469/106, E-K=-3/377, F-K=-443/232, F-J=0/323									
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=30f; eave=4f; Cat. I; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-5, Interior(1) 3-0-5 to 8-7-12, Exterior(2R) 8-7-12 to 21-9-8, Interior(1) 21-8-8 to 30-2-15, Exterior(2E) 302-215 to 33-3-4 zone; cantiever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; Rough Cat B; Fully Exp; (-co-9); Cs=1-10); Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) Plates checked for a 10.0 psf bottom chord live load on nonconcurrent with any other live loads. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord any other members. 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and H. This connection is for uplift only and does not consider lateral forces. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all manel panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeK expension of the state only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	A04	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	, WA - 98661,	ID:JNvE				2. MojecNety 22-16235317D20220 1Page 2 JGh2UliSUcAOr3RzL9lcC5j9yLWVO
NOTES-	naction dovice(a) shall be pr	ovided sufficient to support concentrated load(s			,	

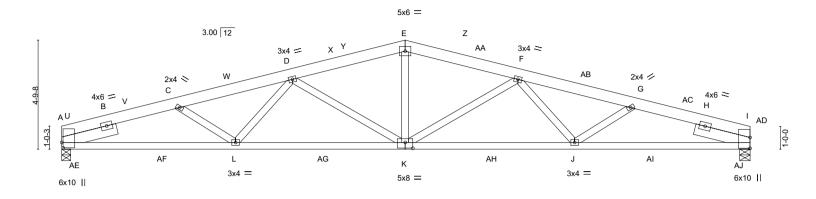
14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 277 lb down and 168 lb up at 13-10-5, and 81 lb down and 82 lb up at 15-1-4, and 277 lb down and 168 lb up at 16-4-3 on top chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-D=-62, D-E=-62, E-I=-62, N-R=-20 Concentrated Loads (lb)

Vert: AA=-236 AB=-38 AC=-236

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:50.7

MiTek

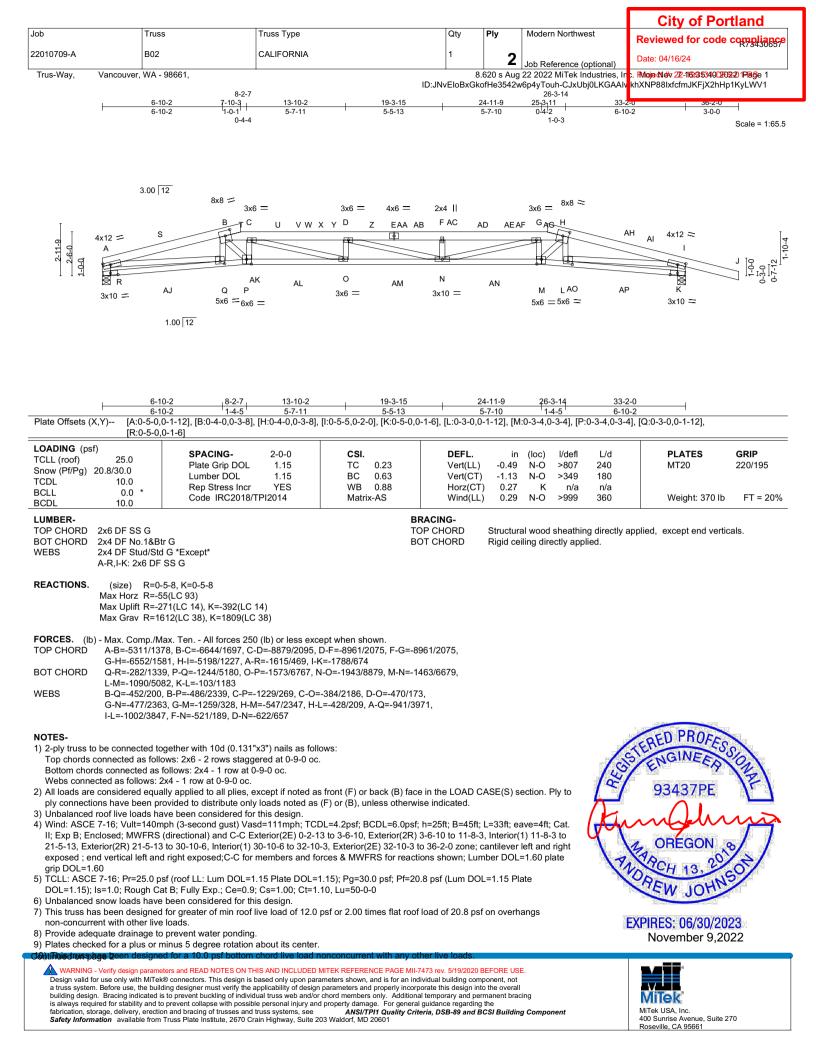
MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

LUMBER: TOP How the set of	7-7-12		-1-4	22-6-11			30-3-4	
TOLL (roof) 25.0 PFACING- Plate Gip DOL 115 TC 0.31 UPERL(1) 0.02 PLATES CBCU TOLL 10.0 Lumber DOL 1.15 BC 0.79 Vert(L1) 0.27 KL >939 240 MT20 220195 TOLL 0.0 Rep Steen DOL 1.15 BC 0.79 Vert(L1) 0.24 P40 MT20 220195 BCLL 0.0 Rep Steen DOL 1.15 BC 0.79 Vert(L1) 0.24 P40 MT20 220195 IUMBER TOP CHORD Xetor Nat& Steen Matrix-AS Wind(LL) D.14 Ave opp 360 Weight 161 Ib FT = 20% UMBER CSC SCO CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. SUDER Lef 2x0 FT SS G- SC - 26-0. Right 2x8 DF SS - G- 2-6-0. REACTIONS. (size) A =0-0-4-12, I=0-5-8 Max Har Z Ave Core Xet DF Not Atter G BOT CHORD Rigid ceiling directly applied.				/-5-/			7-8-10	· · · · · · · · · · · · · · · · · · ·
LUMBER. TOP CHORD 2x6 DF SS G TOP CHORD 2x4 DF No.18Br G BOT CHORD 2x4 DF No.18Br G BUDER Left 2x6 DF SS -62-26-0, Right 2x6 DF SS -62-26-0 REACTIONS. (size) A=0-4-12, I=0-5-8 Max Hoitz A-44(LC 12) Max Ugitt A-198(LC 14), I=198(LC 14) Max Grav A-1382(LC 2), I=1382(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD A-C=::3025/802, C-D=:306/783, D-E=:2511/710, E-F=:2511/710, F-G=:3068/787, G-I=:3058/810 BOT CHORD AL=:716/2530, K-L=:723/16, D-K=:772/220, E-K=:152/876, F-K=:780/222, F-J=:1/324 NOTES. 1) Unbalanced rof live loads have been considered for this design. 1) Unbalanced rof live loads have been considered for this design. 10 2) Wind: ASCE 7-16; Vult=140min (3-second gust) Vast=111mph; TCDL=4.2psf; BCDL=6.0psf; h=:25f; B=45f; L=30f; eave=4f; Cat. II; Exp B; Enclosed; WMPRRS for reactions show; LumBer DDL=1.510; Beat grip DDL=1.50 10.151: Is file Cade Cat. File (FXCE) C=0-0; C=D: Cit=1.10 10.151: Is file Cade Cat. File (FXCE) C=0-0; C=D: Cit=1.00 11.151: Is file Cade Cat. File (FXCE) C=0-0; C=D: Cit=1.00 13) Totat tas has been designed for a into bo	TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.31 BC 0.79 WB 0.49	Vert(LL) -0.24 Vert(CT) -0.57 Horz(CT) 0.14	K-Ĺ >999 K-L >637 I n/a	240 180 n/a	MT20	
 Max hýrz A-=44(LC 12) Max Ugirt A=-198(LC 14), I=-198(LC 14) Max Grav A=1362(LC 2), I=1362(LC 2) FORCES. (b) - Max Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A-C=-3025/802, C-D=-3067/783, D-E=-2511/710, E-F=-2511/710, F-G=-3086/787, G-I=-3059/810 BOT CHORD A-L=-718/2839, K-L=-734/2940, J-K=-726/2948, I-J=-727/2875 WEBS C-L=-78/259, D-L=-12/316, D-K=-772/220, E-K=-152/876, F-K=-780/222, F-J=-1/324 NOTES- Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Explored, C-C for members and forces & MWFRS for reactions shown. Lumber DOL=1.160 plate grip DOL=1.60 ToLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15; Pl=30.0 psf; Pl=20.8 psf (Lum DOL=1.161 reactions and process and forces & MWFRS for cereations shown: Lumber DOL=1.160 ToLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15; Pl=30.0 psf; Pl=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; Round Cat B; Fully Exp., Ce=-0; Ce=1.00 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord in ela dranconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will ift bedes net considered to truss to bearing walls due to UPLIFT at J(ts) A and 1. This connection is for uplift only and does not consider lateral forces. A plate rating reduction of 20% has been applied for the green lumber members. O ne RTA Mitek connectors recommendered. O This truss has been designed for a moving concentrated load of 250.0 bi live and 3.0 bi dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss thas been designed for a moving concentrated load of 250.0 bi live and 3.0 bi dead locate	LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Str SLIDER Left 2x6 DF SS	d G -G- 2-6-0, Right 2x6 DF SS -G- 2-6-0	T	OP CHORD Structura			ed.	
 TOP CHORD A-C=-3025/802, C-D=-3067/83, D-E=-2511/710, E-F=-2511/710, F-G=-3086/787, G-I=-3059/810 BOT CHORD A-L=-718/2839, K-L=-734/2940, J-K=-736/2948, I-J=-727/2875 WEBS C-L=-78/259, D-L=-12/316, D-K=-772/220, E-K=-152/876, F-K=-780/222, F-J=-1/324 NOTES- Unind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=30f; eave=4f; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-5, Interior(1) 3-0-5 to 12-0-15, Exterior(2R) 12-0-15 to 18-1-9, Interior(1) 18-19 to 27-2-15 to 30-3-4 zone; cantilever left and right exposed; e nd vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DoL=1.60 pate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: um DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10. Rough Cat B; Fully Exp.; Ce-0.9; Cs=-1.00; Cl=1.10 Unbalanced snow loads have been considered for this design. Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a 10-0 psf bottm chord line load nonconcurrent with any other live loads. ' This truss has been designed for a 10-0 ps fost moch chol line load nonconcurrent with any other live loads. One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and I. This connection is for uplift only and does not consider learal forces. On Fit truss has been designed for a noving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss designed in a correlarce with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1. This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all pa	Max Horz A=-4 Max Uplift A=-1	l4(LC 12) 98(LC 14), I=-198(LC 14)						
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf, h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-5, Interior(1) 3-0-5 to 12-0-15, Exterior(2R) 12-0-15 to 18-1-9, Interior(1) 18-1-9 to 27-2-15, Exterior(2E) 27-2-15 to 30-3-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1-10; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. A plate rating reduction of 20% has been applied for the green lumber members. One RT7 MiTeK connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and I. This connection is for uplift only and does not consider lateral forces. This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a mixing concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chor	TOP CHORD A-C=-3025/80 G-I=-3059/810 BOT CHORD A-L=-718/2833	2, C-D=-3067/783, D-E=-2511/710, E-F) 9, K-L=-734/2940, J-K=-736/2948, I-J=-7	=-2511/710, F-G=-3086/7 727/2875					
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.	 Unbalanced roof live loads ha Wind: ASCE 7-16; Vult=140n II; Exp B; Enclosed; MWFRS 18-1-9, Interior(1) 18-1-9 to 2 exposed;C-C for members ar TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C; Unbalanced snow loads have Plates checked for a plus or r This truss has been designed will fit between the bottom ch A plate rating reduction of 20 One RT7 MiTek connectors r uplift only and does not consi This truss has been designed referenced standard ANSI/1 This truss has been designed panel points along the Top (This truss design requires th 	nph (3-second gust) Vasd=111mph; TCI (directional) and C-C Exterior(2E) 0-0-0 7-2-15, Exterior(2E) 27-2-15 to 30-3-4 z ad forces & MWFRS for reactions showr sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1. been considered for this design. minus 5 degree rotation about its center. d for a 10.0 psf bottom chord live load nc ed for a live load of 20.0psf on the bottor ord and any other members. % has been applied for the green lumbe ecommended to connect truss to bearin der lateral forces. cordance with the 2018 International Re: "PI 1. ed for a moving concentrated load of 250 Chord and Bottom Chord, nonconcurren nat a minimum of 7/16" structural wood s	 to 3-0-5, Interior(1) 3-0-1, one; cantilever left and rin; Lumber DOL=1.60 plat 1.15); Pg=30.0 psf; Pf=20, 10 noconcurrent with any other n chord in all areas where members. g walls due to UPLIFT at sidential Code sections F 0.0lb live and 3.0lb dead t with any other live loads 	5 to 12-0-15, Exterior(2R) 1 ight exposed ; end vertical ie grip DOL=1.60 0.8 psf (Lum DOL=1.15 Pla ner live loads. re a rectangle 3-6-0 tall by 2 t jt(s) A and I. This connecti R502.11.1 and R802.10.2 a located at all mid panels ar s.	12-0-15 to left and right ate 2-0-0 wide ion is for and nd at all		OREGON OREGON	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

$ \frac{100}{100} \qquad 100 \\ 1$							City of Portland
$\frac{ \mathbf{x} ^2}{ \mathbf{x} ^2} = \frac{ \mathbf{x} ^2}}{ \mathbf{x} ^2} = \frac{ \mathbf{x} ^2}}{ \mathbf{x} ^2} $	Job				Ply	Modern Northwest	-
$\frac{143}{1000}$ 14	22010709-A		CALIFORNIA GIRDER				Date: 04/16/24
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Trus-Way,		_				
Note: The colspan="2">Note: The colspan="2" Note: The		4-10-2 5-10-3 4-10-2 1-0-1		20-11-15 4-10-10	<u>24-10-3</u> 3-10-4		3-6-1 3-0-0
Apple Special Bits Data		0-7-10					Scale = 1:66.8
Apple Special Bits Data							
$\frac{1}{10000000000000000000000000000000000$		8x8 =				8x8 🗮	
Image: Second Special S	Ţ,	3x6 B_X_C			= AH	AK	
19.9 3 U AD T ^{PA} AD AR AS ³ AT AU R AV a AV a AV b AV b<	<u>-6-0</u>	6x10 = W A			\leq		AL J AM
Av U AV AV BA Los Sub Sub Col Av AV AZ M AZ	2-0-1 1-0-0	Α V Ar		<u></u>			
Backet Special Special Special Special Special 100122 Special Special Special Special Special 100123 Special Special Special Special Special 100123 Special Special Special Special Special Special 100124 High		an u ^{ao} t	= 3x6 = Special 3x6 =	AV	Avv	A = N A Y A Z M	BA L
Line Line Line Sector		Special				3x4 =	u —
Image: Problem Provide (Prop.) Provide (Pr		1.50 12				Special	
Image: Problem Provide (Prop.) Provide (Pr							
Image: Problem Provide (Prop.) Provide (Pr							
Image: Problem Provide (Prop.) Provide (Pr							
Plate Offsets (X, Y) [A.0-5:0,2-24], [B:0-4:0,0-38], [C:0-2:0,0-1-8], [C:0-2:0,0-48], [C:0-2:0,0-38], [U:0-2:12:0-2:0], [C:0-3:0,0-38], [U:0-2:12:0-2:0], [C:0-3:0,0-38], [U:0-2:12:0-2:0], [C:0-3:0,0-38], [U:0-2:0,0-38], [U:0-2:12:0-2:0], [C:0-3:0,0-38], [U:0-2:12:0-2:0], [C:0-3:0,0-38], [U:0-2:0,0-38], [U:0-2		4-10-2 6-5-13 4-10-2 1-7-11				25-1-0 29-7-15 1-7-3 4-4-2	
LODING (psh) TOLL (roof) SPACING- 25.0 Particle Grip DoL Lumber DoL 1.15 Col. TC 0.24 DEFL Vert(L) in (loc) I/deft R > 8455 Lid MT20 PLATES 220/195 COULT (roof) 0.0 Rep Stress Incr NO WB 0.71 Vert(L) 0.46 R > 8455 240 BOL 10.0 Code IRC2018/TPI2014 WB 0.71 Horz(C)T 1.15 R > 340 Nie BOL 0.0 Code IRC2018/TPI2014 WB 0.71 Horz(C)T 1.15 R > 340 Nie	Plate Offsets (X					-4-0,0-3-8], [H:0-4-0,0-3-8]	, [J:0-2-12,0-2-0], [O:0-3-0
If CLL (root) 23.0 Piate Grip DOL 1.15 TC 0.24 Vert(C1) -0.15 R >846 440 MT20 220/195 TCDL 10.0 Rep Stress Incr NO WB 0.71 Hor(C1) 1.15 R >846 180 Weight: 1056 lb FT = 20% BCDL 10.0 Code IRC2018/TPI2014 Matrix-MS Wind(LL) 0.29 R >999 360 Weight: 1056 lb FT = 20% DVD L10.0 2xd DF SS G TOP CHORD Structural wood sheathing directly applied or 60-0 oc purlins, except when shown. TOP CHORD Rigid ceiling directly applied or 10-0 oc bracing. Max Hory V>-52(LC 10) Max Grav V>-2299(LC 40), L=3219(LC 40) L=478(LC 12) Max Grav V>-2299(LC 40), L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 12) Max Grav V>-2299(LC 40, L=3219(LC 40) L=478(LC 12) Max Grav V>-229) SPACING-	2-0-0 CSI .	DEFL.	in	(loc) l/defl L/d	
HOLL BOLL 0.0 10.0 Rep Stress Incr NO WB 0.71 Horz(CT) 0.20 L n/a n/a BOLL 0.00 Code IRC2018/TP12014 Matrix-MS Wind(LL) 0.29 L n/a n/a BOD Code IRC2018/TP12014 Matrix-MS BRACING- TOP CHORD 2.40 DF SS G Structural wood sheathing directly applied or 60-0 oc purlins, except and verticals. BOT CHORD WEBS 2.44 DF Stud/Std G "Except" A/V.J.L. 2x6 DF SS G BOT CHORD AV.J.L. 2x6 DF SS G Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS. (size) V=0-5.8, L=0-5.8 Max Horz V=52(LC 10) Max Upit V=-380(LC 1), L=478(LC 12) Max Grav V=280(LC 40), L=219(LC 40) Reactions. Rigid celling directly applied or 10-0-0 oc bracing. FORCES. (b)- Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A B=3787/1302, B-C=-1152992140, C-D=-20697/2800, D-E=-22828/3137, E-F=-2090/2667, F-G=-1472/10808, O-P=-1460/13564, N-O=-1088/10988, N-N=-2806/12, LM=-14317786 VL=-3033465 DC CHORD D-2-2574/2088, G-D=-1100/13564, N-O=-1088/10988, M-N=-598(5112, LM=-14317786 VL=-358/200, E-R=-32714/0, H-C=-3974/2083, D-P=-2003/30, F-P=-208/1087, G-P=-3572/2088, G-D=-1460/13564, N-O=-1088/10988, M-N=-598/6712, LM=-14317786 VL=-3828/437, H=-124/9703, N=-4245933, H=-5056/3277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- 1) S-pt in	Snow (Pf/Pg) 2	25.0 Plate Grip D0 20.8/30.0 Lumber DOL	DL 1.15 TC 0.24 1.15 BC 0.55	Vert(LL) Vert(CT)	-0.45 -1.15	R >865 240 R >340 180	
LUMBER. TOP CHORD DC HORD SAG DF SS G ZAG DF SS G BRACING- TOP CHORD ZAG DF SS G Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. WEBS ZAV DF Stud/Std G "Except" DOT CHORD AV-JL-1: Z2B DF SS G Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS. (size) V=0-5-8, L=0-5-8 Max Horz V=-52(LC 10) Max Grav V=2289(LC 40), L=3219(LC 40) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. FG-2009/2667, F-G-14472/1689, G-H=-112970/1433, H=-11005/1178, L-17065/691, A-V=-2684/387, J-L=-3063/455 J-L=-7909/2667, F-G-14472/1689, G-H=-112970/1433, H=-11005/1178, L-17065/691, A-V=-2684/387, J-L=-3063/450, G-D=-1017/1029, H-G-396/5130, L-N=-506/8277, L-M=-4371/122871, P-Q=-2574/20688, O.P=-1460/13664, N-Q=-203/308, F-P=-7208/1087, G-P=-357/208, G-D=-1017/1029, H-G-396/5333, L-N=-505/4277, L-M=-1133/181, A-LI=-89/6862, J-M=-585/5033, H-N=-1321/197 Mixe Store connected together with 100 (0.131*X3*) nails as follows: Top chords connected as follows: 2A+ 1 row at 0-9-0 c. Webs connected as follows: 2A+ 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2A+ 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2A+ 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2A+ 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2A+ 1 row at 0-9-0 oc. Match TC&&SC whi12* diam. bolts(ASTM A-307) in the center of the member wiwashers at 4-0-0 oc. Atl Index size considered for this as follows: Top chords connected to gether with 100 (0.131*X3*) nails as follows: Top chords connected to follows caks for 0 row staggered at 0-9-0 oc. Webs		0.0 * Rep Stress Ir	ncr NO WB 0.71	Horz(CT)	0.20	L n/a n/a	Weight: 1056 lb FT = 20%
BOT CHORD 2x6 DF SS G WEBS 2x4 DF Stud/Stt G *Except* A-V_J-L: 2x6 DF SS G REACTIONS. (size) V=0-58, L=0-5-8 Max Horz V=-52(LC 10) Max Corpt/Va86(LC 12), L=-478(LC 12) Max Corpt/Va86(LC 40), L=3219(LC 40) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A=-9787/1032, B-C=-15299/2104, CD=-20697/2890, D-E=-22828/3137, E-F=-20909/2667, F-G=-14472/1689, G-H=-12976/1433, H-I=-11005/1178, I-J=-7065/691, A-V=-2684/387, J-L=-3063/465 BOT CHORD U3282/2634, T-U=-12499773, 3:T=-2074/15615, R-S=-2802/20697, O-R=-3071/22871, P-Q=-2574/2088, O,P=-101702, H=O=-3965/330, I-N=-0596/71, L-M=-1431/1786 PO-25274/2088, O,P=-01702, H=O=-3965/330, I-N=-7208/1087, G=P=-357/2088, O,P=-1017029, H=O=-3965/330, I-N=-7208/1087, G=P=-357/2088, O,P=-017029, H=O=-3965/330, I-N=-0506/277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- 1) 5-ply trus to be connected together with 10d (0.131*X3°) nails as follows: Top chords connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-90 oc. Webs connected as follows: 2X6 - 2 rows staggered at 0-9	LUMBER-	I			Street	I wood cheeth'	unlied or 6.0.0 co and
A-V,J-L: 2x6 DF SS G REACTIONS. (size) V=0-5.8, L=0-5.8 Max Horz V=-52(LC 10) Max Carp. /Max. Tan All forces 250 (b) or less except when shown. TOP CHORD A-B=-978/1302, B-C=-15299/2104, C-D=-20897/2890, D-E=-22828/3137, E-F=-20909/2667, F-G=-14472/1689, G-H=-12976/1433, H=-11005/1178, L-J=-7065/691, A-V=-2684/387, J-L=-3063/465 BOT CHORD U-V=-328/2634, T-U=-1248/9773, S-T=-2074/15615, R-S=-2802/20697, O-R=-3071/22871, P-Q=-2574/20888, O-P=-1460/13564, N-O=-1088/10988, M-N=-598/6712, L-M=-143/1786 WEBS B-U=-1799/2918, B-T=-961/6609, O-T=-22703/308, F-P=-7208/1087, G-P=-357/2408, G-D=-107/209, H-O=-395/3330, I-N=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/033, H-N=-1321/197 NOTES- 1) 5-ply truns to be connected together with 10d (0.131*x3*) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected together with 10d (0.131*x3*) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 1 row at 0.9-0 oc. Webs connected as follows: 2x6 - 1 row at 0.9-0 oc. Webs connected as follows: 2x6 - 1 row at 0.9-0 oc. 2) All Loads are considered for this design. 4) Wind: ASCE 7-16; Wit=Handpile to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Wit=Handpile to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to place grip DOL=1.60 plate grip DOL=1.60 D) ToL: ASCE 7-16; Vit=Handpile - 25.0 psf (roof L1: Lum DOL=1.15; Plas0.0 psf; Pl=20.8 psf (Lum DOL=1.15 Plate	BOT CHORD	2x6 DF SS G			except er	nd verticals.	
Max Horz V=-52(LC 10) Max Uplift V=-386(LC 12), L=-478(LC 12) Max Grav V=2899(LC 40), L=3219(LC 40) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A 8=-9787/1302, B-C=-15299/2104, C-D=-20697/2890, D-E=-22828/3137, E-F=-20909/2667, F-G=-14472/1689, G-H=-12976/1433, H-L=-11005/1178, L-J=-7065/691, A-V=-2684/387, J-L=-3063/465 BOT CHORD U-V=-328/2834, T-U=-1248/9773, S-T=-2074/15615, R-S=-2802/20697, O-R=-3071/22871, P-O=-2574/2088, O-D=-1460/13664, N-O=-1088/1098, N-N=-308/6712, L-M=-1437/186 WEBS B-U=-1799/291, B-T=-961/6809, C-T=-2260/411, C-S=-744/5200, D-S=-1096/301, D-R=-2532200, E-R=-322/157, E-Q=-203/308, F-P=-7208/1087, G-P=-357/2408, G-C=-1017/209, H-O=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- NOTES- N 5-pt truss to be connected together with 10d (0.131*x3°) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-307) in the center of the member w/washers at 40-0 oc. Attach TCABC w/1/2° diam. bolts(ASTM A-3			В	UNUKU	r vigia cei	າອູ ດາເອບແy applied or 10-ເ	ο ο ο στασιτη.
Max Uplift V=-386)(LC 12), L=-478(LC 12) Max Grav V=289)(LC 40), L=3219(LC 40) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A-B=-97871302, B-C-15299/2104, C-D=-20697/2890, D-E=-22828/3137, E-F=-20909/2667, F-G=-14472/1689, G-H=-12976/1433, H-I=-11005/1178, I-J=-7065/691, A-V=-2684/387, J-L=-3063/465 BOT CHORD U-V=-328/2634, T-U=-1248/9773, S-T=-2074/15615, R-S=-2802/20697, Q-R=-3071/22871, P-Q=-2574/20888, O-P=-1460/13564, N-O=-1088/10988, M-N=-598/6712, L-M=-143/1786 WEBS B-U=-1799/291, B-T=-961/6809, C-T=-2260/411, C-S=-744/5200, D-S=-1096/301, D-R=-253/2200, E-R=-322/157, E-Q=-2345/835, F-Q=-203/308, F-P=-7208/1087, G-P=-357/2408, G-O=-1017/209, H-O=-395/3330, I-N=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- NOTES- NOTES- NOTES- 1) 5-ply truss to be connected together with 10d (0.131*X3*) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 1 row staggered at 0-9-0 oc. Attach TC&BC w1/12* diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered qually applied to al plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to y connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Winci. ASCE 7-16; VIE-140mph (3-second yst) V343=1111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=33f; eave=4f; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumb DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plat.							
 FORCES. (b) - Max. Comp./Max. Ten All force 250 (b) or less except when shown. TOP CHORD A.B=:-9787/1302, B-C=:-15299/2104, C-D=:-20697/2890, D-E=:-22828/3137, E-F=:-20909/2667, F-G=:-14472/1669, G-H=:-12976/1433, H-I=:-11005/1178, I-J==:-7065/691, A-V=:-2684/387, J-L=:-3063/465 BOT CHORD U.V=:-328/2634, T-U=:-1248/9773, S-T=:-2074/15615, R-S=:-2802/20697, Q-R=:-3071/22871, P-Q=:-2574/2088, O-P=:-1460/13564, N-O=:-1088/10988, M-N=:598/6712, L-M=:-143/1786 BU:D::-179/291, B-T=:-961/16809, C:T=:-2260/411, C:S=:-744/5200, D:S=:-1086/1098, M-N=:598/6712, L-M=:-143/1786 WEBS B:U=:-1799/291, B-T=:-961/16809, C:T=:-2260/411, C:S=:-744/5200, D:S=:-1086/10987, G-P=:-357/2408, G-O=:-1017/209, H-O=:-395/3330, I-N=:-505/4277, I-M=:-1133/181, A-U=:-889/6862, J-M=:-585/5033, H-N=:-1321/197 NOTES- 1) 5-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 304 37PE Word: sconnected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 304 37PE Wind: ACE 7-16; VII:-140mph (5:second just) Voad=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=33f; eave=4f; Cat. 1) Ubalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; VII:4140mph (5:second just) Voad=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=33f; eave=4f; Cat. 1) Exp B: Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; IF=725.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pl=20.8 psf (Lum DOL=1.15) Plate		Max Uplift V=-386(LC 12), L=-478(I					
 TOP CHORD A-B=-9787/1302, B-C=-15299/2104, C-D=-20697/2890, D-E=-2289/2137, E-F=-20909/2667, F-G=-14472/1689, G-H=-12976/1433, H-I=-11005/1178, I-J=-7065/691, A-V=-2684/387, J-L=-3063/465 BOT CHORD U-V=-328/2634, T-U=-1248/9773, S-T=-2074/15615, R-S=-2802/20697, Q-R=-3071/22871, P-Q=-2574/20888, O-P=-1460/13564, N-O=-1088/10988, M-N=-598/6712, L-M=-143/1786 WEBS B-U=-1799/291, B-T=-961/6809, C-T=-2260/411, C-S=-744/5200, D-S=-1096/301, D-R=-253/2200, E-R=-3221/57, E-Q=-2345/835, F-Q=-203/308, F-P=-7208/1087, G-P=-357/2408, G-O=-1017/209, H-D=-395/3330, I-N=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-155/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-155/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-155/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-102/1197 NOTES- 1) 5-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. Attach TC&BC wh/12^e diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Prd=25.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate							
 J-L=-3063/465 BOT CHORD U-V=:328/2634, T-U=:1248/9773, S-T=-2074/15615, R-S=-2802/20697, Q-R=-3071/22871, P-Q=:2574/2088, O-P=:-1460/13564, N-O=-1088/10988, M-N=:598/6712, L-M=-143/1786 WEBS B-U=:1799/291, B-T=-961/6809, C-T=-2260/411, C-S=-744/5200, D-S=-1096/301, D-R=:253/2200, E-R=-322/157, E-Q=-2345/835, F-Q=-203/308, F-P=-7208/1087, G-P=-357/2408, G-O=:1017/209, H-O=:395/3330, I-N==505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=:1321/197 NOTES- S-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Attach TC&BC w1/2" diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. Mil loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate 		A-B=-9787/1302, B-C=-15299/210)4, C-D=-20697/2890, D-E=-22828/3137, E-F				
 P-Q=-2574/20888, O-P=-1460/13564, N-O=-1088/10988, M-N=-598/6712, L-M=-143/1786 WEBS B-U=-1779/291, B-T=-961/6809, C-T=-2260/411, C-S=-744/5200, D-S=-1096/301, D-R=-253/2200, E-R=-322/157, E-Q=-2345/835, F-Q=-203/088, F-P=-7208/1087, G-P=-357/2408, G-O=-1017/209, H-O=-395/3330, I-N=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- 1) 5-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Nottes- Considered equally applied to all plies, except if noted as fort (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DDL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DDL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DDL=1.15 Plate 	BOT CHORD	J-L=-3063/465					
D-R=-253/2200, E-R=-322/157, E-Q=-203/308, F-P=-7208/1087, G-P=-357/2408, G-O=-1017/209, H-O=-395/3330, I-N=-505/4277, I-M=-1133/181, A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- 1) 5-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. Attach TC&BEC w1/12" diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate		P-Q=-2574/20888, O-P=-1460/135 B-U=-1799/291, B-T=-961/6809, C	564, N-O=-1088/10988, M-N=-598/6712, L-M C-T=-2260/411, C-S=-744/5200, D-S=-1096/3	M=-143/1786 301,			
A-U=-889/6862, J-M=-585/5033, H-N=-1321/197 NOTES- 1) 5-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Attach TC&BC w1/2" diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate		D-R=-253/2200, E-R=-322/157, E- G-P=-357/2408, G-O=-1017/209, I	-Q=-2345/835, F-Q=-203/308, F-P=-7208/108 H-O=-395/3330, I-N=-505/4277, I-M=-1133/1)87,			
 5-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate 							TERED PROFES
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. Attach TC&BC w/1/2" diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate	1) 5-ply truss to					6	SENGINEED OF
Attach TC&BC w/1/2" diam. bolts(ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate	Bottom chord	ds connected as follows: 2x6 - 2 rows	s staggered at 0-9-0 oc.				93437PE
 ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate 	Attach TC&B	C w/1/2" diam. bolts(ASTM A-307) ir	n the center of the member w/washers at 4-0				
 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate 	ply connection	ons have been provided to distribute	only loads noted as (F) or (B), unless otherw		∩ఎ⊏(ఏ) S€		
plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate	4) Wind: ASCE	7-16; Vult=140mph (3-second gust)	Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf;				RCH 10 20 A
	plate grip DO	DL=1.60					REW JOHNS
DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 6) Unbalanced snow loads have been considered for this design.	DOL=1.15); Is	s=1.0; Rough Cat B; Fully Exp.; Ce=	=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0			-	
7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs EXPIRES: 06/30/2023	This truss has	s been designed for greater of min ro		of load of 20.8 psf	on overha	angs	
8) Provide adequate drainage to prevent water ponding. 8) Provide adequate drainage to prevent water ponding. 8) Provide adequate drainage to revent water ponding. 8) Provide adequater ponding. 8) Provide adequ	8) Provide adeq	quate drainage to prevent water pond					
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	WARNING - Design valid for	• Verify design parameters and READ NOTES O r use only with MiTek® connectors. This desig	IN THIS AND INCLUDED MITEK REFERENCE PAGE MII- In is based only upon parameters shown, and is for an inc	ndividual building comp	oonent, not	t.	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the	a truss system. building design. is always requir	. Before use, the building designer must verify b. Bracing indicated is to prevent buckling of in ired for stability and to prevent collapse with po	the applicability of design parameters and properly incorp adividual truss web and/or chord members only. Addition possible personal injury and property damage. For genera	rporate this design into nal temporary and pern	o the overall manent braci	ing	Mitek
is bindly for the comparison of advices of advices and trues systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component 400 Sinite Avenue, Suite 270 Kaseville, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Roseville, CA 95661	fabrication, stor	rage, delivery, erection and bracing of trusses	and truss systems, see ANSI/TPI1 Quality Crit			a Component	400 Sunrise Avenue, Suite 270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B01	CALIFORNIA GIRDER	1	5	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,					2. RMoje Mie/v 272-1169:35332D2703-20 1P186 2
		ID:JNvE	loBxGkof⊦	le3542w6p	4yTouh-RmSSvzwKCp9JLi7	3iGGpccHTR3jSfOMCRLOInyLWV9
NOTES-						


- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) A plate rating reduction of 20% has been applied for the green lumber members.
- 13) Bearing at joint(s) V, L considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) V and L. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 454 lb down and 168 lb up at 5-11-0, 298 lb down and 150 lb up at 8-0-0, 293 lb down and 158 lb up at 10-0-0, 263 lb down and 159 lb up at 12-0-0, 171 lb down and 103 lb up at 14-0-0, 234 lb down and 155 lb up at 16-0-0, 336 lb down and 95 lb up at 16-11-4, 169 lb down and 95 lb up at 16-11-4, and 454 lb down and 53 lb up at 24-11-0, and 454 lb down and 53 lb up at 25-2-15 on top chord, and 68 lb down at 6-0-0, 68 lb down at 8-0-0, 68 lb down at 12-0-0, 73 lb down at 14-0-0, and 73 lb down at 16-0-0, and 89 lb down at 25-1-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: A-B=-62, B-F=-62, F-G=-62, G-H=-62, H-J=-62, J-K=-62, T-V=-20, P-T=-20, O-P=-20, L-O=-20
- Concentrated Loads (lb) Vert: E=-118 O=-89(B) R=-36(B) X=-311 Y=-243 AA=-235 AB=-205 AD=-89 AF=-406(B=-302) AI=-433 AJ=-433 AJ=-34(B) AQ=-34(B) AS=-34(B) AT=-34(B) AU=-36(B) AU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B02	CALIFORNIA	1	2	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	. RMoje N dv 22-116335340D2702-20 1Plage 2
		ID:JN	vEloBxGkd	ofHe3542w	6p4yTouh-CJxUbj0LKGAAlv	khXNP88lxfcfmJKFjX2hHp1KyLWV1
NOTES-						

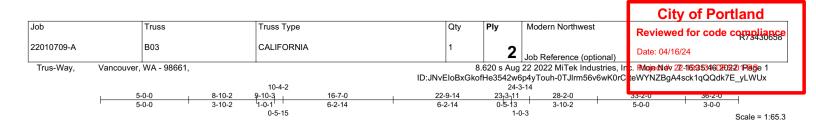
11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

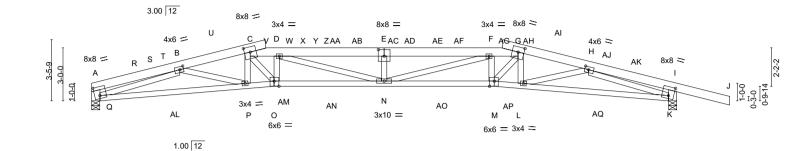
- 12) A plate rating reduction of 20% has been applied for the green lumber members.
- 13) Bearing at joint(s) R, K considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) R and K. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 105 lb down and 176 lb up at 7-11-0, 105 lb down and 104 lb up at 10-0-0, 113 lb down and 112 lb up at 12-0-0, 113 lb down and 112 lb up at 14-0-0, and 86 lb down and 112 lb up at 16-0-0, and 123 lb down and 115 lb up at 16-11-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: A-B=-62, B-H=-62, H-I=-62, I-J=-62, P-R=-20, M-P=-20, K-M=-20


Concentrated Loads (lb)

Vert: D=-54 T=-22 U=-51 X=-54 AA=-28 AB=-39

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

.

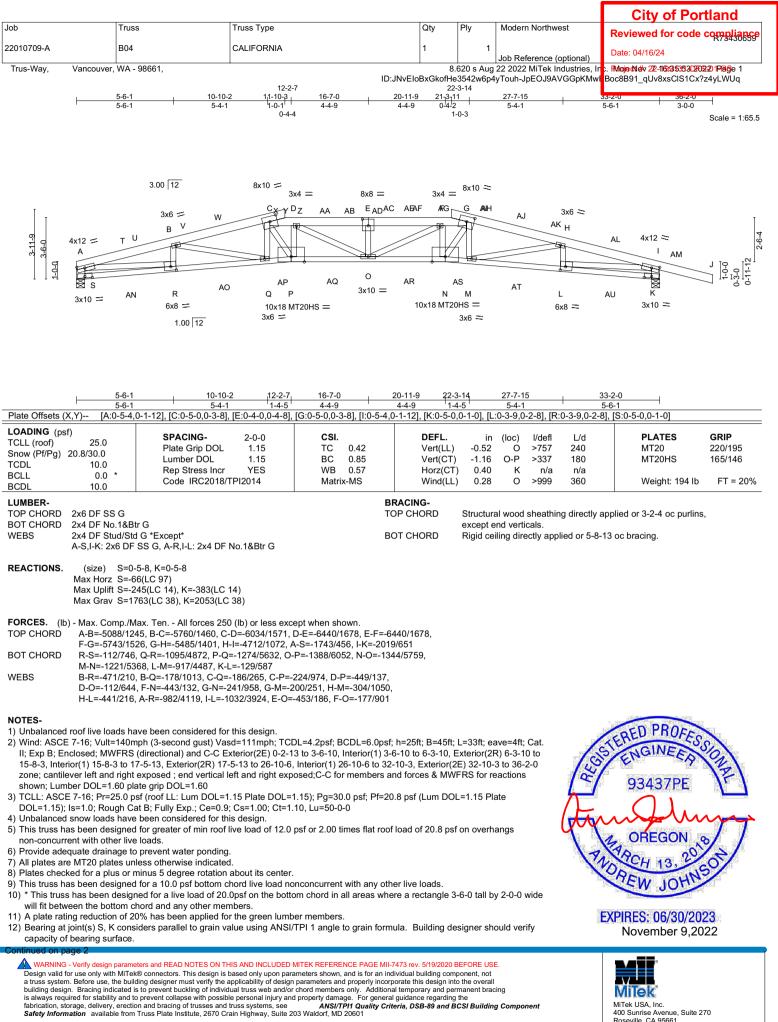
	L	8-10-2	10-4-2	16-7-0	22-9-14	24-3-14	33-2-0			
Plate Offsets (X	<u> </u>	8-10-2 ,0-6-0], [B:0-2-8,0-2-0]	<u>1-6-0</u>	<u>6-2-14</u>	6-2-14	1-6-0	8-10-2	······································		
		,0-0-0ј, [Б.0-2-0,0-2-0]	, [C.0-4-0,0-3-0], [E.0-4-0,0-4-0j, [G.0-4	I-0,0-3-0j, [N.0-2-0,0	-2-0], [1.0-3-6,0-0	i-0], [IVI.0-3-4,0-3-6], [C	7.0-3-4,0-3-6]		
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 2	25.0 20.8/30.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 . 1.15 1.15	CSI. TC 0.23 BC 0.51	DEFL. Vert(LL) Vert(CT)	in (loc) -0.35 N -0.81 N-O	l/defl L/d >999 240 >484 180	PLATES MT20	GRIP 220/195	
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Inc Code IRC2018	r YES	WB 0.52 Matrix-MS	Horz(CT) Wind(LL)) 0.27 K	n/a n/a >999 360	Weight: 376 lb	FT = 20%	
WEBS	2x6 DF SS G 2x4 DF No.1&B 2x4 DF Stud/Sto A-Q,I-K: 2x6 DF	d G *Except*			BRACING- TOP CHORD BOT CHORD	except end vert	0 11	olied or 6-0-0 oc purlins l oc bracing.	5,	
REACTIONS.	Max Horz Q=-6 Max Uplift Q=-3	-5-8, K=0-5-8 60(LC 12) 317(LC 14), K=-534(L0 779(LC 38), K=2119(L								
TOP CHORD	A-B=-1087/27 F-G=-6652/21	/lax. Ten All forces 2 '1, B-C=-6022/1643, C 93, G-H=-5951/1858,	-D=-6815/1953, D H-I=-1028/210, A	-E=-7875/2327, E-F= Q=-643/199, I-K=-10	32/421					
BOT CHORD	K-L=-1222/434			,	,					
WEBS	WEBS C-P=-469/227, C-O=-499/1571, D-O=-779/257, D-N=-368/1392, E-N=-585/229, F-N=-118/1367, F-M=-774/263, G-M=-528/1585, G-L=-532/313, B-Q=-3894/1153, H-K=-3703/1311, B-P=-260/1568, H-L=-488/1742									
 NOTES- Poly truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-2-13 to 3-6-10, Interior(1) 3-6-10 to 4-3-10, Exterior(2R) 4-3-10 to 13-8-3, Interior(1) 13-8-3 to 19-5-13, Exterior(2R) 10-5-13 to 28-10-6, Interior(1) 28-10-6 to 32-10-3, Exterior(2E) 32-10-3 to 36-2-0, zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; Rough Cat B; Fully Exp; Ce=0.9; Cs=1.00; Cl=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a lob or minus 5 degree rotation about its center. This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. Provide adequate drainage to prevent water ponding. Plates checked for a plus										
WARNING - Design valid for a truss system. building design is always requil fabrication, stor	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 MITek USA. Inc. Kore energination available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601									

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B03	CALIFORNIA	1	2	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	, WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	. RMojecNetv 22-1163:35347D202-201Plage 2
		ID:JNvEI	oBxGkofHe	e3542w6p4	lyTouh-Ufs7366kgQ2Be?n1	L1nwmkrwUBrTU3ZfHTgmQyLWUw
NOTES-						

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) A plate rating reduction of 20% has been applied for the green lumber members.

- Applied registry at joint(s) Q, K considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) Q and K. This connection is for uplift only and does not consider lateral forces
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 155 lb down and 174 lb up at 9-11-0, 102 lb down and 103 lb up at 12-0-0, 110 lb down and 111 lb up at 14-0-0, 110 lb down and 111 lb up at 16-0-0, and 121 lb down and 111 lb up at 16-11-4, and 294 lb down and 367 lb up at 23-2-14 on top chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: A-C=-62, C-G=-62, G-I=-62, I-J=-62, O-Q=-20, M-O=-20, K-M=-20 Concentrated Loads (lb)

Vert: V=-72 X=-48 AB=-51 AC=-51 AD=-51 AG=-212

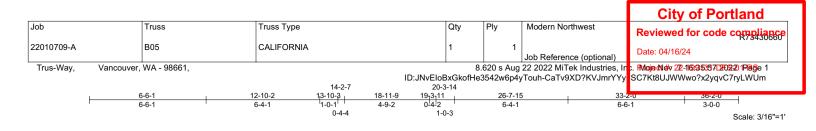
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

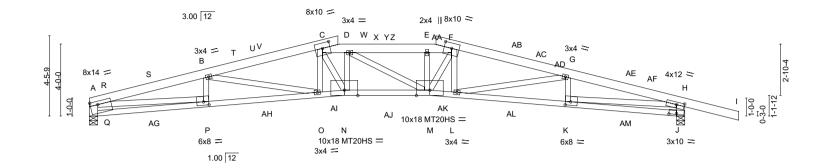
MiTek USA, Inc 400 Sunrise Aven ue. Suite 270 Roseville, CA 95661

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B04	CALIFORNIA	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver	, WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	: FMoje Niew 22-1163:353535202220 1Plage 2
NOTES-		ID:JNvEl	BxGkofHe	3542w6p4	yTouh-JpEOJ9AVGGpKMwl	Boc8B91_qUv8xsClS1Cx?z4yLWUq

13) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) S and K. This connection is for uplift only and does not consider lateral forces.

