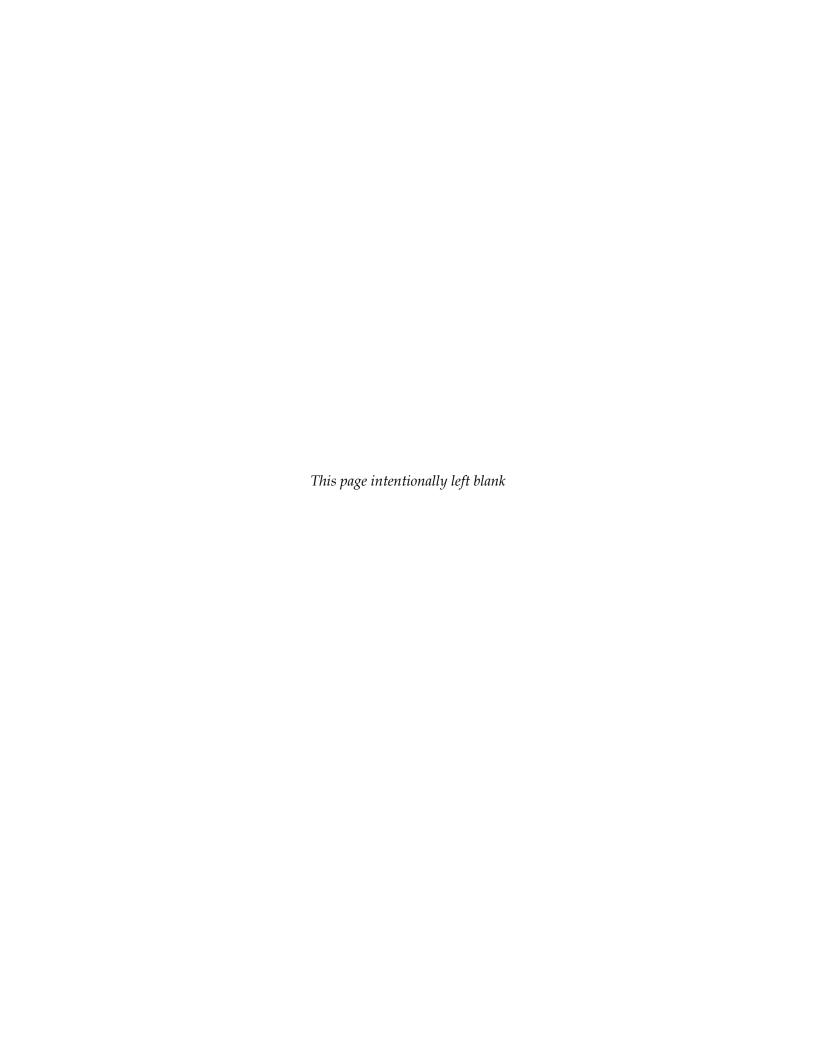
Intergovernmental Agreement for Remedial Investigation and Source Control Measures

DEQ No. LQVC-NWR-03-10


Outfall Basin 52 Source Investigation Report

City of Portland Outfall Project ECSI No. 2425

May 2012

PREPARED BY

Contents

1	Introduction	1-1
	1.1 Purpose and Scope	1-1
	1.2 Report Organization	
2	Background	2-1
	2.1 Outfall Basin and Conveyance System	
	2.2 Contaminants of Interest	
	2.3 Potential Upland Sources	
3	Source Investigation Activities and Results	
Ü		
	3.1 Field Activities and Analytical Approach	
	3.1.1.1 Branch Lines	
	3.1.1.2 Catch Basins	3-2
	3.1.2 2010 Sediment Trap Investigation	
	3.1.3 2010 Inline Solids Investigation	
	3.1.4 2011 Surface Soil Investigation	
	3.2 Summary of Results	3-4
4	Data Evaluation	4-1
	4.1 North Subbasin	4-1
	4.1.1 Subbasin Screening Results	4-1
	4.1.2 Source Tracing	
	4.1.2.1 Metals	
	4.1.2.2 PCBs	
	4.2 Central Subbasin	
	4.2.1 Subbasin Screening Results	
	4.2.2 Source Tracing	
	4.2.2.2 PCBs	
	4.3 South Subbasin	
	4.3.1 Subbasin Screening Results	
	4.3.2 Source Tracing	
5	Source Control Activities	5-1
	Conclusions and Next Steps	
	References	
•		
Т	ables	
Fi	igures	

Appendices

Appendix A – Field Photographs

Appendix B - Field Notes

Appendix C – Laboratory Reports (on CD only)

Appendix D – Industrial Source Control Memorandum

MAY 2012 PAGE iv

List of Tables

- Table 1. Basin 52 Inline Solids Results North Branch
- Table 2. Basin 52 Inline Solids Results Central Branch
- Table 3. Basin 52 Inline Solids Results South Branch
- Table 4. Basin 52 Inline Solids Results PCB Congeners
- Table 5. Basin 52 Surface Soil Results

List of Figures

- Figure 1. Outfall Basin 52 Drainage Basin Overview
- Figure 2a. Basin 52 North and Central Branches, Sampling Locations
- Figure 2b. Basin 52 South Branch, Sampling Locations
- Figure 2c. Basin 52 Surface Soil Sampling Locations
- Figure 3a. Basin 52 North and Central Branches, Total PCBs
- Figure 3b. Basin 52 South Branch, Total PCBs
- Figure 4. Basin 52 North and Central Branches, Metals (Cr, Cu, Ni)
- Figure 5. Basin 52 Vicinity of Peninsula Iron Works, Surface Soil and Inline Solids, PCBs and Metals (Cr, Cu, Ni)
- Figure 6. Basin 52 Source Control Line Cleaning

This page intentionally blank

MAY 2012 PAGE vi

Abbreviations and Acronyms

AOPC Area of Potential Concern

ASPP Accidental Spill Prevention Plan
BES Bureau of Environmental Services

BMP best management practice

City City of Portland

DEQ Oregon Department of Environmental Quality ECSI Environmental Cleanup Site Information

EPA Environmental Protection Agency
IGA Intergovernmental Agreement
JSCS Joint Source Control Strategy

µg/Kg microgram(s) per kilogram

mg/Kg milligram(s) per kilogram

LWG Lower Willamette Group

NEC No Exposure Certification

NPDES National Pollutant Discharge Elimination System

ODOT Oregon Department of Transportation

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl PIW Peninsula Iron Works

SAP sampling and analysis plan
SIFT© Screened Inline Flow-Through

SLV screening level value

SOP standard operating procedure

TBT tributyltin

TOC total organic carbon

TS total solids

WPCL Water Pollution and Control Laboratory

MAY 2012 PAGE vii

The page left intentionally blank

MAY 2012 PAGE viii

Introduction

This report presents the results of the City of Portland (City) source investigation and source control activities in Outfall Basin 52. As part of its Portland Harbor stormwater screening effort, the City characterized stormwater from Basin 52 in 2007 at a location representing cumulative discharge from the entire basin. Based on preliminary review and subsequent statistical analyses of the Basin 52 stormwater results in relation to harborwide stormwater data, the City determined that further source tracing was needed to identify sources of polychlorinated biphenyls (PCBs) and copper within the basin (BES, 2010a). The City conducted source investigations in the basin between June 2008 and January 2011.

City source investigations in Basin 52 identified sources of PCBs and metals to the Basin 52 municipal storm system. The major sources of these contaminants appear to be located in the north and central subbasins of Basin 52. PCBs and certain metals (chromium, copper, and nickel) were detected in stormwater solids samples collected from the north branch at concentrations that are considered significantly elevated relative to data collected for upland sites discharging to the Portland Harbor Superfund site. All identified sources now are in the process of being evaluated and controlled under Oregon Department of Environmental Quality (DEQ) Cleanup Program oversight or through the City industrial stormwater program. No further City source tracing is warranted in this basin. The investigation results presented in this report and ongoing source control work at the properties identified as major upland sources to Basin 52 will support future DEQ decisions for this basin.

These investigations are part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City. The data collected under this investigation support ongoing work by DEQ and the City to identify, characterize and control discharges to the Basin 52 municipal storm system.

1.1 Purpose and Scope

The purpose of this report is: 1) to evaluate source investigation data collected to identify sources of PCBs and copper to the Basin 52 stormwater conveyance system; and 2) to verify that no further City source tracing is warranted in the basin. The City source investigation activities described in this report include collection and analysis of inline solids samples in 2008, sediment trap and inline solids samples in 2010 and surface soil samples in 2011. The solids data are evaluated relative to the Joint Source Control Strategy (JSCS; DEQ/EPA, 2005, updated in 2007) screening level values (SLVs) and relative to the range of reference concentrations provided in DEQ's Stormwater Evaluation Guidance (DEQ, 2010).

1.2 Report Organization

The remainder of this report is organized as follows:

- *Section 2: Background* Summarizes the conveyance system configuration and drainage basin setting, contaminants of interest, and potential upland sources.
- Section 3: Source Investigation Activities and Results Describes the stormwater solids
 and surface soil sampling activities and analytical approaches, and
 summarizes the analytical results.
- *Section 4: Data Evaluation* Evaluates the results of the solids investigations to assess whether there are major current sources of contaminants in the basin.
- Section 5: Source Control Activities Summarizes source control actions completed by the City and others during the course of the source investigation.
- Section 6: Conclusions and Next Steps Summarizes the findings from the source investigation and identifies next steps that are needed in the basin.
- *Section 7: References*

SECTION 2

Background

The location of Outfall 52 within the Portland Harbor Study Area is shown on Figure 1, along with the approximate drainage basin delineation and the current configuration of the stormwater conveyance system. The stormwater basin setting, conveyance system configuration, contaminants identified for source tracing, and potential upland sources are summarized below.

2.1 Outfall Basin and Conveyance System

The Outfall 52 stormwater system collects and conveys stormwater runoff from a mixed land-use drainage area and discharges to the east side of the Willamette River at river mile 5.8, offshore of Cathedral Park and just downstream of the St. Johns Bridge. The current stormwater basin that drains to Outfall 52 encompasses approximately 26 acres of land zoned for commercial, general employment, residential, open space, and major transportation uses. Current land use includes some industrial operations. For the purposes of this report, the river will be considered as running south to north.

The Basin 52 stormwater conveyance system has three major branches that connect at manhole AAE519; these branches are identified on Figure 1. The "north branch" receives stormwater from industrial and residential properties along N. Baltimore and N. Alta Avenues, primarily east of the railroad lines running along N. Bradford Street. The drainage area for this branch is referred to as the north subbasin. The "central branch" receives runoff from a small residential area, a small area within Cathedral Park, and the majority of the St. Johns Bridge;¹ the associated drainage area is referred to as the central subbasin. The "south branch" extends to the southeast from manhole AAE519 and then to the north-northeast along N. Burlington Avenue and receives stormwater from industrial properties that discharge to a line along N. Crawford Street and from residential properties that discharge to points upstream of the connection for the N. Crawford Street line. The drainage area for this branch is referred to as the south subbasin.

2.2 Contaminants for Source Tracing

Outfall 52 discharges into an area of Portland Harbor identified by the U.S. Environmental Protection Agency (EPA) as an area of potential concern (AOPC 11) based on elevated concentrations of metals, tributyltin (TBT), polycyclic aromatic hydrocarbons (PAHs), benzyl alcohol, total PCBs, and pesticides in inriver sediment (EPA, 2010).

As part of its Portland Harbor stormwater screening effort, the City collected stormwater grab samples during four storm events in 2007 at a Basin 52 location representing cumulative

¹ The portion of Basin 52 comprising the drainage area associated with the St. Johns Bridge is not covered under the City's Municipal Separate Storm Sewer System (MS4) permit; it is within the Oregon Department of Transportation (ODOT) MS4 permit area, as shown on Figure 1.

discharge from the entire basin (manhole AAE519; see Figure 1). The stormwater samples were analyzed for a broad suite of chemicals to identify stormwater contaminants potentially warranting further source tracing in the basin. The stormwater sampling activities and results are described in detail in the City's *Stormwater Evaluation Report* (BES, 2010a). Based on statistical analyses of the Basin 52 stormwater results in relation to harborwide stormwater data, the City determined that total PCBs and copper potentially warranted further source tracing within the basin.

2.3 Potential Upland Sources

Upland facilities initially identified as potential sources to City stormwater conveyance systems include DEQ Cleanup Program sites as listed in DEQ's Environmental Cleanup Site Information (ECSI) database and facilities permitted by DEQ under the National Pollution Discharge Elimination System (NPDES) industrial stormwater discharge permit program. The only ECSI site located in Basin 52 at the time of the investigations was the Crawford Street Corporation site (ECSI No. 2363). The location of this site is shown on Figure 1 along with two sites recently added to the ECSI database. ² A portion of stormwater from the site (mostly roof drainage) discharges to the south branch of Basin 52 (N. Crawford Street line); site stormwater also discharges to Basin 50. DEQ added this site to the ECSI database in 1999 as a potential source of contamination to the Portland Harbor based on initial inriver sediment sampling results, and identifies the site as a possible TBT source (DEQ, 2001). A stormwater pathway evaluation is ongoing at the Crawford Street Corporation site under DEQ oversight; site stormwater contributions to Basin 52 have not been characterized.

Currently no NPDES-permitted facilities are located in Basin 52. The Peninsula Iron Works (PIW) facility located at 6618 N. Alta Avenue previously held an NPDES 1200-Z permit that was terminated in 2001. At that time, the facility met requirements for a No Exposure Certification (NEC), based on measures undertaken to remove stormwater exposures to potential contaminant sources at the site that were identified by the City's Industrial Stormwater Program. In 2008, the City inspected the PIW facility, noted industrial stormwater exposures, and notified PIW that an NPDES permit was required. In 2009, the City referred the PIW site to DEQ for enforcement in response to PIW's failure to apply for an NPDES permit. Following subsequent completion of measures to eliminate exposures of industrial operations to stormwater and the development of an Accidental Spill Prevention Plan, the NEC was reissued to PIW (see Section 5).

² DEQ has entered into an agreement with the Oregon Department of Transportation (ODOT) to evaluate ODOT stormwater discharges to Portland Harbor, including runoff from the St. Johns Bridge. Based on the source tracing efforts described in this report, DEQ added Peninsula Iron Works to the ECSI database in January 2012.

Source Investigation Activities and Results

Based on a preliminary review of the Basin 52 stormwater screening data, the City concluded that major current PCBs and copper sources are present within the basin (BES, 2010a). To trace possible sources of these contaminants, the City collected samples of stormwater solids (sediment trap and inline solids) and surface soil within the three subbasins during iterative field investigations between June 2008 and January 2011.

3.1 Field Activities and Analytical Approach

The Basin 52 solids sampling field activities and analytical approach are described below for each stage of the investigation, followed by a summary of results. Sample collection and handling procedures were conducted using the applicable standard operating procedures (SOPs)³ included in the City's *Amended Programmatic Sampling and Analysis Plan* for collection of water and solids samples for the City of Portland Outfalls Project (BES, 2007a) and in accordance with the *Amended Programmatic Quality Assurance Project Plan* for the project (BES, 2007b). Though copper was the only metal identified for source tracing in Basin 52, a broader suite of metals was analyzed during targeted investigations in the basin to assist with the identification of source areas.

The sampling locations for the Basin 52 source investigation are shown on Figures 2a – 2c. Photographs of the sampling locations and activities are provided in Appendix A. Field notes recorded during sampling activities discussed below are provided in Appendix B.

3.1.1 2008 Inline Solids Investigation

3.1.1.1 Branch Lines

The first round of inline solids investigation in Basin 52 was conducted in June 2008 in general accordance with the Basin 52 Inline Solids Sampling and Analysis Plan (SAP; BES, 2008a). The June 2008 solids sampling targeted manholes at the downstream ends of each of the three subbasins, to evaluate each drainage area for source tracing contaminants. The targeted location (manhole AAE516) in the central branch was not sampled due to a lack of solids and the alternate location (manhole AAE522) could not be located. Solids samples were collected from the following locations:

<u>Branch</u>	<u>Manhole ID</u>	Sampling Location	<u>Area Represented</u>
North	AAE513	Within manhole (solids perched on the eastern ledge of the manhole)	Cumulative discharge from north subbasin ⁴

³ The SOPs were established by the City's Field Operations section to standardize the data collection methodologies for a wide range of monitoring activities and thereby maintain comparability and representativeness of the data produced.

MAY 2012 PAGE 3-1

.

⁴ This sample was collected from a ledge within the manhole invert resulting in some uncertainty regarding sample representativeness of the north branch.

South	AAE553	Upstream of manhole in 24-inch line	Discharge from N. Crawford St. and N. Burlington Avenue lines
South	AAE569	Upstream of manhole in 12-inch line entering from southeast	Discharge from N. Crawford St. line upstream of connection with
		<u>-</u>	N. Burlington Ave. line

The samples were analyzed for PCB Aroclors, selected metals (arsenic, cadmium, copper, lead, zinc), total organic carbon (TOC), total solids (TS), and grain size. Findings suggested the potential presence of major PCBs and metals source in the north branch.

3.1.1.2 Catch Basins

Because inline solids investigation efforts in June 2008 were limited by available sample volumes at targeted locations, the City conducted a catch basin solids investigation to provide comprehensive screening of potential source areas within the basin. Given the basin topography and conveyance system orientation, stormwater from some properties migrates offsite via overland flows to catch basins in the adjacent streets that drain to OF 52.. The City therefore collected samples from catch basins adjacent to suspected sources during this phase of the investigation. Catch basin sampling locations were selected based on adjacent site uses, field observations from past City or DEQ inspections, and visual observations. Inline solids samples were collected from the following Basin 52 catch basins (see Figures 2a and 2b) on September 9 and 10, 2008, in accordance with the approach discussed in advance with DEQ (BES, 2008b):

North branch:	<u>Central branch</u> :	South branch:
ANE911	ANE921	ANE813
APA114	AAE673	ANE815
ANE910		AAE651
AAE694		

For locations where sufficient solids were available, the samples were analyzed for PCB Aroclors, metals (arsenic, cadmium, chromium, copper, lead, nickel, mercury, silver, and zinc), TS, TOC, and grain size. The samples from catch basins ANE910, ANE921, ANE813, ANE815, and AAE651, were not analyzed for metals and/or grain size because of insufficient sample volume. Findings indicated the potential presence of major current PCBs and metals sources in the north and central branches and a PCBs source in the south branch

3.1.2 2010 Sediment Trap Investigation

To verify the presence of contaminant source areas in Basin 52, the City cleaned portions of the Basin 52 conveyance system (see Section 5) and then deployed sediment traps in each of the three major branches during the 2010 winter/spring wet season. The sampling locations and objectives were reviewed and approved verbally by DEQ before sampling was initiated. The traps were installed and monitored in accordance with the City's standard sediment trap source investigation protocols. Sediment traps were installed at the following four locations in Basin 52 on February 2, 2010:

<u>Branch</u>	Manhole/Trap ID	Sampling Location	Area Represented
North	AAE498 / ST1	Downstream of manhole in 12-inch line	Discharge from N. Baltimore Avenue line
North	AAE513 / ST2	Upstream of manhole in 15-inch line	Cumulative discharge from north subbasin ⁵
Central	AAE516 / ST4	Downstream of manhole in 18-inch line	Cumulative discharge from central subbasin
South	AAE700 / ST3	Downstream of manhole in 28-inch line	Discharge from the majority of south subbasin

Screened Inline Flow-Through (SIFT©) ⁶ sediment traps were installed at all four locations, to accommodate the small pipe sizes at three of the four locations. At manhole AAE700, a standard sediment trap also was installed alongside the SIFT© trap to evaluate trap performance. The sediment traps were inspected periodically, and accumulated sediments were removed as needed during the field inspections and archived. The sediment traps were removed on June 16, 2010. Solids in each trap at the time of removal were combined and homogenized with the archived solids (if any) that had been removed from that trap during the interim field inspections. The total amount of solids collected in the SIFT© traps ranged from approximately 260 to 975 grams (total wet weight) and was approximately 17 grams for the standard sediment trap sample. Documents prepared during processing of the sediment trap samples are included in Appendix B.

The SIFT© trap samples were analyzed for PCB congeners, PCB Aroclors, metals, TOC and TS. Because the volume of solids collected in the standard sediment trap in manhole AAE700 was limited, this sample was analyzed only for PCB congeners and TS. Sediment trap investigation results confirmed the presence of current major PCBs and metals sources in the north and central branches.

3.1.3 2010 Inline Solids Investigation

During the course of the Basin 52 source investigation activities in 2010, the City became aware that ODOT drainage from the majority of the St. Johns Bridge connected to the central branch of the City's Basin 52 stormwater conveyance system, and not to an ODOT outfall as previously believed. ODOT provided the City with documentation regarding the configuration of the St. Johns Bridge drainage system and the connection to Basin 52 (at manhole AAE685). The City subsequently obtained authorization from ODOT to expand the source investigation to evaluate bridge drainage as a potential source of PCBs and metals to Basin 52.

Two ODOT manholes (designated ODOT Manholes 2 and 4) were selected for the investigation. Manhole 4 was constructed as a sedimentation manhole to reduce sediment load in stormwater discharging to the City system. Manhole 2 is downstream of Manhole 4 and represents the ODOT discharge to Basin 52 from the St. Johns Bridge.

⁵ Sampling location does not include drainage from a small parking area in Cathedral Park.

⁶ 2009. City of Portland. These traps are proprietary and patent pending. They were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

The City collected inline solids samples from within the two ODOT manholes on September 7 and 8, 2010, in accordance with the Summer 2010 SAP (BES, 2010b). In conjunction with sampling these manholes, the City also resampled solids from catch basin ANE911 (in the north subbasin) to verify the presence of a major current source to that inlet. In response to the elevated concentration of total PCB congeners detected in the September 2008 solids sample from this catch basin, the City cleaned out solids from this catch basin in January 2010 (see Section 5).

The three solids samples (and a duplicate sample from ODOT manhole 2) were analyzed for PCB congeners, PCB Aroclors, TOC and TS in accordance with the SAP (BES, 2010b). The samples were archived after initial laboratory analysis and (except for the duplicate sample) subsequently were analyzed for metals in November 2011. In conjunction with the metals analyses, the samples were reanalyzed for TS, to ensure accurate dry-weight correction for the metals analyses. Results confirmed a current source of PCBs and metals to catch basin ANE911 and indicated that PCBs and metals also are present in the ODOT drainage system that discharges to Basin 52.

