Intergovernmental Agreement for Remedial Investigation and Source Control Measures

DEQ No. LQVC-NWR-03-10

Outfall Basin S-2 Sediment Trap Investigation

Technical Memorandum No. OF S2-1 City of Portland Outfall Project ESCI No. 2425

June 2012

PREPARED BY

ENVIRONMENTAL SERVICES CITY OF PORTLAND working for clean rivers

TECHNICAL MEMORANDUM No. OFS2-1

Outfall Basin S-2 Sediment Trap Investigation

TO:	Alex Liverman, Oregon Department of Environmental Quality (DEQ)
FROM:	Linda Scheffler, City of Portland, Bureau of Environmental Services (BES)
COPIES:	Richard Muza, U.S. Environmental Protection Agency (EPA) Julia Fowler, GSI Water Solutions, Inc.
DATE:	June 29, 2012
SUBJECT:	Portland Harbor Source Investigation

Introduction

This technical memorandum presents the results of the City of Portland (City) source investigation activities conducted in 2011 in Outfall Basin S-2. The investigation results do not indicate the current presence of major upland sources warranting source control.

Outfall S-2 drains a 27-acre area of industrial land on Swan Island. In 2009, a fire at the Daimler Trucks North America (Daimler) facility in the western portion of the basin resulted in contaminant release to the City storm system. The City's release response included cleaning a segment of the City storm line between the site and Outfall S-2. Characterization of material removed from this line after the fire indicated potential current sources of polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and metals to Basin S-2. After the line cleanout, the City conducted a source investigation in this branch of Basin S-2. The purpose of this subsequent investigation was to collect inline sediment trap data in the vicinity of identified and suspected sources, including the Daimler facility and Operational Unit 3 (OU3) of the Swan Island Portland Shipyard (Shipyard). The objective of the investigation was to verify that current sources in this portion of Basin S-2 have been controlled. The City conducted the Basin S-2 sediment trap investigation in accordance with the Winter 2010-11 Sampling and Analysis Plan (SAP) submitted to DEQ in December 2010 (BES, 2010a).

This investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City. Data collected under this investigation support ongoing DEQ and City efforts to identify, characterize and control discharges to the Basin S-2 municipal storm system.

Background

Basin Physical System and Setting

Outfall S-2, a 36-inch outfall pipe, drains a 27-acre stormwater-only basin. Stormwater runoff from this drainage basin is conveyed by the main stormwater line running along N. Lagoon Avenue to the outfall pipe, which connects to the N. Lagoon line at manhole AAP957 and discharges at the southeast end of the Swan Island Lagoon, at approximately river mile 9.1. The Outfall Basin S-2 stormwater conveyance system and basin boundary are shown on Figure 1.

The Swan Island Lagoon is within an area of the Portland Harbor identified by the U.S. Environmental Protection Agency (EPA) as an area of potential concern (AOPC 17S) based on elevated concentrations of PCBs, metals, tributyltin (TBT), polycyclic aromatic hydrocarbons (PAHs), dibutylphthalate, benzyl alcohol, phenol, and pesticides (EPA, 2010). In addition to Outfall S-2, four other City outfalls and more than 50 non-City outfalls also drain to AOPC 17S.

Summary of Previous Investigations

Previous investigations conducted by the City in Basin S-2 are briefly summarized below.

- 2007 Stormwater Evaluation: As part of its Portland Harbor stormwater screening effort, the City collected stormwater grab samples from a location in Basin S-2 that represented cumulative discharge from the entire basin. The samples, collected during four storm events between September and December 2007, were analyzed for a broad suite of analytes (e.g., PCBs, metals, PAHs, phthalates) and evaluated statistically to identify stormwater contaminants potentially warranting further source tracing in the basin. Based on this analysis, all analyte concentrations in discharges from Basin S-2 were low and no contaminants were identified for further source tracing in this basin (BES, 2010b).
- 2009 Daimler Release Response Daimler Investigation: On November 25, 2009, several trucks caught fire at the Daimler facility located at 5411 N. Lagoon Avenue, resulting in a release of diesel and possibly other contaminants to the onsite stormwater conveyance system connected to Basin S-2. Post-fire environmental response activities by Daimler included collection and offsite disposal of spilled material trapped in absorbent booms in the site parking area, pumping and offsite disposal of diesel from damaged truck tanks, pumping and offsite disposal of diesel from the impacted onsite catch basin, and final cleaning of impacted asphalt and the catch basin (and offsite disposal of cleaning washwater). Due to the orientation of the lateral from the catch basin to the City system, response crews were unable to clean site storm lines. Wastes removed from the site drainage system during release response activities were not characterized.
- 2009 Daimler Release Response City Investigation: Based on confirmation of contaminant release to the site storm system and observations of foam and diesel at Outfall S-2, the City contracted with MRP Environmental Services (MRP) to clean the affected portion of the N. Lagoon Avenue stormwater line (see Figure 1) and to deploy an absorbent boom at the outfall. A lateral line connects the portion of the affected Daimler site stormwater system to Basin S-2 between manhole AAM196 and manhole AAP949. Manhole AAP949 was utilized to clean the segment from the approximated lateral connection down to

manhole AAP949; cleaning then extended downstream to manhole AAP957.¹ MRP segregated material removed from the Basin S-2 storm system in a drop box to settle solids for subsequent waste characterization and disposal.

The City collected a composite solids sample from the MRP drop box on November 30, 2009 and analyzed it for PCB Aroclors, SVOCs, metals, total petroleum hydrocarbons (TPH), and total solids (BES, 2010c). Concentrations of total PCBs and metals (chromium, lead, mercury, nickel, silver, and zinc) in the sample were significantly elevated relative to DEQ guidance regarding industrial reference concentrations (DEQ, 2010). Results for this sample are summarized in Table 1. Based on these results, facilities with connections to the N. Lagoon Avenue line upstream of manhole AAP957 (including Daimler and the Shipyard OU3 site) were identified as possible sources of detected contaminants in the western portion of the City's Outfall S-2 conveyance system.

Source Tracing Contaminants

Following further review of the line cleanout analytical results, the City identified PCBs, metals, and polycyclic aromatic hydrocarbons (PAHs), and phthalates for further source tracing in the western portion of Basin S-2. Organotins were included in the investigation because of the current and historical shipyard activities in and around the basin and recent findings during an investigation of organotins in the adjacent Basin S-1 (BES, 2012).

Potential Upland Sources

Facilities listed in DEQ's Environmental Cleanup Site Information (ECSI) database are considered potential upland sources to City stormwater conveyance systems. Operable Unit 3 (OU3) of Shipyard upland facility is the only ECSI site located in the western branch of Basin S-2. The City also considers facilities permitted by DEQ under the National Pollutant Discharge Elimination System (NPDES) industrial stormwater discharge permit program as potential upland sources due to stormwater exposures to industrial operations; no NPDES-permitted facilities discharge to Basin S-2. In addition, the City identified the Daimler facility located at 5411 N. Lagoon Avenue as a potential current source to the system based on the 2009 release and the possibility of legacy contaminants in the onsite conveyance system (see above). These two facilities are briefly described below and shown on Figure 1.

 Swan Island Portland Ship Yard (ECSI No. 271) – OU3 / Crosby & Overton (#877): OU3 is being evaluated by the Port of Portland and DEQ under the Shipyard remedial investigation. The Shipyard began operating in the 1940s; however, OU3 reportedly remained largely undeveloped until approximately the mid- to late 1960s (Ash Creek, 2010). Historical operations on OU3 included storage, maintenance, and parking of equipment and vehicles related to environmental response operations; truck engine research/development and assembly; and periodic storage of containerized wastes (including aboveground tanks of oily bilge water from ships) and stockpiling of petroleum-contaminated soil (Ash Creek, 2010). An additional ECSI file (#877) is associated with the site though DEQ investigation of Crosby & Overton did not occur on this property. OU3 is owned by the Port of Portland and is currently leased to Tetra Tech,

¹ At that time, MRP was not able to ensure that cleaning of the line segment between manhole AAP957 and the outfall would not result in flushing of material to the lagoon, so a decision was made to limit cleaning to the main line on N. Lagoon. The pipe from manhole AAP957 to the outfall was therefore not cleaned.

Inc., for activities related to its conduit construction operations (Ash Creek, 2010). Most of the stormwater runoff from OU3 discharges directly into the Swan Island Lagoon via Port-owned outfalls. Site stormwater also discharges to the Outfall S-2 stormwater conveyance system via a lateral connecting at manhole AAP949 (see Figure 1) and overland runoff to catch basins on N. Lagoon Avenue. Data from the site stormwater evaluation indicate onsite sources of PCBs, SVOCs, and metals (Ash Creek, 2010). At DEQ's request, the Port conducted three additional rounds of stormwater sampling in 2011 for PCBs analysis from the site outfall at which PCBs were previously detected; PCBs were not detected in these samples (Ash Creek, 2011). Stormwater discharges from the site to Basin S-2 have not been characterized (BES, 2010d).

Daimler Trucks North America: This truck assembly and testing facility is the site of a documented release to the Basin S-2 conveyance system that occurred during a fire and related emergency response activities on November 25, 2009. An unknown quantity of diesel and possibly other contaminants drained into one onsite catch basin. This catch basin was confirmed to connect to the City stormwater line in N. Lagoon Avenue just upstream of manhole AAP949, and oily material was observed discharging from Outfall S-2 immediately following the incident (BES, 2009). A Daimler contractor cleaned out the affected catch basin but was unable to clean the site storm line connected to Basin S-2. To assist with the spill response, a City contractor cleaned the N. Lagoon storm line downstream of the site lateral connection (as discussed above). Subsequently the City required Daimler to collect post-cleanout stormwater samples from this lateral (BES, 2011). Daimler collected stormwater samples from this lateral on March 9 and April 13, 2011 and submitted the samples for laboratory analysis of selected metals, PCBs, PAHs, and phthalates (Daimler, 2011a; 2011b). PCBs were not detected in the stormwater samples. PAHs and phthalates were detected at low concentrations. The only detections in the samples that exceeded Joint Source Control Strategy (JSCS; DEQ/EPA, 2005) screening level values (SLVs) in one or both of these samples were certain metals (arsenic, cadmium, copper, lead and zinc) and bis(2-ethylhexyl) phthalate (BEHP). Concentrations of these analytes were low relative to harborwide industrial concentrations compiled by DEQ (DEQ, 2010).²

2011 Sediment Trap Investigation

Field Activities

The sediment trap deployment and sampling activities were completed in accordance with the SAP (BES, 2010a). A Screened Inline Flow-Through (SIFT©)³ sediment trap was installed in the outgoing 30-inch line in manhole AAP953 on December 22, 2010 (see Figure 1). The sediment trap was inspected periodically to assess the volume of trapped solids, note general conditions, and remove any debris that might be obstructing the opening of the trap chamber. Accumulated solids were removed as needed during the field inspections and archived. The final round of solids removal and archiving was conducted on April 18, 2011. During the following inspection,

² Daimler collected a third stormwater sample from the site on April 26, 2011, for analysis only of copper, lead, zinc, and other parameters that are monitored under National Pollutant Discharge Elimination System industrial stormwater permits. Copper, lead, and zinc concentrations in this sample also exceeded JSCS SLVs but were low relative to the DEQ-compiled harborwide upland concentrations.

³ 2009 City of Portland. These traps are proprietary and patent pending. They were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

on May 23, 2011, the sediment trap was found to be inundated with river water as a result of the unusually high stage of the Willamette River; therefore, any solids present in the trap at that time may not have been representative solely of contributions from sources within the western portion of Basin S-2. Because the objective of the investigation was to evaluate the potential presence of contaminant sources upgradient of the trap, only the solids that had been archived to date (i.e., the solids collected through April 18) were included in the sample submitted for laboratory analysis.

