CARL E. THOMPSON, JR., P.E.

Mailing Address: P.O. Box 305, Athens, TN 37371

Phone: (423) 405-3303

Email: Carl.E.Thompson.Jr.PE@gmail.com

Project #: 23-0238

Structural Calculations

2022 Oregon Structural Specialty Code (OSSC) (ASCE 7-16) Risk Category II, 100-mph On Running | Blade Wall Sign A 1'-11" x 1'-4 3/4"

Location: On Running, 529 NW 23rd Ave, Portland, OR 97210

11 Azar Court • P.O. Box 24186 Baltimore, Maryland 21227 T: 410-247-5300 • F: 410-247-1944

This document has been electronically signed and sealed by <u>Carl E. Thompson, Jr., P.E.</u> using a digital signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

RENEWS: 06/30/2024 October 20, 2023

Mailing Address: P.O. Box 305, Athens, TN 37371 Phone: (423) 405-3303 Email: Carl.E.Thompson.Jr.PE@gmail.com Structural Calculations Calc. by Date D.J.W. 10/20/2023 C.E.T. 10/20/2023	CARL E. THOMPSON, JR., P.E.		Running Blade Wall Sign A 1'-11" On Running, 529 NW 23rd Ave, Po		Project #: 23-0238	GINTERSON
D.J.W. 10/20/2023 C.E.T. 10/20/2023	Mailing Address: P.O. Box 305, Athens, TN 37371 Phone: (423) 405-3303	Section	Structural Calculatio	ns	Sheet no./rev.	10/20/2023
		,				(A) (B) (B)

Building Codes

2022 Oregon Structural Specialty Code (OSSC)

2021 International Building Code, ASCE 7-16, ACI 318-19

DESIGN LOADS

WIND LOADING
In accordance with ASCE7-16

Using the components and cladding design method

Building data

Type of roof Flat Length of building b = 200.00 ft Width of building d = 60.00 ft Height to eaves H = 30.00 ft

Mean height h = 30.00 ftEnd zone width a = 6.00 ft

General wind load requirements

Enclosure class (cl.26.12) Enclosed buildings Int pres coef +ve $GC_{pi_p} = 0.18$

Int pres coef –ve $GC_{pi_n} = -0.18$ Gust effect factor $G_f = 0.85$

Topography

Topo factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient $K_z = 0.70$ Velocity pressure $q_h = 15.2$ psf

Peak velocity pressure for internal pressure Peak velocity pressure – int $q_i = 15.23$ psf

Equations used in tables

Net pressure $p = q_h \times [GC_p - GC_{pi}]$ Components and cladding pressures - Wall (Table 30.3-1)

Components and clas	ading pres	sares man (ubic colo 1)					
Component	Zone	Length	Width	Eff. area	+GC _p	-GC _p	Pres (+ve)	Pres (-ve)
_		(ft)	(ft)	(ft ²)			(psf)	(psf)
Blade Wall Sign	5	1.9	1.4	2.7	0.90	-1.26	16.5	-21.9

Ultimate Design Wind Pressure, $P_{ULT} = 21.9 \text{ psf}$

SNOW LOAD REQUIREMENTS

In accordance with ASCE 7-16

Design Ground Snow Load, $S_{Snow} = 25.0 \text{ psf}$

Weight of Snow Load, $W_s = S_{Snow} * (16.75 \text{ in}) * (2 \text{ in}) = 5.816 \text{ lbs}$ (on the top of the sign)

SEISMIC LOAD REQUIREMENTS

In accordance with ASCE 7-16

Seismic Design Parameters: Seismic Design Category D, Risk Category II, Site Class D (Default): $S_S = 0.887$ $S_1 = 0.399$

Seismic Demands on Non-Structural Components (Billboards & Signs) (Sect 13.3.1)

Numerical Seismic design Value at 0.2s SA $S_{DS} = 0.710$

Effective seismic weight of the structure $W_p = 30$ lbs (conservative approximation)

Componant Importance Factor (section 13.1.3) $I_p = \underline{1.0}$ Componant Amplification Factor (table 13.5-1) $a_p = \underline{2.5}$ Componant Respone Modification Factor (table 13.5-1) $R_p = \underline{3.0}$