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 158 lb down and 174 lb up at 11-11-0, 102 lb down and 103 lb up at 14-0-0, 110 lb down and 111 lb up at 16-0-0, and 125 lb down and 111 lb up at 16-11-4, and 178 lb down and 90 lb up at 21-2-14 on top chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: A-C=-62, C-G=-62, G-I=-62, I-J=-62, P-S=-20, N-P=-20, K-N=-20 Concentrated Loads (lb)

 - Vert: Y=-75 AA=-48 AD=-51 AE=-51

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-6-1		12-10-2	14-2-7	18-11-9	2	20-3-14	26-7-15	5		33-2-0		
Plate Offsets	6-6-1 X Y) [A·0-5-0	0-2-41 [C:0-5-0 0-	<u>6-4-1</u> ·3-8], [F:0-5-0,0-3-8]	<u>'1-4-5'</u> I [H:0-5-4 0-1	4-9-2 -121 [.l:0-5-	-0 0-0	<u>'1-4-5</u> ')-12] [K·0-3-9.0	6-4-1	0-3-9 ()-2-41	6-6-1	I	
	, , ,		0 0], [1 0 0 0,0 0 0	<u>, [1.0 0 1,0 1</u>	12], [0.0 0	0,0 0	<u>, 12], [1.0 0 0,0</u>	· _ ·], [·	.0 0 0,0	/ <u>-</u>]			
LOADING (ps TCLL (roof)	st) 25.0	SPACING		CSI			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)		Plate Grip		TC	0.49		Vert(LL)	-0.51	M-N	>764	240	MT20	220/195
TCDL	10.0	Lumber DC		BC	0.84		Vert(CT)	-1.10	M-N	>355	180	MT20HS	165/146
BCLL	0.0 *	Rep Stress		WB			Horz(CT)	0.38	J	n/a	n/a		
BCDL	10.0	Code IRC:	2018/TPI2014	Mat	rix-MS		Wind(LL)	0.25	M-N	>999	360	Weight: 195 lb	FT = 20%
LUMBER-						BRA	CING-						
	2x6 DF SS G							Structura	al wood	sheathin	a directly appl	ied or 3-1-14 oc purlin	s.
BOT CHORD		tr G						except e			.g		-,
WEBS	2x4 DF Stud/Sto	I G *Except*				BOT	CHORD I	Rigid cei	ling dire	ectly appl	lied or 6-0-0 oc	c bracing.	
	A-Q,H-J: 2x6 DF	SS G, A-P,H-K:	2x4 DF No.1&Btr G					-	-			-	
REACTIONS.	Max Horz Q=-7 Max Uplift Q=-2	,											
FORCES. (II TOP CHORD	A-B=-5613/12	72, B-C=-5805/13	es 250 (lb) or less e 64, C-D=-5910/143	2, D-E=-5910	/1421, E-F=	-5899	9/1416,						
BOT CHORD	P-Q=-127/873		26, A-Q=-1822/452 3, N-O=-1160/5646,			1132/	/5593,						
WEBS	B-P=-403/202	, B-O=-286/671, C	C-O=-53/391, C-N=- L=-291/751, G-K=-3				-302/207,						
	H-K=-1055/43		L291/131, G-R0	000/209, A-F-	-900/4493,								
 Wind: ASC II; Exp B; E 24-10-6, Inin right expos TCLL: ASC DOL=1.15) Unbalanced This truss h non-concur Provide add All plates deadd Plates cheed This truss h 10) * This truss h 10) * This truss h 11) A plate ra Bearing a capacity or One RT7 	E 7-16; Vult=140m nclosed; MWFRS terior(1) 24-10-6 to ed;C-C for membe E 7-16; Pr=25.0 p ; Is=1.0; Rough C2 d snow loads have tas been designed rent with other live equate drainage to re MT20 plates un ked for a plus or r tas been designed s has been designed s has been designed s has been designed ting reduction of 2t t joint(s) Q, J cons f bearing surface.	nph (3-second gus (directional) and (3 32-10-3, Exterior) ors and forces & N at B; Fully Exp.; C been considered for greater of mir loads. o prevent water po less otherwise inc minus 5 degree ro l for a 10.0 psf bol hord and any othe 0% has been app iders parallel to g	n roof live load of 12 unding. licated. tation about its cent ttom chord live load of 20.0psf on the bo	2-13 to 3-6-10 2-0 zone; can s shown; Lum _=1.15); Pg=3 =1.10, Lu=50- .0 psf or 2.00 er. nonconcurrer stom chord in mber member SI/TPI 1 angle	, Interior(1) tilever left a ber DOL=1. 60.0 psf; Pf= 0-0 times flat ro all areas w s. e to grain for	3-6-1 and rig .60 pl =20.8 oof loa other vhere	10 to 8-3-10, Ex ght exposed ; e late grip DOL=1 psf (Lum DOL= ad of 20.8 psf o live loads. a rectangle 3-6 a. Building desi	terior(2F nd vertic 1.60 =1.15 Pla on overha 5-0 tall by gner sho	 R) 8-3-1 al left a ate angs y 2-0-0 puld ver 	0 to nd wide ify	Contraction of the second	PRED PROFES ENGINEER 93437PE OREGON OREGON REW JOHN PIRES: 06/30/20 November 9,20	
	age does not con:	sider lateral forces	3.										
Design valid a truss syste building desi	for use only with MiTek m. Before use, the build gn. Bracing indicated i	® connectors. This de ding designer must ver s to prevent buckling o	S ON THIS AND INCLUDI sign is based only upon ify the applicability of des f individual truss web and possible personal injury	barameters show sign parameters a d/or chord membe	n, and is for an ind properly inc ers only. Additi	n individ corporational te	dual building compo ate this design into t emporary and perma	nent, not he overall anent brac					

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

a duss system: Joine dus, indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B05	CALIFORNIA	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouve	r, WA - 98661,	•	. 8	620 s Aug	22 2022 MiTek Industries, In	: RMoje N dv 22-116335337D2703-201Page 2
		ID:JNvElo	BxGkofHe	3542w6p4y	yTouh-CaTv9XD?KVJmrYYy	SC7Kt8UJWWwo?x2yqvC7ryLWUm
NOTES						

NOTES-

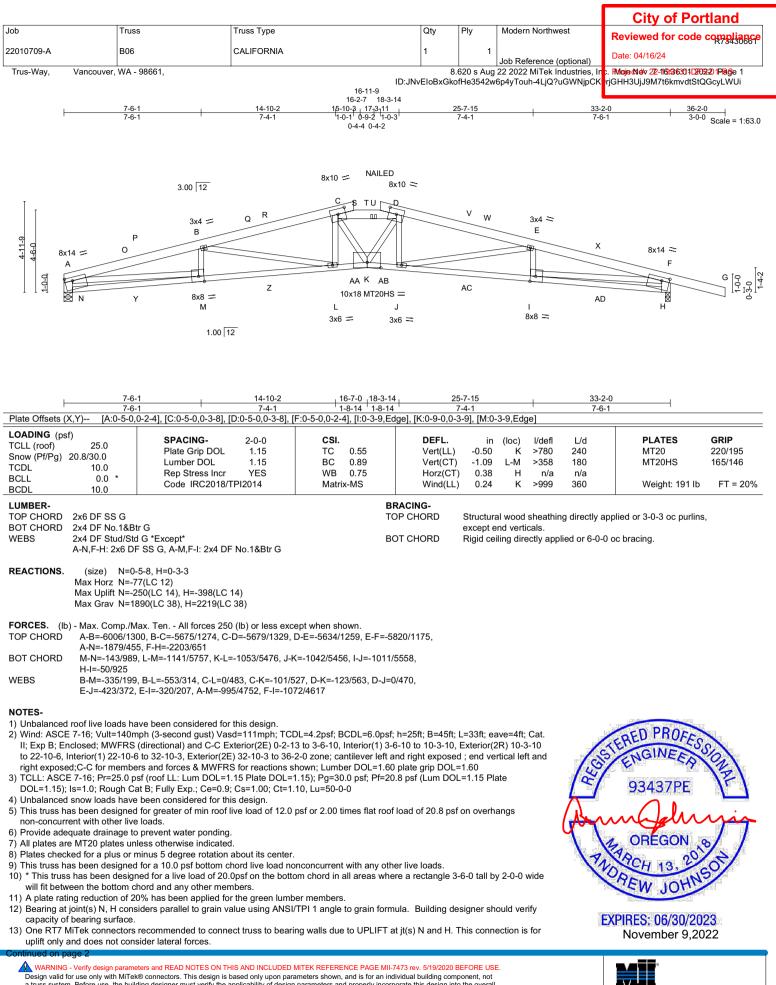
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and
- Bottom Chord, nonconcurrent with any other live loads.
- (a) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (b) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (c) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 152 lb down and 170 lb up at 13-11-0, 102 lb down and 103 lb up at 16-0-0, and 139 lb down and 109 lb up at 16-11-4, and 138 lb down and 171 lb up at 19-2-14 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: A-C=-62, C-F=-62, F-H=-62, H-I=-62, N-Q=-20, M-N=-20, J-M=-20

Concentrated Loads (lb) Vert: W=-69 X=-48 Z=-51 AA=-56

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



<u>...</u>

....

....

.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

MiTek

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B06	CALIFORNIA	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		8.0	620 s Aug	22 2022 MiTek Industries, In	. RMoje Niew 22-116336301 D202-20 1Plage 2
NOTES-		ID:JNv	EloBxGko	fHe3542w	6p4yTouh-4LjQ?uGWNjpCK	rjGHH3UjJ9M7t6kmvdtStQGcyLWUi

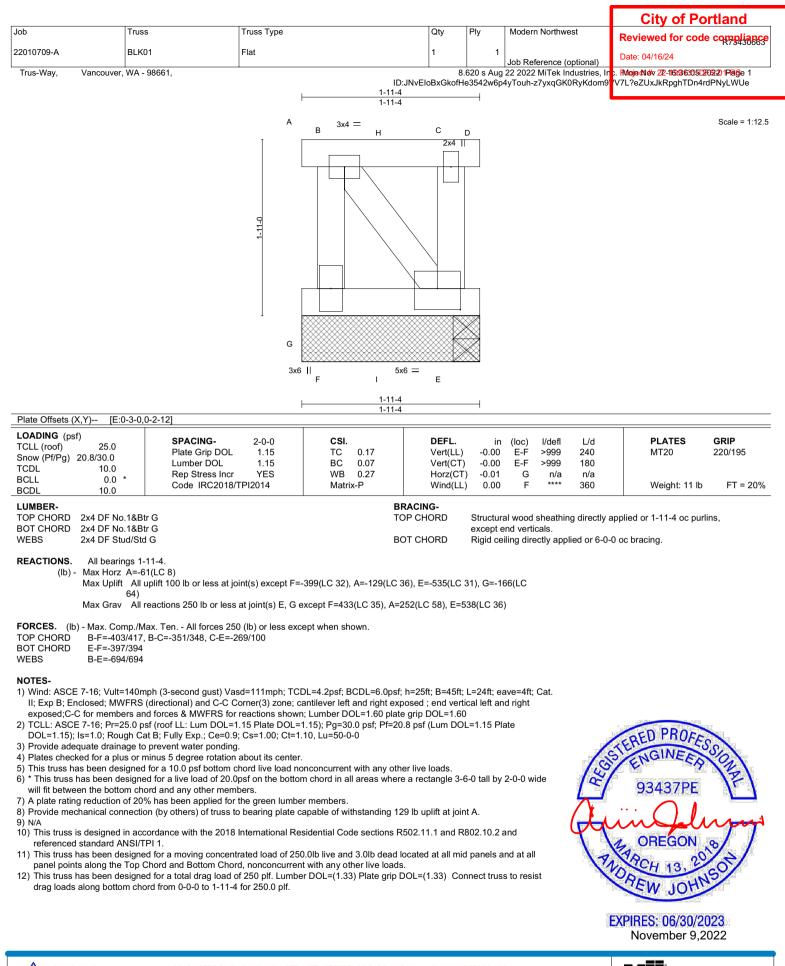
14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 148 lb down and 118 lb up at 15-11-0, and 135 lb down and 116 lb up at 17-2-14 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 18) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

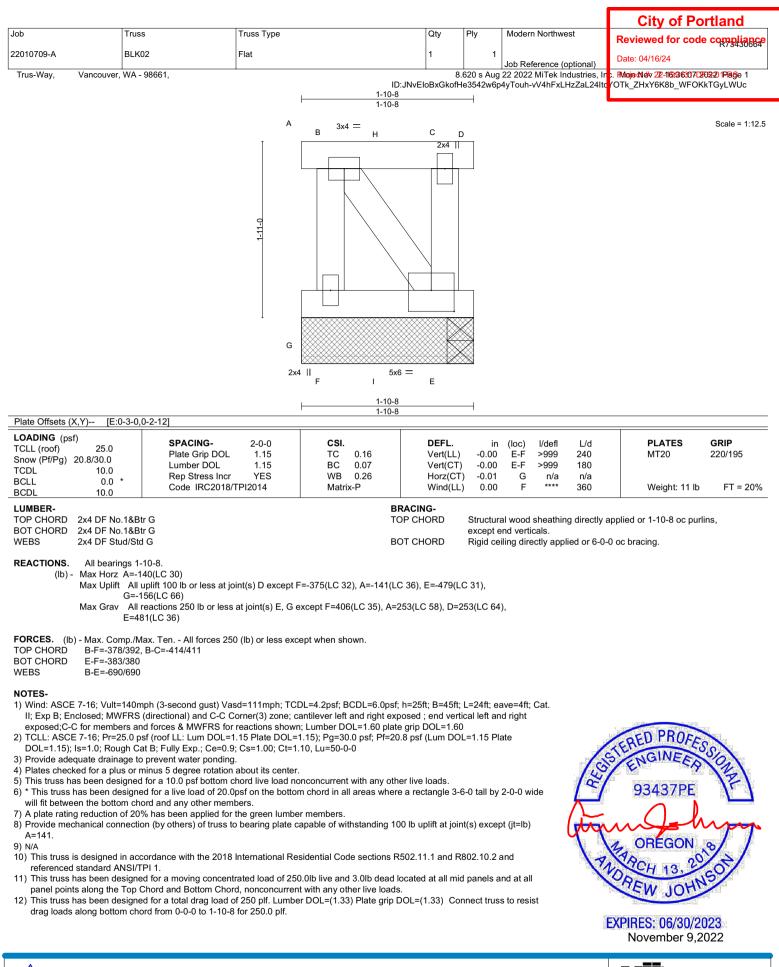
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: A-C=-62, C-D=-62, D-F=-62, F-G=-62, K-N=-20, H-K=-20
 - Concentrated Loads (lb) Vert: S=-106 U=-117(B=-23)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


		6-7-0	24-8-1			33-2-0		
	5-4	-1-11 ' 2] [G:0-5-0 0-2-12]	8-1-1	2	1	8-5-5		
LOADING (psf) 25.0 TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.33 BC 1.00 WB 0.76	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.37 J-K -1.03 J-K 0.40 H	l/defl >999 >382 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 220/195 165/146
BCDL 0.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL)	0.23 I-J	>999	360	Weight: 175 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Sto OTHERS 2x6 DF SS G REACTIONS. (size) L=0- Max Horz L=7	d G -5-8, H=0-3-3	T	BOT CHORD	Structural wood Rigid ceiling dir 1 Row at midpt	ectly applie	directly applied. .d. B-L, F-H		
Max Grav L=14 FORCES. (lb) - Max. Comp./M TOP CHORD A-B=-1204/30 F-G=-1204/30 BOT CHORD K-L=-1010/40 WEBS D-J=-264/140	471(LC 2), H=1471(LC 2) /ax. Ten All forces 250 (lb) or less exc 2, B-C=-4419/1094, C-D=-3749/1009, [2, A-L=-619/208, G-H=-619/208 25, J-K=-1046/4299, I-J=-1046/4299, H 1, E-J=-892/248, E-I=-64/344, F-I=0/384 -L=-3116/830, F-H=-3116/830	D-E=-3749/1009, E-F=-44 -I=-1010/4025						
 2) Wind: ASCE 7-16; Vult=140n II; Exp B; Enclosed; MWFRS 19-10-13, Interior(1) 19-10-13; right exposed;C-C for membe 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C; 4) Unbalanced snow loads have 5) All plates are MT20 plates un 6) Plates checked for a plus or r 7) This truss has been designed will fit between the bottom ch 9) A plate rating reduction of 20 10) Bearing at joint(s) L, H cons capacity of bearing surface. 11) One RT7 MiTek connectors uplift only and does not con- referenced standard ANSI/T 13) This truss has been designed 	minus 5 degree rotation about its center d for a 10.0 psf bottom chord live load n ed for a live load of 20.0psf on the botto lord and any other members. % has been applied for the green lumbe siders parallel to grain value using ANSI recommended to connect truss to bear sider lateral forces. cordance with the 2018 International Re	13 to 3-ê-10, Interior(1) 3 1-3 zone; cantilever left a shown; Lumber DOL=1.6 :1.15); Pg=30.0 psf; Pf=2 .10 r. onconcurrent with any ot on chord in all areas whe er members. //TPI 1 angle to grain form ring walls due to UPLIFT esidential Code sections I i0.0lb live and 3.0lb dead	-6-10 to 13-3-3, E: ind right exposed ; i0 plate grip DOL= 20.8 psf (Lum DOL her live loads. ire a rectangle 3-6- nula. Building des at jt(s) L and H. TI R502.11.1 and R8	xterior(2R) 13-3 end vertical left 1.60 =1.15 Plate -0 tall by 2-0-0 v signer should ve his connection is 02.10.2 and	-3 to and vide rify s for	THUR RUD RI	ED PROFES NGINEES D3437PE OREGON CH 13, 20 W JOHN ES: 06/30/202 ovember 9,20	
WARNING - Verify design parame Design valid for use only with MTeF a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and t fabrication, storage, delivery, erecti	eters and READ NOTES ON THIS AND INCLUDED k® connectors. This design is based only upon paid ding designer must verify the applicability of design is to prevent buckling of individual truss web and/o o prevent collapse with possible personal injury ar on and bracing of trusses and truss systems, see a Truss Plate Institute, 2670 Crain Highway, Suite 2	rameters shown, and is for an ir n parameters and properly incor or chord members only. Addition nd property damage. For geners ANSI/TPI1 Quality Cr.	ndividual building comp rporate this design into nal temporary and perm	onent, not the overall nanent bracing he	onent	400 S	USA, Inc. unrise Avenue, Suite 2' rille, CA 95661	70

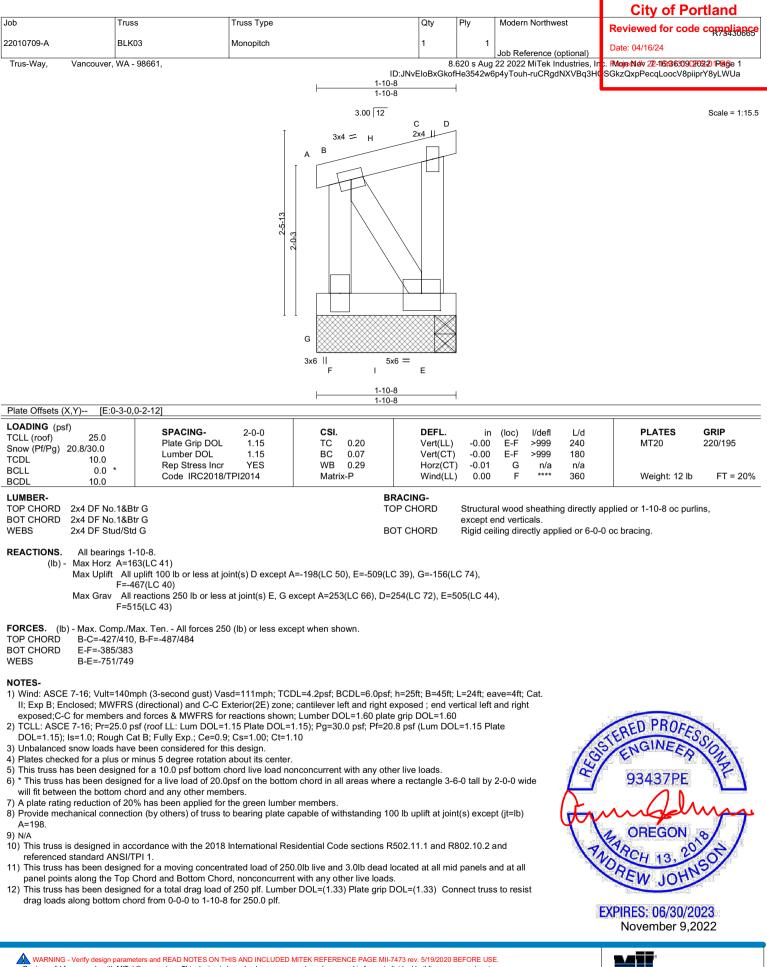
						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	B07	Scissor	2	1		Date: 04/16/24
Trus-Way, Var	ncouver, WA - 98661,					2. RMoje til div 222-1169:3363014122032-2011P1863e 2
NOTES-						alxQqm6Mxj4Kt6x7Z3ZQ54sxyLWUf

14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

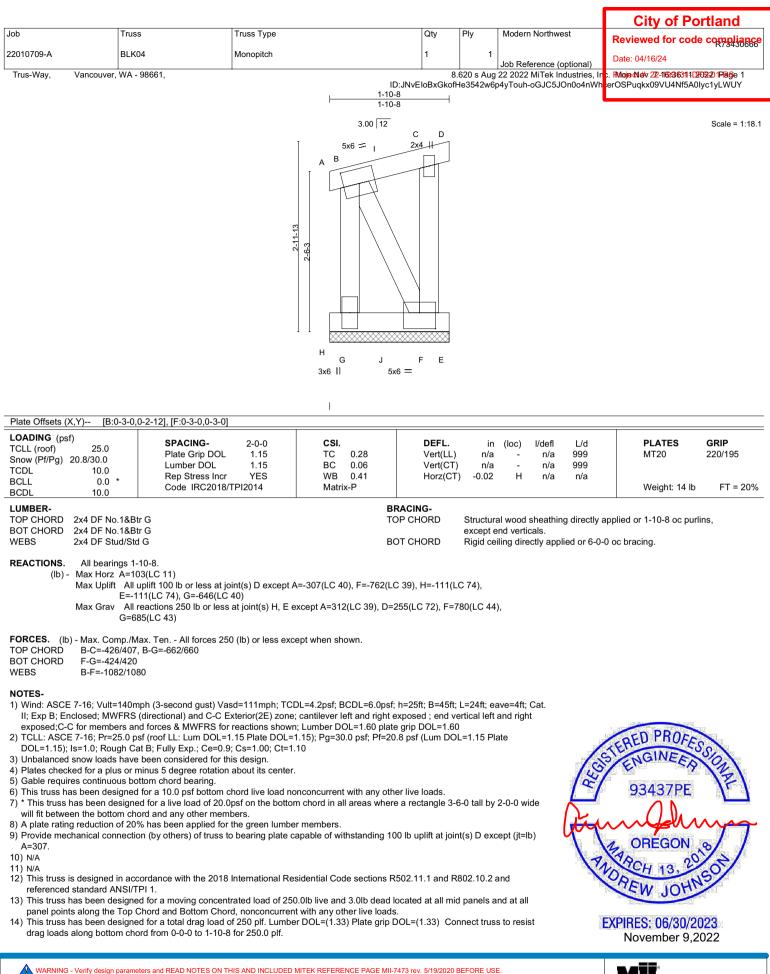
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPH</u> (Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ue. Suite 270



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK MITek USA, Inc. 400 Sunrise Aven

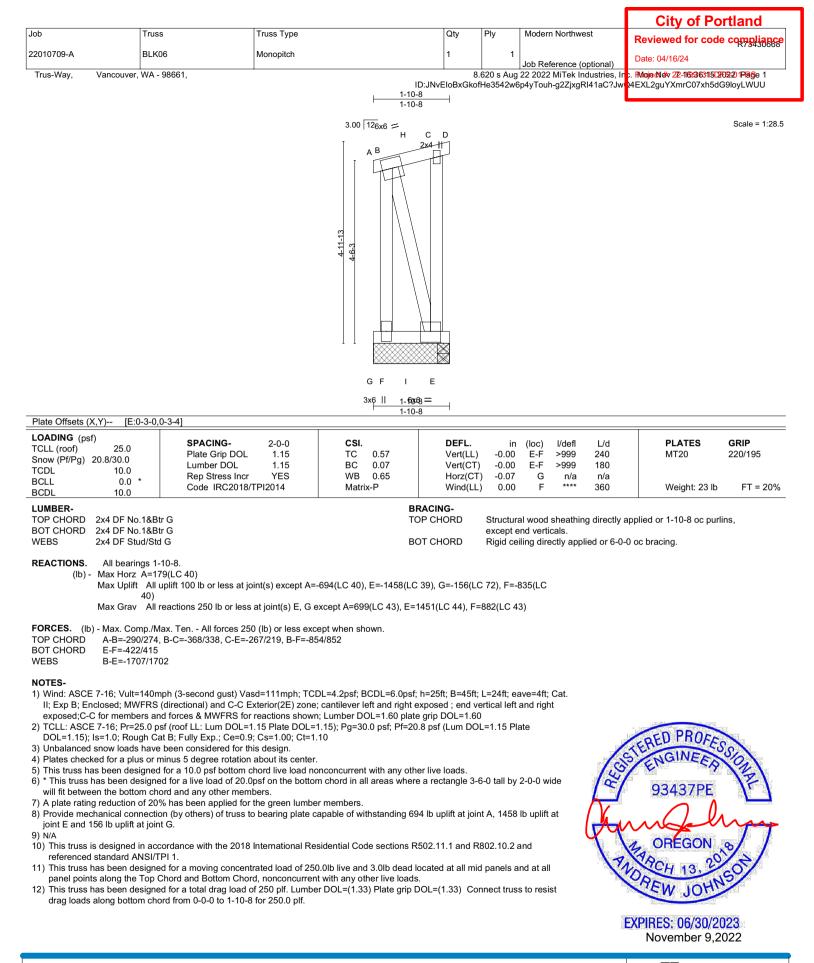

Roseville, CA 95661

ue. Suite 270

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevert buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

MiTek

								City of Po	rtland
Job	Truss	Truss Type		Qty	Ply	Modern Northwe	st	Reviewed for code	
22010709-A	BLK05	Monopitch		1	1	lah Deference (a	ational	Date: 04/16/24	11/3450007
Trus-Way, Vancouv	ver, WA - 98661,					Job Reference (o 22 2022 MiTek Inc	lustries, In		
			1-10-8	BxGkofHe	3542w6p4	iy Iouh-ktRyW?Q2	YPKVm?n	1zpVtzFpDVz9kYFiOdJn2	2hvyLWUW
			1-10-8						
			3.00 12 6x6 ≕H C	D					Scale = 1:25.9
		A	B 2x4	5					
				ſ					
		4-5-13 0-3	$ \rangle \rangle \rangle$						
		4-5- 4-0-3	$ \rangle \rangle \rangle$						
				<u>L</u>					
				×					
				~~~~					
			F I E 6 II ₁₋₁₆ ж6в=						
		5.	6    ₁₋ fgx <u>6</u> 8= 1-10-8						
Plate Offsets (X,Y) [ LOADING (psf)	<u>E:0-3-0,0-3-4]</u>								
TCLL (roof) 25.		2-0-0 <b>CSI.</b> L 1.15 TC	0.48	DEFL. Vert(LL)	in 0.00-	(loc) l/defl E-F >999	L/d 240	PLATES MT20	GRIP 220/195
Snow (Pf/Pg) 20.8/30.0 TCDL 10.	Lumber DOL	1.15 BC	0.07	Vert(CT)	-0.00	E-F >999	180		220,100
BCLL 0. BCDL 10.			0.57 (-P	Horz(CT) Wind(LL)		G n/a F ****	n/a 360	Weight: 21 lb	FT = 20%
LUMBER-	•		BRACIN	IG-					
	No.1&Btr G No.1&Btr G		TOP CH	IORD		al wood sheathing and verticals.	directly a	applied or 1-10-8 oc purl	ins,
	Stud/Std G		BOT CH	IORD		iling directly appli	ed or 6-0-	0 oc bracing.	
	arings 1-10-8.								
• •	orz A=238(LC 41) olift All uplift 100 lb or less a	joint(s) except A=-588(LC 40),	D=-111(LC 39), E=	=-1136(LC	39), G=-	156(LC			
Max Gr	74), F=-751(LC 40) av All reactions 250 lb or le	ss at joint(s) E, G except A=592	(LC 43). D=257(LC	C 72). E=1	137(LC 4	4).			
	F=798(LC 43)		( (), (	,,		.,,			
		250 (lb) or less except when sho	own.						
	335/321, B-C=-440/414, C-E 414/409	309/308, B-⊢=-769/768							
WEBS B-E=-	1494/1490								
NOTES-	ult=140mph (3 second quist)	/asd=111mph; TCDL=4.2psf; B	CDI -6 0pcf: b-25f	ft. D-15ft.	I = 24ft o	ovo=4ft: Cot			
II; Exp B; Enclosed; I	WWFRS (directional) and C-C	Exterior(2E) zone; cantilever le	ft and right expose	ed; end ve	ertical left				
		or reactions shown; Lumber DC =1.15 Plate DOL=1.15); Pg=30				ate	0	OFD PROFE	
	Rough Cat B; Fully Exp.; Ce=0 ads have been considered for							STENGINEE	SI
4) Plates checked for a	plus or minus 5 degree rotati		with any other live	laada			12	78 8	14
6) * This truss has been	designed for a live load of 20	0.0psf on the bottom chord in all			6-0 tall by	2-0-0 wide	15	93437PE	
	ottom chord and any other me on of 20% has been applied f	mbers. or the green lumber members.						$\square$	<u>s.</u>
<ol> <li>Provide mechanical or joint E and 156 lb upl</li> </ol>		s to bearing plate capable of wit	hstanding 588 lb u	plift at join	t A, 1136	lb uplift at	$\mathcal{M}$		
9) N/A 10) N/A								OREGON	⊗/. /
11) This truss is designed		8 International Residential Cod	e sections R502.1	1.1 and R	802.10.2	and	X	V CH 13, 2	5
referenced standard 12) This truss has been		entrated load of 250.0lb live and	3.0lb dead located	d at all mid	l panels a	ind at all	20	REW JOHN	
		ord, nonconcurrent with any oth d of 250 plf. Lumber DOL=(1.33		1.33) Cor	nnect trus	s to resist			19-10 1
	ttom chord from 0-0-0 to 1-10		, 3 002-(				B-COLOR	EXPIRES: 06/30/20	
								November 9,2	022
A						_			
		I THIS AND INCLUDED MITEK REFERENT is based only upon parameters shown,				E.			

 WARKING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER KEPERENCE PAGE MIT-/4/3 rev. 5/19/2/20 EE-ORE USE.

 Design valid for use only with MITeR we connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of chord members only. Additional temporary and perment bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601
 MiTek USA. Inc.
 MiTek USA. Inc.



to BEFORE USE. omponent, not into the overall permanent bracing ing the *I BCSI Building Component* MITek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville. CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							City of Po	rtland
Job	Truss	Truss Type	Qty	Ply	Modern Northwes	t	Reviewed for code	
22010709-A	BLK07	Common	1	1	Job Reference (op	tional	Date: 04/16/24	11/0400000
Trus-Way, Vancouver,	WA - 98661,				22 2022 MiTek Ind	ustries, In		
		1-2-15	2-1-11	3542w6p4	iy Ioun-cQg IMM I Y	cedmEc3	)CeZp85zsSaXLU?D_Yxl0	SqnyLWUS
		1-2-15	0-10-12					0
			C DE					Scale = 1:32.6
			4×6 =					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		2-2-3-8	5-6-13					
		6x6 =	5x6 =					
		H G J	F					
		<u> 2-1</u> 2-1						
	0-3-0,0-1-4], [F:0-2-8,0-3-4],	G:0-3-0,0-3-4]						
LOADING (psf) TCLL (roof) 25.0	SPACING-	2-0-0 CSI .	DEFL.	in		L/d	PLATES	GRIP
Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.67 1.15 BC 0.09	Vert(LL) Vert(CT)	-0.00 -0.00	F-G >999 F-G >999	240 180	MT20	220/195
BCLL 0.0 *	Rep Stress Incr Code IRC2018/	YES WB 0.79 IPI2014 Matrix-P	Horz(CT) Wind(LL)	-0.13 0.00	F n/a G ****	n/a 360	Weight: 34 lb	FT = 20%
BCDL 10.0			BRACING-					
TOP CHORD 2x4 DF No. BOT CHORD 2x4 DF No.			TOP CHORD		al wood sheathing and verticals.	directly	applied or 2-1-11 oc purlir	ns,
WEBS 2x4 DF Stu			BOT CHORD	Rigid ce	iling directly applie			
REACTIONS. All bearin	gs 2-1-11 except (jt=length)		WEBS	1 Row a	it midpt	C-G, C	-F	
(lb) - Max Horz Max Uplift		int(s) A except E=-162(LC 40), H=-214(LC 81), G=-1990(LC 40),				
	F=-2142(LC 39) All reactions 250 lb or less	at joint(s) H, F except A=259(LC 70), E	=259(I C 79) G=2	050(I C 4	.3)			
	F=2153(LC 44)			(-),			
) (Ib) or less except when shown.						
TOP CHORD A-B=-268 BOT CHORD F-G=-245	5/261, B-C=-423/401, C-D=-2 5/275	/6/2/1, D-F=-253/254						
WEBS C-G=-206	67/2073, C-F=-1901/1909							
NOTES-	ds have been considered for	this design						
2) Wind: ASCE 7-16; Vult=	140mph (3-second gust) Vas	d=111mph; TCDL=4.2psf; BCDL=6.0ps						
exposed;C-C for membe	ers and forces & MWFRS for	<pre>xterior(2E) zone; cantilever left and right reactions shown; Lumber DOL=1.60 pla</pre>	ate grip DOL=1.60		C C	9	BED PROFE	
	5.0 psf (roof LL: Lum DOL=1 gh Cat B; Fully Exp.; Ce=0.9	.15 Plate DOL=1.15); Pg=30.0 psf; Pf=2 ; Cs=1.00; Ct=1.10	20.8 psf (Lum DOL	_=1.15 Pl	ate		SUNGINEEN	5/0
	have been considered for th s or minus 5 degree rotation					12		NE
6) This truss has been desi	igned for a 10.0 psf bottom o	hord live load nonconcurrent with any of psf on the bottom chord in all areas whe		0 toll by	2.0.0 wido	\square	93437PE	
will fit between the botton	m chord and any other mem	bers.	ere a rectangle 5-c	-o tan by	2-0-0 wide			<u></u>
	of 20% has been applied for nection (by others) of truss to	the green lumber members. b bearing plate capable of withstanding '	100 lb uplift at join	t(s) A exc	cept (jt=lb)	ӯ∕╲╲		
G=1990, F=2142. 10) N/A							OREGON	%_/
		International Residential Code sections	R502.11.1 and R8	302.10.2	and		VOCH 13.	<u>s</u>
12) This truss has been dea	signed for a moving concent	rated load of 250.0lb live and 3.0lb dead		panels a	ind at all		VEW JOHN	
13) This truss has been dea	signed for a total drag load o	d, nonconcurrent with any other live load f 250 plf. Lumber DOL=(1.33) Plate grip		nect trus	s to resist	100		
drag loads along bottor	m chord from 0-0-0 to 2-1-11	for 250.0 plf.					EXPIRES: 06/30/20	
							November 9,20	JZZ

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

									City of Port	land
Job	Tru	ss	Truss Type		Qty	Ply	Modern Northwest		Reviewed for code of	
22010709-A	BL	.K08	Roof Special		1	1	Job Reference (opt	ional)	Date: 04/16/24	110100010
Trus-Way, Vanc	ouver, WA	A - 98661,					22 2022 MiTek Indu	istries, Ir		
				1-10-8 1-10-8		оч <i>г</i> морчу		eowdbj	3cHDW3DcNC?ytqH0FENu2	2yLVVUQ
										Scale = 1:31.3
				A <u>3.00 12</u> A <u>B</u> G C)					Scale - 1.31.3
				2x4 5x6	5 =	т				
					7					
				2-9-3		5-0-13				
						2				
					8	1				
				8x8 =	<u>≫</u> 3x6					
				FE H D)					
				<u>1-10-8</u> 1-10-8						
Plate Offsets (X,Y)	[C:0-3-0	0,0-1-12], [D:0-3-4,0-1-8]								
LOADING (psf) TCLL (roof)	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.63	DEFL. Vert(LL)	in -0.00-	(loc) l/defl D-E >999	L/d 240		GRIP 220/195
Snow (Pf/Pg) 20.8/3 TCDL	30.0 10.0	Lumber DOL	1.15	BC 0.08	Vert(CT)	-0.00	D-E >999	180	W120 2	220/133
BCLL	0.0 * 10.0	Rep Stress Incr Code IRC2018/	YES PI2014	WB 0.85 Matrix-P	Horz(CT Wind(LL	,	D n/a E ****	n/a 360	Weight: 25 lb	FT = 20%
LUMBER-	10.0			BRACI	NG-					
	DF No.1&I DF No.1&I			TOP C	HORD		al wood sheathing end verticals.	directly a	applied or 1-10-8 oc purlins	5,
WEBS 2x4 [DF Stud/S	Std G *Except* No.1&Btr G		BOT C	HORD		eiling directly applie	d or 6-0-	0 oc bracing.	
(lb) - Max		-197(LC 38)								
Max		Ⅱ uplift 100 lb or less at jo 1912(LC 39)	nt(s) except E=-1	1650(LC 40), A=-156(LC 40),	F=-184(LC	; 72),				
Max	Grav Al	Il reactions 250 lb or less	at joint(s) F, D ex	ccept E=1687(LC 43), A=257(LC 66), D=	1931(LC	44)			
		/Max. Ten All forces 250 9, B-C=-573/553, C-D=-1		pt when shown.						
BOT CHORD D-E	E=-423/41	16	920/1910							
WEBS C-E	E=-1870/1	1864								
NOTES- 1) Wind: ASCE 7-16;	; Vult=140)mph (3-second gust) Vas	d=111mph; TCD	L=4.2psf; BCDL=6.0psf; h=25	5ft; B=45ft;	L=24ft; e	ave=4ft; Cat.			
II; Exp B; Enclosed	d; MWFR	S (directional) and C-C E	terior(2E) zone;	cantilever left and right expos Lumber DOL=1.60 plate grip	ed; end ve	ertical left				
2) TCLL: ASCE 7-16	; Pr=25.0		15 Plate DOL=1	.15); Pg=30.0 psf; Pf=20.8 ps			ate		ERED PROFES	
3) Unbalanced snow	loads hav	ve been considered for th	s design.	0					ENGINEED	6
		r minus 5 degree rotation ed for a 10.0 psf bottom c		nconcurrent with any other live	e loads.			12	0040705	121
		ned for a live load of 20.0 chord and any other mem		chord in all areas where a re	ctangle 3-6	5-0 tall by	2-0-0 wide		93437PE	
		20% has been applied for ction (by others) of truss to		members. pable of withstanding 1650 lb	uplift at io	int E. 156	lb uplift at	<u>L</u>	millen	ممد
joint A and 1912 lb 9) N/A						,			OREGON .	
10) This truss is desi			nternational Res	idential Code sections R502.	11.1 and R	802.10.2	and	17	190, 20	<u>~</u> /
,	een desigr	ned for a moving concent		0lb live and 3.0lb dead locate	ed at all mic	l panels a	and at all		OPEN 13. NG	
		o Chord and Bottom Chorn ned for a total drag load o		with any other live loads. DOL=(1.33) Plate grip DOL=	(1.33) Cor	nnect trus	s to resist		JOH JOH	đ
		hord from 0-0-0 to 1-10-8			•			ă	EXPIRES: 06/30/202	3
									November 9,202	
									·	
WARNING - Verify	design parar	meters and READ NOTES ON TH	IS AND INCLUDED M	IITEK REFERENCE PAGE MII-7473 re	v. 5/19/2020 E	BEFORE US	E.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek'

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

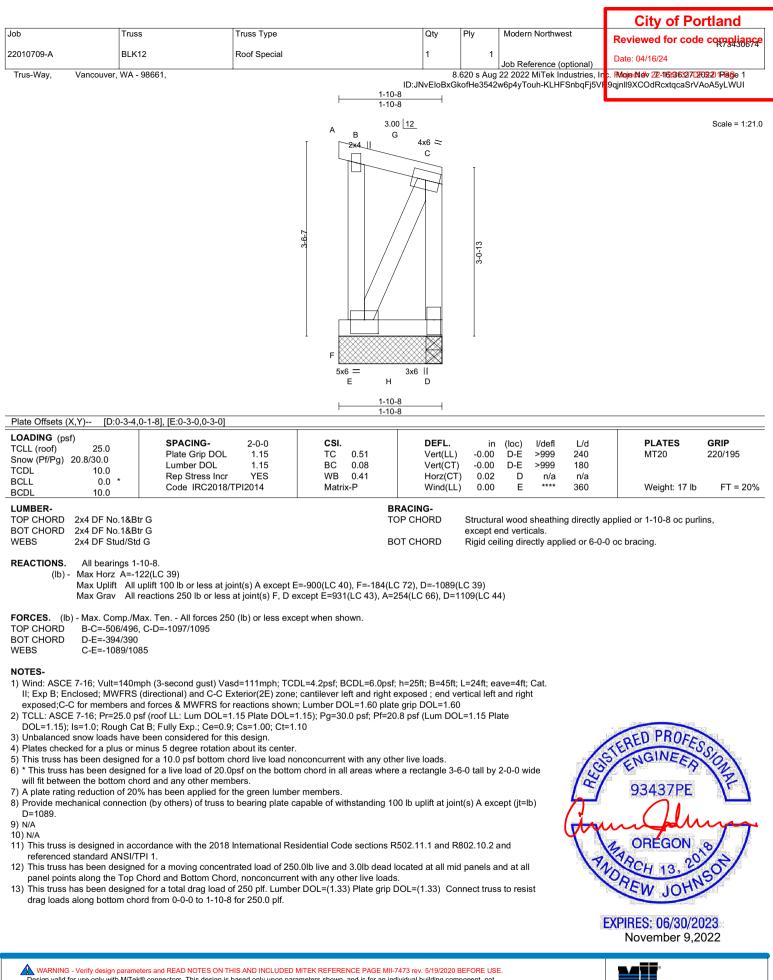
									Г	City of Po	rtland
Job	Truss		Truss Type		Qty	Ply	Modern	Northwest	Re	eviewed for code	
22010709-A	BLK09		Roof Special		1	1			Da	ate: 04/16/24	- R73430671
Trus-Way, Vanco	uver, WA - 98	3661,					22 2022	erence (optional) MiTek Industries) s, Inc. RMa	oje (Ni #v 212-116):363214.DH	
				1-10-8	NvEloBxGkofl	He3542w6	p4yTouh-	VCw_BkW3gtLN	/JE IZRU	Jellx8V5BuTQrhaTZjT	「zSyLWUO
				1-10-8	I						
				3.00 [^ A B G [2x4_∐	12_ 4x6 ≈ C						Scale = 1:28.7
						Ī					
					/						
				2-0-7		4-6-13					
						4					
						1					
				F	~~ }						
				EH	D						
				$6 \times 6 = 1 - 10 - 8$ 1 - 10 - 8	3x6						
Plate Offsets (X,Y)	[C:0-3-0,0-7	1-8], [D:0-3-4,0-1-8],	E:0-3-0,0-3-4]								
	5.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.88	DEFL. Vert(LL)	in -0.00	(loc) D-E	l/defl L/d >999 240		PLATES MT20	GRIP 220/195
Snow (Pf/Pg) 20.8/30 TCDL 10	.0	Lumber DOL	1.15	BC 0.08	Vert(CT)	-0.00	D-E	>999 180		iii 120	220/100
).0 *).0	Rep Stress Incr Code IRC2018/	YES TPI2014	WB 0.63 Matrix-P	Horz(CT Wind(LL	,	D E	n/a n/a **** 360		Weight: 23 lb	FT = 20%
LUMBER-					CING-						
	⁼ No.1&Btr 0 ⁼ No.1&Btr 0			TOP	CHORD		al wood send vertic		tly applie	ed or 1-10-8 oc purli	ns,
	Stud/Std G			BOT	CHORD			ctly applied or 6	6-0-0 oc	bracing.	
	earings 1-10										
(lb) - Max H Max U	lplift All upl	lift 100 lb or less at jo	int(s) except E=-	1426(LC 40), A=-159(LC 40), F=-184(LC	; 72),					
Max 0		91(LC 39) actions 250 lb or less	at joint(s) F, D e	xcept E=1462(LC 43), A=25	6(LC 66), D=	1711(LC	44)				
FORCES. (lb) - Max					(),	,	,				
TOP CHORD A-B=	-281/292, B	B-C=-555/538, C-D=-1		spt when shown.							
	-416/410 -1661/1656	i									
NOTES-											
				DL=4.2psf; BCDL=6.0psf; h= cantilever left and right exp							
exposed;C-C for me	mbers and t	forces & MWFRS for	reactions shown	; Lumber DOL=1.60 plate g	rip DOL=1.60)	Ũ	L			
DOL=1.15); Is=1.0;	Rough Cat B	B; Fully Exp.; Ce=0.9	; Cs=1.00; Ct=1.	.15); Pg=30.0 psf; Pf=20.8 10	psf (Lum DO	L=1.15 Pl	ate			DED PROFE	
3) Unbalanced snow le4) Plates checked for a									(st	NGINEE	SID
5) This truss has been	designed fo	or a 10.0 psf bottom c	hord live load no	nconcurrent with any other l n chord in all areas where a		S 0 toll by	2000	do	9/	Er SA	NZ I
will fit between the l	ottom chord	d and any other mem	bers.		rectangle 5-	5-0 tali by	2-0-0 000		7	93437PE	
7) A plate rating reduct8) Provide mechanical				r members. apable of withstanding 1426	i lb uplift at jo	int E, 159	lb uplift a	at /	13	\bigcap	ler
joint A and 1691 lb 9) N/A	uplift at joint	D.							N	i jam	
			International Res	sidential Code sections R50	2.11.1 and R	802.10.2	and		4	OREGON	≫ /
11) This truss has bee	n designed f	for a moving concent		.0lb live and 3.0lb dead loca	ated at all mid	l panels a	and at all		V2	RCH 13, 20	5
12) This truss has bee	n designed f	for a total drag load o	f 250 plf. Lumbe	with any other live loads. r DOL=(1.33) Plate grip DO	L=(1.33) Co	nnect trus	s to resis	it	N	EW JOHN	
drag loads along b	ottom chord	from 0-0-0 to 1-10-8	for 250.0 plf.						37.4		-1i
										IRES: 06/30/20	
										November 9,20	022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 **Mitek**