3.1.4 2011 Surface Soil Investigation

Based on the source investigation results for catch basin ANE911, the City conducted an erodible soils investigation in the vicinity of this catch basin; nine surface soil composite samples (and one duplicate composite sample) were collected on January 6, 2011. The purpose of the investigation was to evaluate whether erodible surface soil that could be carried by overland flow into catch basin ANE911 is a likely major source of the PCBs and metals. The samples were collected within the N. Alta Avenue right-of-way, near the intersection with N. Bradford Street and in the N. Bradford Street right-of-way along the railroad corridor and adjacent to the PIW facility. For each surface soil sample, individual subsamples were collected from approximately the upper 2 inches of soil and homogenized into a final composite sample. The locations of the area represented by each composite surface soil sample are shown on Figure 2c. The samples were analyzed for PCB Aroclors, selected metals (chromium, copper, lead, nickel, and zinc), TOC, and TS. Results confirmed that PCBs and metals are elevated in erodible soils in this area.

3.2 Summary of Results

PCBs were detected in most of the solids samples and metals were detected in all samples for which metals were analyzed. The highest concentrations of total PCBs and metals were detected in samples from the north branch. PCBs and metals were detected in all of the surface soil samples.

Tables 1 through 5 summarize the laboratory analytical results for the solids samples and include the JSCS SLVs for reference. The total PCBs concentrations in stormwater solids are displayed on Figures 3a and 3b. Concentrations of selected metals (chromium, copper, and nickel) in the stormwater solids samples are shown on Figure 4. Results for PCBs and selected metals in the surface soil samples are displayed on Figure 5.7 The laboratory reports and data review memoranda are provided in Appendix C. The data are discussed in more detail in Section 4.

MAY 2012 PAGE 3-4

_

⁷ The data summary tables and figures for these samples were previously submitted to DEQ (BES, 2011a).

Data Evaluation

This section of the report presents a two-step evaluation of the solids source investigation results for each subbasin. The first step compares the sediment trap data collected at the downstream sampling location in each branch (shown on Figure 1) to JSCS SLVs and DEQ guidance regarding use of industrial reference concentrations (DEQ, 2010) to identify analytes for which there may be major current sources in the associated subbasin. These data were collected after the City cleaned portions of the Basin 52 conveyance system (see Section 5) and are considered representative of current discharges to Basin 52. The second step evaluates data collected at upstream locations within the subbasins to identify specific sources and pathways to Basin 52.

4.1 North Subbasin

4.1.1 Subbasin Screening Results

The sediment trap sample collected at manhole AAE513 represents all stormwater contributions from the north branch, with the exception of a small parking area in Cathedral Park. Results for this sample are summarized in Tables 1 and 4 and discussed below.

- Total PCBs: The total PCB congeners concentration in the sample (924 micrograms per kilogram [μ g/Kg]) exceeds the JSCS Toxicity SLV and is significantly elevated relative to the range of PCB concentrations in DEQ's guidance. The total PCB Aroclors concentration in this sample (130 μ g/Kg, consisting of Aroclor 1260) is not significantly elevated.
- *Metals*: Chromium, copper, nickel and zinc were detected at concentrations greater than JSCS Toxicity SLVs in this sample, though all concentrations were less than 10 times the SLVs. Chromium and nickel concentrations are moderately elevated relative to the ranges in DEQ's guidance. Concentrations of other metals analyzed are not significantly elevated.

4.1.2 Source Tracing

Results of the subbasin screening evaluation indicate that current sources of PCBs, chromium, and nickel are present in the north subbasin. These contaminants also were detected at elevated concentrations in inline solids samples collected upstream of manhole AAE513 (see Table 1) and in the surface soil samples collected from right-of-way areas in N. Alta Avenue and along N. Bradford Street (see Table 5). Possible sources are discussed below. Although the sediment trap results do not indicate that there is a current major source of copper in this subbasin, copper was detected at an elevated concentration in the ledge sample collected from manhole AAE513 and is carried forward for source tracing based on the Basin 52 stormwater screening results (BES, 2010a).

4.1.2.1 PCBs

Total PCB concentrations in north subbasin inline solids are presented on Figure 3a. Of the inline sampling locations upstream of the north subbasin screening location, only the samples from catch basin ANE911 had total PCB concentrations that exceed the JSCS Toxicity SLV (see Table 1). The total PCB concentrations detected at this location in the 2008 sample (8,160 $\mu g/Kg$, Aroclor 1260) and in the 2010 sample (2,860 $\mu g/Kg$, Aroclor 1260), collected after the catch basin had been cleaned (see Section 5), indicate a major current source to this catch basin. The total PCBs concentration in the sample from catch basin ANE910 also is elevated relative to the DEQ industrial reference concentrations but is below the Toxicity SLV. Sediment trap data collected downstream of this catch basin after it was cleaned does not indicate current major sources of PCBs in this portion of the north subbasin. Based on the spatial distribution of PCBs in inline solids, a primary pathway of current PCBs sources to the north branch appears to be through catch basin ANE911.8

Catch basin ANE911 has no piped connections from adjacent properties. The estimated drainage area to this inlet includes portions of: the PIW facility (roof drainage and outdoor operations), a parking area across from PIW, improved N. Alta and N. Crawford streets, and the railroad corridor along unimproved N. Bradford St. To investigate erodible surface soil as a possible source of the PCBs detected in catch basin ANE911, the City collected surface soil samples from locations near this catch basin, as discussed in Section 3.1.5. The results (listed in Table 5 and shown on Figure 5) confirm the presence of PCBs at elevated concentrations in erodible soils in this area. Total PCBs were detected at concentrations up to 11,900 μ g/Kg in composite surface soil samples collected from areas that currently drain to this catch basin, and at concentrations up to 21,700 μ g/Kg in composite surface soil samples collected in the N. Bradford Street right-of-way just outside the estimated drainage area for this catch basin. As with the solids samples from catch basin ANE911, the PCBs detected in the surface soil samples consist entirely of Aroclor 1260.

As noted above, catch basin ANE911 is located adjacent to the PIW facility (see Figure 2a). PIW has operated at this location for close to 100 years, based on review of historical Sanborn maps (BES, 2011b). The facility produced ship parts during World War I and has continued as a machine shop and manufacturer of metal parts and equipment to the present (PIW, 2011). Historical operations at the site are not well known but apparently included foundry and machining operations, along with oil storage, based on information shown on the Sanborn maps (BES, 2011b). These types of historical land uses can be linked to PCBs contamination. Two foundry sites in Portland have been investigated under DEQ Cleanup Program oversight, 9 and both properties identified PCBs in onsite soil at concentrations warranting control. Historical machine shop operations may have utilized PCB-containing cutting fluids.

Historical fate and transport of contaminants from the PIW site are not well understood; however, offsite migration via vehicle and equipment dragout, overland runoff, fugitive dusts, and direct releases may have contributed to PCBs concentrations observed in erodible soils and inline solids collected from the vicinity of the site. Aerial photographs and Sanborn maps

⁸ Inline solids were not collected from the N. Alta Street line.

⁹ PECO, Inc. (ECSI No. 1973) and SFI Property (ECSI No. 5103).

indicate that site operations also occurred on adjacent property to the southeast (BES, 2011b). In the period before this property was paved, erodible soils may have been impacted by site operations. This area is now paved and owned by the City and is utilized by the Bureau of Parks and Recreation for Cathedral Park parking.

Current PIW operations include the use of the parking area across N. Alta St. and the unpaved area between the PIW building and the railroad tracks in N. Bradford St. Recent inspection by City Industrial Stormwater Program representatives during wet weather indicates that stormwater from unpaved areas southwest of the PIW building discharges underneath the rail lines to Cathedral Park (see Appendix D). Elevated PCBs (7,120 μ g/Kg) were detected in surface soils on the opposite side of the tracks from PIW; more data are needed to characterize the nature and extent of PCBs in erodible soils in the vicinity of PIW.

In summary, residual PCBs contamination in surface soil in the vicinity of PIW and N. Bradford Street appears to be a major source of the PCBs detected at elevated concentrations in the samples from catch basin ANE911 and from the downstream sediment trap at manhole AAE513. The PCBs contamination in this area is suspected to be related to operations at the adjacent PIW site. These conclusions are based on the following lines of evidence:

- The high PCBs concentrations detected in samples from catch basin ANE911 and the generally low PCBs concentrations detected in other sample locations upstream of manhole AAE513;
- The high concentrations of PCBs in surface soil samples collected in the N. Alta Avenue and N. Bradford Streets, within and near the drainage area for catch basin ANE911; and
- The long-term presence of industrial operations (e.g., foundry and metals machine shop) that are commonly associated with potential use of PCBs.

4.1.2.2 Metals

Chromium, copper, and nickel concentrations in north subbasin inline solids are presented on Figure 4. The highest concentrations of these metals were detected at catch basin APA114. This inlet is located at the intersection of N. Crawford Street and N. Alta Avenue at the foot of the driveway for the Independent Marine Propeller facility -- a propeller repair and machine shop (see Figure 4).

Observations made by BES Field Operations staff during Basin 52 sampling activities¹⁰ and complaints previously received by the City (as discussed in Section 5) indicate operations at the Independent Marine Propeller facility periodically have included grinding of large metal propellers in the outdoor area adjacent to the building and hosing down the area. These activities result in washwater discharges to catch basin APA114, adjacent streets, and catch basin AAE673 (see Appendix A, Photos 21, 22, and 25a/b).¹¹ Based on these observations and

MAY 2012 PAGE 4-3

-

 $^{^{10}}$ Observations on September 9, 2008, as communicated in an internal email from L. Scheffler (BES) to A. Dirks (BES), dated September 10, 2008.

¹¹ In addition to the observations during the September 2008 sampling activities, the City's Industrial Stormwater Program received a complaint on April 6th, 2007, from the City's Spill Protection and Citizen Response section regarding observed grinding and spraying of propellers on the exterior asphalted work area at the Independent Marine Propeller site.

the high chromium, copper and nickel concentrations detected in catch basin APA114, the Independent Marine Propeller site is suspected to be a major source of the chromium, copper and nickel in the sediment trap sample from the downstream end of the north branch.

The samples from catch basin ANE911 also had elevated concentrations of chromium, copper and nickel, though much lower than the concentrations in the catch basin APA114 sample. Catch basin ANE911 is located at the western end of N. Alta Avenue, adjacent to the PIW facility, which was a suspected source of metals to this catch basin, based on observations of metals shavings on the ground surface in the immediate vicinity of the catch basin (BES, 2008c). Metals concentrations detected in the erodible soils samples in the vicinity of catch basin ANE911 were not appreciably elevated (see Table 5 and Figure 5). Catch basin ANE911 also captures runoff from portions of N. Alta Avenue and N. Crawford Street adjacent to Independent Marine Propeller. Offsite migration of metals from the Independent Marine Propeller site is a likely source to catch basin ANE911.

4.2 Central Subbasin

4.2.1 Subbasin Screening Results

Contributions from the central subbasin are represented by the sediment trap samples (parent and duplicate) collected at manhole AAE516. The results and parent/duplicate average results for these samples¹² are summarized in Tables 2 and 4 and discussed below.

- Total PCBs: The average total PCB congeners concentration (398 μ g/Kg) and average total PCB Aroclors concentration (356 μ g/Kg, a mix of Aroclors 1016/1242 and 1254) are less than the Toxicity SLV and are moderately elevated relative to the DEQ industrial reference concentrations.
- Metals: Average chromium, copper, lead, nickel and zinc concentrations are greater than
 the JSCS Toxicity SLVs, though all concentrations are less than 10 times the respective
 SLV. Relative to the DEQ industrial reference concentrations, the chromium
 concentration is significantly elevated and the nickel concentration is moderately
 elevated. Average concentrations of other metals detected in the sediment trap samples
 from this location are not elevated.

4.2.2 Source Tracing

Results of the subbasin screening evaluation indicate that current sources of PCBs, chromium, and nickel are present in the central subbasin. Possible sources of these contaminants (along with copper, which was identified for potential further source tracing in the stormwater screening evaluation) are discussed below.

4.2.2.1 PCBs

PCB congeners and/or PCB Aroclors were detected in all samples collected upstream of manhole AAE516 except catch basin AAE673¹³. The highest total PCBs concentration (281

MAY 2012 PAGE 4-4

-

¹² The average concentration for the parent and duplicate samples was calculated following guidelines used by the Lower Willamette Group for data reporting (Kennedy/Jenks, 2004).

 $\mu g/Kg$) was detected in the sample from ODOT manhole 4. Though this concentration is moderately elevated relative to DEQ industrial reference concentrations (DEQ, 2010), total PCBs concentrations in solids collected from the ODOT system downstream of manhole 4 were not as elevated (115 $\mu g/Kg$). Stormwater discharges from the western portion of the St. Johns Bridge were characterized by the Lower Willamette Group (LWG) in 2007 (Anchor and Integral, 2008). Total PCBs were detected in stormwater and sediment trap samples at low to moderate concentrations relative to DEQ industrial reference concentrations.

Inline solids data collected from the ODOT system discharging to Basin 52 confirms that ODOT bridge drainage increases loading of PCBs to the basin. Though solids concentrations are not high relative to DEQ guidance concentrations, more data may be needed from ODOT to verify that the ODOT bridge is not a major ongoing source of PCBs to Basin 52 via stormwater discharges.

4.2.2.2 Metals

Samples collected from three of the four sampling locations upstream of manhole AAE516 were analyzed for metals: catch basin AAE673 and ODOT manholes 2 and 4. The chromium and copper concentrations in the sample from ODOT manhole 4 exceed the Toxicity SLVs but are within an order-of-magnitude of the SLVs and are not elevated relative to DEQ guidance. Nickel concentrations in the ODOT samples were below the Toxicity SLV. Results indicate that St. Johns Bridge runoff is not a likely major source of chromium, copper and nickel to this branch.¹⁴

Chromium, copper, and nickel concentrations at catch basin AAE673 are higher than at the downstream sediment trap location, exceed Toxicity SLVs, and are elevated relative to the DEQ industrial reference concentrations. Copper and nickel concentrations are greater than 10 times the SLVs. The drainage area for this catch basin consists of a relatively short stretch of N. Crawford Street and also captures a portion of overland stormwater runoff from the Independent Marine Propeller facility driveway (see Appendix A, Photos 25a/b). As discussed in Section 4.1.2.2, illicit discharges from the Industrial Marine Propeller site to catch basin AAE673 have been observed and inlets near the facility may also be impacted by vehicle tracking from the site. This facility is the suspected source of the same metals at nearby catch basin APA114, as discussed in Section 4.1.2, and likely also accounts for the elevated detections of these metals in the sample from catch basin AAE673.

4.3 South Subbasin

4.3.1 Subbasin Screening Results

The two sediment trap samples collected at manhole AAE700 (standard trap and SIFT© trap) represent all contributions from the south subbasin, except for discharges into the short storm line along the N. Pittsburg Avenue spur in Cathedral Park. These samples were collected after

¹³ Method detection limits for this sample were elevated.

¹⁴ Chromium and zinc were detected at moderately elevated concentrations in LWG stormwater samples from the western portion of the St. Johns Bridge; metals were not analyzed in the LWG sediment trap sample (Anchor and Integral, 2008).

several catch basins and catch basin lateral lines were cleaned in the vicinity of manhole AAE700 (see Section 5). Results for these samples are summarized in Tables 3 and 4 and discussed below.

- Total PCBs: The total PCB congeners concentration detected in the SIFT© trap sample (196 μg/Kg) is moderately elevated relative to DEQ industrial reference concentrations. However, PCB Aroclors were not detected in this sample, and the total PCB congeners concentration in the paired standard sediment trap sample is low.
- Metals: Metals were analyzed only in the SIFT© trap sample; there was insufficient
 sample volume in the standard trap for metal analyses. Copper, nickel, and zinc
 concentrations in this sample exceeded the JSCS Toxicity SLVs, but are less than 10 times
 the SLV and are not significantly elevated relative to DEQ industrial reference
 concentrations (DEQ, 2010).

These results indicate that no major sources of metals or PCBs currently discharge to the south branch.

4.3.2 Source Tracing

Although the 2010 sediment trap screening results for this branch do not indicate any major current sources of PCBs or metals in the south subbasin, the 2008 inline solids sample from the closest upstream catch basin (AAE651; see Figure 3b) indicated a potential historical PCBs source(s) in this subbasin. The total PCB Aroclors concentration in the catch basin AAE651 solids sample is 348 μ g/Kg, which is moderately elevated relative to the DEQ industrial reference concentrations (DEQ, 2010). The lower sediment trap results (ND – 196 μ g/Kg) that followed line cleaning in this area indicate that the elevated concentration in CB AAE651 may have represented legacy contaminated solids in this rail corridor area. Total PCBs concentrations in the other inline solids samples from this branch are low (see Table 3). Results for the 2008 inline solids samples from this branch do not indicate major sources of copper or other metals discharging to the south branch.

Source Control Activities

Source control measures the City has completed in coordination with the Basin 52 source investigation are summarized below and shown on Figure 6. These measures were identified based on initial review of the stormwater solids data and were completed in January 2010, in preparation for the February 2010 sediment trap deployments (BES, 2010c).

- All catch basins and connecting catch basin lead lines discharging to the following manholes were cleaned:
 - o Manhole AAE498 (north branch)
 - o Manhole AAE510 (north branch)
 - o Manhole AAE700 (south branch)¹⁵
- The following north branch stormwater line segments were cleaned after the catch basins, laterals, and upgradient manholes were cleaned:
 - o AAE498 to AAE511
 - o AAE511 to AAE510
 - AAE510 to AAE513

In addition, the City has taken the following actions with regard to suspected sources in Basin 52:

Independent Marine Propeller (8675 N. Crawford Street): This facility has been the subject of multiple complaints regarding air emissions (fugitive paint fumes and dust) and surface runoff (BES, 2007c; DEQ, 2007). In response to a complaint that the facility was spraying and grinding propellers on their exterior asphalted work area, the City inspected the site in spring 2007. Based on observations during the site inspection, the City concluded that drainage from this property's exterior areas likely flows overland into the adjacent streets and enters the Willamette River via the City's Basin 52 stormwater conveyance system. Given the potential for the company's activities to contaminate stormwater runoff entering the river, the City formally requested that the site operators confine the industrial activities to the interior work areas and cease utilizing the exterior yard for the propeller grinding and spraying. The City also requested that the site operators complete an Industrial and Commercial Environmental Survey, provided them with technical assistance on appropriate best management practices (BMPs) for preventing stormwater contamination, and requested that BMPs be implemented at this facility. It also notified the site operators that the discharge of any wash or wastewaters to the City's storm sewers is strictly prohibited (BES, 2007d).

¹⁵ Cleaning of the lateral line between two of the four catch basins in this area could not be completed due to line damage beneath the railroad corridor along N. Bradford St.

In response, Independent Marine Propeller made operational changes to remove exposures of site industrial activities to stormwater. Following City inspection of the site on June 15, 2011, the City determined that site operations would qualify for NPDES 1200-Z Industrial Stormwater Permit coverage if exposures were present. Because no such exposures were observed, the City requested submittal of a request for an NEC and is working with the site to ensure that an NEC can be issued.

- Peninsula Iron Works (6618 N. Alta Avenue): The City has worked with PIW in recent years to reduce industrial exposures to stormwater at the site. During the September 2008 catch basin sampling in Basin 52, the City observed that the right-of-way areas adjacent to the site on N. Alta Avenue and N. Bradford Street (along the railroad tracks) were being used as outdoor operations areas for PIW. Abundant metal shavings that appeared to be related to site operations were observed within and surrounding catch basin ANE911 (BES, 2008c). Based on observations during a follow-up City stormwater inspection on October 15, 2008, the City confirmed that industrial exposures to stormwater were occurring (BES, 2008d). Specifically, the City identified the following industrial activities taking place on site in areas exposed to stormwater and notified PIW operators that they were required to apply for a 1200-Z permit (BES, 2008d):
 - Scrap metal was being transferred to a recycling dumpster/bin and material was being collected from the bin in a manner causing shavings to be deposited on the ground in close proximity to catch basin ANE911, resulting in exposure to stormwater;
 - Old railroad ties used for product transport, waste equipment with hydraulic fluid, finished products, slag pieces, and metal shavings were being stored in a manner that exposed these materials to stormwater; and
 - Waste steel (which can be contaminated with oily residue, slag residue or other materials) was being stored outside and exposed to stormwater.

After a period of no response, the City issued PIW a Notice of Noncompliance (BES, 2009a) and enforcement referral (BES, 2009b) for failure to apply for the 1200-Z permit. Under City oversight, PIW subsequently completed sufficient actions to remove industrial activity exposures to stormwater, thereby becoming eligible for an NEC in lieu of an NPDES 1200-Z permit. Actions completed at the site to remove exposures include (BES, 2009c, 2009d):

- Waste materials (including old equipment and hoppers) were moved into covered areas;
- The recycling dumpster/bin was moved from its former location adjacent to catch basin ANE911 to the southwest side of building (approximately 40 feet from the catch basin). An absorbent sock was placed around the bin, and a permanent awning was installed over the bin;
- Scrap wood was moved to a covered storage area or placed on an elevated platform and covered with a tarp to prevent contact with stormwater;
- o The onsite stormwater trench drain was cleaned out; and

o PIW staff were trained on general environmental housekeeping practices.

The NEC requires the site to file an updated form every 5 years and to maintain an Accidental Spill Prevention Plan (ASPP) for the facility to maintain site cleanliness. The controls identified in PIW's ASPP¹6 include a preventative maintenance program with catch basin and trench drain cleanings to occur as needed, and sweeping of the loading/unloading areas and storage area twice weekly. The ASPP also includes procedures for transferring and storing materials/wastes and spill response.

In December 2011, the City submitted a request to DEQ for Site Assessment at the PIW site, based on the Basin 52 source investigation results and historical documentation of industrial operations at the site (BES, 2011b). DEQ added this site to the ECSI database (ECSI #5686) and is working with the site to enter into a DEQ Cleanup Program agreement.

ODOT

The City revised the Basin 52 drainage basin boundary to reflect the portion of the St. Johns Bridge that discharges to the basin and provided results of the City investigation of solids in the ODOT drainage system to ODOT. The ODOT stormwater conveyance system that drains the eastern portion of the St. Johns Bridge includes a sedimentation manhole to reduce solids loading to Basin 52. DEQ and ODOT have entered into an IGA for investigation of discharges to Portland Harbor, including discharges from the St. Johns Bridge.

MAY 2012 PAGE 5-3

.

¹⁶ The ASPP was submitted for City review on March 2, 2009, and approved by the City on August 21, 2009.

The page left intentionally blank.

Conclusions and Next Steps

The City source investigations in Basin 52 confirmed that all major sources of PCBs and certain metals have been identified and are now in appropriate programs to select and implement necessary source controls. Basin 52 data do not indicate that major current sources of other contaminants are discharging to the basin and further City source tracing is not warranted.