The archived sediment trap contents were thoroughly homogenized before submitting the final composite sample for laboratory analyses. Selected photographs of the sediment trap in the installed location, sample collection, and sample processing are provided in Attachment A. Field notes recorded during sediment trap installation, monitoring, removal, and processing activities are provided in Attachment B.

Summary of Results

The Basin S-2 sediment trap sample was analyzed for PCB Aroclors, metals, PAHs, phthalates, total organic carbon, and total solids. In addition, the sample was analyzed for organotin compounds, which are contaminants that have been identified at the Shipyard (OU1) and detected in stormwater solids from adjacent Basin S-1 (BES, 2012). The laboratory analytical reports and a data review memorandum are provided in Attachment C.

Table 1 summarizes the laboratory analytical results for the sediment trap sample. The JSCS SLVs are provided in Table 1 for reference. PCBs were not detected in the sample. Metals and certain PAHs, phthalates and organotins were detected. With the exception of BEHP, di-n-butyl-phthalate, and TBT, all detected contaminants were either below or within an order-of-magnitude of recommended JSCS SLVs.

Data Evaluation

The solids sample collected from manhole AAP953 represents current discharges from the OU3 and Daimler facilities, as well as from other upstream connections to the N. Lagoon Avenue line. The City reviewed the sediment trap results to determine whether results indicate potential major sources of PCBs, metals, SVOCs, or organotins to the N. Lagoon Avenue line upstream of manhole AAP953.

Analytical results for the sediment trap sample do not indicate current PCB sources. Data do indicate a current source of organotins. Detected concentrations of metals and SVOCs are generally considered low based on the following factors:

- Concentrations of most metals (cadmium, copper, lead and zinc), as well as total PAHs and BEHP are low relative to the reference concentration ranges for Portland Harbor industrial sites (DEQ, 2010).
- Cadmium in the sample is moderately elevated relative to DEQ's reference concentration ranges, but is within an order-of-magnitude of the JSCS SLV.
- The di-n-butylphthalate concentration is above the recommended SLV but within an order-of-magnitude of the Toxicity SLV (DEQ's stormwater guidance does not include reference concentration ranges for this contaminant).

The City also reviewed stormwater sampling results for the Daimler and OU3 facilities that discharge to this branch upstream of the sediment trap monitoring location. Metals, PAHs, and phthalates were detected in stormwater samples collected at the Daimler and OU3 facilities (Daimler, 2011b; Ash Creek, 2010). TBT was not analyzed in Daimler stormwater; it was not detected in OU3 stormwater and was not analyzed in OU3 storm system sediment. As noted earlier, TBT is a contaminant associated with the Shipyard OU1. During a recent investigation of the adjacent Basin S-1, the City detected TBT in trapped sediment from the OU1 lateral connection and in catch basins along N. Lagoon Avenue (BES, 2012). Offsite migration of TBT is likely occurring from the Shipyard (e.g., via vehicle dragout and air deposition) to Basin S-2.

Conclusions

Analysis of the solids removed from the western portion of Basin S-2 in 2009, following a release during a fire at the Daimler facility, indicated sources of PCBs, SVOCs, and metals to this line segment. The two facilities identified as possible current sources to this line were the Shipyard OU3 facility (where elevated PCBs, SVOCs, and metals concentrations were detected in solids from the onsite system; Ash Creek, 2010) and the Daimler facility where diesel and possibly other contaminants were released to the system during the November 2009 fire. To verify that major ongoing sources of these contaminants are not present in the western portion of Basin S-2, the City deployed a sediment trap in 2010 downstream of the Daimler and OU3 sites.

Results for the sediment trap investigation indicate that contaminant concentrations in current solids discharges to this line are low and do not suggest that major sources of PCBs, SVOCs, and metals are present in the western basin. TBT was detected in the sediment trap sample at a concentration more than an order-of-magnitude higher than the DEQ screening level. TBT has been detected at elevated concentrations in storm sediment at the nearby Shipyard OU1, suggesting that offsite migration from the Shipyard OU1 to Basin S-2 may be occurring.

Stormwater source control evaluations are underway under DEQ Cleanup Program oversight at the Shipyard OU1 and OU3 sites. The City Industrial Stormwater Program continues to provide technical assistance to the Daimler site on minimizing industrial exposures to stormwater. Future identification and control of onsite source areas at these sites will likely further reduce contaminant discharges to Basin S-2. Based on these findings, the City concludes that no further source tracing efforts in Basin S-2 are needed.

References

- Ash Creek. 2010. Storm Water Source Control Evaluation, Operable Unit 3, Swan Island Upland Facility, Portland, Oregon. Prepared for the Port of Portland by Ash Creek Associates, Inc. March 10, 2010.
- Ash Creek. 2011. Re: Storm Water Sampling Results Operable Unit 3 Swan Island Upland Facility Portland, Oregon ECSI No. 271 1115-08. Prepared for the Port of Portland by Ash Creek Associates, Inc. July 11, 2011.
- BES. 2009. City of Portland Environmental Services Industrial Stormwater Program Event Log, RE: City staff response to fire Summary Documentation. November 25, 2009.
- BES. 2010a. Subject: City of Portland Outfall Project Source Investigations for Basins 18, 43, 53A, S-1, S-2, and S-6, Winter 2010-11 Sampling and Analysis Plan. Letter to K Tarnow (DEQ) from L. Scheffler (BES). December 6, 2010.
- BES. 2010b. Stormwater Evaluation Report. City of Portland, Bureau of Environmental Services. February 2010.
- BES. 2010c. Subject: RE: freightliner fire OERS follow-up report. Email to R. Hoy and M. Romero (DEQ) from L. Johnson (BES). January 15, 2010.
- BES, 2010d. Subject: Review of Storm Water Source Control Evaluation, Operable Unit 3, Swan Island Upland Facility, Portland, Oregon, dated March 10, 2010. Letter to D. Lacey (DEQ) from L. Scheffler (BES). October 7, 2010.
- BES. 2011. RE: 5411 N Lagoon Ave: Response to Daimler Trucks letter dated January 31, 2011 Letter to S. Carter (Daimler) from M. Pronold (BES). February 3, 2011.
- BES. 2012. Outfall Basin S-1 Source Investigation. Technical Memorandum No. OFS1-1. Submitted to A. Liverman (DEQ) by L. Scheffler (BES). June 14, 2012.
- Daimler. 2011a. Re: Property at 5411 N. Lagoon Avenue, Portland OR 97217: Response to City of Portland's (City) February 3, 2011 Letter. Letter from S. Carter (Daimler) to M. Pronold (BES). March 31, 2011.
- Daimler. 2011b. Subject: [User Approved] [Zip File Attached]Corp 3 Stormwater Results. Email to L. Johnson (BES) from S. Carter (Daimler). December 15, 2011.
- DEQ. 2010. "Tool for Evaluating Stormwater Data" Appendix E to Guidance for Evaluating the Stormwater Pathway at Upland Sites. January 2009 (updated October 2010).
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).
- EPA. 2010. Re: Portland Harbor Superfund Site; Administrative Order on Consent for Remedial Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240. Portland Harbor Feasibility Study Source Tables. Letter from EPA to Mr. Bob Wyatt, Chairman, Lower Willamette Group. November 23, 2010.

Table

Table 1 – Basin S-2 Stormwater Solids Results

Figure

Figure 1 - Outfall S-2 Drainage Basin Overview and Sample Location

Attachments

Attachment A – Field Photographs Attachment B – Field Notes Attachment C – Laboratory Results

Table 1Basin S-2 Stormwater Solids Results

		MRP Drop Box- From Storm Line on N Lagoon Avenue Composite Cleanout Solids Sample F0096244	Manhole AAP953 Downstream in 30" Line Sediment Trap Sample		SCS ⁽¹⁾ g Level Value
A 1	¥1	F0096244 11/30/2009	W11E206 4/18/2011	Terrisiter	Discourse la fina
Analyte	Units	11/30/2009	4/18/2011	Toxicity	Bioaccumulation
Total Organic Carbon (ASTM D4129-8 TOC	mg/Kg	NA	92.000		
100	ing/ Kg	11/2	72,000		
Total Solids (EPA 160.3M)					
TS	%	52.9	41.9		
Metals (EPA 6020)					
Arsenic	mg/Kg	17.6	3.67	33	7
Barium	mg/Kg	476	NA		
Cadmium Chromium	mg/Kg	<u>25.2</u> 241	1.97 254	4.98	1
Copper	mg/Kg mg/Kg	529	186	149	
Lead	mg/Kg	1,380	105	128	17
Mercury	mg/Kg	0.903	0.0662	1.06	0.07
Nickel	mg/Kg	142	39.7	48.6	
Selenium	mg/Kg	1 U	NA		2,000
Silver	mg/Kg	87	2.31	5	
Zinc	mg/Kg	4,600	802	459	
Polychlorinated Biphenyls (PCBs) (EPA		100 **	22.0.1	520	
Aroclor 1016	µg/Kg	100 U 200 U	23.9 U 47.7 U	530	
Aroclor 1221 Aroclor 1232	µg/Kg	200 U 100 U	23.9 U		
Aroclor 1232 Aroclor 1242	μg/Kg μg/Kg	100 U	23.9 U		
Aroclor 1242 Aroclor 1248	μg/Kg	100 U	23.9 U	1,500	
Aroclor 1254	μg/Kg	622	23.9 U	300	
Aroclor 1260	µg/Kg	1,030	23.9 U	200	
Aroclor 1262	µg/Kg	100 U	23.9 U		
Aroclor 1268	µg/Kg	100 U	23.9 U		
Total P	CBs ⁽²⁾ µg/Kg	1,652	ND	676	0.39
Organotins					
Dibutyltin	µg/Kg	NA	170		
Monobutyltin	µg/Kg	NA	110		
Tetra-n-butyltin	µg/Kg	NA NA	7.3 U 52		
Tributyltin Tripentyltin	μg/Kg μg/Kg	NA	340		2.3
Impentylun	µg/Kg	NA	340		
Polycyclic Aromatic Hydrocarbons (PA	Hs) (EPA 8270-SI	M)			
1-Methylnaphthalene	µg/Kg	NA	200 U		
2-Methylnaphthalene	µg/Kg	NA	200 U	200	
Acenaphthene	µg/Kg	493 U	100 U	300	
Acenaphthylene	µg/Kg	719	100 U	200	
Anthracene Benzo(a)anthracene	µg/Kg	592 406	140	845	
Benzo(a)anthracene Benzo(a)pyrene	μg/Kg μg/Kg	511	260 320	1,050 1,450	
Benzo(b)fluoranthene	μg/Kg μg/Kg	501	520		
Benzo(g,h,i)perylene	μg/Kg	524	360	300	
Benzo(k)fluoranthene	µg/Kg	445	180	13,000	
Chrysene	μg/Kg	622	440	1,290	
Dibenzo(a,h)anthracene	µg/Kg	123 U	74	1,300	
Fluoranthene	µg/Kg	1,320	790	2,230	37,000
Fluorene	μg/Kg	877	100 U	536	
Indeno(1,2,3-cd)pyrene	µg/Kg	358	180	100	
Naphthalene	µg/Kg	1,100	200 U	561	
Phenanthrene Pyrene	µg/Kg	2,470	<u>450</u> 980	1,170	
Pyrene Total P	μg/Kg AHs ⁽²⁾ μg/Kg	1,340		1,520	1,900
l otal P	лпs μg/Kg	11,785	4,700		
Phthalates (EPA 8270-SIM)					
Bis(2-ethylhexyl) phthalate (BEHP)	µg/Kg	8,510	22,000	800	330
Butyl Benzyl Phthalate	μg/Kg	2,750	1,200		
Diethyl phthalate	μg/Kg	493 U	500 U	600	
Dimethyl phthalate	µg/Kg	1,190	1,000		
Di-n-octyl phthalate Di-n-octyl phthalate	μg/Kg μg/Kg	493 U 740 U	640	100	60