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

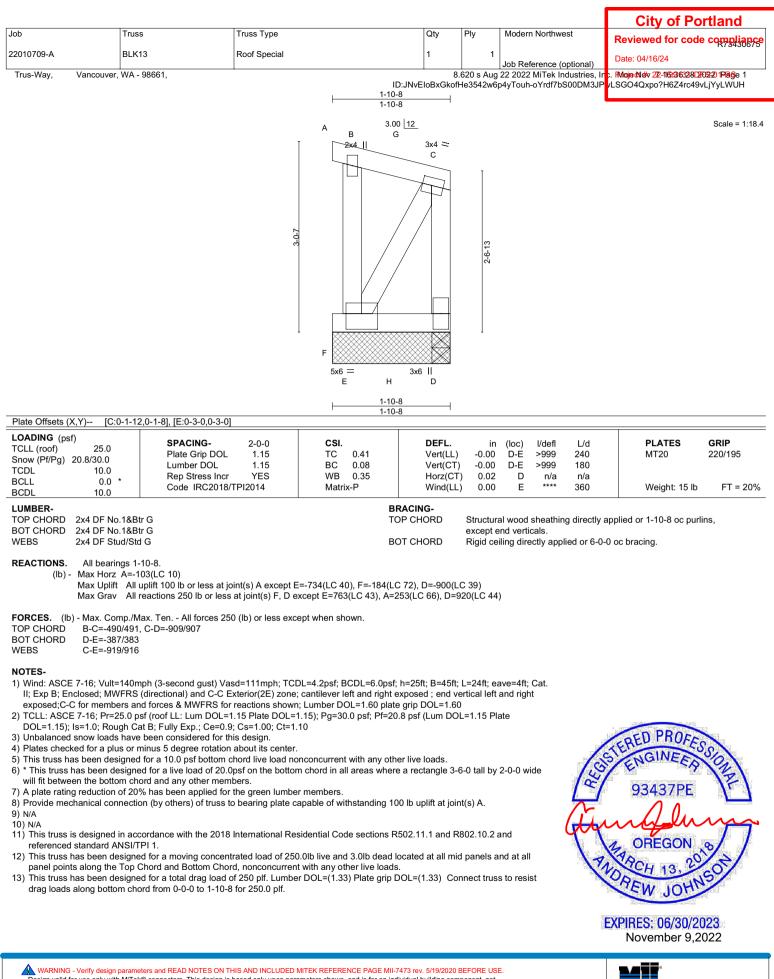
Reviewed for code copputation								City of Doy	Hond
Description Build of the speed Image of the speed of the spee	Job	Truss	Truss Type	Qty	Ply	Modern Northwes	st		
The Why, Verscover, WA 19861. Alle L 40 (2012) 2016 Microllogical and the second secon	22010709-A	BLK10	Roof Special	1	1				R73430672
Image: State of the state	Trus-Way, Vancouver	r, WA - 98661,				22 2022 MiTek Ind	lustries, In	. RMoje (N¢ V 272-1163:363213⊡770	
			1-10	0-8	e3542w6p	4yTouh-Ra2kcQYJ	CUb4yXX	YvgDNMDti?axumNswtCa	1KyLWUM
Image: Second									Casta = 1:00 1
Image: Section of the section of th			АВ	<u> </u>					Scale - 1.20.1
Image: State Control of the state of th				C	÷				
Lipse aig Plate Offsets (K1') (20-30-0, 1-12), [D0-3-0, 0-1.4], [E0-3-0, 0-3.4]. CS. n. 75 Ver(C1) 0.00 0.00 MT20 S201 Snow (P1Pg) 20.8/00 0.00 1.15 BC 0.06 Ver(C1) 0.00 D.E Segge 100 W120 S201 BOLL 0.00 Code IRC2018/TPI2014 WB 0.56 Wor(C1) 0.00 D.E Segge 100 Weight 2.1 b FT = 20% DOP CHORD 2.40 P No.188 PG BC BC Wind(L1) 0.00 E **** 3.00 Weight 2.1 b FT = 20% DOP CHORD 2.40 P No.188 PG BC BC BC DOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. EXERCISES MA thora <= 159(10.10)			46.7		4-0-13				
Lipse aig Plate Offsets (K1') (20-30-0, 1-12), [D0-3-0, 0-1.4], [E0-3-0, 0-3.4]. CS. n. 75 Ver(C1) 0.00 0.00 MT20 S201 Snow (P1Pg) 20.8/00 0.00 1.15 BC 0.06 Ver(C1) 0.00 D.E Segge 100 W120 S201 BOLL 0.00 Code IRC2018/TPI2014 WB 0.56 Wor(C1) 0.00 D.E Segge 100 Weight 2.1 b FT = 20% DOP CHORD 2.40 P No.188 PG BC BC Wind(L1) 0.00 E **** 3.00 Weight 2.1 b FT = 20% DOP CHORD 2.40 P No.188 PG BC BC BC DOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. EXERCISES MA thora <= 159(10.10)			F		1				
Plate Officies (XY) [C:3-30.0-112] [D:3-4.0-18] [E:3-30.0-34] LONDING (rsf) TCDL (roft) 25.0 SPACING- 20.0 2-0-0 CSI. DEFL in (loc) Videf L/d PLATES GRIP Sow (PEP) 20.8300 Plate Grip DCL 1.15 TC 0.75 Ver(LL) 4.00 DE >9999 180 BCL 0.0 Rep Bless Incr YES WB 0.56 Ver(LL) 4.00 DE >9999 180 BCL 0.0 Code IRC2018/TPLO14 Matrix-P Wind(L) 0.00 E weight: 21 b FT = 20% LUMEER. TOP CHORD 2/d DF No.18Bir G Structural wood sheathing directly applied or 1-10-8 oc purlins, except end verticals. weight: 21 b FT = 20% WEBS 2/d DF No.18Bir G BOT CHORD Rigit ceiling directly applied or 6-0-0 cc bracing. REACTONS. (h) Max Hord, X=159(LC 10) Matrix Start A=159(L) Matrix Start			E H	I D					
Plate Offsets (XY) C:0-0-0-0-11-2[, [D:0-3-0.0-1-6], [E:0-3-0.0-3-4] UCADIMG (sp) 25.0 SPACINC- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP TOLL (root) 10.0 Rap Stress Incr. YES Wind(L) 0.00 E5999 180 Waght 21 lb FT = 20% BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Wind(L) 0.00 E999 180 Waght 21 lb FT = 20% UMBER- Code IRC2018/TPI2014 Matrix-P Wind(L) 0.00 E									
TCLL (roof) 25.0 Plate Gip DOL 1.15 BC 0.08 Ver(CT) -0.00 DE -999 120 MTZ 220/195 MTZ 220/195 CCL 10.0 CL 15 BC 0.08 Ver(CT) -0.00 DE -999 120 MTZ 220/195 CCL 10.0 CL 10.0 CL 10.0 CL 15 BC 0.08 Ver(CT) -0.00 DE -999 120 MTZ 220/195 CCL 10.0 CL 10	Plate Offsets (X,Y) [C:	:0-3-0,0-1-12], [D:0-3-4,0-1-8]		J-0					
Show (Pring) 20.03.00 Lumber DoL 1.15 BC 0.08 Ver(CT) 0.00 DE >999 180 BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Wind(LL) 0.00 E mr.a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Wind(LL) 0.00 E mr.a BCL 0.0 E Structural wood sheathing directly applied or 1-10-8 oc purlins, except end verticals. BOT CHORD 2x4 DF No.188tr G BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 1-10-8. BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 1-10-8. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 1-10-8. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 1-10-8. DC -100 (htm.astructural wood sheathing directly applied or 6-0-0 oc bracing. Matrix Grav All actions 250 (htm or less at joint(s) F, D except E=-1246(LC 43), A=-255(LC 66), D=1504(LC 44). FC-6000 (htm.astructural wood sheathing directly applied or 6-0-0 oc bracing. <t< td=""><td>(i)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(i)								
BCLL 0.0 * Nep Stress incr YES WH 0.56 Hor2(1) 0.08 D na na Weight 21 lb FT = 20% LUMBER. 10.0 Execution BRACING- TOP CHORD 2x4 DF No.1&Btr G Bracing TOP CHORD Structural wood sheathing directly applied or 1-10-8 oc purlins. except end verticals. BOT CHORD 2x4 DF No.1&Btr G Bracing TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACINOS. All bearings 1-10-8. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. (b)- Max Horz A-159(L010) Max Garay All reactions 250 lb or less at joint(s) except E=1280(LC 43), A=255(LC 66), D=1504(LC 44) FORCES. (b)- Max Comp/Max TenAll forces 250 (b) or less except when shown. FOC CHORD AB=-0577268, B-C-5399524, C-D=-1493/1491 BOT CHORD C=2-1461/1457 NOTES 1) Ymmir All care forces AMWFRS (directional) and C-C Exterior(ZE) zone; camilieve left and right exposed; ci nd vertical left and right exposed		Lumber DOL	1.15 BC 0.08	Vert(CT)	-0.00	D-E >999		MT20	220/195
BLUL 10.0 Image: Construction of the construc	BCLL 0.0				,			Weight: 21 lb	FT = 20%
TOP CHORD B0T CHORD WEBS 2x4 DF No.148tr G 2x4 DF No.148tr G 2x4 DF Sol.48tr G 3x4 DF Sol.48					, 				
 (ib) - Max Horz Å=-159(IC 10) Max Upit All upit 100 bor less at joint(s) except E=-1246(LC 40), A=-133(LC 40), F=-184(LC 72), D=-1484(LC 39) Max Grav All reactions 250 ib or less at joint(s) F, D except E=1280(LC 43), A=255(LC 66), D=1504(LC 44) FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD D. AB=-257(268, B-C=-539/524, C-D=-1493/1491 BOT CHORD D. DE=-409/403 WEBS C-E=-1461/1457 NOTES- NOTES- NOTES- O) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; C-C for members and forces & WWFRS (or cancilos shown; Lumber DOL=1.60) 2) TCLL: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; C-C for members and forces & WWFRS (or scalinos shown; Lumber DOL=1.60) 2) TCLL: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; C-C for members and forces & WWFRS (or scalinos shown; Lumber DOL=1.16). PJ paties relice the store of table in about its center. 3) Unbalanced snow loads have been considered for this design. 4) Plates checked for a plux on minus 5 degree rotation about lis center. 5) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and work profer members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1246 lb uplift at joint E, 133 lb uplift at joint A and 1484 lb uplift at joint D. 9) NA 10) This t	TOP CHORD 2x4 DF No BOT CHORD 2x4 DF No	o.1&Btr G	T	OP CHORD	except e	end verticals.	-		ns,
 BOT CHORD D-E=-409/403 C-E=-1481/1457 NOTES- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions show; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pre-250.0 psf (root LL: tum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Plates chceked for a plus or minus 5 degree rotation about its center. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. A plate rating reduction of 20% has been applied for the green lumber members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1246 lb uplift at joint E, 133 lb uplift at joint C. N/A This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all map anel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a total drag load of 250.0lb live and 3.0lb dead located at all mid panels and at all map anel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a total drag load of 250.0lb live and 3.0lb dead located at all mid panels and at all map anel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a total drag load of 250.0lb li	(lb) - Max Horz Max Uplif Max Grav FORCES. (lb) - Max. Co	 Ā=-159(LC 10) t All uplift 100 lb or less at jc D=-1484(LC 39) All reactions 250 lb or less hmp./Max. Ten All forces 25 	at joint(s) F, D except E=1280(LC 43), A 0 (lb) or less except when shown.			44)			
 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=24f; eave=4f; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Plates checked for a plus or minus 5 degree rotation about its center. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) A plate rating reduction of 20% has been applied for the green lumber members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1246 lb uplift at joint E, 133 lb uplift at joint A and 1484 lb uplift at joint D. 9) N/A 10) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 12) This truss has been designed for a total drag load of 250 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-10-8 for 250.0 plf. 	BOT CHORD D-E=-40	9/403	1901191						
	 Wind: ASCE 7-16; Vult: II; Exp B; Enclosed; MV exposed;C-C for memb TCLL: ASCE 7-16; Pr=; DOL=1.15); Is=1.0; Roi Unbalanced snow loads Plates checked for a pli This truss has been det * This truss has been det * This truss has been det Totate rating reduction Provide mechanical cor joint A and 1484 lb uplii N/A This truss has been datadard A This truss has been det This truss has been det 	VFRS (directional) and C-C E vers and forces & MWFRS for 25.0 psf (roof LL: Lum DOL=' ugh Cat B; Fully Exp.; Ce=0.9 s have been considered for th us or minus 5 degree rotation signed for a 10.0 psf bottom c esigned for a live load of 20.0 om chord and any other mem of 20% has been applied for nnection (by others) of truss to ft at joint D. In accordance with the 2018 ANSI/TPI 1. esigned for a moving concent of Top Chord and Bottom Choo esigned for a total drag load of	xterior(2É) zone; cantilever left and right reactions shown; Lumber DOL=1.60 pla .15 Plate DOL=1.15); Pg=30.0 psf; Pf=2 ; Cs=1.00; Ct=1.10 is design. about its center. hord live load nonconcurrent with any ot psf on the bottom chord in all areas whe bers. the green lumber members. b bearing plate capable of withstanding 1 International Residential Code sections rated load of 250.01b live and 3.01b dead d, nonconcurrent with any other live loac of 250 plf. Lumber DOL=(1.33) Plate grip	exposed ; end vo te grip DOL=1.60 0.8 psf (Lum DO her live loads. re a rectangle 3-6 246 lb uplift at jo R502.11.1 and R located at all mid Is.	L=1.15 Pl 3-0 tall by int E, 133 802.10.2 d panels a	and right ate 2-0-0 wide i lb uplift at and and at all	A LA RED	mgli	Contraction of the second seco

November 9,2022

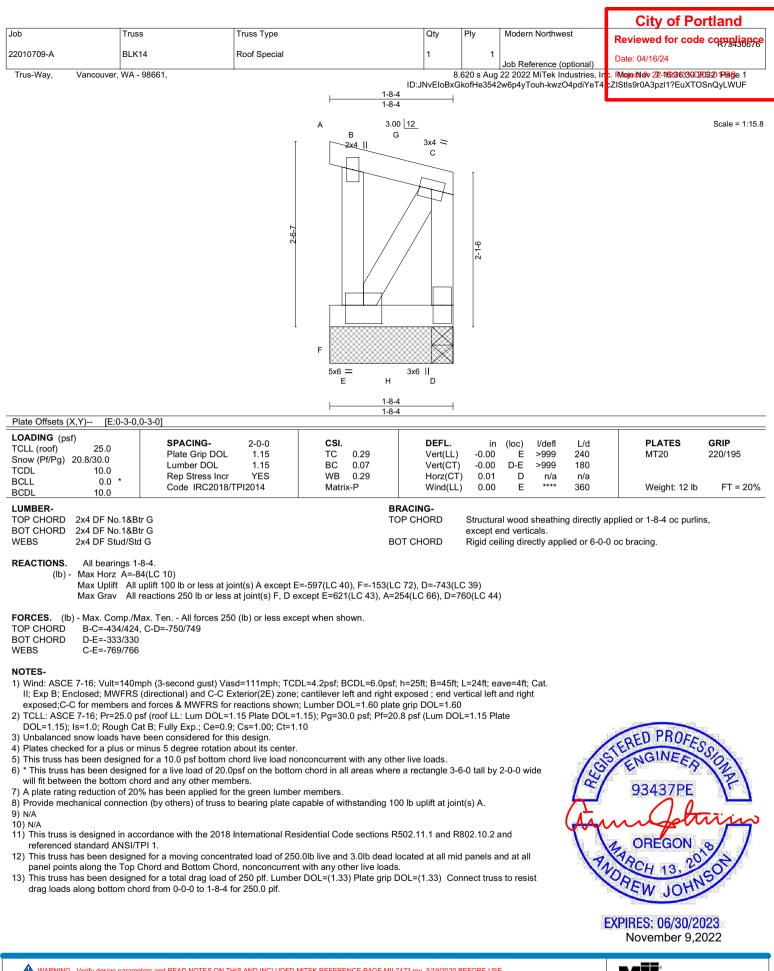


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

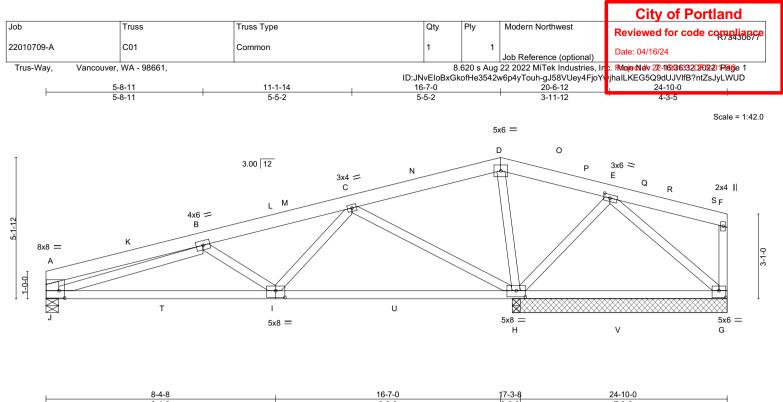
								City of Po	ortland	
ob	Truss	Truss Type		Qty	Ply	Modern Northw	vest	Reviewed for cod		
2010709-A	BLK11	Roof Special		1	1	Job Reference	(ontional)	Date: 04/16/24	1110-100010	
Trus-Way, Vancouver, V	WA - 98661,					22 2022 MiTek I	ndustries, Ir			
			1-10-8	EloBxGkof	He3542w6	5p4yTouh-Nz9V1	5ZZj5roCrhl	gKihSnJF8oFPMh?9OBI	nh6DyLWUK	
			1-10-8							
			A 3.00 12 B G						Scale = 1:23.6	
				k6 ≕ C						
					I					
			$ $ $ $ \neq	T						
			4-0-7		_					
			4		3-6-13					
					(m					
					l					
			F	\bigotimes						
			E H	3x6 D						
			5x6 = 1-10-8							
	0.4.0.4.01.15.0.0.0.0.41		1-10-8							
Plate Offsets (X,Y) [D:0- LOADING (psf)	-3-4,0-1-8], [E:0-2-8,0-3-4]									
TCLL (roof) 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.63	DEFL. Vert(LL)	in -0.00-		L/d 240	PLATES MT20	GRIP 220/195	
Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	Lumber DOL	1.15	BC 0.08	Vert(CT)	-0.00	D-E >999	180	WIZO	220/195	
BCLL 0.0 *	Rep Stress Incr Code IRC2018/	YES TPI2014	WB 0.48 Matrix-P	Horz(CT Wind(LL		D n/a E ****	n/a 360	Weight: 19 lb	FT = 20%	
BCDL 10.0 LUMBER-			BRACI							
TOP CHORD 2x4 DF No.1			TOP CH				ng directly	applied or 1-10-8 oc pur	lins,	
BOT CHORD 2x4 DF No.1 WEBS 2x4 DF Stud			BOT CH	IORD		end verticals. eiling directly app	blied or 6-0	-0 oc bracing.		
REACTIONS. All bearing	ne 1-10-8							-		
(lb) - Max Horz A	A=-141(LC 10)									
	All uplift 100 lb or less at jo D=-1283(LC 39)	pint(s) except E=-1	1071(LC 40), A=-109(LC 44), I	=-184(LC	72),					
		at joint(s) F, D ex	cept E=1103(LC 43), A=255(L	.C 66), D=	1303(LC	44)				
FORCES. (Ib) - Max. Com		0 (lb) or less exce	pt when shown.							
TOP CHORD B-C=-523/ BOT CHORD D-E=-401/	/510, C-D=-1292/1290 /396									
WEBS C-E=-1270										
NOTES-										
			L=4.2psf; BCDL=6.0psf; h=25 cantilever left and right expose							
exposed;C-C for member	rs and forces & MWFRS for	reactions shown;	Lumber DOL=1.60 plate grip	DOL=1.60		0				
	b.0 psf (roof LL: Lum DOL=1 h Cat B; Fully Exp.; Ce=0.9		.15); Pg=30.0 psf; Pf=20.8 psf 0	(Lum DO	_=1.15 PI	ate		DED PROFE		
 Unbalanced snow loads h Plates checked for a plus 								STENGINEE	SS	
5) This truss has been desig	gned for a 10.0 psf bottom of	chord live load nor	concurrent with any other live				10	YEN -SA	121	
	signed for a live load of 20.0 n chord and any other mem		chord in all areas where a rea	ctangle 3-6	6-0 tall by	2-0-0 wide	19	93437PE	1F1	
7) A plate rating reduction of	f 20% has been applied for	the green lumber		ulift at iaiu	4 A and 1		\mathbf{H}		05. <u>11</u> 27	
at joint D.	lection (by others) of truss t	o bearing plate ca	pable of withstanding 109 lb u	pilit at joir	t A and T			mel	m	
9) N/A 10) N/A								A. OREGON	s/ /	
11) This truss is designed in		International Res	idential Code sections R502.1	1.1 and R	302.10.2	and	17	100 - 25	N~1	
referenced standard AN 12) This truss has been des		trated load of 250.	0lb live and 3.0lb dead locate	d at all mic	l panels a	and at all		VOD H 13.	s?	
panel points along the T	op Chord and Bottom Chor	d, nonconcurrent	with any other live loads.		•			VEN JOH		
	n chord from 0-0-0 to 1-10-8		DOL=(1.33) Plate grip DOL=(1.33) 601	mect (rus		10			
								EXPIRES: 06/30/2023		
								November 9,2	2022	


MITEK USA, Inc. 400 Sunise Avenue, Suite 270 Roseville, CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

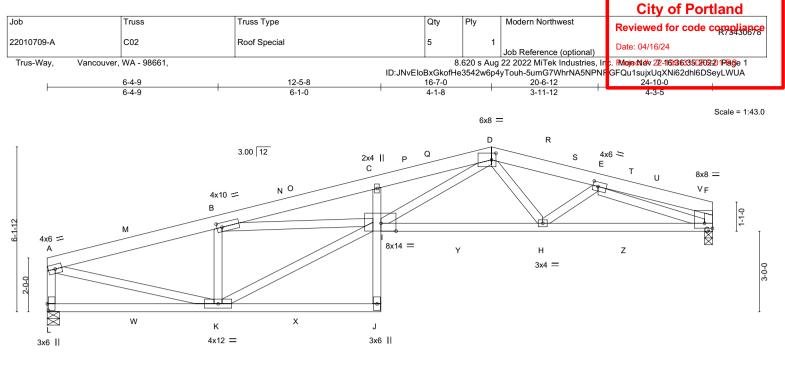


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



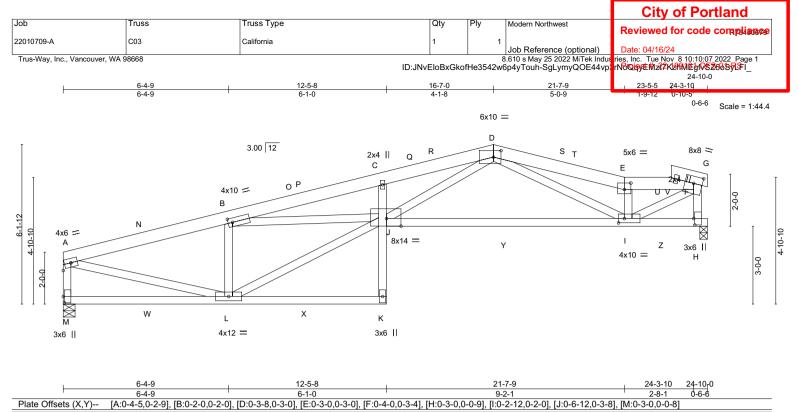
	8-4-8	8-2-8		0-8-8		7-	6-8	
Plate Offsets (X,Y) [A:0-2-8,	0-3-4], [E:0-2-12,0-1-8], [G:0-3-0,0-3-0],	[H:0-4-0,0-2-12], [I:0-4-0,0)-3-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.70 BC 0.77 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc -0.33 H- -0.46 H- 0.02 H 0.05	l >623 >438	L/d 240 180 n/a 360	PLATES MT20 Weight: 141 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Sto A-J: 2x6 DF SS	d G *Except*	τοι		except end ve	rticals.	ng directly appl lied or 5-6-14 d	ied or 6-0-0 oc purlins oc bracing.	i,
(lb) - Max Horz J=13 Max Uplift All	-10-0 except (jt=length) J=0-5-8. 36(LC 44) uplift 100 lb or less at joint(s) except H= reactions 250 lb or less at joint(s) excep				LC			
	lax. Ten All forces 250 (lb) or less exc , B-C=-1178/850, C-D=-489/804, D-E=- F-G=-289/79							
BOT CHORD I-J=-1414/174 WEBS B-I=-449/428,	4, H-I=-665/758, G-H=-1038/984 C-I=-206/592, C-H=-1103/392, D-H=-62 36, E-G=-1274/1425	25/285, E-H=-947/820,						
 Wind: ASCE 7-16; Vult=140n II; Exp B; Enclosed; MWFRS 19-7-0, Interior(1) 19-7-0 to 2 exposed;C-C for members ar TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C; Unbalanced snow loads have Plates checked for a plus or r This truss has been designed will fit between the bottom ch A plate rating reduction of 20 Two RT7 MiTek connectors r for uplift only and does not cc referenced standard ANSI/T This truss has been designed panel points along the Top (2) This truss has been designed rag loads along bottom che 	% has been applied for the green lumbe ecommended to connect truss to bearin onsider lateral forces. cordance with the 2018 International Re	3 to 3-2-13, Interior(1) 3-2- e; cantilever left and right e ; Lumber DOL=1.60 plate 1.15); Pg=30.0 psf; Pf=20.6 .10 	-13 to 13-7-0, Exexposed ; end vergrip DOL=1.60 8 psf (Lum DOL= r live loads. a rectangle 3-6- c(s) H, G, J, and 602.11.1 and R8(cated at all mid p	 derior(2R) 13- ertical left and =1.15 Plate 0 tall by 2-0-0 . This connection 02.10.2 and panels and at 	7-0 to right wide cction is	EXI	PED PROFES ENGINEER 93437PE OREGON OREGON 96H 13, 20 9EW JOHN PIRES: 06/30/20 November 9,20	
Design valid for use only with MiTel a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and the fabrication, storage, delivery, erectit	eters and READ NOTES ON THIS AND INCLUDED © connectors. This design is based only upon par ding designer must verify the applicability of design is to prevent buckling of individual truss web and/or o prevent collapse with possible personal injury an on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	ameters shown, and is for an indiv a parameters and properly incorpor chord members only. Additional d property damage. For general g ANSI/TPI1 Quality Criter	vidual building compo rate this design into temporary and perm guidance regarding th	onent, not the overall anent bracing ne	ponent	N 4	NITEK NITEK USA, Inc. 00 Sunrise Avenue, Suite 2 toseville, CA 95661	70

						City of Portland					
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance					
22010709-A	C01	Common	1	1	Job Reference (optional)	Date: 04/16/24					
Trus-Way, Vancou	ıver, WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	: RMoje Niew 22-116:36333D202-201Plage 2					
NOTES-			ID:JNvEloBxG	kofHe3542	2w6p4yTouh-8VeWjqfbrZrf94	t8?sZnTebv0qYECvLERd6OlyLWUC					
13) Double installation	s of RT7 require the two	o hurricane ties to be installed on oppo) Double installations of RT7 require the two hurricane ties to be installed on opposite sides of top plate to avoid nail interference in single ply true								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek'

6-4-9		2-5-8	18-6-	0		1		24-10-0	1
6-4-9		6-1-0	6-0-			1		6-4-1	7
Plate Offsets (X,Y) [B:0-2-4,	0-2-0], [D:0-2-0,0-3-0], [E:0-2-4,0-2-0]	, [F:0-3-8,0-2-4], [I:0-6-12,	0-3-8], [L:0-3-0,0-0	-8]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.70 BC 0.68 WB 0.96	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.52 0.19	(loc) I H-I G	l/defl >999 >571 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	0.13	I	>999	360	Weight: 148 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B C-J: 2x4 DF Stu WEBS 2x4 DF Stud/Stu	id/Std G	т		except en	nd verti	cals.		pplied or 4-1-0 oc purlins 13 oc bracing.	,
TOP CHORD A-B=-1805/45	1ax. Ten All forces 250 (lb) or less e 9, B-C=-4049/1125, C-D=-4050/1167, 1, F-G=-360/109		0/104,						
BOT CHORD I-J=0/306, C-I WEBS B-K=-1142/41	=-324/147, H-I=-576/2204, G-H=-578/ 6, I-K=-512/1857, B-I=-576/2173, D-I= A-K=-377/1681, E-G=-1949/579								
 Wind: ASCE 7-16; Vult=140n II; Exp B; Enclosed; MWFRS 19-7-0, Interior(1) 19-7-0 to 2 exposed;C-C for members ar 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C; Unbalanced snow loads have 	ave been considered for this design. nph (3-second gust) Vasd=111mph; T (directional) and C-C Exterior(2E) 0-1 1-8-4, Exterior(2E) 21-8-4 to 24-8-4 zo d forces & MWFRS for reactions sho osf (roof LL: Lum DOL=1.15 Plate DOL at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct= been considered for this design. minus 5 degree rotation about its centor	-13 to 3-1-13, Interior(1) 3 one; cantilever left and righ vn; Lumber DOL=1.60 pla =1.15); Pg=30.0 psf; Pf=2 1.10	-1-13 to 13-7-0, Ex nt exposed ; end ve te grip DOL=1.60	tterior(2R) ertical left) 13-7- and rig	0 to	Heav Heav	SERED PROFES ENGINEER 93437PE	2011


- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) L, G, and . This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

10

ORÉGO

LOADING (psf TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL BCDL) 25.0 20.8/30.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	-	0.56 0.99 1.00 -MS	DEF Vert(Vert Horz Wind	LL) -0.3 CT) -0.9 (CT) 0.1	4 I-J 7 H	>312	L/d 240 180 n/a 360	PLATES MT20 Weight: 150 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD BOT CHORD	2x6 DF SS G 2x4 DF No.1&B1 C-K: 2x4 DF Stu 2x4 DF Stud/Sto	ud/Std G			Г	BRACING- TOP CHORD BOT CHORD	except Rigid o	end ver	ticals. rectly app	0 7 1	plied or 4-0-13 oc purlin	IS,
REACTIONS.	Max Horz M=1 Max Uplift M=-1	-5-8, H=0-3-8 47(LC 14) 169(LC 10), H=-246(LC 1- 096(LC 2), H=1169(LC 2)										
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	A-B=-1788/43 A-M=-1035/28 J-K=0/305, C-	1ax. Ten All forces 250 (5, B-C=-4038/1150, C-D= 9 J=-334/142, I-J=-669/212 1, J-L=-558/1849, B-J=-62	4077/1180, D 1	-E=-2002/542	2, E-F=-184	ŗ						

E-I=-785/285, F-I=-511/2007, A-L=-354/1665, F-H=-1200/359

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-7-0, Exterior(2R) 13-7-0 to 19-7-0, Interior(1) 19-7-0 to 21-7-9, Exterior(2R) 21-7-9 to 24-3-10, Exterior(2E) 24-3-10 to 24-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

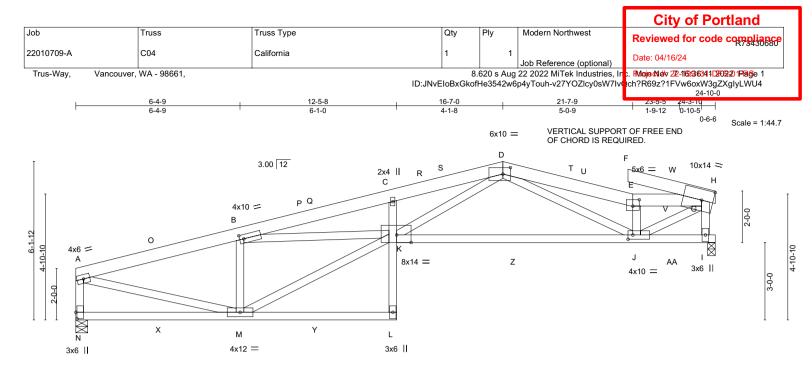
3) TOLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) A plate rating reduction of 20% has been applied for the green lumber members.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) M and H. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 153 lb down and 120 lb up at 23-4-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.

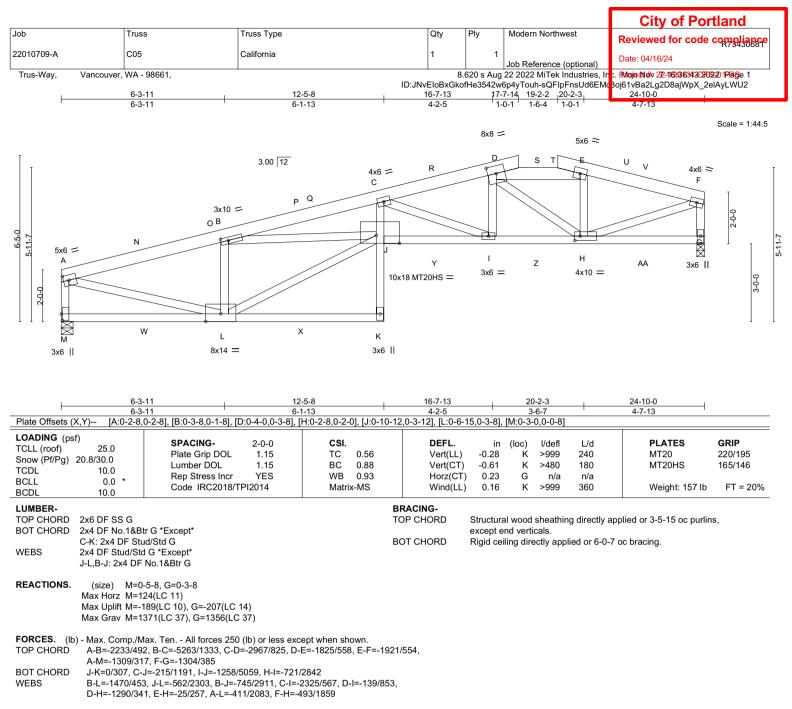
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component
Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	C03	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Inc., Vancouver, WA	. 98668		ID: INvEloBxGko	He3542w6r		ries, Inc. Tue Nov 8 10:10:08 2022 Page 2 ZLB2B565W2tkJW91W157255KUyEFHz
LOAD CASE(S) Standar	rd			,	.,	,,


OAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: A-D=-62, D-E=-62, E-F=-62, F-G=-62, K-M=-20, H-J=-20

Concentrated Loads (lb) Vert: V=-112

6-4		2-5-8		<u>21-7-9</u> 9-2-1			<u>24-3-10</u> 24-10-0 2-8-1 0-6-6	
	0-2-0], [D:0-3-8,0-3-0], [E:0-3-0,0-3-0],]		,0-3-8], [N:0-3-0,0-0				201 000	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.57 BC 0.99 WB 1.00 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.39 J-K -0.94 J-K 0.17 I 0.14 K	>743 >310 n/a	L/d 240 180 n/a 360	PLATES MT20 Weight: 155 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Bi C-L: 2x4 DF Stud/Sto WEBS 2x4 DF Stud/Sto REACTIONS. (size) N=0- Max Horz N=-8 Max Uplift N=-1	d/Std G I G -5-8, I=0-3-8	т	e BOT CHORD F	except end verti	cals. ectly applied	, ,,	d or 4-0-12 oc purlir bracing, Except:	ıs,
TOP CHORD A-B=-1810/54 A-N=-1046/34 A-N=-1046/34 BOT CHORD K-L=0/305, C- WEBS B-M=-1149/44	lax. Ten All forces 250 (lb) or less exc 5, B-C=-4073/1293, C-D=-4104/1325, E 4 K=-335/139, J-K=-697/2185 0, K-M=-515/1872, B-K=-656/2195, D-ł), G-J=-879/2200, A-M=-460/1687, G-I=)-E=-2253/1091, E-G=-20 <=-499/2259, D-J=-357/3	,					
 2) Wind: ASCE 7-16; Vult=140m II; Exp B; Enclosed; MWFRS 19-7-0, Interior(1) 19-7-0 to 2 exposed ; end vertical left and grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough Ca 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) Plates checked for a plus or r 7) This truss has been designed 8) * This truss has been designed 8) * This truss has been designed 9) A plate rating reduction of 20' 10) One RT7 MiTek connectors uplift only and does not cons 11) This truss has been designed 12) This truss has been designed 	ninus 5 degree rotation about its center for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the botto ord and any other members. % has been applied for the green lumber recommended to connect truss to bear sider lateral forces. cordance with the 2018 International Re	I3 to 3-1-13, Interior(1) 3 xterior(2E) 21-10-0 to 24 prces & MWFRS for reac 1.15); Pg=30.0 psf; Pf=2 .10, Lu=50-0-0	-1-13 to 13-7-0, Exi I-10-0 zone; cantile tions shown; Lumb 10.8 psf (Lum DOL= her live loads. re a rectangle 3-6-0 at jt(s) N and I. This R502.11.1 and R80 located at all mid p Is.	terior(2R) 13-7- ver left and righ er DOL=1.60 pl 1.15 Plate 0 tall by 2-0-0 w s connection is 2.10.2 and anels and at all	0 to t ate ide		SED PROFES NGINEER 93437PE OREGON OREGON CH 13, 29 EW JOHN RES: 06/30/20 November 9,20	
Design valid for use only with MiTek a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and to fabrication, storage, delivery, erectic	ters and READ NOTES ON THIS AND INCLUDED (® connectors. This design is based only upon par ding designer must verify the applicability of design s to prevent buckling of individual truss web and/o p prevent collapse with possible personal injury an on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	ameters shown, and is for an in parameters and properly incor r chord members only. Addition d property damage. For genera ANSI/TPI1 Quality Cr.	ndividual building compo rporate this design into the nal temporary and perma	nent, not ne overall anent bracing e	nent	400	ek USA, Inc. Sunrise Avenue, Suite 2 seville, CA 95661	70

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-3-12, Exterior(2R) 12-3-12 to 21-8-4, Exterior(2E) 21-8-4 to 24-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) All plates are MT20 plates unless otherwise indicated.

- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) A plate rating reduction of 20% has been applied for the green lumber members.

11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) M and G. This connection is for uplift only and does not consider lateral forces.

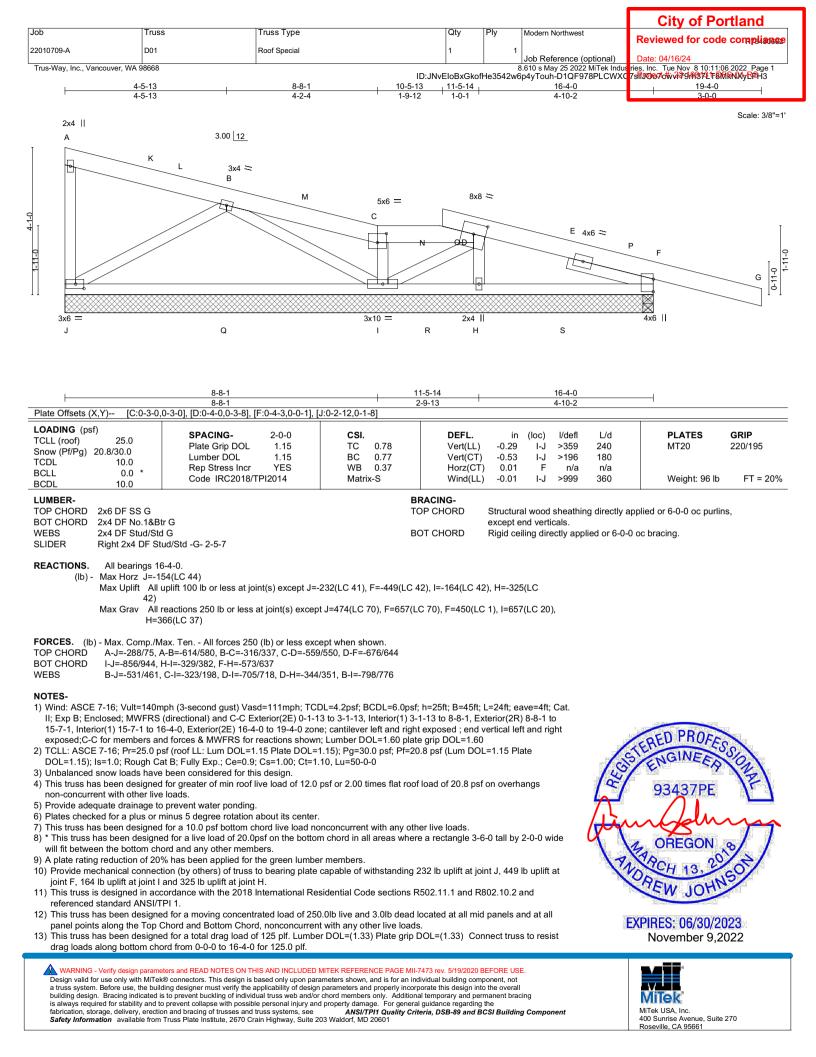
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

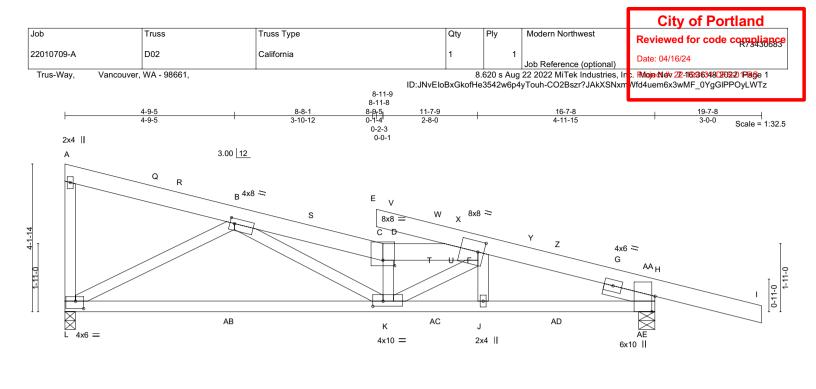
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component
Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

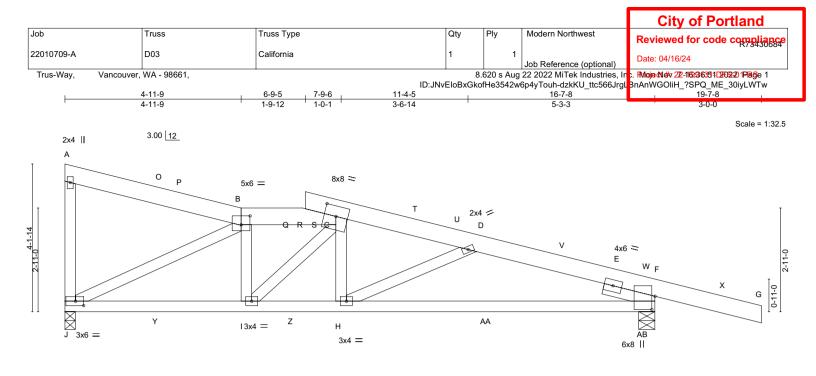
						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	C05	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	: RMoje Milev 22-116:36344D202201Page 2
NOTES-		ID:JNvEi	BxGkofH	e3542w6p4	4yTouh-Kdpg0boUFxE5_me _.	HpY8kobWQSYNJAlylenBHcyLWU1

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 158 lb down and 94 lb up at 19-1-5 on top chord. The design/selection of such connection device(s) is the responsibility of others.