Concentrations of total PCBs and certain metals (chromium, copper and nickel) in stormwater solids collected from this basin are elevated relative to concentrations for basins and industrial sites discharging to Portland Harbor (DEQ, 2010). This finding is similar to results of the City's *Stormwater Evaluation Report*, which identified PCBs and copper as analytes warranting further source tracing in the basin. Basin data indicate the major current sources of these contaminants are located in the north and central subbasins.

Based on the spatial distribution of elevated detections and information on upland sites within the basin, residual PCBs in erodible surface soils adjacent to the PIW facility appear to be a major source of PCBs to the north subbasin system. Review of available historical information indicates foundry and/or machine shop operations have been active at the PIW site for approximately 100 years; the PCBs contamination in surface soil in the vicinity of this site is suspected to be related to these historical site operations (via offsite dispersal mechanisms such as vehicle and equipment dragout, overland runoff, fugitive dusts, and direct releases). Outdoor operations at the Independent Marine Propeller facility appear to be the major source of metals to the north and central subbasins. PCBs and metals were also detected in the central subbasin in the ODOT drainage system affiliated with the St. Johns Bridge. The south subbasin does not appear to contain major sources of PCBs or metals to the municipal storm system.

The City Industrial Stormwater Program has provided technical assistance to the PIW and Independent Marine Propeller facilities to reduce stormwater exposures, resulting in the issuance of an NEC certification at PIW and recommendation for an NEC at Independent Marine Propeller. Basin 52 source investigation results in the vicinity of PIW supported a City request to DEQ for Site Assessment at PIW. DEQ has been working with PIW to finalize a Cleanup Program Agreement for the site. The ODOT St. Johns Bridge drainage system includes a sedimentation manhole to reduce solids loading from the bridge to Basin 52, and ODOT may be collecting additional information on St. Johns Bridge drainage as part of an IGA with the DEQ Cleanup Program. Source control efforts at these three sites are expected to address the major current sources of PCBs and metals to the Basin 52 conveyance system.

As all major sources of PCBs and the metals to Basin 52 have been identified and are being controlled, no further source investigation in Basin 52 is warranted. The City will continue to provide technical assistance to PIW and Independent Marine Propeller and to coordinate with DEQ on the PIW and ODOT source investigation and control efforts in the basin. The source investigation results presented in this report and ongoing work at the properties identified as major upland sources to the City conveyance system will support future DEQ decisions for this basin.

The page left intentionally blank

References

- Anchor and Integral. 2008. Portland Harbor RI/FS. Round 3A and 3B Stormwater Data Report. Prepared for the Lower Willamette Group, Portland, OR. Anchor Environmental, L.L.C., Seattle, WA. September 2008.
- BES. 2007a. Amended Programmatic Quality Assurance Project Plan, City of Portland Outfalls Project, Revision to Programmatic Source Control Remedial Investigation Work Plan Appendix D. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007c. Subject: Independent Marine Propeller 8675 N. Crawford. Email to L. Scheffler and D. Sanders (BES Portland Harbor Superfund Program) from M. Hauser (BES Spill Protection & Citizen Response Section). April 9, 2007.
- BES. 2007d. RE: Site Activities at Independent Marine Propeller- 8675 N. Crawford St, Portland OR. Letter to S. Parsons (Independent Marine Propeller) from L. Shelley (City of Portland BES Industrial Stormwater Program). June 6, 2007.
- BES. 2008a. City of Portland Outfalls Project, Basin 52 Inline Solids Sampling and Analysis Plan. Letter from L. Scheffler (BES) to K. Tarnow (DEQ). June 18, 2008.
- BES. 2008b. Subject: Notification of Proposed Sampling Activities Basin 52. Email from L. Scheffler (BES) to K. Tarnow (DEQ). August 26, 2008.
- BES. 2008c. Subject: Peninsula Iron Works. Email from L. Scheffler (BES) to L. Johnson (BES Industrial Stormwater Program). September 10, 2008.
- BES. 2008d. RE: General NPDES Industrial Stormwater Discharge Permit Required, Stormwater Facility Inspection of Peninsula Iron Works, located at 6618 N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). October 16, 2008.
- BES. 2009a. RE: Notice of Noncompliance Failure to Apply for NPDES Permit, Discharge of Wastes to Waters of the State: Oregon Revised Statute 468.B.025, Peninsual Iron Works, 6618 N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). January 5, 2009.
- BES. 2009b. RE: Enforcement Referral Failure to Apply for NPDES Permit, Discharge of Wastes to Waters of the State: Oregon Revised Statute 468.B.025, Peninsula Iron Works, 6618

- N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). February 2, 2009.
- BES. 2009c. Site notes from BES Industrial Stormwater Program staff site visit to Peninsula Iron Works on February 12, 2009.
- BES. 2009d. Site notes from BES Industrial Stormwater Program staff site visit to Peninsula Iron Works on February 26, 2009.
- BES. 2010a. Stormwater Evaluation Report, City of Portland Outfall Project, ECSI No. 2425. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. February 2010.
- BES. 2010b. Subject: City of Portland Outfall Project, Source Investigations for Basins 18, 19A, 52, 52C, 53, 53A, and S-1, Summer 2010 Sampling and Analysis Plan. Letter from L. Scheffler (BES) to K. Tarnow (DEQ). August 20, 2010.
- BES. 2010c. Subject: Maintenance Assistance. Internal memorandum from L. Scheffler (BES) to Mark Braun (BES, Maintenance Engineering). January 11, 2010.
- BES. 2011a. Re: Basin 52 Source Investigation. Data transmittal to K. Tarnow (DEQ) from L. Scheffler (BES). June 16, 2011.
- BES. 2011b. Subject: Request for DEQ Site Assessment of Peninsula Iron Works Property at 6618 N. Alta Avenue. Letter to A. Liverman (DEQ) from L. Scheffler (BES). December 13, 2011.
- DEQ. 2001. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 2363, Crawford Street Corporation. Last updated 2001. Website accessed on February 28, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=2363
- DEQ. 2007. RE: Air Quality Complaint, Multnomah County, 09-06-2007 @ 08:02. Letter to Independent Marine Propeller & Machine Shop from D. Murphy (DEQ). September 24, 2007.
- DEQ. 2010. "Tool for Evaluating Stormwater Data" Appendix E to *Guidance for Evaluating the Stormwater Pathway at Upland Sites*. January 2009 (updated October 2010).
- DEQ. 2012a. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 5686, Peninsula Iron Works. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=5686
- DEQ. 2012b. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 5437, Oregon Department of Transportation Portland Harbor Source Control Evaluation. Last updated 2010. Website accessed on April 4, 2012. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=5437

- DEQ and EPA. 2005 (amended 2007). Portland Harbor Joint Source Control Strategy. Prepared by the Oregon Department of Environmental Quality and the U.S. Environmental Protection Agency. December 2005 (Table 3-1 updated July 2007). Available online at http://www.deq.state.or.us/lq/cu/nwr/PortlandHarbor/jointsource.htm.
- EPA. 2010. Portland Harbor Superfund Site; Administrative Order of Consent for Remedial Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240. Portland Harbor Feasibility Study Source Tables. Letter from EPA to Mr. Bob Wyatt, Chairman, Lower Willamette Group. November 23, 2010.
- Kennedy/Jenks. 2004. Portland Harbor RI/FS, Guidelines for Data Reporting, Data Averaging, and Treatment of Non-Detected Values for the Round 1 Database. June 10, 2004.
- PIW. 2011. Peninsula Iron Works website. http://peniron.com/html/aboutus.htm. Accessed June 1, 2011.

The page left intentionally blank.

Table 1 Basin 52 Inline Solids Results - North Branch

Mines South		_	Manhole A		Catch Basin	ANE911	Catch Basin APA114	Manhole AAE498	Catch Basin ANE910	Catch Basin AAE694		
Part				Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Screen	JSCS ⁽²⁾ ning Level Value
Part			on East Ledge of Manhole		FO081104	FO105871 ⁽¹⁾	FO081105		FO081108	FO081109		
Tock mg/kg 120,000 81,000 32,000 28,600 60,800 46,000 85,400 40,700 — — — — — — — — — — — — — — — — — —	Class Analyte	Units	6/26/2008	6/17/2010	9/9/2008	9/7/2010	9/9/2008	6/17/2010	9/10/2008	9/10/2008	Toxicity	Bioaccumulation
Total Solids (SM 2540 G) S	Total Organic Carbon (EPA 9060 MOD)											
TS % \$3.1 48.2 90.3 \$81" 62.9 \$8.2 97.5 95.6	TOC	mg/Kg	120,000	81,000	32,400	28,600	60,800	46,000	85,400	40,700		
TS % \$3.1 48.2 90.3 \$81" 62.9 \$8.2 97.5 95.6	Total Solids (SM 2540 G)											
Gravel C-9750 (μm) Fract % 4.32 NA 30.68 NA 7.84 NA NA 46.31		%	53.1	48.2	90.3	84 (1)	62.9	58.2	97.5	95.6	-	
Gravel C-9750 (μm) Fract % 4.32 NA 30.68 NA 7.84 NA NA 46.31	Grain Size (ASTM D421/422)											
Coare Sand (475-0200) mp		Fract %	4.32	NA	30.68	NA	7.84	NA	NA	46.31		
Fine Stand (425-75 juay) Fine 1	Coarse Sand (4750-2000 µm)											
Silt (3.2.75 \(\) \(\	Medium Sand (2000-425 μm)	Fract %	28.05	NA	26.97	NA	28.91	NA	NA	14.31		
Clay (c.3.2 µm) Fract % 4.46 NA 1.34 NA 2.81 NA NA 3.25	Fine Sand (425-75 μm)	Fract %	16.98		13.6	NA	30.38	NA	NA	11.27		
Arsenic mg/Kg 7.67 5.25 7.42 4.61 0 7.08 3.19 NA 2.61 33 7	Silt (3.2-75 μm)	Fract %	24.71	NA	4.58	NA	16.74	NA	NA	10.42		
Arsenic mg/Kg 0.93 1.01 0.59 0.464 0 1.91 0.666 NA 0.51 3.3 7 Cadmium mg/Kg 0.93 1.01 0.59 0.464 0 1.91 0.666 NA 0.51 4.98 1 Chromium mg/Kg NA 162 563 659 0 5.260 99.5 NA 46.4 111 Copper mg/Kg 1.240 254 5.000 873 0 13.000 97.3 NA 69.7 149 Lead mg/Kg 81.6 86.5 272 105 0 150 59.3 NA 99.1 128 17 Mercury mg/Kg NA 0.068 0.036 0.0173 0 0.087 0.048 NA 0.125 1.06 0.07 Nickel mg/Kg NA 0.068 0.036 0.0173 0 0.087 0.048 NA 0.125 1.06 0.07 Nickel mg/Kg NA 0.39 0.84 0.235 0 1.36 0.21 NA 0.10 5 Zinc mg/Kg 649 462 437 316 0 3.10 350 NA 187 459 Polychlorinated Biphenyl Congeners (PCBs) (EPA 1668A) **Total PCBs/0360 pg/Kg NA 0.24 0 1 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 530 Aroctor 1212 pg/Kg 10 U 2.0 U 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 5.50 Aroctor 1222 pg/Kg 10 U 2.0 U 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1242 pg/Kg 10 U 2.0 U 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1248 pg/Kg 10 U 2.0 U 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1248 pg/Kg 10 U 2.0 U 1.000 U 2.00 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1244 pg/Kg 10 U 2.0 U 1.000 U 2.0 U 1.0 U 1.0 U 1.2 J 1.500 Aroctor 1252 pg/Kg 10 U 2.0 U 1.000 U 2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1254 pg/Kg 10 U 2.0 U 1.000 U 2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.500 Aroctor 1254 pg/Kg 10 U 2.0 U 1.0	Clay (<3.2 μm)	Fract %	4.46	NA	1.34	NA	2.81	NA	NA	3.25		
Cadmium	Metals (EPA 6020)											
Cadmium mg/Kg 0.93 1.01 0.99 0.464 0.91 1.91 0.66 NA 0.51 4.98 1	Arsenic	mg/Kg	7.67	5.25	7.42		7.08	3.19	NA	2.61	33	7
Copper	Cadmium	mg/Kg	0.93	1.01	0.59	0.464 (1)	1.91	0.66	NA	0.51	4.98	1
Copper mg/Kg 1,240 254 5,000 873 13,500 97.3 NA 69.7 149	Chromium	mg/Kg	NA	162	563	659 ⁽¹⁾	5,260	99.5	NA	46.4	111	
Mercury mg/Kg NA 0.068 0.036 0.0173 0.087 0.048 NA 0.125 1.06 0.07 Nickel mg/Kg NA 99.2 321 431 0 3.050 43.2 NA 25.8 48.6	Copper	mg/Kg	1,240	254	5,000	873 (1)	13,500	97.3	NA	69.7	149	
Mercury mg/Kg NA 0.068 0.036 0.0173 0.087 0.048 NA 0.125 1.06 0.07 Nickel mg/Kg NA 99.2 321 431 0 3.050 43.2 NA 25.8 48.6 Silve mg/Kg NA 0.39 0.84 0.255 0 1.36 0.21 NA 0.10 5 Zinc mg/Kg 649 462 437 316 0 3.120 350 NA 187 459 Polychlorinated Biphenyl Congeners (PCBs) (EPA 1668A) Total PCBs 0.09 0.09 0.00 0.00 0.00 0.00 0.00 Arcolor 1016 pg/Kg 10 U 20 U 1.000 U 200 U 10 U 10 U 10 U 10 U 530 Arcolor 1221 pg/Kg 20 U 40 U 2.000 U 400 U 20 U 20 U 20 U 20 U 20 U Arcolor 1232 pg/Kg 10 U 20 U 1.000 U 200 U 10 U 10 U 10 U 10 U Arcolor 1242 pg/Kg 10 U 20 U 1.000 U 200 U 10 U 10 U 10 U 10 U Arcolor 1248 pg/Kg 10 U 20 U 1.000 U 200 U 10 U 10 U 10 U 10 U 10 U Arcolor 1254 pg/Kg 10 U 20 U 1.000 U 200 U 10 U	Lead	mg/Kg	81.6	86.5	272	105 (1)	150	59.3	NA	39.1	128	17
Nickel mg/Kg NA 99.2 321 431 10 3,050 43.2 NA 25.8 48.6	Mercury		NA	0.068	0.036	0.0173 (1)		0.048			1.06	0.07
Silver mg/Kg NA 0.39 0.84 0.235 0.30 1.36 0.21 NA 0.10 5												
Polychlorinated Biphenyl Congeners (PCBs) (EPA 1668A) Fotal PCBs (SPA 1608A) Fotal PCBs (S												
Total PCBs ⁽³⁾⁽⁴⁾ μg/Kg NA 924 (5) NA 2,350 NA 55.4 (5) NA NA 676 0.39												
Total PCBs ⁽³⁾⁽⁴⁾ μg/Kg NA 924 (5) NA 2,350 NA 55.4 (5) NA NA 676 0.39	Polychloringtad Riphanyl Congeners (PCRs)) (EDA 1668A)										
Aroclor 1016			NA	924 (5)	NA	2,350	NA	55.4 ⁽⁵⁾	NA	NA	676	0.39
Aroclor 1016 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U 10 U 530 Aroclor 1221 μg/Kg 20 U 40 U 2,000 U 400 U 20 U 20 U 20 U 20 U Aroclor 1232 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U Aroclor 1242 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1248 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 11 10 U 10 U 1,500 U Aroclor 1254 μg/Kg 10 U 20 U 1,000 U 200 U 60 10 U 123 J 10 U 300 Aroclor 1260 μg/Kg 11 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U						-						
Aroclor 1221 μg/Kg 20 U 40 U 2,000 U 400 U 20 U 20 U 20 U Aroclor 1232 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1242 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1248 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 11 10 U 10 U 1,500 Aroclor 1254 μg/Kg 10 U 20 U 1,000 U 200 U 60 10 U 123 J 10 U 300 Aroclor 1260 μg/Kg 114 130 8,160 2,860 29 J 9 J 515 54 200 Aroclor 1262 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclo	1 1 1	,	10.11	20.11	1,000 17	200 H	10.11	10 II	10.11	10.11	520	
Aroclor 1232 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U												
Aroclor 1242 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U 10 U												
Aroclor 1248 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 11 U 10 U 10 U 1,500 U Aroclor 1254 μg/Kg 10 U 20 U 1,000 U 200 U 60 10 U 123 J 10 U 300 Aroclor 1260 μg/Kg 114 130 8,160 2,860 29 J 9 J 515 54 200 Aroclor 1262 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1268 μg/Kg 10 U 20 U 1,000 U 200 10 U 10 U 10 U 10 U												
Aroclor 1254 μg/Kg 10 U 20 U 1,000 U 200 U 60 10 U 123 J 10 U 300 Aroclor 1260 μg/Kg 114 130 8,160 2,860 29 J 9 J 515 54 200 Aroclor 1262 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1268 μg/Kg 10 U 20 U 1,000 U 200 10 U 10 U 10 U 10 U												
Aroclor 1260 μg/Kg 114 130 8,160 2,860 29 J 9 J 515 54 200 Aroclor 1262 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U Aroclor 1268 μg/Kg 10 U 20 U 1,000 U 200 10 U 10 U 10 U 10 U												
Aroclor 1262 μg/Kg 10 U 20 U 1,000 U 200 U 10 U 10 U 10 U 10 U 10 U Aroclor 1268 μg/Kg 10 U 20 U 1,000 U 200 10 U 10 U 10 U 10 U 10 U												
Aroclor 1268 μg/Kg 10 U 20 U 1,000 U 200 10 U 10 U 10 U 10 U												
			114	130	8,160	2,860	89 J	20 J	638 J	54	676	0.39

Notes:

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. The value is less than the MRL but greater than or equal to the MDL, or, for some Aroclors, the value is estimated due to pattern overlap.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms \ per \ kilogram$

 $mg/Kg = Milligrams \ per \ kilogram$

 $^{^{(1)}}$ Sample was archived after initial laboratory analysis and subsequently analysed for metals on November 17, 2011 (under laboratory number W11K141-03). The recommended method-specific holding time was exceeded due to delayed request for metals analysis; however, because the samples were properly preserved, the results are acceptable for the purposes of this investigation. Percent total solids (TS) also was reanalyzed at this time to ensure accuracy of metals results; TS = 81.6%.

⁽²⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽³⁾ Refer to Table 4 for individual PCB congener results.

 $^{^{(4)}}$ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁵⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 2 Basin 52 Inline Solids Results - Central Branch

			Manhole AAE516		Catch Basin AAE673	Catch Basi	n ANE921	ODOT M	Manhole 2 (1)	ODOT Manhole 4 (1)			
		Sediment Trap Solids (SIFT© Trap)		Solids (SIFT© Trap) Inline Solids Inline Solids			Solids	Inlin	e Solids	Inline Solids		$\mathbf{JSCS}^{(2)}$	
		Downstream in 18" Line FO105698	Downstream in 18" Line Duplicate FO105702	Parent/Duplicate Sample Average ⁽³⁾ FO105698 & FO105702	FO081106	FO081103	Duplicate FO081107	Within Manhole FO105870 (4)	Within Manhole Duplicate FO105873	Within Manhole FO105872 (5)	Screen	ing Level Value	
Class Analyte	Units	6/17/2010	6/17/2010	6/17/2010	9/9/2008	9/9/2008	9/9/2008	9/7/2010	9/7/2010	9/8/2010	Toxicity	Bioaccumulation	
Total Organic Carbon (EPA 9060	MOD)										-		
TOC	mg/Kg	35,000	40,000	37,500	113,000	64,100	77,200	8,710	7,580	20,100			
Total Solids (SM 2540 G)													
TS	%	66.6	NA	NA	64.9	47.3	50.5	86.9 (4)	85.7	77.5 ⁽⁵⁾			
Grain Size (ASTM D421/422)													
Gravel (>4750 μm)	Fract 9	NA NA	NA	NA	20.36	6.32	5.5	NA	NA	NA			
Coarse Sand (4750-2000			NA	NA	15.2	9.75	9.26	NA	NA	NA			
Medium Sand (2000-425	μm) Fract 9	NA NA	NA	NA	22.03	23.9	22.28	NA	NA	NA			
Fine Sand (425-75 μm)	Fract 9		NA	NA	14.88	30.16	29.95	NA	NA	NA			
Silt (3.2-75 μm)	Fract 9		NA	NA	20.06	24.47	27.82	NA	NA	NA			
Clay (<3.2 μm)	Fract 9	b NA	NA	NA	7.47	5.38	5.2	NA	NA	NA			
Metals (EPA 6020)													
Arsenic	mg/Kg	3.34	2.81	3.08	5.62	NA	NA	2.18 (4)	NA	4.03 (5)	33	7	
Cadmium	mg/Kg	1.18	1.05	1.12	1.22	NA	NA	0.351 (4)	NA	1.02 ⁽⁵⁾	4.98	1	
Chromium	mg/Kg	243	280	262	954	NA	NA	89.8 (4)	NA	159 (5)	111		
Copper	mg/Kg	309	339	324	2,170	NA	NA	44.8 (4)	NA	188 (5)	149		
Lead	mg/Kg	89.8	204	147	110	NA	NA	40.3 (4)	NA	151 ⁽⁵⁾	128	17	
Mercury	mg/Kg	0.079	0.067	0.073	0.085	NA	NA	0.0168 (4)	NA	0.0466 (5)	1.06	0.07	
Nickel	mg/Kg	112	122	117	512	NA	NA	27.1 (4)	NA	41.8 (5)	48.6		
Silver	mg/Kg	0.21	0.19	0.2	0.35	NA	NA	0.100 U	NA	0.202 (5)	5		
Zinc	mg/Kg	692	613	653	1,160	NA	NA	332 (4)	NA	632 (5)	459		
Polychlorinated Biphenyl Conger	ers (PCBs) (EPA 1668A)												
	Total PCBs ⁽⁶⁾⁽⁷⁾ µg/Kg	400	396 ⁽⁸⁾	398	NA	NA	NA	115	67.5	281 ⁽⁸⁾	676	0.39	
Polychlorinated Biphenyls(PCBs)	(EPA 8082)												
Aroclor 1016/1242	μg/Kg	78 J	101 J	90 J	100 U	20 U	20 U	10 U	10 U	10 U	530 ⁽⁹⁾		
Aroclor 1221	μg/Kg	20 U	20 U	20 U	200 U	40 U	40 U	20 U	20 U	20 U			
Aroclor 1232	μg/Kg	10 U	10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
Aroclor 1248	μg/Kg		10 U	10 U	100 U	20 U	20 U	60	76	97	1,500		
Aroclor 1254	μg/Kg		422 J	266 J	100 U	33 J	61 J	35	26	66	300		
Aroclor 1260	μg/Kg		10 U	10 U	100 U	60	83	10 U	10 U	10 U	200		
Aroclor 1262	μg/Kg		10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
Aroclor 1268	μg/Κε		10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
	Total PCBs (7) µg/Kg	188 J	523 J	356 J	ND	93 J	144 J	95	102	163	676	0.39	

Notes

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. For PCB Aroclors, the value is estimated due to pattern overlap of the detected Aroclors or inconsistent QC results that indicate non-homogenous sample matrix.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms per kilogram$

mg/Kg = Milligrams per kilogram

⁽¹⁾ ODOT manhole 2 and ODOT manhole 4 were initially identified as sampling locations SJB2 and SJB1, respectively.

