ADDITIONAL CALCULATION FOR WOODWARD HOUSE REVISION 1

22-156807 REV 01 RS

DESIGN PARAMETERS:

Seismic Design Category 'D' SDS = Wind Exposure 'B' V (ult) = 98 MPH

Snow = 25 PSF Live = 40 PSF (60 PSF at decks) Soil Bearing = 1,500 PSF (assumed)

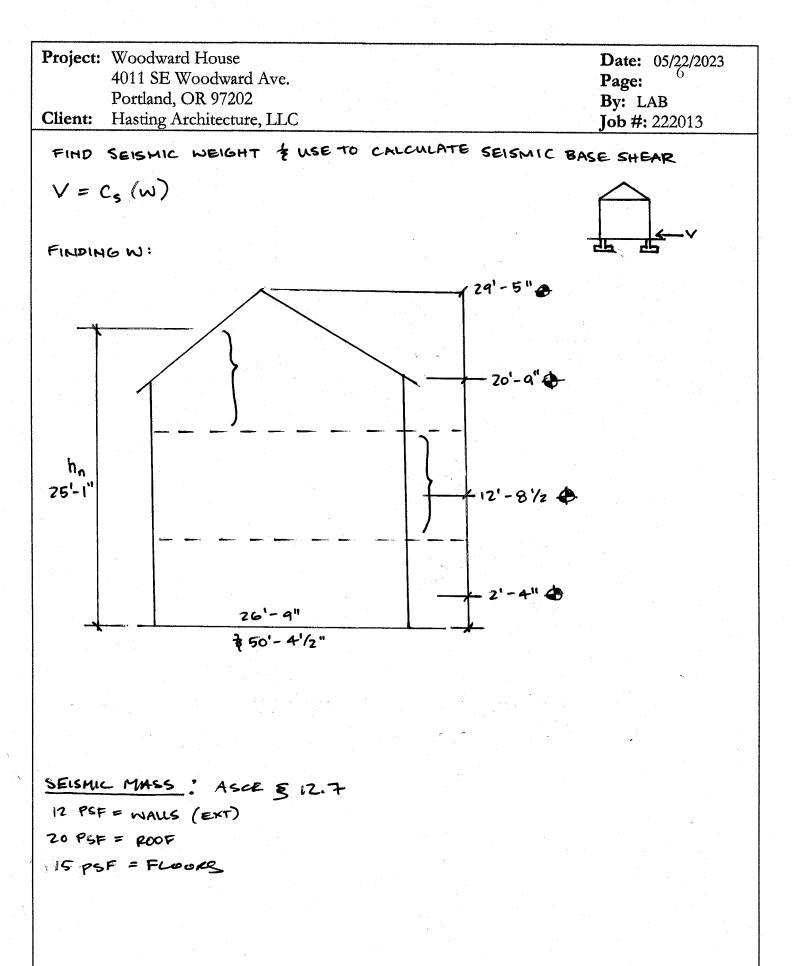
Project:	Woodward House	Date: 05/22/2023
	4011 SE Woodward Ave.	Page: 2
	Portland, OR 97202	By: LAB
Client:	Hasting Architecture, LLC	Job #: 222013

LATERAL ANALYSIS

Project: Woodward House 4011 SE Woodward Ave. Portland, OR 97202	Date: 05/22/2023 Page: 3 By: LAB
Client: Hasting Architecture, LLC	Job #: 222013
RISK CATEGORY : IL	
SITE CLASS : (SEE PAGE 3-4) 'D'	
$S_{s} = 0.89$	
$S_1 = 0.39$	
$F_{a} = 1.2$	
Fy: 0.3 = 2.0 , 0.4 = 1.9 -> NULL PER 11.4.8 ? 1	OF 1.909)
$S_{MS} = F_a(S_S) = 1.2(0.89)$	
$S_{MS} = 1.068$	
$S_{M1} = \frac{11000}{11000} = 1.909(0.39) = 0.749$	
$S_{DS} = \frac{2}{3}S_{MS} = \frac{2}{3}(1.068)$	
$5_{bs} = 0.712$	
$S_{D1} = MUL : : : : : : : : : : : : : : : : : : :$	
$h_n = 4' - 4'' + 20' - 9''$	
$h_n = 25' - 1''$	
N = 2	·
$I_e = 1.0$	
$R = 6\frac{1}{2}$	
R = 3	
$C_d = 4$	

OSH PD

4011 SE Woodward St, Portland, OR 97202, USA


Latitude, Longitude: 45.50216530000001, -122.6211085

			SE Clinton St	SE Clinton S
Meli	ssa T. Kieffer, LPCA		SE Tagga	
Ð			SE Woodward St	
	St Paul Luth	neran Church	SE	
	SE Brooklyn S		SE Brooklyn St	
Goog	_		A CE	SE Brooklyn St Map data ©20
ate			5/22/2023, 10:49:02 AM	
esign C	ode Reference Document		ASCE7-16	
Risk Cate	egory		II	
ite Class	S		D - Default (See Section 11.4.3)	
уре	Value		Description	
S	0.89		MCE _R ground motion. (for 0.2 second period)	
³ 1	0.39		MCE _R ground motion. (for 1.0s period)	
S _{MS}	1.068		Site-modified spectral acceleration value	
5 _{М1}	null -See Section 11.4.8		Site-modified spectral acceleration value	
S _{DS}	0.712		Numeric seismic design value at 0.2 second SA	
S _{D1}	null -See Section 11.4.8		Numeric seismic design value at 1.0 second SA	
уре	Value	Description		
SDC	null -See Section 11.4.8	Seismic design ca	tegory	
а	1.2	Site amplification f	factor at 0.2 second	
v	null -See Section 11.4.8	Site amplification f	factor at 1.0 second	
PGA	0.404	MCE _G peak groun	nd acceleration	
PGA	1.2	Site amplification f	factor at PGA	
PGA _M	0.485	Site modified peak	ground acceleration	
ΓL	16	Long-period transi	tion period in seconds	
- SsRT	0.89	•••	argeted ground motion. (0.2 second)	
SsUH	1.011		hazard (2% probability of exceedance in 50 years) spectral acceleration	
SsD	1.5 Factored deterministic acceleration value. (0.2 second)			
S1RT	0.39 Probabilistic risk-targeted ground motion. (1.0 second)			
S1UH	0.45 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.			
61D	0.6	Factored determin	istic acceleration value. (1.0 second)	
PGAd	0.594 Factored deterministic acceleration value. (Peak Ground Acceleration)			
PGA _{UH}	0.404	Uniform-hazard (2	% probability of exceedance in 50 years) Peak Ground Acceleration	
C _{RS}	0.881	Mapped value of t	he risk coefficient at short periods	
C _{R1}	0.867	Mapped value of t	he risk coefficient at a period of 1 s	

https://www.seismicmaps.org

 Project: Woodward House 4011 SE Woodward Ave. Portland, OR 97202 Client: Hasting Architecture, LLC 	Date: 05/22/2023 Page: By: LAB Job #: 222013
V = CSW = . 11 × × 68,770 # = 7.56 KIPS	
$C_{5} = \frac{S_{D5}}{\begin{pmatrix} R \\ T_{e} \end{pmatrix}} = \frac{0.712}{\begin{pmatrix} 6.5 \\ 1.0 \end{pmatrix}}$	
$C_{s} = 0.1095$	
T _L (LONG PERIOD) = 165 (PER FIGURE 22-14)	
$T_a = C_t h_n^{\times}$	
$C_{t} = 0.07$ x = 0.75	
$h_{\eta} = 25' - 1''$	
$T_a = 0.02 (25.083)$	
$T_a = 0.224 s$	
$T_a \leq T_L$ so $C_{s_{max}} = \frac{S_{b1}}{T_a(\frac{R}{I_e})}$	
$C_{5} = 0.996$ MAX $0.224\left(\frac{6.5}{1.0}\right)$	
$C_{S_{MAX}} = 0.341 > C_{S} = 0.1095$	= 0.11

1

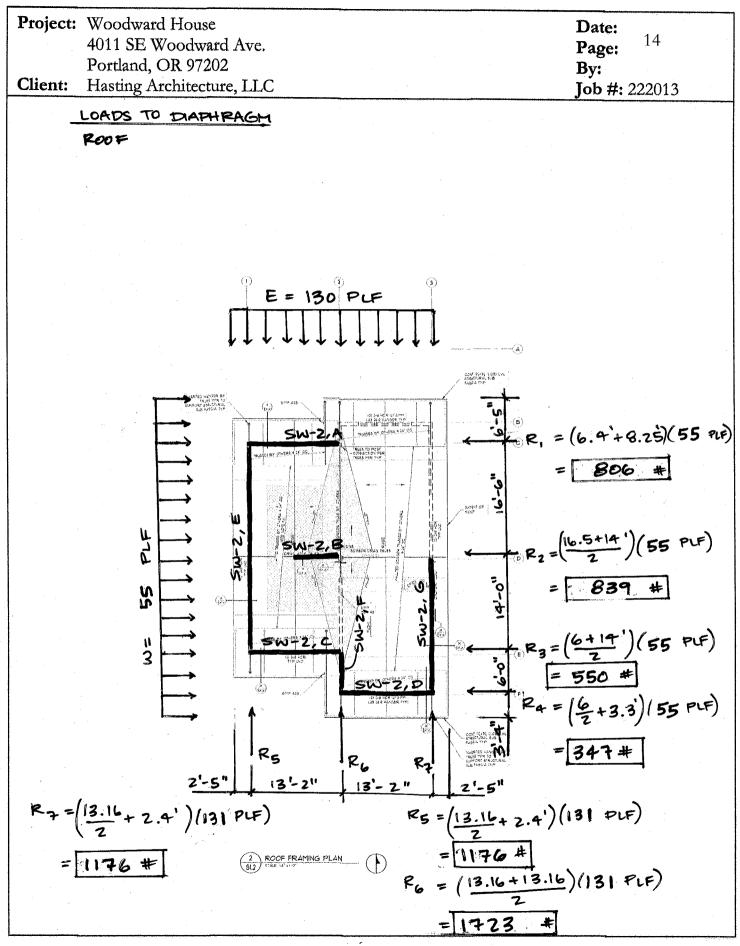
Project: Woodward House
4011 SE Woodward Ave.
Porthad, QR 07202
Client: Hasting Architecture, LLC
Level FLOOE hx Wx Wx hx Cvx Fx
Heitoht hx Wx Wx hx Cvx Fx
LAB
2 HP 10.6' 10.6' 37,070 339942 0.33 2496 #
FOOF 18.5' 18.5' 36,700 678950 0.66 4989 #