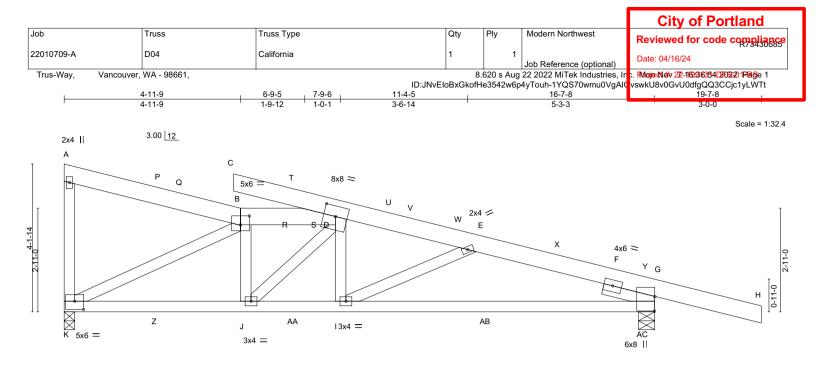

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-D=-62, D-E=-62, E-F=-62, K-M=-20, G-J=-20


Concentrated Loads (lb) Vert: T=-138

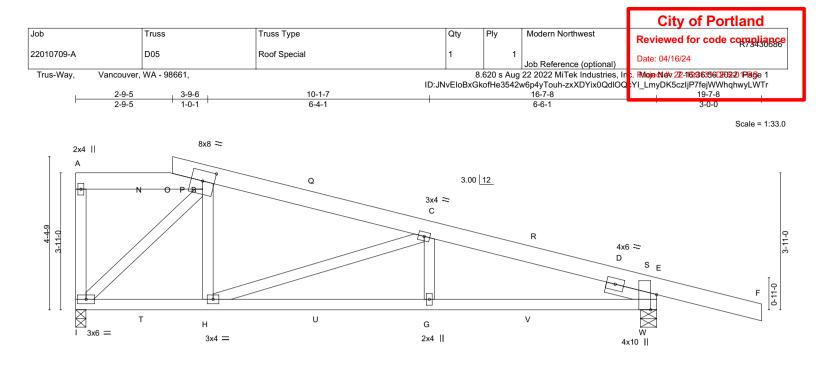
	8-11-8		11-7-9		16-7-8			
	8-11-8		2-8-1	10.0.0	4-11-15			
Plate Offsets (X,Y) [B:0-1-8,	0-1-12], [C:0-4-0,0-1-13], [F:0-2-0,0-3-8]	, [H:0-5-3,Edge], [K:0-3-8	3,0-1-12], [L:0-2-	12,0-2-8]				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.84 BC 0.87 WB 0.91	DEFL. Vert(LL) Vert(CT) Horz(CT)		l/defl >590 >289 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	,	>999	360	Weight: 101 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Sta SLIDER Right 2x4 DF St REACTIONS. (size) L=0- Max Horz L=-1 Max Uplift L=-1 Max Grav L=10 FORCES. (lb) - Max. Comp./N TOP CHORD A-L=-286/74, BOT CHORD K-L=-395/1410	d G ud/Std -G- 1-6-0 3-8, H=0-5-8	т(Во ept when shown. 3133/1649, F-H=-2407/	RACING- DP CHORD DT CHORD	Structural wood except end vert Rigid ceiling dir	icals.		blied or 4-7-1 oc purlins	 ,
 II; Exp B; Enclosed; MWFRS 13-0-4, Interior(1) 13-0-4 to 1 exposed;C-C for members ar TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C. Unbalanced snow loads have This truss has been designed on-concurrent with other live Provide adequate drainage to Plates checked for a plus or r This truss has been designed * This truss has been designed * This truss has been designed b) Plates checked for a plus or r O) Plates checked for a plus or r O) This truss has been designed * This truss has been designed * This truss has been designed MiTek connectors uplift only and does not con 11) This truss is designed in acc referenced standard ANSI/7 12) This truss along the Top 0 	 prevent water ponding. minus 5 degree rotation about its center. if or a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottor ord and any other members. % has been applied for the green lumbe recommended to connect truss to beari sider lateral forces. cordance with the 2018 International Re- 	3 to 3-1-13, Interior(1) 3- e; cantilever left and right ; Lumber DOL=1.60 platt 1.15); Pg=30.0 psf; Pf=20 10, Lu=50-0-0 psf or 2.00 times flat roof enconcurrent with any oth n chord in all areas where r members. ng walls due to UPLIFT a sidential Code sections R 0.0lb live and 3.0lb dead I t with any other live loads	1-13 to 8-11-8, E t exposed ; end x e grip DOL=1.60 0.8 psf (Lum DOI f load of 20.8 psf er live loads. e a rectangle 3-6 at jt(s) L and H. T (502.11.1 and R& ocated at all mid s.	Exterior(2R) 8-11 vertical left and ri L=1.15 Plate i on overhangs 6-0 tall by 2-0-0 w This connection is 802.10.2 and I panels and at a	8 to ght vide s for	ALL	PIRES: 06/30/200 PRES: 06/30/200 November 9,20	
Design valid for use only with MiTel a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and t fabrication, storage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDED @ connectors. This design is based only upon para ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or o prevent oulgapse with possible personal injury and on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	ameters shown, and is for an inc parameters and properly incorp chord members only. Additiona d property damage. For genera ANSI/TPI1 Quality Crit	lividual building comp porate this design into al temporary and perion I guidance regarding	ponent, not o the overall manent bracing the	onent		MITEK MITEK USA, Inc. 400 Sunrise Avenue, Suite 2 Roseville, CA 95661	70


4-11-5		7-9-6			16-7-8 8-10-2					
Plate Offsets (X,Y) [B:0-3-0,	0-3-0], [C:0-4-0,0-3-8], [F:0-	4-7,0-1-1], [J:0-2-12,0-1	1-8]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI2	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 2014 Matr	0.36 0.69 0.68 rix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.33 0.04 0.03	(loc) H-M H-M F H	l/defl >999 >594 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 99 lb	GRIP 220/195 FT = 20%
BCDL 10.0										
LUMBER-TOP CHORD2x6 DF SS GBOT CHORD2x4 DF No.1&BtWEBS2x4 DF Stud/StoSLIDERRight 2x4 DF St	IG		Т		except er	nd verti	cals.		pplied or 6-0-0 oc purlin -0 oc bracing.	IS,
BOT CHORD I-J=-250/1118,	ax. Ten All forces 250 (lb 3-C=-1135/406, C-D=-1403, H-I=-311/1353, F-H=-304/ 5, B-I=-37/337, C-I=-357/84,	, 440, D-F=-1573/435 1445	nown.							
 NOTES- 1) Wind: ASCE 7-16; Vult=140m II; Exp B; Enclosed; MWFRS 11-11-4, Interior(1) 11-11-4 to exposed;C-C for members an 2) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough Cz 3) Unbalanced snow loads have 4) This truss has been designed non-concurrent with other live 5) Provide adequate drainage to 6) Plates checked for a plus or n 7) This truss has been designed 8) * This truss has been designed 8) * This truss has been designed 9) A plate rating reduction of 20° 10) One RT7 MITek connectors uplift only and does not cons 11) This truss is designed in acc referenced standard ANSI/T 12) This truss has been designed panel points along the Top O 13) Hanger(s) or other connection 6-8-8 on top chord. The designed 	(directional) and C-C Exteri 16-7-8, Exterior(2E) 16-7-4 d forces & MWFRS for read sf (roof LL: Lum DOL=1.15 at B; Fully Exp.; Ce=0.9; Cs been considered for this de for greater of min roof live loads. prevent water ponding. ninus 5 degree rotation abo for a 10.0 psf bottom chord d for a live load of 20.0psf ord and any other members % has been applied for the recommended to connect the sider lateral forces. cordance with the 2018 Inter PI 1. d for a moving concentrate Chord and Bottom Chord, no on device(s) shall be provid	or(2É) 0-1-12 to 3-1-12, 3 to 19-7-8 zone; cantile tions shown; Lumber D Plate DOL=1.15); Pg=3 =1.00; Ct=1.10, Lu=50-1 asign. load of 12.0 psf or 2.00 ut its center. Hive load nonconcurren on the bottom chord in a green lumber members. russ to bearing walls du mational Residential Co d load of 250.01b live an onconcurrent with any o ed sufficient to support of	, Interior(1) 3 ver left and r OL=1.60 plat 0.0 psf; Pf=2 0-0 times flat roo at with any oth all areas when e to UPLIFT de sections f d 3.0lb dead ther live load concentrated	-1-12 to 4-11-9, Ex- ight exposed ; end te grip DOL=1.60 0.8 psf (Lum DOL of load of 20.8 psf of her live loads. re a rectangle 3-6- at jt(s) J and F. Th R502.11.1 and R8 located at all mid is. load(s) 136 lb dow	kterior(2R l vertical I =1.15 Pla on overha 0 tall by 2 iis connec 02.10.2 a panels ar	2) 4-11- left and tte angs 2-0-0 w ction is nd nd at al	9 to right ide for	A CAN	SERED PROFES 93437PE 93437PE OREGON	
				7472						
WarkNING - Venty design parame Design valid for use only with MITek a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and to fabrication, storage, delivery, erectic Safety Information available from	ding designer must verify the applic s to prevent buckling of individual to prevent collapse with possible per on and bracing of trusses and truss	d only upon parameters shown ability of design parameters and uss web and/or chord membe rsonal injury and property dam systems, see ANSI /	n, and is for an in nd properly incor rs only. Additior age. For genera TPI1 Quality Cr	ndividual building comport rporate this design into nal temporary and perm	onent, not the overall nanent bracin he	ng	nent		MITEK USA, Inc. 400 Sunrise Avenue, Suite Roseville, CA 95661	270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	D03	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,	·	. 8.	620 s Aug	22 2022 MiTek Industries, In	. RMoje Nidv 22-116:36:552D202-201Plage 2
		ID:JN ⁴	vEloBxGk	ofHe3542w	/6p4yTouh-59liiKuVNOEyx?	XIVh02UwwShKEBsg8bujcY9yLWTv

LOAD CASE(S) Standard

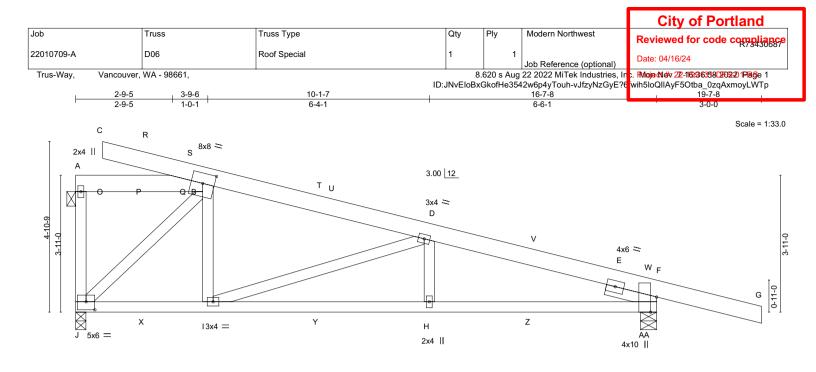
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Uniform Loads (plf) Vert: A-B=-62, B-C=-62, C-G=-62, J-K=-20 Concentrated Loads (lb) Vert: R=-28



4-11-5				16-7-8 8-10-2				
	0-3-0], [D:0-4-0,0-3-8], [G:0-4-15,0-0-1],	, [K:0-3-0,0-2-12]		0.102				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.36 BC 0.69 WB 0.98 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.18 l-N -0.34 l-N 0.05 G 0.05 l	l/defl >999 >587 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 104 lb	GRIP 220/195 FT = 20%
BCDL 10.0		Matrix-MO	Wind(LE)	0.00 1	- 000	500	Weight. 104 lb	11 - 2070
REACTIONS. (size) K=0- Max Horz K=-1 Max Uplift K=-1	d G ud/Std -G- 1-6-0 -3-8, G=0-5-8	тс	RACING- DP CHORD DT CHORD	Structural wood except end ver Rigid ceiling dir	ticals.		olied or 5-5-11 oc purlin	ıs,
TOP CHORD A-K=-299/89, BOT CHORD J-K=-642/1614 WEBS B-K=-1805/104 NOTES- 1) Wind: ASCE 7-16; Vult=140m II; Exp B; Enclosed; MWFRS 9-0-4, Interior(1) 9-0-4 to 16-7 exposed;C-C for members ar 2) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough Ca 200	 Iax. Ten All forces 250 (lb) or less exc B-D=-1638/957, D-E=-2010/971, E-G=-4, I-J=-872/1979, G-I=-510/1781 46, B-J=-195/415, D-J=-494/310, D-I=-4 nph (3-second gust) Vasd=111mph; TCI (directional) and C-C Exterior(2E) 0-1-17-8, Exterior(2E) 16-7-8 to 19-7-8 zone; nd forces & MWFRS for reactions shown sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.9 been considered for this design. 	1933/659 7/329, E-I=-382/371 DL=4.2psf; BCDL=6.0psf; 3 to 3-1-13, Interior(1) 3- cantilever left and right e: ; Lumber DOL=1.60 plate 1.15); Pg=30.0 psf; Pf=20	1-13 to 4-11-9, Ex posed ; end vert e grip DOL=1.60	xterior(2R) 4-11 ical left and righ	-9 to		ERED PROFES	80
non-concurrent with other live 5) Provide adequate drainage to 6) Plates checked for a plus or r 7) This truss has been designed	o prevent water ponding. minus 5 degree rotation about its center. I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the botton	, pnconcurrent with any oth	er live loads.	Ū	vide	Jan	93437PE	NE) MA
 9) A plate rating reduction of 20' 10) One RT7 MiTek connectors uplift only and does not commented by truss is designed in accorreferenced standard ANSI/T 12) This truss has been designed panel points along the Top 0 	% has been applied for the green lumbe recommended to connect truss to bear sider lateral forces. cordance with the 2018 International Re	ing walls due to UPLIFT a sidential Code sections R 0.0lb live and 3.0lb dead I t with any other live loads	502.11.1 and R8 ocated at all mid	02.10.2 and panels and at a		EX	OREGON ARCH 13, 20 REW JOHN PIRES: 06/30/20 November 9,20	
Design valid for use only with MiTek a truss system. Before use, the build building design. Bracing indicated i	eters and READ NOTES ON THIS AND INCLUDED (® connectors. This design is based only upon par- ding designer must verify the applicability of design s to prevent buckling of individual truss web and/on o prevent collapse with possible personal injury an	ameters shown, and is for an ind parameters and properly incorp chord members only. Additiona	lividual building comporate this design into al temporary and perm	onent, not the overall nanent bracing			MiTek'	

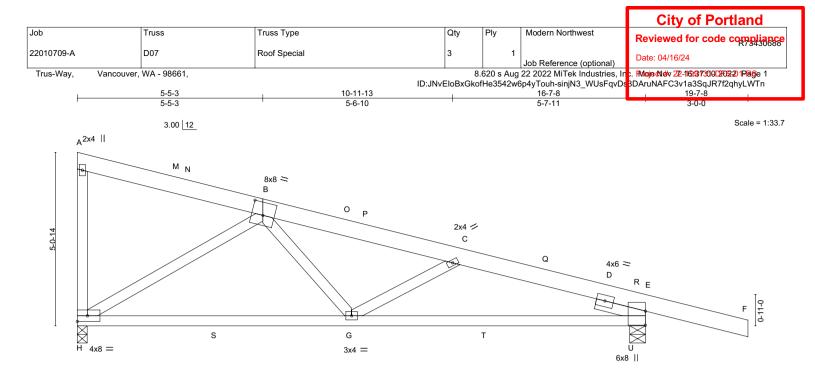
MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


3-9-6							
Plate Offsets (X,Y) [B:0-4-0,	0-3-8], [E:0-5-3,Edge]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.33 BC 0.61 WB 0.68 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.14 G-H -0.26 G-H 0.05 E 0.04 G-H	l/defl L/d >999 240 >759 180 n/a n/a >999 360	PLATES MT20 Weight: 97	GRIP 220/195 b FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Bi WEBS 2x4 DF Stud/Sto SLIDER Right 2x4 DF St REACTIONS. (size) E=0- Max Horz I=-15	i G ud/Std -G- 1-6-0 5-8, I=0-3-8	Т	BRACING- FOP CHORD BOT CHORD	except end vert	icals.	tly applied or 5-9-9 oc pu 10-0-0 oc bracing.	rlins,
FORCES. (lb) - Max. Comp./M TOP CHORD A-I=-283/70, B BOT CHORD H-I=-94/773, G	236(LC 34), I=841(LC 34) lax. Ten All forces 250 (lb) or less exc I-C=-854/258, C-E=-1740/332 G-H=-212/1607, E-G=-212/1607 , B-H=0/454, C-H=-863/160, C-G=0/349						
 II; Exp B; Enclosed; MWFRS 16-7-8, Exterior(2E) 16-7-8 to and forces & MWFRS for reau- 2) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough Cc 3) Unbalanced snow loads have 4) This truss has been designed non-concurrent with other live 5) Provide adequate drainage to 6) Plates checked for a plus or n 7) This truss has been designed 8) * This truss has been designed 8) * This truss has been designed 9) A plate rating reduction of 20' 10) One RT7 MTek connectors uplift only and does not cons 11) This truss has been designed in acc referenced standard ANSIT 12) This truss has been designe panel points along the Top O 13) Hanger(s) or other connection 	 prevent water ponding. ninus 5 degree rotation about its center. I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottor ord and any other members. % has been applied for the green lumbe recommended to connect truss to beari sider lateral forces. cordance with the 2018 International Res 	2 to 3-1-12, Exterior(2R posed ; end vertical left rip DOL=1.60 1.15); Pg=30.0 psf; Pf=2 10, Lu=50-0-0 psf or 2.00 times flat roc n chord in all areas whe r members. ng walls due to UPLIFT sidential Code sections I 0.0lb live and 3.0lb dead t with any other live load to support concentrated) 3-1-12 to 6-7-10, and right exposed 20.8 psf (Lum DOL of load of 20.8 psf ther live loads. ere a rectangle 3-6- at jt(s) E and I. Th R502.11.1 and R8 I located at all mid ts. I locat(s) 147 lb doo	Interior(1) 6-7-1 I;C-C for member =1.15 Plate on overhangs -0 tall by 2-0-0 w is connection is 02.10.2 and panels and at al	0 to rrs ride for	SSIERED PROF 93437PE 93437PE 0REGON 710REGON 710REW JOH EXPIRES: 06/30/ November 9	2023
Design valid for use only with MiTek a truss system. Before use, the built building design. Bracing indicated i is always required for stability and to fabrication, storage, delivery, erectic	ters and READ NOTES ON THIS AND INCLUDED I © connectors. This design is based only upon para ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or p prevent collapse with possible personal injury and on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	ameters shown, and is for an ir parameters and properly inco chord members only. Addition b property damage. For gener ANSI/TPI1 Quality Cr	ndividual building comp prporate this design into nal temporary and pern	onent, not the overall nanent bracing he	nent	MiTek USA, Inc. 400 Sunrise Avenue, Si Roseville, CA 95661	iite 270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	D05	Roof Special	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,	ID:JN				2. Moje t∖lev 22-16336356D2022) 1Page 2 YI_LmyDK5czIjP7fejWWhqhwyLWTr

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-B=-62, B-F=-62, I-J=-20 Concentrated Loads (lb) Vert: O=-106

3-9		10-1-7		16-7-8			
Plate Offsets (X,Y) [B:0	.6 4-0,0-3-8], [F:0-5-3,Edge], [J:0-3-0,0	<u>6-4-1</u> -2-121	1	6-6-1			
LOADING (psf)							
TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	5 TC 0.34 5 BC 0.61		in (loc) -0.14 H-I -0.26 H-I 0.05 F	l/defl L/ >999 24 >761 18 n/a n/	0 MT20 0	GRIP 220/195
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	0.04 H-I	>999 36		b FT = 20%
LUMBER- TOP CHORD 2x6 DF SS BOT CHORD 2x4 DF No. WEBS 2x4 DF Stu SLIDER Right 2x4 D REACTIONS. (size) Max Horz Max Uplift Max Grav FORCES. (lb) - Max. Com TOP CHORD A-J=-282/ BOT CHORD I-J=-200/S WEBS B-J=-138' NOTES- 1) Wind: ASCE 7-16; Vult=' II; Exp B; Enclosed; MW 16-7-8, Exterior(2E) 16-7 and forces & MWFRS fo 2) TCLL: ASCE 7-16; Pr=22 DOL=1.15); Is=1.0; Roug 3) Unbalanced snow loads 4) This truss has been desi non-concurrent with othe 5) Provide adequate draina 6) Plates checked for a plus 7) This truss has been desi will fit between the bottor 9) A plate rating reduction C 10) One RT7 MiTek connec uplift only and does not 11) This truss has been desi referenced standard AN 12) This truss has been desi panel points along the	1&Btr G //Std G F Stud/Std -G- 1-6-0 ==0-5-8, J=0-3-8 J=-185(LC 10) =-274(LC 11), J=-216(LC 14) ==1272(LC 34), J=1132(LC 34) p./Max. Ten All forces 250 (lb) or I 164, B-D=-1054/346, D-F=-1823/28(82, H-I=-159/1683, F-H=-159/1683 //650, B-I=0/446, D-I=-724/100, D-H= 40mph (3-second gust) Vasd=111m rRS (directional) and C-C Exterior(2I -8 to 19-7-8 zone; cantilever left and reactions shown; Lumber DOL=1.60 0.0 psf (roof LL: Lum DOL=1.15 Plate h Cat B; Fully Exp.; Ce=0.9; Cs=1.0) have been considered for this desigr gned for greater of min roof live load r live loads. ge to prevent water ponding. or minus 5 degree rotation about its gned for a live load of 20.0psf on th n chord and any other members. f 20% has been applied for the green tors recommended to connect truss consider lateral forces. n accordance with the 2018 Internatio	B B B B B B B C C C C C C C C C C C C C	ex OT CHORD Ri ; h=25ft; B=45ft; L=2 3-1-13 to 3-7-10, In and right exposed;C 0.8 psf (Lum DOL=1 f load of 20.8 psf on her live loads. e a rectangle 3-6-0 f at jt(s) F and J. This R502.11.1 and R802 located at all mid pa s.	xcept end vertic igid ceiling dire 24ft; eave=4ft; tterior(1) 3-7-10 C-C for member 1.15 Plate 1.15 Plate	cals. ctly applied o Cat.) to 's de for	ectly applied or 5-7-10 oc pu r 10-0-0 oc bracing. r 10-0-0 oc bracing.	
Design valid for use only with a truss system. Before use, th building design. Bracing indic	arameters and READ NOTES ON THIS AND IN MITek® connectors. This design is based only a building designer must verify the applicability ated is to prevent buckling of individual truss and to prevent collapse with possible personal	upon parameters shown, and is for an in- of design parameters and properly incor eb and/or chord members only. Addition	dividual building compone porate this design into the al temporary and perman	ent, not e overall nent bracing		MiTek	

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [B:0-4-0,	8-0-5 8-0-5 0-4-8], [E:0-4-15,0-0-1]		16-7-8 8-7-3	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.71 BC 0.78 WB 0.73 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.28 G-H >713 240 Vert(CT) -0.47 G-H >425 180 Horz(CT) 0.03 E n/a n/a Wind(LL) 0.03 G-H >999 360	PLATES GRIP MT20 220/195 Weight: 94 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 DF SS G

 BOT CHORD
 2x4 DF No.1&Btr G

 WEBS
 2x4 DF Stud/Std G

 OTHERS
 2x4 DF Stud/Std G

 SLIDER
 Right 2x4 DF Stud/Std -G-1-6-0

REACTIONS. (size) E=0-5-8, H=0-3-8 Max Horz H=-198(LC 12) Max Uplift E=-272(LC 11), H=-133(LC 11) Max Grav E=971(LC 2), H=806(LC 20)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 A-H=-292/80, B-C=-1153/194, C-E=-1367/270

BOT CHORD G-H=-91/897, E-G=-140/1266

WEBS B-H=-1043/277, B-G=0/526, C-G=-311/119

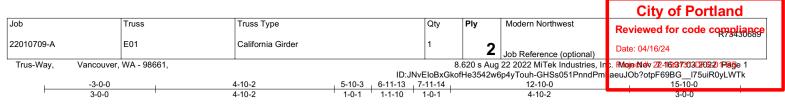
NOTES-

 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-13 to 3-1-13, Interior(1) 3-1-13 to 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

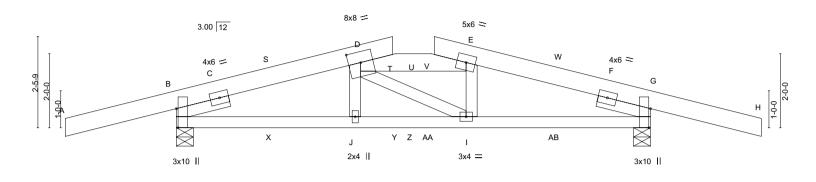
3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and H. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


EXPIRES: 06/30/2023 November 9,2022

Scale = 1:31.2

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

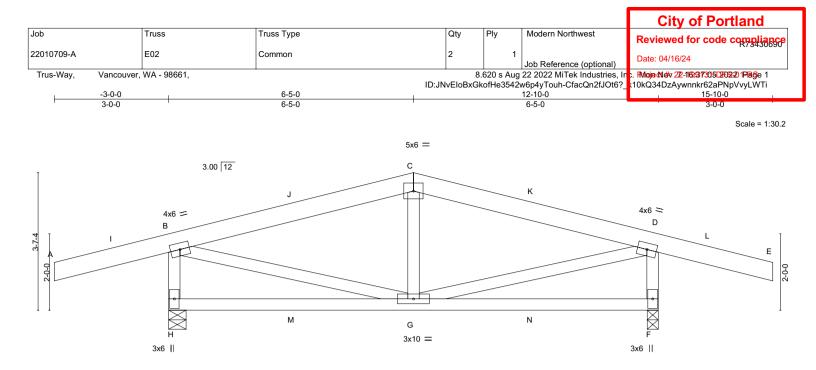
	4-10-2 4-10-2	7-11-1 3-1-1		12-10-0 4-10-2		
Plate Offsets (X,Y) [B:0-6-3,E	Edge], [D:0-4-0,0-3-8], [G:0-6-3,Edge]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNO	CSI. TC 0.26 BC 0.34 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.05 l-J >999 -0.14 l-J >999 0.03 G n/a	L/d PLATES 240 MT20 180 n/a	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.03 I-J >999	360 Weight: 153	b FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Bt WEBS 2x4 DF Stud/Std SLIDER Left 2x4 DF Stud REACTIONS. (size) B=0- Max Horz B=44	G d/Std -G- 1-6-0, Right 2x4 DF Stud/Std - 5-8, G=0-5-8	TC BC		tructural wood sheathing ligid ceiling directly applie	directly applied or 6-0-0 oc purl d or 10-0-0 oc bracing.	ns.
FORCES. (lb) - Max. Comp./M. TOP CHORD B-D=-1925/100 BOT CHORD B-J=-52/1821,	260(LC 36), G=1257(LC 36) ax. Ten All forces 250 (lb) or less exce 6, D-E=-1645/87, E-G=-1752/123 I-J=-59/1822, G-I=-49/1616 I=-337/32, E-I=0/308	ept when shown.				
 Top chords connected as follows: 2 All loads are considered equa ply connections have been pre Unbalanced roof live loads ha Wind: ASCE 7-16; Vult=140m II; Exp B; Enclosed; MWFRS i plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 ps DOL=1.15; Is=1.0; Rough Ca Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to os Plates checked for a plus or n This truss has been designed uill fit between the bottom of 20 A plate rating reduction of 20 Provide mechanical connect at joint G. 	Ily applied to all plies, except if noted as ovided to distribute only loads noted as ve been considered for this design. ph (3-second gust) Vasd=111mph; TCE (directional); cantilever left and right exp sf (roof LL: Lum DOL=1.15 Plate DOL=1 tt B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1. been considered for this design. for greater of min roof live load of 12.0 loads. prevent water ponding. ninus 5 degree rotation about its center. d for a 10.0 psf bottom chord live load n ted for a live load of 20.0psf on the botto nord and any other members. 1% has been applied for the green lumb ion (by others) of truss to bearing plate ordance with the 2018 International Res	front (F) or back (B) face (F) or (B), unless otherwis 0L=4.2psf; BCDL=6.0psf; osed ; end vertical left ar .15); Pg=30.0 psf; Pf=20 10, Lu=50-0-0 osf or 2.00 times flat roof onconcurrent with any oth m chord in all areas whe er members. capable of withstanding 2	se indicated. h=25ft; B=45ft; L= d right exposed; L 8 psf (Lum DOL=1 load of 20.8 psf or her live loads. re a rectangle 3-6- 44 lb uplift at joint	24ft; eave=4ft; Cat. umber DOL=1.60 1.15 Plate n overhangs 0 tall by 2-0-0 wide B and 244 lb uplift	OREGON THOREW JOHN EXPIRES: 06/30/2 November 9,	
WARNING - Verify design parame Design valid for use only with MiTek a truss system. Before use, the build building design. Bracing indicated is	P1 1. ters and READ NOTES ON THIS AND INCLUDED I © connectors. This design is based only upon para ling designer must verify the applicability of design to prevent buckling of individual truss web and/or prevent collapse with possible personal injury and	meters shown, and is for an ind parameters and properly incorp chord members only. Additiona	vidual building compon prate this design into th I temporary and permar	ent, not e overall nent bracing	Mitek'	

building design. Bracing indicated is to prevent bucktion of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckting of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckting of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	E01	California Girder	1	2	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,					2. RMoje Niew 22-116:37304D202-20 1Plage 2
NOTES-		ID:JNvE	loBxGkof⊢	le3542w6p	4yTouh-kT0EDR11Y4lFNr9d	S0vqX0Q_?WVQ?REvMldFzSyLWTj

15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 328 lb down and 49 lb up at 5-11-0, and 328 lb down and 49 lb up at 6-10-15 on top chord, and 51 lb down at 6-0-0, and 51 lb down at 6-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-D=-62, D-E=-62, E-H=-62, K-O=-20

Concentrated Loads (lb) Vert: T=-295 V=-295 Y=-30(F) AA=-30(F)

	6-5-0 6-5-0				12-10-0 6-5-0				
25.0).8/30.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.25 BC 0.59 WB 0.21 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.24 -0.00 0.01	(loc) F-G F-G F G	l/defl >888 >617 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 85 lb	GRIP 220/195 FT = 20%
10.0	Code IRC2018/TPI2014		Wind(LL)	0.01	G	>	>999	>999 360	>999 360 Weight: 85 lb

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G 2x4 DF Stud/Std G WFBS

REACTIONS. (size) H=0-5-8, F=0-3-8 Max Horz H=-92(LC 12)

Max Uplift H=-237(LC 10), F=-237(LC 11) Max Grav H=830(LC 19), F=830(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD B-C=-552/233. C-D=-552/233. B-H=-781/482. D-F=-781/482
- WEBS B-G=-76/505, D-G=-76/505

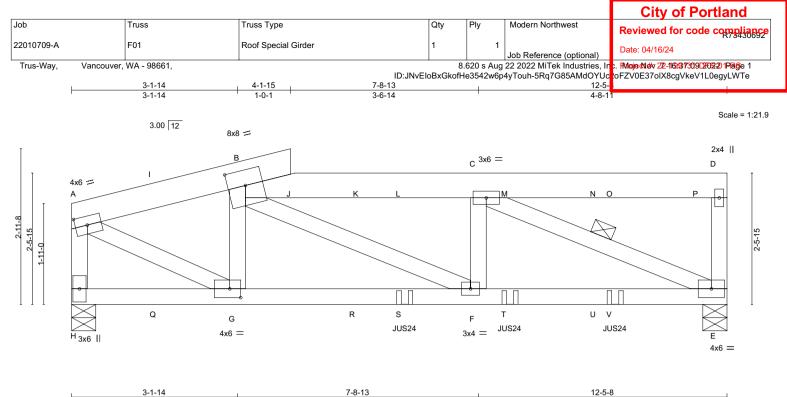
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-1-13, Interior(1) 0-1-13 to 3-5-0, Exterior(2R) 3-5-0 to 9-5-0, Interior(1) 9-5-0 to 12-8-4, Exterior(2E) 12-8-4 to 15-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) A plate rating reduction of 20% has been applied for the green lumber members.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) H and F. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

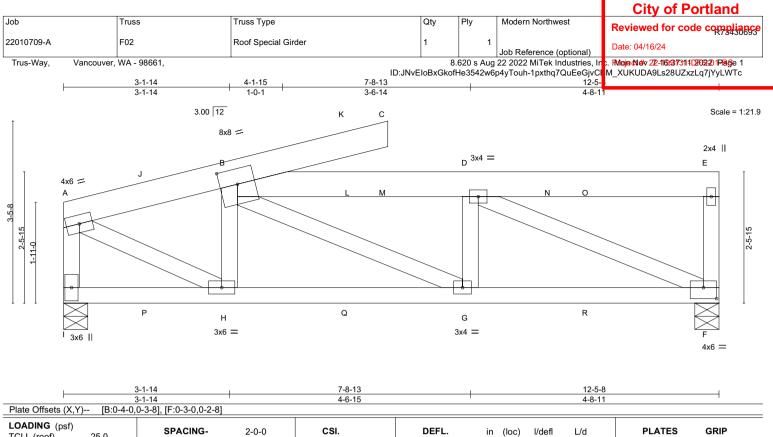
except end verticals


EXPIRES: 06/30/2023 November 9,2022

												l a const
Job	Truss	;	Truss Type			Qty	Ply	Moder	n Northwest	:	City of Port Reviewed for code of	
22010709-A	E03		Common			2	1				Date: 04/16/24	R73430691
Trus-Way, V	ancouver, WA - 9	98661,						22 2022		ustries, In	:. RMoje (Ni div 272-116):3730702102:	
 		6-5-0			ID:JN		12-10-0	2w6p4yTo	ouh-92iNrS4	4vq?7qE	P78TY9e2VAkTFCIDL2jsva 15-10-0	anyLWTg
, i		6-5-0					6-5-0				3-0-0	
		0.00 40		5x6 =								Scale = 1:26.4
т		3.00 12		В								
						_						
		Н					-	_		-		
5x6 == A										5x6	s == c	
3-74											J	Ī
							_					D
2-0-0												2-0-0
		K									×	l
		К		F 3x10 =			L					
3x6				5010 -						3x6		
L		6-5-0					12-10-0					
Plate Offsets (X,Y	Y) [A:0-2-12,	<u>6-5-0</u> ,0-3-0], [C:0-2-12,0-3-0]	I			6-5-0				1	
LOADING (psf) TCLL (roof)	25.0	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES (GRIP
Snow (Pf/Pg) 20	0.8/30.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.26 BC 0.59		Vert(LL) Vert(CT)	-0.17 -0.24	E-F E-F	>888 >616	240 180	MT20 2	220/195
TCDL BCLL	10.0 0.0 *	Rep Stress Incr Code IRC2018/	YES	WB 0.24 Matrix-MP		Horz(CT) Wind(LL)		E F	n/a >999	n/a 360	Weight: 78 lb	FT = 20%
BCDL	10.0		-		BRACING	. ,						
TOP CHORD 2	x6 DF SS G x4 DF No.1&Btr	G			TOP CHO			al wood		directly a	applied or 6-0-0 oc purlins,	
	x4 DF Stud/Std				BOT CHO	ORD				d or 10-0)-0 oc bracing.	
REACTIONS.	(size) G=0-5											
N		0(LC 10), E=-239(LC 1										
Ν	Max Grav G=57	'4(LC 19), E=842(LC 20))									
		ax. Ten All forces 250 B-C=-607/291, A-G=-5										
WEBS	A-F=-186/542,	C-F=-134/542										
NOTES- 1) Unbalanced ro	of live loads hav	ve been considered for	this design									
2) Wind: ASCE 7-	-16; Vult=140m	ph (3-second gust) Vas directional) and C-C E	d=111mph; TCD									
12-8-4, Exterio	or(2E) 12-8-4 to	15-10-0 zone; cantileve	er left and right ex	posed ; end vertical								
3) TCLL: ASCE 7	′-16; Pr=25.0 ps	tions shown; Lumber E f (roof LL: Lum DOL=1	.15 Plate DOL=1.	.15); Pg=30.0 psf; Pf=	=20.8 psf (Lum DOI	L=1.15 PI	ate			D DDO	
4) Unbalanced sn	now loads have	t B; Fully Exp.; Ce=0.9 been considered for th	is design.								TERED PHOFES	
	been designed t with other live	for greater of min roof loads.	ive load of 12.0 p	sf or 2.00 times flat n	oof load of	20.8 psf	on overh	angs		10	ENGINEER	92
		inus 5 degree rotation for a 10.0 psf bottom c		concurrent with any	other live l	oads.				12	93437PE	1F1
8) * This truss has	s been designed	d for a live load of 20.0 ord and any other mem	psf on the bottom				6-0 tall by	2-0-0 w	ide			
A plate rating r	reduction of 20%	6 has been applied for	the green lumber		T at it(a) C	and E	Thia aann	oction in	for	JAY	mfen	
uplift only and	d does not consi	recommended to conne ider lateral forces.		•							OREGON	
referenced sta	andard ANSI/TF									Y	VACH 13,20	5
,	•	d for a moving concent hord and Bottom Chor				at all mid	l panels a	and at all	I		REW JOHN	
	•											

EXPIRES: 06/30/2023 November 9,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


	3-1-14		12-5-8							
Plata Offacta (X X) [A:0.2.1		4-6-15				4-8-11		·		
Plate Offsets (X,Y) [A:0-2-1	2,0-2-0], [B:0-4-0,0-3-8], [G:0-2-8,0-2-0]	1	1							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof) 25.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL)	-0.07 E-F		240	MT20	220/195		
Snow (Pf/Pg) 20.8/30.0	Lumber DOL 1.15	BC 0.66	Vert(CT)	-0.16 E-F		180				
TCDL 10.0	Rep Stress Incr NO	WB 0.88	Horz(CT)			n/a				
BCLL 0.0 *	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)		>999	360	Weight: 73 lb	FT = 20%		
BCDL 10.0			. ,				-			
LUMBER-		BI	RACING-							
TOP CHORD 2x6 DF SS G		TC	OP CHORD			g directly appl	lied or 4-9-10 oc purl	ins,		
BOT CHORD 2x4 DF No.1&E				except end ver						
WEBS 2x4 DF Stud/S	td G		OT CHORD	Rigid ceiling di			oc bracing.			
		W	/EBS	1 Row at midp	t	C-E				
)-5-8, H=0-5-8									
Max Horz H=8										
	241(LC 9), H=-233(LC 8) I407(LC 30), H=1394(LC 31)									
	1407 (EC 30), 11-1394 (EC 31)									
FORCES (lb) - Max Comp /	Max. Ten All forces 250 (lb) or less ex	cent when shown								
	99, B-C=-2371/412, D-E=-319/89, A-H=-									
	22, E-F=-418/2371									
	2, B-F=-156/668, C-F=-72/273, C-E=-26	11/440, A-G=-326/1989								
NOTES-										
	ave been considered for this design.									
	mph (3-second gust) Vasd=111mph; TC									
	6 (directional); cantilever left and right ex	posed ; end vertical left a	nd right exposed	; Lumber DOL=	1.60					
plate grip DOL=1.60	plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate									
).8 pst (Lum DOL	_=1.15 Plate		1.02	O DDOD			
,, , , , , , , , , , , , , , , , , , ,	Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1 e been considered for this design.	.10, Lu=50-0-0					REDTRUFF			
5) Provide adequate drainage f						19	GINEE	SIN		
	minus 5 degree rotation about its center					1.01	EN-CD	V/V		
	d for a 10.0 psf bottom chord live load n		er live loads.			121	Table Miller	NZ		
	ned for a live load of 20.0psf on the botto			-0 tall by 2-0-0	wide		93437PE			
	hord and any other members.		J	,						
9) A plate rating reduction of 20	0% has been applied for the green lumb	er members.				A ·	· / I. U.			
10) One RT7 MiTek connector	s recommended to connect truss to bear	ing walls due to UPLIFT a	at jt(s) E and H. T	This connection	is for	Han /	ward	m		
uplift only and does not cor							ODECON			
	ccordance with the 2018 International Re	sidential Code sections R	R502.11.1 and R8	302.10.2 and		1 13	, OREGON	<u>%/ / / </u>		
referenced standard ANSI/						17.1	20 - 20	781		
	ed for a moving concentrated load of 25			panels and at a	all	VA	CH 13,	c07		
	Chord and Bottom Chord, nonconcurre						REW WOHN			
,	10d nails into Girder & 2-10d nails into T to connect truss(es) to front face of botto	, , ,	d at 2-0-0 oc ma	x. starting at 6-4	1 -0	192	CEW JOHN			
	()	in chora.								
14) Fill all nail holes where hanger is in contact with lumber. 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 819 lb down and 200 lb up at EXPIRES: 06/30/2023										
	ection of such connection device(s) is the			5.2 up ut 10-4	0.011		November 9,2	022		
	tion, loads applied to the face of the trus		back (B).							
•••,••••••••••••••••••••••••••••••••••	neters and READ NOTES ON THIS AND INCLUDED	()	()							
	ek® connectors. This design is based only upon pa									
a truss system. Before use, the bu	ilding designer must verify the applicability of desig	n parameters and properly incorp	porate this design into	the overall						
	is to prevent buckling of individual truss web and/o to prevent collapse with possible personal injury and						MILEK			
fabrication, storage, delivery, erect	tion and bracing of trusses and truss systems, see	ANSI/TPI1 Quality Crit			onent		MiTek USA, Inc.	270		
Safety Information available from	n Truss Plate Institute, 2670 Crain Highway, Suite	203 Waldorf, MD 20601					100 Sunrise Avenue, Suite Roseville, CA 95661	270		

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	F01	Roof Special Girder	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Van	couver, WA - 98661,		8.	.620 s Aug	22 2022 MiTek Industries, Ir	. RMojectlev 22-116:37309D202-201Plage 2
•			ID:JNvEloBxGkofH	e3542w6p	4yTouh-5Rq7G85AMdOYUc	oFZV0E37olX8cgVkeV1L0egyLWTe

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Dead + Show (balanced): Lumber increase=1.15, Plate increase=1.15 Uniform Loads (plf) Vert: A-B=-62, B-D=-62, E-H=-20 Concentrated Loads (lb) Vert: J=-778 L=-278 M=-263 O=-232 S=-54(F) T=-52(F) V=-50(F)

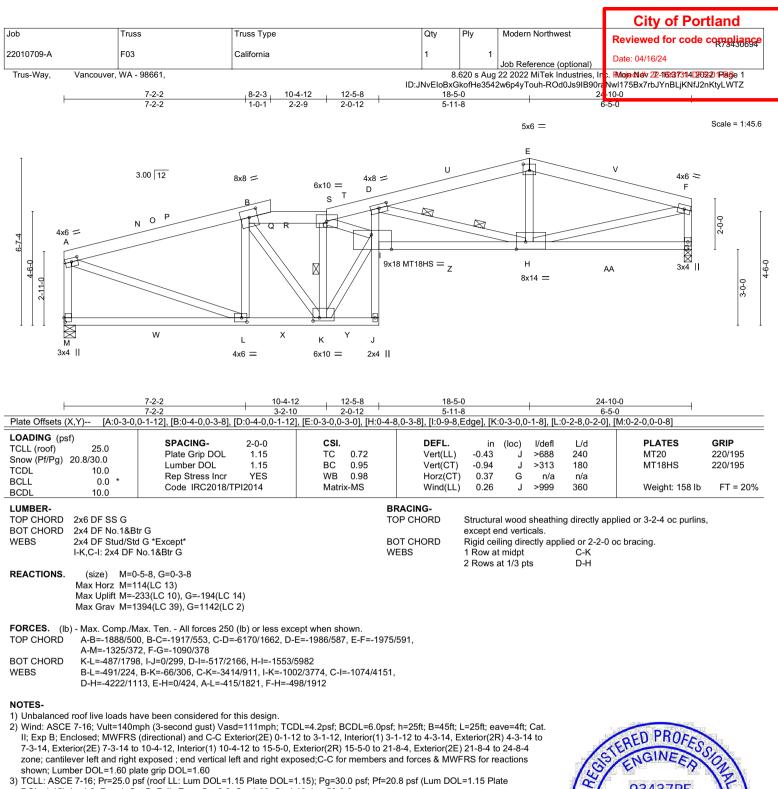
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.33 BC 0.47 WB 0.54	Vert(CT)	in (loc) -0.07 F-G -0.11 F-G 0.02 F	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.03 G-H	>999	360	Weight: 77 lb	FT = 20%

LUMBER-	BRACING-
TOP CHORD 2x6 DF SS G	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD 2x4 DF No.1&Btr G	except end verticals.
WEBS 2x4 DF Stud/Std G	BOT CHORD Rigid ceiling directly applied or 6-3-10 oc bracing.