Table 1Basin S-2 Stormwater Solids Results

		MRP Drop Box- From Storm Line on N Lagoon Avenue Composite Cleanout Solids Sample F0096244	Manhole AAP953 Downstream in 30" Line Sediment Trap Sample W11E206		SCS ⁽¹⁾ g Level Value
Analyte	Units	11/30/2009	4/18/2011	Toxicity	Bioaccumulation
emi-Volatile Organic Compounds (EP.	,	000 11		0.000	
1,2,4-Trichlorobenzene	µg/Kg	990 U	NA	9,200	
1,2-Dichlorobenzene	µg/Kg	990 U	NA	1,700	
1,3-Dichlorobenzene	µg/Kg	990 U 990 U	NA NA	<u> </u>	
2,4,5-Trichlorophenol	μg/Kg	990 U 990 U	NA		
2,4,5-Trichlorophenol	μg/Kg μg/Kg	990 U	NA		
2,4-Dichlorophenol	μg/Kg μg/Kg	990 U	NA		
2,4-Dimethylphenol	μg/Kg	5,000 U	NA		
2,4-Dinitrophenol	μg/Kg μg/Kg	20,000 U	NA		
2,4-Dinitrotoluene	μg/Kg	990 U	NA		
2,6-Dinitrotoluene	μg/Kg	990 U	NA		
2-Chloronaphthalene	μg/Kg	3,400	NA		
2-Chlorophenol	μg/Kg	990 U	NA		
2-Methylnaphthalene	μg/Kg	6,800	NA		
2-Methylphenol	µg/Kg	990 U	NA		
2-Nitroaniline	µg/Kg	2,000 U	NA		
2-Nitrophenol	µg/Kg	990 U	NA		
3,3'-Dichlorobenzidine	µg/Kg	9,900 U	NA		
3-Nitroaniline	μg/Kg	2,000 U	NA		
4,6-Dinitro-2-methylphenol	µg/Kg	9,900 U	NA		
4-Bromophenylphenyl ether	µg/Kg	990 U	NA		
4-Chloro-3-methylphenol	µg/Kg	990 U	NA		
4-Chloroaniline	µg/Kg	990 U	NA		
4-Chlorophenylphenyl ether	µg/Kg	990 U	NA		
4-Methylphenol	µg/Kg	990 U	NA		
4-Nitroaniline	µg/Kg	2,000 U	NA		
4-Nitrophenol	µg/Kg	9,900 U	NA		
Acenaphthene	µg/Kg	990 U	NA		
Acenaphthylene	µg/Kg	990 U	NA		
Anthracene	µg/Kg	990 U	NA		
Benzo(a)anthracene	µg/Kg	990 U	NA		
Benzo(a)pyrene	µg/Kg	990 U	NA		
Benzo(b)fluoranthene	µg/Kg	990 U	NA		
Benzo(g,h,i)perylene	µg/Kg	990 U	NA		
Benzo(k)fluoranthene	µg/Kg	990 U	NA		
Benzoic acid	µg/Kg	20,000 U	NA		
Benzyl alcohol	µg/Kg	2,000 U	NA		
Bis(2-chloroethoxy) methane	µg/Kg	990 U	NA		
Bis(2-chloroethyl) ether	µg/Kg	990 U	NA		
Bis(2-chloroisopropyl) ether	µg/Kg	990 U	NA		
Bis(2-ethylhexyl) phthalate	µg/Kg	9,900 U	NA		
Butyl benzyl phthalate	µg/Kg	1,700	NA		
Chrysene	µg/Kg	990 U	NA		
Dibenzo(a,h)anthracene	µg/Kg	990 U	NA		
Dibenzofuran	µg/Kg	990 U	NA		
Diethyl phthalate Dimethyl phthalate	μg/Kg μg/Kg	990 U 1,200	NA NA		
Dimethyl phthalate Di-n-butyl phthalate		2,000 U			
Di-n-outyl phthalate Di-n-octyl phthalate	μg/Kg	2,000 U 990 U	NA NA		
Fluoranthene	μg/Kg μg/Kg	990 U 990 U	NA		
Fluoranthene	μg/Kg μg/Kg	990 U 990 U	NA		
Hexachlorobenzene	μg/Kg μg/Kg	990 U 990 U	NA	100	
Hexachlorobutadiene	μg/Kg μg/Kg	990 U 990 U	NA	600	
Hexachlorocyclopentadiene	μg/Kg μg/Kg	5,000 U	NA	400	
Hexachloroethane	μg/Kg μg/Kg	990 U	NA		
Indeno(1,2,3-cd)pyrene	μg/Kg μg/Kg	990 U	NA		
macho(1,2,5-cu)pyrene	μ <u>β</u> / N β	220 0	ina.		

Table 1Basin S-2 Stormwater Solids Results

		MRP Drop Box- From Storm Line on N Lagoon Avenue Composite Cleanout Solids Sample FO096244	Manhole AAP953 Downstream in 30'' Line Sediment Trap Sample W11E206		SCS ⁽¹⁾ g Level Value
Analyte	Units	11/30/2009	4/18/2011	Toxicity	Bioaccumulation
Isophorone	µg/Kg	990 U	NA		
Naphthalene	µg/Kg	1,400	NA		
Nitrobenzene	µg/Kg	990 U	NA		
N-Nitrosodi-n-propylamine	µg/Kg	990 U	NA		
N-Nitrosodiphenylamine	µg/Kg	1,100	NA		
Pentachlorophenol	µg/Kg	9,900 U	NA		
Phenanthrene	µg/Kg	2,100	NA		
Phenol	µg/Kg	3,000 U	NA		
Pyrene	µg/Kg	1,500	NA		
Total Petroleum Hydrocarbons (TPH) (NWT)	PH-Dx)				
Diesel-Range Hydrocarbons (C12-C24)	mg/Kg	7,420	NA		
Oil-Range Hydrocarbons (>C24)	mg/Kg	7,810	NA		
Total Petroleum Hydrocarbons (TPH) (NWT	PH-HCID)				
Diesel	mg/Kg	>50	NA		
Gasoline	mg/Kg	20 U	NA		
Lube Oil	mg/Kg	>100	NA		

Notes:

J = The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

U = The analyte was not detected above the reported sample quantification limit.

ND = not detected.

-- No JSCS screening level available.

 $\mu g/Kg = micrograms$ per kilogram.

mg/Kg = milligrams per kilogram.

⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007).

⁽²⁾Total PCBs and PAHs are calculated by assigning "0" to undetected constituents.

= concentration exceeds JSCS Toxicity Screening Level Value.

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

LEG	END						
•	Sample	e Locati	on				
	Sedime	ent Trap	Sample				
	Outfall	Basin S	8-2				
	Line Cl	eaned i	n Novem	ber 2009			
0	City Ou	ıtfall					
•	Non-Ci	ty Outfa	all				
	Storm L	_ine					
0	Manhol	le (MH)					
	Catch E	Basin (C	CB)				
*	DEQ E	CSI Site	е				
G	Tax Lot						
	River M	lile Ten	ths				
	NI						
($\hat{\mathbf{T}}$	0	125	250			
(\mathbf{J}		Feet				
	<u> </u>						
		FIGUE					
Outfall Basin S-2 Drainage Basin Overview							
and Sample Location							
records, hor or implied, a published. Prepared B	contained on wever the City as to the comp	of Portland pleteness or	I makes no wa accuracy of t	ording to available arranty, expressed he information ENTAL SERVICES RTLAND			
City of Port		*	1120 SW Fifth	Avenue, Room 1000			

Attachment A Field Photographs

Photo 1 (December 22, 2010). Setup for sediment trap installation at manhole AAP953. View is to the northwest along N. Lagoon Avenue.

Photo 2 (December 22, 2010). Screened Inline Flow-Through (SIFT)© ¹ sediment trap installed in the 30-inch diameter outgoing line at manhole AAP953. SIFT trap is positioned 3 feet downstream of manhole.

¹ 2009 City of Portland. These traps are proprietary and patent pending. These traps were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

Photo 3 (January 26, 2011). Sediment trap with accumulated solids and organic matter during first monthly field check.

Photo 4 (March 7, 2011). Stormwater solids in secondary chamber at time of second monthly field check.

Attachment B Field Notes This page intentionally left blank

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

City of Portland Chain-of-Custody

 Date:
 5/2(a/1)

 Work Order #:
 W11E206

 Collected By:
 JJM, PTB

Bureau of Environmental Service	98
---------------------------------	----

	Client Name:	Director's (Office				-	• .•					•				Mat	rix:		<u> </u>	Sedi	mei	nt]	•			•	ł
	Project Name:	Portland H	larbor			· · ·					_					•			•									,			·) -
					. • •				· ·	R	equ	ies	ted	An	aly	ses	;	,	. ,				`				-					
	Basin S-2 Sedime	•	S analysis to re	tain sample vol	ume for other	analyses.			, Cr, Cu													÷							- - -			
nber	¹ Includes 1 & 2 Methylr	naphthalene					, i		Total Metals (As, Cd, Cr, Cu	, Ag, Zn)	PCB Arociors (low-level)	thalates ¹	5							-				. *				·	<u>.</u>		·	
Lab Number	Location ID	install Date	instali Time	Removal Date	Removal Time	Sample Type	TS	100	Total Met	Pb, Hg, Ni, Ag, Zn)	PCB Aroc	PAH + Phthalates ¹	Organotins												# Cont	of ainers			Rema			٦
01	S2_ST1	12/22/2010	1040	4/18/2011	1235	C	•.	•			•	•	•					-			r				ł		S7 1	-S2- 07.7 g	AAP9 Total V	53-₩ Wet W	/eight	
					· · · ·													2					•									
					•	199						-									• •					· .		,				_
					· · ·											•		. :											· ·		•	
												•													·					. <u> </u>		
					•											-								1						· · · · · · · ·		-
											, ·							. •							-							•
								•							-			·											•			-
			· · · ·					•								. •										-					: • .	
					1										-												ļ.,	<u>.</u>				
	Relinquished By: Signature:	Ba	Date		Received By Signature:	W/	7				Date:	5/24	- lıc	<u>Relin</u> Signat	n <mark>quish</mark> ure:	ied B	<u>y:</u>	•			Date:			Rece Signat	vived Br ure:	<u>Ľ</u>	,		Date:			Ī
	Printed Name: Peter	Byan	Time:	· ·	Printed Name:	Inclue	4711	cl	7.A	<u> </u>	Times	092		Printec	d Name:	· · ·		:			Time:		•	Printe	d Name:				Time:			_
	Portland Harbo	r - Basin S-2 Sed	Trap COC (5-2	5-11).xis													1						-				Page	1	of	i		

DAILY FIELD REPORT

	Page of
Project POLITAND HAABOR Location BASIN 52 Subject SIFT Installation	Project No Date <u>12/22/10</u> By <u>MJS, PTB</u>
1015 Arrive on-site AAP953 to Install	SIFT for EVID-11 storm
Seenson.	
1030 Entruit observes "Att CB From W	inlet is 8" concrete as is CB
from E. Main line inlet + outlet are	
In main line at 0.25 fps. No sedimen	t inline observed.
1040 SIFT installed in downstream line	3' from center of note at 15°
and e and 4 34" to pop of weir on SIFT.	
	1월 1985년 1월 2015년 1월 2015년 1월 2017년 1월 1월 1981년 1월 2017년 1월 2
Attachments	

DAILY FIELD REPORT

Page ____ ____of Project Portland Warbor Sift Checks Project No. Date 1 - ZC - CCLocation_<u>Basin</u> 52 subject Daily Field notes BY AJA PTB ATE ARCH 1015 52 - ST or first regul atmonthly check. Weather has been fairly for previous wook and a half. Last big rain Mas Jan 15-16 2011 Reinstalled as originally installed 15 Franche. No solids collected or archived Attachments