⁽²⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽³⁾ The average concentration for the parent and duplicate samples was calculated following guidelines used by the LWG for data reporting (Kennedy/Jenks, 2004).

 $^{^{(4)}}$ Sample was archived after initial laboratory analysis and subsequently analyzed for metals on November 17, 2011 (under laboratory number W11K141-01); however, because the sample was properly preserved, the results are acceptable for the purposes of this investigation. Percent total solids (TS) also was reanalyzed at this time to ensure accuracy of metals results; TS = 83.2%.

 $^{^{(5)}}$ Sample was archived after initial laboratory analysis and subsequently analyzed for metals on November 17, 2011 (under laboratory number W11K141-03)); however, because the sample was properly preserved, the results are acceptable for the purposes of this investigation . TS also was reanalyzed at this time to ensure accuracy of metals results; TS = 77.9%.

⁽⁶⁾ Refer to Table 4 for individual PCB congener results.

⁽⁷⁾ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁸⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁽⁹⁾ Results for Aroclors 1016 and 1242 are reported by the analytical laboratory as a combined result. JSCS includes a screening level value for Aroclor 1242 only.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 3
Basin 52 Inline Solids Results - South Branch

	_		AAE700	Catch Basin AAE651	Catch Basin ANE813	Manhole	AAE553	Manhole AAE569	Catch Basin ANE815		
		Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Inline Solids	Inline Solids	Inline Solids	Inline Solids	Screen	JSCS ⁽¹⁾ ning Level Value
		Downstream in 28" Line FO105696	Downstream in 28" Line FO105697	FO081102	FO081100	Upstream in 24" Line FO080840	Upstream in 24" Line Duplicate FO080843	Upstream in 12" Line FO080841	FO081101		
Class Analyte	Units	6/17/2010	6/17/2010	9/9/2008	9/9/2008	6/26/2008	6/26/2008	6/26/2008	9/9/2008	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)											
TOC	mg/Kg	NA	84,000	63,800	22,500	36,000	35,000	5,500	35,900		
Total Solids (SM 2540 G)											
TS	%	54.1	46.6	95.1	98.9	82.1	83.1	84.9	91.3		
Crain Size (ASTM D421/422)											
Grain Size (ASTM D421/422) Gravel (>4750 μm)	Fract %	NA	NA	NA	22.96	19.73	24.66	8.08	20.02		
Coarse Sand (4750-2000 µm)	Fract %	NA	NA NA	NA NA	19.98	21.86	19.36	3.06	16.88		
Medium Sand (2000-425 μm)	Fract %	NA	NA	NA NA	30.88	41.85	34.79	14.64	24.96		
Fine Sand (425-75 µm)	Fract %	NA	NA	NA NA	16.29	12.54	17.03	62.83	21.98		
Silt (3.2-75 μm)	Fract %	NA	NA	NA NA	7.71	2.26	2.92	9.41	13.06		
Clay (<3.2 µm)	Fract %	NA	NA	NA	2.18	1.78	1.25	1.97	3.1		
Metals (EPA 6020)											
Arsenic	mg/Kg	NA	4.57	NA	NA	1.94	1.39	2.09	NA	33	7
Cadmium	mg/Kg	NA	1.51	NA NA	NA NA	0.72	0.56	0.29	NA	4.98	1
Chromium	mg/Kg	NA	98.5	NA NA	NA NA	NA	NA NA	NA	NA	111	
Copper	mg/Kg	NA	150	NA NA	NA NA	106	117	33.6	NA	149	
Lead	mg/Kg	NA NA	104	NA NA	NA NA	23.7	22.0	70.7	NA NA	128	17
Mercury	mg/Kg	NA NA	0.112	NA NA	NA NA	NA NA	NA	NA NA	NA NA	1.06	0.07
Nickel	mg/Kg	NA	60.0	NA NA	NA NA	NA	NA	NA NA	NA	48.6	
Silver	mg/Kg	NA	0.25	NA NA	NA NA	NA	NA	NA NA	NA	5	
Zinc	mg/Kg	NA NA	730	NA NA	NA NA	588	431	109	NA NA	459	
<u> </u>	88		700			200	.51	20/		,	
Polychlorinated Biphenyl Congeners (PCBs)			(6)								
Total PCB:	s ⁽²⁾⁽³⁾ μg/Kg	28.5 J	196 ⁽⁴⁾	NA	NA	NA	NA	NA	NA	676	0.39
Polychlorinated Biphenyls(PCBs) (EPA 8082)										
Aroclor 1016/1242 (5)	μg/Kg	NA	20 U	37 J	10 U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	μg/Kg	NA	40 U	20 U	20 U	20 U	20 U	20 U	20 U		
Aroclor 1232	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U	1,500	
Aroclor 1254	μg/Kg	NA	20 U ⁽⁶⁾	108 J	29 J	26 J	22 J	27 Ј	30 J	300	
Aroclor 1260	μg/Kg	NA	20 U ⁽⁶⁾	203 J	38	29	21	23	28	200	
Aroclor 1262	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Total PC	Bs ⁽³⁾ μg/Kg	NA	ND	348 J	67 J	55 J	43 J	50 Ј	58 J	676	0.39

Notes:

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. For PCB Aroclors, the value is estimated due to high surrogate recoveries and/or pattern overlap. For PCB Congeners, the value is estimated due to poor internal standard recovery in the sample and the associated QC samples.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms \ per \ kilogram$

mg/Kg = Milligrams per kilogram

⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽²⁾ Refer to Table 4 for individual PCB congener results.

⁽³⁾ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁴⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁽⁵⁾ Results for Aroclors 1016 and 1242 are reported by the analytical laboratory as a combined result. The JSCS includes a screening level value for Aroclor 1242 only.

⁽⁶⁾ WPCL reports that sample FO105697 exhibited trace levels of PCBs (less than laboratory method reporting limits) tentatively identified as mixed Aroclors 1254/1260.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Basin 52 Inline Solids Results -	- PCB Congeners				North Branch				Central Branch			South I	Branch		
			_	Manhole AAE513	Catch Basin ANE911	Manhole AAE498	Manhole A	AAE516	ODOT M	MH2 ⁽¹⁾	ODOT MH 4 (1)	Manhole		•	
			_	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment Tr		Inline S	Solids	Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)	•	
				Upstream of Manhole in 15" line	FO105871	Downstream of Manhole in 12" Line FO105694	Downstream of Manhole in 18" Line	Downstream of Manhole in 18" Line (Duplicate)	Within Manhole FO105870	Within Manhole (Duplicate)	Within Manhole FO105872	Downstream of Manhole in 28" Line	Downstream of Manhole in 28" Line FO105697	Screen	JSCS ⁽³⁾ ng Level Value
IUPAC Number ⁽²⁾		Chemical Name	Units	FO105695 6/17/2010	9/7/2010	6/17/2010	FO105698 6/17/2010	FO105702 6/17/2010	9/7/2010	FO105873 9/7/2010	9/7/2010	FO105696 6/17/2010	6/17/2010	Toxicity	Bioaccumulation
Polychlorinated Biphenyl Congeners		Chemicai Name												•	
PCB 1 PCB 2	2-MoCB 3-MoCB		μg/Kg μg/Kg	0.0441 J 0.0256 J	0.0235 U 0.0244	0.0245 U 0.0245 U	0.2210 0.0399	0.2810 J 0.0504 J	0.0477 0.0248 U	0.0378 0.0242 U	0.0792 0.0252	0.8930 JB 0.1800 JB	0.0467 J 0.0318 J		
PCB 3 PCB 4	4-MoCB 2,2'-DiCB		μg/Kg	0.0566 0.246	0.0235 U 0.0788	0.0245 U 0.0275	0.1590 1.95	0.1800 2.26	0.0349 0.634	0.0306 0.479	0.0641 J 0.987	0.0875 JB 0.2 J	0.0759 0.237		
PCB 5	2,3-DiCB		μg/Kg μg/Kg	0.0246 U	0.0235 U	0.0275 0.0245 U	0.0987	0.1220	0.0296	0.0242 U	0.0358	0.2 J 0.0334 UJ	0.257 0.0250 U		
PCB 6	2,3'-DiCB		μg/Kg	0.1260	0.0446	0.0245 U	0.9570	1.1600	0.2790	0.2360	0.3990	0.0838 J	0.1350		-
PCB 7 PCB 8	2,4-DiCB 2,4'-DiCB		μg/Kg μg/Kg	0.0249 0.581	0.0235 U 0.173	0.0245 U 0.0591	0.1910 4.72	0.2360 5.77	0.0533	0.0464	0.0716 1.91	0.0334 UJ 0.205 J	0.0258 0.602		
PCB 9	2,5-DiCB		μg/Kg	0.0396	0.0235 U	0.0245 U	0.3270	0.4020	0.0944	0.0789	0.1110	0.0334 U	0.0418		
PCB 10	2,6-DiCB 3,3'-DiCB		μg/Kg	0.0246 U 1.38	0.0235 U 0.168	0.0245 U 0.185	0.1020 0.768	0.1290 0.997	0.0433	0.0330 0.145 U	0.0624 0.401	0.0334 U 0.397 B	0.0250 U 0.751		
PCB 11 PCB 12/13	3,4-DiCB + 3,4'-DiC	CB	μg/Kg μg/Kg	0.0984	0.168 0.0470 U	0.185 0.0490 U	0.768	0.4380	0.149 U 0.1510	0.145 U 0.1170	0.401	0.397 B 0.0669 U	0.751		
PCB 14	3,5-DiCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0245 U	0.0244 U	0.0248 U	0.0242 U	0.0244 U	0.0334 U	0.0250 U		
PCB 15 PCB 16	4,4'-DiCB 2,2',3-TriCB		μg/Kg μg/Kg	0.81 0.463	0.13 0.158	0.0632 0.0464	3.28 3.33	3.61 4.15	1.18 1.25	0.921 0.938	3.33 3.73	0.441 0.174	0.919 0.501		
PCB 17	2,2',4-TriCB		μg/Kg	0.465	0.178	0.0466	3.3	4.16	1.35	1.01	3.45	0.365	0.493		
PCB 18/30	2,2',5-TriCB + 2,4,6	5-TriCB	μg/Kg	0.62	0.38	0.0893	6.33	7.74	2.75	2.02	6.03	0.723	0.666		
PCB 19 PCB 20/28	2,2',6-TriCB 2,3,3'-TriCB + 2,4,4	I-TriCB	μg/Kg μg/Kg	0.134 2.14	0.054 0.697	0.0245 U 0.203	0.908 10.5	1.14	0.343 4.85	0.265 3.32	1.01	0.0813 J 1.68 J	0.136 2.08		
PCB 21/33	2,3,4-TriCB + 2',3,4		μg/Kg	1.21	0.35	0.113	6.4	8.08	2.61	1.78	5.66	0.746 J	1.15		
PCB 22 PCB 23	2,3,4'-TriCB 2,3,5-TriCB		μg/Kg μg/Kg	0.872 0.0246 U	0.241 0.0235 U	0.0802 0.0245 U	4.15 0.0245 U	5.08 0.0244 U	1.72 0.0248 U	1.19 0.0242 U	4.07 0.0244 U	0.609 J 0.0334 UJ	0.861 0.0250 U		
PCB 24	2,3,6-TriCB		μg/Kg μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0243 0	0.0244 0	0.0248 0	0.0335	0.0244 U	0.0334 UJ	0.0250 U		
PCB 25	2,3',4-TriCB		μg/Kg	0.157	0.0462	0.0245 U	0.823	1.02	0.348	0.235	0.877	0.119 J	0.159		-
PCB 26/29 PCB 27	2,3',5-TriCB + 2,4,5 2,3',6-TriCB	3-TriCB	μg/Kg μg/Kg	0.3730	0.1060 0.0345	0.0490 U 0.0245 U	2.0100 0.6160	2.4900 0.7630	0.8150 0.2370	0.5580 0.1820	1.9600 0.9450	0.2790 J 0.0616 J	0.3620 0.1040		<u></u>
PCB 31	2,4',5-TriCB		μg/Kg	1.88	0.562	0.168 B	9.75	12.1	4.19	2.81	8.9	1.48	1.81		
PCB 32	2,4',6-TriCB		μg/Kg	0.361	0.154	0.0338	2.2	2.64	1.06	0.787	3.32 0.0344	0.294	0.391		
PCB 34 PCB 35	2',3,5-TriCB 3,3',4-TriCB		μg/Kg μg/Kg	0.0246 U 0.0968	0.0235 U 0.0239	0.0245 U 0.0245 U	0.0378 0.183	0.0461 0.239	0.0248 U 0.072	0.0242 U 0.0605	0.0344	0.0334 U 0.0347	0.0250 U 0.0759		
PCB 36	3,3',5-TriCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0245 U	0.0244 U	0.0248 U	0.0242 U	0.0244 U	0.0334 U	0.0250 U		
PCB 37 PCB 38	3,4,4'-TriCB 3,4,5-TriCB		μg/Kg μg/Kg	1.14 0.0246 U	0.223 0.0235 U	0.0911 0.0245 U	2.89 0.0245 U	3.44 0.0244 U	1.3 0.0248 U	0.816 0.0242 U	3.31 0.0244 U	0.387 0.0334 U	1.13 0.0250 U		<u></u>
PCB 39	3,4',5-TriCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0472	0.0622	0.0271	0.0242 U	0.0523	0.0334 U	0.0250 U		
PCB 40/41/71		2',3,4-TeCB + 2,3',4',6-TeCB	μg/Kg	1.240	0.528	0.147 U	5.610	6.470	2.310	1.380	8.110	0.580	1.580		
PCB 42 PCB 43	2,2',3,4'-TeCB 2,2',3,5-TeCB		μg/Kg μg/Kg	0.584 0.0984 U	0.232 0.0941 U	0.0613 0.0981 U	2.64 0.332	3.07 0.384	1.07 0.136	0.649 0.0969 U	3.88 0.423	0.296 0.134 U	0.671 0.0999 U		
PCB 44/47/65	2,2',3,5'-TeCB + 2,2	',4,4'-TeCB + 2,3,5,6-TeCB	μg/Kg	2.24	0.856	0.233	11.3	12	4.38	2.31	13.5	0.986	3.65		
PCB 45/51 PCB 46	2,2',3,6-TeCB + 2,2 2,2',3,6'-TeCB	',4,6'-TeCB	μg/Kg μg/Kg	0.375 0.143	0.163 0.0576	0.0981 U 0.049 U	2.1 0.721	2.48 0.851	0.763 0.256	0.515 0.175	3.16 1.04	0.21 0.0669 U	0.851 0.187		<u></u>
PCB 48	2,2',4,5-TeCB		μg/Kg μg/Kg	0.440	0.0370	0.049 U	2.130	2.550	0.868	0.539	2.830	0.0009 0	0.479		
PCB 49/69	2,2',4,5'-TeCB + 2,3		μg/Kg	1.240	0.502	0.122	6.520	7.030	2.520	1.380	7.910	0.578	1.780		
PCB 50/53 PCB 52	2,2',4,6-TeCB + 2,2 2,2',5,5'-TeCB	',5,6'-TeCB	μg/Kg μg/Kg	0.282 3.72	0.139 2.85	0.098 U 0.284 B	1.520 19.2	1.750 18.6	0.549 7.21	0.345 3.11	2.160 16.9	0.162 0.965	0.654 3.57		
PCB 54	2,2',6,6'-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 55 PCB 56	2,3,3',4-TeCB 2,3,3',4'-TeCB		μg/Kg μg/Kg	0.0492 U 0.976	0.0470 U 0.347	0.0490 U 0.0975	0.0489 U 2.39	0.0488 U 2.49	0.0695 1.23	0.0485 U 0.571	0.0487 U 2.99	0.0669 U 0.184	0.0499 U 0.779		
PCB 57	2,3,3',5-TeCB		μg/Kg μg/Kg	0.976 0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.779 0.0499 U		
PCB 58	2,3,3',5'-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 59/62/75 PCB 60	2,3,3',6-TeCB + 2,3 2,3,4,4'-TeCB	,4,6-TeCB + 2,4,4',6-TeCB	μg/Kg μg/Kg	0.213 0.468	0.141 U 0.156	0.147 U 0.0507	0.888 1.22	1.08	0.338	0.213 0.334	1.4 1.59	0.201 U 0.111	0.244		<u></u>
PCB 61/70/74/76	2,3,4,5-TeCB + 2,3	,4',5-TeCB + 2,4,4',5-TeCB + 2',3,4,5-TeCB	μg/Kg	4.15	1.43	0.481	14.4	13.1	6.43	2.85	11.9	0.96	3.5		
PCB 63 PCB 64	2,3,4',5-TeCB 2,3,4',6-TeCB		μg/Kg	0.0768 1.000	0.0470 U 0.426	0.0490 U 0.106	0.2630 4.500	0.2800 4.940	0.1320 1.870	0.0678 1.040	0.3170 6.220	0.0669 U 0.458	0.0742 1.100		<u></u>
PCB 66	2,3',4,4'-TeCB		μg/Kg μg/Kg	2	0.684	0.178	5.54	5.64	2.76	1.32	6.71	0.464	1.72		
PCB 67	2,3',4,5-TeCB		μg/Kg	0.0839	0.0470 U	0.0490 U	0.2180	0.2640	0.1030	0.0578	0.3020	0.0669 U	0.0797		-
PCB 68 PCB 72	2,3',4,5'-TeCB 2,3',5,5'-TeCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.0470 U 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0519	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 73	2,3',5',6-TeCB		μg/Kg	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U		
PCB 77 PCB 78	3,3',4,4'-TeCB 3,3',4,5-TeCB		μg/Kg μg/Kg	0.640 0.0492 U	0.366 0.0470 U	0.056 0.0490 U	0.421 0.1130	0.493 0.0488 U	0.206 0.0496 U	0.103 0.0485 U	0.571 0.0487 U	0.068 0.0669 U	0.413 0.0499 U		0.052
PCB 79	3,3',4,5'-TeCB		μg/Kg μg/Kg	0.0578	0.1100	0.0490 U	0.1360	0.0488 0	0.0496 U	0.0485 U	0.0735	0.0669 U	0.0499 U		
PCB 80	3,3',5,5'-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 81 PCB 82	3,4,4',5-TeCB 2,2',3,3',4-PeCB		μg/Kg μg/Kg	0.0492 U 0.962	0.0470 U 0.379	0.0490 U 0.476	0.0489 U 2.65	0.0488 U 1.8	0.0496 U 0.736	0.0485 U 0.327	0.0487 U 1.33	0.0669 U 0.114	0.0499 U 0.921		0.017
PCB 83	2,2',3,3',5-PeCB		μg/Kg	0.597	0.913	0.194	1.39	0.973	0.32	0.142	0.699	0.0669 U	0.492		
PCB 84	2,2',3,3',6-PeCB	2456 P. C. P. P.	μg/Kg	2.18	2.56	0.707	6.64	4.79	2.01	0.767	3.9	0.258	2.13		
PCB 85/116/117		,3,4,5,6-PeCB + 2,3,4',5,6-PeCB ,2',3,4,5'-PeCB + 2,2',3',4,5-PeCB + 2,3,3',4,5'-	μg/Kg	0.922	0.584	0.43	3.38	2.1	0.847	0.396	1.59	0.201 U	1.04		-
PCB 86/87/97/108/119/125	PeCB + 2,3',4,4',6-F	PeCB + 2',3,4,5,6'-PeCB	μg/Kg	8.11	11.2	2.17	15.9	11.2	4.34	1.88	9.47	0.597	5		
PCB 88/91 PCB 89	2,2',3,4,6-PeCB + 2 2,2',3,4,6'-PeCB	,2',3,4',6-PeCB	μg/Kg μσ/Κσ	0.935 0.0962	0.688 0.1040	0.202 0.0490 U	2.9 0.2100	2.15 0.1700	0.854 0.0716	0.361 0.0485 U	1.95 0.1900	0.172 0.0669 U	1.63 0.0730		
PCB 90/101/113		2,2',4,5,5'-PeCB + 2,3,3',5',6-PeCB	μg/Kg μg/Kg	23.9	58.3	2.16	22.9	17.3	5.86	2.5	13.1	0.821	8.39		<u></u> _
PCB 92	2,2',3,5,5'-PeCB	21214 C D-CD + 2 214 41 C D CD + 2 21 4 7 7	μg/Kg	3.36	7.35	0.416	4.22	3.04	1.08	0.468	2.27	0.181	1.75		
PCB 93/98/100/102	2,2',3,5,6-PeCB + 2 PeCB	,2',3',4,6-PeCB + 2,2',4,4',6-PeCB + 2,2',4,5,6'-	μg/Kg	0.274	0.278	0.196 U	0.628	0.59	0.24	0.194 U	0.515	0.268 U	0.518		
PCB 94	2,2',3,5,6'-PeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0974	0.0821	0.0496 U	0.0485 U	0.0820	0.0669 U	0.1520		
PCB 95	2,2',3,5',6-PeCB		μg/Kg	15.1	42.3	1.44	19.6	15.5	5.59	2.17	11.4	0.835	7.02		