$$E: 1018892 ECyc = 0.99 \approx 1.0$$

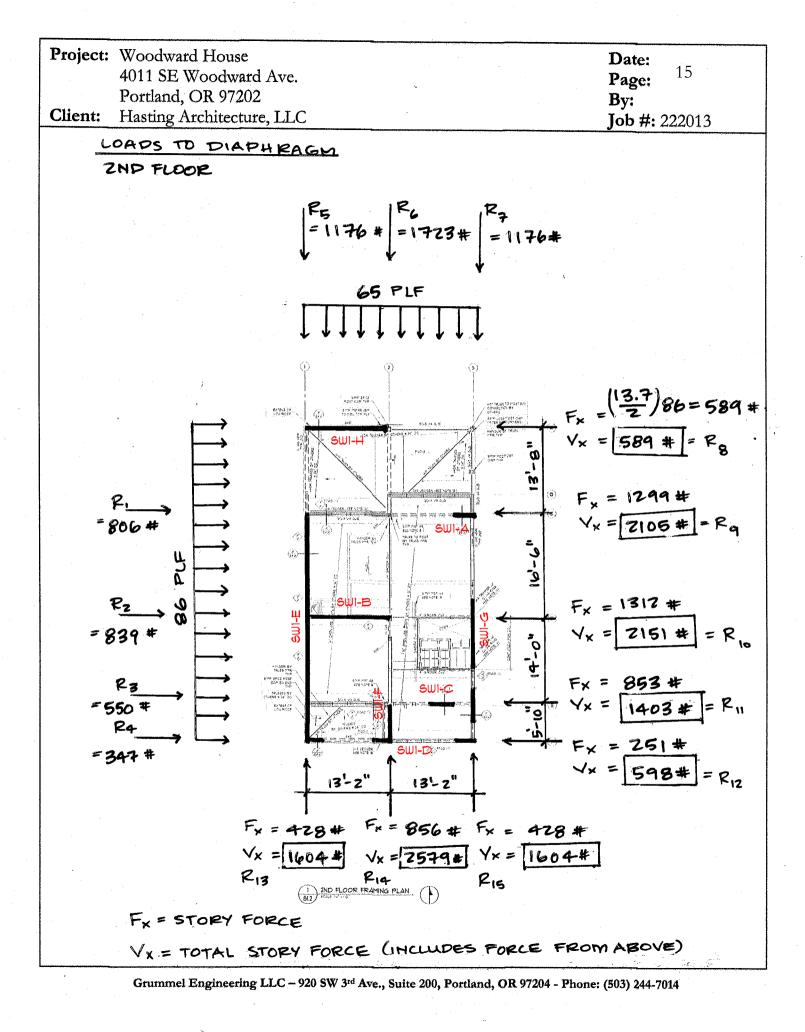
 $Cvx = Wx hx$
 $EVx = Vx hx hx EFx = 7,485 # ≈ 7.56
Wx : (SEISMIC MASS) $Fx = (C_{VX})(V_E)$
ROOF WEIGHT
(1350 Fr3) (20 FWF) + (27' (2 WALLS) + 38' (2 WALLS))(5.5' TRIB)(12 FSF)
AREA ROOF
 $= 32,070 \pm$
 $2ND FLOOR WEIGHT$
(960 Fr3) (15 FCT) + (80 Fr3)(20 PSF) + (333 Fr3)(20 PSF)
FLOOR + FRONT ROOF + BACK $20F
 $+ (27' (2 WALLS) + 38' (2 WALLS))(9' TRIB)(12 PSF)$
 $^{TENTERIOF WALLS}
 $= 36,700 \pm$$$

Project:	Woodward House 4011 SE Woodward Ave. Portland, OR 97202	Date: 05/22/2023 Page: By: LAB
Client:	Hasting Architecture, LLC	Job #: 222013
K=1 N=2	(PER 12.8.3 & PERIOD Ta = 0.2245)	

GE = 0 ft


Project: Woodward House
4011 SE Woodward Are.
Portland, OR 9702
Client: Hasting Architecture, LLC
WINP ANALYSIS:
RISE CATEGORY II

$$Y = 98$$
 mPH (ur) (PEE OSC & CITY OF PORTLAND)
 $K_d = 0.85$ (ASCE 26.6-1)
EXPOSURE : B (ASCE 26.6-1)
EXPOSURE : B (ASCE 26.7)
 $K_z = 1.0$
 $K_z = 1.0$ (ELEVATION = 171 FT)
 $K_z = 0.70$ (MEAN EOOF HEIGHT = 29'-3" $\approx 30'$)
 $* UPDATE TD 24.875? = 0.66 (26.10-1)$
 $q_a = 0.00256 K_2 K_{zt} K_d K_e V^2$
 $= 0.00256 (0.70)(1.0)(0.85)(1.0)(95)^2$
 $= 14.62$
 $q_z \approx 15$ PSF
 $z_{0.75}$
 $M_L = \frac{24.875}{z_{0.75}}$
 $g = 45°$


Project: Woodward House
4011 SE Woodward Ave.
Portland, OR 97202
Client: Hasting Architecture, ILC
Compare
$$P_{reor} \stackrel{?}{=} P_{wall}$$
 with CODE MINIMUMS:
Proper = 8.9 PSF > 8 PSF
Code MIN
Proper = 8.9 PSF > 8 PSF
Code MIN
Prove = 8.9 PSF > 8 PSF
Code MIN
Prove = 8.9 PSF > 16 PSF
Code MIN
Mall
WIND LATERAL FORCES TO DIAPH RAGMS:
a) ROOF DIAPH RAGM :
N-S DIRECTION = 16.6 PSF (188 FT³)
= 3120.8 # = 3121 #
E-W DIRECTION = 8.9 PSF (238 FT³) + 16.6 PSF (146 FT³)
= 4541.8 #
 ≈ 4542 #
b) Wall DIAPH RAGM :
N-S DIRECTION = 16.6 PSF (323 FT³) + 8.9 PSF (5.7 FT³)
= 5412.5 #
 ≈ 5413 #
E-W DIRECTION = 16.6 PSF (429 FT³) + 8.9 PSF (9 FT³)
= 7201.5 #
 ≈ 7202 #

Project:Woodward House 4011 SE Woodward Ave. Portland, OR 97202Client:Hasting Architecture, LLC	Date: Page: 12 By: Job #: 222013
GLOBAL SEISMIC VS BASE SHEAR COMPARISON :	
WIND: 0.6 FOR ASD	
EAST-WEST DIRECTION	
D+0.6W	
= D + 0.6 (4542 + 7202) ROOF WALLS	
\implies = D+ 7046 #	
NORTH - SOUTH DIRECTION	
D+0.6 W	
= D+ 0.6 (3121 + 5413) ROOF WALLS	
\Rightarrow = D+5120#	
SEISMIC :	
0.7 FOR ASD	
$(F_{X_{ROOF}} + F_{X_{ZND}}) 0.7 + D(1.0)$	
=(4989 + 2496)0.7 + D	
= 5239 # + D	
EAST - WEST DIRECTION WIND CONTROLS PLYWOOD SHEARWALL CAPACITY = 1.4 2 19 THUS USE WIND LOADS 2 WIND CAPACITIE	SWITHIN 5%
: NORTH-SOUTH SEISMIC GOVERNS ZUS CAPACITIES IN SDPWS	E SEISMIC

Project:Woodward House 4011 SE Woodward Ave. Portland, OR 97202Client:Hasting Architecture, LLC	Date: Page: ¹³ By: Job #: 222013
DISTRIBUTION OF LATERAL FORCES TO DIAPHRAG	M5:
SEISMIC(H-S): ZHO FLOOR:	
$\frac{F_{X}}{N-SL} = \frac{2496\%(0.7)}{26.75}$ $= 65.3$ $= 65.9$ $= 65.9$	
$\frac{\frac{RooF}{26'-a''}}{1} \qquad \frac{\frac{F_{x}}{F_{x}}}{N-SL} = \frac{4989 \# (0.7)}{26.75'} = 130.6$	
~131 PLF	
WIND (E-W);	
WIND CONT	
ZOOF :	
$\frac{\pm}{E-WL} = \frac{4542(0.6)}{50.42}$	
= 54.05	
~ 54 PLF	
ZND FLOOR:	
$\frac{\#}{E-WL} = \frac{7202(0.6)\#}{50.42'}$	
= 85.7	
× 86 PLF	

Grummel Engineering LLC - 920 SW 3rd Ave., Suite 200, Portland, OR 97204 - Phone: (503) 244-7014

Project:Woodward House 4011 SE Woodward Ave. Portland, OR 97202Client:Hasting Architecture, LLC	Date: 05/22/2023 Page: ¹⁶ By: LAB Job #: 222013
$R_q = F_x = \frac{13.7 + 16.5}{2} (86)$	$R_{13} = \frac{13.17}{2} (65)$
= 1299 #	= 428
$V_{x} = 1299 + 800$	$V_{X} = 428 + 1176$
= 2105 #	= 1604
R_{10} $F_{x} = \frac{16.5 + 14}{2} (86)$	$R_{14} = \left(\frac{13.17+13.17}{2}\right)(65)$
= 1312	= 856
Vx = 1312 + 839	Vx = 856 + 1723
= 2151	= 2579
$R_{11} = \frac{19+5.83}{2} (86)$	R_{16} $F_{x} = same as R_{13}$
= 853	
= 853+ 550	
$V_{\rm X} = 1403$	
R_{12} $F_{x} = \left(\frac{5.83}{2}\right) \left(\frac{86}{2}\right)$	
= 251	
$V_{x} = 251 + 347$	
= 598	

Project:Woodward House4011 SE Woodward Ave. Portland, OR 97202Client:Hasting Architecture, LLC	Date: 05/22/2023 Page: 17 By: LAB Job #: 222013
VX=TOTAL NORTH-SOUTH	an a fan diwend wat a stan a fan de skrief fan de skrie
= 1604 + 2579 + 1609	
V _x = 5787 # N-s	
$\frac{5239}{5787} = 0.91$	
Vx = TOTAL EAST - WEST	
= 589 + 2105 + 2151 + 1403 + 598	
Y _{x TOT} = 6846 #	
$\frac{6846}{7046} = 0.97$	

Project:	Woodward House	Date: 05/22/2023
	4011 SE Woodward Ave.	Page: 18
	Portland, OR 97202	By: LAB
Client:	Hasting Architecture, LLC	Job #: 222013
	·····	, , , , , , , , , , , , , , , , , , ,