DAILY FIELD REPORT

Page

___ of Project PORTLAUD ITARBOR Project No. Location BASIN 52 Date 3-7-11 Subject SIFT CHECKS By WOR/ PTB 1109 ARR @ SIGO H. LACOLI FOR SECOND FIELD CIDER OF SEASOH FOLLOWING SIGHIFICANT WINDER SXAM ACTIVITY (LAST CIDECK WAS 1-26-11 I YLAT CATCH MASKAS ITALE AMPLE SAMPLE ABLE SEDIMEN PTBIS "STOKED" ARR 1210 @ T8_STG @ HW LAKE \$ 35 TALL 1 LOTS OF GRAVEL OIL MH2 ID REMISTALL SINT, LIG SED COLLECTION **Attachments**

DAILY FIELD REPORT

Page of Project TORILAND HARBOR Project No. Location BASIN S Date 4110 Subject SFT CHECKS By JJ PTTS W 073 5112h - vp. tc. ISB Hrave on site Cet This C rellect Conven 2.5-2 2 5. 0 1.0 VN CIUM Ulations forsumer lic tomer re 0 Ω. MAan MANT ertina ce each < time tol Juion recen 10P 10 Ċ H Derior where \$ 0 ene thein time we lo in -P linaw TOWN being unshed nnin Doymen ase n the NCB le. بد مآ into nero \cap Iscapina 0.0 sels Mo Δ Eli Nº. ed site 1)2 ė Du Attachments

DAILY FIELD REPORT

	Page of
Project Portland Harbor Sed traps.	Project No
Location BASIN SZ	Date 5/23/11
Subject Monthly dieck	By PTB, CJK
	PTE 5/22/11
1121 arrived on site at 5160 N. Ladon Ave, E	2-578/2
1128 Willamette River is backed up filling pipe	40 to
manhole chamber floor (27"), flow appear	x to be
Stagnant. Will attempt to remove trap.	
1133 Entry made in attempt to remove trap.	
1141 Water too deep to remove trap. flow seems	4 66
moving is a positive and then negative flow	
27" deep Water on amival	
29" deep water on departure.	
flow rate @ ~ 0.1 fps	
이번 방법에 여행되었다. 여행 방법에 관심을 하는 것이 하는 것이 하는 것이 없다.	
	n an an an an Arthur an Arthur an Anna an Anna Anna an Anna an Anna an Anna an
에 가장에 있는 사람은 가장에 가장에 있는 것이 있는 것이 있는 것이 있다. 이렇게 가장에 가장에 가장에 있는 것이 있는 같은 것은 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 같은 것이 있는 것이 있는 것이 같은 것이 같이 있는 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것	
가 있는 것 같은 것은 것 같은 것 같은 것 같은 것	
사실 같은 것은	n general de la service de Antre el service de la serv
Attachments	가지만, 또는 한 것 가지만 한 것 같은 것 같이 다. 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이 했다.

DAILY FIELD REPORT

n en en ser internet de la verse de la construir de la servicie de la construir de la construir de la construir La construir de la construir de	
Project PORTLAND HARBOR Location WPCL	Project No Date5/26/11
Subject BASIN 52 Sample Processing	ву <u>РТВ</u>
0930 Due to river invadation at AAP953 custo Submit previously collected seds from site 52-571 in the SIFT can no longer definitively be attributed Sediments present in archive jar where homogenized steel spatula (decomped to SOP7.010). Loss of seds dur	to upstream sources. Using a deconned stabilities
this leaves 107.79 for submittal. This time on to be differentiated as the lab's LIMS can accommediate con	the CCC no longer needs
An in all and and the max inter and the Co	
0920 Submitted 52-STI jor for analysis.	
	a Antonio Anglio Politika (n. 1844). 1997 - Anglio Politika (n. 1944). 1997 - Anglio Politika (n. 1944).
n de la companya de En esta de la companya de la company	and in the second data in the state of the second se
Attachments	
大学生的,我们就是一个人,我们就是这些人,我们就是这个人,我们就 <u>是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是</u> 我们的,我们就是	(a) A set of the se

	CITY OF F /IRONMEN Field Op 6543 N. Bu Portland, OF	TAL perations rlington A		S	
INLINE S	EDIMENT TRA	\P FI	ELD DATA S	HEET	
Project Name: Portland Harbor	Date: 12/22/1	0	Personnel: MJS	, PTB	Point Code: 1 52_ST
Site Address: 5160 N LAGOON	AVE	-	Basin: 5-2		Hansen ID: A A P9 5 3
SE(TION 1 - INSTAI	LLATI	ON INFORMAT	ION	
Traffic control and/or site access concerr MH is located in for right but	ne of 3 lane	<u></u>	<u>A Antonio de Contractores de </u>	Standing wat	ter: Y or 🕅
ne way street, adjacent to drive reightliner windfumel. To signs	A allow I allo 14	If flowi	ng: Depth of flow	/= <u>1</u> 4_in.	Rate of flow = $\frac{1}{4}$ fp
Her SE drive work to Freightliner windton ter SE drive you to Freightliner windton ter for defineent driveway.		l	iver appear to bac	· ·	~
Are sediments present inline? Y or M				··· · · · · · ·	
Estimated dimensions of sediment depos	it: in. by	in.	OR 🗆 Asfara	is can be seen	l · · · · · · · · · · · · · · · · · · ·
Sed Trap Installed in: <u>30</u> in. Pipe Or	Upstream or Downst	ream sid	le of MH (circle one)	<u>3</u> ft fro	m center of MH node
revinee	434 in. to top 30'concrete center amin Note	s of	Weir Q from CB Sconed lateral Derened lateral Percined lateral Cloor 30" concrete		A
		R			

ę

878 Stew!" Pt-Code: 15 Hansen ID: SECTION 2 – MONTHLY FIELD CHECK INFORMATION AAP953 Date: Average sed. depth per chamber: Sediments removed? Yes or (No) Archived ID: 1-26-11 Primary = $\frac{1}{r_{acc}}$ in Secondary = 0.1 in | If Yes, from Primary / Secondary By. PTB, ASA Final Removal? Yes or (No) Face occluded? Yes or No) Sediment Trap Status Observations Standing water in Line 1.25". Some seds deposited Housing: in Front of SIFT gravel 1/4" deep. SIFT Does Show signs of high water about halfway up chamber, Reinstalled sift saw Holding Sticker las before check. No solids contected. Primary Chamber: Trace accumulation in primary. Secondary Chamber: Trace accumulation across face of screen. Invert has some accum. ranging a trace to 1/4" dopth, & 2.5" wide appears to be fires. Photos Taken? M/N 1 Photo in situ. Describe: 1- Photo primary chamber, 1 of Secondary Date: Average sed, depth per chamber: Date: Sediments removed? Yes or (No) Average sed. depth per chamber: Primary = $\frac{1}{8}$ in Secondary = $\frac{1}{4}$ in $\frac{1}{16}$ Yes, from Primary / Secondary 3-7-11 LEAK By: Final Removal? Yes of No) Face occluded? Yes or VERIPTS VIANTIAL W Sediment Trap Status Observations 1.5" STAUDIUL WATER 14 214E SOME Housing: GRAUEL, LEAVES AT DASE. 1/4" OF SED @ BASE OF SIMT, SAUDY CRAUEL Holding Sticker Primary Chamber: ~ 1/81 ACCUNULATER, PAR SAID TO SILT Secondary Chamber: in the ALOUL INWERT, 3" WIDE, FACE HAS TRACE ACCUM W/ 18 STAUDIAL WATER W/SLIGHT SHEREN Photos Taken? ON SIFT INS ITU, EACH CHAMBER Describe: Date: Date: Average sed. depth per chamber: Sediments removed? (Yes) or No 4118/11 Primary = 0.25 in Secondary = 0.4 in | If Yes, from (Primary) / Secondary BY: JJM Final Removal? Yes or (No) Face occluded? Yes or No) ŶПЬ Sediment Trap Status Observations 1.5" of standing water Gravel & leaves around Housing: base, Gravelly seds in 64441" area us of SIFT (+ ds toc.) Holding Sticker Primary Chamber: 2" wide band of 0.25" accumulation example with norrowing of the accumulation band in the middle. Sets were gravely. Secondary Chamber: Screen: top 33 has trace accumulations of fines with bottom V3 Sloping into invert that has ~ 0.4" of accumulations of fines. bios Taken? DIN SET IN-SITU, PAMANY CHAMBER & SECONDARY CHAMBER Describe:

	12 51261" 10	•. •.			· • · · ·	
Pt. Code: 51	SECTIO	N 2 – MONTHL	Y FIELD CI	IECK INFORM	IATION	Hansen ID: AAP953
Date: 5/23/11	Estimated sed. depth per Primary = in Seco			removed? Yes o Primary / Sec		Date 5/23/L1
By: PTB (JK	Final Removal? Yes or	0	Face occlue	ded? Yes or No	>	I II (2002) A Constant of State of Stat
	 A state of a state o	backed up. i manual inspec avrival and negatively @ a	Vater 2.7 tion. Water while on ipprox 0.1 t	-29" deep, T ~ Stagnant, site oscillate Eps,	ào deep not flowing 2d positive	Holding Sticker
Photos Taken?	(Ŷyn					
Describe: P	roits continuis face	not occluded.			n an	
Date:	Estimated sed. depth per of Primary = in Seco			removed? Yes o Primary / Sec	· · · · · · · · · · · · · · · · · · ·	Date:
By:	Final Removal? Yes or N	0	Face occlud	ded? Yes or No	· · ·	i handrik i den steleningsförd byryder
Primary Chamb						Holding Sticker
Secondary Cha	mber:					
Photos Taken?	Y/N		· · ·		· · · · · · · · · · · · · · · · · · ·	 • •
Describe:						
		SECTION 3-C	OMPOSIT	ESAMPLE		
Sample ID:	J11E206 - 01 Icker	Duplicate sample this site? Y/N	collected at	DUPLICATE ID:		
Duplicate Sam	ple ID on COC:	Any deviations fro	m standard op	perating procedur	es? Y	· · · · · · · · · · · · · · · · · · ·
affix FO number st	icker	Describe:			3	· · ·
Comments:	Sample Submitted collected Seds th	carly due rough 4/19/	to river 11 check	back up were subm	. Previous	sly

.

÷

 \bigcirc

Portland Harbor SIFT Sediment Trap Sediment Accumulation Tracking Sheet Prestau Basin 52 Site AAP953/52-5721							
DATE	TOTAL WEIGHT SEDS + JAR + LID (g)	TARE WEIGHT OF JAR + LID (g)	TOTAL COLLECTED WEIGHT (g)	WEIGHT OF PREVIOUSLY COLLECTED SEDS (g)	DEPLOYMENT'S SED ACCUMULATION (g)		
4/18/11	329.8.	- 218.3	= 111.5	NA	= 111.5		
					=		
					=		
					=		
			-				
Homoge	nization Procedure:	In a Single Jar	OR In a Bo	wl from Multiple Jars (then parce	eled out into new clean jars)		
Total We	ight Seds + Jar + Lid	after homogenization	Tare Weight of Jar + Lid	Sed Weight After Homogenizat	ion (At Submittal)		
	= 326.04		- 218.3g	= 107.7g			
COC Time (time composite jar is capped): NX Number of Sample Jars Collected (size & fullness): 1802- jor 1/3 full							
Visual Description of Final Composite Sample: Very dark brown with 80% five surds 20% five (siltso days) organize							
Sample ID: WILE206 - 01			Duplicate Collected? Y /				
Intal Solids (%) per Lab Analysis - SUFFICIENT VOLUME AVAILABLE FOR ACCUESTED AVALYSES							
Comments: COC Time no longer necessary to be differentiated as the labs LIMS an accomposite start and end							

Attachment C Laboratory Results and QA/QC Review (on CD only) This page intentionally left blank

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Sediment Trap Sampling Outfall Basin S-2

To: FileFrom: Andrew Davidson, GSI Water Solutions, Inc.Date: February 15, 2012

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a sampling event conducted by the City of Portland (City) in Basin S-2. A sediment trap was deployed between December 22, 2010 and April 18, 2011. The sediment trap was monitored over time, and accumulated solids were archived. Archived samples were homogenized, and a final sediment trap sample (W11E206-01) representing accumulated solids from the entire deployment period was submitted for analyses.