REACTIONS. (size) F=0-5-8, I=0-5-8 Max Horz I=121(LC 11) Max Uplift F=-185(LC 11), I=-158(LC 10) Max Grav F=711(LC 32), I=781(LC 33)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD A-B=-1066/983, B-D=-1072/863, E-F=-294/90, A-I=-755/511
- BOT CHORD G-H=-1146/1084, F-G=-780/1072
- WEBS B-H=-473/558, B-G=-220/406, D-F=-1180/905, A-H=-1083/1184


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-13 to 3-3-10, Exterior(2R) 3-3-10 to 7-8-13, Interior(1) 7-8-13 to 9-3-12, Exterior(2E) 9-3-12 to 12-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members
- and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) A plate rating reduction of 20% has been applied for the green lumber members.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) F and I. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

EXPIRES: 06/30/2023 November 9,2022

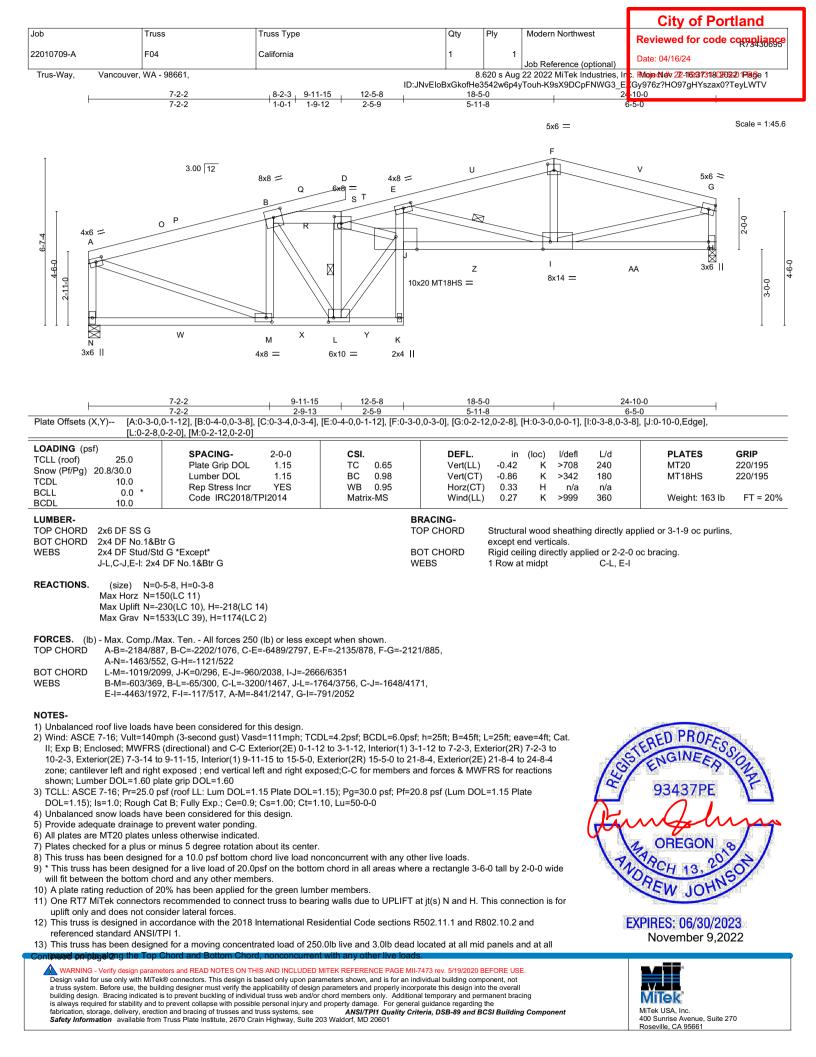
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) A plate rating reduction of 20% has been applied for the green lumber members.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) M and G. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	F03	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	: RMoje tN #v 22-116:373115D2702-2) 1Plage 2
NOTES-		ID:JNvEloE			Touh-wbBOXBAxyS8iCXVyt	qcQUKNm3y7Q4AaWuzoKsJyLWTY

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 220 lb down and 153 lb up at 8-3-1, and 104 lb down and 105 lb up at 10-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

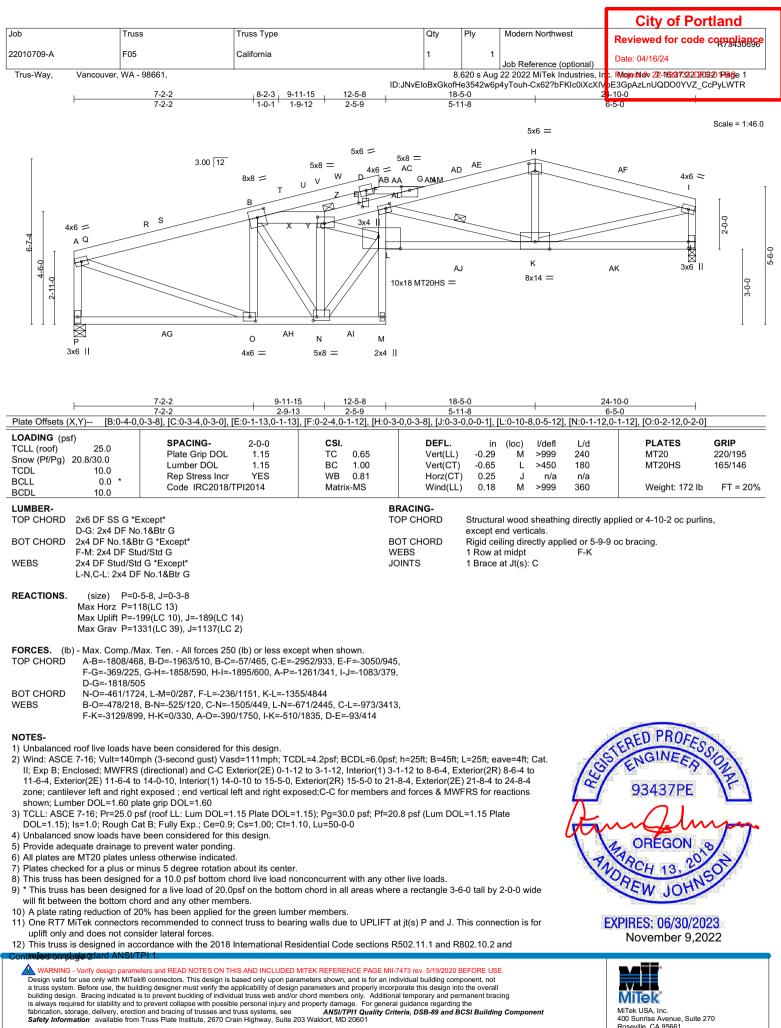

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-B=-62, B-C=-62, C-E=-62, E-F=-62, J-M=-20, G-I=-20

Concentrated Loads (lb) Vert: C=-49 Q=-179

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	F04	California	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,					2. Ryloje (New 22-116):37318D203-20 1P18.6e 2
	Gy976z?HO97gHYszax0?TeyLWTV					
NOTES-						


14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

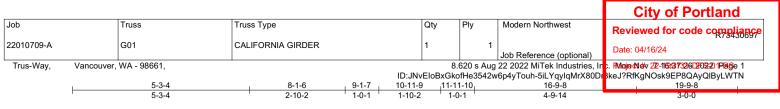
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: A-B=-62, B-D=-103, B-C=-103, C-F=-62, F-G=-62, K-N=-20, H-J=-20

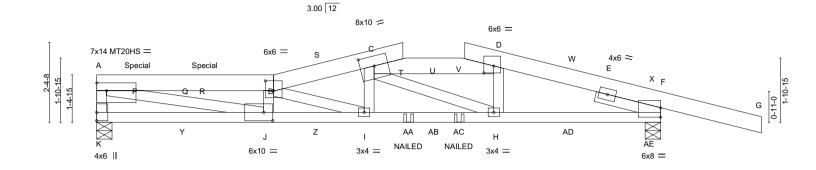
						City of Portland		
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance		
22010709-A	F05	California	1	1	Job Reference (optional)	Date: 04/16/24		
Trus-Way,	Vancouver, WA - 98661,	. RMoje Nidv 22-116:373220203-20 1Plage 2						
	ID:JNvEloBxGkofHe3542w6p4yTouh-Cx62?bFKlc0iXcXIv							
NOTES-								

13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 169 lb down and 126 lb up at 11-6-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: A-B=-62, B-D=-62, G-H=-62, H-I=-62, M-P=-20, J-L=-20, D-G=-62

Concentrated Loads (lb) Vert: D=-128

Scale = 1:34.3

	5-3-4	8-1-6	<u>11-11-10</u> 3-10-5	16-5 4-9-			
Plate Offsets (X,Y) [A:0-3-8,	,0-2-12], [B:0-3-0,0-3-8], [C:0-5-0,0-				••		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.59 BC 0.97 WB 0.66 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)) 0.08 F n/a	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 95 lb	GRIP 220/195 165/146 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Sta A-K,A-J: 2x4 DF SLIDER Right 2x4 DF St REACTIONS. (size) K=0. Max Horz K=-5 Max Uplift K=-3	d G *Except* F No.1&Btr G tud/Std -G- 2-0-0 -5-8, F=0-5-8		BRACING- TOP CHORD BOT CHORD	Structural wood sheathi except end verticals. Rigid ceiling directly ap			15,
FORCES. (lb) - Max. Comp./M TOP CHORD A-K=-1461/37 BOT CHORD J-K=-88/461, l	Aax. Ten All forces 250 (lb) or less 5, A-B=-5119/860, B-C=-4893/630, I-J=-878/5263, H-I=-587/4792, F-H 6, B-J=-1010/233, B-I=-507/302, C-	C-D=-3279/352, D-F=-34 312/3235					
 2) Wind: ASCE 7-16; Vult=140n II; Exp B; Enclosed; MWFRS plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C. 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 6) Provide adequate drainage to 7) All plates are MT20 plates un 8) Plates checked for a plus or r 9) This truss has been designed 10) * This truss has been designed 11) A plate rating reduction of 2 12) One RT7 MiTek connectors uplift only and does not con 13) This truss is designed in acc referenced standard ANSI/7 14) This truss has been designed 	b prevent water ponding. hess otherwise indicated. minus 5 degree rotation about its ca d for a 10.0 psf bottom chord live lo- ned for a live load of 20.0psf on the chord and any other members. 10% has been applied for the green a recommended to connect truss to sider lateral forces. cordance with the 2018 International	; TCDL=4.2psf; BCDL=6.0 tt exposed ; end vertical le OL=1.15); Pg=30.0 psf; Pf Ct=1.10, Lu=50-0-0 12.0 psf or 2.00 times flat enter. ad nonconcurrent with any bottom chord in all areas lumber members. bearing walls due to UPLII al Residential Code section of 250.0lb live and 3.0lb de urrent with any other live lo	ft and right exposed f=20.8 psf (Lum DOI roof load of 20.8 psf other live loads. where a rectangle 3 FT at jt(s) K and F. T ns R502.11.1 and Ra ead located at all mice	; Lumber DOL=1.60 _=1.15 Plate fon overhangs -6-0 tall by 2-0-0 wide This connection is for 302.10.2 and	EXPIR	ED PROFES NGINEER 93437PE OREGON CH 13, 29 EW JOHN RES: 06/30/20 lovember 9,20	Change and the second se
WARNING - Verify design param Design valid for use only with MiTel a truss system. Before use, the buil building design. Bracing indicated I is always required for stability and t fabrication, storae, delivery, erecti	U 148 X3) of 3-120 (U 148 X3.25) eters and READ NOTES ON THIS AND INCLI & connectors. This design is based only up ding designer must verify the applicability of is to prevent buckling of individual truss web o prevent collapse with possible personal inj on and bracing of trusses and truss systems. I Truss Plate Institute, 2670 Crain Highway, S	DED MITEK REFERENCE PAGE on parameters shown, and is for a design parameters and properly in and/or chord members only. Add iry and property damage. For ge see <u>ANSI/TPI1 Quality</u>	an individual building com ncorporate this design into litional temporary and per meral guidance regarding	ponent, not o the overall manent bracing	400	ITEK ek USA, Inc. svirise Avenue, Suite 2 eville, CA 95661	270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	G01	CALIFORNIA GIRDER	1	1		R/343069/
22010709-A	GUI		'	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	2. RMoje (Ni div 272-116):373216D2703230 1P18(Ge 2
		ID:JN\	/EloBxGkc	ofHe3542w	6p4yTouh-5iLYqyIqMrX80Dı	3keJ?RfKgNOsk9EP8QAyQlByLWTN

NOTES-

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 220 lb down and 87 lb up at 1-2-12, 87 lb down and 87 lb up at 1-2-12, 523 lb down and 192 lb up at 3-2-12, 126 lb down and 352 lb up at 3-2-12, and 567 lb down and 100 lb up at 9-2-4, and 567 lb down and 100 lb up at 10-10-11 on top chord. The design/selection of such connection device(s) is the responsibility of others.

17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

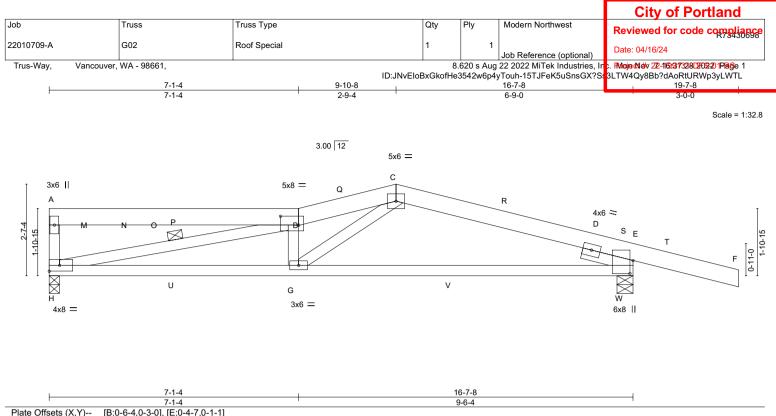
Uniform Loads (plf)

Vert: A-B=-62, B-C=-62, C-D=-62, D-G=-62, K-L=-20

Concentrated Loads (lb)

Vert: P=-99(F=-158) R=-366(F=-477) T=-525 V=-525 AA=-29(F) AC=-29(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



<u>...</u>

....

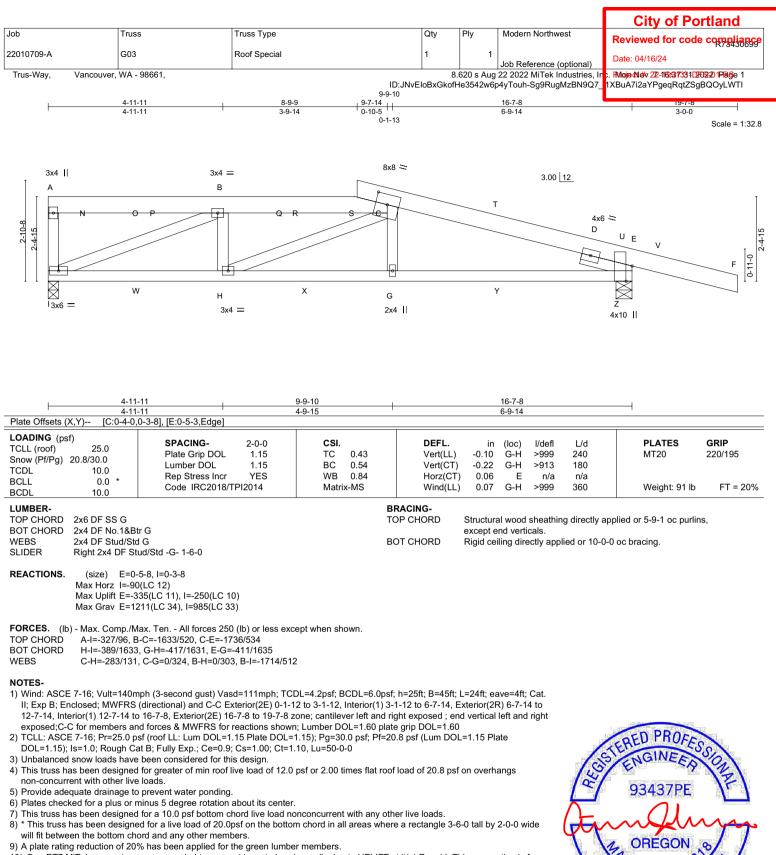
....

.

LOADING (psi) TCL (roof) SPACING- 25.0 Snow (P/Pg) SPACING- 25.0 20.0 2-0-0 Plate Gin DOL CSI. TC DEFL. Veri(LI) in (loc) I/deft L/d PLATES GRIP Snow (P/Pg) 20.830.0 TCDL 0.0 * Rep Stress Incr YES WB 0.54 Horz(CT) 0.04 E n/a n/a N/a BCL 0.0 * Rep Stress Incr YES WB 0.54 Horz(CT) 0.04 E n/a n/a N/a BCL 0.0 * Rep Stress Incr YES WB 0.54 Horz(CT) 0.04 E n/a n/a N/a BCDL 10.0 Rep Stress Incr YES WB 0.54 Horz(CT) 0.04 E n/a n/a Weight: 86 lb FT = 20% LUMBER- TOP CHORD 2x4 DF Stud/Std G TOP CHORD Structural wood sheathing directly applied or 5-10-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 9-5-11 oc bracing. WEBS 1 Row at midpt B-H H H H H H H H H H H	Plate Offsets (X,Y) [B:0-6-4	,0-3-0], [E:0-4-7,0-1-1]						
TOP CHORD 2x6 DF SS G TOP CHORD Structural wood sheathing directly applied or 5-10-6 oc purlins. BOT CHORD 2x4 DF No.18Btr G BOT Rigid ceiling directly applied or 9-5-11 oc bracing. WEBS 2x4 DF Stud/Stld G I Row at midpt B-H OTHERS 2x4 DF Stud/Stld G I Row at midpt B-H SLIDER Right 2x4 DF Stud/Stld -G-16-0 WEBS I Row at midpt B-H REACTIONS. (size) E=0-5-8, H=0-3-8 Max Horz H=-79(LC 12) Max Uplit E=-254(LC 11), H=-156(LC 10) Max Grav E=971(LC 2), H=757(LC 37) B-H B-H FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD A-H=-341/143, B-C=-2135/657, C-E=-1318/456 BOT CHORD G-H=-484/1986, E-G=-322/1218 WEBS B-H=1874/523, B-G=-532/262, C-G=-236/1107 FORCES. I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4,2pf; BCDL=6,0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-1-4, Exterior(2R) 7-1-4 to 12-10-6, Interior(1) 12-10-8 to 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pist grip DOL=1.60 S) TCLL: ASCE 7-16; Neugh Cat B; Fully Exp; Ce=0.9; CE=1.00	TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.89 BC 0.79 WB 0.54	Vert(LL) -0.28 Vert(CT) -0.54 Horz(CT) 0.04	G-K >695 G-K >366 E n/a	240 180 n/a	MT20	220/195
Max Horz H=-79(LC 12) Max Uplift E=-254(LC 11), H=-156(LC 10) Max Grav E=971(LC 2), H=757(LC 37) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD A-H=-341/143, B-C=-2135/657, C-E=-1318/456 BOT CHORD G-H=-484/1986, E-G=-322/1218 WEBS B-H=-1874/523, B-G=-532/262, C-G=-236/1107 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-1-4, Exterior(2R) 7-1-4 to 12-10-8, Interior(1) 12-10-8 to 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0	TOP CHORD2x6 DF SS GBOT CHORD2x4 DF No.1&EWEBS2x4 DF Stud/StOTHERS2x4 DF Stud/St	d G d G	TOP	CHORD Structur CHORD Rigid ce	iling directly app	olied or 9-5-11 oc		ins.
 TOP CHORD A-H=-341/143, B-C=-2135/657, C-E=-1318/456 BOT CHORD G-H=-484/1986, E-G=-322/1218 WEBS B-H=-1874/523, B-G=-532/262, C-G=-236/1107 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-1-4, Exterior(2R) 7-1-4 to 12-10-8, Interior(1) 12-10-8 to 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 	Max Horz H=- Max Uplift E=-	79(LC 12) 254(LC 11), H=-156(LC 10)						
 Ubalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-1-4, Exterior(2R) 7-1-4 to 12-10-8, Interior(1) 12-10-8 to 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 	TOP CHORD A-H=-341/143 BOT CHORD G-H=-484/19	3, B-C=-2135/657, C-E=-1318/456 86, E-G=-322/1218	ept when shown.					
 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 5 degree rotation about its center. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9)* This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9)* This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) A plate rating reduction of 20% has been applied for the green lumber members. 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and H. This connection is for uplif only and does not consider lateral forces. 12) This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. Continued on page 2 	 Unbalanced roof live loads h Wind: ASCE 7-16; Vult=1400 II; Exp B; Enclosed; MWFRS 12-10-8, Interior(1)12-10-8 t exposed;C-C for members a TCLL: ASCE 7-16; Pr=25.0 j DOL=1.15); Is=1.0; Rough C Unbalanced snow loads hav This truss has been designe non-concurrent with other liv Provide adequate drainage t Plates checked for a plus or This truss has been designe will fit between the bottom cf A plate rating reduction of 2 One RT7 MiTek connectors uplift only and does not cor This truss has been designe differenced standard ANSI/ This truss has been designe panel points along the Top 	mph (3-second gust) Vasd=111mph; TCI 5 (directional) and C-C Exterior(2E) 0-1-1 0 16-7-8, Exterior(2E) 16-7-8 to 19-7-8 z nd forces & MWFRS for reactions shown sof (roof LL: Lum DOL=1.15 Plate DOL=1 cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1. e been considered for this design. d for greater of min roof live load of 12.0 e loads. o prevent water ponding. minus 5 degree rotation about its center. d for a 10.0 psf bottom chord live load nc ed for a live load of 20.0psf on the bottor nord and any other members. 20% has been applied for the green lumbs s recommended to connect truss to beari isider lateral forces. xcordance with the 2018 International Re: TPI 1.	2 to 3-1-12, Interior(1) 3-1-12 one; cantilever left and right in; Lumber DOL=1.60 plate gr 1.15); Pg=30.0 psf; Pf=20.8 p 10, Lu=50-0-0 psf or 2.00 times flat roof loa inconcurrent with any other li in chord in all areas where a over members. ing walls due to UPLIFT at jt(sidential Code sections R502 0.01b live and 3.01b dead loca	2 to 7-1-4, Exterior(2R exposed ; end vertical ip DOL=1.60 isf (Lum DOL=1.15 Pl d of 20.8 psf on overh ve loads. rectangle 3-6-0 tall by s) E and H. This conn 2.11.1 and R802.10.2	2) 7-1-4 to I left and right hate 2-0-0 wide ection is for and	EXPI	OREGON OREGON SCH 13, 29 EW JOHN RES: 06/30/20 November 9,2	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valif for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland
Job Tr	uss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A G	02	Roof Special	1	1		Date: 04/16/24
					Job Reference (optional)	
Trus-Way, Vancouver, W	A - 98661,		8.	620 s Aug	22 2022 MiTek Industries, In	c. RMojectletv 22-1169:373219D2702-20 1PR ge 2
ID:JNvEloBxGkofHe3542w6p4yTouh-VH1hT_Ljfmvitgae						0msi2Hy7ubwEMd1a68B4MVyLWTK
NOTES-						


14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 100 lb down and 109 lb up at 1-0-12, and 132 lb down and 110 lb up at 3-0-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

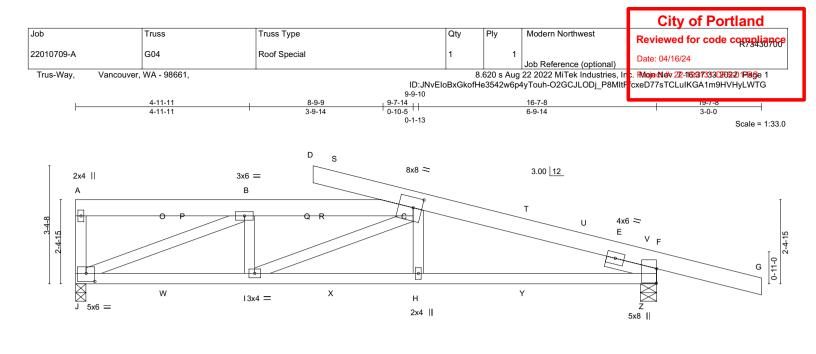
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-B=-62, B-C=-62, C-F=-62, H-I=-20

Concentrated Loads (lb) Vert: M=-5 O=-26

- One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and I. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 174 lb down and 150 lb up at 1-0-12, and 197 lb down and 151 lb up at 3-0-12, and 263 lb down and 274 lb up at 8-8-11 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LONG WARKED Standard arameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Brancing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see <u>ANS/ITPI1 Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

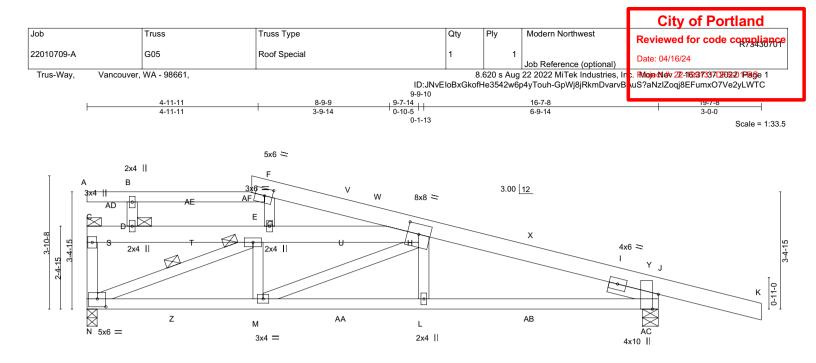
EXPIRES: 06/30/2023 November 9,2022


	Portland
Job Truss Truss Type Qty Ply Modern Northwest Reviewed for control	ode compliance
22010709-A G03 Roof Special 1 1 Job Reference (optional) Date: 04/16/24	110400000
Trus-Way, Vancouver, WA - 98661, 8.620 s Aug 22 2022 MiTek Industries, Inc. Moje (MeV 22-1633733	11 270 2720 1 Plage 2
ID:JNvEloBxGkofHe3542w6p4yTouh-Sg9RugMzBN9Q7_1XBuA7i2aYPgeqRqtZ	ZSgBQOyLWTI

Г

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-C=-62, C-F=-62, I-J=-20 Concentrated Loads (lb) Vert: N=-118 P=-139 S=-133


4-11	-11	9-9-10	1	16-	-7-8		1	
4-11		4-9-15		6-9	9-14			
	0-3-8], [F:0-4-15,0-0-1], [J:0-3-0,0-2-1	2]					1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.59 BC 0.62 WB 0.90	DEFL. Vert(LL) Vert(CT) Horz(CT)		oc) I/defl H-I >999 H-I >775 F n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	0.11 H	H-I >999	360	Weight: 95 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Bt WEBS 2x4 DF Stud/Std SLIDER Right 2x4 DF Stu	G	Т		except end v	verticals.	ing directly app plied or 6-5-2 c	blied or 4-8-14 oc purli bc bracing.	ins,
TOP CHORD A-J=-295/102, BOT CHORD I-J=-760/1737,	ax. Ten All forces 250 (lb) or less e B-C=-1737/1038, C-F=-2265/1117 H-I=-994/2136, F-H=-984/2139 C-H=0/321, B-I=-115/309, B-J=-1853							
 II; Exp B; Enclosed; MWFRS 9-7-14, Interior(1) 9-7-14 to 16 exposed;C-C for members an 2) TCLL: ASCE 7-16; Pr=25.0 ps DOL=1.15); Is=1.0; Rough Ca 3) Unbalanced snow loads have 4) This truss has been designed non-concurrent with other live 5) Provide adequate drainage to 6) Plates checked for a plus or n 7) This truss has been designed 8) * This truss has been designed 8) * This truss has been designed 9) A plate rating reduction of 209 10) One RT7 MiTek connectors uplift only and does not cons 11) This truss has been designed in acc referenced standard ANSI/T 12) This truss has been designed 13) Graphical purlin representati 14) Hanger(s) or other connection 6-8-8 on top chord. The des 	for greater of min roof live load of 12 loads. prevent water ponding. ninus 5 degree rotation about its cent for a 10.0 psf bottom chord live load d for a live load of 20.0psf on the bot ord and any other members. % has been applied for the green lum recommended to connect truss to be sider lateral forces. ordance with the 2018 International F PI 1. d for a moving concentrated load of 2 Chord and Bottom Chord, nonconcurr on does not depict the size or the ori on device(s) shall be provided sufficie ign/selection of such connection devi	-12 to 3-1-12, Interior(1) 3 one; cantilever left and righ wn; Lumber DOL=1.60 plai .=1.15); Pg=30.0 psf; Pf=2 1.10, Lu=50-0-0 0 psf or 2.00 times flat roo er. nonconcurrent with any oth tom chord in all areas when ber members. aring walls due to UPLIFT Residential Code sections F 50.0lb live and 3.0lb dead ent with any other live load entation of the purlin along nt to support concentrated ce(s) is the responsibility c	1-12 to 6-7-14, Ex the exposed ; end vice grip DOL=1.60 0.8 psf (Lum DOL: f load of 20.8 psf of her live loads. re a rectangle 3-6- at jt(s) F and J. Th R502.11.1 and R8 located at all mid s. the top and/or bot load(s) 458 lb dow f others.	kterior(2R) 6- ertical left an =1.15 Plate on overhangs 0 tall by 2-0- is connection 02.10.2 and panels and a tom chord. vn and 245 ll	-7-14 to nd right s -0 wide n is for at all	Arr RAND	PIRES: 06/30/20 PIRES: 06/30/20	
Design valid for use only with MTek a truss system. Before use, the build building design. Bracing indicated is is always required for stability and to fabrication, storaac, delivery, erection	ters and READ NOTES ON THIS AND INCLUDE © connectors. This design is based only upon p ling designer must verify the applicability of des to prevent buckling of individual truss web and prevent collapse with possible personal injury n and bracing of trusses and truss systems, se Truss Plate Institute, 2670 Crain Highway, Suit	arameters shown, and is for an in ign parameters and properly incor /or chord members only. Additior and property damage. For genera e ANSI/TPI1 Quality Cr	porate this design into porate this design into nal temporary and perm al guidance regarding th	onent, not the overall lanent bracing ne	mponent		MITEK MITEK USA, Inc. 400 Sunrise Avenue, Suite Roseville, CA 95661	270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	G04	Roof Special	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouve	r, WA - 98661,		8	.620 s Aug	22 2022 MiTek Industries, Ir	. RMoje (Notv 272-116):37333D27032-201P1869e 2
		ID:JNvEI	oBxGkofH	e3542w6p4	4yTouh-O2GCJLODj_P8MItF	cxeD77sTCLulKGA1m9HVHyLWTG

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-C=-62, C-D=-62, C-G=-62, J-K=-20 Concentrated Loads (lb) Vert: Q=-133

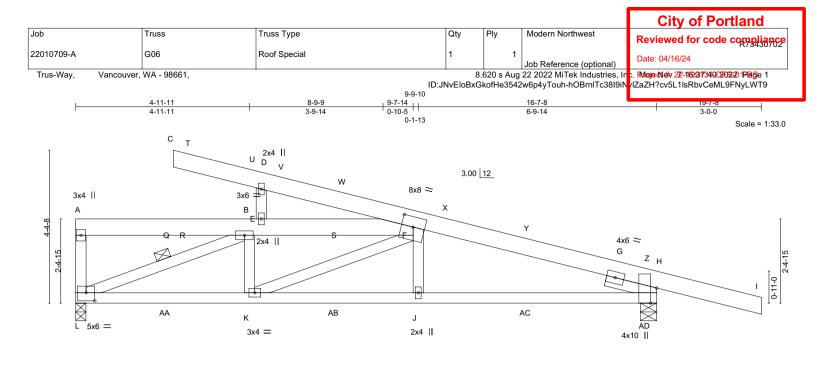
L	4	-11-11		9-9-10		1		16-7-8	3			
		-11-11		4-9-15				6-9-14	ļ			
Plate Offsets (X,Y) [F:0-2-12	,0-2-8], [H:0-4-0,0-3-8], [J:0-5-3,Edge],	[N:0-3-0,0-2-12]		1						
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.9 BC 0.9 WB 0.4	53	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.06	(loc) L-M L-M J	l/defl >999 >898 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCLL BCDL	0.0 * 10.0	Code IRC2018/TF		Matrix-M		Wind(LL)	0.06	L-M	>999	360	Weight: 109 lb	FT = 20%
LUMBER-					в	RACING-						
		1&Btr G r G I G ud/Std -G- 1-6-0 3-8, J=0-5-8			TC BC W	OP CHORD OT CHORD ÆBS	except ei 6-0-0 oc	nd verti bracing ling dire midpt	icals. Ex g: C-D ectly app	cept:	pplied or 5-1-12 oc purlir 0 oc bracing.	15,
FORCES. (Ib TOP CHORD BOT CHORD WEBS	C-N=-494/294, M-N=-448/202	ax. Ten All forces 250 , E-G=-2026/628, G-H=-2 6, L-M=-301/1912, J-L=-2 , H-L=0/332, E-M=-64/29	2026/628, H-J= 295/1917	-2043/412		367/326						
 Wind: ASCE II; Exp B; Er 8-3-12, Inter exposed;C TCLL: ASCI DOL=1.15); Unbalanced This truss h On-concurr Provide add Plates chec This truss h * This truss h * This truss will fit betwee A plate rat One RT7 M uplift only it This truss referencec This truss panel poin Graphical 	E 7-16; Vult=140m hclosed; MWFRS rior(1) 8-3-12 to 16 C for members an E 7-16; Pr=25.0 ps Is=1.0; Rough Ca I snow loads have as been designed rent with other live equate drainage to ked for a plus or n as been designed has been designed has been designed ing reduction of 20 UITek connectors and does not cons is designed in acc I standard ANSI/T has been designe ts along the Top O purlin representati	prevent water ponding. ninus 5 degree rotation a for a 10.0 psf bottom cho d for a live load of 20.0ps ord and any other membe 0% has been applied for tr recommended to connect sider lateral forces.	I=111mph; TCI erior(2E) 0-0-0 3 to 19-7-8 zon actions shown 15 Plate DOL= Cs=1.00; Ct=1. design. re load of 12.0 bout its center. ord live load no sf on the botton ers. the green lumb at truss to bear international Re ated load of 256 nonconcurren	to 3-0-0, Interio e; cantilever left b; Lumber DOLE 1.15); Pg=30.0 p 10, Lu=50-0-0 psf or 2.00 times onconcurrent with m chord in all are her members. ng walls due to l sidential Code so 0.0lb live and 3.0 t with any other	r(1) 3-0-0 and right 1.60 plate sf; Pf=20 s flat roof n any oth as where JPLIFT a ections R lb dead I ive loads) to 5-3-12, Exteri t exposed ; end vi e grip DOL=1.60).8 psf (Lum DOL= f load of 20.8 psf of er live loads. e a rectangle 3-6- at jt(s) N and J. Th 2502.11.1 and R80 located at all mid 3.	or(2R) 0- ertical left =1.15 Pla on overha 0 tall by 2 nis conne 02.10.2 a panels ar	1-12 to t and rig angs 2-0-0 w ction is ind nd at al	ide for	E	PRED PROFESS ENGINEESS 93437PE 0REGON VARCH 13, 20 0REGON VARCH 13, 20 0REW JOHN XPIRES: 06/30/20 November 9,20	
Design valid f a truss syster building desig	- Verify design parame for use only with MiTek n. Before use, the build	ters and READ NOTES ON THIS © connectors. This design is ba ding designer must verify the application of individue to prevent buckling of individue to prevent buckling of individue	ised only upon par- plicability of desigr al truss web and/or	ameters shown, and parameters and pro chord members only	is for an ind perly incorp /. Additiona	dividual building compo porate this design into al temporary and perm	onent, not the overall anent braci					

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	G05	Roof Special	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vanc	ouver, WA - 98661,					2. Mojedlov 22-116:373382202-2) 1Pag e 2 R9WpwBqkYD3Nzi8vA2s2AUyLWTB
NOTES-	or connection device(a) ch	all be provided sufficient to support of	anoantrated load(a) 242 lb d	 	40 lb up at 1 2 12 and 19	0 lb down and 122 lb up

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 242 lb down and 149 lb up at 1-3-12, and 180 lb down and 133 lb up at 3-0-5, and 353 lb down and 288 lb up at 4-8-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

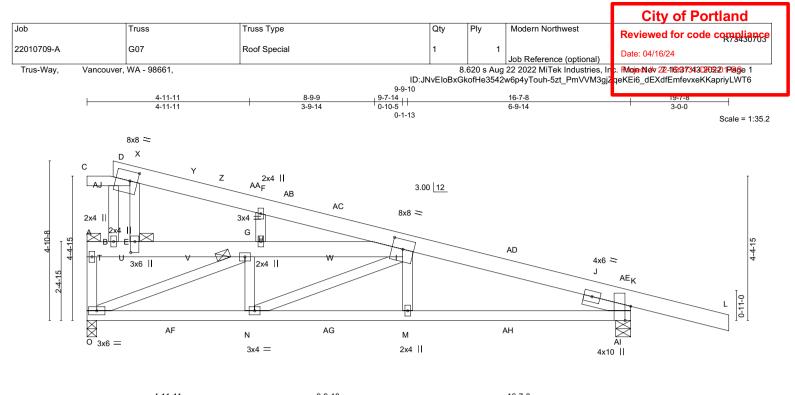
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: C-D=-103, F-H=-62, H-K=-62, N-O=-20, A-B=-103, B-F=-62

Concentrated Loads (lb)

Vert: D=-145 AE=-131 AF=-271

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


4-11		9-9-10		16-7				
		4-9-15	Ι	6-9-	14		I	
Plate Offsets (X,Y) [F:0-4-0,	0-3-8], [H:0-5-3,Edge], [L:0-3-0,0-2-12]		1					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) I/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL)	-0.11 J-		240	MT20	220/195
Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	Lumber DOL 1.15	BC 0.53	Vert(CT)	-0.23 J-	< >879	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.53	Horz(CT)		l n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	Wind(LL)	0.06 J-	< >999	360	Weight: 106 lb	FT = 20%
			DA OINIO					
LUMBER- TOP CHORD 2x6 DF SS G			RACING- OP CHORD	Structural wo	od choothi	a directly on	plied or 5-1-3 oc purlins	
BOT CHORD 2x6 DF SS G	r G	1		except end ve			plied of 5-1-5 oc putilits	,
WEBS 2x4 DF Stud/Sto				5-9-0 oc brac		cept.		
SLIDER Right 2x4 DF St		В	OT CHORD	Rigid ceiling		lied or 7-1-5	oc bracina.	
C C		W	/EBS	1 Row at mid	ot	B-L	0	
REACTIONS. (size) L=0-	3-8, H=0-5-8							
Max Horz L=-1								
•	42(LC 14), H=-290(LC 11)							
Max Grav L=11	88(LC 34), H=1327(LC 34)							
	lax. Ten All forces 250 (lb) or less exe B-E=-2214/1178, E-F=-2214/1178, F-I							
	4, J-K=-365/1936, H-J=-359/1940	12009/401						
	F-J=0/333, B-K=-72/296, B-L=-2328/1	213. D-E=-525/678						
NOTES-								
	nph (3-second gust) Vasd=111mph; TC							
	(directional) and C-C Exterior(2E) 0-1-							
	19-7-8 zone; cantilever left and right e		and right exposed	l;C-C for mem	bers			
	ctions shown; Lumber DOL=1.60 plate sf (roof LL: Lum DOL=1.15 Plate DOL=			=1.15 Dioto		-	ED PROP	
, , , , , , , , , , , , , , , , , , , ,	at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1	,, 0	J.o psi (Luiti DOL	-1.15 Plate			CREDINUTES	
	been considered for this design.	.10, Lu=00-0-0				19	GINEE	20
,	for greater of min roof live load of 12.0	psf or 2.00 times flat roo	f load of 20.8 psf	on overhangs		1,51	161 24	11
non-concurrent with other live				0		or l		121
Provide adequate drainage to						a and	93437PE	
	ninus 5 degree rotation about its center						\frown	Pro- artic
	for a 10.0 psf bottom chord live load n					1		
,	ed for a live load of 20.0psf on the botto	m chord in all areas wher	e a rectangle 3-6	-0 tall by 2-0-0	wide			
will fit between the bottom cho	% has been applied for the green lumb	ar mombors					OREGON O	
	recommended to connect truss to bear		atit(s) I and H T	his connection	is for		4	1 1
uplift only and does not cons					13 101	NA.	NCH 13. 22	51
	cordance with the 2018 International Re	sidential Code sections F	R502.11.1 and R8	02.10.2 and				5/
referenced standard ANSI/T	PI 1.					U22 Date	CHOIL MAY	
	d for a moving concentrated load of 25			panels and at	all		Harris Harris R. Same S. Same	ĥ
	Chord and Bottom Chord, nonconcurrent							
, , , ,	ion does not depict the size or the orier	1 0				E)	(PIRES: 06/30/20	23
	on device(s) shall be provided sufficien sign/selection of such connection devic			wn and 261 lb	up at		November 9,20)22
Continued on page 2	sign/selection of such connection devic	e(s) is the responsibility o	i others.					
LOAD CASE(S) . Standard	eters and READ NOTES ON THIS AND INCLUDED		7470					
Design valid for use only with MiTek	eters and READ NOTES ON THIS AND INCLUDED (® connectors. This design is based only upon pa	MITEK REFERENCE PAGE MII- rameters shown, and is for an in	-7473 rev. 5/19/2020 Bi dividual building comp	EFORE USE.				
a truss system. Before use, the build	ding designer must verify the applicability of desig	n parameters and properly incor	porate this design into	the overall				
building design. Bracing indicated is is always required for stability and to	s to prevent buckling of individual truss web and/o prevent collapse with possible personal injury ar	r chord members only. Addition	al temporary and perm al guidance regarding f	nanent bracing Ihe			Milek	
fabrication, storage, delivery, erection	on and bracing of trusses and truss systems, see	ANSI/TPI1 Quality Cri			ponent		MiTek USA, Inc.	70
Safety Information available from	Truss Plate Institute, 2670 Crain Highway, Suite	203 vvaldort, MD 20601					400 Sunrise Avenue, Suite 2 Roseville, CA 95661	

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	G06	Roof Special	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,	ID:JI				2. Mojectlóv 22-116:3734912703-2) 1Plag e 2 /IZaZH?cv5L1IsRbvCeML9FNyLWT9

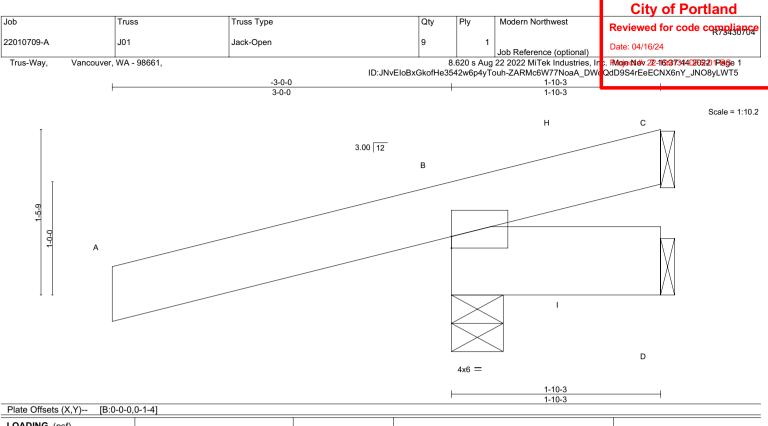
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-E=-62, C-F=-62, F-I=-62, L-M=-20 Concentrated Loads (lb) Vert: Q=-271

	L	4-11-11		9-9-10				16-7-8				
Plate Offsets (X	(Y) [D:0-2-12	4-11-11 2,0-3-8], [E:0-4-0,0-1-8], [I:0	0-4-0.0-3-81. [K	4-9-15 (:0-5-3.Edd	ael	•		6-9-14				
LOADING (psf TCLL (roof) Snow (Pf/Pg) 2 TCDL) 25.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.42 0.53	DEFL. Vert(LL) Vert(CT)		(loc) M-R M-N	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 220/195
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2018/TPI2	YES 2014	WB Matr	0.76 ix-MS	Horz(CT Wind(LL	/	K M-N	n/a >999	n/a 360	Weight: 117 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x6 DF SS G *E C-D: 2x4 DF No. 1&Bf 2x4 DF No. 1&Bf 2x4 DF Stud/Stc Right 2x4 DF St (size) O=0- Max Horz O=-1 Max Uplift O=-2 Max Grav O=1 - Max. Comp./M	.1&Btr G tr G tl G ud/Std -G- 1-6-0 -3-8, K=0-5-8	3) o) or less exce	pt when sh		BRACING- TOP CHORD BOT CHORD JOINTS	Structura except e 6-0-0 oc Rigid ce	nd vert bracing iling dir	icals. Ex g: A-B	cept:	pplied or 5-7-1 oc purlins 0 oc bracing.	,
BOT CHORD WEBS	N-O=-173/148	0, M-N=-148/1696, K-M=-1 M=0/333, G-N=0/331, G-O	142/1701		79, D-E=-1	39/504,						
 2) Wind: ASCE II; Exp B; En 16-7-8, Exter and forces & 3) TCLL: ASCE DOL=1.15); I 4) Unbalanced 5) This truss ha non-concurre 6) Provide adee 7) Plates check 8) This truss ha 9) * This truss ha 11) One RT7 M uplift only a 12) This truss is referenced 13) This truss is panel point: 	7-16; Vult=140m closed; MWFRS rior(2E) 16-7-8 to MWFRS for read 7-16; Pr=25.0 p is=1.0; Rough Ca snow loads have is been designed ont with other live uate drainage to ed for a plus or r is been designed has been designed has been designed iTek connectors ind does not cons is designed in acc standard ANSI/T has been designed is along the Top O	p prevent water ponding. ninus 5 degree rotation abc for a 10.0 psf bottom chore d for a live load of 20.0psf ord and any other members 0% has been applied for the recommended to connect t sider lateral forces. cordance with the 2018 Inte	111mph; TCDI rior(2E) 0-0-0 t ft and right exp =1.60 plate gr plate DOL=1. s=1.00; Ct=1.1 lesign. load of 12.0 p out its center. d live load non on the bottom s. e green lumbe truss to bearin- ernational Resi ed load of 250. oonconcurrent	o 1-0-7, É: iosed ; enc ip DOL=1. 15); Pg=30 0, Lu=50-0 sf or 2.00 concurren chord in a r members g walls du dential Co 0lb live an with any o	xterior(2R) (d vertical lef 60 0.0 psf; Pf=: 0-0 times flat ro times flat ro times flat ro times flat ro times flat ro d areas who s. e to UPLIFT de sections d 3.0lb dea ther live loa	0-1-12 to 4-0-7, In t and right expose 20.8 psf (Lum DO of load of 20.8 pst ther live loads. ere a rectangle 3-6 T at jt(s) O and K. R502.11.1 and R d located at all mid ds.	terior(1) 4 d;C-C for L=1.15 Pla f on overh 5-0 tall by This connu 802.10.2 a d panels a	-0-7 to member ate angs 2-0-0 w ection is and nd at al	ride s for	E	PRED PROFES 93437PE 93437PE OREGON OR	
WARNING - Design valid fo a truss system building design is always requi fabrication, sto	• Verify design parame r use only with MiTek . Before use, the builto h. Bracing indicated is ired for stability and to rage, delivery, erection	ters and READ NOTES ON THIS A © connectors. This design is base ding designer must verify the applic s to prevent buckling of individual t prevent collapse with possible pe on and bracing of trusses and truss Truss Plate Institute, 2670 Crain F	AND INCLUDED Mi ed only upon paran icability of design p truss web and/or c ersonal injury and p s systems, see	ITEK REFERI neters shown parameters ar hord member property dam ANSI/	ENCE PAGE M a, and is for an nd properly inco rs only. Additionage. For gene TPI1 Quality C	III-7473 rev. 5/19/2020 I individual building com orporate this design int onal temporary and per	BEFORE USI ponent, not o the overall manent brac	E. ing	nent		MITEK MITEK USA, Inc. 400 Sunits Avenue, Suite 2 Roseville, CA 95661	70

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	G07	Roof Special	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		. 8.	620 s Aug	22 2022 MiTek Industries, Ir	: RMojectietv 272-116:337343D2703-201P186;e 2
NOTES-		ID:JI	IvEloBxGl	ofHe3542	w6p4yTouh-5zt_PmVVM3gjz	qeKEi6_dEXdfEmfevxeKKapriyLWT6

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 259 lb down and 153 lb up at 1-0-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-B=-103, D-I=-62, I-L=-62, O-P=-20, C-D=-103

Concentrated Loads (lb) Vert: B=-228

LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20.8/ TCDL BCLL BCDL	25.0 /30.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.24 0.06 0.00 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.00 -0.00	(loc) G G C G	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 16 lb	GRIP 220/195 FT = 20%
LUMBER-					E	RACING-						