SHEARWALL SCHEDULE

MARK	PANEL TYPE	NAILING AT PANEL EDGES	NOMINAL STUD & BLKG SIZE AT ADJOINING PANEL EDGES	SILL PLATE CONNECTION	RIM CONNECTION	SEISMIC · ·· CAPACITY	SEISMIC + * A355 SPACING		WIND * A356 SPACING
	15/32" PLYWOOD (1) FACE	8d (2½"x0.131 COMMON) (2½"x0.113 GALY BOX) © 6" OC	2×	5%"¢ @ 32" OC 16d @ 6" OC	A35 € 21" OC LTP4 € 16" OC	260 PLF	A35 @ 24" OC (2) A35 @ 48" OC LTP4 @ 24" OC	365 PLF	A35 @ 21" OC (2) A35 @ 36" OC LTP4 @ 16" OC
<u>B</u>	15/32" PLYWOOD (1) FACE	8d (2½"x0.131 COMMON) (2½"x0.113 GALY BOX) @ 4" OC	2x	5⁄8"¢ e 24" OC l6d e 4" OC	A35 @ 14" OC LTP4 @ 11" OC	380 PLF	A35 @ 20" OC (2) A35 @ 36" OC LTP4 @ 16" OC	530 PLF	A35 e 4" OC (2) A35 e 24" OC LTP4 e " OC
Â	"5/32" PLYWOOD (1) FACE	8d (2½"x0.131 COMMON) (2½"x0.113 GALY BOX) @ 3" OC	2x	5%"¢ ⊕ 24" OC l6d ⊕ 3" OC	A35 € 11" OC LTP4 € 9" OC	490 PLF	A35 @ 16" OC (2) A35 @ 32" OC LTP4 @ 12" OC	685 PLF	A35 @ II" OC (2) A35 @ I6" OC LTP4 @ 9" OC
À		6d (2/1%C.B) COMMON) (2/1%C.B) GALV BOX) 10d © 3" OC	Зх	5∕8"¢ ⊕ 16" OC	A35 © 5" OC LTP4 NOT AN OPTION	600 PLF (380 PLF	A35 @ 6" OC (2) A35 @ 12" OC LTP4 @ 6" OC	840 PLF	A35 © 5" OC LTP4 NO AN OPTION

HOLDOWN SCHEDULE

MARK	HOLDOWN	ATTACHMENT (EMBEDMENT)	CAPACITY
~	NO HOLDOWN/STRAP REQUIRED	NA	500 LBS
\bigtriangledown	MGT 37	NAIL TO (2) 2x4	3,700 LBS
2	HDU2-8D82.5	6B 5∕8"×24 (18")	3,075 LB6
2*	HDU2-6D62.5		3,015 LB6
4	HDU4-6D62.5	6B ⁵‰"x24 (18")	4,565 LBS
5	HDU5-6D62.5	6B ⁵‰"x24 (18")	5,645 LBS
8	HDU8-6D62.5	SB ½"x24 (18")	7,870 LBS
$\overline{\mathbb{V}}$	HHDQ11-6D62.5	6B "x30 (24")	11,175 LBS

Project: Client:	Woodward House 4011 SE Woodward Ave. Portland, OR 97202 Hasting Architecture, LLC			Date: 05/ Page: By: LAB Job #: 222	
SHEAR	-WALL AND HOLDOWIN DESI	9105			
SEC	OND FLOOP				
— S	12-A				
	V=806 \$				
	$H_a = 4 FT$ $L_1 = 3.5FT$ $H_0 = 5FT$ $L_0 = 5.25FT$ $H_b = 3FT$ $L_2 = 4.25FT$				
	SEE FTAD CALCULATOR: V=106 plf URIET= 744 #	A -			
- S	DEAD RESISTANCE = 12 PRF = 192 PR :. NET URJET = 744 # -	LF	1	et)	
— S	12-B	- Sk12-C			
	V = 839 # She lewath = 6.5 FT She Height = 8 PT V = 129 P - F Upuret = 1,033 $\#$ 37	V = 550 ff Ha = 4 FT Ho = 5 FT Hb = 3 FT BX compare	LI = 4.25 FT Lo = 5:26 FT L2 = 3.5 FT SOW TO SH2-A		
- 51	el-D			×	
	V = 347 # Hq = 4 FT L1 = 3 FT Ho = 5 FT L0 = 7.5 FT Hb = 3 FT L2 = 3 FT				
	SEE PTAD CALCULATOR:	V= 58 PLF UR-1187 = 308 岸			

e:	nation				Date:		
gner:	АМК				Date.		
nt:							
ect:	Woodward House						
Line:	SW2-A						
	L1(ft)) Lo1(ft)	L2(ft)				
	<u>V (Ib)</u>			Et			
				h _{above} (ft)			
				↑			
				h _{open} (ft)	÷		
				h _{pe}	h _{scall} (ft)		
				¥	-		
				h _{below} (ft)			
				Percent			
				+	↓		
	L	L _{wall} (ft		_			
			ulation Variables		1 25 0 1251 // -		
	V 806 lbf L1 3.50 ft h _a	Opening 1 4.00 ft	Wall Pier As		1.25-0.125h/bs Adj. Factor		
	L2 4.25 ft h _o	5.00 ft	P1=h _o /L1=	1.43	N/A		
	h _{wall} 12.00 ft h _b	3.00 ft	P2=h _o /L2=	1.18	N/A		
	L _{wall} 13.00 ft Lo1	5.25 ft					
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	744 lbf	6. Unit shear b		V/L)(L1+T1)/L1 =	104 plf	
	2. Unit shear above + below opening				V/L)(L1+11)/L1 = V/L)(T2+L2)/L2 =	104 plf	
	First opening: $va1 = vb1 = H/(h_a+h_b) =$	106 plf			/1*L1+v2*L2=V?	806 lbf OK	
	3. Total boundary force above + below openings		7. Resistance t	o corner force		0.54 11 6	
	First opening: O1 = va1 x (Lo1) =	558 lbf			R1 = v1*L1 = R2 = v2*L2 =	364 lbf 442 lbf	
	4. Corner forces						
	F1 = O1(L1)/(L1+L2) =	252 lbf	8. Difference c	orner force +			
	F2 = O1(L2)/(L1+L2) =	306 lbf			R1-F1 =	112 lbf	
	5. Tributary length of openings				R2-F2 =	136 lbf	
	T1 = (L1*Lo1)/(L1+L2) =	2.37 ft	9. Unit shear i	n corner zones			
	T2 = (L2*L01)/(L1+L2) =	2.88 ft			:1 = (R1-F1)/L1 =	32 plf	
				vo	:2 = (R2-F2)/L2 =	32 plf	
	V (lb)						
	Line 1	Line 2	Line 3	Line 4			
	2	-	-	-			
	→ → → → → → → → → →	···· ···		b)			
ck Summa	ary of Shear Values for One Opening						
	+h _b)+v1(h _o)=H?				224	520	744 lbf
	$+h_{b})-vc1(h_{a}+h_{b})-v1(h_{o})=0?$			744	224	520	0
3: va1(h _a	$+h_{b})-vc2(h_{a}+h_{b})-v1(h_{o})=0?$			744	224	520	0
4: vc2(h _a	+h _b)+v2(h _o)=H?				224	520	744 lbf
		Design Su	ummary*				
	Req. Sheathing Capacity 106 plf	4-Term Defle	ection			3-Term Deflection	
			11.01			Term Story Drift %	
	Req. Strap Force <u>306 lbf</u> Req. HD Force (H) <u>744 lbf</u>	4-Term Story D	rift %		5-	Term Story Drift /8	

*The Design Summary assumes that the shear wall is designed as blocked.

AMK

Project Information Code:

Designer: Client:

	client:		
$V(b) \qquad \qquad L1(ft) \qquad L2(ft) \qquad \qquad U(b) \qquad U(b) \qquad \qquad U(b) \qquad \qquad U(b) \qquad \qquad U(b) \qquad U(b) \qquad U(b) \qquad \qquad U(b) \qquad U(b$	Project:	Woodward House	
$V(b) \qquad V(b) \qquad I \qquad V(b) \qquad V$	Wall Line:	SW2-D	
V 347 lbf Opening 1 Adj. Factor Method = 1.25-0.125h/bs L1 3.00 ft ha 4.00 ft Wall Pier Aspect Ratio Adj. Factor L1 3.00 ft ha 5.00 ft P1=h_0/L1= 1.67 N/A hwall 12.00 ft ha 3.00 ft P2=h_0/L2= 1.67 N/A			
$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $		<u>(di) v</u>	
$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $			Pastooof
$L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $L_{wall}(ft)$ $Adj. Factor Method = 1.25-0.125h/bs$ $Mall Pier Aspect Ratio Adj. Factor N/A$ $P1=h_{o}/L1 = 1.67 N/A$ $P2=h_{o}/L2 = 1.67 N/A$			
$L_{wall}(ft)$ $L_{wall}(ft)$ $Shear Wall Calculation Variables$ $V 347 \text{ lbf} \qquad Opening 1 \qquad Adj. Factor Method = 1.25-0.125h/bs$ $L1 3.00 \text{ ft} \qquad h_a 4.00 \text{ ft} \qquad Wall Pier Aspect Ratio \qquad Adj. Factor \\ L2 3.00 \text{ ft} \qquad h_o 5.00 \text{ ft} \qquad P1=h_o/L1= 1.67 \qquad N/A$ $h_{wall} 12.00 \text{ ft} \qquad h_b 3.00 \text{ ft} \qquad P2=h_o/L2= 1.67 \qquad N/A$			
$L_{wall}(ft)$ $L_{wall}(ft)$ $Shear Wall Calculation Variables$ $V 347 \text{ lbf} \qquad Opening 1 \qquad Adj. Factor Method = 1.25-0.125h/bs$ $L1 3.00 \text{ ft} \qquad h_a 4.00 \text{ ft} \qquad Wall Pier Aspect Ratio \qquad Adj. Factor \\ L2 3.00 \text{ ft} \qquad h_o 5.00 \text{ ft} \qquad P1=h_o/L1= 1.67 \qquad N/A$ $h_{wall} 12.00 \text{ ft} \qquad h_b 3.00 \text{ ft} \qquad P2=h_o/L2= 1.67 \qquad N/A$			(L) (L)
Shear Wall Calculation VariablesV347 lbfOpening 1Adj. Factor Method =1.25-0.125h/bsL13.00 ft h_a 4.00 ftWall Pier Aspect RatioAdj. FactorL23.00 ft h_o 5.00 ftP1= $h_o/L1=$ 1.67N/A h_{wall} 12.00 ft h_b 3.00 ftP2= $h_o/L2=$ 1.67N/A			
V 347 lbf Opening 1 Adj. Factor Method = 1.25-0.125h/bs L1 3.00 ft h_a 4.00 ft Wall Pier Aspect Ratio Adj. Factor L2 3.00 ft h_o 5.00 ft P1= $h_o/L1=$ 1.67 N/A h_{wall} 12.00 ft h_b 3.00 ft P2= $h_o/L2=$ 1.67 N/A			Lwall(ft)
L13.00 ft h_a 4.00 ftWall Pier Aspect RatioAdj. FactorL23.00 ft h_o 5.00 ftP1= $h_o/L1=$ 1.67N/A h_{wall} 12.00 ft h_b 3.00 ftP2= $h_o/L2=$ 1.67N/A			Shear Wall Calculation Variables
L2 3.00 ft h _o 5.00 ft P1=h _o /L1= 1.67 N/A h_{wall} 12.00 ft h_b 3.00 ft P2=h _o /L2= 1.67 N/A			
h _{wall} 12.00 ft h _b 3.00 ft P2=h _o /L2= 1.67 N/A			
		L2 3.00 ft	
L _{wall} 13.50 ft Lo1 7.50 ft		h _{wall} 12.00 ft	
		L _{wall} 13.50 ft	Lo1 7.50 ft