The laboratory analyses for this solids samples was completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and a subcontracted laboratory. The following laboratories conducted the analyses listed below:

- BES WPCL
 - Total Solids (TS) SM 2540G
 - Total Metals EPA 6020
 - o Polynuclear Aromatic Hydrocarbons (PAHs) & Phthalates EPA 8270M-SIM
 - Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - Total Organic Carbon (TOC) EPA 9060 MOD
 - Organotin Compounds PSEP GC/MS

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratories. The QA/QC review of the analytical data

consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within accuracy control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits

The results from the QA/QC review of the available information in the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

WPCL reports that holding times were exceeded for the analyses of PAHs & phthalates and for mercury due to the delayed request for analysis. Additionally, TA reports that holding times were exceeded for the analyses of TOC and organotins. However, because the samples were properly preserved, the results are acceptable for the purposes of this investigation.

Method Blanks

Method blanks were processed during WPCL's analyses of total metals, PAHs & phthalates, and PCB Aroclors, and during the subcontracted laboratory analyses of TOC and organotins. No analytes were detected in any of the method blank samples.

Surrogate Recoveries

Surrogate chemicals were analyzed during WPCL's analyses of PAHs & phthalates and PCB Aroclors, as well as in the subcontracted laboratory analysis of organotins. Surrogate recoveries for the MS/MSD samples processed during the analysis of PCB Aroclors were slightly below detection limits, but were within laboratory control limits for the field sample and associated LC sample. All other surrogate recoveries were within acceptance limits.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS samples were processed during the analyses of total metals, PCB Aroclors, TOC, and organotins. MSD samples were also processed during the analyses of PCB Aroclors and organotins. MS/MSD sample recoveries were within laboratory acceptance limits with one exception; tetra-n-butyltin was collected in the organotin MS sample at a concentration greater than the laboratory control limit. However, the associated MSD, LC, and DLC sample recoveries for tetra-n-butyltin were well within acceptance limits, and the data is not qualified further. Relative percent differences (RPDs) between MS/MSD samples processed during the PCB Aroclor and organotin analysis were also within acceptance criteria.

Laboratory Control/Laboratory Control Duplicate Sample (LC/LCD)

LC samples were processed during the laboratory analyses of total metals, PAHs & phthalates, PCB Aroclors, TOC, and organotins. All LC sample recoveries were within laboratory control limits with three exceptions; butyl benzyl phthalate, di-n-butyl phthalate, and bis(2-ethylhexyl) phthalate were collected just above laboratory control limits in LC sample processed during the analysis of PAHs & phthalates. WPCL reports that the high analyte recoveries in the LC sample were due to the low spike concentrations. Accordingly, WPCL comments that associated analyte recoveries in the field sample may be high estimates. A DLC sample was collected during the organotin analysis. All DLC sample recoveries and associated LC/DLC RPDs were within acceptance criteria.

Laboratory Duplicate Samples

Laboratory duplicate samples were processed during the analyses of total metals, PAHs & phthalates, and TOC. RPDs for all laboratory duplicate samples were within laboratory control limits.

Other

WPCL reports that the sample processed during the analysis of PAHs and phthalates required dilution due to non-target matrix interferences, resulting in raised reporting limits. Additionally, WPCL reports that reporting limits were raised in the PCB Aroclor analysis due to the low percent solids.

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

July 20, 2011

Linda Scheffler Director's Office

Work Order	Project	Received		
W11E206	Portland Harbor	05/26/11 09:20		

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

lan

Renee Chauvin Laboratory Coordinator QA/QC

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project:	Portland Harbor	Client:	Director's Office
Work Order:	W11E206	Project Mgr:	Linda Scheffler
Received:	5/26/11 9:20	WQDB #:	Janus329
Submitted By:	Field Operations		

	<u>Laboratory ID</u> W11E206-01			Sample Collection Date					
<u>Sample</u>		<u>D</u> <u>Matrix</u>		Туре		<u>Start</u>		End	Qualifier
S2_ST1		Sediment	Composite		04/18/11 12:35		04/18/11 12:35		
Analyte	Result	Units	MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
S2_ST1 : W11E206-01									
General Chemistry									
Total solids	41.9	% W/W	0.01		B11F017	06/01/11	06/02/11	SM 2540G	
Total Metals									
Total Metals by ICPMS									
Arsenic	3.67	mg/kg dry	0.500	20	B11F012	06/01/11	06/03/11	EPA 6020	
Cadmium	1.97	mg/kg dry	0.100	20	B11F012	06/01/11	06/03/11	EPA 6020	
Chromium	254	mg/kg dry	0.500	80	B11F012	06/01/11	06/03/11	EPA 6020	
Copper	186	mg/kg dry	0.200	80	B11F012	06/01/11	06/03/11	EPA 6020	
Lead	105	mg/kg dry	0.100	20	B11F012	06/01/11	06/03/11	EPA 6020	
Mercury	0.0662	mg/kg dry	0.0100	20	B11F012	06/01/11	06/03/11	EPA 6020	F
Nickel	39.7	mg/kg dry	0.200	20	B11F012	06/01/11	06/03/11	EPA 6020	
Silver	2.31	mg/kg dry	0.100	20	B11F012	06/01/11	06/03/11	EPA 6020	
Zinc	802	mg/kg dry	0.500	80	B11F012	06/01/11	06/03/11	EPA 6020	

Reported: 07/20/11 10:12

Canlline

Renee Chauvin, Laboratory Coordinator QA/QC

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Work Order: W11E20	d Harbor 16				ent: oject N		rector's (nda Sche			
Analyte	Result	Units		MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
<u> Semivolatile Organics - S</u>	IM									
Polynuclear Aromatics & Phth	nalates by GCMS	S-SIM								D1, H
Acenaphthene	ND	ug/kg dry		100	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	,
Acenaphthylene	ND	ug/kg dry		100	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Anthracene	140	ug/kg dry		100	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Benzo(a)anthracene	260	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Benzo(a)pyrene	320	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Benzo(b)fluoranthene	520	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Benzo(g,h,i)perylene	360	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Benzo(k)fluoranthene	180	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Chrysene	440	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Dibenzo(a,h)anthracene	74	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Fluoranthene	790	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Fluorene	ND	ug/kg dry		100	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Indeno(1,2,3-cd)pyrene	180	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
1-Methylnaphthalene	ND	ug/kg dry		200	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
2-Methylnaphthalene	ND	ug/kg dry		200	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Naphthalene	ND	ug/kg dry		200	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Phenanthrene	450	ug/kg dry		100	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Pyrene	980	ug/kg dry		50	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Butyl benzyl phthalate	1200	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	l
Di-n-butyl phthalate	640	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	l
Diethyl phthalate	ND	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Dimethyl phthalate	1000	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Di-n-octyl phthalate	1100	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Bis(2-ethylhexyl) phthalate	22000	ug/kg dry		500	50	B11E492	05/31/11	06/03/11	EPA 8270-SIM	l
Surrogate	Result		Expected	%Rec	Limits(%	6)				
2-Methylnaphthalene-d10	510		41	1 125%	50-150	B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Fluoranthene-d10	480			1 116%		B11E492	05/31/11	06/03/11	EPA 8270-SIM	
Polychlorinated Biphenyl	s (PCBs)									
PCB Aroclors by GC-ECD										ZC
Aroclor 1016/1242	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		47.7	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1260	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		23.9	1	B11E499	05/31/11	06/01/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	6)				
Tetrachloro-m-xylene	16.3		23.	1 70%	-	B11E499	05/31/11	06/01/11	EPA 8082	
Decachlorobiphenyl	14.9					B11E499	05/31/11	06/01/11	EPA 8082	

Reported: 07/20/11 10:12

laulture

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order: W11E206

Portland Harbor

Client: **Director's Office** Linda Scheffler Project Mgr:

Quality Control Report

			Total Metals	- QC					
Analyta	Result	Units	MRL	Spike	Source Result	%Rec	RPD (Limit)	Prepared: Analyzed	Qualifi
Analyte		Units	WIRL	Level	Result	(Limits)	()	- ,	
Total Metals by ICPMS - Bat	ch B11F012								
Blank (B11F012-BLK1)									
Arsenic	ND	mg/kg wet	0.500					06/01/11 :06/03/11	
Cadmium	ND	mg/kg wet	0.100					06/01/11 :06/03/11	
Chromium	ND	mg/kg wet	0.500					06/01/11 :06/03/11	
Copper	ND	mg/kg wet	0.200					06/01/11 :06/03/11	
Lead	ND	mg/kg wet	0.100					06/01/11 :06/03/11	
Mercury	ND	mg/kg wet	0.0100					06/01/11 :06/03/11	
Nickel	ND	mg/kg wet	0.200					06/01/11 :06/03/11	
Silver	ND	mg/kg wet	0.100					06/01/11 :06/03/11	
Zinc	ND	mg/kg wet	0.500					06/01/11 :06/03/11	
Standard Reference Material (B11F012-SRM1)								
Arsenic	194	mg/kg wet	0.500	225		86 (75-125)		06/01/11 :06/03/11	
Cadmium	68.9	mg/kg wet	0.100	69.1		100 (75-125)		06/01/11 :06/03/11	
Chromium	141	mg/kg wet	0.500	124		114 (75-125)		06/01/11 :06/03/11	
Copper	71.1	mg/kg wet	0.200	78.8		90 (75-125)		06/01/11 :06/03/11	
Lead	228	mg/kg wet	0.100	223		102 (75-125)		06/01/11 :06/03/11	
Mercury	5.123	mg/kg wet	0.0100	5.15		99 (75-125)		06/01/11 :06/03/11	
Nickel	185	mg/kg wet	0.200	172		108 (75-125)		06/01/11 :06/03/11	
Silver	36.3	mg/kg wet	0.100	35.2		103 (75-125)		06/01/11 :06/03/11	
Zinc	375	mg/kg wet	0.500	349		108 (75-125)		06/01/11 :06/03/11	
Duplicate (B11F012-DUP1)			Source: W11E211-08						
Arsenic	2.54	mg/kg dry	0.500		2.63		4 (20)	06/01/11 :06/03/11	
Cadmium	0.472	mg/kg dry	0.100		0.503		6 (20)	06/01/11 :06/03/11	
Chromium	34.6	mg/kg dry	0.500		34.7		0.6 (20)	06/01/11 :06/03/11	
Copper	45.0	mg/kg dry	0.200		45.3		0.6 (20)	06/01/11 :06/03/11	
Lead	22.3	mg/kg dry	0.100		26.4		17 (20)	06/01/11 :06/03/11	
Mercury	0.02106	mg/kg dry	0.0100		0.02397		13 (20)	06/01/11 :06/03/11	
Nickel	36.4	mg/kg dry	0.200		35.0		4 (20)	06/01/11 :06/03/11	
Silver	ND	mg/kg dry	0.100		ND		(20)	06/01/11 :06/03/11	
Zinc	214	mg/kg dry	0.500		232		8 (20)	06/01/11 :06/03/11	
Matrix Spike (B11F012-MS1)			Source: W11E211-08						
Arsenic	17.2	mg/kg dry	0.500	15.7	2.63	93 (75-125)		06/01/11 :06/03/11	
Cadmium	15.7	mg/kg dry	0.100	15.7	0.503	97 (75-125)		06/01/11 :06/03/11	
Chromium	84.1	mg/kg dry	0.500	47.1	34.7	105 (75-125)		06/01/11 :06/03/11	
Copper	127	mg/kg dry	0.200	78.5	45.3	104 (75-125)		06/01/11 :06/03/11	
Lead	110	mg/kg dry	0.100	78.5	26.4	107 (75-125)		06/01/11 :06/03/11	
Mercury	0.8213	mg/kg dry	0.0100	0.785	0.02397	102 (75-125)		06/01/11 :06/03/11	
Nickel	116	mg/kg dry	0.200	78.5	35.0	103 (75-125)		06/01/11 :06/03/11	
Silver	15.3		0.100	15.7	ND	98 (75-125)		06/01/11 :06/03/11	