LUMBER-

TOP CHORD 2x6 DF SS G BOT CHORD 2x8 DF SS

TOP CHORD BOT CHORD

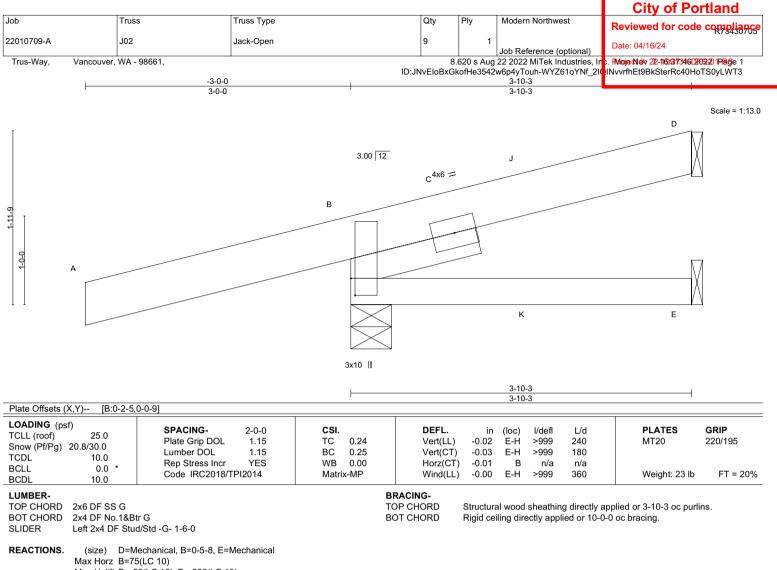
Structural wood sheathing directly applied or 1-10-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=57(LC 10)

Max Uplift C=-101(LC 18), B=-254(LC 10), D=-115(LC 18) Max Grav C=246(LC 37), B=599(LC 18), D=247(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint C.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

MiTek MiTek USA, Inc 400 Sunrise Aver ue. Suite 270 Roseville, CA 95661

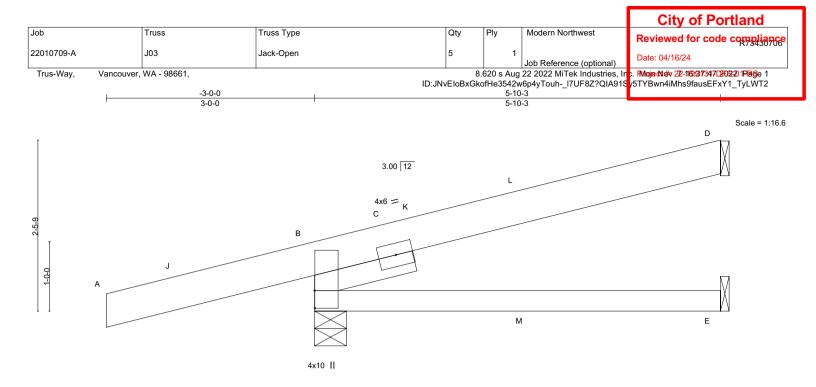
Max Uplift D=-58(LC 18), B=-208(LC 10)

Max Grav D=278(LC 37), B=569(LC 19), E=280(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-294/420

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint D and 208 lb uplift at joint B.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

	F		5-10-3		
Plate Offsets (X,Y) [B:0-3-1,0	D-0-1]		5-10-3		
LOADING (psf) TCLL (roof) 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.23	DEFL. in (loc) I/de Vert(LL) -0.09 E-H >75:		S GRIP 220/195
Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.46 WB 0.00	Vert(CT) -0.09 E-H >475 Vert(CT) -0.15 E-H >475 Horz(CT) 0.02 B n/	8 180	220/193
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL) -0.01 E-H >99		30 lb FT = 20%

LUMBER-

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER Left 2x4 DF Stud/Std -G- 1-6-0

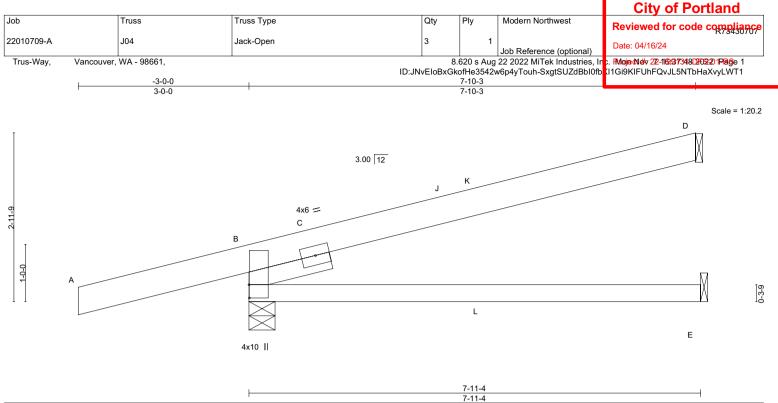
BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=93(LC 10) Max Uplift D=-53(LC 10), B=-205(LC 10) Max Grav D=308(LC 37), B=599(LC 19), E=298(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-387/377


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint D and 205 lb uplift at joint B.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

Plate Offsets (X,Y) [B:0-2-1	3,0-0-1]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.34 BC 0.71 WB 0.00 Matrix-MP	Vert(CT) -0 Horz(CT) 0	in (loc) 0.24 E-H 0.44 E-H 0.05 B 0.03 E-H	l/defl >399 >216 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 38 lb	GRIP 220/195 FT = 20%

LUMBER-

 TOP CHORD
 2x6 DF SS G

 BOT CHORD
 2x4 DF No.1&Btr G

 SLIDER
 Left 2x4 DF Stud/Std -G- 1-6-0

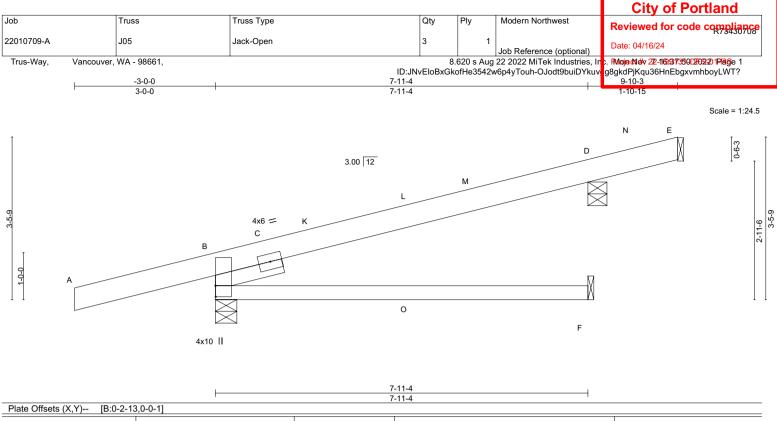
BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=112(LC 10) Max Uplift D=-86(LC 10), B=-210(LC 10) Max Grav D=335(LC 37), B=639(LC 19), E=316(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-603/299


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 3-6-8, Exterior(2R) 3-6-8 to 7-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint D and 210 lb uplift at joint B.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.36 BC 0.72 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.24 -0.45 0.05	(loc) F-I F-I B	l/defl >396 >212 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	-0.04	F-I	>999	360	Weight: 42 lb	FT = 20%

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No 1&Btr G

SLIDER Left 2x4 DF Stud/Std -G- 1-6-0 TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings Mechanical except (jt=length) B=0-5-8, D=0-4-14.

(lb) - Max Horz B=130(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) E except B=-208(LC 10), D=-119(LC 10)

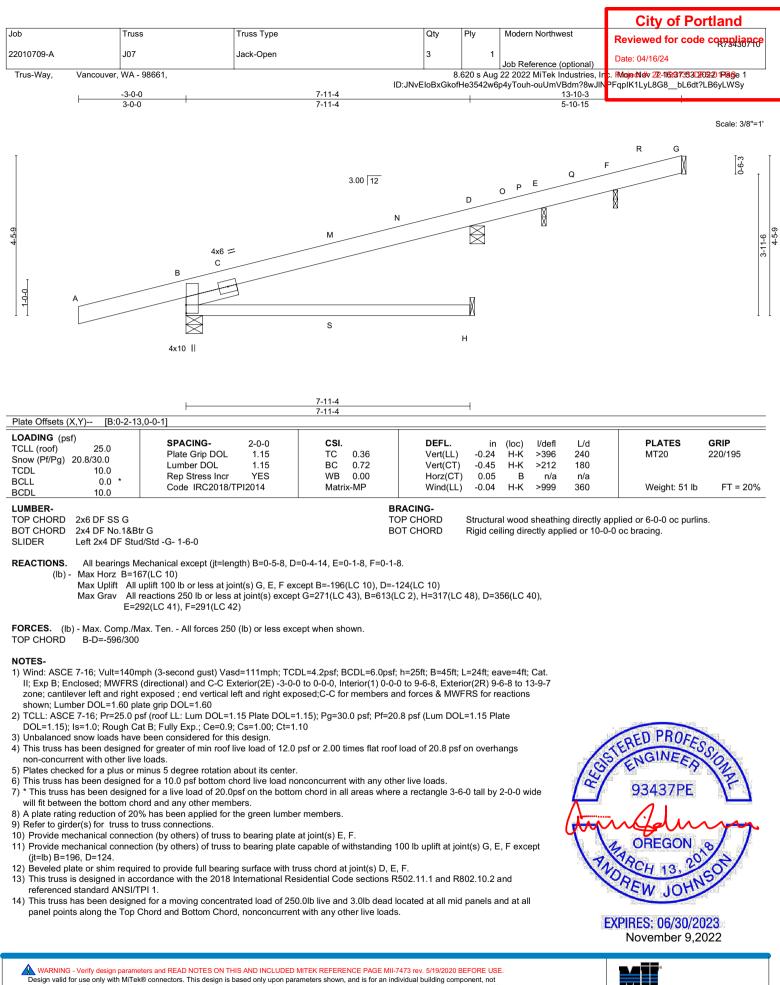
Max Grav All reactions 250 lb or less at joint(s) except E=269(LC 39), B=613(LC 2), F=317(LC 44), D=390(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

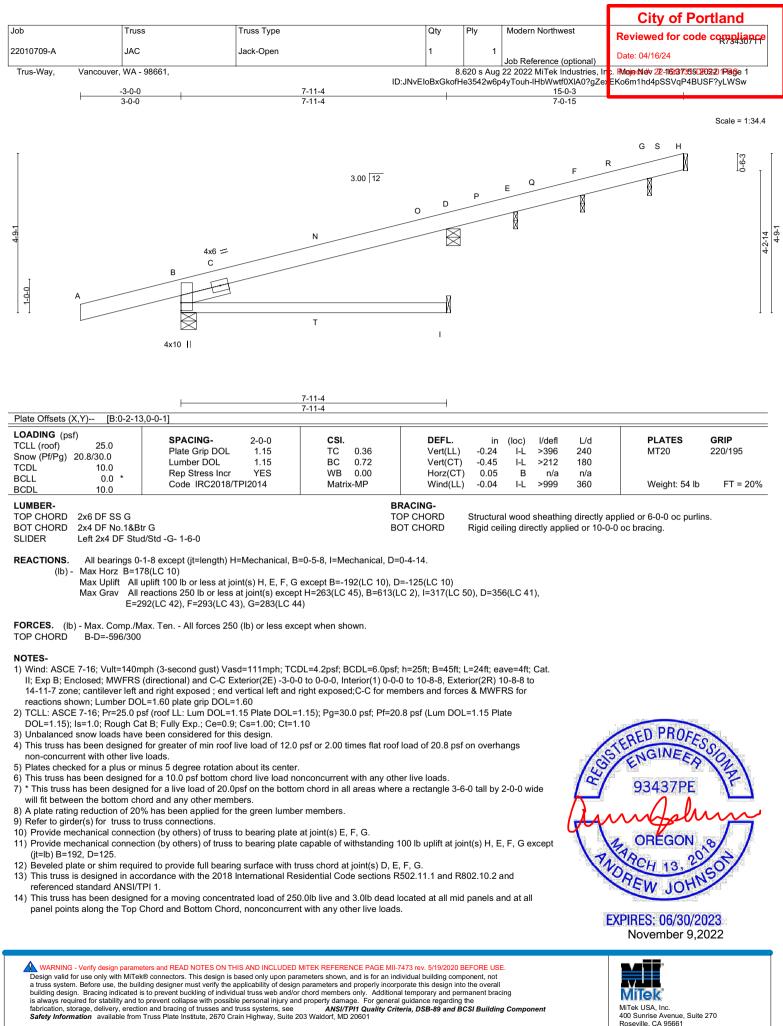
TOP CHORD B-D=-596/300

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 5-6-8, Exterior(2R) 5-6-8 to 9-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E except (jt=lb) B=208, D=119,
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) D.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

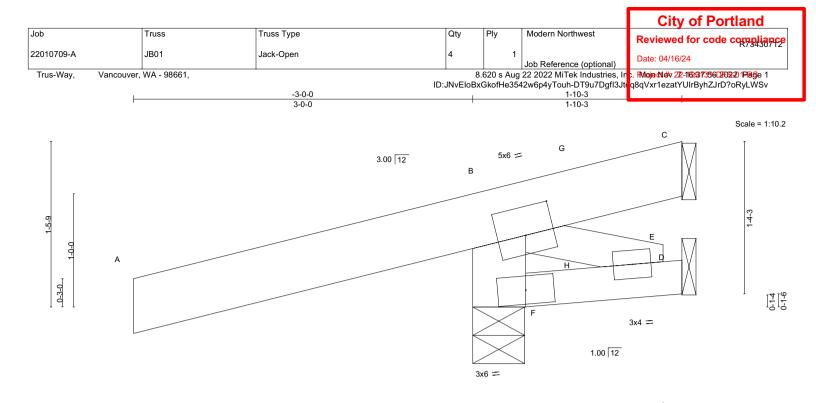


EXPIRES: 06/30/2023 November 9,2022


MiTek MiTek USA, Inc 400 Sunrise Aven ue. Suite 270 Roseville, CA 95661

Job									City of Po	rtland
00	Tru	ss	Truss Type		Qty	Ply	Modern Northw	est	Reviewed for code	
2010709-A	JO	6	Jack-Open		3	1			Date: 04/16/24	11/0400/0
Trus-Way,	Vancouver, WA	A - 98661,						ndustries, In	:. FMoje (Nietv 272-116):37334D2	
		3-0-0		ID:JNvE 7-11-4	EloBxGkofHe35	42w6p4yT	ouh-sWM?4VcW	TWgbW3Ft 11-1	DFsxwt?eTSWWhrp9ZW -3	E7EyLWT_
		3-0-0		7-11-4				3-10-		
										Scale = 1:28
									O F	
Ī								E		0-6-3
				3.00 12		_	D		1	0
						N			A Contraction of the second se	
							X	k	4	
			1.0 				\bowtie			
			4x6 == C							
Τ		В								
1-0-0										
- ·	·						——X			
* *		\square		Р						
							G			
		4x10								
				7-11-4						
	())) (5.0.0)			7-11-4						
Plate Offsets (X		13,0-0-1]								
TCLL (roof)	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.36	DEFL. Vert(LL)	in -0.24	(loc) l/defl G-J >396	L/d 240	PLATES MT20	GRIP 220/195
Snow (Pf/Pg) 2 TCDL	20.8/30.0 10.0	Lumber DOL	1.15	BC 0.72	Vert(CT)	-0.45	G-J >212	180	in the	220/100
BCLL	0.0 *	Rep Stress Inc Code IRC2018		WB 0.00 Matrix-MP	Horz(CT Wind(LL)		B n/a G-J >999	n/a 360	Weight: 47 lb	FT = 20%
BCDL	10.0			BD	ACING-					
TOP CHORD	2x6 DF SS G			TOF	P CHORD				applied or 6-0-0 oc purlir	IS.
	2x4 DF No.1& Left 2x4 DF SI	Btr G tud/Std -G- 1-6-0		ВО	r chord	Rigid ce	ling directly app	lied or 10-0	J-0 oc bracing.	
	All bearings	Mechanical except (jt=le	ength) B=0-5-8, D	=0-4-14, E=0-1-8.						
REACTIONS.	Max Horz B=	149(LC 10)			C 10)					
			s at joint(s) ⊢, ⊏ excep	ot B=-202(LC 10), D=-123(L t F=271(LC 41), B=613(LC	2), G=317(LC	46), D=3	32(LC 19),			
	Max Uplift A	Il reactions 250 lb or less at								
	Max Uplift A Max Grav A	Il uplift 100 lb or less at Il reactions 250 lb or les =289(LC 40)								
(lb) - FORCES. (lb)	Max Uplift A Max Grav A E= - Max. Comp./	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2	50 (lb) or less exc	ept when shown.						
(lb) - FORCES. (lb)	Max Uplift A Max Grav A E=	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2	50 (lb) or less exc	ept when shown.						
(lb) - FORCES. (lb) TOP CHORD NOTES-	Max Uplift A Max Grav A E= - Max. Comp. B-D=-596/30	II reactions 250 lb or les -289(LC 40) /Max. Ten All forces 2)0	. ,		=25ft: B=45ft:	L=24ft: ea	ive=4ft: Cat.			
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En	Max Uplift A Max Grav A E=) - Max. Comp./ B-D=-596/30 7-16; Vult=140 closed; MWFR	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2)0)mph (3-second gust) V/ S (directional) and C-C	asd=111mph; TCI Exterior(2E) -3-0-(DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0	to 7-6-8, Exter	ior(2R) 7-	6-8 to 11-9-7			
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En zone; cantile	Max Uplift A Max Grav A E=) - Max. Comp.r. B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2)0)mph (3-second gust) V/ S (directional) and C-C	asd=111mph; TCI Exterior(2E) -3-0-(DL=4.2psf; BCDL=6.0psf; h	to 7-6-8, Exter	ior(2R) 7-	6-8 to 11-9-7			
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En zone; cantile shown; Lumt 2) TCLL: ASCE	Max Uplift A Max Grav A E=) - Max. Comp.r B-D=-596/30 7-16; Vult=140 closed; MWFR closed; MWFR ver left and rigi ber DOL=1.60 57-16; Pr=25.0	Il reactions 250 lb or les =289(LC 40) (Max. Ten All forces 2)0 Omph (3-second gust) V. S (directional) and C-C S (directional) and C-C s (directional) and C-C late grip DOL=1.60 psf (roof LL: Lum DOL=	asd=111mph; TCI Exterior(2E) -3-0-(I left and right exp :1.15 Plate DOL=:	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.6	to 7-6-8, Exter I forces & MW	ior(2R) 7- FRS for re	6-8 to 11-9-7 actions			×3
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DOL=1.60 is=1.0; Rough is= snow loads ha	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00 mph (3-second gust) V. S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for	asd=111mph; TCI Exterior(2E) -3-0- I left and right exp =1.15 Plate DOL= 9; Cs=1.00; Ct=1. his design.	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10	to 7-6-8, Exter I forces & MW 8 psf (Lum DOI	ior(2R) 7- FRS for re _=1.15 Pla	6-8 to 11-9-7 actions ate		CRED PROFF	
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DOL=1.60 is=1.0; Rough is= snow loads ha	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00)mph (3-second gust) V: S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for i ed for greater of min roo	asd=111mph; TCI Exterior(2E) -3-0- I left and right exp =1.15 Plate DOL= 9; Cs=1.00; Ct=1. his design.	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.6	to 7-6-8, Exter I forces & MW 8 psf (Lum DOI	ior(2R) 7- FRS for re _=1.15 Pla	6-8 to 11-9-7 actions ate		TERED PROFE	033
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigl ber DOL=1.60 5.7-16; Pr=25.0 is=1.0; Rough snow loads ha is been design ent with other li ted for a plus of	Il reactions 250 lb or les =289(LC 40) (Max. Ten All forces 2 00 (Max. Ten All forces 2 00 (S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for i ed for greater of min roo ve loads. r minus 5 degree rotatio	asd=111mph; TCI Exterior(2E) -3-0-1 left and right exp :1.15 Plate DOL=: 9; Cs=1.00; Ct=1. his design. f live load of 12.0 n about its center.	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo	to 7-6-8, Exter I forces & MW B psf (Lum DOI bad of 20.8 psf	ior(2R) 7- FRS for re _=1.15 Pla	6-8 to 11-9-7 actions ate	Leon	TERED PROFES	Sector Land
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha 7) * This truss ha	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigl ber DCL=1.60 5 7-16; Pr=25.0 Is=1.0; Rough is snow loads ha is been design ent with other li ted for a plus of is been design has been design	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00)mph (3-second gust) V: S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for ed for greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20.	asd=111mph; TCI Exterior(2E) -3-0- I left and right exp =1.15 Plate DOL== 9; Cs=1.00; Ct=1. this design. f live load of 12.0 n about its center. chord live load no 0psf on the bottor	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo	to 7-6-8, Exter I forces & MW B psf (Lum DOI bad of 20.8 psf	ior(2R) 7- FRS for re _=1.15 Pla on overh	6-8 to 11-9-7 actions ate angs	REON	STERED PROFE STENGINEEA 93437PE	2510111
 (lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; Enzone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha non-concurre 6) This truss ha non-concurre 6) This truss ha non-concurre 	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi per DOL=1.60 µ 7-16; Pr=25.0 Is=1.0; Rough snow loads ha us been design ent with other li ied for a plus on is been design ent betottom c	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00)mph (3-second gust) V/ S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for 1 ed for greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom	asd=111mph; TCI Exterior(2E) -3-0- I left and right exp 9; Cs=1.00; Ct=1. his design. f live load of 12.0 n about its center. Chord live load nc 0psf on the bottor mbers.	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where	to 7-6-8, Exter I forces & MW B psf (Lum DOI bad of 20.8 psf	ior(2R) 7- FRS for re _=1.15 Pla on overh	6-8 to 11-9-7 actions ate angs	HEON	STERED PROFES ENGINEER 93437PE	Sector Mark
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha 7) * This truss ha 7) * This truss ha 7) * Aplate rating 9) Refer to girdd	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigl ber DOL=1.60 i: 7-16; Pr=25.0 is=1.0; Rough ' snow loads ha is been design ent with other li ted for a plus of is been design ent with other li ted for a plus of is been design ent be bottom c g reduction of 2 er(s) for truss	Il reactions 250 lb or les =289(LC 40) (Max. Ten All forces 2 00 (Max. Ten All forces 2 00 (S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for 1 ed for greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. whord and any other mer 10% has been applied fo to truss connections.	asd=111mph; TCI Exterior(2E) -3-0-1 left and right exp s:1.15 Plate DOL=: 9; Cs=1.00; CL=: his design. f live load of 12.0 n about its center. chord live load nc Opsf on the bottor nbers. r the green lumbe	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where a r members.	to 7-6-8, Exter I forces & MW B psf (Lum DOI bad of 20.8 psf	ior(2R) 7- FRS for re _=1.15 Pla on overh	6-8 to 11-9-7 actions ate angs	an	mgli	Second and
 (lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; Enzone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha mon-concurre 8) A plate rating 9) Refer to girdi 10) Provide me 11) Provide me 	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DCL=1.60 (s 7-16; Pr=25.0) Is=1.0; Rough is snow loads ha is been design ent with other li ted for a plus or is been design mas been design en the bottom c g reduction of 2 gre(s) for truss i schanical conne-	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00)mph (3-second gust) V. S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for i ed for greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. chord and any other mer 0% has been applied fo to truss connections.	asd=111mph; TCI Exterior(2E) -3-0- I left and right exp =1.15 Plate DOL== 9; Cs=1.00; Ct=1. his design. f live load of 12.0 n about its center. chord live load no 0psf on the bottor nbers. r the green lumbe s to bearing plate	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where a r members.	to 7-6-8, Exter forces & MW pad of 20.8 psf live loads. a rectangle 3-6	ior(2R) 7- FRS for re _=1.15 Pla on overh	6-8 to 11-9-7 actions ate angs 2-0-0 wide	Jun Con	STERED PROFE ENGINEEA 93437PE	estorial and
 (lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; Enzone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre; 5) Plates check 6) This truss ha 7) * This truss ha 9) Refer to gird 10) Provide me 11) Provide me (jt=lb) B=20 	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DOL=1.60 µ 7-16; Pr=25.0 Is=1.0; Rough snow loads ha as been design ent with other li led for a plus on is been design ent with other li ed for a plus on is been design ent be bottom c g reduction of 2 er(s) for truss i cchanical conne- chanical conne- 02, D=123.	Il reactions 250 lb or les =289(LC 40) (Max. Ten All forces 2 00 (Max. Ten All forces 2 00 (Max. Ten All forces 2 00 (Max. Ten All forces 2 (Max. Ten All force	asd=111mph; TCI Exterior(2E) -3-0-1 I left and right exp 9; Cs=1.00; Ct=1. his design. f live load of 12.0 n about its center. chord live load nd 0psf on the bottor mbers. r the green lumbe s to bearing plate s to bearing plate	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where a r members. at joint(s) E.	to 7-6-8, Exter forces & MW pad of 20.8 psf live loads. a rectangle 3-6	ior(2R) 7- FRS for re _=1.15 Pla on overh	6-8 to 11-9-7 actions ate angs 2-0-0 wide	A LAND	mgli	2500 III 2 11
(lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha 7) * This truss ha 7) * This truss ha 7) * Jate rating 9) Refer to gird 10) Provide me (jt=lb) B=20 12) Beveled pla 13) This truss is	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rig per DOL=1.60 is=1.0; Rough snow loads ha is been design as been design	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00)mph (3-second gust) V/ S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. ve been considered for 1 ed for greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. shord and any other mer 10% has been applied fo to truss connections. ection (by others) of trus action (by others) of trus action (by others) of trus	asd=111mph; TCI Exterior(2E) -3-0- l left and right exp 9; Cs=1.00; Ct=1. his design. f live load of 12.0 n about its center. chord live load of 12.0 opsf on the bottor nbers. r the green lumbe s to bearing plate s to bearing plate ing surface with tr	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where r members. at joint(s) E. capable of withstanding 10	to 7-6-8, Exter I forces & MW B psf (Lum DOI Dad of 20.8 psf I live loads. a rectangle 3-6 0 lb uplift at jo	ior(2R) 7- FRS for re .=1.15 Pla on overh 6-0 tall by nt(s) F, E	6-8 to 11-9-7 actions ate angs 2-0-0 wide except	And the second	mgli	Sector A
FORCES. (Ib) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; En- zone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); 1 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha 7) * This truss ha 7) * This truss ha 7) * This truss ha 9) Refer to gird 10) Provide me (jt=lb) B=20 12) Beveled pla 13) This truss is referenced 14) This truss ha	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DCL=1.60 Is=1.0; Rough - snow loads har us been designent with other li ted for a plus or is been designent as been designent to battor of 2 g reduction of 2 g reduction of 2 g reduction of 2 g reduction of 2 g refuely for truss i cchanical conne- chanical conne- si designed in a standard ANSI mas been designent	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00 Dmph (3-second gust) V: S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. cat B; Fully Exp.; Ce=0. cat Gror greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. chord and any other mer 10% has been applied fo to truss connections. ection (by others) of trus cottor (by others) of trus cation (by others) of trus cordance with the 2013 /TPI 1. ned for a moving concer	asd=111mph; TCI Exterior(2E) -3-0-1 I left and right exp 9; Cs=1.00; Ct=1. this design. f live load of 12.0 n about its center. chord live load of 12.0 n about its center. chord live load of 0.0 0psf on the bottor mbers. r the green lumbe s to bearing plate s to bearing plate is to bearing plate ing surface with tr 3 International Re ntrated load of 250	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where r members. at joint(s) E. capable of withstanding 10 uss chord at joint(s) D, E. sidential Code sections R5 0.0lb live and 3.0lb dead loo	to 7-6-8, Exter forces & MW pad of 20.8 psf live loads. a rectangle 3-6 0 lb uplift at jo 02.11.1 and Ra	ior(2R) 7- FRS for re = 1.15 Pla on overh 5-0 tall by nt(s) F, E 302.10.2 a	6-8 to 11-9-7 actions ate angs 2-0-0 wide except and	And the second	mgli	8-30 MA
 (lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; Enzone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); I 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha ron-concurre 8) A plate rating 9) Refer to girdi 10) Provide me 11) Provide me (it=lb) B=20 12) Beveled pla 13) This truss is referenced 14) This truss is 	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DCL=1.60 Is=1.0; Rough - snow loads har us been designent with other li ted for a plus or is been designent as been designent to battor of 2 g reduction of 2 g reduction of 2 g reduction of 2 g reduction of 2 g refuely for truss i cchanical conne- chanical conne- si designed in a standard ANSI mas been designent	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00 Dmph (3-second gust) V: S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. cat B; Fully Exp.; Ce=0. cat Gror greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. chord and any other mer 10% has been applied fo to truss connections. ection (by others) of trus cottor (by others) of trus cation (by others) of trus cordance with the 2013 /TPI 1. ned for a moving concer	asd=111mph; TCI Exterior(2E) -3-0-1 I left and right exp 9; Cs=1.00; Ct=1. this design. f live load of 12.0 n about its center. chord live load of 12.0 n about its center. chord live load of 0.0 0psf on the bottor mbers. r the green lumbe s to bearing plate s to bearing plate is to bearing plate ing surface with tr 3 International Re ntrated load of 250	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where r members. at joint(s) E. capable of withstanding 10 uss chord at joint(s) D, E. sidential Code sections R5	to 7-6-8, Exter forces & MW pad of 20.8 psf live loads. a rectangle 3-6 0 lb uplift at jo 02.11.1 and Ra	ior(2R) 7- FRS for re = 1.15 Pla on overh 5-0 tall by nt(s) F, E 302.10.2 a	6-8 to 11-9-7 actions ate angs 2-0-0 wide except and	and the second	NOREGON NOREGON NOREGON NOREW JOHN	800 H
 (lb) - FORCES. (lb) TOP CHORD NOTES- 1) Wind: ASCE II; Exp B; Enzone; cantile shown; Lumt 2) TCLL: ASCE DOL=1.15); 1 3) Unbalanced 4) This truss ha non-concurre 5) Plates check 6) This truss ha ron-concurre 6) This truss ha non-concurre 6) Plates check 8) A plate rating 9) Refer to girdi 10) Provide me 11) Provide me (jt=lb) B=20 12) Beveled pla 13) This truss is referenced 14) This truss ha non-concurre 	Max Uplift A Max Grav A E=) - Max. Comp., B-D=-596/30 7-16; Vult=140 closed; MWFR ver left and rigi ber DCL=1.60 Is=1.0; Rough - snow loads har us been designent with other li ted for a plus or is been designent as been designent to battor of 2 g reduction of 2 g reduction of 2 g reduction of 2 g reduction of 2 g refuely for truss i cchanical conne- chanical conne- si designed in a standard ANSI mas been designent	Il reactions 250 lb or les =289(LC 40) /Max. Ten All forces 2 00 Dmph (3-second gust) V: S (directional) and C-C nt exposed ; end vertica plate grip DOL=1.60 psf (roof LL: Lum DOL= Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. Cat B; Fully Exp.; Ce=0. cat B; Fully Exp.; Ce=0. cat Gror greater of min roo ve loads. r minus 5 degree rotatio ed for a 10.0 psf bottom ned for a live load of 20. chord and any other mer 10% has been applied fo to truss connections. ection (by others) of trus cottor (by others) of trus cation (by others) of trus cordance with the 2013 /TPI 1. ned for a moving concer	asd=111mph; TCI Exterior(2E) -3-0-1 I left and right exp 9; Cs=1.00; Ct=1. this design. f live load of 12.0 n about its center. chord live load of 12.0 n about its center. chord live load of 0.0 0psf on the bottor mbers. r the green lumbe s to bearing plate s to bearing plate is to bearing plate ing surface with tr 3 International Re ntrated load of 250	DL=4.2psf; BCDL=6.0psf; h 0 to 0-0-0, Interior(1) 0-0-0 osed;C-C for members and 1.15); Pg=30.0 psf; Pf=20.8 10 psf or 2.00 times flat roof lo pnconcurrent with any other n chord in all areas where r members. at joint(s) E. capable of withstanding 10 uss chord at joint(s) D, E. sidential Code sections R5 0.0lb live and 3.0lb dead loo	to 7-6-8, Exter forces & MW pad of 20.8 psf live loads. a rectangle 3-6 0 lb uplift at jo 02.11.1 and Ra	ior(2R) 7- FRS for re = 1.15 Pla on overh 5-0 tall by nt(s) F, E 302.10.2 a	6-8 to 11-9-7 actions ate angs 2-0-0 wide except and	And the second	mgli	

he overall anent bracing e Si Building Component NTek USA, Inc. 400 Surrise Avenue, Suite 270 Roseville, CA 95661



ponent MiTek USA, Inc. 400 Sunitse Avenue, Suite 270 Roseville. CA 95661

MiTek MiTek USA, Inc 400 Sunrise Aven Roseville, CA 95661

ue. Suite 270

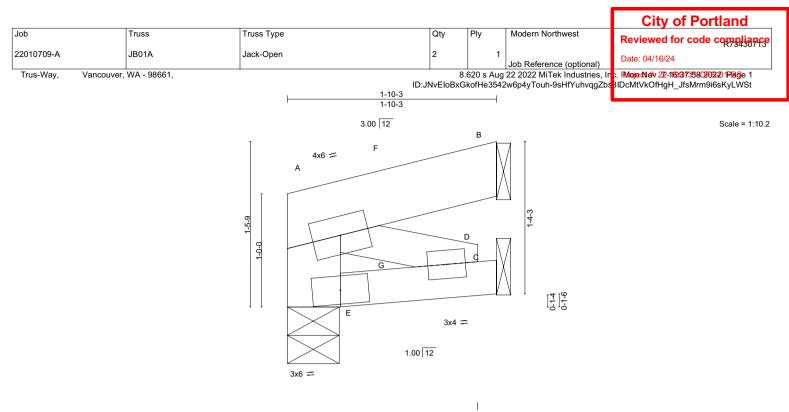
Plate Offsets (X,Y) [B:0-3-0,	,0-3-0]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.28 BC 0.13 WB 0.03 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 0.00 0.00	(loc) E-F E-F C F	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 16 lb	GRIP 220/195 FT = 20%

LUMBER-		BRACING-	
TOP CHORD 2x	x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 1-10-3 oc purlins,
BOT CHORD 2x	x4 DF No.1&Btr G		except end verticals.
WEBS 2x	x6 DF SS G *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
B-I	-E: 2x4 DF Stud/Std G		

REACTIONS. (size) C=Mechanical, D=Mechanical, F=0-5-8 Max Horz F=44(LC 10) Max Uplift C=-321(LC 18), D=-12(LC 10), F=-295(LC 10) Max Grav C=204(LC 35), D=247(LC 37), F=702(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-F=-686/509

NOTES-


- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-2-13, Interior(1) 0-2-13 to 1-10-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) F considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) C=321.
- 12) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and F. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

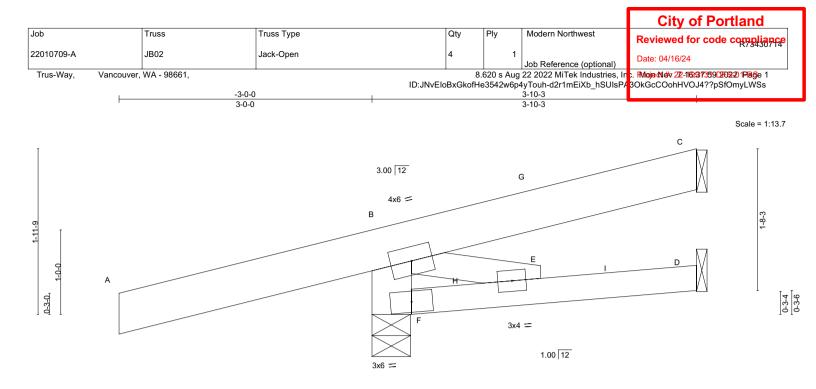
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.05 BC 0.13 WB 0.01 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 0.00 0.00	(loc) D-E D-E B E	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 9 lb	GRIP 220/195 FT = 20%
--	--	--	---	--------------------------------------	-------------------------------	---------------------------------------	---------------------------------	--------------------------------	------------------------------------

		BRACING- TOP CHORD	Structural wood sheathing directly applied or 1-10-3 oc purlins, except end verticals.
WEBS	2x6 DF SS G *Except* A-D: 2x4 DF Stud/Std G	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) B=Mechanical, C=Mechanical, E=0-5-8 Max Horz E=32(LC 14) Max Uplift B=-25(LC 10), E=-7(LC 10)

Max Grav B=269(LC 34), C=247(LC 36), E=285(LC 32)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-E=-269/31


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) E considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) C and E. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

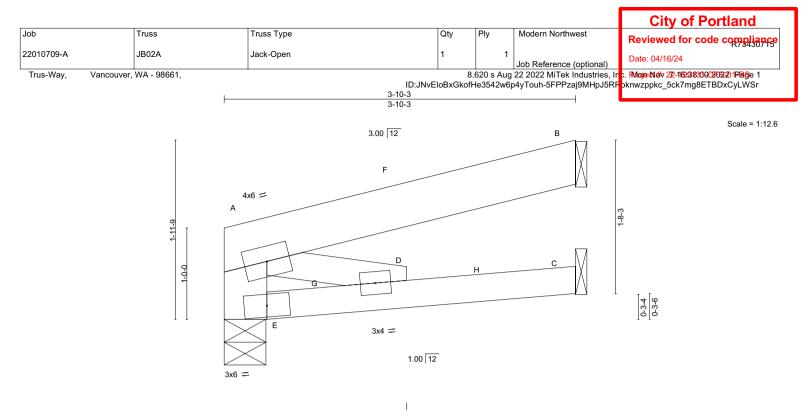
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.28 BC 0.33	DEFL. Vert(LL) Vert(CT)	in -0.04 -0.06	(loc) E E	l/defl >999 >736	L/d 240 180	PLATES MT20	GRIP 220/195
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.05 Matrix-MP	Horz(CT) Wind(LL)	0.02 0.01	C E	n/a >999	n/a 360	Weight: 24 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 3-10-3 oc purlins,
BOT CHORD	2x4 DF No.1&Btr G		except end verticals.
WEBS	2x6 DF SS G *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	B-E: 2x4 DF Stud/Std G		

REACTIONS. (size) C=Mechanical, D=Mechanical, F=0-5-8 Max Horz F=89(LC 14) Max Uplift C=-116(LC 18), F=-230(LC 10)

Max Grav C=259(LC 35), D=289(LC 40), F=601(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-F=-566/422


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) F considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) C=116.
- 12) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and F. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

LOADING (psf) SPACING- 2-0-0 TCLL (roof) 25.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 20.8/30.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2018/TPI2014 10.0	CSI. TC 0.12 BC 0.33 WB 0.03 Matrix-MP	DEFL. in Vert(LL) -0.04 Vert(CT) -0.06 Horz(CT) 0.02 Wind(LL) 0.00	(loc) D D B D	l/defl >999 >736 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 17 lb	GRIP 220/195 FT = 20%
--	--	--	---------------------------	---------------------------------------	---------------------------------	---------------------------------	------------------------------------

LU	MB	ER-

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G WEBS 2x6 DF SS G *Except*

BRACING-TOP CHORD

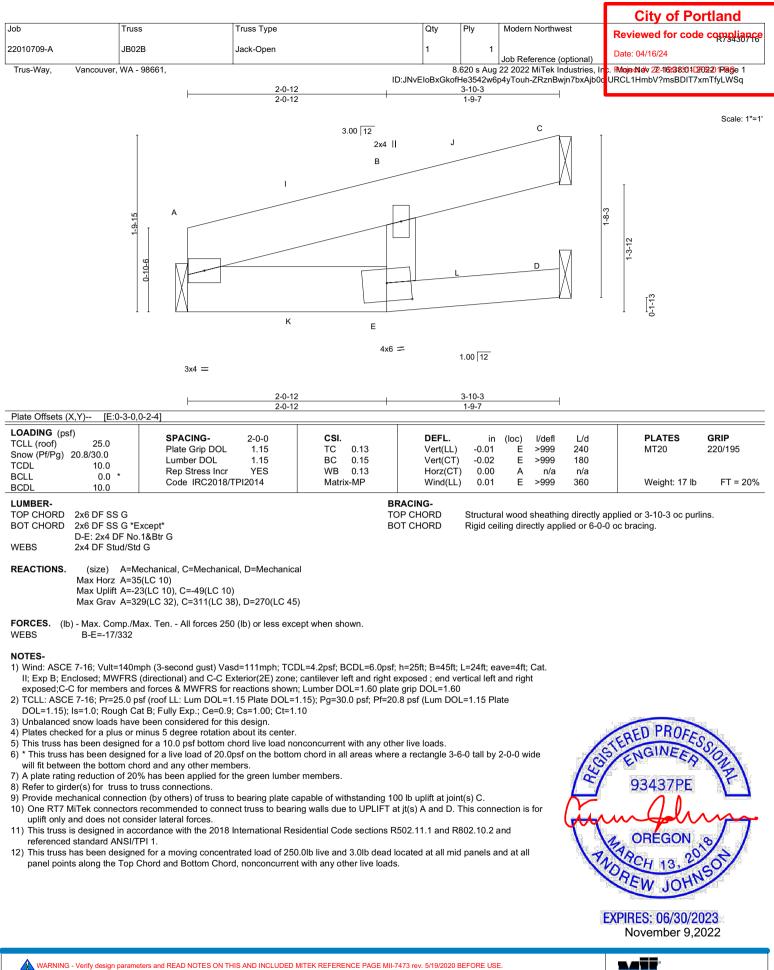
Structural wood sheathing directly applied or 3-10-3 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) B=Mechanical, C=Mechanical, E=0-5-8 Max Horz E=48(LC 14) Max Uplift B=-54(LC 10), E=-20(LC 10)

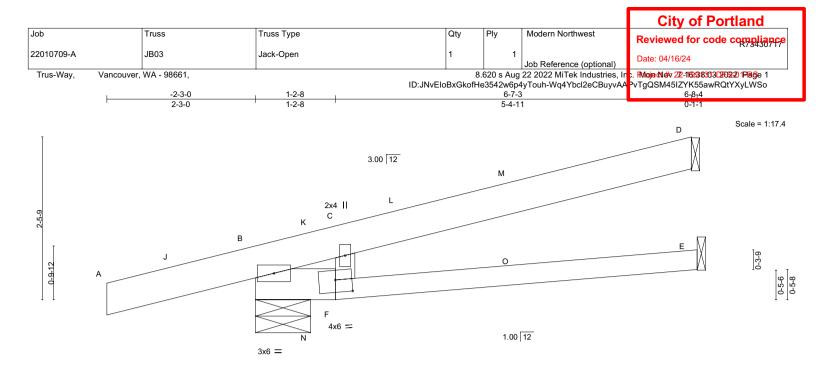
A-D: 2x4 DF Stud/Std G

Max Grav B=289(LC 34), C=289(LC 39), E=324(LC 32)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-E=-289/82


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) E considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) C and E. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.