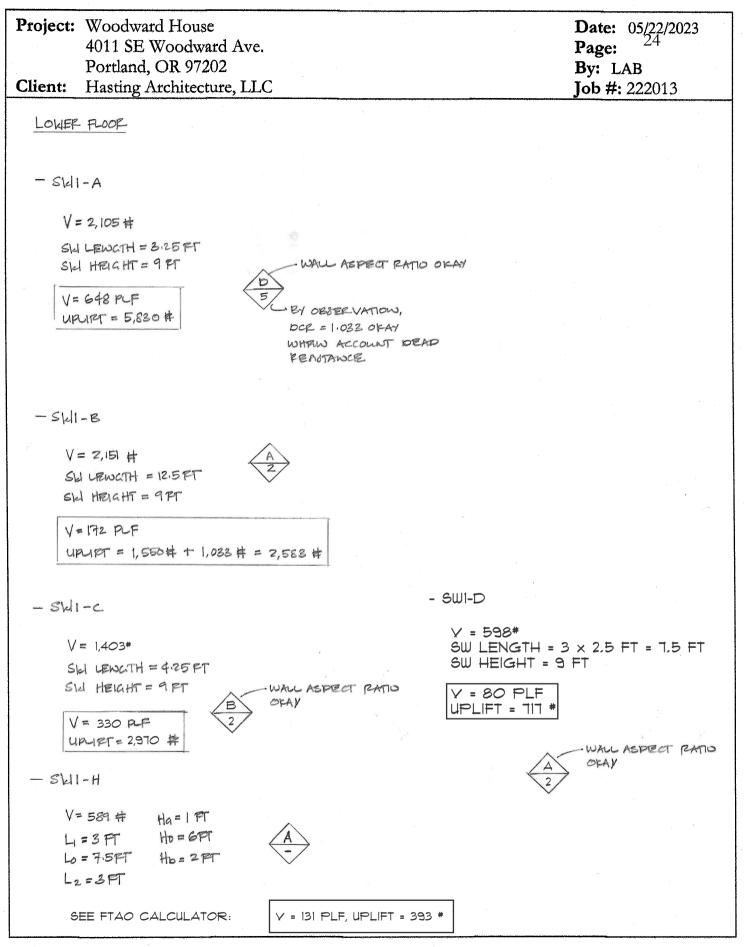
1. Hold-down forces: H = Vh,	_{vall} /L _{wall}		308 lbf	6. Unit shea	ar beside opening	:		
					v1 = ('	V/L)(L1+T1)/L1 =	58 plf	
2. Unit shear above + below						V/L)(T2+L2)/L2 =	58 plf	
First oper	ning: va1 = vb1 = H	/(h _a +h _b) =	44 plf		Check	v1*L1+v2*L2=V?	347 lbf OK	
3. Total boundary force abov	e + below openin	gs		7. Resistan	ce to corner force			
First	t opening: O1 = va	1 x (Lo1) =	330 lbf			R1 = v1*L1 = R2 = v2*L2 =	174 lbf 174 lbf	
4. Corner forces								
	F1 = O1(L1)	/(L1+L2) =	165 lbf	8. Differen	ce corner force +	resistance		
	F2 = O1(L2)	/(L1+L2) =	165 lbf			R1-F1 =	8 lbf	
						R2-F2 =	8 lbf	
5. Tributary length of openin								
	T1 = (L1*Lo1)		3.75 ft	9. Unit shea	ar in corner zones			
	T2 = (L2*Lo1)	/(L1+L2) =	3.75 ft			c1 = (R1-F1)/L1 =	3 plf	
					V	c2 = (R2-F2)/L2 =	3 plf	
	<u>V (I</u>	b)						
			e 2	Line 3	Line 4			
		Line 1	Line 2	Ē	Lin			
		H(Ib)		V _{max}	H(Ib)			
k Summary of Shear Values for One Ope	ning	•			•			
L: vc1(h _a +h _b)+v1(h _o)=H?						19	289	308 lbf
$2: va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$					308	19	289	0
$3: va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_b)=0?$					308	19	289	0
$1: vc2(h_a+h_b)+v2(h_o)=H?$						19	289	308 lbf
			Design	Summary*				
Req. Sheathing Capacity	58 plf		4-Term De	flection			3-Term Deflection	
Req. Strap Force	165 lbf		4-Term Story	Drift %		3-	Term Story Drift %	
Req. HD Force (H)	308 lbf			-	-		-	
Req. Shear Wall Anchorage Force (v _{max})	26 plf							

*The Design Summary assumes that the shear wall is designed as blocked.

Date:

Project: Woodward House 4011 SE Woodward Ave. Portland, OR 97202 Client: Hasting Architecture, LLC]	Date: 05/22/2023 Page: 22 By: LAB Job #: 222013
$-S_{k z-E}$			
F= 1,176 件			
SWILENATH = 7.75 FT + 6.75 FT + 11.25 FT =	2595FT		
SU HEIGHT = 8FT			
V= 46 P.F UPLIET = 365 A	· . · ·		
- S12-F			
F=1,723件			
SLI LEWCTH = 5.75 FT SLI HEIGHT = 8 PT			
V = 300 PLF UPU PT = 2,400* B 37/2*			
- SHZ-G			
F = 1,176 # $L_1 = 9 FT$ $H_2 = 1 FT$ $L_0 = 7.25 FT$ $H_0 = 4 FT$		•	
$L_2 = 3FT$ Hb = 3FT			
SEE FTAD CALCULATOR			
V = 122 p F $UR IFT = 489 p F$			

Project Information Code: Date: AMK Designer: Client: Project: Wall Line: Woodward House SW2-G L1(ft) Lo1(ft) L2(ft) V (lb) Ę), habove h_{open}(ft) h_{wall}(ft) h_{below}(ft) L_{wall}(ft) Shear Wall Calculation Variables Adj. Factor Method = 1.25-0.125h/bs 1176 lbf Opening 1 ۷ _ Wall Pier Aspect Ratio L1 9.00 ft 1.00 ft h_a Adj. Factor L2 3.00 ft h。 4.00 ft P1=h_o/L1= 0.44 N/A \mathbf{h}_{wall} h_b 3.00 ft P2=h_/L2= 1.33 N/A 8.00 ft 7.25 ft L_{wall} Lo1 19.25 ft


Note to Designer: The width-to-height ratio of sheathing above or below the openings exceeds 6.5:1. Exercise caution when assuming fixity at corner regions, as assumed in this calculator.

1. Hold-down forces: H = Vh _y	rall/L _{wall}	489 lbf	6. Unit shea	r beside opening			
				v1 = ('	V/L)(L1+T1)/L1 =	98 plf	
2. Unit shear above + below					V/L)(T2+L2)/L2 =	98 plf	
First oper	hing: va1 = vb1 = H/(h _a +h _b) =	122 plf		Check	/1*L1+v2*L2=V?	1176 lbf OK	
3. Total boundary force abov	e + below openings		7. Resistance	e to corner force			
First	opening: O1 = va1 x (Lo1) =	886 lbf			R1 = v1*L1 = R2 = v2*L2 =	882 lbf 294 lbf	
4. Corner forces					N2 - V2 L2 -	234101	
	F1 = O1(L1)/(L1+L2) =	664 lbf	8. Difference	e corner force +	resistance		
	F2 = O1(L2)/(L1+L2) =	221 lbf			R1-F1 =	218 lbf	
					R2-F2 =	73 lbf	
5. Tributary length of openin							
	T1 = (L1*Lo1)/(L1+L2) =		9. Unit shea	ar in corner zones			
	T2 = (L2*Lo1)/(L1+L2) =	1.81 ft			:1 = (R1-F1)/L1 =	24 plf	
				vo	:2 = (R2-F2)/L2 =	24 plf	
	V (lb)						
	Line 1	Line 2	Line 3	Line 4			
	5	5	5	5			
	H(Ib)		V _{max}	н(іь)			
mmary of Shear Values for One Oper	ning						
$1(h_a+h_b)+v1(h_o)=H?$					97	392	489 lbf
$1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$				489	97	392	0
$1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$				489	97	392	0
$2(h_a+h_b)+v2(h_o)=H?$					97	392	489 lbf
		Design	Summary*				
Req. Sheathing Capacity	122 plf	4-Term De				3-Term Deflection	
Req. Strap Force	664 lbf	4-Term Story	Drift %		3-	Term Story Drift %	
Req. HD Force (H)	489 lbf						
. Shear Wall Anchorage Force (v _{max})	61 plf						

*The Design Summary assumes that the shear wall is designed as blocked.

23

ng. This approach ler required hold-downs.

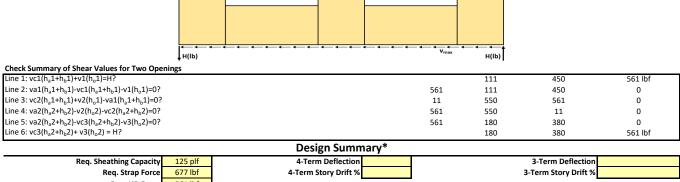
L_{wall}(ft)

Shear Wall Calculation Variables								
V	589 lbf	Opening 1	Adj. Factor Method = 1.25-0.125h/bs					
L1	3.00 ft	h _a 1.00 ft	Wall Pier Aspect Ratio Adj. Factor					
L2	3.00 ft	h _o 6.00 ft	P1=h _o /L1= 2.00 N/A					
h _{wall}	9.00 ft	h _b 2.00 ft	P2=h _o /L2= 2.00 N/A					
L _{wall}	13.50 ft	Lo1 7.50 ft						

Note to Designer: The width-to-height ratio of sheathing above or below the openings exceeds 6.5:1. Exercise caution when assuming fixity at corner regions, as assumed in this calculator.