Reported: 07/20/11 10:12

lac Can

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Client: **Director's Office Portland Harbor** Work Order: W11E206 Project Mgr: Linda Scheffler **Total Metals - QC** RPD Prepared: Spike Source %Rec Qualifier (Limit) Analyzed Analyte Result Units MRL Level Result (Limits) Total Metals by ICPMS - Batch B11F012 Matrix Spike (B11F012-MS1) Source: W11E211-08 78.5 121 (75-125) 06/01/11 :06/03/11 Zinc 327 mg/kg dry 0.500 232

Reported: 07/20/11 10:12

lac

Renee Chauvin, Laboratory Coordinator QA/QC

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order: **Portland Harbor** W11E206

Client: **Director's Office**

Project Mgr: Linda Scheffler

Semivolatile Organics - SIM - QC RPD Prepared: Spike Source %Rec Qualifier (Limit) Analyzed MRL Analyte Result Units Level Result (Limits) Polynuclear Aromatics & Phthalates by GCMS-SIM - Batch B11E492 Blank (B11E492-BLK1) ND ug/kg wet 20 05/31/11 :06/03/11 Acenaphthene ug/kg wet Acenaphthylene ND 20 05/31/11 :06/03/11 Anthracene ND ug/kg wet 20 05/31/11 :06/03/11 Benzo(a)anthracene ND ug/kg wet 10 05/31/11 :06/03/11 Benzo(a)pyrene ND ug/kg wet 10 05/31/11 :06/03/11 ND 10 05/31/11 :06/03/11 Benzo(b)fluoranthene ug/kg wet Benzo(g,h,i)perylene ND 10 05/31/11 :06/03/11 ug/kg wet ND 10 05/31/11 :06/03/11 Benzo(k)fluoranthene ug/kg wet ND 10 05/31/11 :06/03/11 Chrysene ug/kg wet Dibenzo(a,h)anthracene ND ua/ka wet 10 05/31/11 :06/03/11 10 05/31/11 :06/03/11 Fluoranthene ND ug/kg wet 20 05/31/11 :06/03/11 Fluorene ND ug/kg wet Indeno(1,2,3-cd)pyrene ND ug/kg wet 10 05/31/11 :06/03/11 ND 40 05/31/11 :06/03/11 1-Methylnaphthalene ug/kg wet 2-Methylnaphthalene 40 ND 05/31/11 :06/03/11 ug/kg wet Naphthalene ND ug/kg wet 40 05/31/11 :06/03/11 Phenanthrene ND ug/kg wet 20 05/31/11 :06/03/11 Pvrene ND ug/kg wet 10 05/31/11:06/03/11 Butyl benzyl phthalate ND 100 05/31/11 :06/03/11 ug/kg wet 05/31/11 .06/03/11 Di-n-butyl phthalate ND ug/kg wet 100 Diethyl phthalate ND ug/kg wet 100 05/31/11 :06/03/11 Dimethyl phthalate ND 100 05/31/11 :06/03/11 ug/kg wet Di-n-octyl phthalate ND ug/kg wet 100 05/31/11 :06/03/11 ND 100 05/31/11 :06/03/11 Bis(2-ethylhexyl) phthalate ug/kg wet Surrogate 05/31/11:06/03/11 120 100 117 2-Methylnaphthalene-d10 ug/kg wet 05/31/11 :06/03/11 110 Fluoranthene-d10 ug/kg wet 100 114 LCS (B11E492-BS1) Acenaphthene 20 20.0 05/31/11 :06/03/11 20.4 ug/kg wet 102 (50-150) Acenaphthylene 22.0 ug/kg wet 20 20.0 110 (50-150) 05/31/11 :06/03/11 20 20.0 108 (50-150) 05/31/11 :06/03/11 Anthracene 21.6 ug/kg wet 05/31/11 :06/03/11 Benzo(a)anthracene 21.2 ug/kg wet 10 20.0 106 (50-150) Benzo(a)pyrene 20.8 ug/kg wet 10 20.0 104 (50-150) 05/31/11 :06/03/11 Benzo(b)fluoranthene ug/kg wet 10 20.0 05/31/11 :06/03/11 21.2 106 (50-150) 20.0 05/31/11 :06/03/11 Benzo(g,h,i)perylene 14.0 ug/kg wet 10 70 (50-150) Benzo(k)fluoranthene 10 20.0 102 (50-150) 05/31/11 :06/03/11 20.4 ug/kg wet Chrysene 20.8 ug/kg wet 10 20.0 104 (50-150) 05/31/11 :06/03/11 Dibenzo(a,h)anthracene ug/kg wet 10 20.0 90 (50-150) 05/31/11 :06/03/11 18.0 Fluoranthene 05/31/11 :06/03/11 21.2 ug/kg wet 10 20.0 106 (50-150) Fluorene 20.0 ug/kg wet 20 20.0 100 (50-150) 05/31/11 :06/03/11

Reported: 07/20/11 10:12

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order: Portland Harbor W11E206 Client: Director's Office Project Mgr: Linda Scheffler

Semivolatile Organics - SIM - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Polynuclear Aromatics & Phtha	alates by GCI	MS-SIM -	Batch B11E492						
LCS (B11E492-BS1)	•								
Indeno(1,2,3-cd)pyrene	16.8	ug/kg wet	10	20.0		84 (50-150)		05/31/11 :06/03/11	
Naphthalene	18.0	ug/kg wet	10	20.0		90 (50-150)		05/31/11 :06/03/11	
Phenanthrene	21.6	ug/kg wet	20	20.0		108 (50-150)		05/31/11 :06/03/11	
Pyrene	22.0	ug/kg wet	10	20.0		110 <i>(50-150)</i>		05/31/11 :06/03/11	
Butyl benzyl phthalate	132	ug/kg wet	50	80.0		164 (50-150)		05/31/11 :06/03/11	ZC
Di-n-butyl phthalate	125	ug/kg wet	50	80.0		156 <i>(50-150)</i>		05/31/11 :06/03/11	ZC
Diethyl phthalate	85.2	ug/kg wet	50	80.0		106 <i>(50-150)</i>		05/31/11 :06/03/11	
Dimethyl phthalate	74.0	ug/kg wet	50	80.0		92 (50-150)		05/31/11 :06/03/11	
Di-n-octyl phthalate	96.4	ug/kg wet	50	80.0		120 (50-150)		05/31/11 :06/03/11	
Bis(2-ethylhexyl) phthalate	123	ug/kg wet	50	80.0		154 (50-150)		05/31/11 :06/03/11	Z
Surrogate									
2-Methylnaphthalene-d10	120		ug/kg wet	100		120 <i>(50-150)</i>		05/31/11 :06/03/11	
Fluoranthene-d10	120		ug/kg wet	100		118 <i>(50-150)</i>		05/31/11 :06/03/11	
Duplicate (B11E492-DUP1)			Source: W11E211-05						D
Acenaphthene	ND	ug/kg dry	100		ND		(50)	05/31/11 :06/03/11	
Acenaphthylene	ND	ug/kg dry	100		ND		(50)	05/31/11 :06/03/11	
Anthracene	ND	ug/kg dry	100		ND		(50)	05/31/11 :06/03/11	
Benzo(a)anthracene	ND	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Benzo(a)pyrene	58.6	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Benzo(b)fluoranthene	104	ug/kg dry	50		83.0		23 (50)	05/31/11 :06/03/11	
Benzo(g,h,i)perylene	166	ug/kg dry	50		153		8 (50)	05/31/11 :06/03/11	
Benzo(k)fluoranthene	ND	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Chrysene	68.8	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Dibenzo(a,h)anthracene	ND	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Fluoranthene	135	ug/kg dry	50		83.0		48 (50)	05/31/11 :06/03/11	
Fluorene	ND	ug/kg dry	100		ND		(50)	05/31/11 :06/03/11	
Indeno(1,2,3-cd)pyrene	53.5	ug/kg dry	50		ND		(50)	05/31/11 :06/03/11	
Naphthalene	ND	ug/kg dry	200		ND		(50)	05/31/11 :06/03/11	
Phenanthrene	ND	ug/kg dry	100		ND		(50)	05/31/11 :06/03/11	
Pyrene	173	ug/kg dry	50		141		21 (50)	05/31/11 :06/03/11	
Butyl benzyl phthalate	ND	ug/kg dry	500		ND		(50)	05/31/11 :06/03/11	
Di-n-butyl phthalate	ND	ug/kg dry	500		ND		(50)	05/31/11 :06/03/11	
Diethyl phthalate	ND	ug/kg dry	500		ND		(50)	05/31/11 :06/03/11	
Dimethyl phthalate	ND	ug/kg dry	500		ND		(50)	05/31/11 :06/03/11	
Di-n-octyl phthalate	ND	ug/kg dry	500		ND		(50)	05/31/11 :06/03/11	
Bis(2-ethylhexyl) phthalate	2520	ug/kg dry	500		3890		43 (50)	05/31/11 :06/03/11	L2
Surrogate									
2-Methylnaphthalene-d10	330		ug/kg dry	255		131		05/31/11 :06/03/11	
Fluoranthene-d10	340		ug/kg dry	255		132		05/31/11 :06/03/11	

Reported: 07/20/11 10:12

lac Can

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order: **Portland Harbor** W11E206

Client: **Director's Office**

Project Mgr: Linda Scheffler

		Po	lychlorinated Bipher	nyls (P	CBs) - (QC			
Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
CB Aroclors by GC-ECD - Ba	tch B11E499)							
Blank (B11E499-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1221	ND	ug/kg wet	20.0					05/31/11 :06/01/11	
Aroclor 1232	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1248	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1254	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1260	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1262	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Aroclor 1268	ND	ug/kg wet	10.0					05/31/11 :06/01/11	
Surrogate									
Tetrachloro-m-xylene	8.94		ug/kg wet	10.0		89		05/31/11 :06/01/11	
Decachlorobiphenyl	8.52		ug/kg wet	10.0		85		05/31/11 :06/01/11	
LCS (B11E499-BS1)									
Aroclor 1016/1242	90.60	ug/kg wet	10.0	100		91 (80-120)		05/31/11 :06/01/11	
Aroclor 1260	86.01	ug/kg wet	10.0	100		86 (65-133)		05/31/11 :06/01/11	
Surrogate									
Tetrachloro-m-xylene	8.43		ug/kg wet	10.0		84 (62.5-132)		05/31/11 :06/01/11	
Decachlorobiphenyl	8.84		ug/kg wet	10.0		88 (43.5-150)		05/31/11 :06/01/11	
Matrix Spike (B11E499-MS1)			Source: W11E206-01						
Aroclor 1016/1242	141.8	ug/kg dry	23.9	234	ND	61 <i>(55.2-135.4)</i>		05/31/11 :06/01/11	
Aroclor 1260	121.5	ug/kg dry	23.9	234	ND	52 (19.6-166.5)		05/31/11 :06/01/11	
Surrogate									
Tetrachloro-m-xylene	11.4		ug/kg dry	23.4		49 (62.5-132)		05/31/11 :06/01/11	ZC
Decachlorobiphenyl	10.2		ug/kg dry	23.4		44 (43.5-150)		05/31/11 :06/01/11	
Matrix Spike Dup (B11E499-MSD)1)		Source: W11E206-01						
Aroclor 1016/1242	159.8	ug/kg dry	23.9	236	ND	68 (55.2-135.4)	12 (20)	05/31/11 :06/01/11	
Aroclor 1260	137.7	ug/kg dry	23.9	236	ND	58 (19.6-166.5)	12 (20)	05/31/11 :06/01/11	
Surrogate									
Tetrachloro-m-xylene	13.5		ug/kg dry	23.6		57 (62.5-132)		05/31/11 :06/01/11	ZC
Decachlorobiphenyl	12.9		ug/kg dry	23.6		55 (43.5-150)		05/31/11 :06/01/11	