Height in structure of point of attachment of component with respect to the base, Average roof (top) height of structure with respect to the base., z = (14 ft + 0 in) = 14.000 ftz = (14 ft + 0 in) = 14.000 ftz = (14 ft + 0 in) = 30.000 ft

Seismic Design Force (Eq 13.3-1), $F_p = (0.4* a_p * S_{DS} * W_p)/(R_p / I_p) * (1+2* (min(z/h, 1))) = 13.7 \text{ lbs}$

Concurrent Vertical Force (Section 13.3.1.2), $F_c = W_p * S_{DS} * 0.2 = 4.260$ lbs

SUBMITTED 1/2/2024

RENEWS: 06/30/2024

Tedds calculation version 2.1.14

TRIANGLE

Carl E. Thompson, Jr., P.E.		unning Blade Wall Sign A 1'-11" x In Running, 529 NW 23rd Ave, Porti	1'-4 3/4"	Project #: 23-0238	STERED PROFISOR
Mailing Address: P.O. Box 305, Athens, TN 37371 Phone: (423) 405-3303 Email: Carl.E.Thompson.Jr.PE@gmail.com	Section	Structural Calculations		Sheet no./rev.	88057
	Calc. by D.J.W.	Date 10/20/2023	Chk'd by C.E.T.	Date 10/20/2023	OREGON G

Design Load Geometry

Tributary Load Area, $Area_1 = (1 \text{ ft} + 11 \text{ in}) * (1 \text{ ft} + 4.75 \text{ in}) = 2.675 \text{ ft}^2$ RENEWS: 06/30/2024

Area₂ = $(0 \text{ ft} + 2 \text{ in}) * (0 \text{ ft} + 4.375 \text{ in}) = 0.061 \text{ ft}^2$

Centroid of Area, Centroid $_1 = (1 \text{ ft} + 4.75 \text{ in}) / 2 + (0 \text{ ft} + 4.375 \text{ in}) = 1.062 \text{ ft}$

Centroid₂ = (0 ft + 4.375 in)/2 = 0.182 ftArea, $t = Area, t + Area, t = 2.736 \text{ ft}^2$

Total Area, $Area_{Total} = Area_1 + Area_2 = 2.736 \text{ ft}^2$

 $Distance \ of \ resultant \ lateral \ force, \\ d_r = (((Area_1*Centroid_1) + (Area_2*Centroid_2))/Area_{Total}) = \ \textbf{1.043} \ ft$

Moment of Area, $Area_{Moment} = d_r * Area_{Total} = 2.854 \text{ ft}^3$

Load Factor for 2-Support Design, $LCB_F = 1/2$

Design Loads per Support

 $\label{eq:moment_Dead} Vertical\ Dead\ Load\ Moment, \\ \qquad \qquad M_{oment_Dead} = (W_p)*d_r = {\tt 31.289}\ lb_ft$

Vertical Dead Load Shear, $S_{hear Dead} = (W_p) = 30.000 lbs$

Horizontal Wind Load Moment, $M_{oment_Wind} = P_{ULT} * Area_{Moment} = 62.495 lb_ft$ Horizontal Wind Load Shear, $S_{hear\ Wind} = P_{ULT} * Area_{Total} = 59.921 lbs$

 $\label{eq:Moment_Seismic_H} \mbox{Horizontal Seismic Moment}, \qquad \qquad \mbox{$M_{oment_Seismic_H} = F_p * d_r = 14.316 lb_ft}$

Horizontal Seismic Shear, $S_{hear_Seismic_H} = F_p = 13.727 \text{ lbs}$

 $\begin{array}{ll} \mbox{Vertical Seismic Load Moment,} & \mbox{$M_{oment_Seismic_V} = (F_c) * d_r = 4.443 \ lb_ft} \\ \mbox{Vertical Seismic Load Shear,} & \mbox{S_{hear} $_{Seismic_V} = (F_c) = 4.260 \ lbs} \\ \end{array}$

Vertical Snow Load Moment, $M_{oment_Snow} = (W_s) * d_r = 6.066 \text{ lb_ft}$ Vertical Snow Load Shear, $S_{hear_Snow} = (W_s) = 5.816 \text{ lbs}$

		F J
	On Running Blade Wall Sign A 1'-11" x 1'-4 3/4"	23-0
	Location: On Running, 529 NW 23rd Ave, Portland, OR 97210	
Section		Sheet no./rev.