1. Hold-down forces: H = Vh	_{vall} /L _{wall}	393 lbf	6. Unit shear	beside opening	5		
				v1 = (V/L)(L1+T1)/L1 =	98 plf	
2. Unit shear above + below					V/L)(T2+L2)/L2 =	98 plf	
First oper	ning: va1 = vb1 = H/(h _a +h _b) =	131 plf		Check	v1*L1+v2*L2=V?	589 lbf C	К
3. Total boundary force abov	e + below openings		7. Resistance	to corner force	25		
First	opening: O1 = va1 x (Lo1) =	982 lbf			R1 = v1*L1 = R2 = v2*L2 =	295 lbf 295 lbf	
4. Corner forces					NZ - VZ LZ -	293 101	
	F1 = O1(L1)/(L1+L2) =	491 lbf	8. Difference	corner force +	resistance		
	F2 = O1(L2)/(L1+L2) =	491 lbf			R1-F1 =	-196 lbf	
					R2-F2 =	-196 lbf	
5. Tributary length of openin							
	T1 = (L1*Lo1)/(L1+L2) =	3.75 ft	9. Unit shear	in corner zones			
	T2 = (L2*Lo1)/(L1+L2) =	3.75 ft			c1 = (R1-F1)/L1 =	-65 plf	
				V	c2 = (R2-F2)/L2 =	-65 plf	
	V (lb)						
		~					
	Line 1	Line 2	Line 3	Line 4			
	H(Ib)	\leftarrow	V _{max}	4(Ib)			
Summary of Shear Values for One Oper	• • •			(10)			
vc1(h _a +h _b)+v1(h _o)=H?	-				-196	589	393 lbf
$va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_c)=0?$				393	-196	589	0
$va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_c)=0?$				393	-196	589	0
$vc2(h_a+h_b)+v2(h_b)=H?$				555	-196	589	393 lbf
		Design 9	Summary*		100	303	000 101
Req. Sheathing Capacity	131 plf	4-Term Def				3-Term Deflection	
Req. Strap Force	491 lbf	4-Term Story		1	3.	-Term Story Drift %	
		- i ci ili story			J.		
Req. HD Force (H)	393 lbf		-	-		-	

*The Design Summary assumes that the shear wall is designed as blocked.


25

ng. This approach ler equired hold-downs.

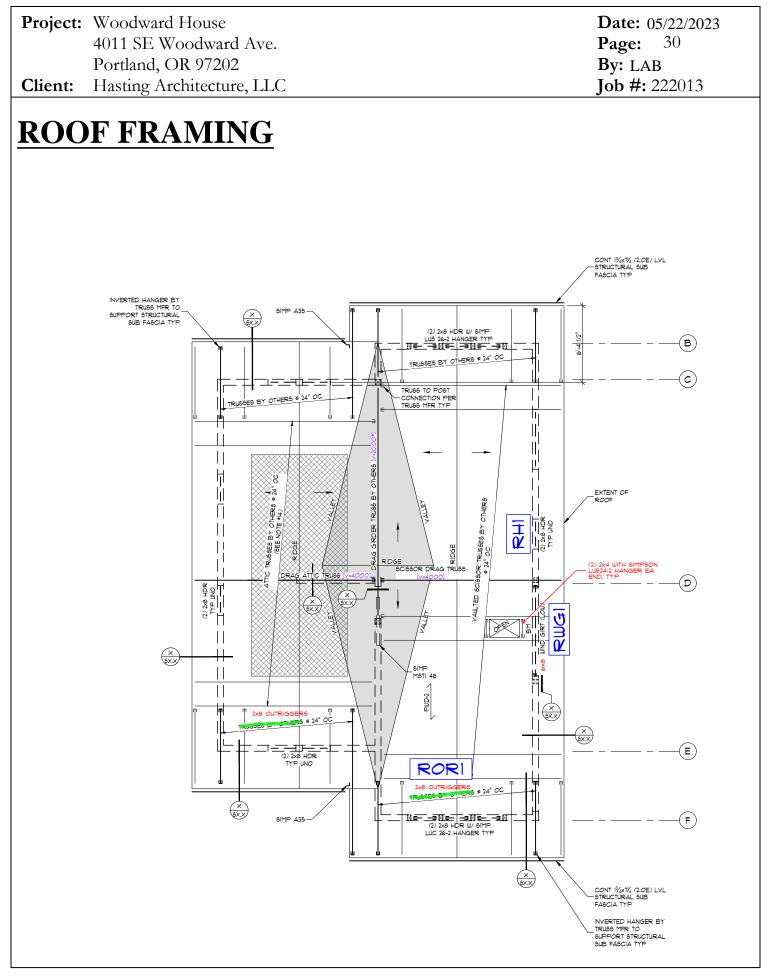
401 Por	rtland, OR 97202	Date: 05/22/2023 Page: ²⁶ By: LAB Job #: 222013
-SkII-E		
F = 1,60		
- SKI - F		
	$\begin{array}{c} 79 \ \# \\ 0 \\ cTH = 6.25 \ FT \\ c \\ c \\ c \\ c \\ 8 \end{array}$	
V = 412 UPU FT =	P = F 3,713 $p + 2,400 = 6,115 = (15)$	
3 	FROM ABOVE	۰ پر بند
- SkI-G		
F=1,604	#	
$H_a = 1 FT$ $H_b = 4.51$	=T Lo, = 7:25 FT	
Hb= 3.59	$\begin{array}{c} T \\ L_2 = 3 \ FT \\ L_{02} = 2.5 \ FT \\ L_3 = 4 \ FT \end{array}$	
see p	AD CALCULATOR. V= 125 PLF POR DEAD READTANCE	

					Date:	
					Dutc.	
: SW1-G						
	14(5)		10(6)			
V (Ib)		L(ft)	L2(ft)	Lo2(ft)	L3(ft)	
<u></u>					(ft)	t t
					h _{above} (ft)	
						7
					h _{open} (ft)	-
					hope	hwall(ft)
					(E)	
					h _{below} (ft)	
					ź	\downarrow \downarrow
			L _{wall} (ft)			
	4	Shear Wall	Calculation Variab	les	l	
V 1604 lbf	Opening 1		Dpening 2		tor Method =	1.25-0.125h/bs
L1 9.00 ft	h _a 1 1.00 ft	h_2	1.00 ft	Wall Pier Asp		Adj. Factor
L2 3.00 ft	h _o 1 4.50 ft	h _o 2	4.50 ft	P1=h _o /L1=	0.50	N/A
L3 4.00 ft	h _b 1 3.50 ft	h _b 2	3.50 ft	P2=h _o /L2=	1.50	N/A
h _{wall} 9.00 ft	Lo1 7.25 ft	Lo2	2.50 ft	P3=h _o /L3=	1.13	N/A
L _{wall} 25.75 ft Note to Designer: The width-to-height rat						
1. Hold-down forces: H = Vh _{wall} /						
		561 lbf	6. Unit	shear beside opening)/I 1+T1)/I 1 -	100 plf
2. Unit shear above + below ope	ening		6. Unit	v1 = (V/L)(L1+T1)/L1 = +L2+T3)/L2 =	100 plf 122 plf
2. Unit shear above + below ope First opening: v		561 lbf 125 plf 125 plf	6. Unit	v1 = (V/L v2 = (V/L)(T2)(L1+T1)/L1 = +L2+T3)/L2 =)(T4+L3)/L3 =	100 plf 122 plf 85 plf
2. Unit shear above + below ope First opening: v	ening $a_1 = vb_1 = H/(h_a_1+h_b_1) =$	125 plf	6. Unit	v1 = (V/L v2 = (V/L)(T2	+L2+T3)/L2 =)(T4+L3)/L3 =	122 plf
2. Unit shear above + below ope First opening: \ Second opening: \ 3. Total boundary force above +	ening $ra1 = vb1 = H/(h_a1+h_b1) =$ $ra2 = vb2 = H/(h_a2+h_b2) =$ • below openings	125 plf 125 plf	<u>6. Unit</u>	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L	+L2+T3)/L2 =)(T4+L3)/L3 =	122 plf 85 plf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op	Paning $y_{a1} = vb1 = H/(h_a1+h_b1) = y_{a2} = vb2 = H/(h_a2+h_b2) = H/(h_a2+h_b2) = below openings$ below openings O1 = va1 x (Lo1) = bening: O1 = va1 x (Lo1) = benings =	125 plf 125 plf 903 lbf		v1 = (V/L v2 = (V/L)(T2 v3 = (V/L	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V?	122 plf 85 plf 1604 lbf Ol
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op	ening $ra1 = vb1 = H/(h_a1+h_b1) =$ $ra2 = vb2 = H/(h_a2+h_b2) =$ • below openings	125 plf 125 plf		v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 =	122 plf 85 plf 1604 lbf Ol 899 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	Paning $y_{a1} = vb1 = H/(h_a1+h_b1) = y_{a2} = vb2 = H/(h_a2+h_b2) = H/(h_a2+h_b2) = below openings$ below openings O1 = va1 x (Lo1) = bening: O1 = va1 x (Lo1) = benings =	125 plf 125 plf 903 lbf		v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op	Paring $y_{a1} = vb1 = H/(h_a1+h_b1) = va2 = vb2 = H/(h_a2+h_b2) = below openings provide the parameters of the param$	125 plf 125 plf 903 lbf 311 lbf		v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 =	122 plf 85 plf 1604 lbf Ol 899 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	ening /a1 = vb1 = H/(h _a 1+h _b 1) = /a2 = vb2 = H/(h _a 2+h _b 2) = below openings bening: O1 = va1 x (Lo1) = bening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf	7. Resis	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	Paring $y_{a1} = vb1 = H/(h_a1+h_b1) = va2 = vb2 = H/(h_a2+h_b2) = below openings provide the parameters of the param$	125 plf 125 plf 903 lbf 311 lbf	7. Resis	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	ening $va1 = vb1 = H/(h_u1+h_b1) =$ $va2 = vb2 = H/(h_u2+h_b2) =$ ening: O1 = va1 x (Lo1) = bening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf	7. Resis	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3)/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf 338 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	Paring $a1 = vb1 = H/(h_a1+h_b1) =$ $a2 = vb2 = H/(h_a2+h_b2) =$ below openings pening: O1 = va1 x (LO1) = pening: O2 = va2 x (LO2) = F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = F3 = O2(L2)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf	7. Resis	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3/L2 =)(T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf 338 lbf 222 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op	$\begin{array}{l} \textbf{paning} \\ \textbf{ral} = vb1 = H/(h_{a}1+h_{b}1) = \\ \textbf{ra2} = vb2 = H/(h_{a}2+h_{b}2) = \\ \textbf{rbelow openings} \\ \textbf{bening: } O1 = va1 \times (Lo1) = \\ \textbf{pening: } O2 = va2 \times (Lo2) = \\ \hline F1 = O1(L1)/(L1+L2) = \\ F2 = O1(L2)/(L1+L2) = \\ F3 = O2(L2)/(L2+L3) = \\ F4 = O2(L3)/(L2+L3) = \\ \end{array}$	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf	7. Resis	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2*	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf 338 lbf 2222 lbf 7 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op 4. Corner forces	ening $va1 = vb1 = H/(h_u1+h_b1) =$ $va2 = vb2 = H/(h_u2+h_b2) =$ energing: $01 = va1 \times (Lo1) =$ bening: $02 = va2 \times (Lo2) =$ F1 = $01(L1)/(L1+L2) =$ F3 = $02(L2)/(L2+L3) =$ F4 = $02(L3)/(L2+L3) =$ T1 = $(L1*Lo1)/(L1+L2) =$	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(TZ v3 = (V/L Check v1*L1+v2* stance to corner forces	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=v? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 =	122 plf 85 plf 1604 lbf Ol 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op 4. Corner forces	Paring $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (LO1) = pening: O2 = va2 x (LO2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 =	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op 4. Corner forces	ening $a_1 = vb1 = H/(h_3 1+h_b 1) =$ $a_2 = vb2 = H/(h_2 2+h_b 2) =$ below openings ening: O1 = va1 x (Lo1) = bening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) = T3 = (L2*L02)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op 4. Corner forces	Paring $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (LO1) = pening: O2 = va2 x (LO2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 =	122 plf 85 plf 1604 lbf Ol 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf
 2. Unit shear above + below ope First opening: x Second opening: x 3. Total boundary force above + First op Second op 4. Corner forces 5. Tributary length of openings 	Paning $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (Lo1) = pening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) = T3 = (L2*L02)/(L2+L3) = T4 = (L3*L02)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf
2. Unit shear above + below ope First opening: v Second opening: v 3. Total boundary force above + First op Second op 4. Corner forces	Paning $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (Lo1) = pening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) = T3 = (L2*L02)/(L2+L3) = T4 = (L3*L02)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf
 2. Unit shear above + below ope First opening: x Second opening: x 3. Total boundary force above + First op Second op 4. Corner forces 5. Tributary length of openings 	Paning $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (Lo1) = pening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) = T3 = (L2*L02)/(L2+L3) = T4 = (L3*L02)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf
 2. Unit shear above + below ope First opening: x Second opening: x 3. Total boundary force above + First op Second op 4. Corner forces 5. Tributary length of openings 	Paning $a1 = vb1 = H/(h_11+h_b1) =$ $a2 = vb2 = H/(h_22+h_b2) =$ below openings pening: O1 = va1 x (Lo1) = pening: O2 = va2 x (Lo2) = F1 = O1(L1)/(L1+L2) = F3 = O2(L2)/(L2+L3) = F4 = O2(L3)/(L2+L3) = T1 = (L1*L01)/(L1+L2) = T2 = (L2*L01)/(L1+L2) = T3 = (L2*L02)/(L2+L3) = T4 = (L3*L02)/(L2+L3) =	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft 1.43 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf
 2. Unit shear above + below ope First opening: x Second opening: x 3. Total boundary force above + First op Second op 4. Corner forces 5. Tributary length of openings 	Paning $ra1 = vb1 = H/(h_11+h_11) = range rang$	125 plf 125 plf 903 lbf 311 lbf 677 lbf 226 lbf 133 lbf 178 lbf 5.44 ft 1.81 ft 1.07 ft	7. Resis 8. Diffe	v1 = (V/L v2 = (V/L)(T2 v3 = (V/L Check v1*L1+v2* stance to corner forces rence corner force + res shear in corner zones vc1 = vc2 = (R	+L2+T3/L2 = (T4+L3)/L3 = L2+v3*L3=V? R1 = v1*L1 = R2 = v2*L2 = R3 = v3*L3 = stance R1-F1 = R2-F2-F3 = R3-F4 = (R1-F1)/L1 = 2-F2-F3)/L2 =	122 plf 85 plf 1604 lbf OI 899 lbf 367 lbf 338 lbf 222 lbf 7 lbf 160 lbf 25 plf 2 plf