EXPIRES: 06/30/2023 November 9,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

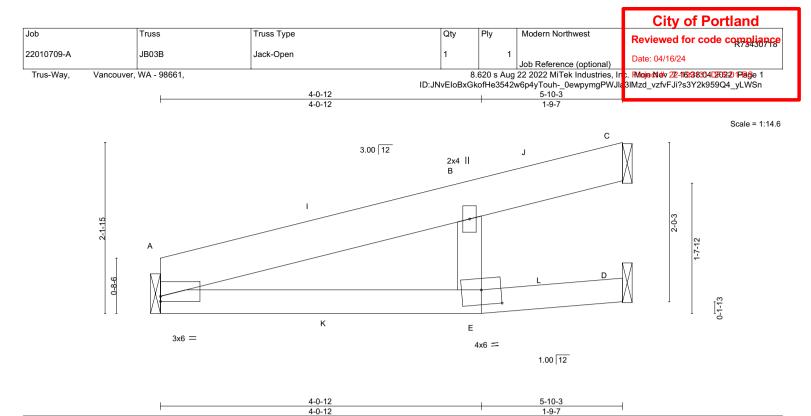

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

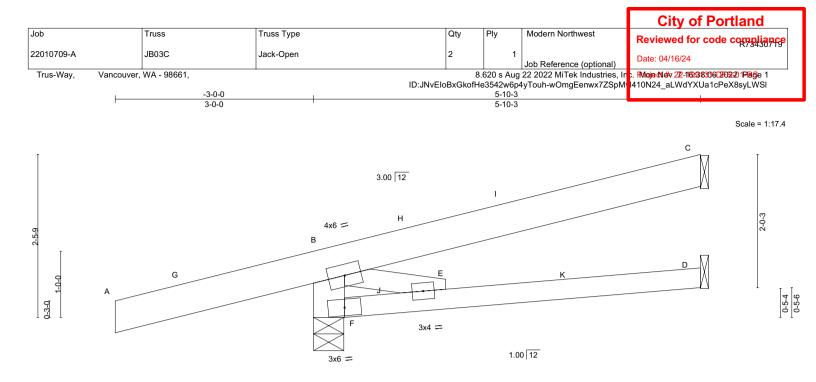
Plate Offeets (XY)- [F0-3-0-0-2-4] 64-11 64-11 LOADING (prif) TCLL (roo) 25.0 SPACING- 20.0 25.0 SPACING- 20.0 25.0 Plate GP 0001 11.5 BC 0.64 Vert(C1) -0.15 6.4 MT20 S20195 Snew (PFrg) 20.8/30.0 10.0 Exp Stress Inc 1.15 BC 0.64 Vert(C1) -0.02 EFF - 3315 18.0 BCOL 10.0 Code IRC2018/TPI2014 Matix-MP Wind(LL) 0.02 F - 9599 36.0 Weight: 31 to FT = 20% LUMBER. TOP CHORD 22d DF SS G Structural wood sheathing directly applied or 60-0 oc purins. BTACING- BOT CHORD Structural wood sheathing directly applied or 60-0 oc purins. BTACING- BOT CHORD Structural wood sheathing directly applied or 60-0 oc purins. REACTIONS. (gra) Camp, Max Top CHORD Structural wood sheathing directly applied or 60-0 oc purins. WEBS 2x4 DF ShudSinG Structural wood sheathing directly applied or 60-0 oc purins. BTACING. WEBS CAPF all (ASD) Diff Chip, E-307(LC 40) Breactions in Max Nore 250 (LS) 10.0 EFF all (ASD) Diff Chip, E-307(LC 40) WEBS CAPF all (ASD) Diff Chip, E-307(LC 40)	Plate Offsets (X,Y) [F:0-3-0,0-2-4] LOADING (psf) TCLL (roof) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP Snow (Pf/Pg) 20.8/30.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) -0.15 E-F >515 240 MT20 220/1 TCDL 10.0 Lumber DOL 1.15 BC 0.64 Vert(CT) -0.25 E-F >315 180 BCDL 0.0 * Rep Stress Incr YES WB 0.17 Matrix-MP Wind(LL) 0.02 B n/a n/a LUMBER- BRACING- BRACING- BRACING- Weight: 31 lb FT										
TCLL (roof) 25.0 PALNES 24-0 CSL DEFL in (loc) idea PLAIES CRP Sowe (PHP) 1.15 BC 0.84 Vart(CT) 0.25 EF >315 180 MT20 220/195 BCLL 0.0 Rep Stress Num YES WS 0.17 Horz(CT) 0.02 E >316 Meght 13.16 FT = 20% BCDL 10.0 Code IRC2018/TPL014 Matrix-MP WindLL) 0.02 F >399 860 Weight 31.16 FT = 20% LUMBER: TOP CHORD 2x60 FS SS G TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc pracing. Weight 31.16 FT = 20% WEBS 2x4 OF Stud/Still G TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc pracing. Weight 31.16 FT = 20% WEBS 2x4 OF Stud/Still G FS Structural wood sheathing directly applied or 6-0-0 oc pracing. Weight 31.16 FT = 20% WEBS 2x4 OF Stud/Still G FS Structural wood sheathing directly applied or 6-0-0 oc bracing. Weight 31.16 FT = 20% NTES CHASCE 7-16: Vult-140mph (3-second gual) Vasd-111mph; TCD	TCLL (roof) 25.0 SPACING- 2-0-0 CSI. DEFL. in (loc) //deft L/d PLATES GRP Snow (Pf/Pg) 20.8/30.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) -0.15 E-F >515 240 MT20 220/1 TCDL 10.0 Lumber DOL 1.15 BC 0.64 Vert(CT) -0.25 E-F >315 180 MT20 220/1 BCLL 0.0 * Rep Stress Incr YES WB 0.17 Horz(CT) 0.02 B n/a n/a Meight: 31 lb F LUMBER- BRACING-										
 TOP CHORD 2x6 DF SS G Reactions (size) D-Mechanical, Be-0-10-0, E=Mechanical Max Horz B=00[LC 10) Max Upht D=-79(LC 10), B=-162(LC 10) Max Grav D=-28(LC 3), B=-162(LC 10) Max Grav D=-28(LC 10) Max MFRS Grav D=-28(LC 10) Max Grav D=-28(LC 1											
 NOTES- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. 1; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(ZE)-2-3-0 to 0-6-11, Interior(1) 0-6-11 to 2-3-8, Exterior(2R) 2-3-8 to 6-6-7 zone; cantilevel exposed ; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; PT=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; rough Cat B; Efully Exp; C=0.9; Cs=1.00; CE=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. 5) Plates checked for a plus or minus 5 degree rotation about its center. 6) This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. 7) This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord any other members. 8) A plate rating reduction of 20% has been applied for the green lumber members. 9) A plate rating reduction of 20% has been applied for the green lumber members. 9) This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide in accordance with the 2018 International Residential Code sections R502,11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 10) This truss has been designed for a moving concentrated load of 250.0b live and 3.0b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 11) This truss has been designed for a moving concentrated load of	TOP CHORD 2x6 DF SS G TOP CHORD 2x6 DF SS G *Except* TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x6 DF SS G *Except* BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. WEBS 2x4 DF Stud/Std G BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS. (size) D=Mechanical, B=0-10-0, E=Mechanical Max Horz B=90(LC 10) Max Horz B=90(LC 10), B=-162(LC 10) Max Grav D=323(LC 39), B=545(LC 19), E=307(LC 46) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.										
	 Nortes- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45f; L=24f; eave=4f; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -2.3-0 to 0-6-11, Interior(1) 0-6-11 to 2-3-8, Exterior(2R) 2-3-8 to 6-6-7 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a 10.0 psf bottom chord in e load nonconcurrent with any other live loads. A plate rating reduction of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. A plate rating reduction of 20% has been applied for the green lumber members. One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces. This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss has been designed for a moving concentrated load of 250.01b live and 3.01b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Plate Offsets (X,Y) [A:0-0-0	,0-0-12], [E:0-3-0,0-2-4]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.23 BC 0.32 WB 0.13 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.05 E -0.10 E 0.01	loc) l/defl E-H >999 E-H >710 C n/a E >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 23 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/St			BRACING- TOP CHORD BOT CHORD		vood sheathir g directly app	0 1	oplied or 5-10-3 oc purl oc bracing.	ins.
Max Horz A=5 Max Uplift A=-3	Mechanical, C=Mechanical, D=Mechanical 33(LC 10) 38(LC 10), C=-67(LC 10) 69(LC 32), C=351(LC 38), D=270(LC 45)							

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS B-E=0/320


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and D. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

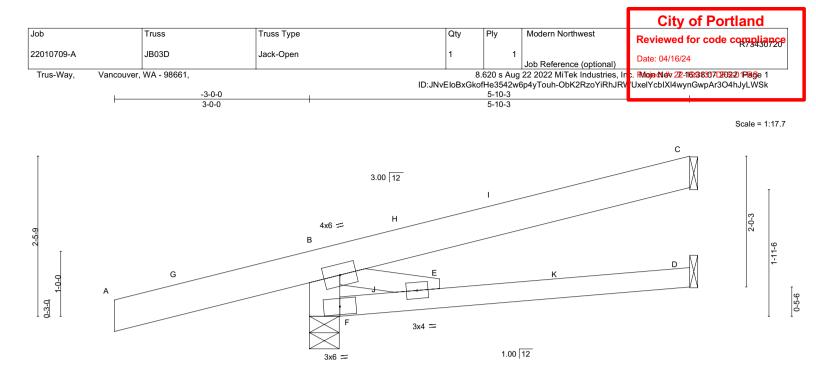
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.56 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.23 0.08	(loc) D-E D-E C	l/defl >478 >288 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.03	D-E	>999	360	Weight: 31 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 5-10-3 oc purlins,
BOT CHORD	2x4 DF No.1&Btr G		except end verticals.
WEBS	2x6 DF SS G *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	B-E: 2x4 DF Stud/Std G		

REACTIONS. (size) C=Mechanical, D=Mechanical, F=0-5-8 Max Horz F=105(LC 14) Max Uplift C=-42(LC 18), F=-221(LC 10)

Max Grav C=290(LC 35), D=309(LC 40), F=619(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-F=-564/421


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-2-13, Interior(1) 0-2-13 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) F considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 12) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and F. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

93437PE W 93437PE

EXPIRES: 06/30/2023 November 9,2022

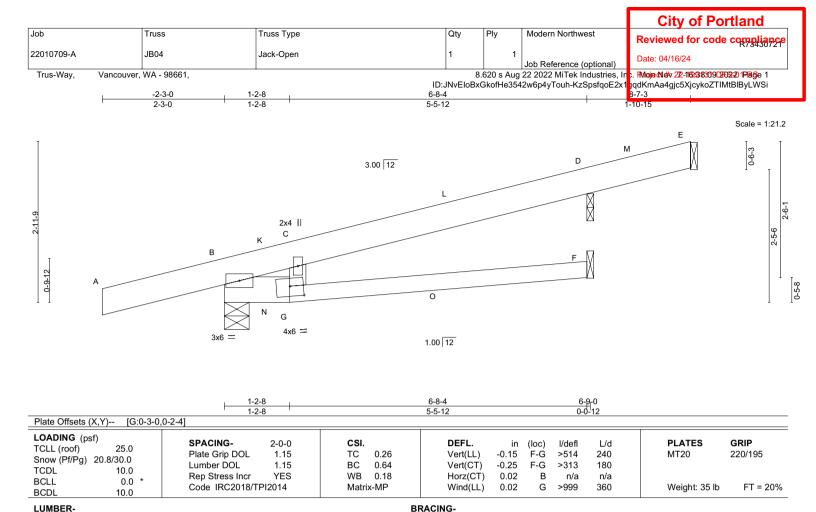
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.26 BC 0.56 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.23 0.08	(loc) D-E D-E C	l/defl >478 >288 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.03	D-E	>999	360	Weight: 31 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 5-10-3 oc purlins,
BOT CHORD	2x4 DF No.1&Btr G		except end verticals.
WEBS	2x6 DF SS G *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	B-E: 2x4 DF Stud/Std G		

REACTIONS. (size) C=Mechanical, D=Mechanical, F=0-5-8 Max Horz F=105(LC 14) Max Uplift C=-42(LC 18), F=-221(LC 10)

Max Grav C=290(LC 35), D=309(LC 40), F=619(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-F=-564/421


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-2-13, Interior(1) 0-2-13 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) F considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 12) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and F. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

93437PE P 93437PE

EXPIRES: 06/30/2023 November 9,2022

TOP CHORD

BOT CHORD

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

(lb) -

WEBS

2x6 DF SS G

2x6 DF SS G *Except*

2x4 DF Stud/Std G

C-G=-80/431

F-G: 2x4 DF No.1&Btr G

Max Horz B=109(LC 10)

19)

 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -2-3-0 to 0-6-11, Interior(1) 0-6-11 to 4-3-8, Exterior(2R) 4-3-8 to 8-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Max Grav All reactions 250 lb or less at joint(s) except E=271(LC 41), B=502(LC 19), F=307(LC 48), D=360(LC

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Max Uplift All uplift 100 lb or less at joint(s) E except B=-159(LC 10), D=-111(LC 10)

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.

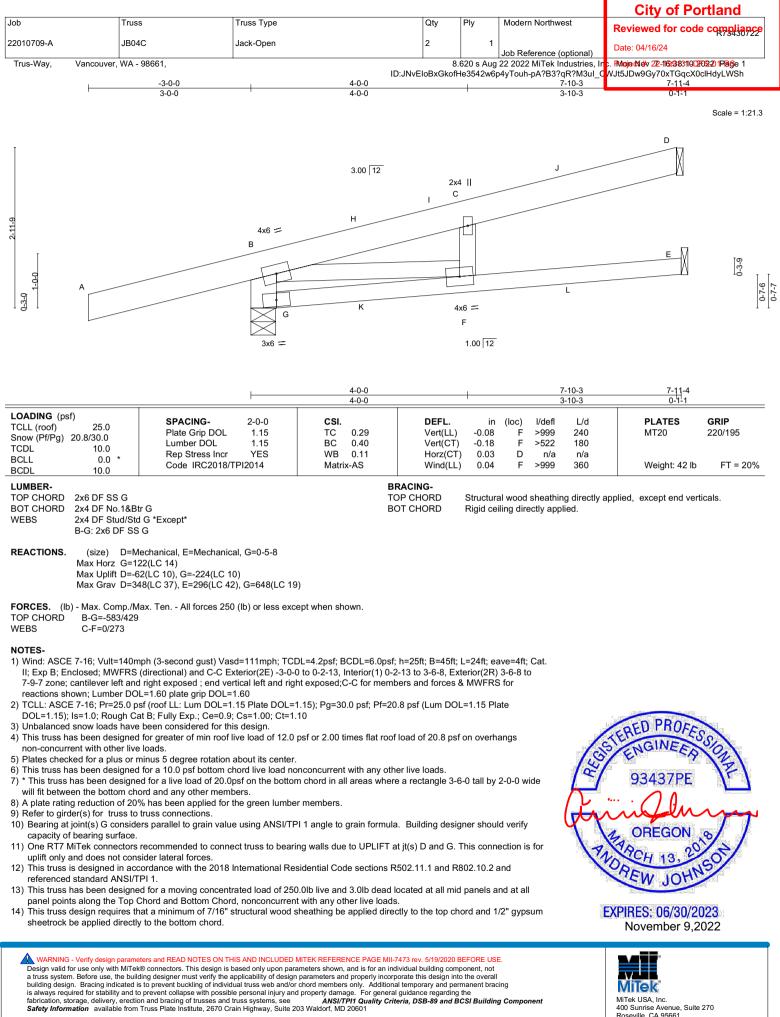
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) D.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E, B, and D. This connection is for uplift only and does not consider lateral forces.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) D.

All bearings Mechanical except (jt=length) B=0-5-8, D=0-1-8.

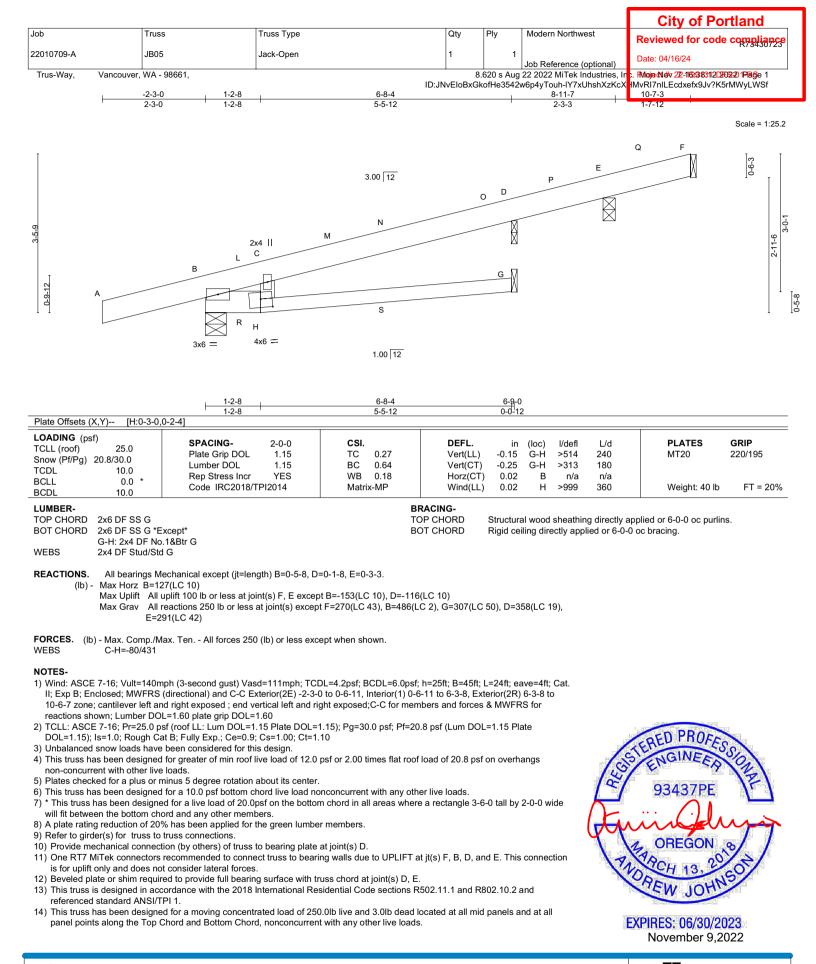
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

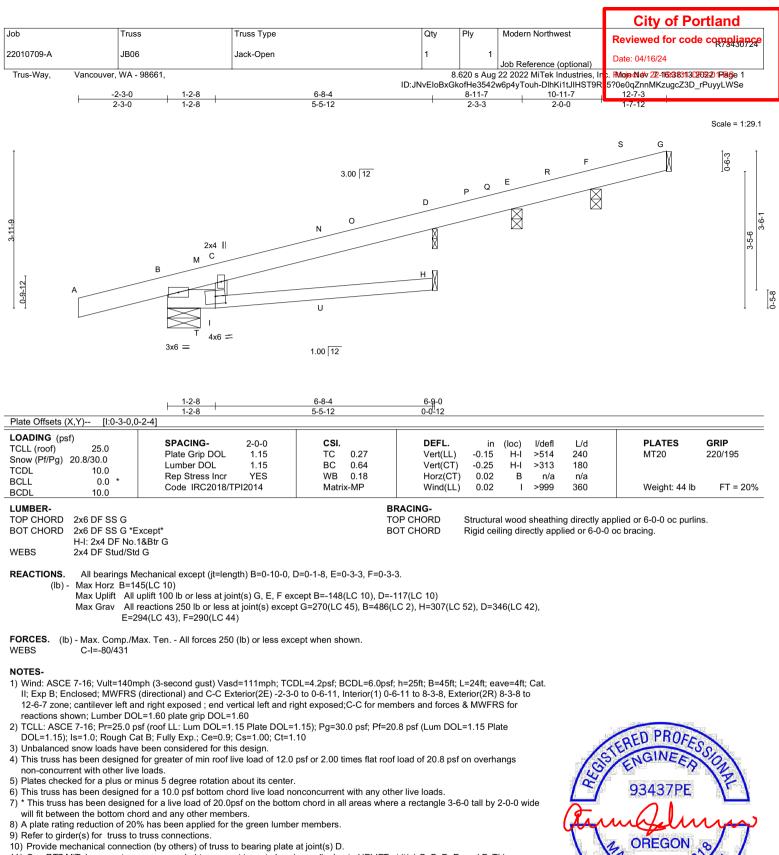
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 6-0-0 oc bracing.

EXPIRES: 06/30/2023 November 9,2022

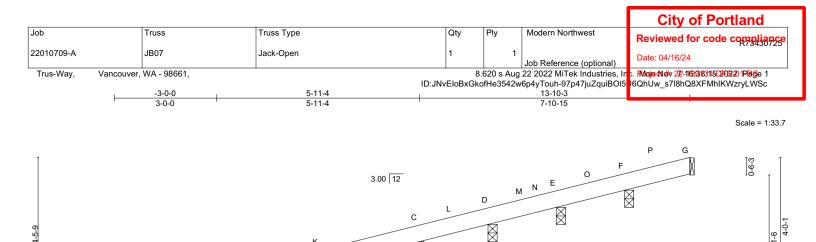


400 Sunrise Aver ue. Suite 270 Roseville, CA 95661

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITek USA, Inc. 400 Sunrise Avenue, Suite 270 Rosseville. CA 95661

11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) G, B, D, E, and F. This connection is for uplift only and does not consider lateral forces.


- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) D, E, F.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023

November 9,2022

	1.00 12								
	ł								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.28 BC 0.57 WB 0.10	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.24 0.08	(loc) H-I H-I G	l/defl >461 >277 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.04	H-I	>999	360	Weight: 49 lb	FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr	G			Structura except er			g directly ap	plied or 5-11-4 oc purl	ins,

TOP CHORD	2x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 5-11-4 oc pur
BOT CHORD	2x4 DF No.1&Btr G		except end verticals.
WEBS	2x6 DF SS G *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	B-I: 2x4 DF Stud/Std G		

R

_

REACTIONS. All bearings 0-3-3 except (jt=length) G=Mechanical, H=Mechanical, C=0-1-8, J=0-5-8.

4x6 == в

Т

3x4 =

Q

3x6

(lb) -Max Horz J=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) G, C, D, E, F except J=-195(LC 10)

Max Grav All reactions 250 lb or less at joint(s) except G=270(LC 43), H=309(LC 48), C=313(LC 39), D=294(LC 40), E=293(LC 41), F=290(LC 42), J=548(LC 2)

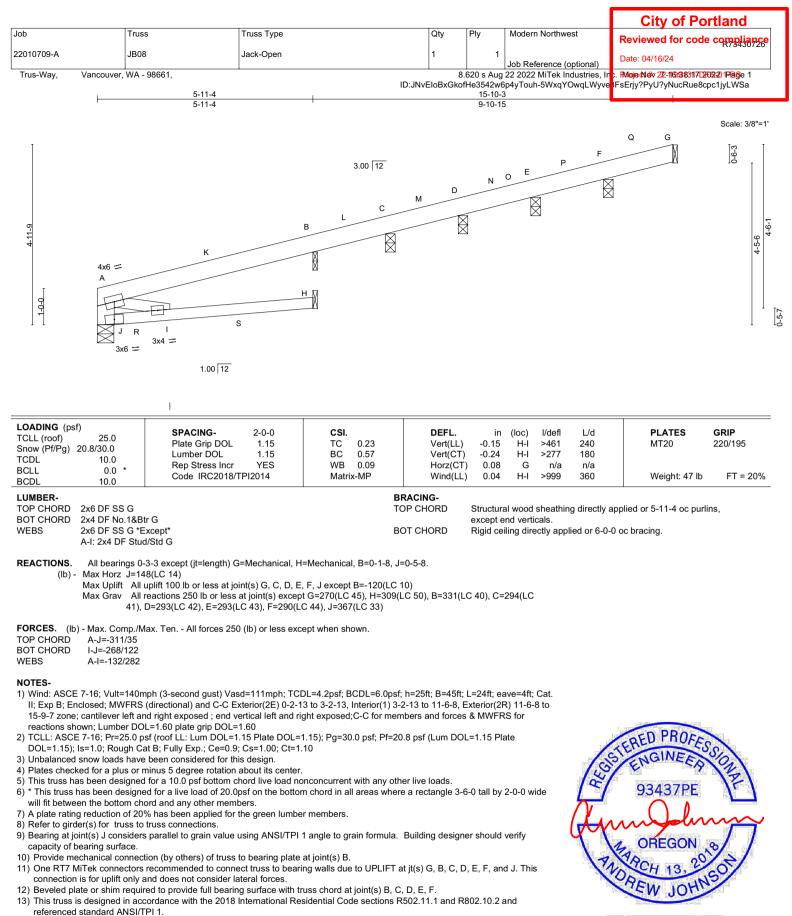
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1-1=-294/90 BOT CHORD
- WEBS B-I=-97/310

NOTES-

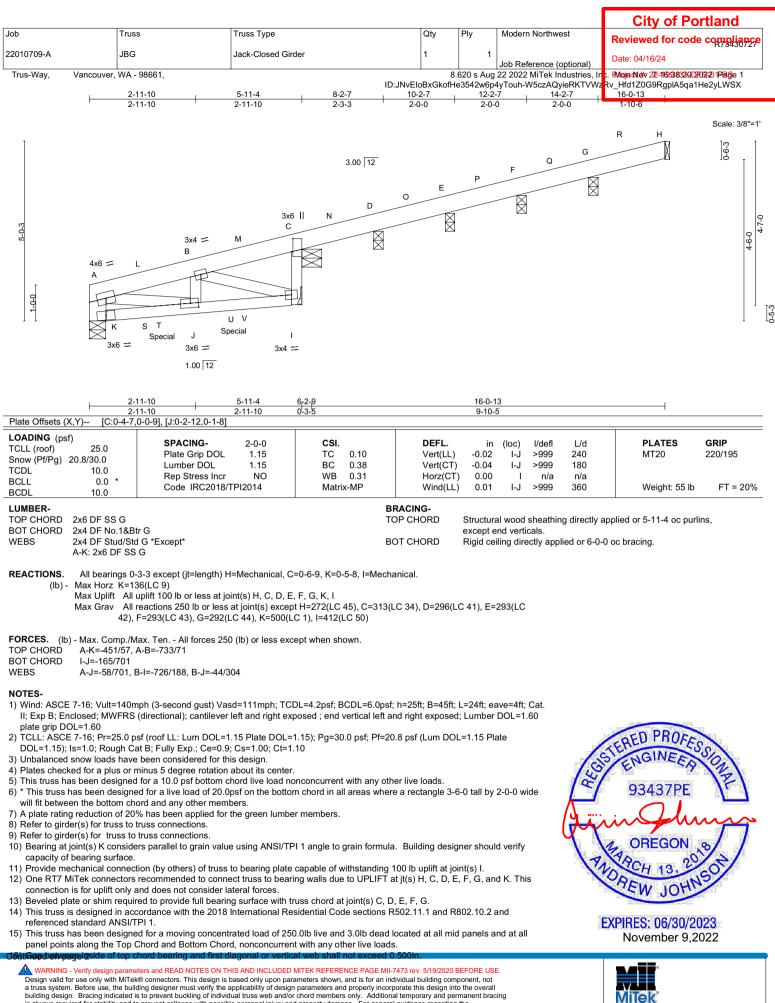
1-0-0 0-3-0

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-2-13, Interior(1) 0-2-13 to 9-6-8, Exterior(2R) 9-6-8 to 13-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) J considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) C. 12) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) G, C, D, E, F, and J. This connection is for uplift only and does not consider lateral forces.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) C, D, E, F.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all


ᄊ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

-2-1

EXPIRES: 06/30/2023 November 9,2022


14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023

November 9,2022

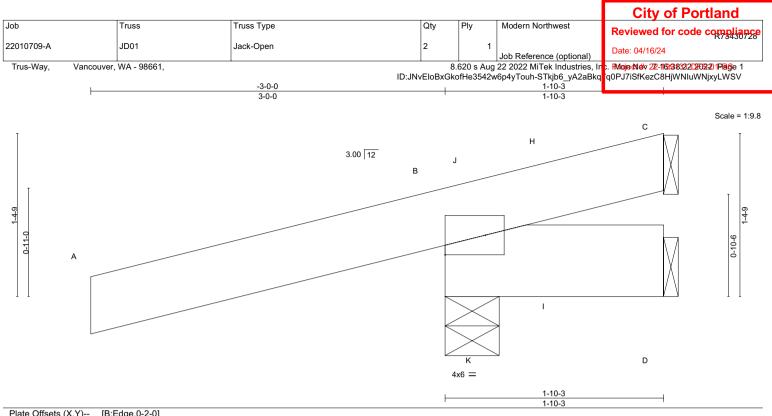
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Most/TPHI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek USA, Inc 400 Sunrise Aven ue. Suite 270 Roseville, CA 95661

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	JBG	Jack-Closed Girder	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouve	r, WA - 98661,		. 8.	620 s Aug	22 2022 MiTek Industries, Ir	. RMojecNdv 22-116:38:320 203-20 1Plage 2
		ID:JNvEI	BxGkofH	e3542w6p4	4yTouh-W5czAQyieRKTVWz	Rv_Hfd1Z0G9RgplA5qa1He2yLWSX
NOTES-						

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 177 lb down and 43 lb up at 2-0-0, and 290 lb down and 58 lb up at 4-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

18) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-C=-62, C-H=-62, I-K=-20 Concentrated Loads (lb)

Vert: A=-59 T=-177(B) U=-290(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.24	DEFL. Vert(LL)	0.00	(loc) G	l/defl >999	L/d 240	PLATES MT20	GRIP 220/195
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	BC 0.06 WB 0.00 Matrix-MP	Vert(CT) Horz(CT) Wind(LL)	0.00 -0.00 -0.00	G B G	>999 n/a >999	180 n/a 360	Weight: 16 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 DF SS G BOT CHORD 2x8 DF SS BRACING-

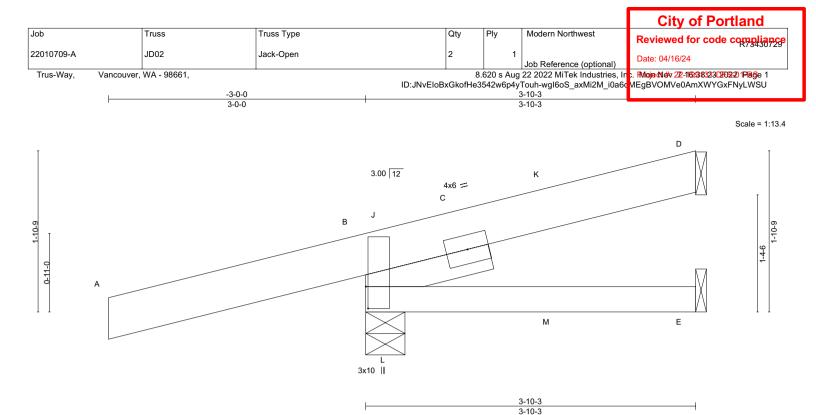
 TOP CHORD
 Structural wood sheathing directly applied or 1-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=57(LC 10) Max Uplift C=-68(LC 18), B=-257(LC 10), D=-148(LC 18) Max Grav C=252(LC 37), B=599(LC 18), D=242(LC 42)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

Plate Offsets (X,Y) [B:0-3-1,0-0-5]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.24 BC 0.23 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc -0.02 E-H -0.03 E-H -0.01 -0.00 E-H	H >999 H >999 B n/a	L/d 240 180 n/a 360	PLATES MT20 Weight: 23 lb	GRIP 220/195 FT = 20%

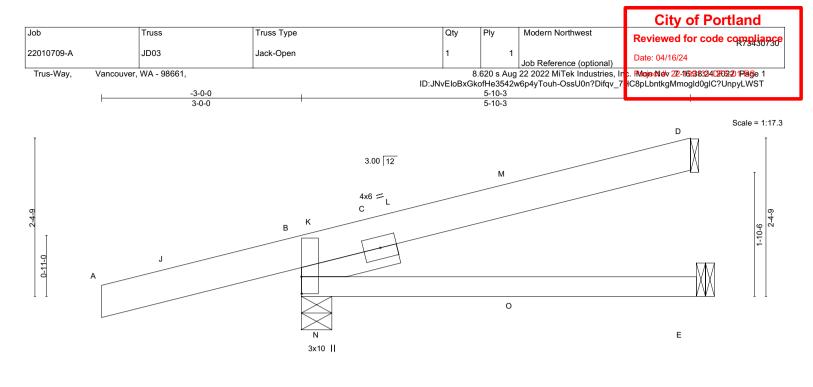
TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER Left 2x4 DF Stud/Std -G- 1-6-0 TOP CHORD BOT CHORD

BRACING-

D Structural wood sheathing directly applied or 3-10-3 oc purlins.
 D Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=75(LC 10) Max Uplift D=-53(LC 18), B=-210(LC 10) Max Grav D=280(LC 37), B=569(LC 19), E=278(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-292/415


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D.
 One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and B. This connection is for
- uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

					5-11-4 5-11-4					
Plate Offsets (X,Y) [B:0-3-1,0)-0-1]									
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	1.15 T 1.15 B YES W	SI. C 0.23 C 0.44 /B 0.00 latrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.13 0.02 -0.01	(loc) E-H E-H B E-H	l/defl >839 >532 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 30 lb	GRIP 220/195 FT = 20%

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER

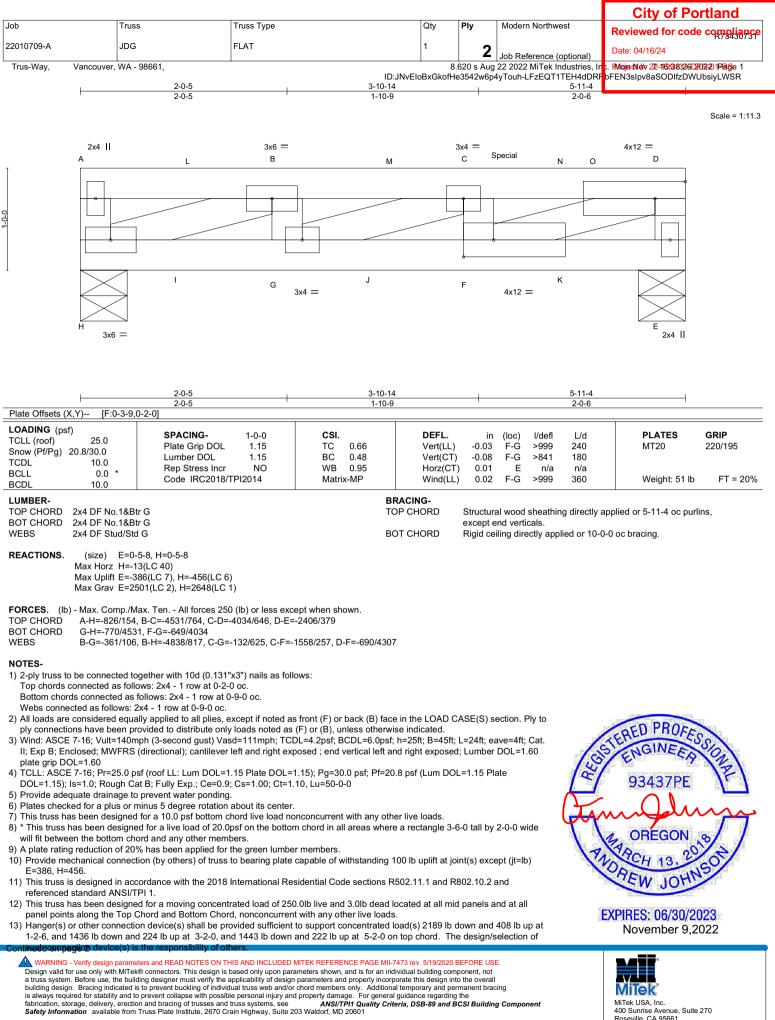
Left 2x4 DF Stud/Std -G- 1-6-0

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-10-3 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=93(LC 10) Max Uplift D=-50(LC 10), B=-206(LC 10) Max Grav D=310(LC 37), B=599(LC 19), E=297(LC 42)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD B-D=-345/386


NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

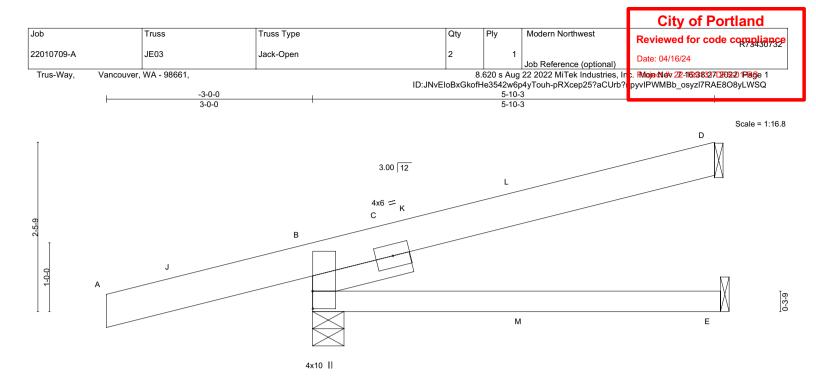
EXPIRES: 06/30/2023 November 9,2022

400 Sunrise Aver Roseville, CA 95661

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	JDG	FLAT	1	2	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver	, WA - 98661,		. 8	620 s Aug	22 2022 MiTek Industries, Ir	. RMoje (Notv 272-116):383216D2703-20 1P186;e 2
		ID:JNvEl	oBxGkofH	e3542w6p4	lyTouh-LFzEQT1TEH4dDRF	bFEN3sIpv8aSODIfzDWUbsiyLWSR
NOTES-						

14) Special hanger(s) or other connection device(s) shall be provided at 4-2-0 from the left end sufficient to connect trusses to front face of top chord, skewed 0.0 deg. to the right, sloping 0.0 deg down.. The design/selection of such special connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: E-H=-10, A-D=-31

Concentrated Loads (lb)

Vert: L=-2189 M=-1305(F) O=-1311(F)

Plate Offsets (X,Y) [B:0-3-1,0)-0-1]			5-11-4 5-11-4				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.23 BC 0.47 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc -0.10 E-H -0.15 E-H 0.02 E -0.01 E-H	>734 >462 n/a	L/d 240 180 n/a 360	PLATES MT20 Weight: 30 lb	GRIP 220/195 FT = 20%

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER Left 2x4 DF Stud/Std -G- 1-6-0

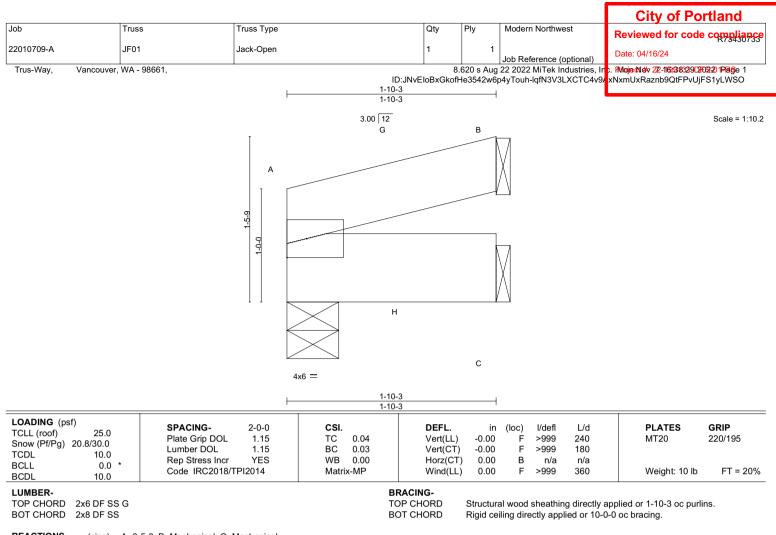
BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=93(LC 10) Max Uplift D=-52(LC 10), B=-204(LC 10) Max Grav D=308(LC 37), B=600(LC 19), E=299(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-397/375


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D except (jt=lb) B=204.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

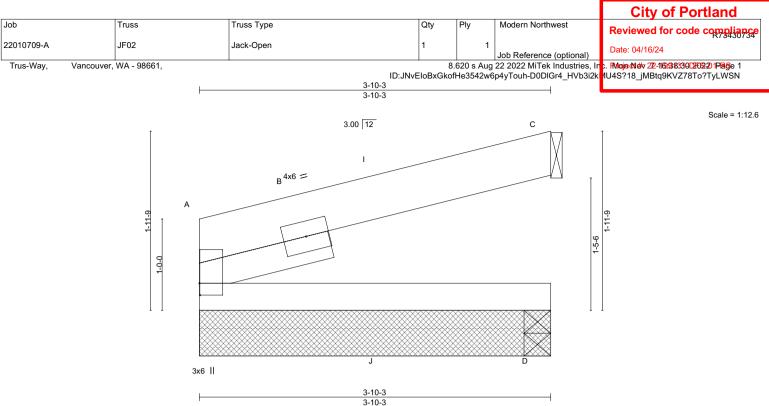
REACTIONS. (size) A=0-5-8, B=Mechanical, C=Mechanical

Max Horz A=17(LC 10)

Max Uplift A=-9(LC 10), B=-23(LC 10)

Max Grav A=290(LC 32), B=269(LC 36), C=274(LC 41)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B.
- One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and C. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

Plate Offsets	(X Y)	[A:0-1-9,0-0-1]

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.13 BC 0.26 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) D-G D-G A	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL)	0.00	D-G	>999	360	Weight: 16 lb	FT = 20%

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER Left 2x4 DF Stud/Std -G- 1-6-0

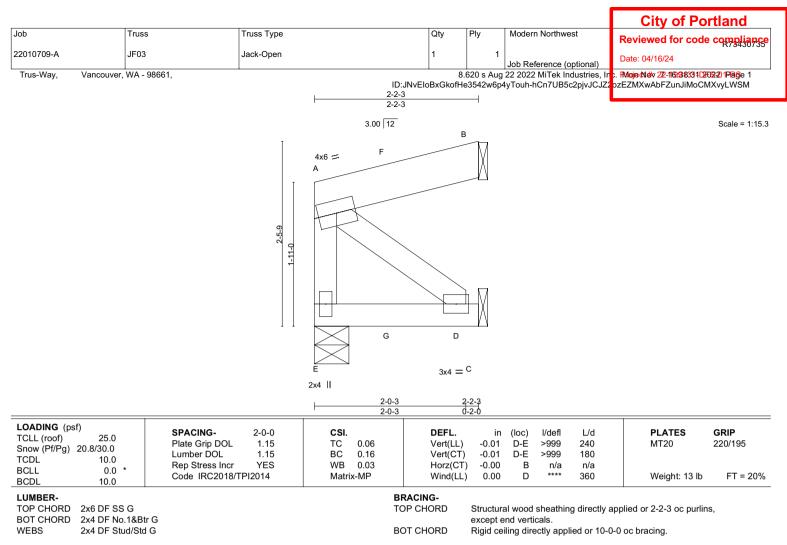
BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=3-10-3, C=Mechanical, D=0-3-8 Max Horz A=35(LC 10) Max Uplift A=-21(LC 10), C=-54(LC 10) Max Grav A=328(LC 37), C=297(LC 36), D=284(LC 41)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-C=-270/40


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

REACTIONS. (size) E=0-5-8, B=Mechanical, D=Mechanical

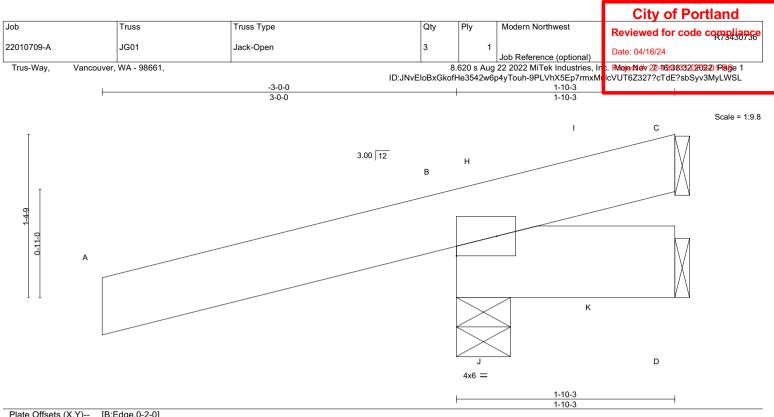
Max Horz E=58(LC 14) Max Uplift E=-11(LC 10), B=-30(LC 10), D=-18(LC 14)

Max Grav E=291(LC 32), B=273(LC 34), D=275(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-E=-273/22

NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E, B, and D. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.



EXPIRES: 06/30/2023 November 9,2022

ue. Suite 270

MiTek USA, Inc. 400 Sunrise Aven

Roseville, CA 95661

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCDL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.24 BC 0.06 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.00 -0.00	(loc) G G B G	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 16 lb	GRIP 220/195 FT = 20%
--	---	--	---	--------------------------------------	---------------------------	---------------------------------------	---------------------------------	---------------------------------	------------------------------------

TOP CHORD 2x6 DF SS G BOT CHORD 2x8 DF SS BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 1-10-3 oc purlins.

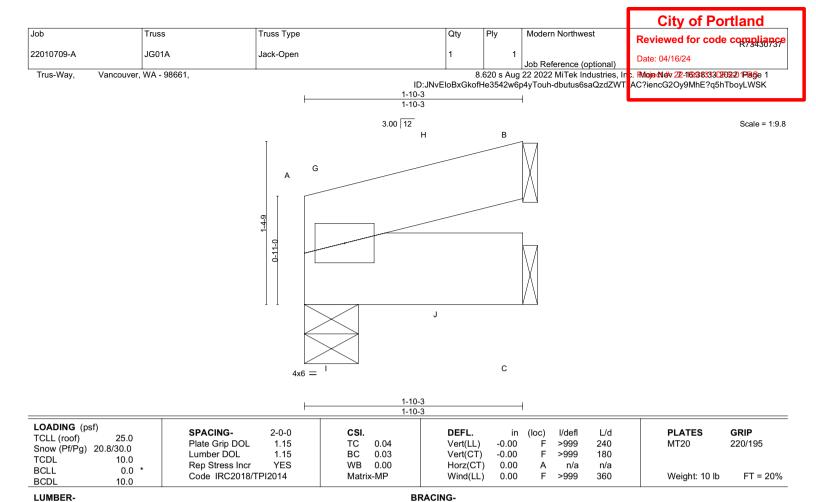
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) C=Mechanical, B=0-5-8, D=Mechanical

Max Horz B=57(LC 10) Max Uplift C=-68(LC 18), B=-257(LC 10), D=-148(LC 18) Max Grav C=252(LC 37), B=599(LC 18), D=242(LC 42)

Max Grav C=252(LC 37), B=599(LC 18), D=242(LC 42)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

TOP CHORD

BOT CHORD

LL	JM	BE	R-

TOP CHORD 2x6 DF SS G BOT CHORD 2x8 DF SS

REACTIONS. (size) A=0-5-8, B=Mechanical, C=Mechanical

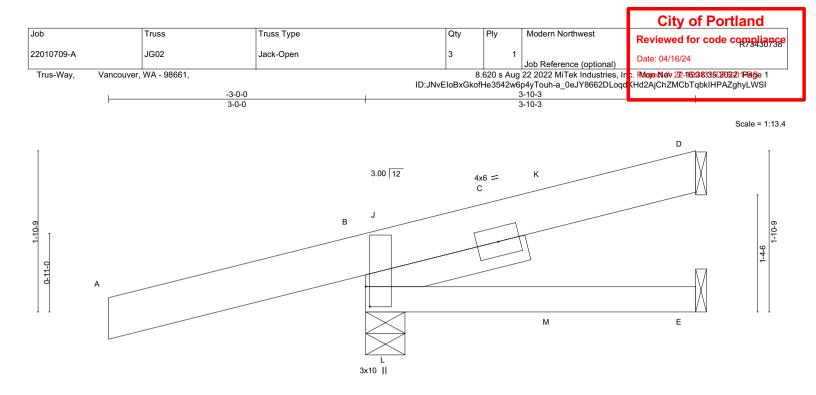
Max Horz A=17(LC 10)

Max Uplift A=-9(LC 10), B=-19(LC 10), C=-1(LC 10) Max Grav A=290(LC 34), B=268(LC 36), C=275(LC 41)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and C. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.