Reported: 07/20/11 10:12

lac Can

Renee Chauvin, Laboratory Coordinator QA/QC

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Work Order	Portland Harbor W11E206	Client: Project Mgr	Director's Office Linda Scheffler
	Qualifi	ers	
D1 The s	ample required dilution due to non-target matrix interference	es, resulting in raise	d reporting limits.
H5 Holdi	ng time was exceeded due to delayed request for analysis.		
	very for this analyte in the laboratory control sample was our gh estimates.	tside the acceptanc	e range (high). Sample results may
Z0 High	recovery for this analyte in LCS is likely due to the low spike	concentration.	
	very for one of two surrogate compounds was low in both the sample.	e MS and MSD, pos	ssibly due to the high moisture content
Z0b Repo	rting limits are raised for this sample due to the low % solids	S.	
	Definitio	ons	
DET Analy	te Detected	ND Analyt	e Not Detected at or above the reporting limit
MRL Metho	d Reporting Limit	MDL Metho	d Detection Limit
NR Not R	eportable	dry Samp	e results reported on a dry weight basis
% Rec. Perce	nt Recovery	RPD Relativ	ve Percent Difference

Reported: 07/20/11 10:12

laulture

Renee Chauvin, Laboratory Coordinator QA/QC

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Date: 5/26/11 er #: WILE206 ed By: JJM, PTB	F****	:	•			Remarks	ST-S2-AAP953- Marror 107.7 g Total Wet Weight								Date:	Time:
Date: Work Order #: Collected By:				-		# of Containers					- · ·				<u>Received By:</u> Signature:	Printed Name:
Mo	Sediment		· · · · · · · · · · · · · · · · · · ·												Date:	Нще
	Matrix:	ses			· · ·					· · · · · · · · · · · · · · · · · · ·	· · ·				ed By:	
and tody al Services		Requested Analyses			^r sətelərtir arı	Prosection of the second sec	•									920 Printed Name:
City of Portland Chain-of-Custody Bureau of Environmental Services		Reque		(ləvəl-	tals (As, C li, Ag, Zn) clors (low	PCB Aro Pb, Hg, N PCB Aro	•	-	· ·						Date:5	111- Time: 0920
City Chai Bureau of I				alyses.		TOC Type Type	• • •		-						H.J.	whenrie
		-		volume for other an	i	Removal Time	1 1235					-			Received By: Signature:	Printed Name:
				is to retain sample		all Removal te Date	10 4/18/2011								Date: 5-26/11	Tme: 0920
ol Laboratory 552 23-5696 81	Director's Office Portland Harbor		Traps	aken during TS analys	ithalene	Install Install Date Time	12/22/2010 1040								Zung	mis Peter Bryant mis 092
Water Pollution Control Laboratory 6543 N. Burlington Ave. Portand, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681	Client Name: Di Project Name: Pc		Basin S-2 Sediment Traps	* WPCL - Care should be taken during TS analysis to retain sample volume for other analyses.	¹ includes 1 & 2 Methylnaphthatene	Lab Nu Location ID	01 S2_ST1 12								abe Induished By: Signature:	Printed N

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503) 906-9200

TestAmerica Job ID: PUF0773

Client Project/Site: W11E206 Client Project Description: Portland Harbor

For:

LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask[.] The

Expert

City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

Attn: Renee Chauvin

handle W. Amil

Authorized for release by: 07/20/2011 09:23:12 AM

Darrell Auvil Project Manager darrell.auvil@testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 9

Page 11 of 19

Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
PUF0773-01	W11E206-01 (S2_ST1)	Sediment	04/18/11 12:35	06/22/11 11:25

Definitions/Glossary

Client: City of Portland Water Pollution Laboratory Project/Site: W11E206

1 2 3 4 5 6

-		
Qual	lifi	ore
guu		013

TSEA		
Qualifier	Qualifier Description	
F	MS or MSD exceeds the control limits	
н	Sample was prepped or analyzed beyond the specified holding time	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis.
EPA	United States Environmental Protection Agency
ND	Not Detected above the reporting level.
MDL	Method Detection Limit
RL	Reporting Limit
RE, RE1 (etc.)	Indicates a Re-extraction or Reanalysis of the sample.
%R	Percent Recovery
RPD	Relative Percent Difference, a measure of the relative difference between two points.

Client Sample ID: W11E206-01 (S2_ST1)

Date Collected: 04/18/11 12:35

Date Received: 06/22/11 11:25

Lab Sample ID: PUF0773-01

Matrix: Sediment

4 5 6

1

2

3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	92000	н	2000		mg/Kg		07/05/11 15:21	07/05/11 15:21	1
Method: Moisture - Percent	t Moisture								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	52		0.10		%		06/23/11 12:06	06/23/11 12:06	1
Percent Solids	48		0.10		%		06/23/11 12:06	06/23/11 12:06	1
Method: Organotins Dry - C	Organotins, PSEP (G	C/MS)							
			RL	MDL	Unit	п	Prenared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit ua/Ka dry	<u>D</u>	Prepared 06/23/11 11:42	Analyzed	Dil Fac
Analyte Dibutyltin		Qualifier H		MDL	Unit ug/Kg dry ug/Kg dry				Dil Fac
Method: Organotins Dry - C Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Result 170	Qualifier H H	2.7	MDL	ug/Kg dry	<u></u>	06/23/11 11:42	06/23/11 22:20	Dil Fac 1 1 1
Dibutyltin Monobutyltin	Result 170 110	Qualifier H H H	2.7	MDL	ug/Kg dry ug/Kg dry	<u>₽</u>	06/23/11 11:42 06/23/11 11:42	06/23/11 22:20 06/23/11 22:20	<u>Dil Fac</u> 1 1 1
Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Result 170 110 ND	Qualifier H H H	2.7 2.7 7.3	MDL	ug/Kg dry ug/Kg dry ug/Kg dry	¢ ¢ ¢	06/23/11 11:42 06/23/11 11:42 06/23/11 11:42	06/23/11 22:20 06/23/11 22:20 06/23/11 22:20	Dil Fac

Page 14 of 19

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: 89590-3								Client Sa	ample ID: Metho	
Matrix: Soil										pe: Total
Analysis Batch: 89590		lank Blank							Prep Batch:	89590_P
Analyte				RL	MDL Unit				A	DUF
Total Organic Carbon	K	esult Qualifier		2000	mg/K	~		epared	Analyzed 07/05/11 15:21	Dil Fac
Total Organic Carbon		ND		2000	mg/ĸ	g	07/0	0/11 15.21	07/05/11 15.21	I
Lab Sample ID: 89590-4							Client	Sample	ID: Lab Contro	l Sample
Matrix: Soil									Prep Ty	pe: Total
Analysis Batch: 89590									Prep Batch:	
			Spike	LC	S LCS				% Rec.	
Analyte			Added	Resu	t Qualifier	Unit	D	% Rec	Limits	
Total Organic Carbon			2720	360)	mg/Kg		132	34 - 166	
Lab Sample ID: 89590-6								Client	Sample ID: Mati	
Matrix: Soil										pe: Total
Analysis Batch: 89590									Prep Batch:	89590_P
	-	Sample	Spike	Matrix Spik					% Rec.	
Analyte	Result	Qualifier	Added		t Qualifier		D		Limits	
Total Organic Carbon			20000	2760)	mg/Kg		117	76 - 128	
Lab Sample ID: 89590-7								Clie	nt Sample ID: D	uplicate
Matrix: Soil									Prep Ty	pe: Total
Analysis Batch: 89590									Prep Batch:	
	Sample	Sample		Duplicat	Duplicat	e			-	RPD
Analyte	Result	Qualifier		Resu	t Qualifier	Unit	D		RP	D Limit
Total Organic Carbon				370)	mg/Kg			1	3 50

Method: Moisture - Percent Moisture

Lab Sample ID: 88675-2 Matrix: Soil Analysis Batch: 88675							Client Sample ID: Duplicate Prep Type: Total Prep Batch: 88675_P
	Sample	Sample	Duplicate	Duplicate			RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD Limit
Percent Moisture			13		%		
Percent Solids			87		%		

Method: Organotins Dry - Organotins, PSEP (GC/MS)

Lab Sample ID: 88738-31 Matrix: Soil Analysis Batch: 88691	Blank	Blank					Client Sa	mple ID: Metho Prep Typ Prep Batch: 8	e: Total
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibutyltin	ND		1.3		ug/Kg dry		06/23/11 11:42	06/23/11 20:52	1
Monobutyltin	ND		1.3		ug/Kg dry		06/23/11 11:42	06/23/11 20:52	1
Tetra-n-butyltin	ND		3.6		ug/Kg dry		06/23/11 11:42	06/23/11 20:52	1
Tributyltin	ND		1.3		ug/Kg dry		06/23/11 11:42	06/23/11 20:52	1
	Blank	Blank							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	113		20 - 151				06/23/11 11:42	06/23/11 20:52	1

Page 15 of 19

1 2 3 4 5 6

Method: Organotins Dry - Organotins, PSEP (GC/MS) (Continued)