Req. HD Force 561 lbf Req. Shear Wall Anchorage Force 62 plf

*The Design Summary assumes that the shear wall is designed as blocked.

Project:	Woodward House	Date: 05/22/2023
	4011 SE Woodward Ave.	Page: 28
	Portland, OR 97202	By: LAB
Client:	Hasting Architecture, LLC	Job #: 222013

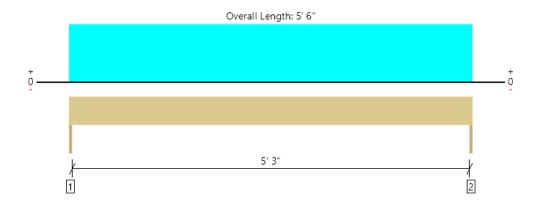

GRAVITY ANALYSIS

Project:	Woodward House	Date: 05/22/2023
	4011 SE Woodward Ave.	Page: 29
	Portland, OR 97202	By: LAB
Client:	Hasting Architecture, LLC	Job #: 222013

DESIGN VALUES

DESIGN VALUES (SIPILAR TO OPIGINAL PERRIT CALC 24/84)

FOOF PEAD = 15 PSF CEILING DEAD = 8 PSF ROOF SNOW = 25 PSF (USE SO PSF AT VALLEY, 35 PSF SWOLD DFIFT) WALL DEAD = 10 PSF FLOOF DEAD = 12 PSF FLOOF LIVE = 40 PSF DECK DEAD = 15 PSF DECK LIVE = 60 PSF



MEMBER REPORT

Rev 1 Roof, RH1 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	978 @ 0	2813 (1.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	718 @ 8 3/4"	3002	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1344 @ 2' 9"	2613	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.030 @ 2' 9"	0.138	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.048 @ 2' 9"	0.275	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• A 3.9% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	376	602	978	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	376	602	978	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

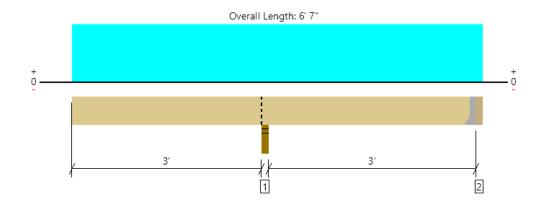
			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6"	N/A	5.5		
1 - Uniform (PSF)	0 to 5' 6"	8' 9"	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	



MEMBER REPORT

Rev 1 Roof, ROR1 1 piece(s) 2 x 6 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	503 @ 3' 1 3/4"	3281 (3.50")	Passed (15%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	203 @ 2' 6 1/2"	1139	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-396 @ 3' 1 3/4"	975	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.069 @ 0	0.210	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.107 @ 0	0.315	Passed (2L/706)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240)

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	189	252	315	503	Blocking
2 - Hanger on 5 1/2" DF beam	3.50"	Hanger ¹	1.50"	9	43/-20	54/-25	63/-16	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	6' 4" o/c				
Bottom Edge (Lu)	6' 4" o/c				
Maximum allowable burging intervals beauting and an applied band					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	ie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 6' 7"	24"	15.0	20.0	25.0	Default Load

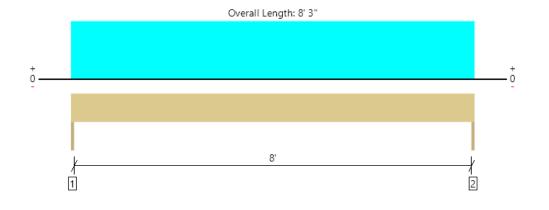
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	


Project:Woodward House4011 SE Woodward Ave.Portland, OR 97202Client:Hasting Architecture, LLC	Date: 05/22/2023 Page: 33 By: LAB Job #: 222013
- PWG I SER FORTEWORE FESLUT FOR STR	ZOWE AXIS AWALYSIS
FOR LIEAR AXIS:	BFT K
1d = 111WD COMPONENT & CL	LADDING (ASCE 7 CH 30) X 9 PT TRIB
= 13.8 PSF (1.4-(-0.18) COPICINIAL PREMIT CALC 4/84)(9FT) = 196 P.F 6x8 OF FH
PER FORTEWER FOR STRON	WE AXIS; MOMENT DER = 0.52 SHEAR DER = 0.23 TOTAL DEFLET DER = 0.30 21.0
PER EWERLALC FOR FILM	OR AXIS ; MOMENT PCR = 0.138 SHEAR PCR = 0.056 DRR PCR = 0.273

MEMBER REPORT

Rev 1 Roof, RWG1 (STRONG AXIS) 1 piece(s) 6 x 8 DF No.1

34

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1487 @ 0	5156 (1.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1217 @ 9"	5376	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3067 @ 4' 1 1/2"	5930	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.074 @ 4' 1 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.121 @ 4' 1 1/2"	0.412	Passed (L/815)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• A 0.5% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports	(lbs)	
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	585	902	1487	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	585	902	1487	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	10.4		
1 - Uniform (PSF)	0 to 8' 3"	8' 9"	15.0	25.0	ROOF

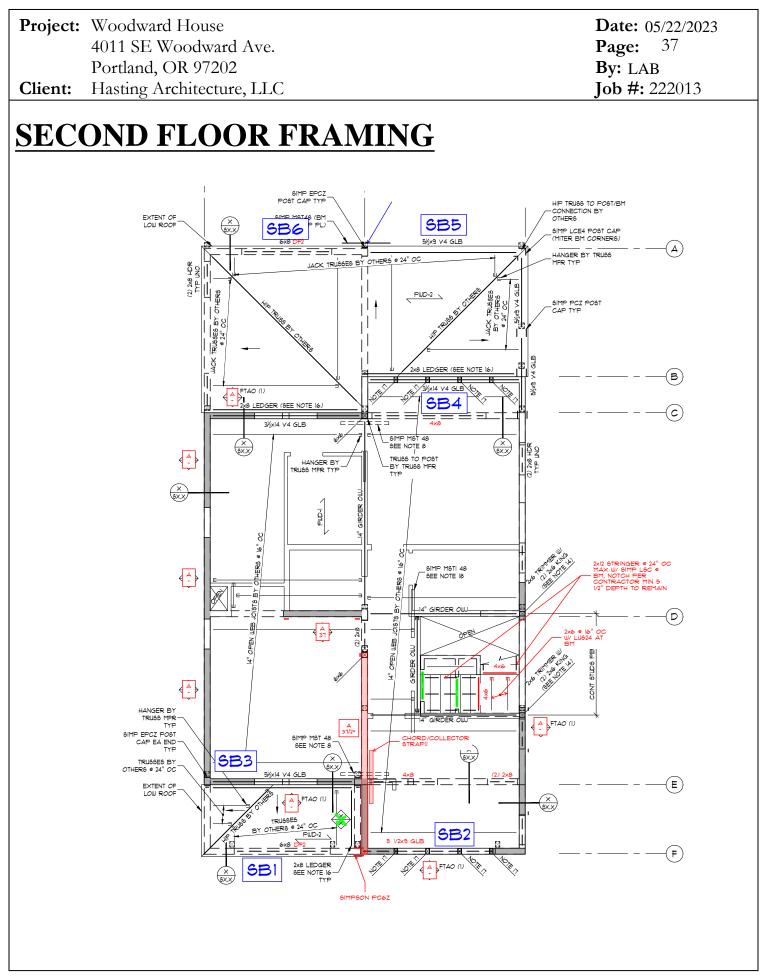
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	

Wood Beam			Project I	File: 222013.ec6		
LIC# : KW-06017198, Build:20.23.05.25 DESCRIPTION: RWG1 (MINOR AXIS)	Grummel Engineering LLC	Grummel Engineering LLC				
CODE REFERENCES						
Calculations per NDS 2018, IBC 2018, CBC 2019 Load Combination Set : IBC 2021), ASCE 7-16					
Material Properties						
Analysis Method : Allowable Stress Design Load Combination : IBC 2021 Wood Species : Douglas Fir-Larch	Fb + Fb - Fc - Prll Fc - Perp	1350 psi 1350 psi 925 psi 625 psi	<i>E : Modulus of Elasti</i> Ebend- xx Eminbend - xx	<i>icity</i> 1600ksi 580ksi		
Wood Grade : No.1 Beam Bracing : Completely Unbraced	Fv Ft	170 psi 675 psi	Density	31.21 pcf		
	W(0.196) ∜		Ý			
× ×	7.50 X 5.50			, X		
	7.50 × 5.50					
4	Span = 8.0 ft					
Applied Loads	Service loads	s entered. Load	Factors will be applied f	or calculations.		