MAY 2012 Page 1 of 3

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Basin 52 Inline Solids Results -	PCB Congeners				North Branch				Central Branch			South 1	Branch		
				Manhole AAE513	Catch Basin ANE911	Manhole AAE498	Manhole /	AAE516	ODOT N	MH2 ⁽¹⁾	ODOT MH 4 (1)	Manhole			
				Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment To	rap Solids	Inline S		Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)		
				Upstream of Manhole		Downstream of Manhole	Downstream of Manhole	Downstream of Manhole	West World	Within Manhole	Within Manhole	Downstream of Manhole	Downstream of Manhole		(3)
				in 15" line FO105695	FO105871	in 12" Line FO105694	in 18" Line FO105698	in 18" Line (Duplicate) FO105702	Within Manhole FO105870	(Duplicate) FO105873	FO105872	in 28" Line FO105696	in 28" Line FO105697	Screen	JSCS ⁽³⁾ ning Level Value
IUPAC Number ⁽²⁾	Che	mical Name	Units	6/17/2010	9/7/2010	6/17/2010	6/17/2010	6/17/2010	9/7/2010	9/7/2010	9/7/2010	6/17/2010	6/17/2010	Toxicity	Bioaccumulation
PCB 96 PCB 99	2,2',3,6,6'-PeCB 2,2',4,4',5-PeCB		μg/Kg μg/Kg	0.0570 2.68	0.0563 1.94	0.0490 U 0.74	0.1730 7.82	0.1530 5.37	0.0496 U 2.19	0.0485 U 0.992	0.1530 4.73	0.0669 U 0.293	0.1100 2.82		
PCB 103	2,2',4,5',6-PeCB		μg/Kg μg/Kg	0.0675	0.101	0.049 U	0.103	0.0877	0.0496 U	0.0485 U	0.0743	0.0669 U	0.158		
PCB 104 PCB 105	2,2',4,6,6'-PeCB 2,3,3',4,4'-PeCB		μg/Kg μg/Kg	0.0492 U 4.11	0.0470 U 3.05	0.0490 U 1.57	0.0489 U 7.68	0.0488 U 5.02	0.0496 U 1.64	0.0485 U 1.03	0.0487 U 3.79	0.0669 U 0.36	0.0499 U 2.82		0.17
PCB 106	2,3,3',4,5-PeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 107/124 PCB 109	2,3,3',4',5-PeCB + 2',3,4,5,5'-Pe 2,3,3',4,6-PeCB	CB	μg/Kg	0.526 0.804	0.516 1.05	0.136 0.201	0.775 1.09	0.498 0.698	0.18 0.26	0.103 0.165	0.323	0.134 U 0.0669 U	0.295 0.422		
PCB 110/115	2,3,3',4',6-PeCB + 2,3,4,4',6-PeC	CB	μg/Kg μg/Kg	18.9	37.9	3.99	24.5	17.6	6.39	2.94	11.1	1.19	10.2		
PCB 111 PCB 112	2,3,3',5,5'-PeCB 2,3,3',5,6-PeCB		μg/Kg	0.0492 U 0.0492 U	0.0470 U 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 112 PCB 114	2,3,4,4',5-PeCB		μg/Kg μg/Kg	0.0492 0	0.0470 0	0.0490 0	0.465	0.0488 0	0.0496 0	0.0483 U	0.0487 0	0.0669 U	0.0499 0		0.17
PCB 118	2,3',4,4',5-PeCB		μg/Kg	12	18	3.2	18.6	12.2	4.11	2.44	8.62	1	6.2		0.12
PCB 120 PCB 121	2,3',4,5,5'-PeCB 2,3',4,5',6-PeCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.1620 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0 U 0.0669 U	0.0499 U 0.0499 U		<u></u>
PCB 122	2',3,3',4,5-PeCB		μg/Kg	0.1170	0.0821	0.0490 U	0.2150	0.1390	0.0577	0.0485 U	0.1040	0.0669 U	0.0929		
PCB 123 PCB 126	2',3,4,4',5-PeCB 3.3',4.4',5-PeCB		μg/Kg μg/Kg	0.124 0.3050 EMPC	0.184 0.5880 EMPC	0.0521 EMPC 0.0490 U	0.287 0.0489 U	0.21 0.0488 U	0.0931 0.0496 U	0.0485 U 0.0485 U	0.158 0.0487 U	0.0669 U 0.0669 U	0.127 0.0845 EMPC		0.21 0.00005
PCB 127	3,3',4,5,5'-PeCB		μg/Kg	0.0492 U	0.0565	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0583		-
PCB 128/166 PCB 129/138/163	2,2',3,3',4,4'-HxCB + 2,3,4,4',5,' 2,2',3,3',4,5-HxCB + 2,2',3,4,4',		μg/Kg	8.38 102	19.80 284	1.46 7.69	3.65 21.8	2.59	0.52 3.5	0.44 2.86	1.34 8.76	0.23 1.35	2.46 16.4		
PCB 130	2,2',3,3',4,5'-HxCB	5-HACB + 2,3,5 ,4 ,5,0-HACB	μg/Kg μg/Kg	4.19	10.1	0.527	1.54	1.11	0.235	0.183	0.534	0.0866	1.09		
PCB 131 PCB 132	2,2',3,3',4,6-HxCB 2,2',3,3',4,6'-HxCB		μg/Kg	0.659 25.20	1.66 72.80	0.122 2.51	0.43 7.60	0.311 6.36	0.0808	0.0485 U 0.88	0.166 3.00	0.0669 U 0.41	0.219 5.25		
PCB 132 PCB 133	2,2',3,3',5,5'-HxCB		μg/Kg μg/Kg	0.993	2.59	0.0806	0.26	0.214	0.0496 U	0.0485 U	0.0962	0.0669 U	0.0499 U		
PCB 134/143	2,2',3,3',5,6-HxCB + 2,2',3,4,5,6		μg/Kg	3.290	9.630	0.399	1.350	1.050	0.281	0.163	0.484	0.134 U	0.845		
PCB 135/151 PCB 136	2,2',3,3',5,6'-HxCB + 2,2',3,5,5', 2,2',3,3',6,6'-HxCB	6-HxCB	μg/Kg μg/Kg	34.6 10.8	96.4 30.3	1.27 0.52	5.82	6.49 2.81	1.11 0.584	0.632 0.278	2.46 1.45	0.341 0.144	5.68 2.28		
PCB 137	2,2',3,4,4',5-HxCB		μg/Kg	1.1	1.07	0.455	1.41	0.846	0.21	0.157	0.457	0.0669 U	0.799		
PCB 139/140 PCB 141	2,2',3,4,4',6-HxCB + 2,2',3,4,4', 2,2',3,4,5,5'-HxCB	6'-HxCB	μg/Kg μg/Kg	0.548 22.8	0.862 69.2	0.102	0.447 3.49	0.291 3.86	0.0991 U 0.586	0.0969 U 0.493	0.154 1.39	0.134 U 0.208	0.256 2.77		
PCB 142	2,2',3,4,5,6-HxCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 144 PCB 145	2,2',3,4,5',6-HxCB 2,2',3,4,6,6'-HxCB		μg/Kg μg/Kg	5.69 0.0492 U	15.9 0.0470 U	0.209 0.0490 U	1.07 0.0489 U	1.14 0.0488 U	0.196 0.0496 U	0.112 0.0485 U	0.37 0.0487 U	0.0669 U 0.0669 U	0.793 0.0499 U		<u></u>
PCB 146	2,2',3,4',5,5'-HxCB		μg/Kg μg/Kg	13.2	35	0.689	2.53	2.35	0.4	0.314	0.973	0.148	2.29		
PCB 147/149	2,2',3,4',5,6-HxCB + 2,2',3,4',5',	6-HxCB	μg/Kg	73.9 0.0637	215 0.0841	3.44 0.0490 U	13.7	14.1 0.0488 U	2.69 0.0496 U	1.67 0.0485 U	5.84 0.0487 U	0.827 0.0669 U	12.2 0.0499 U		
PCB 148 PCB 150	2,2',3,4',5,6'-HxCB 2,2',3,4',6,6'-HxCB		μg/Kg μg/Kg	0.0637	0.0841	0.0490 U	0.0489 U 0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 0		
PCB 152	2,2',3,5,6,6'-HxCB	(II on	μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 153/168 PCB 154	2,2',4,4',5,5'-HxCB + 2,3',4,4',5' 2,2',4,4',5,6'-HxCB	,6-HxCB	μg/Kg μg/Kg	93.9 0.571	269 1.03	3.75 0.049 U	13.8 0.145	16.1 0.0978	2.34 0.0496 U	1.86 0.0485 U	6.16 0.0487 U	0.881 0.0669 U	12.2 0.368		
PCB 155	2,2',4,4',6,6'-HxCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 156/157 PCB 158	2,3,3',4,4',5-HxCB + 2,3,3',4,4',: 2,3,3',4,4',6-HxCB	5'-HxCB	μg/Kg μg/Kg	7.76 8.4	17.2 23.5	1.24 0.797	3.15 2.24	2.35 1.93	0.364 0.348	0.387 0.29	1.24 0.87	0.172 0.134	1.73 1.47		0.21
PCB 159	2,3,3',4,5,5'-HxCB		μg/Kg	0.0673 EMPC	0.542 EMPC	0.049 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 160 PCB 161	2,3,3',4,5,6-HxCB 2,3,3',4,5',6-HxCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.0470 U 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 162	2,3,3',4',5,5'-HxCB		μg/Kg μg/Kg	0.298	0.173 EMPC	0.049 U	0.0489 0	0.0488 0	0.0496 U	0.0485 U	0.0487 0	0.0669 U	0.0499 U		-
PCB 164	2,3,3',4',5',6-HxCB		μg/Kg	5.82	17.7 0.0470 U	0.464	1.27 0.0489 U	1.15	0.215 0.0496 U	0.175 0.0485 U	0.482 0.0487 U	0.0933 0.0669 U	1.01 0.0499 U		
PCB 165 PCB 167	2,3,3',5,5',6-HxCB 2,3',4,4',5,5'-HxCB		μg/Kg μg/Kg	0.0492 U 3.46	8.22	0.0490 U 0.347	0.0489 0	0.0488 U 0.749	0.108	0.0483 U	0.369	0.0669 U	0.0499 0		0.21
PCB 169	3,3',4,4',5,5'-HxCB		μg/Kg	0.1570 EMPC	0.4860	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		0.00021
PCB 170 PCB 171/173	2,2',3,3',4,4',5-HpCB 2,2',3,3',4,4',6-HpCB + 2,2',3,3',	4.5.6-HpCB	μg/Kg μg/Kg	39.6 12.1	102 35.7	1.08 0.364	2.33 0.815	4.15 1.39	0.226 0.1	0.487 0.149	1.25 0.417	0.307 0.134 U	3.47 1.14		
PCB 172	2,2',3,3',4,5,5'-HpCB		μg/Kg	6.69	17	0.174	0.383	0.677	0.0496 U	0.0817	0.207	0.0669 U	0.618		
PCB 174 PCB 175	2,2',3,3',4,5,6'-HpCB 2,2',3,3',4,5',6-HpCB		μg/Kg μg/Kg	35.6 1.77	101 4.91	0.803 0.049 U	1.99 0.109	3.79 0.21	0.269 0.0496 U	0.403 0.0485 U	1.14 0.0572	0.248 0.0669 U	3.45 0.183		
PCB 176	2,2',3,3',4,6,6'-HpCB		μg/Kg	4.85	14.5	0.097	0.34	0.599	0.0537	0.0528	0.174	0.0669 U	0.513		
PCB 177 PCB 178	2,2',3,3',4',5,6-HpCB 2,2',3,3',5,5',6-HpCB		μg/Kg	20.8 7.18	61 19.2	0.513 0.135	1.18 0.404	2.17 0.774	0.162 0.0655	0.25 0.0772	0.686 0.232	0.143 0.0669 U	2.02 0.818		
PCB 178 PCB 179	2,2',3,3',5,6,6'-HpCB		μg/Kg μg/Kg	13.9	40.4	0.133	0.404	1.67	0.0655	0.0772	0.528	0.09	1.67		
PCB 180/193	2,2',3,4,4',5,5'-HpCB + 2,3,3',4',	5,5',6-HpCB	μg/Kg	83.3	212	1.64	3.92	8.68	0.477	0.869	2.52	0.574	7.28		-
PCB 181 PCB 182	2,2',3,4,4',5,6-HpCB 2,2',3,4,4',5,6'-HpCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.4390 0.0470 U	0.0490 U 0.0490 U	0.0533 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 183/185	2,2',3,4,4',5',6-HpCB + 2,2',3,4,	5,5',6-HpCB	μg/Kg	26.8	78.6	0.542	1.49	3.09	0.236	0.282	0.93	0.166	2.49		-
PCB 184 PCB 186	2,2',3,4,4',6,6'-HpCB 2,2',3,4,5,6,6'-HpCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.0780 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 187	2,2',3,4',5,5',6-HpCB		μg/Kg	41	108	0.695	2.16	4.45	0.356	0.411	1.27	0.265	4.39		
PCB 188 PCB 189	2,2',3,4',5,6,6'-HpCB 2,3,3',4,4',5,5'-HpCB		μg/Kg μg/Kg	0.0605 1.68	0.0965 4.21	0.0490 U 0.0551	0.0489 U 0.123	0.0488 U 0.213	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.059	0.0669 U 0.0669 U	0.0499 U 0.173		1.2
PCB 190	2,3,3',4,4',5,6-HpCB		μg/Kg μg/Kg	7.91	17.4	0.196	0.123	0.213	0.0496 U	0.0712	0.252	0.0669 U	0.733		
PCB 191	2,3,3',4,4',5',6-HpCB		μg/Kg	1.66	4.34	0.049 U	0.0992	0.183 0.0488 U	0.0496 U	0.0485 U	0.0508 0.0487 U	0.0669 U	0.142		
PCB 192 PCB 194	2,3,3',4,5,5',6-HpCB 2,2',3,3',4,4',5,5'-OcCB		μg/Kg μg/Kg	0.0492 U 14.40	0.0470 U 28.00	0.0490 U 0.18	0.0489 U 0.56	0.0488 U 1.62	0.0496 U 0.07 U	0.0485 U 0.15	0.0487 U 0.55	0.0669 U 0.12	0.0499 U 1.61		
PCB 195	2,2',3,3',4,4',5,6-OcCB		μg/Kg	5.97	13.4	0.0853	0.226	0.631	0.0744 U	0.0727 U	0.202	0.1 U	0.612		
PCB 196 PCB 197/200	2,2',3,3',4,4',5,6'-OcCB 2,2',3,3',4,4',6,6'-OcCB + 2,2',3,	3',4,5,6,6'-OcCB	μg/Kg μg/Kg	8.46 2.40	18.50 5.94	0.11 0.15 U	0.36 0.15 U	0.98	0.07 U 0.15 U	0.08 0.15 U	0.30 0.15 U	0.10 U 0.20 U	0.94 0.29		
PCB 198/199	2,2',3,3',4,5,5',6-OcCB + 2,2',3,3		μg/Kg	13.00	28.60	0.21	0.69	1.54	0.15 U	0.16	0.66	0.20 U	1.79		
PCB 201	2,2',3,3',4,5',6,6'-OcCB		μg/Kg	1.850	4.510	0.074 U	0.107	0.233	0.074 U	0.073 U	0.078	0.100 U	0.265		

MAY 2012 Page 2 of 3

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Dasin 32 Inime Solius Results -	TOD Congeners		North Branch				South	Branch	_					
			Manhole AAE513	Catch Basin ANE911	Manhole AAE498	Manhole AAE516 ODOT M			MH2 ⁽¹⁾	H2 ⁽¹⁾ ODOT MH 4 ⁽¹⁾		e AAE700	_	
			Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment Trap Solids (SIFT© Trap)		Inline Solids		Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)		
			Upstream of Manhole in 15" line FO105695	FO105871	Downstream of Manhole in 12" Line FO105694	Downstream of Manhole in 18" Line FO105698	Downstream of Manhole in 18" Line (Duplicate) FO105702	Within Manhole FO105870	Within Manhole (Duplicate) FO105873	Within Manhole FO105872	Downstream of Manhole in 28" Line FO105696	Downstream of Manhole in 28" Line FO105697		JSCS ⁽³⁾ ening Level Value
IUPAC Number (2)	Chemical Name	Units	6/17/2010	9/7/2010	6/17/2010	6/17/2010	6/17/2010	9/7/2010	9/7/2010	9/7/2010	6/17/2010	6/17/2010	Toxicity	Bioaccumulation
PCB 202	2,2',3,3',5,5',6,6'-OcCB	μg/Kg	2.2	4.16	0.0736 U	0.152	0.29	0.0744 U	0.0727 U	0.144	0.1 U	0.361		
PCB 203	2,2',3,4,4',5,5',6-OcCB	μg/Kg	8.52	17.8	0.125	0.413	1.07	0.0744 U	0.0883	0.44	0.1 U	1.09	-	
PCB 204	2,2',3,4,4',5,6,6'-OcCB	μg/Kg	0.0738 U	0.0706 U	0.0736 U	0.0734 U	0.0732 U	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.0749 U		
PCB 205	2,3,3',4,4',5,5',6-OcCB	μg/Kg	0.915	1.91	0.0736 U	0.0734 U	0.112	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.116		
PCB 206	2,2',3,3',4,4',5,5',6-NoCB	μg/Kg	2.88	4.29	0.07 U	0.34	0.63	0.07 U	0.07 U	0.40	0.11	0.86		
PCB 207	2,2',3,3',4,4',5,6,6'-NoCB	μg/Kg	0.383	0.624	0.0736 U	0.0734 U	0.0873	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.104		
PCB 208	2,2',3,3',4,5,5',6,6'-NoCB	μg/Kg	0.597	0.62	0.0736 U	0.0927	0.151	0.0744 U	0.0727 U	0.122	0.1 U	0.305		
PCB 209	Decachlorobiphenyl	μg/Kg	0.423	0.116	0.0736 U	0.119	0.194	0.0744 U	0.0727 U	0.137	0.116	0.76		
	Total Monochlorobiphenyls	μg/Kg	0.126 (4)	0.0244	ND	0.420	0.511 (4)	0.0826	0.0684	0.168 (4)	1.16 ^J	0.154 (4)		
	Total Dichlorobiphenyls	μg/Kg	3.31	0.594	0.335	12.8	15.1	3.80	3.00	7.62	1.33 J	2.82		
	Total Trichlorobiphenyls	μg/Kg	10.0	3.21	0.871	53.5	66.4	23.0	16.0	55.9	7.03 J	9.92		
	Total Tetrachlorobiphenyls	μg/Kg	19.9	9.02	1.67 (4)	82.1	84.8	33.9	17.0	92.0	6.26 J	21.7		
	Total Pentachlorobiphenyls	μg/Kg	96.1	188	18.1	142.0	102	37.0	16.7	763	5.53 J	52.5		
	Total Hexachlorobiphenyls	μg/Kg	427	1200	27.2	89.6	86.1	15.2	11.0	36.6	5.03 J	70.9		
	Total Heptachlorobiphenyls	μg/Kg	305	821	6.54	16.7	32.9	2.11	3.27	9.77	1.79 J	29.1		
	Total Octachlorobiphenyls	μg/Kg	57.7	123	0.707	2.50	6.76	ND	0.468	2.36	0.121 J	7.07		
	Total Nonachlorobiphenyls	μg/Kg	3.86	5.53	ND	0.435	0.865	ND	ND	0.517	0.108 J	1.27		
	Total Decachlorobiphenyls	μg/Kg	0.423	0.116	ND	0.119	0.194	ND	ND	0.137	0.116 J	0.760		
	Total PCBs (5)	μg/Kg	924 ⁽⁴⁾	2,350	55.4 ⁽⁴⁾	400	396 ⁽⁴⁾	115	67.5	281 (4)	28.5 J	196 ⁽⁴⁾	676	0.39

Notes: MH = manhole

MoCB = Monochlorobiphenyl

DiCB = Dichlorobiphenyl

TriCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl
PeCB = Pentachlorobiphenyl

HeCB = Hexachlorobiphenyl

HpCB = Heptachlorobiphenyl

OcCB = Octachlorobiphenyl

NoCB = Nonachlorobiphenyl

-- No JSCS screening level available.

B = The analyte was found in the associated method blank at a level that is significant relative to the sample result.

EMPC = Estimated Maximum Possible Concentration. Values are not included in total Homolog or total PCBs concentrations.

J=The result is an estimated concentration. For individual congeners, the value is estimated due to poor internal standard recovery in the sample and the associated QC samples. U=The analyte was not detected above the reported sample quantification limit.

UJ = The analyte was not detected above the reported sample quantification limit. However, the associated internal standard was recovered outside of method specified laboratory control limits, and the reported quantitation limit may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. $\mu g/Kg = micrograms$ per kilogram ND = not detected

⁽¹⁾ ODOT MH2 and ODOT MH4 were initially identified as sampling locations SJB2 and SJB1, respectively.

(2) IUPAC - International Union of Pure and Applied Chemistry

(3) JSCS SLVs- Portland Harbor Joint Source Control Strategy Screening Level Values (DEQ/EPA Final December 2005, Amended July 2007)

(4) Total homolog and total congener values may be slightly biased due to congener detections in the laboratory method blank and/or internal standard recoveries outside of method control limits.