Lab Sample ID: 88738-32						CI	ient \$	Sample I	D: Lab Co		
Matrix: Soil										p Type:	
Analysis Batch: 88691									Prep Ba	tch: 886	591_I
			Spike		LCS				% Rec.		
Analyte			Added		Qualifier	Unit	_ <u>D</u>	% Rec	Limits		
Dibutyltin			102	86.0		ug/Kg dry		84	25 - 142		
Monobutyltin			83.1	70.5		ug/Kg dry		85	24 - 125		
Tetra-n-butyltin			133	121		ug/Kg dry		91	26 - 149		
Tributyltin			119	93.6		ug/Kg dry		79	20 - 146		
	105	LCS									
Surrogate	% Recovery		Limits								
Tripentyltin			20 - 151								
-	50		20 - 101								
Lab Sample ID: 88738-33						Client	Samr	ole ID [.] La	ab Control	Sampl	e Dun
Matrix: Soil						onone	ouni	//0 1D. L		p Type:	
Analysis Batch: 88691									Prep Ba		
Analysis Batelli 00001			Spike	LCS Dup	LCS Dup				% Rec.		RPC
Analyte			Added	-	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Dibutyltin			102	88.0	acuantici	ug/Kg dry		86	25 - 142	2	30
Monobutyltin			83.1	73.2		ug/Kg dry		88	24 - 125	4	36
Tetra-n-butyltin			133	119		ug/Kg dry		89	26 - 149	1	25
Tributyltin			119	91.1		ug/Kg dry		77	20 - 146	3	28
moutynin			115	51.1		ug/ng ury			20 - 140	5	20
	LCS Dup	LCS Dup									
Surrogate	% Recovery	Qualifier	Limits								
Tripentyltin Lab Sample ID: 269811D	98		20 - 151			Clier	nt Sai	mple ID:	Matrix Spi	ike Dup	licate
Lab Sample ID: 269811D Matrix: Soil	98		20 - 151			Clier	nt Sai	nple ID:	Pre	p Type:	Tota
_ Lab Sample ID: 269811D		Sample		Aatrix Spike Dup	Matrix Spil		nt Sai	mple ID:		p Type:	Tota 591_P
Lab Sample ID: 269811D Matrix: Soil	Sample	Sample Qualifier		<i>l</i> atrix Spike Dup Result	Matrix Spil Qualifier		nt Sai D	mple ID: % Rec	Pre Prep Ba	p Type:	Tota 591_P RPD
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691	Sample	-	Spike		Qualifier	ke Dur			Prep Prep Ba % Rec.	p Type: tch: 886	Tota 591_P RPD Limi
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte	Sample 	Qualifier H	Spike Added	Result	Qualifier H	te Dur Unit ug/Kg dry	D	% Rec	Prep Prep Ba % Rec. Limits	p Type: tch: 886 RPD	Tota 591_P RPE Limi 30
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin	Sample Result	Qualifier H H	Spike Added 207	Result 301	Qualifier H H	te Duş Unit ug/Kg dry ug/Kg dry	– D	% Rec	Prep Ba % Rec. Limits 25 - 142	p Type: tch: 886 <u>RPD</u> 0	Total 591_P RPD Limit 30
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Sample 	Qualifier H H H	Spike Added 207 169	Result 301 188	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D *	<mark>% Rec</mark> 61 49	Prep Ba % Rec. Limits 25 - 142 24 - 125	p Type: tch: 886 <u>RPD</u> 0 4	Total 591_P RPD Limit 30 36 25
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin	Sample <u>Result</u> 170 110 ND 52	Qualifier H H H	Spike Added 207 169 270 241	Result 301 188 380	Qualifier H H H	e Dur Unit ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 <u>RPD</u> 0 4 22	Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin	Sample 	Qualifier H H H	Spike Added 207 169 270 241	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 <u>RPD</u> 0 4 22	Tota 591_P RPE Limi 30 36 25
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery	Qualifier H H H Matrix Spike I	Spike Added 207 169 270 241 Dup Limits	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 <u>RPD</u> 0 4 22	Total 591_P RPD Limit 30 36 25
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin	Sample Result 170 110 ND 52 Matrix Spike Dup	Qualifier H H H Matrix Spike I	Spike Added 207 169 270 241 Dup	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 <u>RPD</u> 0 4 22	Total 591_P RPD Limit 30 36 25
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery	Qualifier H H H Matrix Spike I	Spike Added 207 169 270 241 Dup Limits	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140 81	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146	p Type: tch: 886 RPD 0 4 22 15	Tota 591_P RPE Limi 30 36 25 28
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery	Qualifier H H H Matrix Spike I	Spike Added 207 169 270 241 Dup Limits	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140 81	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146	p Type: tch: 886 RPD 0 4 22 15 Matrix	Tota 591_F RPE Limi 30 28 28 Spike
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery	Qualifier H H H Matrix Spike I	Spike Added 207 169 270 241 Dup Limits	Result 301 188 380	Qualifier H H H	te Duş Unit ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140 81	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121	Qualifier H H H Matrix Spike I Qualifier	Spike Added 207 169 270 241 Dup Limits 20 - 151	Result 301 188 380 248	Qualifier H H H	te Dur Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	- D * *	% Rec 61 49 140 81	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 Sample ID: Prep Ba	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Tota 91_P RPE Limi 30 36 25 25 25 Spike Tota
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample	Qualifier H H H Matrix Spike I Qualifier	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike	Result 301 188 380 248 Matrix Spike	Qualifier H H H	te Dur Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	- D * * *	% Rec 61 49 140 81	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 Gample ID: Prep Ba % Rec.	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result	Qualifier H H Matrix Spike I Qualifier Sample Qualifier	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added	Result 301 188 380 248 Matrix Spike Result	Qualifier H H H Matrix Spil	te Dur Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	- D * * *	% Rec 61 49 140 81 Client S	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 30 50 50 50 50 50 50 50 50 50 50 50 50 50	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170	Qualifier H H Matrix Spike I Qualifier H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208	Result 301 188 380 248 Matrix Spike Result 299	Qualifier H H H Matrix Spit Qualifier H	te Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	$-\frac{\mathbf{D}}{\mathbf{x}}$	% Rec 61 49 140 81 81 Client S % Rec 60	Prep Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 30 20 - 146 50 50 50 50 50 50 50 50 50 50 50 50 50	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170 110	Qualifier H H Matrix Spike I Qualifier H H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208 169	Result 301 188 380 248 Matrix Spike Result 299 180	Qualifier H H H Matrix Spil Qualifier H H	te Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry		% Rec 61 49 140 81 81 Client S % Rec 60 44 44	Prep Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 30 - 146 50 - 149 20 - 146 50 - 149 20 - 146 50 - 149 20 - 146 50 - 142 25 - 142 24 - 125	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Tota 91_P RPE Limi 30 36 25 25 25 Spike Tota
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170 121	Qualifier H H Matrix Spike I Qualifier Sample Qualifier H H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208 169 270	Result 301 188 380 248 Matrix Spike Result 299 180 473	Qualifier H H H H H H H H H H H F	e Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	$-\frac{\mathbf{D}}{\mathbf{x}}$	% Rec 61 49 140 81 81 Client S % Rec 60 44 175	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 20 - 146 Sample ID: Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Tota 91_P RPE Limi 30 36 25 25 25 Spike Tota
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170 110	Qualifier H H Matrix Spike I Qualifier Sample Qualifier H H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208 169	Result 301 188 380 248 Matrix Spike Result 299 180	Qualifier H H H H H H H H H H H F	te Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry		% Rec 61 49 140 81 81 Client S % Rec 60 44 44	Prep Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 30 - 146 50 - 149 20 - 146 50 - 149 20 - 146 50 - 149 20 - 146 50 - 142 25 - 142 24 - 125	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170 110 Sample 2 110 ND 52	Qualifier H H H Matrix Spike I Qualifier H H H H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208 169 270	Result 301 188 380 248 Matrix Spike Result 299 180 473	Qualifier H H H H H H H H H H H F	e Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	$-\frac{\mathbf{D}}{\mathbf{x}}$	% Rec 61 49 140 81 81 Client S % Rec 60 44 175	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 20 - 146 Sample ID: Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total
Lab Sample ID: 269811D Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin Surrogate Tripentyltin Lab Sample ID: 269811S Matrix: Soil Analysis Batch: 88691 Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	Sample Result 170 110 ND 52 Matrix Spike Dup % Recovery 121 Sample Result 170 110 Sample 2 110 ND 52	Qualifier H H H Matrix Spike I Qualifier H H H H H	Spike Added 207 169 270 241 Dup Limits 20 - 151 Spike Added 208 169 270	Result 301 188 380 248 Matrix Spike Result 299 180 473	Qualifier H H H H H H H H H H H F	e Du; Unit ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry ug/Kg dry	$-\frac{\mathbf{D}}{\mathbf{x}}$	% Rec 61 49 140 81 81 Client S % Rec 60 44 175	Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149 20 - 146 20 - 146 Sample ID: Prep Ba % Rec. Limits 25 - 142 24 - 125 26 - 149	p Type: tch: 886 RPD 0 4 22 15 Matrix p Type:	Total 591_P RPD Limit 30 36 25 28 Spike Total

9405 SW Nimbus Ave., Beaverton, OR 97008 Phone: (503) 906-9200

FAX: (503) 906-9210

WORK ORDER PUF0773

Client: Project Name: City of Portland Water Pollution Laboratory Portland Harbor Project Number: W11E206 **Client Code:** 1411084 6/22/2011 12:44;04PM **Printed**: Project Darrell Auvil Sample Receipt Information **Report Information Invoice Information** City of Portland Water Pollution Laboratory Client Name: City of Portland Water Pollution Laboratory 3.4°C Samples Received at: Renee Chauvin Client PM: Chuck Lytle Sampled By: 6543 N. Burlington Ave. Address: 6543 N. Burlington Ave. FO Portland, OR 97203 Portland, OR 97203 Phone: (503) 823-5612 Samples Received By: Phone: (503) 823-5568 503-823-5656 Fax: Philip M. Svabik 06/22/11 11:25 Fax: 823-5656 06/29/11 18:00 (5 day TAT) Due Date: Samples Logged By: Delivery Method: Email Jessica Morgan 06/22/11 12:43 **Pricing Information:** Acct Mgr.: Noi Tran PONumber: 30001516 Contract # 30001516 - 2010-2013 **Custody Seals Present** No Samples received on ice Yes All Containers Intact Yes Preservation Confirmed No Sample labels/COC agree Yes Samples Preserved Properly Yes Work Order Comments W11E206 Autolog from WPCL 06/22/11 12:43 **Expires** Comments Analysis Due TAT Price TestAmerica Seattle Sampled: 04/18/11 12:35 PUF0773-01 W11E206-01 (S2 ST1) Other dry Organotins - SUB 06/29/11 16:00 5 10/15/11 12:35 \$235.00+50% Solids, Dry Weight 06/29/11 16:00 5 05/16/11 12:35 \$0.00 Auto-Included TOC-9060-SUB 06/29/11 16:00 5 05/16/11 12:35 \$55.00+50% Soil - Sub to CT or Seattle if low volume

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab

W11E206

PUF0773

6

Page 18 of 19

SENDING LABORATORY:		RECEIVING LABORATORY:
City of Portland Water Pollution Co 6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 Fax: 503-823-5656 Invoice To: Charles Lytle using P.0		TestAmerica 9405 SW Nimbus Ave Beaverton, OR 97008 Phone :(503) 906-9200 Fax: (503) 906-9210
WPCL Project Name Portland Harbor		TURNAROUND REQUEST X Standard Rush _ day(s)
Analysis	Due	Expires Laboratory ID Comments
	· · · · · · · · · · · · · · · · · · ·	
Sample ID: W11E206-01	Solid Sam	pled:04/18/11 12:35
Out-TOC Solid	06/10/11 17:00	05/02/11 12:35
Out-Organotin Compounds	06/10/11 17:00	05/02/11 12:35

Out-Organotin Compounds *Containers Supplied:* G jar amber 8 oz (A)

Due are aware sample is out of hold formited volume

MFP	6 22/11 210	Boltant	- 6/22/110	10:42
Released By	Date	Received By	Date)
1201fea	6/22/11011	25 M. 11.	M 6/22/11@	1125
Released By	Date	Received By	Date	
\mathcal{O}			1	Page 1 of 1
			- 1)01	

	TestAmerica
:	THE LEADER IN ENVIRONMENTAL TESTING
	Portland Sample Control Checklist
	Work Order #: $\frac{p_0F0773}{p_1p_2}$ Date/Time Received: $\frac{6}{22}/11$ $\frac{p_1p_3}{p_1p_2}$
	Client Name: PORTLAND WATER POLLUTION CONTROL LAB Project Name: PORTLAND HARBOR
	Time Zone:
	EDT/EST CDT/CST MDT/MST PDT/PST AK HI OTHER
	Unpacking Checks: Temperature out of Range:
	Cooler (s):
	Digi #1 Digi #2 IR/Gun/
	Raytek Other:
	Ice used: (circle one) GEL (LOOSE BLUE NONE OTHER: Initials:
	N/A Yes No
	1. If ESI client, were temp blanks received? If no, document on NOD.
	2. Cooler Seals intact? (N/A if hand delivered) if no and ESI client, document on NOD.
	 Chain of Custody present? If no, document on NOD. Along with "received by" & "relinquished by" signatures with date & time?
	4. Bottles received intact? If no, document on NOD.
	5. Sample is not multiphasic? If no, document on NOD.
	6. Sampler name/signature documented on COC?
	7. Proper Container and preservatives used? If no, document on NOD.
100	8. pH for HN03/ESI samples checked and meet requirements? If no, document on NOD.
NED	9. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
OF	 In the dilution required? In the dilution required? In the dilution required for all analysis and requested MS/MSD? If no,
54	document on NOD and consult PM before proceeding.
	 I2. Did chain of custody agree with samples received? If no, document on NOD. I3. Were VOA samples received without headspace?
(C37	\square 14. Did samples require preservation with sodium thiosulfate?
ME.	\square 14. Did samples require preservation with solution integration \square 15. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
TED NNE.	□ □ 16. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
	\square \square \square 17. Are analyses with short holding times received in hold?
	18. Were special log- in instructions read and followed?

9405 SW Nimbus Ave, Beaverton OR 97008 tel 503.906.9200 fax 503.906.9210 www.testamericainc.com

1