Structural Calculations

10/20/2023

Date

D.J.W.

Project #: 23-0238

10/20/2023

Date

RENEWS: 06/30/2024

ASD Load Combinations

(#) Denotes Concurrent Combination Number

ASD Vertical Shear Load Combinations

- (1) 1.0 x D, (2) 1.0 x D + 0.6 x W,
- (3) 1.0 x D + 1.0 x S,
- (4) $1.0 \times D + 0.75(0.6* \text{ W}) + 0.75 \times \text{S}$,
- (5) 1.0 x D + 0.7 x E,
- (6) $1.0 \times D + 0.75*(0.7 \times E) + 0.75 \times S$,
- $V_{1V} = S_{hear Dead} = 30.000 lb$
- $V_{2V} = S_{hear\ Dead} + 0.6*\ 0.0\ lb = 30.000\ lb$

Chk'd by

C.E.T.

- $V_{3V} = S_{hear\ Dead} + S_{hear\ Snow} = 35.816\ lb$
- $V_{4V} = S_{hear\ Dead} + 0.75*\ S_{hear\ Snow} = 34.362\ lb$ $V_{5V} = S_{hear\ Dead} + 0.7* S_{hear\ Seismic\ V} = 32.982\ lb$
- $V_{6V} = S_{hear_Dead} + 0.75*(0.7*\ S_{hear_Seismic_V}) + 0.75*\ S_{hear_Snow} = \textbf{36.598 lb}$

ASD Horizontal Shear Load Combinations

- (1) 1.0 x D,
- (2) 1.0 x D + 0.6 x W,
- (3) 1.0 x D + 1.0 x S,
- (4) $1.0 \times D + 0.75(0.6* \text{ W}) + 0.75 \times \text{S}$,
- (5) 1.0 x D + 0.7 x E,
- (6) $1.0 \times D + 0.75(0.7 \times E) + 0.75 \times S$,
- $V_{1H} = 0.0 \text{ lb} = 0.000 \text{ lb}$
- $V_{2H} = 0.0 \text{ lb} + 0.6 \text{* } S_{\text{hear Wind}} = 35.953 \text{ lb}$
- $V_{3H} = 0.0 \text{ lb} + 0.0 \text{ lb} = 0.000 \text{ lb}$
- $V_{4H} = 0.0 \text{ lb} + 0.75* (0.6* S_{hear Wind}) + 0.75* 0.0 \text{ lb} = 26.964 \text{ lb}$
- $V_{5H} = 0.0 \text{ lb} + 0.7 * S_{hear \ Seismic \ H} = 9.609 \text{ lb}$
- $V_{6H} = 0.0 \text{ lb} + 0.75*(0.7* S_{hear Seismic H}) + 0.75* 0.0 \text{ lb} = 7.206 \text{ lb}$

ASD Vertical Moment Load Combinations

- (1) 1.0 x D,
- (2) 1.0 x D + 0.6 x W,
- (3) 1.0 x D + 1.0 x S,
- (4) $1.0 \times D + 0.75(0.6* \text{ W}) + 0.75 \times \text{S}$,
- (5) 1.0 x D + 0.7* E,
- (6) $1.0 \times D + 0.75(0.7 \times E) + 0.75 \times S$,
- $M_{1V} = M_{oment Dead} = 31.289 \text{ lb ft}$
- $M_{2V} = M_{oment\ Dead} + 0.6*\ 0.0\ lb\ ft = 31.289\ lb\ ft$
- $M_{3V} = M_{oment Dead} + M_{oment Snow} = 37.354 lb ft$
- $M_{4V} = M_{oment\ Dead} + 0.75*(0.6*\ 0.0\ lb_ft) + 0.75*\ M_{oment\ Snow} = 35.838\ lb_ft$
- $M_{5V} = M_{oment\ Dead} + 0.7* M_{oment\ Seismic\ V} = 34.399 lb_ft$
- $M_{6V} = M_{oment\ Dead} + 0.75*(0.7*\ M_{oment\ Seismic\ V}) + 0.75*\ M_{oment\ Snow} = 38.170\ lb_ft$