 ${}^{(5)}\!\text{Total}$ PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

= Concentration exceeds JSCS Toxicity Screening Level Value **bold** = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 5 Basin 52 Surface Soil Results

			Sample Location 52_15	* Sample Location		Sample Location 52_17	Sample Location 52_18	Sample Location 52_19	Sample Location 52_20	Sample Location 52_21	Sample Location 52_22	Sample Location 52_23		
			Five-point Composite Between RR Track and Cathedral Park Parking Lot	Five-point Between RR T		Five-point Composite Between RR Track and PIW	Five-point Composite Between RR Track and 6600 N Baltimore Ave	Five-point Composite Between RR Track and 6600 N Baltimore Ave	Five-point Composite Between RR Track and N Alta Ave	Two-point Composite From Potholes Northeast of CB ANE911	Discrete Sample From Pothole North-northwest of CB ANE911	Five-point Composite Between RR Track and Cathedral Park		
			W11A060-01	W11A060-02	Duplicate W11A060-09	W11A060-03	W11A060-04	W11A060-05	W11A060-06	W11A060-07	W11A060-08	W11A060-10		SCS ⁽¹⁾ Level Value
Class	Analyte	Units	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	Toxicity	Bioaccum- ulation
Total Organic	Carbon (EPA 9060	O MOD)												
	TOC	mg/Kg	23,000	13,000	15,000	13,000	34,000	84,000	45,000	70,000	20,000	25,000		
Total Solids (SM 2540 G)													
Total Solids (TS	%	80.1	91.9	92.1	89.7	88.3	69.6	73.9	76.7	89.6	85.3		
Metals (EPA	•	,,												
	Chromium	mg/Kg	131 J	296	104	549	31.1	57.1	136	216	304	40.0	111	
	Copper	mg/Kg	169	415	436	444	57.0	161	422	224	541	69.8	149	
	Lead	mg/Kg	181	84.2	96.7	56.3	172	149	113	75.9	47.1	101	128	17
	Nickel	mg/Kg	49.3 J	113	81.8	302	32.7	57.5	99.7	144	144	25.6	48.6	
	Zinc	mg/Kg	358	142	146	198	211	273	408	523	178	164	459	
Polychlorinate	ed Biphenyls(PCBs) (EPA 8082)												
	Aroclor 1016	μg/Kg		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	530	
	Aroclor 1221	μg/Kg		20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U		
	Aroclor 1232	μg/Kg		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U		
	Aroclor 1242	μg/Kg		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U		
	Aroclor 1248	μg/Kg		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	1,500	
	Aroclor 1254	μg/Kg		1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U	300	
	Aroclor 1260	μg/Kg		11,900	10,500	10,700	606	1,170	846	1,940	1,240	7,120	200	
	Aroclor 1262	μg/Kg		1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U		
	Aroclor 1268	μg/Kg	1,000 U	1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U		
		Total PCBs (2) µg/Kg	21,700	11,900	10,500	10,700	606	1,170	846	1,940	1,240	7,120	676	0.39

Notes:

 $\mu g/Kg = Micrograms \ per \ kilogram$

mg/Kg = Milligrams per kilogram

CB = catch basin

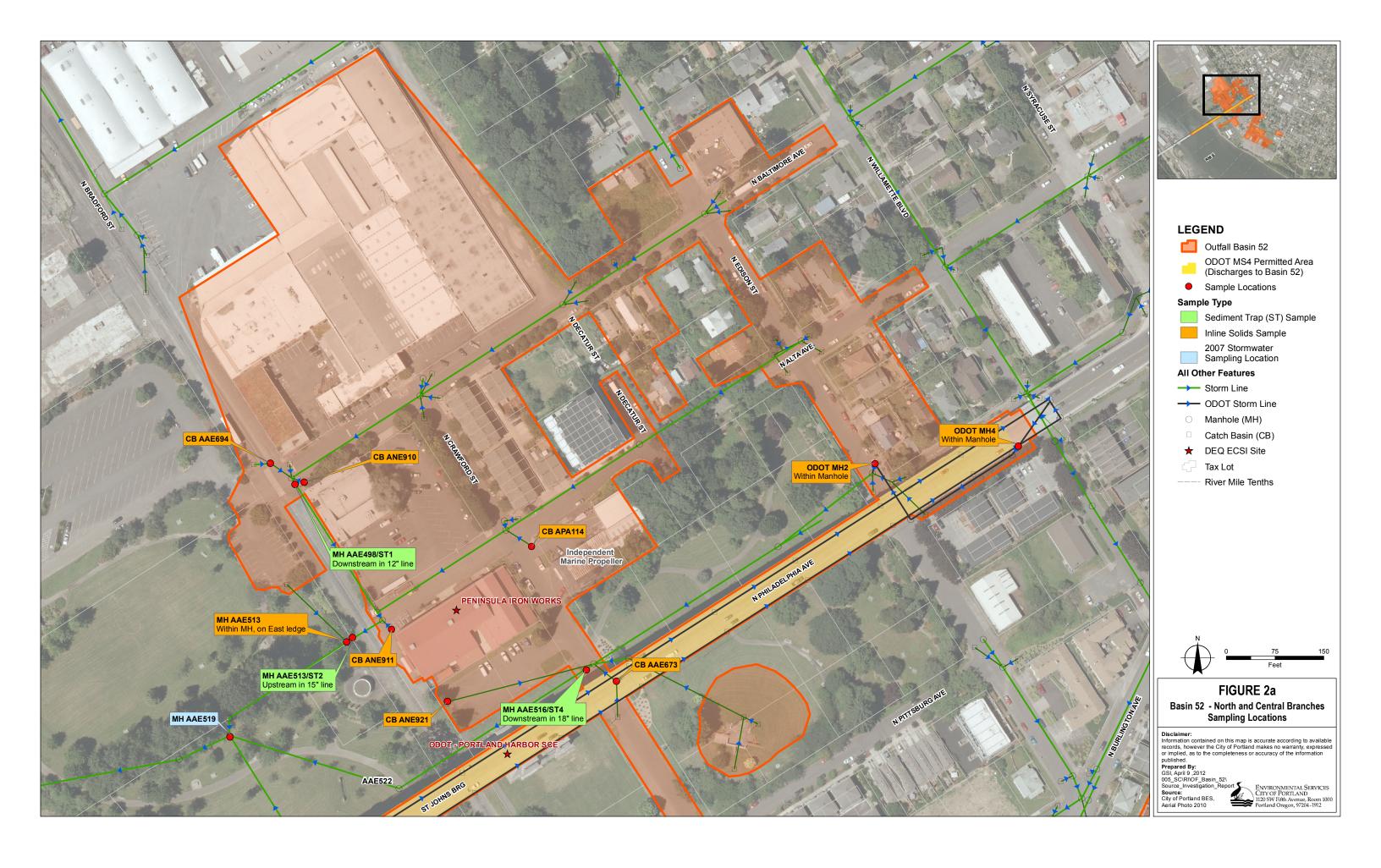
RR = Railroad

PIW = Peninsula Iron Works

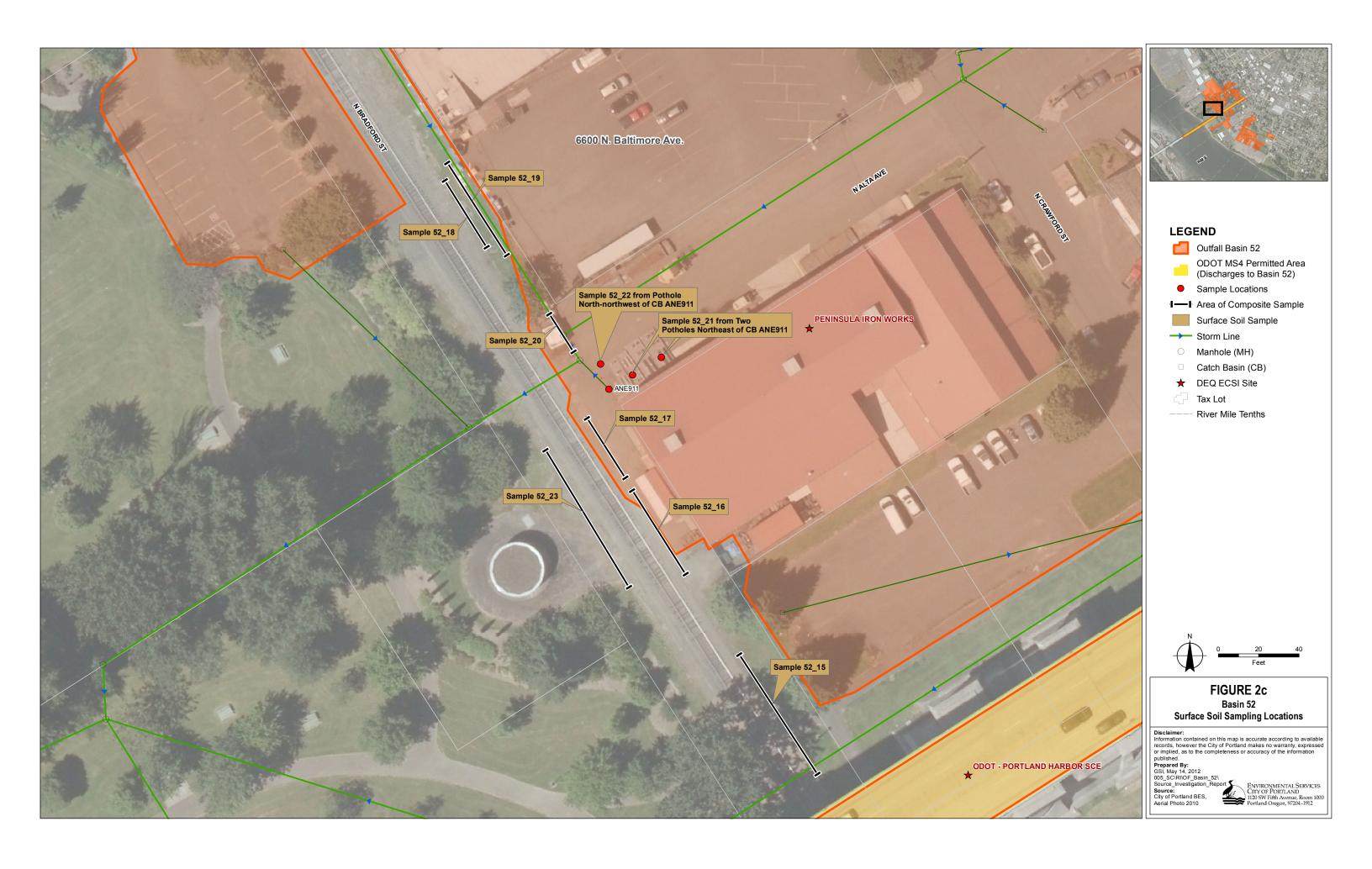
Concentration exceeds JSCS Toxicity SLV

bold = Concentration exceeds JSCS Bioaccumulation screening level value

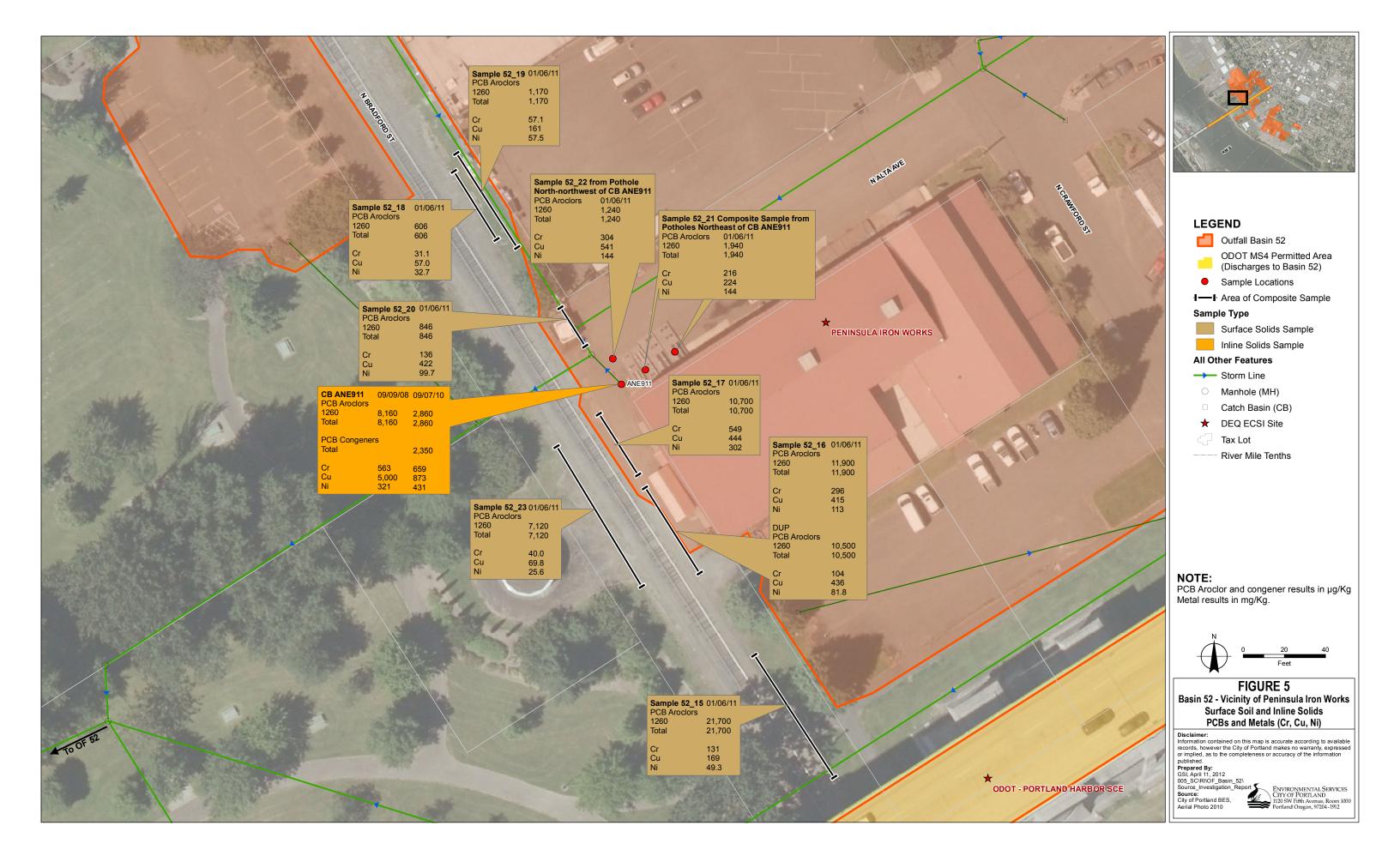
MAY 2012 PAGE 1 of 1

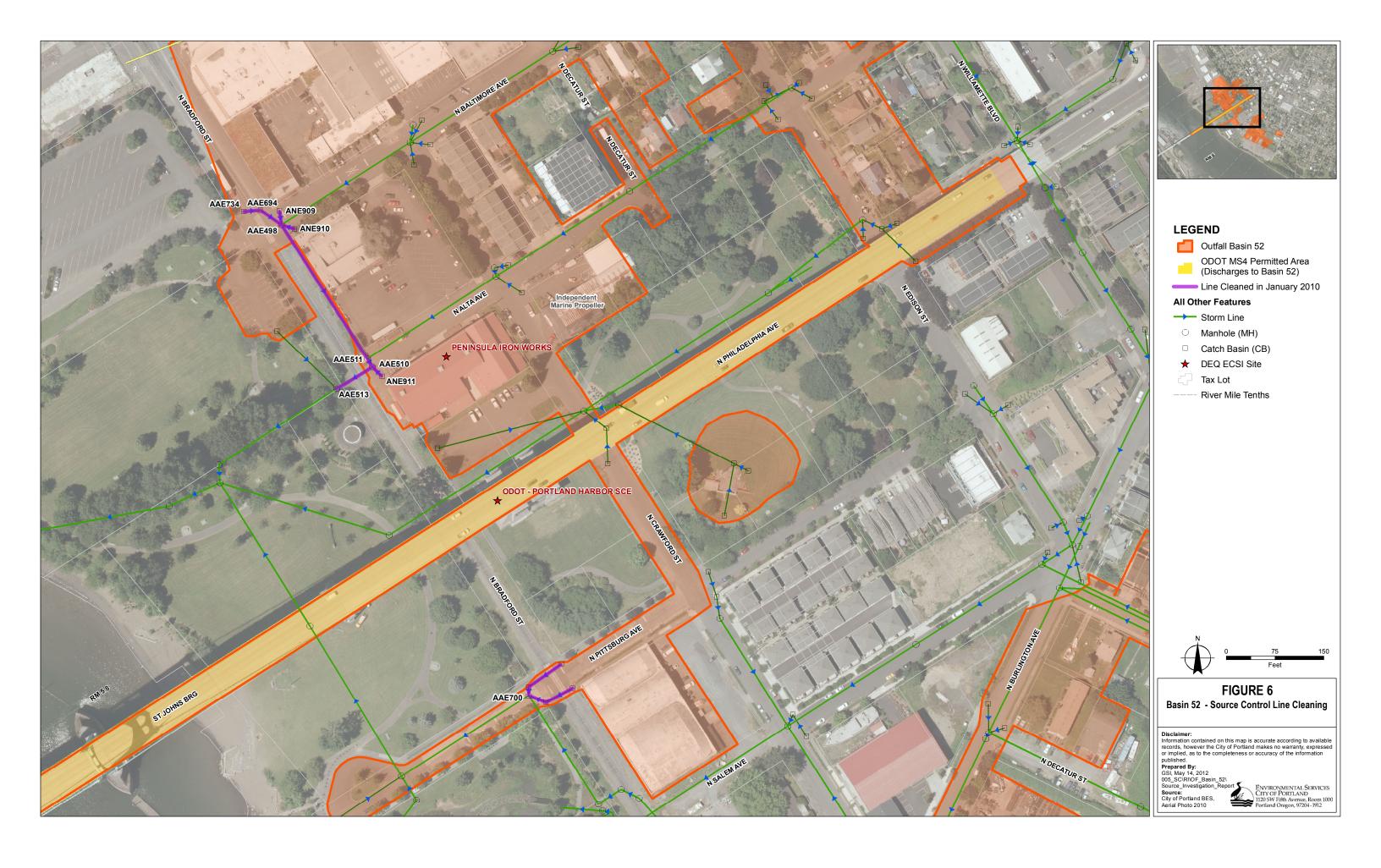

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available


⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

 $^{^{\}left(2\right)}$ Total PCBs are calculated by assigning "0" to undetected constituents.





June 2008 Inline Solids Sampling

Photo 1 (June 26, 2008). View of solids accumulated on the eastern ledge in manhole AAE513.

Photo 2 (June 26, 2008). Final composited sample from manhole AAE513.

Photo 3 (June 26, 2008). Sampling location at manhole AAE553. View is to the northeast.

Photo 4 (June 26, 2008). Manhole AAE553 looking upstream; view of solids sampled.

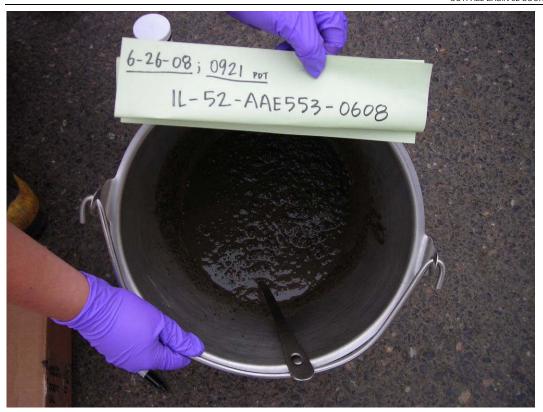


Photo 5 (June 26, 2008). Final composited sample from manhole AAE553.

Photo 6 (June 26, 2008). Sampling location at manhole AAE569. View is to the east-southeast, up N. Crawford Street.

Photo 7 (June 26, 2008). 12-inch line entering manhole AAE569 from the east-southeast; view of solids sampled.

Photo 8 (June 26, 2008). Final composited sample from manhole AAE569, east-southeast line.

September 2008 Catch Basin Sampling

Photo 9 (September 9, 2008). Sampling location at catch basin ANE813. View is to the south-southwest.

Photo 10 (September 9, 2008). Final composited sample from catch basin ANE813.

Photo 11 (September 9, 2008). Sampling location at catch basin ANE815.

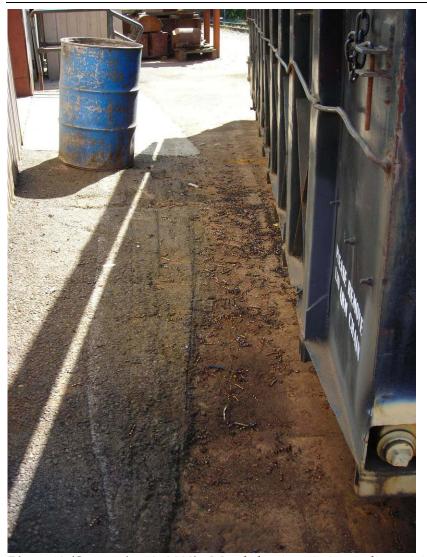
Photo 12 (September 9, 2008). Final composited sample from catch basin ANE815.

Photo 13 (September 9, 2008). Sampling location at catch basin AAE651. View is to the south-southeast.

Photo 14 (September 9, 2008). Final composited sample from catch basin AAE651.

Photo 15 (September 9, 2008). Preparing to sample at catch basin ANE921. View is to the south.

Photo 16 (September 9, 2008). Final composited sample from catch basin ANE921.



Peninsula Iron Works

Photo 17 (September 9, 2008). Sampling location at catch basin ANE911. View is to the east.

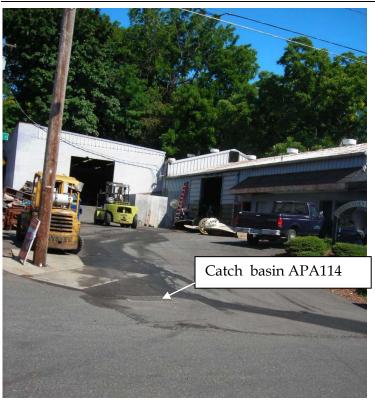

Photo 18 (September 9, 2008). View of part of drainage area for at catch basin ANE911. View is to the east-northeast.

Photo 19 (September 9, 2008). Metal shavings in immediate vicinity of catch basin ANE911, between Peninsula Iron Works building and the recycling dumpster.

Photo 20 (September 9, 2008). Final composited sample from catch basin ANE911.

Photo 21 (September 9, 2008). Sampling location at catch basin APA114, adjacent to Independent Marine Propeller facility; note runoff from washing in facility's driveway into catch basin APA114 and continuing on N. Crawford Street toward catch basin AAE673.

Photo 22 (September 9, 2008). View to the south-southeast on N. Crawford Street, just south-southeast of intersection with N. Alta Avenue. Wash water runoff from Independent Marine Propeller facility driveway is visible along northeast side of roadway, flowing toward catch basin AAE673.

Photo 23 (September 9, 2008). Catch basin APA114.

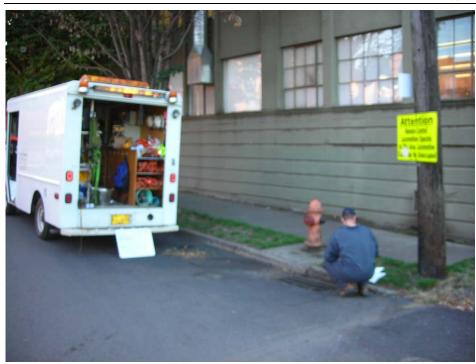

Photo 24 (September 9, 2008). Final composited sample from catch basin APA114.

Photo 25a/b (September 9, 2008). Sampling location at catch basin AAE673. Water flowing into catch basin is wash water runoff from Independent Marine Propeller driveway (see Photos 21, 22).

Photo 26 (September 9, 2008). Final composited sample from catch basin AAE673.

Photo 27 (September 10, 2008). Sampling location at catch basin ANE910. View is to the northeast, up N. Baltimore Avenue.

Photo 28 (September 10, 2008). Final composited sample from catch basin ANE910.

Photo 29 (September 10, 2008). Sampling location at catch basin AAE694. View is to the northwest.

Photo 30 (September 10, 2008). Final composited sample from catch basin AAE694.

2010 Sediment Trap Sampling

ST1 (Manhole AAE498)

Photo 31 (March 5, 2010). Location of sediment trap ST1 (manhole AAE498). View is to the northwest.

Photo 32 (February 2, 2010). SIFT©¹ sediment trap installed in the 12-inch line exiting manhole AAE498.

MAY 2012 PAGE A-16

-

¹ 2009 City of Portland. These traps are proprietary and patent pending. These traps were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

Photo 33 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 34 (June 16, 2010). Primary and secondary sediment trap chambers at time of removal.

Photo 35 (June 17, 2010). Final homogenized composite sediment trap sample from ST1 / manhole AAE498.

ST2 (Manhole AAE513)

Photo 36(March 5, 2010). Location of sediment trap ST2 (manhole AAE513). View is to the northeast.

Photo 37 (February 2, 2010). SIFT© sediment trap installed in the 15-inch line entering manhole AAE513.

Photo 38 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 39 (June 16, 2010). Close-up view of solids in secondary chamber at time of removal.