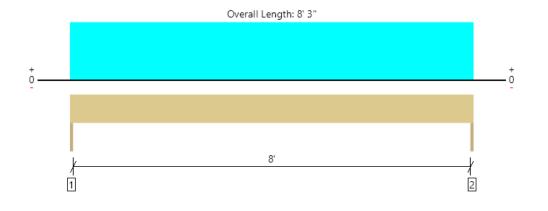

Applied Loads
Beam self weight NOT internally calculated and added
Uniform Load : $W = 0.1960$, Tributary Width = 1.0 ft

ESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.138 1	Maximum S	hear Stress Ratio	=	0.056 : 1
Section used for this span		7.50 X 5.50	Section	used for this span		7.50 X 5.50
fb: Actual	=	298.57psi		fv: Actual	=	15.23 psi
F'b	=	2,160.00psi		F'v	=	272.00 psi
Load Combination		+0.60W	Load C	ombination		+0.60W
Location of maximum on span	=	4.000ft	Locatio	n of maximum on span	=	7.562 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.109 in Ratio =	879>=240	Span: 1 : W Only		
Max Upward Transient Deflection		0 in Ratio =	<mark>0</mark> <240	n/a		
Max Downward Total Deflection		0.066 in Ratio =	1465>=240	Span: 1 : +0.60W		
Max Upward Total Deflection		0 in Ratio =	0<240	n/a		

Load Combination		Max S	stress Ra	tios								Momen	t Values		Sh	ear Valu	Jes
Segment Length	Span #	Μ	V	CD	СМ	Ct	CLx	C _F	Cfu	с _і	C _r	М	fb	F'b	V	fv	F'v
														0.0	0.00	0.0	0.0
Length = 8.0 ft	1			0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00			1,215.0	0.00	0.0	153.0
+0.60W					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 8.0 ft	1	0.138	0.056	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.94	298.6	2,160.0	0.42	15.2	272.0
+0.450W					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 8.0 ft	1	0.104	0.042	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.71	223.9	2,160.0	0.31	11.4	272.0
Overall Maximu	ım Defl	ectio	ns														
Load Combination	1		Span	Max.	"-" De	fl Loo	cation ir	n Span	Loa	d Cor	mbinatio	on		Max. "+"	Defl Loca	ation in a	Span
W Only			1		0.109	2	4	.029						0.0	000	0.0	000

Project Title: Engineer: Project ID: Project Descr:

Wood Beam				Project File: 222013.ec6
LIC# : KW-06017198, Build:20.23.05.25		Grummel Engir	neering LLC	(c) ENERCALC INC 1983-2023
DESCRIPTION: RWG1 (MINOR A)	XIS)			
Vertical Reactions		Suppo	ort notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
Max Upward from all Load Conditions	0.784	0.784		
Max Upward from Load Combinations	0.470	0.470		
Max Upward from Load Cases	0.784	0.784		
+0.60W	0.470	0.470		
+0.450W	0.353	0.353		
W Only	0.784	0.784		



Rev 1 Second Floor, SB1 1 piece(s) 6 x 8 DF No.2

PASSED

38

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Destan Desults				1.05	
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	786 @ 0	5156 (1.50")	Passed (15%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	643 @ 9"	5376	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1620 @ 4' 1 1/2"	3706	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.044 @ 4' 1 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.079 @ 4' 1 1/2"	0.412	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

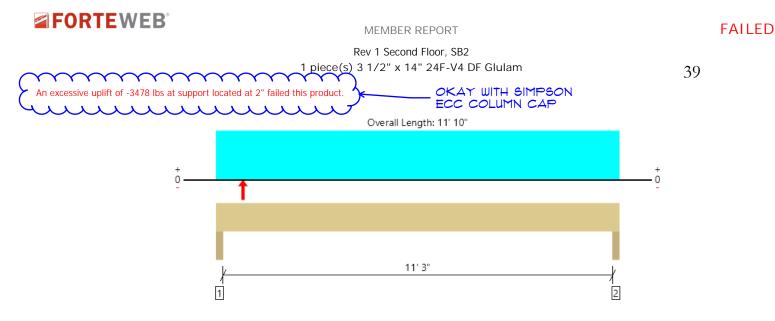
• Deflection criteria: LL (L/480) and TL (L/240).

• A 0.4% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	352	433	786	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	352	433	786	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	


			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	10.4		
1 - Uniform (PSF)	0 to 8' 3"	3'	15.0	35.0	ROOF
2 - Uniform (PSF)	0 to 8' 3"	3'	10.0	-	WALL

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2804 @ 2"	7963 (3.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2113 @ 1' 5 1/2"	9955	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	7834 @ 5' 11"	23869	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Neg Moment (Ft-Ibs)	-2227 @ 9 1/2"	22727	Passed (10%)	1.60	0.6 D + 0.6 W (All Spans)
Live Load Defl. (in)	0.048 @ 5' 10 15/16"	0.287	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.129 @ 5' 10 15/16"	0.575	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• A 9.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 6".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 2' 10 15/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Wind	Factored	Accessories
1 - Trimmer - DF	3.50"	3.50"	1.50"	1769	237	1035	-7565	2804/- 3478	None
2 - Trimmer - DF	3.50"	3.50"	1.50"	1769	237	1035	-435	2804	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

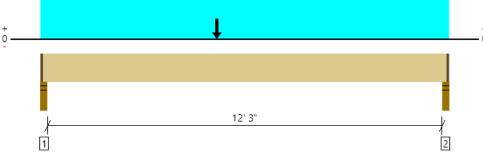
			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 11' 10"	N/A	11.9				
1 - Uniform (PSF)	0 to 11' 10"	7'	15.0	-	25.0	-	ROOF
2 - Uniform (PSF)	0 to 11' 10"	17'	10.0	-	-	-	WALL
3 - Uniform (PSF)	0 to 11' 10"	1'	12.0	40.0	-	-	FLOOR
4 - Point (lb)	9 1/2"	N/A	-	-	-	-8000	SW2-F WITH OVERSTRENGTH

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	



Rev 1 Second Floor, SB3 1 piece(s) 5 1/2" x 14" 24F-V4 DF Glulam

PASSED

40

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4097 @ 12' 8"	7734 (2.25")	Passed (53%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3268 @ 11' 4 1/2"	15644	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	13464 @ 6' 3/8"	41323	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.076 @ 6' 5"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.164 @ 6' 4 15/16"	0.625	Passed (L/916)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	2198	257	1769	3967	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	2232	257	1926	4159	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 8" o/c				
Bottom Edge (Lu)	12' 8" o/c				
•Maximum allowable bracing intervals based on applied load.					

app

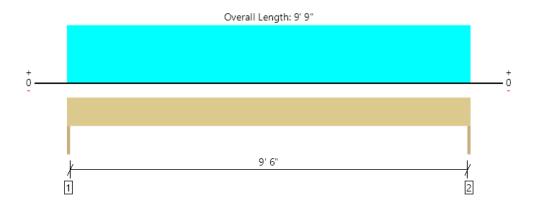
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 12' 8 3/4"	N/A	18.7			
1 - Uniform (PSF)	0 to 12' 10" (Front)	1'	12.0	40.0		FLOOR
2 - Uniform (PSF)	0 to 12' 10" (Front)	16'	10.0	-		WALL
3 - Uniform (PSF)	0 to 12' 10" (Front)	7'	15.0	-	25.0	HIGH ROOF
4 - Tapered (PSF)	0 to 5' 6 1/2" (Front)	1'	12.0	-	35.0	LOW ROOF
5 - Tapered (PSF)	5' 6 1/2" to 12' 10" (Front)	3'	12.0	-	35.0	LOW ROOF
6 - Point (lb)	5' 6 1/2" (Front)	N/A	310	-	490	HIP TRUSS LOAD

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	


6/6/2023 12:10:23 AM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 222013 Woodward House Page 1 / 1

Rev 1 Second Floor, SB4 2 piece(s) 4 x 8 DF No.2

41

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	570 @ 0	6563 (1.50")	Passed (9%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	484 @ 8 3/4"	6090	Passed (8%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1389 @ 4' 10 1/2"	5933	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.046 @ 4' 10 1/2"	0.244	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.067 @ 4' 10 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (5/16").