ASD Horizontal Moment Load Combinations

- $(1) 1.0 \times D$,
- (2) 1.0 x D + 0.6 x W,
- (3) 1.0 x D + 1.0 x S,
- (4) $1.0 \times D + 0.75(0.6* \text{ W}) + 0.75 \times \text{ S}$,
- (5) 1.0 x D + 0.7* E,
- (6) $1.0 \times D + 0.75(0.7*E) + 0.75 \times S$,
- $M_{1H} = 0.0 \text{ lb } \text{ ft} = 0.000 \text{ lb } \text{ ft}$
- $M_{2H} = 0.0 \text{ lb_ft} + 0.6* M_{oment Wind} = 37.497 \text{ lb_ft}$
- $M_{3H} = 0.0 \text{ lb } \text{ ft} + 0.0 \text{ lb } \text{ ft} = 0.000 \text{ lb } \text{ ft}$
- $M_{4H} = 0.0 \text{ lb_ft} + 0.75* (0.6* M_{oment Wind}) + 0.75* 0.0 \text{ lb_ft} = 28.123 \text{ lb_ft}$
- $M_{5H} = 0.0 \ lb_ft + 0.7* \ M_{oment_Seismic_H} = \textbf{10.021} \ lb_ft$
- $M_{6H} = 0.0 \text{ lb } ft + 0.75*(0.7* M_{oment Seismic H}) + 0.75* 0.0 \text{ lb } ft = 7.516 \text{ lb } ft$

Worst Case Concurrent ASD Factored Design Loads (per support) (load combination 2 controls)

- Vertical Moment,
- Vertical Shear,
- Horizontal Moment,
- Horizontal Shear,

- $M_{\text{oment V}} = M_{2V} * LCB_F = 15.644 \text{ lb ft}$ $S_{hear\ V} = V_{2V} * LCB_F = 15.000 lbs$
- $M_{oment H} = M_{2H} * LCB_F = 18.748 lb ft$
- $S_{hear\ H} = V_{2H} * LCB_F = 17.976 \ lbs$

arl E. Thompson, Jr., P.E.	Laastian	Running Blade Wall Sign A 1'-11 On Running, 529 NW 23rd Ave, P		Project #: 23-0238	RED PROFISE
Mailing Address: P.O. Box 305, Athens, TN 37371 Phone: (423) 405-3303 Email: Carl.E.Thompson.Jr.PE@gmail.com	Section	Structural Calculation	ons	Sheet no./rev.	88057 8 10/20/2023
	Calc. by D.J.W.	Date 10/20/2023	Chk'd by C.E.T.	Date 10/20/2023	OREGON CE

Use: (4) 1/4"ø 316A Class 2A Stainless Steel Threaded Rod & Equivalent Nuts & Washers. RENEWS: 06/30/2024 $F_u = 75 \text{ ksi}$ $F_t = (0.75/2) * F_u = 28.125 \text{ ksi}$ $F_v = (0.450/2) * F_u = 16.875 \text{ ksi}$ Bolt Diameter, Bolt_{dia} = 0.250 in Bolt Area, Bolt_{area} = $(\pi * (Bolt_{dia})^2 / 4) = 0.049 \text{ in}^2$ Vertical Plate Width, Y = 1.38 in Horizontal Plate Width, X = 1.38 in Support Depth, d = 1 in Vertical Bolt Spacing, $Bolt_{spacing_Y} = 1.38$ in Horizontal Bolt Spacing, $Bolt_{spacing}X = 1.38$ in Vertical Plate Prying Distance (Dead Load), Plate_{Prying Distance Y} = 16.375 in Horizontal Plate Prying Distance (Wind Load), Plate_{Prying Distance X = 2.17 in}