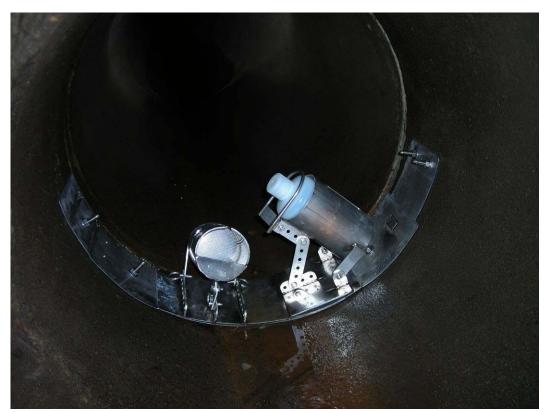


Photo 40 (June 17, 2010). Final homogenized composite sediment trap sample from ST2 / manhole AAE513.

ST3 (Manhole AAE700)

Photo 41 (March 5, 2010). Location of sediment trap ST3 (manhole AAE700). View is to the southwest.

Photo 42 (February 2, 2010). SIFT© and standard sediment trap installed side by side in the 28-inch line exiting manhole AAE700).

Photo 43 (April 6, 2010). Secondary chamber of SIFT© sediment trap, with solids present at time of monthly field check.

Photo 44 (June 16, 2010). Sediment traps in installed location at time of removal.

Photo 45 (June 16, 2010). Primary and secondary chambers of SIFT© sediment trap at time of removal.

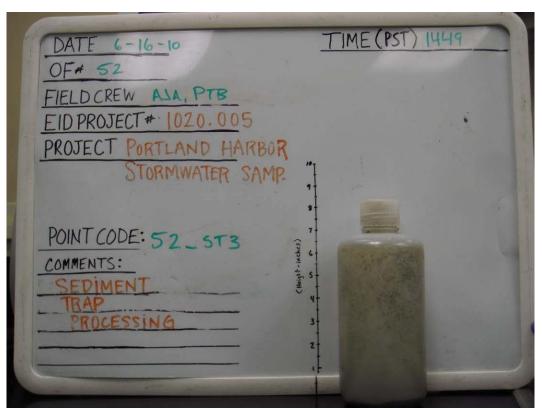


Photo 46 (June 16, 2010). Standard sediment trap bottle prior to filtration.

Photo 47 (June 17, 2010). Final homogenized composite sediment trap sample from ST3 / manhole AAE700 SIFT© trap.

ST4 (Manhole AAE516)

Photo 48 (March 5, 2010). Location of sediment trap ST4 (manhole AAE516). View is to the southwest.

Photo 49 (February 2, 2010). SIFT© sediment trap installed in the 27-inch line exiting manhole AAE516.

Photo 50 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 51 (June 16, 2010). Accumulated sediment in secondary chamber at time of removal.

Photo 52 (June 17, 2010). Composite sample (including bacterial growth) from first archived jar prior to homogenization.

Photo 53 (June 17, 2010). Final homogenized composite sample from ST4 / manhole AAE516.

September 2010 Inline Solids Sampling

Photo 54 (September 7, 2010). Catch basin ANE911 and surrounding drainage area. View is to the northeast.

Photo 55 (September 7, 2010). View inside catch basin ANE911 prior to sampling.

Photo 56 (September 7, 2010). Final homogenized sample from catch basin ANE911.

Photo 57 (September 7, 2010). Drainage area for ODOT manhole 2 (discharges to manhole AAE685), adjacent to St. Johns Bridge. View is to the east.

Photo 58 (September 7, 2010). Sediment and standing water inside ODOT manhole 2.

Photo 59 (September 7, 2010). Final homogenized sample from ODOT manhole 2.

Photo 60 (September 8, 2010). ODOT manhole 4 beneath St. Johns Bridge. View is to the northeast.

Photo 61 (September 8, 2010). Accumulated solids in ODOT manhole 4. Manhole is constructed as a sedimentation chamber.

Photo 62 (September 8, 2010). Final homogenized sample from ODOT manhole 4.

2011 Surface Soil Sampling

Photo 63 (January 6, 2011). Sampling Area 1 (52_15), looking south.

Photo 64 (January 6, 2011). Collection of subsample A from Area 1.

Photo 65 (January 6, 2011). Sampling Area 2 (52_16), looking to the southeast.

Photo 66 (January 6, 2011). Collecting subsample B from sample Area 2.

Photo 67 (January 6, 2011). Sample Area 3 (52_17), looking northwest.

Photo 68 (January 6, 2011). Sample Area 3 (52_17), looking southeast.

Photo 69 (January 6, 2011). Collecting subsample B from sample Area 3.

Photo 70 (January 6, 2011). Sample Area 4 (52_18), looking southwest.

Photo 71 (January 6, 2011). Sample Area 4 (52_18), looking south-southeast.

Photo 72 (January 6, 2011). Collecting subsample B from sample Area 4.

Photo 73 (January 6, 2011). Sample Area 5 (52_19), looking northwest.

Photo 74 (January 6, 2011). Collecting subsample D from sample Area 5.

Photo 75 (January 6, 2011). Sample Area 6 (52_20), looking northwest.

Photo 76 (January 6, 2011). Collecting subsample E from sample Area 6.

Photo 77 (January 6, 2011). Location of subsample A from sample Area 7 (52_21). Erodible soils were collected from pocket of erodible soils underneath iron slabs.

Photo 78 (January 6, 2011). Location of subsample B from sample Area 7 (52_21).

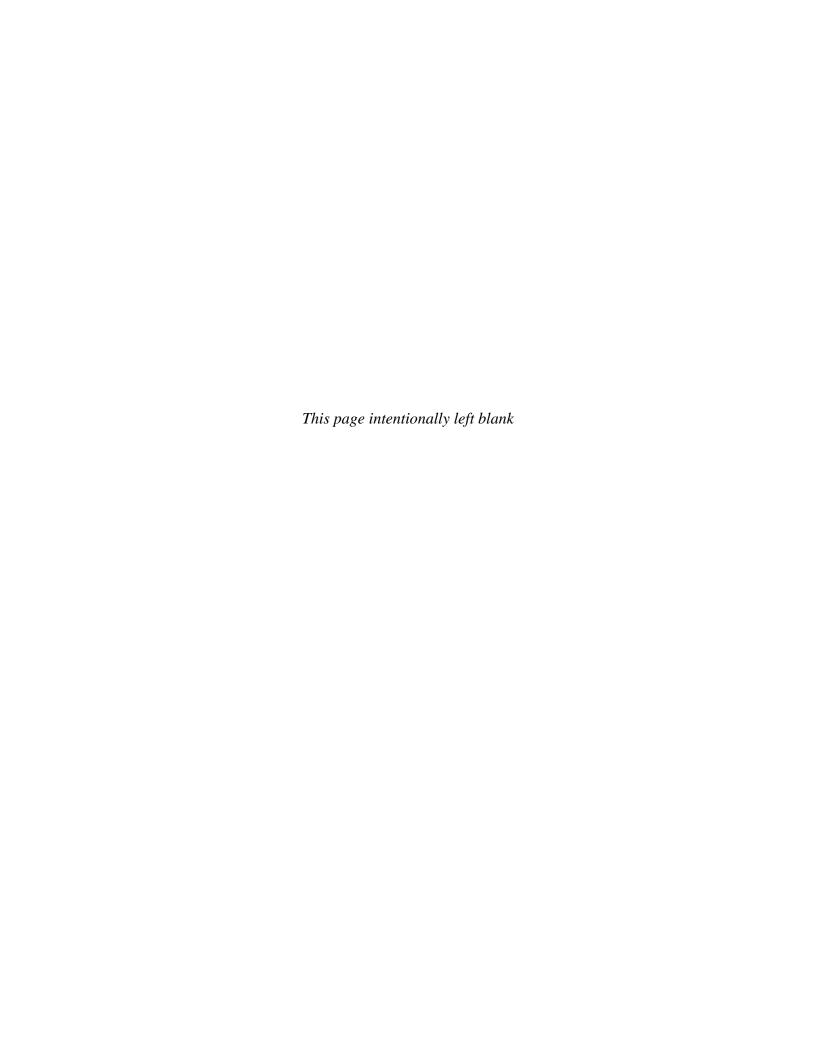


Photo 79 (January 6, 2011). Sample Area 9 (52_22), looking northwest.

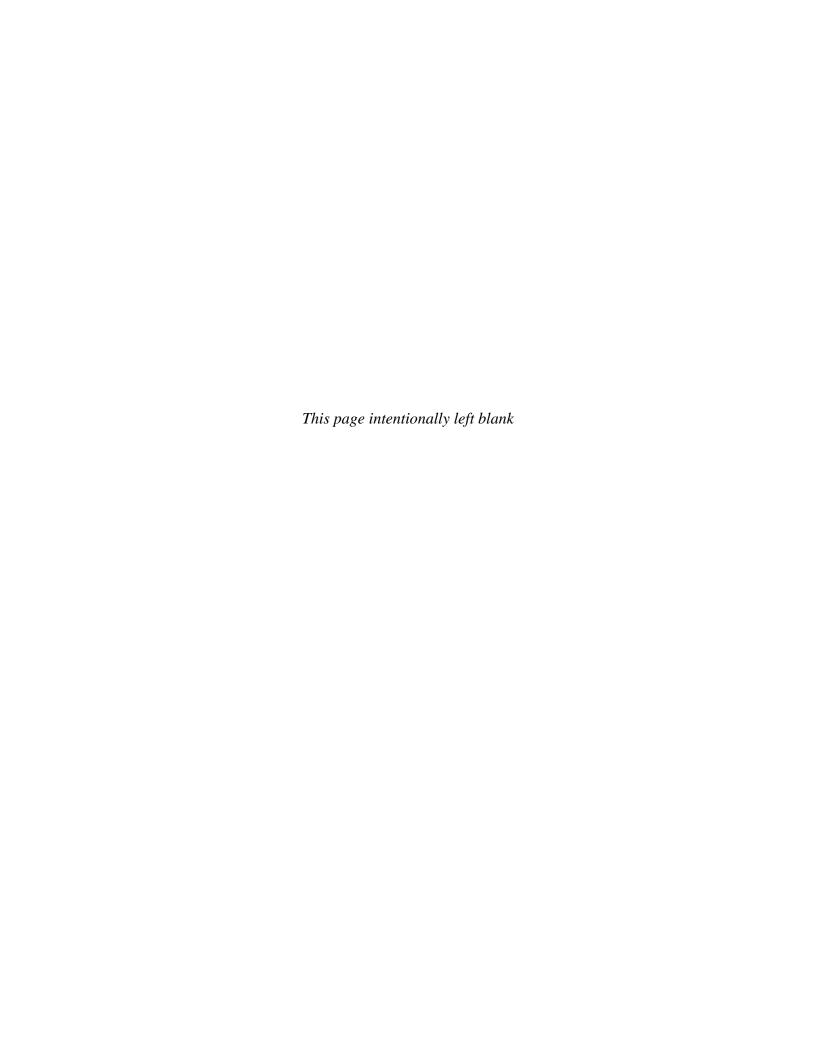


Photo 80 (January 6, 2011). Sample Area 8 (52_23), looking northwest.

APPENDIX B Field Notes

June 2008 Inline Solids Sampling

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Chain-of-Custody City of Portland

Bureau of Environmental Services

6/26/2008

| 유

Page:

Collected By:

RCB/WCR/LAP

		8: 					C.xls	s:\eid\1000\1020.001\Sampdoc\Lbwer Harbor Sed COC.xls	s:\eid\1000\1020.001\
Date:	Printed Name: D	Date:	Printed Name:	Date:	i		Printed Name:	6/26/0P	Kona Kluch
Time:	Signature:	Time		Time:			Signature:	1 + ES faur	inted Name
			Received By: 3.			Y: 2	Received By:		*\bu
Date:	Printed Name:	Date	Printed Name:	Date:			Printed Name:	6/26DS	KANDY CIBELS TOWN
Time:		Time	Signature:	Time:			Signature:	155 /	1
	Relinquished By: -4.	annas Sensa Sensa	Relinquished By: 3.			ed By: 2.	Relinquished By:		Sonature: 1.
		and the second s			_				
					·				
	***	Para de la constante de la con			,				
		A Company	•	c ·	9, 83 P 8, 83 P 5, 88 P	6/26/08	DUP	DUPLICATE	080843
		# 1975-97	•	C	1458	6/26/08	52_3	IL-52-AAE513-0608 N ALTA & BRADFORD	FO 080842
		-ons.	•	С	1108	6/26/08	52_2	IL-52-AAE569-E-0608 N BURLINGTON & CRAWFORD	FO 080841
		•	•	С	0921	6/26/08	52_1	IL-52-AAE553-0608 N BURLINGTON & RR	FO 080840
		Total Mei (As, Cd, (TOC Total Sol Grain Siz	Sample Sa	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
•		als Cu, Pb, Zn)	ids	clors - LL			м		
	Now, you are find from					•	ii v	OUTFALL 52	
	Field Comments	Metals	General						
	nalyses	Requested Analyses		1	SEDIMENT	Matrix:			File Number: 1020.001
	dw,na	n svija V		•		AMP	LINE S	LAND HARBOR IN	Project Name: PORTLAND HARBOR INLINE SAMP

Page _____ of _

Project Location _ Subject	Project No. 100.001 Basin 52 Date 6/26/08 By LCB/LAP/WCR	
0831	Arrive & node AAE 553. Some solids present in MH as well as standing water. Will attempt to collect sediments from upstream of the IMH.	**
0846	Enter MIT. O'bserved seds upstream of node. Took measurements and photos of 24" line up & downstream, as well as two laterale coming in from NW + S. Took photos.	
0921	Sample collected from 0-1.5' upstream of node. Will also collect a Dilp from this site due to large sediment volume.	
0951	Arrive & node AAE 569. This node is the putt that has the intersection we the Crawford St. Line. We will enter the MH (unknown two MHs NE of AAE 569 up the Burlington Itill. Our maps do not accurately depict what is actually happening on the street. The middle MH is full of dirt fill? but appears to have active CBs a tratelated to it. 1010: Entered Hattiand found unknown I connected to AAE 569. Not much sediment in line. Measured pipes leading in and out of Maksown MH I. Took photos.	n4)
Attachme	ents	

Page 2 of 4

Project Portland Itarbor In- Line Sed Samp	Project No. 1070.001
Location Basin 52	Date 6/26/08
Subject	By LAP/WCK/REB
1029: Began collecting sample from 0-3' upstream actually appears to be biofilm and not actually spears to the truch and is gray in a	nal sediment, Material color. Took photo of saystea
1040: WCR exits Unknown MH1 and took a from street. Also took photos of dirtfill	
1044: WCR enters AAE 569, Lateral to the Ed sediment. Took photos from inside) then downstream; thun 12" clay lateral (Co Jateral.	ARESGG. Upstream first, z van ford Eastline), Hun 10"
1055: Saupling equipment used for Unknown M to attempt to collect solids from the i No sample able solids found. Abandoned N. Burlington 20" line.	1H 1 sent down pt 1569 upstream 20" line only- d sampling effort from
1059: Loweved Evesh sampling equipment dos solids from 12" lakeval coming in l east Grathered sandy sediments from 12" line. Seds are homogenous and be approximately 3.75" in depth. Took area.	rom Crawford Street 6"-32" up the rown in color and is
1108 Sample composited and placed in jars_ 1109 Photo taken of site looking up crawford	St to the East.

Page __3 of __4

Subject Date 6/26/08 By PUBLIA PLUCE/LAS
Subject By REPLAPINCE LAS Bustoned Maintenance has uncovered this MH for us to do our work. New asphalt was put down around MH and some residual asphalt was present in MH cellar. Also absorbent sandy material left surrounding the surface of the MH. It is likely that these Solids may have been inadvertently sweet into the MH during maintenance. No solids Usible Room street level. But this lateral only dvains bearly parking let, so no samples collected. No sample about solids observed in MH. Pa entered MH to check pipe diameters due to discovery of MH upstream (MEGORS) in Calumbal Park. By Judy a dvain to observed about the constitution of
Attachments

Page

4

of 4

Project Location Subject	Basin 52 Project No. 1020.001 Date 6/26/08 By LOR/LAP/WCR/LAS
1340	Exited MIH to investigate up stream MH AAE 693.
1353	Arrived at AAE693. LAPenters MH. No sample-able solids upstream or downstream in main line. No solids in lateral
	upstram or downstream in main line No solds in lateral
	either. Offsite @ 1409.
1426	Arrived at MESBin lower Cathedral Park near the purpstation.
	Emergency samilary bypass lines visible in MH. No visible solids
	from surface. LAP enters Alt. Some standing water in
	Some material in downstream main line, but only enough to fill a 403
	Some material in downstream main line, but only enough to fill a 403
	jar MH collar is above grade so Hely hard likelihood of surface
	material Calling in is to low.
1458	Collected sample from ARE 513 from seds catterted on ledge SW of invert.
1510	Obesked out one more MH at intersection of N. Battimore and RK tracks. No visible solids from street ferel. No entry
	made.
1 2 11	Poly to the soling of the soling of
1516	Return to WPLL to velinguish samples.
Attachment	S

Photos Taken

upstream laterals

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland Ha	vbor In-Line	Sed Sawy	Project Number: 1020.001		
Sampling Team:	Date: 6/26/08	Arrival Time:	Current Weather Conditions/Last Rain: Overeas + 55°F		
Basin: 52	Node: AAE 55.		Subbasin:		
Sampling Location Description/Address: N. Burlington & RK crossing					

SECTION 1 - PR	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	0.75'' @ 0.05 fps
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	Yes 3.5-3.15"
Describe lateral extent of sample-able sediments present in the line:	sediment extends about 5'-6' Then a small pocket of gravel @ 10' upstream. standing water pooled up to ~20'y

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

24" pipe upstream
is in short segments
and is "wavy" as it goes
upstream

24" clay in 24" segments

water lawred un reachable seeds
observed

2 laterals at 6
observed by

2 laterals at 6
observed by

2 laterals at 6
observed by

2 laterals

Date: 6/26/08	SECTIO	/ Z - SAIVII	LL COLLI	ECTION REPORT	Node: AAG 553	
Sampling Equipment:	Stainless steel spoon & stainless steel bucket Other (Describe)					
Equipment Decontami		Per SOP7.01a Other (Describe)				
Sample date: S	Sample time: Sa		cation: (IL-XX	-NNNNN-mmyy) 0608		
	iption: (number of feet f					
Sample collection tech	inique: 5	5 spoon	& bucker	t		
Describe Color of sam		ray bron				
Describe Texture/Parti	fine to	Céarse sar	uls o small grave	/5		
Describe visual or olfactory evidence of contaminati bulk sediment sample (odor, sheen, discoloration, e			no shee	ids o small graves is, decomposity orga	rnics oder	
Describe depth of solids in area where sample collected			3.5"-3	.75"		
Describe amount and type of debris in sample:			No debi	ris except a few mu	etal shards	
Amount and type of debris removed from final sample:				removed		
Compositing notes:	emposited using	SS SPOOT	n; sample	is ~ 5% water		
Sample Jars Collected	(number, size, full or pa	artial)?			From the All St	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order). All jaws filled 802		r				
7, 12, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17	18040	Duplicat	te sample coll	ected? The Dupe ID		
Duplicate sample ident		FO OC	8 4 30 mg	FO 080	843	
Any deviations from sta	andard procedures:	one	1712	7		
	SECT	ION 3 - P	HOTOGR	APH LOG		
Overview of node show						
Plan view of sediments	s inline				1,	
Homogenized sample	(sediment in bowl)					
Other?						

Project Name:

Sampling Team:

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Portland Harbor In-Line Project Number: 1020,001 Arrival Time: Current Weather Conditions/Last Rain: Overcast 570 F

0951 Node: Unknown Mikeer AtE 569 Subbasin: Up stream of Crawford St. Basin:

Sampling Location Description/Address:

Intersection of N. Burlington & N. Cvawford

SECTION 1 - PR	E-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Very small pool of standing water
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	very little
Are sample-able quantities of sediments present in the line?	Yes (in 12" clay lateral in MH AAE 569)
Describe lateral extent of sample-able sediments present in the line:	see FDS for AAE 569.
Photos 2011 upstream 2011 downstream 8' west 8" sw D" East uper 8' East lover 5 myte collection point	Alled w seds (fill) Flow Little of the bis film) Alled w seds (fill)

	CTION 2 - SAMPLE COLLECTION REPORT Node: Unknown New ARE 569				
Sampling Equipment:	Stainless steel spoon & stainless steel bucket □ Other (Describe)				
Equipment Decontamination process:	'X Per SOP7.01a □ Other (Describe)				
Sample date: Sample time:	Sample Identification: (IL-XX-NNNNN-mmyy) L-52-AAES69-0608				
Sample location description: (number of	feet from node of entry)				
Sample collection technique:	55 spoon & bucket				
Describe Color of sample:					
Describe Texture/Particle size:	homogeneous fine to medium sands				
Describe visual or olfactory evidence of coulk sediment sample (odor, sheen, disc	contamination in				
Describe depth of solids in area where s	ample collected: SEE FIDS FOR AAE 569				
Describe amount and type of debris in sa	ample:				
Amount and type of debris removed from	n final sample:				
Compositing notes:					
Sample Jars Collected (number, size, ful	l or partial)?				
f not enough sample to fill all of the jars, collected and related analytes sampled (analyte priority list in work order).					
ab ID	Duplicate sample collected? Y/N Dupe ID				
Ouplicate sample identification # on COC					
Any deviations from standard procedures					
SI	ECTION 3 - PHOTOGRAPH LOG				
Overview of node showing drainage area	a				

SECTION 3 - PHOTOGRAPH LOG				
Overview of node showing drainage area				
Plan view of sediments inline				
Homogenized sample (sediment in bowl)				
Other?				

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland He	arbor In-Line Sed	Saup	Project Number: 1020, 00 I
Sampling Team:	Date;	Arrival Time:	Current Weather Conditions/Last Rain:
LAP/WER/RCB	6/26/08	1044	Overcast ~60°F
Basin: 52	Node: AAE569	•	Subbasin: Crawford St East
Sampling Location Description/A	ddress: Camala	callected Brown	m 1711 line coming into HAF569

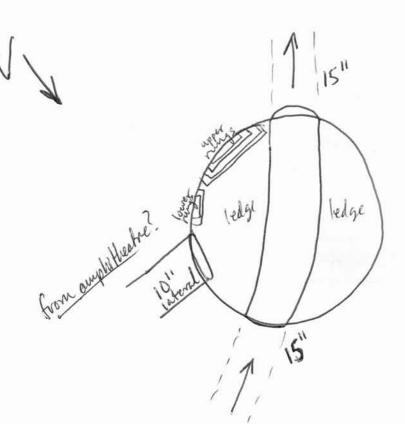
Sampling Location Description/Address: Sample collected from 12" line coming into MAES69 from Crawford St- East.