• A 0.8% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	180	390	570	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	180	390	570	None

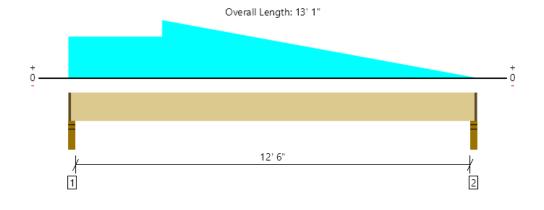
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 9"	N/A	12.9		
1 - Uniform (PSF)	0 to 9' 9"	2'	12.0	40.0	FLOOR

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	



Rev 1 Second Floor, SB5 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

PASSED

42

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

·						
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1472 @ 2"	4922 (2.25")	Passed (30%)		1.0 D + 1.0 S (All Spans)	
Shear (lbs)	1207 @ 1' 1/2"	6400	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)	
Pos Moment (Ft-Ibs)	3810 @ 5' 7 13/16"	10390	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)	
Live Load Defl. (in)	0.191 @ 6' 3 3/4"	0.425	Passed (L/801)		1.0 D + 1.0 S (All Spans)	
Total Load Defl. (in)	0.285 @ 6' 3 7/8"	0.637	Passed (L/537)		1.0 D + 1.0 S (All Spans)	

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• A 4.4% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	485	285	1016	1501	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	277	270	532	810	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 12' 11 3/4"	N/A	7.7			
1 - Tapered (PSF)	3' to 13' 1" (Front)	5' 6" to 0	15.0	20.0	35.0	ROOF
2 - Uniform (PSF)	0 to 3' (Front)	5' 6"	15.0	-	35.0	ROOF

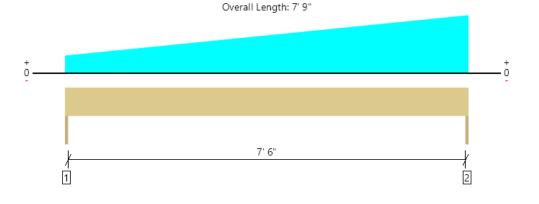
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
amer khir
Grummel Engineering
(503) 244-7014
amer@grummelengineering.com

Job Notes



Rev 1 Second Floor, SB6 1 piece(s) 6 x 8 DF No.2

43

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	783 @ 7' 9"	5156 (1.50")	Passed (15%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	594 @ 7'	5376	Passed (11%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1308 @ 4' 2 5/16"	3706	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.037 @ 3' 11 5/16"	0.194	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.056 @ 3' 11 1/4"	0.387	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

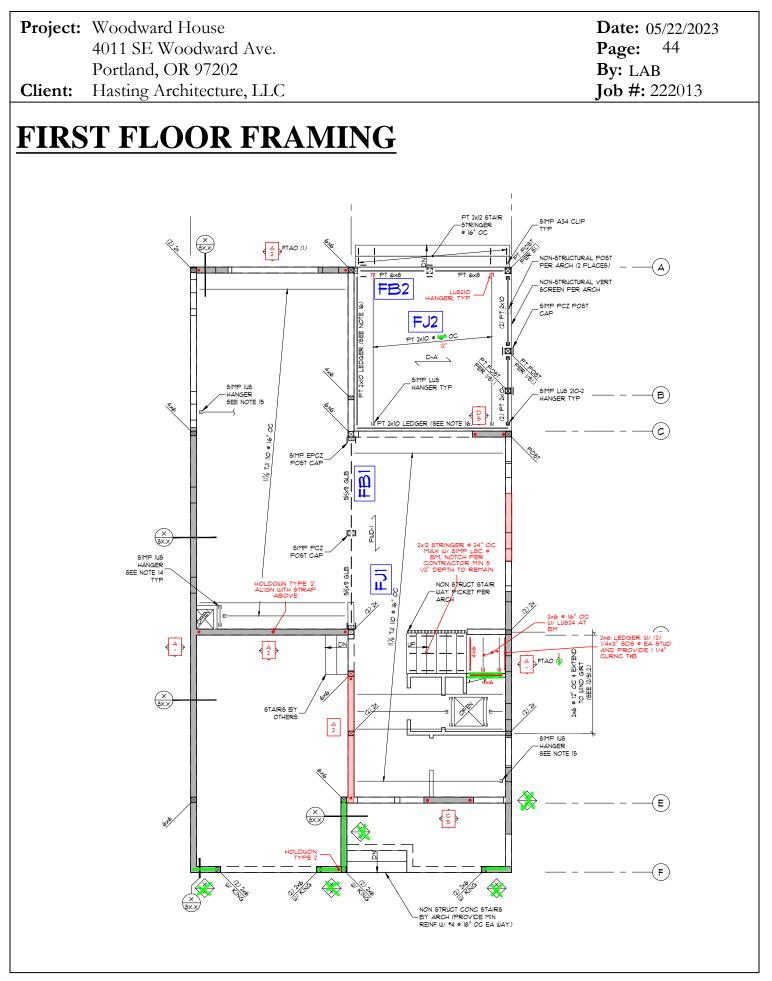
• Deflection criteria: LL (L/480) and TL (L/240).

• A 0.4% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	195	362	557	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	263	520	783	None

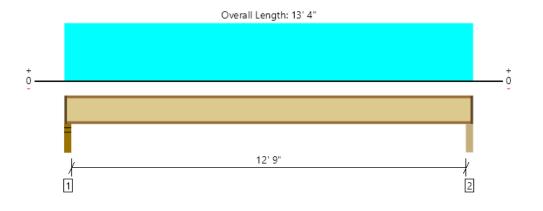
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	


			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 9"	N/A	10.4		
1 - Tapered (PSF)	0 to 7' 9"	1' 6" to 5'	15.0	35.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com	



Rev 1 First Floor, FJ1 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

45

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	455 @ 2 1/2"	1041 (2.25")	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	442 @ 3 1/2"	1560	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1446 @ 6' 8"	3160	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.119 @ 6' 8"	0.323	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.155 @ 6' 8"	0.646	Passed (L/998)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	50	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.
Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.75"	107	356	462	1 1/4" Rim Board
2 - Beam - DF	3.50"	2.25"	1.75"	107	356	462	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 9" o/c						
Bottom Edge (Lu)	13' 2" o/c						
TTT inite one only machined using Maximum Allowable has the solutions							

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 4"	16"	12.0	40.0	Default Load

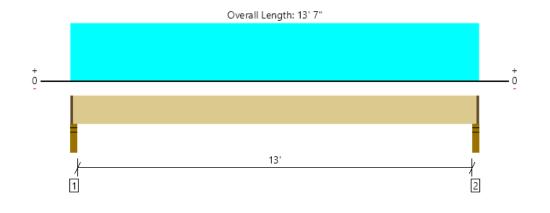
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator J amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com

Job Notes



Rev 1 First Floor, FJ2 1 piece(s) 2 x 10 HF No.2 @ 12" OC

PASSED

46

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	482 @ 2 1/2"	1367 (2.25")	Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	413 @ 1' 3/4"	1388	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1560 @ 6' 9 1/2"	1917	Passed (81%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.315 @ 6' 9 1/2"	0.329	Passed (L/501)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.379 @ 6' 9 1/2"	0.658	Passed (L/417)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	82	407	489	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	82	407	489	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 2" o/c					
Bottom Edge (Lu)	13' 5" o/c					
Maximum allowable bracing intervals based on applied load						

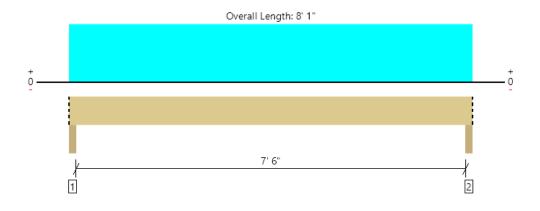
Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 7"	12"	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
amer khir	
Grummel Engineering	
(503) 244-7014	
amer@grummelengineering.com	



Rev 1 First Floor, FB1 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

47

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2781 @ 2"	12513 (3.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2064 @ 1' 1/2"	8745	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5166 @ 4' 1/2"	14850	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.070 @ 4' 1/2"	0.194	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.093 @ 4' 1/2"	0.387	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 9".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column - DF	3.50"	3.50"	1.50"	679	2102	2781	Blocking
2 - Column - DF	3.50"	3.50"	1.50"	679	2102	2781	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' 1" o/c					
Bottom Edge (Lu)	8' 1" o/c					
•Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 1"	N/A	12.0		
1 - Uniform (PSF)	0 to 8' 1" (Front)	13'	12.0	40.0	FLOOR

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator amer khir Grummel Engineering (503) 244-7014 amer@grummelengineering.com Job Notes

6/6/2023 12:34:56 AM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 222013 Woodward House Page 1 / 1

Rev 1 First Floor, FB2 1 piece(s) 4 x 10 DF No.2

48

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1862 @ 2"	4922 (2.25")	Passed (38%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1302 @ 1' 3/4"	3885	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2853 @ 3' 3 1/2"	4492	Passer (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.045 @ 3' 3 1/2"	0.156	Passed (1/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.054 @ 3' 3 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

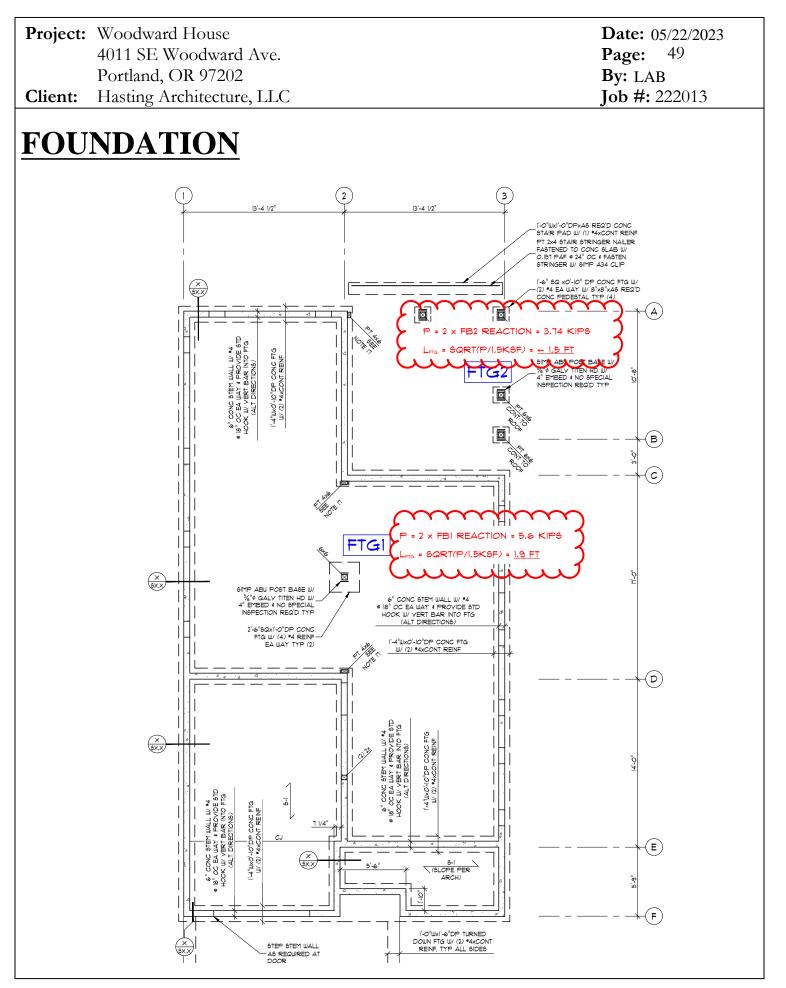
Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories		
1 - Column - DF	3.50"	2.25"	1.50"	342	1580	1922	1 1/4" Rim Board		
2 - Column - DF	3.50"	2.25"	1.50"	342	1580	1922	1 1/4" Rim Board		
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.									

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 5" o/c					
Bottom Edge (Lu)	6' 5" o/c					

•Maximum allowable bracing intervals based on applied load.


			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 6' 5 3/4"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 7" (Front)	8'	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