Shear Check	
Number of Bolts in Shear,	$N_Bolt_{shear_Y} = 2$
Number of Bolts in Shear,	$N_Bolt_{shear_X} = 2$
Shear Vertical Load per Bolt,	$Bolt_{shear_Y} = S_{hear_V} / N_Bolt_{shear} = 7.500 lbs$
Shear Horizontal Load per Bolt,	$Bolt_{shear_X} = S_{hear_H} / N_Bolt_{shear} = 8.988 lbs$
Shear Total Load per Bolt (worst case),	$Bolt_{shear} = Bolt_{shear_Y} + Bolt_{shear_X} = 16.488 lbs$
Shear Stress on Bolt,	$f_v = Bolt_{shear} / Bolt_{area} = 0.336 \text{ ksi}$
Unity Check: Mounting Bolt Shear,	$UC_v = f_v / F_v = 2.0 \% < 100\% \text{ OK}$

Tension Check Number of Bolts in Tension per Column,

Number of Bolts in Tension per Column,	N_B
Number of Threads Per Inch,	$n_t = 1$
Tensile Area of Bolt,	$A_t =$
Tension Vertical Load per Bolt,	Bolt
Tension Horizontal Load per Bolt,	Bolt
Tension Total Load per Bolt (worst case),	Bolt
Tensile Stress in Bolt	$f_{*} = I$

	Telistic Sucss in Doit,
	Unity Check: Mounting Bolt Tension,
\sim	1. 175 . 0.61

Combined Tension & Shear

$N_Bolt_{tension Y} = 2$ $Bolt_{tension X} = 2$

$$n_t = 20.0$$
 per AISC13, Table 7-18
 $A_t = (\pi / 4) * (Bolt_{dia} - 0.9743 \text{ in } / n_t)^2 = 0.032 \text{ in}^2$

$$\begin{aligned} & Bolt_{tension_Y} = M_{oment_V} \, / \, (N_Bolt_{tension} * Bolt_{spacing_Y}) = 17.005 \; lbs \\ & Bolt_{tension_X} = M_{oment_H} \, / \, (N_Bolt_{tension} * Bolt_{spacing_X}) = 20.379 \; lbs \\ & Bolt_{tension} = Bolt_{tension_Y} + Bolt_{tension_X} = 37.383 \; lbs \end{aligned}$$

$$f_t = Bolt_{tension} / A_t = 1.175 \text{ ksi}$$

 $UC_t = f_t / F_t = 4.2 \% < 100\% \text{ OK}$

$$UC_{tv} = UC_t^2 + UC_v^2 = 0.2 \% < 100\% \text{ OK}$$

HILTI HIT-HY 270 Adhesive Anchoring System (1/4" with 3.125" minimum embedment)

Ultimate Design Tension Strength,	$N_{des} = 530 \text{ lb}$	Per HILTI, Section 3.2.5, Table 11 (hollow	brick)
Allowable Stress Safety Factor,	$\alpha_{\rm ASD} = 1.6$	(HILTI Section 3.1.8.6)	
ASD Tension Strength (non-static load	s), $N_{\text{des_ASI}}$	$_{\rm D} = (N_{\rm des} / \alpha_{\rm ASD}) *0.705 = 233.531 \text{ lb}$	Pass, > Bolttension

HILTI Quick-Con II+ Concrete Screw Anchor (1/4" with 1.0" minimum embedment)

ASD Tension Strength (Per HILTI, Section 3.3.19, Table 4 (Clay Brick))	$N_{des_ASD} = 205 \text{ lb}$ Pass, > Bolt _{tension}
--	---

HILTI HLC Sleeve Anchor (1/4" Ø " with 1.0" minimum embedment)

ASD Tension Strength	(Per HILTI, Section 3.3.18, Table 6 (Clay Brick))	$N_{\text{des ASD}} = 350 \text{ lb } Pass, > Boltension$