Structural wood sheathing directly applied or 1-10-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

EXPIRES: 06/30/2023 November 9,2022

	3-10-3							
Plate Offsets (X,Y) [B:0-2-13	3,0-0-9]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.24 BC 0.23 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.02 E-H >999 240 MT20 220/195 Vert(CT) -0.03 E-H >999 180 MT20 220/195 Horz(CT) -0.00 B n/a n/a MT20 220/195					
BCLL 0.0 * BCDI 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL) -0.00 E-H >999 360 Weight: 24 lb FT = 2	20%				

 TOP CHORD
 2x6 DF SS G

 BOT CHORD
 2x4 DF No.1&Btr G

 SLIDER
 Left 2x4 DF Stud/Std -G- 1-11-5

BRACING-

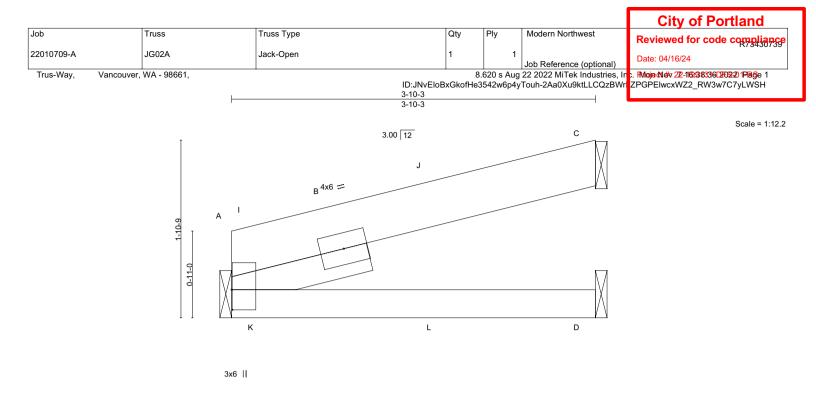
 TOP CHORD
 Structural wood sheathing directly applied or 3-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

3-10-3

REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=75(LC 10) Max Uplift D=-55(LC 18), B=-210(LC 10) Max Grav D=280(LC 37), B=569(LC 19), E=278(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-298/450


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D except (jt=lb) B=210.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

	3-10-3								
Plate Offsets (X,Y) [A	Plate Offsets (X,Y) [A:0-2-9,0-0-1]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.12 BC 0.24 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.02 D-G >999 240 MT20 220/195 Vert(CT) -0.03 D-G >999 180 MT20 220/195 Horz(CT) 0.01 A n/a n/a N N						
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	Wind(LL) 0.00 D-G >999 360 Weight: 16 lb FT = 2	20%					

3-10-3

LUMBER-

TOP CHORD2x6 DF SS GBOT CHORD2x4 DF No.1&Btr GSLIDERLeft 2x4 DF Stud/Std -G- 1-6-0

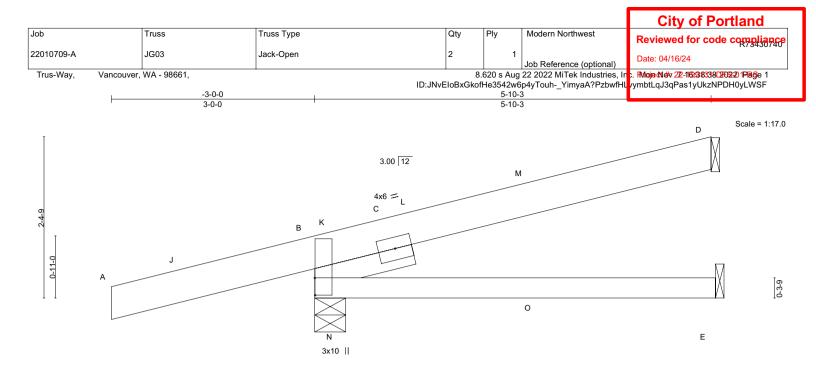
BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-10-3 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) A=Mechanical, C=Mechanical, D=Mechanical Max Horz A=35(LC 10) Max Uplift A=-22(LC 10), C=-51(LC 10) Max Grav A=329(LC 34), C=299(LC 36), D=283(LC 41)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD A-C=-269/43


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) A plate rating reduction of 20% has been applied for the green lumber members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) A and D. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

EXPIRES: 06/30/2023 November 9,2022

Plate Offsets (X,Y) [B:0-3-1,0	- 0-1]		<u>5-11-0</u> 5-11-0	<u> </u>
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.23 BC 0.44 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d PLATE Vert(LL) -0.09 E-H >825 240 MT20 Vert(CT) -0.13 E-H >521 180 Horz(CT) 0.02 B n/a Main Main Wind(LL) -0.01 E-H >999 360 Weight	220/195

TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&Btr G SLIDER Left 2x4 DF Stud/Std -G- 1-6-0

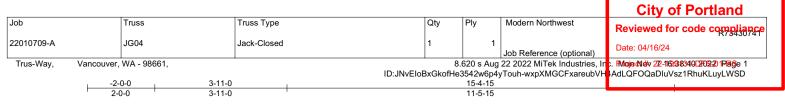
BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-3 oc purlins.

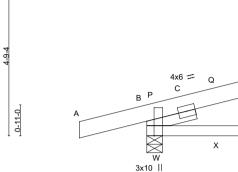
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

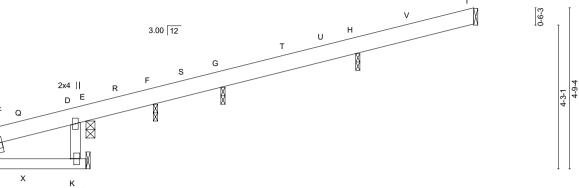
REACTIONS. (size) D=Mechanical, B=0-5-8, E=Mechanical Max Horz B=93(LC 10) Max Uplift D=-50(LC 10), B=-206(LC 10) Max Grav D=310(LC 37), B=599(LC 19), E=297(LC 42)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-D=-350/385


NOTES-

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -3-0-0 to 0-0-0, Interior(1) 0-0-0 to 1-6-8, Exterior(2R) 1-6-8 to 5-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) D and B. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.




EXPIRES: 06/30/2023 November 9,2022

Scale = 1:34.2

		<u> </u>		
ate Offsets (X,Y)	[B:0-5-3,E	dge], [K:0-2-0,0-1-5]		

LOADING (p TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matri	0.14 0.21 0.00 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.02 0.00 -0.00	(loc) K-N K-N B N	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 48 lb	GRIP 220/195 FT = 20%
LUMBER-					F	RACING-						

LUMBER-		BRACING-	
TOP CHORD	2x6 DF SS G	TOP CHORD	Structural wood sheathing directly applied or 3-11-0 oc purlins,
BOT CHORD	2x4 DF No.1&Btr G		except end verticals.
WEBS	2x4 DF Stud/Std G	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
SLIDER	Left 2x4 DF Stud/Std -G- 1-6-0		

REACTIONS. All bearings 0-1-8 except (jt=length) I=Mechanical, K=Mechanical, B=0-5-8, E=0-3-3.

Max Horz B=138(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) I, K, B, F, G except E=-249(LC 34), H=-113(LC 10)

2x4 ||

Max Grav All reactions 250 lb or less at joint(s) E except I=287(LC 47), K=529(LC 34), B=370(LC 51), F=292(LC 44), G=313(LC 45), H=327(LC 46)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD D-K=-488/157

NOTES-

Pla

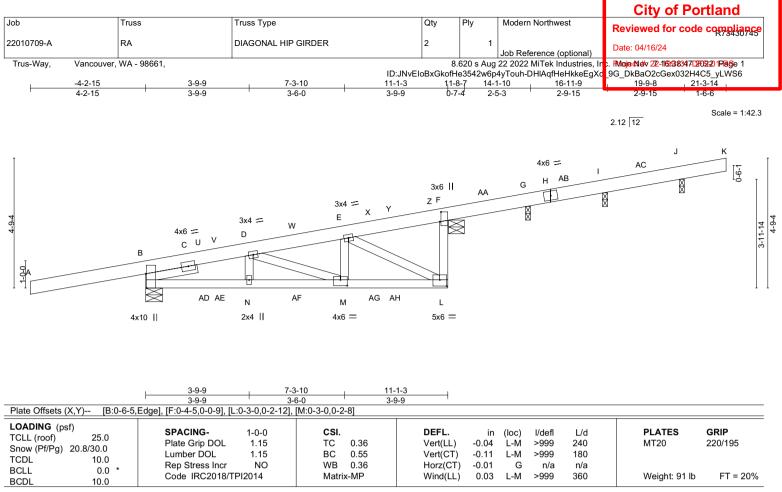
- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 11-1-4, Exterior(2R) 11-1-4 to 15-4-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) F, G, H.
- 11) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) I, K, B, E, F, G, and H. This connection is for uplift only and does not consider lateral forces.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) E, F, G, H.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

Job	Truss		Truss Type		Qty	Ply	Modern Northwe	st	City of Po	
22010709-A	JGG		Jack-Closed Girder		1	1			Reviewed for code	e compliance
		20004					Job Reference (c		Date: 04/16/24	
Trus-Way,	Vancouver, WA - 9			10):JNvEloBxGkofHe	3542w6p4y			c. PMoje 01 dv 22-1160:38342D2 gpWgUmk1zTzmTKu?NF	
		3-11-0 3-11-0				3-4-15 -5-15				
										Scale = 1:26.3
т									тн	Ŧ
								G		0-6-3
				3.00 12			S		E L	10
					F				×	
				R E					-	
4- 5-		:	2x4 Q							
1		ю= _Р	c u	A	Ш					
	E			M						
I	A 0									
0-11-0										
19			\square M							l
		V	J							
	U 3x6		 2x4							
	570 11		274							
		3-11-0 3-11-0								
Plate Offsets (X		-0-1], [J:0-2-0,0-1-5]								
TCLL (roof) ິ່	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.17	DEFL. Vert(LL)	in -0.02	(loc) l/defl J-M >999	L/d 240	PLATES MT20	GRIP 220/195
Snow (Pf/Pg) 2 FCDL	20.8/30.0 10.0	Lumber DOL Rep Stress Inc	1.15	BC 0.27 WB 0.00	Vert(CT Horz(CT) -0.03	J-M >999 A n/a	180 n/a		
BCLL BCDL	0.0 * 10.0	Code IRC2018		Matrix-MP	Wind(LL	,	J-M >999	360	Weight: 40 lb	FT = 20%
LUMBER-					BRACING-					
	2x6 DF SS G 2x4 DF No.1&Btr	G			TOP CHORD		al wood sheathin and verticals.	g directly	applied or 3-11-0 oc purl	ins,
WEBS	2x4 DF Stud/Std Left 2x4 DF Stud/	G			BOT CHORD		iling directly appl	ied or 10-	0-0 oc bracing.	
	Max Horz A=105 Max Uplift All up Max Grav All re 42), F	-8 except (jt=length) 5(LC 9) plift 100 lb or less at actions 250 lb or les =313(LC 43), G=307 ax. Ten All forces 2	joint(s) H, E, F, G ex s at joint(s) D excep (LC 44)	ccept J=-171(LC 8), I t A=371(LC 49), H=2	D=-301(LC 32)	(LC 32), E	E=292(LC			
TOP CHORD	A-C=-326/58, C		un iess excep	WITCH SHOWH.						
NOTES-										
		oh (3-second gust) V directional); cantileve								
plate grip DO	L=1.60	f (roof LL: Lum DOL=					
DOL=1.15); I	s=1.0; Rough Cat	B; Fully Exp.; Ce=0.	9; Cs=1.00; Ct=1.10		_3.5 por (Eurit DO				CD PPOP	
 Plates checker 	ed for a plus or mi	been considered for inus 5 degree rotatio	n about its center.						SEREU I NUFE	S
		for a 10.0 psf bottom d for a live load of 20				6-0 tall by	2-0-0 wide	18	FENGINEER	192
		rd and any other mer has been applied fo		nembers.	-	,		12	93437PE	NF-
B) Refer to girde	er(s) for truss to t	russ connections.	·					\mathbf{k}		
0) Provide med	chanical connection	n (by others) of truss on (by others) of trus			g 100 lb uplift at jo	oint(s) H, E	E, F, G except	(┣♠	mitel	
(jt=lb) J=171 11) Beveled pla		ed to provide full bear	ing surface with trus	s chord at joint(s) D	, E, F, G.			۹ ۲	OREGON	<u>s/ /</u>
2) This truss is		ordance with the 201				802.10.2	and	T	ARCH 12 2	13/
13) This truss h	as been designed	I for a moving conce				d panels a	ind at all		REINICHN	5/
14) Hanger(s) o	or other connection	hord and Bottom Chon n device(s) shall be p	provided sufficient to	support concentrate	d load(s) 82 lb do					
	o chord, and 177 li ibility of others.	b down and 42 lb up	at 2-0-0 on bottom	chord. The design/s	election of such c	onnection	device(s) is	q	EXPIRES: 06/30/20)23
		n, loads applied to th	e face of the truss a	re noted as front (F)	or back (B).				November 9,2	
Lonarugase(s)	geStandard									
Design valid for	r use only with MiTek®	ers and READ NOTES ON connectors. This design i	s based only upon param	eters shown, and is for an	individual building com	nponent, not				
building design	. Bracing indicated is	ng designer must verify the to prevent buckling of indiv	vidual truss web and/or ch	ord members only. Addit	ional temporary and pe	rmanent brad			MiTek	
		prevent collapse with poss and bracing of trusses an		ANSI/TPI1 Quality			a Component		MiTek USA, Inc.	

ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILEX REFERENCE PAGE MIL-7475 rev. 519/2020 BEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

			_	_		City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	JGG	Jack-Closed Girder	1	1		Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,	ID: INVEIOB				2. FMojeotloby 22-1163:3834212703:20 1Page 2 gpWgUmk1zTzmTKu?NRQnyLWSB
		1D.5IWEIGE		очиморчу	Touri-tixe mixe v residudige	gpwgomkizizinina innanyewob

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-C=-62, C-H=-62, I-K=-20 Concentrated Loads (lb) Vert: A=-65 V=-177(F)

LUMBER-BRACING-TOP CHORD 2x6 DF SS G TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 DF No.1&Btr G except end verticals WEBS 2x4 DF Stud/Std G BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

SLIDER Left 2x4 DF Stud/Std -G- 1-11-6

REACTIONS. All bearings 0-2-2 except (jt=length) F=0-6-14, B=0-7-6.

Max Horz B=135(LC 72) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) G, I except F=-151(LC 8), B=-169(LC 8), J=-117(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except F=1038(LC 17), B=558(LC 81), G=266(LC 45), I=288(LC 46) J=335(I C 47)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 B-D=-791/510, D-E=-1042/116, F-L=-136/893

- BOT CHORD B-N=-167/705, M-N=-167/705, L-M=-115/993
- WEBS D-N=-82/276, D-M=-305/655, E-M=-111/744, E-L=-1120/117

NOTES-

- 1) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) G, I, J.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) G, I except (jt=lb) F=151, B=169, J=117,
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) F, G, I, J.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads
- 14) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component
Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RA	DIAGONAL HIP GIRDER	2	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, Ir	2. RVIoje (New 22-116):38348D202201P186e 2
		ID:JNv	EloBxGko	fHe3542w	6p4yTouh-hUIY2?IG21sVsp	qYsnDlxkl8RyVNOGCGxqldQyLWS5

NOTES-

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 176 lb down and 91 lb up at -0-0-7, 63 lb down and 77 lb up at 2-8-7, 63 lb down and 77 lb up at 2-8-7, 63 lb down and 77 lb up at 2-8-7, 68 lb down and 32 lb up at 5-6-6, 68 lb down and 32 lb up at 5-6-6, 183 lb down and 67 lb up at 8-4-5, 183 lb down and 67 lb up at 8-4-5, 52 lb down and 34 lb up at 14-0-3, 139 lb down and 72 lb up at 16-10-2, and 55 lb down and 33 lb up at 19-8-1, and 117 lb down and 50 lb up at 21-3-14 on top chord, and 62 lb down and 95 lb up at 2-8-7, 62 lb down and 95 lb up at 2-8-7, 28 lb down and 3 lb up at 5-6-6, 28 lb down and 3 lb up at 5-6-6, and 62 lb down at 8-4-5 , and 62 lb down at 8-4-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

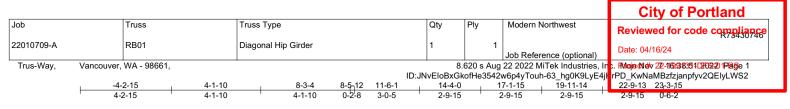
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

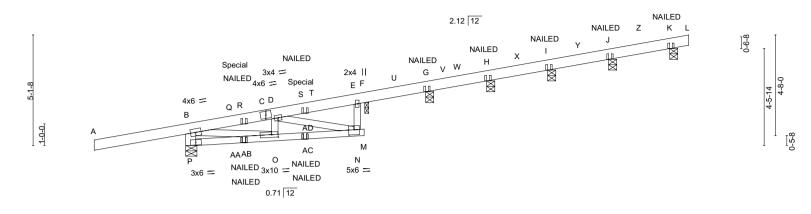
Uniform Loads (plf) Vert: A-B=-31, B-F=31(F=62), F-K=-31

Concentrated Loads (lb)

Vert: K=-107(F) B=-135 G=-31(F) I=-119(F) J=-34(F) V=42(F=21, B=21) W=-68(F=-34, B=-34) X=-324(F=-162, B=-162) AE=40(F=20, B=20) AF=-24(F=-12, B=-12) AG=-70(F=-35, B=-35)


Trapezoidal Loads (plf)

Vert: O=10(F=10, B=10)-to-L=-216(F=-103, B=-103)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

_ . .

Scale = 1:53.4

		3-3-4 -1-10							
Plate Offsets (X,Y) [N:0-3-0	0,0-2-12], [O:0-3-9,0-1-8]	-1-10							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.65 BC 0.52 WB 0.25 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) N-O A K N-O	l/defl >999 >92 n/a >999	L/d 240 90 n/a 360	PLATES MT20 Weight: 86 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x6 DF SS G BOT CHORD 2x4 DF No.1&E WEBS 2x4 DF Stud/SI B-P: 2x6 DF SS	td G *Except*	Т		except en	d verti	cals.	g directly ap ied or 6-0-0	pplied or 6-0-0 oc purlir oc bracing.	ıs,
(Ib) - Max Horz P=1 Max Uplift All I=- Max Grav All 44), FORCES. (Ib) - Max. Comp.// TOP CHORD B-P=-653/343 BOT CHORD N-O=-360/653	uplift 100 lb or less at joint(s) K except l 104(LC 8), J=-101(LC 8) reactions 250 lb or less at joint(s) except I=310(LC 45), J=308(LC 46), K=297(LC Max. Ten All forces 250 (lb) or less exc 3, B-D=-732/306, E-N=-84/500	P=-347(LC 8), F=-109(LC ot P=656(LC 16), F=538(I 2 47)	<i>//</i>	, i	,,				
 II; Exp B; Enclosed; MWFRS plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 ; DOL=1.15); Is=1.0; Rough C 3) Unbalanced snow loads hav 4) This truss has been designe non-concurrent with other liv 5) Plates checked for a plus or 6) This truss has been designe will fit between the bottom ct 8) A plate rating reduction of 2C 9) Bearing at joint(s) P conside capacity of bearing surface. 10) Provide mechanical connector connection is for uplift only 12) Beveled plate or shim requ 13) This truss is designed in action of action of the substance of the subs	minus 5 degree rotation about its center d for a 10.0 psf bottom chord live load no red for a live load of 20.0psf on the botto nord and any other members. 3% has been applied for the green lumbe rs parallel to grain value using ANSI/TPI ction (by others) of truss to bearing plate s recommended to connect truss to bear and does not consider lateral forces. ired to provide full bearing surface with t coordance with the 2018 International Re	posed ; end vertical left a 1.15); Pg=30.0 psf; Pf=2 10 psf or 2.00 times flat roo conconcurrent with any oth m chord in all areas when er members. 1 angle to grain formula. at joint(s) F. ing walls due to UPLIFT russ chord at joint(s) F, G	ind right exposed; 0.8 psf (Lum DOL f load of 20.8 psf of her live loads. re a rectangle 3-6- . Building designe at jt(s) P, F, G, H, S, H, I, J, K.	Lumber D =1.15 Plat on overhar 0 tall by 2- or should v I, J, and K	POL=1. e -0-0 wi erify C. This	60	E AND	ERED PROFE ENGINEER 93437PE OREGON ARCH 13, 20 OREGON ARCH 13, 20 OREW JOHN	
	ed for a moving concentrated load of 25		located at all mid	panels and	d at all			November 9,2	022
WARNING - Verify design param Design valid for use only with MTE a truss system. Before use, the bui building design. Bracing indicated is always required for stability and fabrication. storace. delivery. erect	Chord and Bottom Chord, nonconcurrer heters and READ NOTES ON THIS AND INCLUDED kt® connectors. This design is based only upon par- iliding designer must verify the applicability of design is to prevent buckling of individual truss web and/or to prevent collapse with possible personal injury an ion and bracing of trusses and truss systems, see in Truss Plate Institute, 2670 Crain Highway, Suite 2	MITEK REFERENCE PAGE MII ameters shown, and is for an in n parameters and properly incor r chord members only. Additior d property damage. For genera ANSI/TPI1 Quality Cr.	dividual building compo porate this design into al temporary and perm al guidance regarding th	onent, not the overall nanent bracin he	-	nent		MiTek USA, Inc. 400 Suntise Avenue, Suite Roseville, CA 95661	270

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RB01	Diagonal Hip Girder	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver,	WA - 98661,	ID:JN				2. Miloje Milow 22-116:38:3512:02:20 1Page 2 rPD_KwNaMBzfzjanpfyv2QElyLWS2

NOTES-

15) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 132 lb down and 87 lb up at -0-0-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.

17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

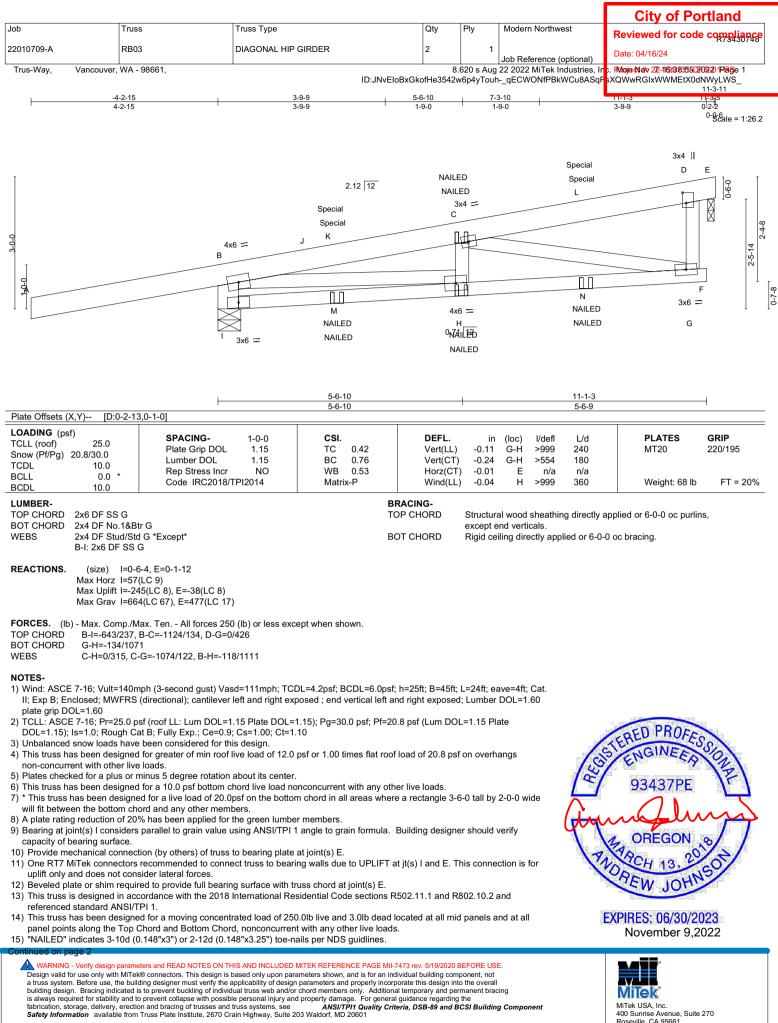
- Uniform Loads (plf)
- Vert: A-B=-62, F-L=-62
- Concentrated Loads (lb)

Vert: B=-49 G=-1(B) K=-11(B) R=78(B) S=-61(F) AC=-14(F=-7, B=-7)

Trapezoidal Loads (plf)

Vert: P=-0(F=10, B=10)-to-M=-169(F=-74, B=-74)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



<u>...</u>

-

....

.

MiTek USA, Inc 400 Sunrise Aven ue. Suite 270 Roseville, CA 95661

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RB03	DIAGONAL HIP GIRDER	2	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver	, WA - 98661,					:. Ryloje (Netv 22-116):38355D203-2) 1Plage 2
		ID:JNvEloBxGk	ofHe3542v	v6p4yTouh	hqECWONfPBkWCu8ASqF	sXQWwRGIxWWMEtX0dNWyLWS_

NOTES-

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 176 lb down and 91 lb up at -0-0-7, 170 lb down and 269 lb up at 2-8-7, 170 lb down and 269 lb up at 2-8-7, and 151 lb down and 54 lb up at 8-4-5, and 151 lb down and 54 lb up at 8-4-5 on top chord. The design/selection of such connection device(s) is the responsibility of others.

17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-B=-31, B-D=-31, D-E=-31, F-I=-10

Concentrated Loads (lb)

Vert: B=-135 H=-43(F=-21, B=-21) K=127(F=63, B=63) L=-261(F=-130, B=-130) M=-4(F=-2, B=-2) N=-83(F=-41, B=-41) K=-41(F=-2, B=-2) N=-83(F=-41, B=-41) K=-120(F=-130, B=-130) M=-4(F=-2, B=-2) N=-83(F=-41, B=-41) K=-120(F=-2, B=-2) K=-120(F=-2) K=-120(F=-2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

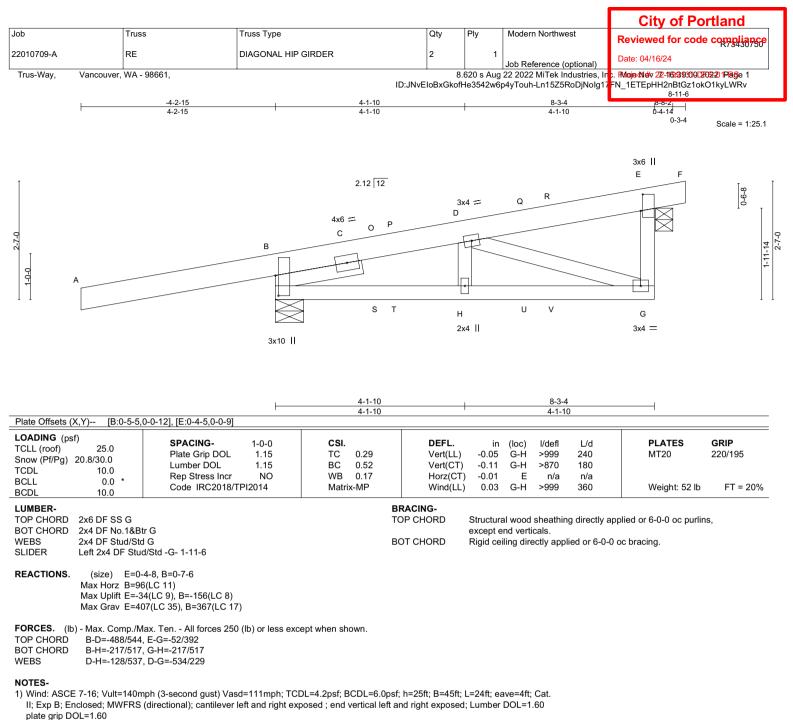
lob		Truss		054	Ply	Modern Northwest	City of Por	
Job 22010709-A		Truss	Truss Type DIAGONAL HIP GIRDER	Qty 1	Ply 1	would not invest	Reviewed for code	compliance
		KD WA - 98661,				Job Reference (optional) 22 2022 MiTek Industries, Ir	Date: 04/16/24	
nus-way, va	-4-2-1		8-6-7 , 11-3-11 ,			6p4yTouh-PPvK8QQYh6643		
F	4-2-15		4-3-3 2-9-4	5-7-14	5-7-14	2-7-13	6-0-6 0-8-15	
								Scale = 1:69.1
						2.12 12		
T							AE K L	TZ I
			Special	4x6 =	10	I AD J		0- 1-9-
		INAILED	LED 2x4	AA G H	AB AC			
9-7-0		NAILED 3x4 =	' <u> </u> +					<u>6-7-(</u>
		B C V D						
P 0-11-0								
0 4		AF O	AGAH N M					
		3x10 NAILED 2x4 NAILED	3x4 = AILED					
			AILED					
		4-3-4	<u>8-6-1 8-</u> 6-7					
Plate Offsets (X,Y)) [B:0·	4-3-4 -5-5,Edge]	4-2-13 0-0-6					
LOADING (psf)	25.0	SPACING-	1-0-0 CSI .	DEFL.	in	(loc) l/defl L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg) 20.8		Plate Grip DOL Lumber DOL	1.15 TC 0.2 1.15 BC 0.5	,) -0.05	N-Ó >999 240 N-O >937 180	MT20	220/195
TCDL BCLL	10.0 0.0 *	Rep Stress Incr Code IRC2018/	NO WB 0.1	7 Horz(C	Γ́) -0.01	l n/a n/a	Weight: 103 lb	FT = 20%
BCDL	10.0			BRACING-		NO 000 000	Wolgita 100 lb	
TOP CHORD 2x	6 DF SS 4 DF No.			TOP CHORD		al wood sheathing directly and verticals.	applied or 6-0-0 oc purlins	
WEBS 2x	4 DF Stu	d/Std G		BOT CHORD		iling directly applied or 6-0	-0 oc bracing.	
		Stud/Std -G- 1-6-0						
(lb) - M	lax Horz	gs 0-2-2 except (jt=length) I B=126(LC 11)						
	lax Grav	All reactions 250 lb or less	<pre>bint(s) N, I, J, K except B=-145(LC at joint(s) except B=366(LC 31), I</pre>					
		I=295(LC 47), J=296(LC 48	3), K=292(LC 49)					
		np./Max. Ten All forces 25 /531, E-N=-375/147	0 (lb) or less except when shown.					
		/478, N-O=-243/478 /520, D-N=-491/256						
NOTES-		· · · · · · · · · · · · · · · · · · ·						
1) Wind: ASCE 7-7			sd=111mph; TCDL=4.2psf; BCDL left and right exposed ; end vertic					
plate grip DOL=	=1.60		1.15 Plate DOL=1.15); Pg=30.0 ps	•			ED PROP	8 51
DOL=1.15); Is=	1.0; Roug	h Cat B; Fully Exp.; Ce=0.9	; Cs=1.00; Ct=1.10	si, 1 1–20.0 psi (Luin Do	JE-1.1311	ale	TEREDITIOFES	2
4) This truss has b	been desig	5 5	live load of 12.0 psf or 2.00 times	flat roof load of 20.8 p	on overh	angs	1 EN CA	12
	for a plus	s or minus 5 degree rotation				~	93437PE	
7) * This truss has	been des	signed for a live load of 20.0	chord live load nonconcurrent with opsf on the bottom chord in all area		-6-0 tall by	2-0-0 wide		
		n chord and any other mem of 20% has been applied for	bers. the green lumber members.			C C C C C C C C C C C C C C C C C C C		
			o bearing plate at joint(s) F, H, I, J ect truss to bearing walls due to U		H, I, J, and	K. This	OREGON	21
		only and does not consider l equired to provide full beari	ateral forces. ng surface with truss chord at joint	(s) F, H, I, J, K.			VOPEH 13.	9
	esigned ir	n accordance with the 2018	International Residential Code se		R802.10.2	and	JOHN JOHN	
13) This truss has	been des	signed for a moving concen	rated load of 250.0lb live and 3.0l d, nonconcurrent with any other li		id panels a	and at all	EXPIRES: 06/30/20	23
14) "NAILED" indic	cates 3-1	0d (0.148"x3") or 2-12d (0.1	48"x3.25") toe-nails per NDS guid face of the truss are noted as fror	llines.			November 9,20	
Continued on page	2			., .,				
Design valid for us	se only with	ivii i eke connectors. This design is	HIS AND INCLUDED MITEK REFERENCE F based only upon parameters shown, and is	s for an individual building co	nponent, not			
building design. B is always required	Bracing indic I for stability	ated is to prevent buckling of indivi and to prevent collapse with possil	applicability of design parameters and prop dual truss web and/or chord members only. le personal injury and property damage. F	Additional temporary and p or general guidance regardir	ermanent brac g the	cing	MiTek	
fabrication, storage	e, delivery, e	erection and bracing of trusses and		uality Criteria, DSB-89 and		g Component	MiTek USA, Inc. 400 Sunrise Avenue, Suite 2 Roseville, CA 95661	70
							1 NOSEVINE, UA 30001	

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
						R73430749
22010709-A	RD	DIAGONAL HIP GIRDER	1	1		Date: 04/16/24
					Job Reference (optional)	
Trus-Way, Vancouver,	WA - 98661,		8.	620 s Aug	22 2022 MiTek Industries, In	. RMojecNøv 272-1169:38358D2703-201Pla6je 2
		ID:JNv	EloBxGko	fHe3542w6	3p4yTouh-PPvK8QQYh6643	/tl7yyZ928ToTNXjzshZUFHzryLWRx

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: A-B=-31, B-E=31(F=62), E-Y=31(F=62), L-Y=-31

Concentrated Loads (lb) Vert: E=-192(F) B=-135 V=30(F=15, B=15) W=-74(F=-37, B=-37) AF=51(F=25, B=25) AG=-20(F=-10, B=-10)

Trapezoidal Loads (plf)

Vert: P=10(F=10, B=10)-to-M=-164(F=-77, B=-77)

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E except (jt=lb) B=156.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) E.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

EXPIRES: 06/30/2023 November 9,2022

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RE	DIAGONAL HIP GIRDER	2	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancou	ver, WA - 98661,		8	.620 s Aug	22 2022 MiTek Industries, In	2. RMoje M #v 22-11633930002702-20 1Plage 2
			ID:JNvEloBxGkof	He3542w6	p4yTouh-Ln15Z5RoDjNolg17	FN_1ETEpHH2nBtGz1okO1kyLWRv

NOTES-

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 176 lb down and 91 lb up at -0-0-7, 63 lb down and 93 lb up at 2-8-7, 63 lb down and 93 lb up at 2-8-7, and 68 lb down and 32 lb up at 5-6-6, and 68 lb down and 32 lb up at 5-6-6 on top chord, and 62 lb down and 95 lb up at 2-8-7, 62 lb down and 95 lb up at 2-8-7, and 28 lb down and 3 lb up at 5-6-6, and 28 lb down and 3 lb up at 5-6-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-B=-31, B-E=31(F=62), E-F=-31 Concentrated Loads (lb)

Vert: B=-135 P=42(F=21, B=21) Q=-68(F=-34, B=-34) T=40(F=20, B=20) U=-24(F=-12, B=-12) Trapezoidal Loads (plf)

Vert: I=10(F=10, B=10)-to-G=-159(F=-74, B=-74)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- -

....

									City of Portland
Job	Truss		Truss Type		Qty	Ply	Modern Northwes	t	Reviewed for code compliance
22010709-A	RF		DIAGONAL HIP	GIRDER	1	1	Job Reference (or	tional)	Date: 04/16/24
Trus-Way, Vanc	ouver, WA - 980	661,					22 2022 MiTek Ind	ustries, In	2. PMoje Niety 22-116:39:30321/02:20 1Plage 1
-4-2-15		5-8-3		11-1-3 1	11-3 ₁ 11	16-11-9	o4yToun-IMIDB7TgV	vein97mi	WYks6rKXU?EODnQjmy2e3yLWRs 22-7-7 24-1-13
4-2-15		5-8-3		5-5-0	0-2-8	5-7-14			5-7-14 1-6-6
								2.12	Scale = 1:47.0
									I J
Ī						4x	6 =		Y Iç
				24		x	н		
				2x4 E	F W				
5-3-4			3x4 ≕ D	V	BN				4-5-14 5.3.4
		4x6 ≕ C T U							4-5
d.	В								
A-0 									
	\boxtimes	Z AA	×	AB L	к				
	3x10		2x4	5x6	6 =				
	1	5-8-3	1	11-1-3	1				
Plate Offsets (X,Y)	[B:0-5-1.0-0	5-8-3 -12], [L:0-3-0,0-3-0]	1	5-5-0					
LOADING (psf)		SPACING-	1-0-0	CSI.	DEFL.	in	(loc) l/defl	L/d	PLATES GRIP
TCLL (roof) 20.8/3 Snow (Pf/Pg) 20.8/3	25.0	Plate Grip DOL	1.15	TC 0.29	Vert(LL) -0.10	L-M >639	240	MT20 220/195
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 NO	BC 0.86 WB 0.19	Vert(CT Horz(C		L-M >233 B n/a	180 n/a	
BCLL BCDL	0.0 * 10.0	Code IRC2018/1	PI2014	Matrix-MP	Wind(Ll	,		360	Weight: 93 lb FT = 20%
LUMBER-					RACING-	<u>.</u>			" L 000 "
	DF SS G DF No.1&Btr G	i		IC.	OP CHORD		end verticals.	directly a	applied or 6-0-0 oc purlins,
	DF Stud/Std G 2x4 DF Stud/S	td -G- 1-11-6		BC	OT CHORD	Rigid ce	eiling directly applie	ed or 6-0-	0 oc bracing.
		except (jt=length) B	-076						
(lb) - Max	Horz B=108(I	LC 11)							
Max	Uplift All upli 8)	ift 100 lb or less at joi	int(s) I except B=	120(LC 29), F=-170(LC	9), H=-104(LC	: 8), M=-28	35(LC		
Max		ctions 250 lb or less 1252(LC 1)	at joint(s) excep	t B=310(LC 31), F=865(L0	C 17), H=320(_C 44), I=3	303(LC		
		. ,	(III) I						
)=-293/537, E-	L=-67/596	(ID) or less exc	ept when shown.					
	Л=-401/197, L- Л=-491/213, D								
NOTES-									
1) Wind: ASCE 7-16;				DL=4.2psf; BCDL=6.0psf;					
II; Exp B; Enclose plate grip DOL=1.0		rectional); cantilever	left and right exp	oosed ; end vertical left an	nd right expose	d; Lumber	DOL=1.60	17	DED PROFE
		roof LL: Lum DOL=1 3; Fully Exp.; Ce=0.9;		1.15); Pg=30.0 psf; Pf=20.	.8 psf (Lum DC	DL=1.15 Pl	late		A ENGINEESS
3) Unbalanced snow	loads have be	en considered for thi	s design.					10	CE. SA LE
 I his truss has bee non-concurrent wi 			ive load of 12.0	psf or 2.00 times flat roof	load of 20.8 ps	st on overr	nangs	121	93437PE
 5) Plates checked for 6) This truss has been 				nconcurrent with any othe	er live loads				
7) * This truss has be	een designed f	or a live load of 20.0	psf on the bottor	n chord in all areas where		-6-0 tall by	2-0-0 wide		mpuns
will fit between the 8) A plate rating redu		and any other memb has been applied for t		r members.			(1	1 OREGON S
9) Provide mechanic 10) Provide mechani				t joint(s) F, H, I, M. capable of withstanding 1	00 lb unlift at i	oint(s) I ov	cent (it=lb)	X	RCH 12 2 X
B=120, F=170, ⊢	I=104, M=285.		•			Sint(3) I EX	oobr (Ir_in)		REWINS
				uss chord at joint(s) F, H, sidential Code sections R		R802.10.2	and		SW JULY
referenced stand	ard ANSI/TPI	1.		0.0lb live and 3.0lb dead lo				3	
				t with any other live loads		iu parieis a	anu al all		EXPIRES: 06/30/2023 November 9 2022

November 9,2022

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

 \mathbf{M} MiTek

d on page 2

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RF	DIAGONAL HIP GIRDER	1	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouver	: FMoje Niew 272-1169:39303D2703-20 1Plage 2					
		ID:JNvE	vWYks6rKXU?EODnQjmy2e3yLWRs			

NOTES-

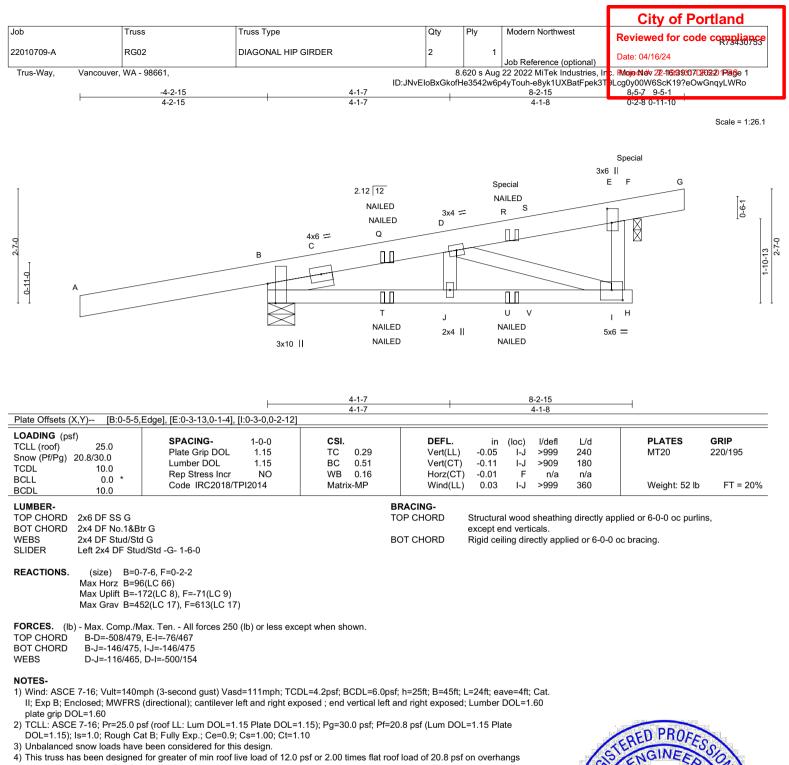
14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 176 lb down and 91 lb up at -0-0-7, 35 lb down and 31 lb up at 2-8-7, 63 lb down and 77 lb up at 2-8-7, 136 lb down and 69 lb up at 5-6-6, 68 lb down and 32 lb up at 5-6-6, 54 lb down and 39 lb up at 8-4-5, 183 lb down and 67 lb up at 8-4-5, 287 lb down and 101 lb up at 11-2-4, 49 lb down and 33 lb up at 14-0-3, and 55 lb down and 36 lb up at 16-10-2, and 55 lb down and 36 lb up at 19-8-1 on top chord, and 18 lb down at 2-8-7, 62 lb down and 95 lb up at 2-8-7, 28 lb down and 3 lb up at 5-6-6, 33 lb down and 31 lb up at 8-4-5, and 62 lb down at 8-4-5, and 112 lb down at 11-1-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: A-B=-31, F-J=-31


Concentrated Loads (Ib)

Vert: B=-135 K=-67(F) D=-149(F=-34, B=-115) F=-266(F) H=-34(F) M=-12(F) T=7(F=21, B=-14) V=-195(F=-162, B=-33) X=-28(F) Y=-34(F) Z=2(F=20, B=-18) AB=-43(F=-35, B=-8)

Trapezoidal Loads (plf)

Vert: N=0(F=5, B=5)-to-K=-226(F=-108, B=-108)

- non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) F.
- 10) One RT7 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B and F. This connection is for uplift only and does not consider lateral forces.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) F.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

COAD GASE (S)geStandard

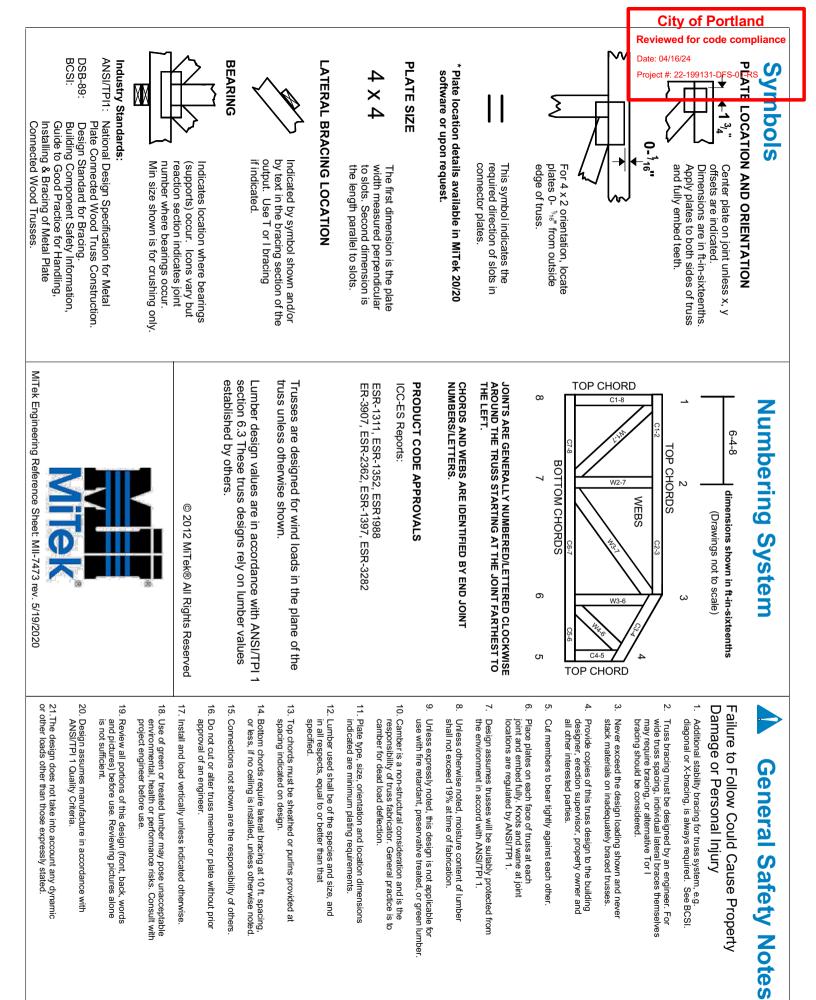
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EXPIRES: 06/30/2023 November 9,2022

						City of Portland
Job	Truss	Truss Type	Qty	Ply	Modern Northwest	Reviewed for code compliance
22010709-A	RG02	DIAGONAL HIP GIRDER	2	1	Job Reference (optional)	Date: 04/16/24
Trus-Way, Vancouve	r, WA - 98661,	ID:JNvE				2. Mojedlóv 22-16:393071202:2) 1Pag e 2 Lcg0y00W6ScK19?eOwGnqyLWRo

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: A-B=-31, B-E=31(F=62), E-F=31(F=62), F-G=-31

Concentrated Loads (lb) Vert: B=-135 F=-200(F) Q=8(F=15, B=-8) R=-151(F=-36, B=-115) T=1(F=25, B=-24) U=-34(F=-10, B=-24)

Trapezoidal Loads (plf)

Vert: K=10(F=10, B=10)-to-H=-158(F=-74, B=-74)