Mounting Plate Design

ASTM AISI 304 Stainless Steel:	$F_y = 31.2 \text{ ksi}$	$\Omega_{\rm b} = 1.67$	$\Omega_{\rm v} = 1.67$
$M_{plate_{Y}} = M_{oment_{V}} / 2 = 7.822 lb_{ft}$	·		
Thickness Required Without Gussets (Verti	cal), $t_y = \sqrt{(M_{plate})}$	$_{Y}$) / (($F_{y} * X / 4$) / Ω_{1}	(0,0) = 0.121 in
$M_{plate_X} = M_{oment_H} = 18.748 \text{ lb_ft}$			
Thickness Required Without Gussets (Horiz	zontal), $t_x = \sqrt{((M_{plate})^2)}$	$_{e_{X}}) / ((F_{y} * Y / 4) / \Omega$	$(a_b)) = 0.187 \text{ in}$
Use: Plate Thickness: 3/8 in	Plate Width: 2.95"	[75 mm], G	usset Plates: (0)
Side to Side Bolt Spacing: 2 @ 0 32 in	1. To	n to Bottom Bolt S	nacing: 3 @ 0 32 in

SUBMITTED 1/2/2024

Project			Project #:	
On Running Blade Wall Sign A 1'-11" x 1'-4 3/4"			23-0238	
Location: On Running, 529 NW 23rd Ave, Portland, OR 97210				
Section			Sheet no./rev.	
Structural Calculations			6	
Calc. by	Date	Chk'd by		Date
D.J.W.	10/20/2023	C.E.T.		10/20/2023

Support Design

Round 1.0" x 0.113" Wall Tube (Top & Bottom).

CALCULATION OF SECTION PROPERTIES

RENEWS: 06/30/2024

Tedds calculation version 2.0.07

$$\begin{split} A &= 0.31 \text{ in}^2 \\ I_{uu} &= 31.5 \times 10^{-3} \text{ in}^4 \\ r_{uu} &= 0.32 \text{ in} \\ Z_{xx} &= 0.000 \text{ in}^3 \\ X_e &= 0.00 \text{ in} \\ X_p &= 0.00 \text{ in} \end{split}$$

 $S_{xx} = 62.9 \times 10^{-3} \text{ in}^3$

$$\begin{split} I_{\rm vv} &= 31.5 {\times} 10^{\text{-}3} \text{ in}^4 \\ r_{\rm vv} &= 0.32 \text{ in} \\ Z_{yy} &= 0.000 \text{ in}^3 \\ Y_e &= 0.00 \text{ in} \\ Y_p &= 0.00 \text{ in} \end{split}$$

 $S_{yy} = 62.9 \times 10^{-3} \text{ in}^3$

 $I_{xx} = 31.5 \times 10^{-3} \text{ in}^4$ $r_{xx} = 0.32 \text{ in}$ $I_{yy} = 31.5 \times 10^{-3} \text{ in}^4$ $r_{yy} = 0.32 \text{ in}$

ASTM AISI 304 Stainless Steel:

 $F_v = 31.2 \text{ ksi}$

 $\Omega_{\rm b} = 1.67$

 $\Omega_{\rm v} = 1.67$

Allowable Shear Capacity (X-Axis), Allowable Shear Capacity (Y-Axis), $S_{X_Allowable} = 0.6* (F_y *A / 2) / \Omega_v = 1764.864 lbs$ $S_{Y_Allowable} = 0.6* (F_y *A / 2) / \Omega_v = 1764.864 lbs$

Unity Check: Biaxial Shear,

 $UC_v = (S_{hear_H} / S_{X_Allowable}) + (S_{hear_V} / S_{Y_Allowable}) = 1.9 \% < 100\% \text{ OK}$

Allowable Moment Capacity (X-Axis), Allowable Moment Capacity (Y-Axis),

 $M_{X_Allowable} = (F_y *S_{xx}) / \Omega_b = 97.991 \text{ lb_ft}$ $M_{Y_Allowable} = (F_y *S_{yy}) / \Omega_b = 97.991 \text{ lb_ft}$

Unity Check: Biaxial Bending,

 $UC_b = (LCB_F * M_{oment H} / M_{X Allowable}) + (LCB_F * M_{oment V} / M_{Y Allowable}) = 17.5 % < 100 % OK$