SECTION 1 - PF	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Very little in MH AAE 569
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	Yes
Describe lateral extent of sample-able sediments present in the line:	6"-32" upstream of node in 12" line
	Sample area Crowder 12" lateral from Crowder 54 Crowder 12" lateral from Crowder 12" lateral from Crowder 13" 14" 14" 15" 15" 15" 15" 15" 15

Date: 6/26/08	SECTIO	IN Z - SAIVII	LE COI	LECTION REPOR	Node: AAE 569		
Fouring Equipment. Oth		Stainless steel sp Other (Describe)	Stainless steel spoon & stainless steel bucket Other (Describe)				
		Per SOP7.01a Other (Describe)					
Sample date:	Sample time: Sampl	Sample Identification: (IL-XX-NNNNN-mmyy) 1L-52- AAE 569 = E - 0668					
	escription: (number of feet f	rom node of e	entry)				
		is spoon into ss bucket					
Describe Color of sample:		rown					
Describe Texture/Particle size:		Fine to medium sands					
Describe visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.):			no obvious visual or offactory evidence of contamination				
Describe depth of solids in area where sample collected:		e collected:	3.75"				
Describe amount and type of debris in sample: Amount and type of debris removed from final sample:		:	none				
		sample:	none				
Compositing notes:	: composited in bucket	et, photo	taken,	placed in jar.			
Sample Jars Collec	cted (number, size, full or pa	artial)? 니-	402	-802 all ful	1		
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).							
Lab ID FO	080841	Duplicate sample collected? Y/Ŵ Dupe ID			e ID		
Duplicate sample ic	dentification # on COC:	_					
Any deviations from	n standard procedures: N	one					
	SECT	ION 3 - P	нотос	GRAPH LOG			
Overview of node s	showing drainage area						
Plan view of sedim	ents inline						
Homogenized sam	ple (sediment in bowl)						
Other?							

CITY OF PORTLAND ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland IT	berbor In Line Sed	Samp	Project Number: 1020.001
Sampling Team: LAP RUB WUR LAS	Date: 6/26/08	Arrival Time: 1353	Current Weather Conditions/Last Rain: PavHy Sunny 640 F
Basin: 52	Node: AAE 693		Subbasin: Cathedral Park

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT			
Describe any flowing or standing water observed in the line?	None		
Does river appear to back up to this location? Describe rate/color/odor of flow:	No		
Are sediments observed in the line?	No		
Are sample-able quantities of sediments present in the line?	No		
Describe lateral extent of sample-able sediments present in the line:	None		

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

MH in Cathedral Park.

No Sample.

For mapping
purposes only.

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

- 11 111	1 1 1 1	A c	
Project Name: Portland Harbor In Line Sed Samp			Project Number: 1020,001
Sampling Team:	Date: 6/26/08	Arrival Time:	Current Weather Conditions/Last Rain: Sunny 10W 705
Basin: 52	Node: AAE513		Subbasin: Lower Cathedral Park
Sampling Location Description/A	ddress: N Altai	Ave & N Brad	ford.

Describe any flowing or standing water observed in the line?

Does river appear to back up to this location? Describe rate/color/odor of flow:

Are sediments observed in the line?

Are sample-able quantities of sediments present in the line?

Describe lateral extent of sample-able sediments present in the line:

Section 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT

O.01" standing water

Not normally Imay be during '96 flood

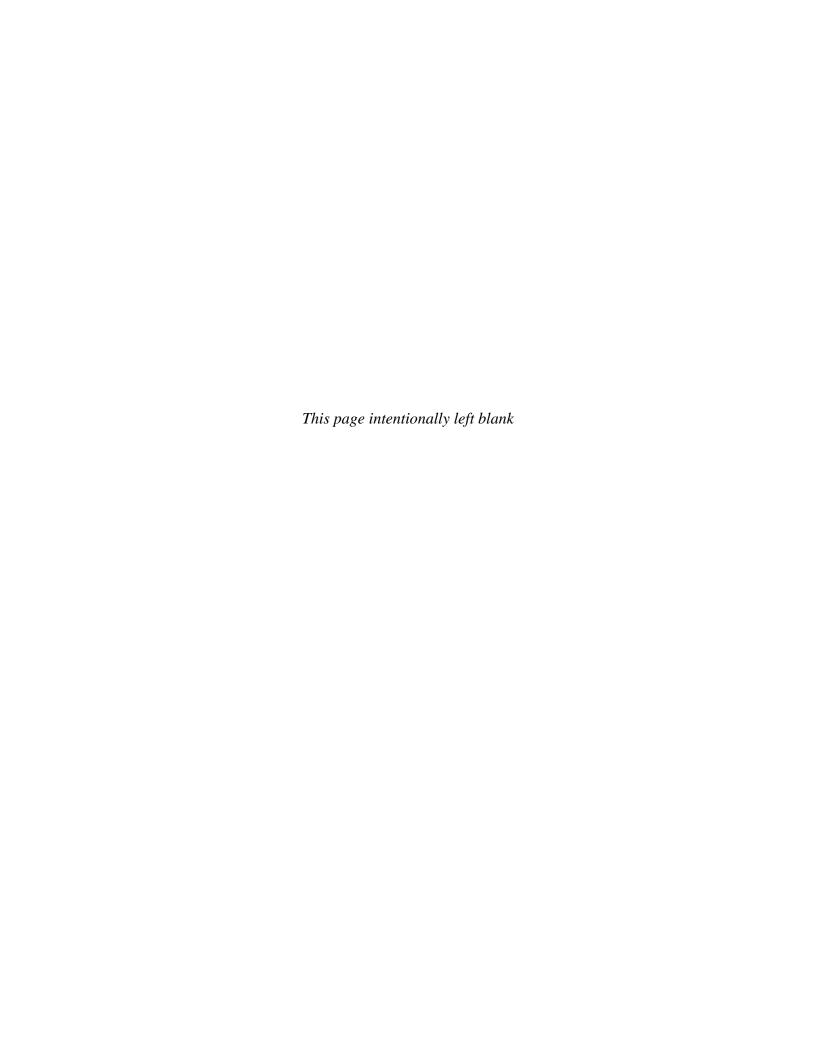
Yes

Are sample-able quantities of sediments present in the line:

Solids not present in line, but on west east ledge

Plactos

upstream main
lateral from PS x2


north lateral from PS x2

north lateral by pass w back flowed by pa

Date: 6 26 08 SECT	ION 2 - SAMI	PLE COLLECTION REPORT	Node: AAE 513			
Sampling Equipment:	ostainless steel sp Other (Describe)	ooon & stainless steel bucket				
Equipment Decontamination process:	Per SOP7.01a Other (Describe)	<u> </u>				
Sample date: Sample time:	11 -	cation: (IL-XX-NNNNNN-mmyy) 52 - AAE513 - 0608				
Sample location description: (number of fed	et from node of	entry) Nost solids collected t	vom ledge en west			
Sample collection technique:	55 spoot	n into ss bucket				
Describe Color of sample:	dark brow	un lgray				
Describe Texture/Particle size:	70% organic	s + finesitts, 25% fine to meden	n savels, 5% coarse se t gravels			
Describe visual or olfactory evidence of coroulk sediment sample (odor, sheen, discolo		None	•			
Describe depth of solids in area where sam	ple collected:	1/2 to L				
Describe amount and type of debris in sam	ple:	some organic debris, cig butts				
Amount and type of debris removed from fi	nal sample:	none				
Compositing notes: composited in 55	bucket w/	55 Spoon				
Sample Jars Collected (number, size, full o	r partial)? 4	-407 jars 1-802				
f not enough sample to fill all of the jars, lis collected and related analytes sampled (as analyte priority list in work order).						
_ab ID FO 080842	Duplica	te sample collected? Y/N Dupe ID				
Duplicate sample identification # on COC:						
Any deviations from standard procedures:	No					
SEC	CTION 3 - P	HOTOGRAPH LOG				
Overview of node showing drainage area						
Plan view of sediments inline						

Other?

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services Charles Castody

Date: 9/10/2008

Page:_ 을 1 1

Collected By:

RCB/JXB/LAS

		İs	52 (8-27-08).x	mp COC - OF	or Inline Sa	ortland Hart	\Sampdoc\	Simple of the sample of the sample of the sample of the sample of the samp coc. Of 52 (8-27-08) xis	C:::::::::::::::::::::::::::::::::::::
Printed Name: Date:	Date:	Frinted Name:		Date:				WIN SHOOK	S. HEID (1000) AND
	Time:	Signature:		Time:			Signature:		rinted Name
Received By: 4.		Received By: 3.				1 2	Received By:		ignature.
Printed Name: Date:	Date:	Printed Name:		Date:				2/10 Q	KANDY C BELSION
Signature: Time:	lime:	9					inted Name:	Date: 1	rinted Name:
Relinguished By: 4.		Kelinquished By: 3.		ime:			Signature:	Time: //25	ignature:
		Н					elinguisho		Veninhalied DY.
	•	•	•	O .	0905	9/10/08	52_12	N Bradford & RR Tracks	FO 081109
2 jars only - no grain size analysis	2 ja	•	•	ဂ	0820	9/10/08	52_11	N Baltimore & Bradford	FO 081108
		•	•	0		9/9/08	PLF	DUPLICATE	FO 081107
Dode t changed back to original -PHA	•	•	•	C	1449	9/9/08	52_10	IL-52-MAZ-162-0908 V Crawford & St Johns Br	FO 081106
	•	•	•	С	1415	9/9/08	52_9	8675 N Clawford, 1912 652 9	FO 081105
	•	•	•	С	1336	9/9/08	52_8	IL-52-ANE911-0908 N Alta & RR Tracks	FO 081104
		•	•	C .	1153	9/9/08	52_7	IL-52-ANE921-0908 PIW Parking Lot	FO 081103
2 jars only - no grain size analysis	2 je	•	•	С	1116	9/9/08	52_6	IL-52-AAE651-0908 N Pittsburg & RR Tracks	FO 081102
		•	•	C	1010	9/9/08	52_5	IL-52-ANE815-0908 N Burlington & Crawford	FO 081101
			•	C	0925	9/9/08	52_4	IL-52-ANE813-0908 N Burlington & RR Tracks	FO 081100
		Total Sol	PCB Aroo	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
	als (As, Cd li, Ag, Zn)	e	clors - LL						
	, Cr, Cu,					NG G	IN SAMPL	OUTFALL 52 CATCH BASIN SAMPLING	
Field Comments	Metals	General)						
Analyses	Requested Analyses			TN	SEDIMENT	Matrix:)1	File Number: 1020.001
				•		MP	INE SA	TLAND HARBOR IN	Project Name: PORTLAND HARBOR INLINE SAMP

ENVIRONMENTALSERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

子の教養者と社

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Portland Harbor Stormwater - Inline Samp Project Name:

Project Number: 1020.001

Sampling Team: JXB/RCB/LAS

Date:

Arrival Time:

Basin:

Node: ANE 813 Address: N. Burlington & WPCL (RR Tracks

Current weather and last known rainfall:

Sunny, clear 650

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT

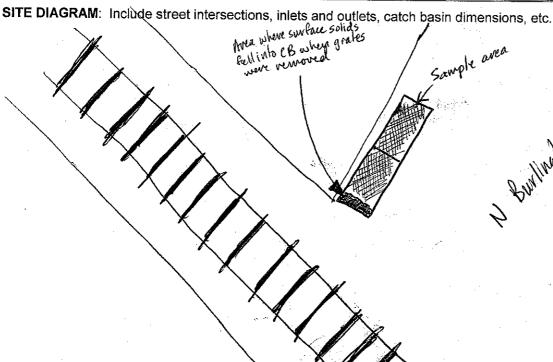
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):

CB is adjacent to a steel plate distrubutor that loads and unload large steel plates on and off frucks - CB is also adjacent to Union Pacific RR tracks.

Describe debris and/or clogging around, or in catch basin grate/cover:

some plastic debris and other trash on CB grate, also some sediments stack in grate.

is there standing water in catch basin?


No

Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)

No

Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:

Depth is ~ 0.5" to 1.0", but most of CB was closer to 0.5" deep.

9 Baylander Ha,

ampling Equipment:	oStainless steel spoon & stainless steel bucket					
	□ OTHER (DESCRIBE)					
quipment decontamination procedure:	Per SOP7.01a					
. New you are broken to the control of the control	□ OTHER (DESCRIBE)					
ample date: 09/09/0%	Sample time: 0925					
ample Identification Code:	Sample collection technique and if/how overlying water was removed:					
1L-52-ADE&13_0908	per 50P 5,01e					
ubsample number and location:	All solids in CB					
olor of sample:	Gray					
exture/particle size:	fine silt tolargerocks					
sual or olfactory evidence of ntamination in bulk sediment sample						
dor, sheen, discoloration, etc.)	None					
nount and type of debris in bulk sample:	Some plastic 21% large rocks/gravel ~10%					
nount and type of debris removed from all sample:	Some plastic 21% large rocks/gravel ~10% erganic debris ~ 5% large rocks and organic debris = 15% of bulk sample removed					
ompositing notes:						
mple jars collected (number, size, full or r	oartial)? 3-402 1-802					
not enough sample to fill all of the jars, list						
s collected and related analytes sampled per analyte priority list in work order).						
post analytic priority not in work order).						
olD FO 081100	Duplicate sample collected? Y/N Dupe ID					
plicate on COC:	NA					
y deviations from standard procedures:	NO					

SECTION 3 -	РНОТО	OGRAF	H LC	G				
Overview of CB showing drainage area	\		y		<u>na marijaya, Transen</u>			44.0
Catch basin plan view prior to sampling showing solids	V							
Lateral connections to/from CB	V			· · ·			-	
Homogenized sample (sediment in bowl)	V			ν		v	·	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor	Inline Samp	Project Number: 1020 001
Sampling Team: JXB/PU\$/LAS	Date: 9/9/08	Arrival Time: 0950
Basin: 52	Node: ANE 815	Address: NBurlington & N. Crawford
Current weather and last known rainf Clar, Sumy 65°	all:	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Parked cars, neighboring industrial properties
Describe debris and/or clogging around, or in catch basin grate/cover:	Cedar biobag decomposing just upstream of CB. Leaf & sediment debris dogging CB
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	No
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	3/4"-23/8" averaging ~ 1" throughout.
SITE DIAGRAM: Include street intersections, following states and states are street intersections, following states are street intersections.	outlet that has a vertical drop from SED V Craw ford Craw ford

Sampling Equipment:	#Stainless steel spoon & stainless steel bucket
	OTHER (DESCRIBE)
Equipment decontamination procedure:	ct/Per SOP7.01a
	□ OTHER (DESCRIBE)
Sample date: $9/9/0\delta$	Sample time: 1010
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:
IL-52-ANEBIS-0908	per 50P5,01e
Subsample number and location:	All CB solids
Color of sample:	Park brown
Texture/particle size:	primarily silts and sands w/ some small gravels and organic clabris
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None
Amount and type of debris in bulk sample:	10-15% organic debris 1-2% gravels 41% trash
Amount and type of debris removed from inal sample:	Dulk 62% 501ids removed from final composite sample, primarily consisting of sub-angular gravels > 111 in dia plastics, large organic matter of metal wire of nails.
Compositing notes:	plastics, large organic matter of metal wive of nails.
Sample jars collected (number, size, full or pa	artial)? 3-4oz 1-8 <i>o</i> z
f not enough sample to fill all of the jars, list	
ars collected and related analytes sampled as per analyte priority list in work order).	
p short phony list in work order).	
EO 084404	
ab FO 081101	Duplicate sample collected? Y/N Dupe ID
Ouplicate sample identification # on COC:	NA
ny deviations from standard procedures:	No

SECTION 3 - I	РНОТОС	RAPH LOG	
Overview of CB showing drainage area	V		
Catch basin plan view prior to sampling showing solids	/		
Lateral connections to/from CB	/	· · · · · · · · · · · · · · · · · · ·	
Homogenized sample (sediment in bowl)	V		

ENVIRONMENTAL SERVICES

Vater Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor In Line Samp.

Project Number:

1020.001

Sampling Team: JXB /RCB / LAS

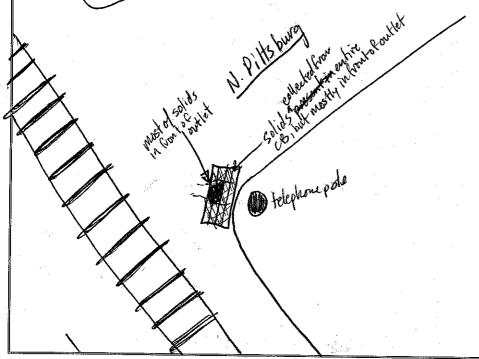
Date: 9/9/08

Arrival Time:

1106

Basin: 57

Node: AAE 651


Address: N. Pittsburg & RR tracks

Current weather and last known rainfall:

lear, surmy 680 F

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Parked vehicles, RR right of May, industrial area.
Describe debris and/or clogging around, or in catch basin grate/cover:	vegetation and sediments caked in and around grate
Is there standing water in catch basin?	NO
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	0-3/4" Mostly collected in Front of outlet pipe as very little asseds accumulated in corners

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Date: 9/9/08 SECTION	V 2 - SAMPLE COLLECTION REPORT	Node: AAE 651			
Sampling Equipment:	ங்கீtainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)				
Equipment decontamination procedure:	☐ Per SOP7.01a ☐ OTHER (DESCRIBE)				
Sample date: 9/9/08	Sample time: ////p				
Sample Identification Code: 1L -52-AAE651_0908	Sample collection technique and if/how overlying w No water / 55 5000p + 55 bow	•			
Subsample number and location:	all solids in CB				
Color of sample:	grayish, reddish brown				
Texture/particle size:	grayish, reddish brown fine sitts and sands w/ some gravel	s torganic debris			
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None				
Amount and type of debris in bulk sample:	20% organis + Wash				
Amount and type of debris removed from final sample:	20% organiss + trash 15% large gravel 35% of bulk removed				
Compositing notes:					
Sample jars collected (number, size, full or pa	artial)? 2-402 Javs				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	PCB Total Solids TOC				
· · · · · · · · · · · · · · · · · · ·	NO GURAIN SIZE COLLECTED				
Lab ID FO 081102	Duplicate sample collected? Y/N Dupe ID				
Duplice # on COC:					
Any deviations from standard procedures: /	Jo				

SECTION 3 - I	PHOTOGR	APH LOG			
Overview of CB showing drainage area	V				-
Catch basin plan view prior to sampling showing solids	/			**************************************	
Lateral connections to/from CB	V		<u> </u>		
Homogenized sample (sediment in bowl)	1				

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

Project Name: Portland Harbor	Inline	Project Number:
Sampling Team: JXB/RCB/LAS	Date: 9/9/08	Arrival Time: 1142
Basin: 52	Node: ANE 921	Address: PIW Parking Lot
Current weather and last known rain clear, swm y 70°F		

Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	parking lot runoff, (parking lotis adjacent to Peninsula Iron Works)
Describe debris and/or clogging around, or in catch basin grate/cover:	10ts of vegetation and sediment in and around CB grate
Is there standing water in catch basin?	yes, agmall puddle in syst corner ~ 2" deep
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	Depth ranges between 1"-5" w/ an average depth of 4".
SITE DIAGRAM: Include street intersections, inle	extract some

Sampling Equipment:	Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)		
Equipment decontamination procedure:	□ OTHER (DESCRIBE)		
Sample date: 9/9/08	Sample time: 1/53		
Sample Identification Code: IL-52-AME ANE 921-090%	Sample collection technique and if/how overlying water was removed: NO OVER 14 ing water removed. Sample collected w/55 scoop and bowl		
Subsample number and location:	Mostly from the middle of the CB,		
Color of sample:	Dark brown		
Texture/particle size:	sahwated fire silts and sands w/ some small grovels troavse san and abundant organic debris		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None		
Amount and type of debris in bulk sample:	Sample is ~ 6% organics		
Amount and type of debris removed from final sample:	~ 1% removed		
Compositing notes:			
Sample jars collected (number, size, full or pa	artial)? 6-402 javs 2-802 javs		
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).			
Lab ID FO 081103	Duplicate sample collected? YN Dupe I FO 081107		
Duplica # on COC:	FO 061107		
Any deviations from standard procedures:	No		
SECT	ION 3 - PHOTOGRAPH LOG		
Overview of CB showing drainage area			
Catch basin plan view prior to sampling showi	ng solids		
	- V		
Lateral connections to/from CB			
department and the control of the co			

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor In Line Saup.

Project Number:

1020.001

Sampling Team: JXB /RUB/LAS

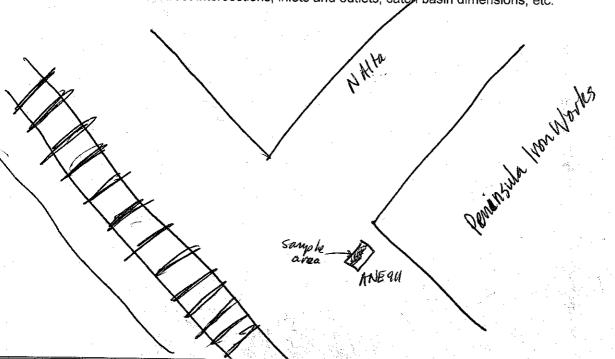
Date:

Arrival Time:

1326

Basin:

52


Node: ANE 911

Address: NAIta & RR fracks

Current weather and last known rainfall:

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Lots of steel stoved outside in the area. Parked vehicles
Describe debris and/or clogging around, or in catch basin grate/cover:	Some sediment rgravel wedged in a few of the slots in the grate
Is there standing water in catch basin?	4/4
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	Sediments are ovange prown in color, potential from steel rust runoff
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	1/2"-3" in depth, averaging 1.5" throughout,

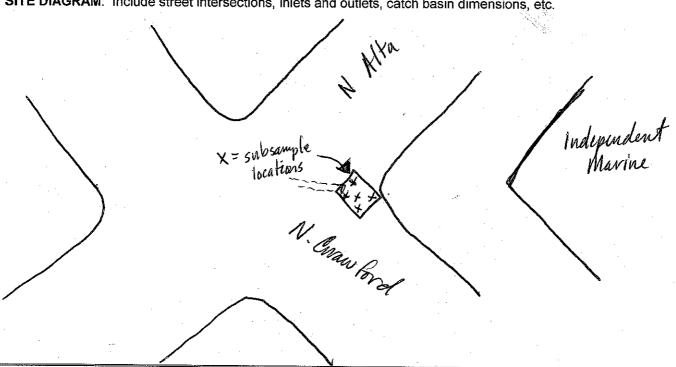
SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Sampling Equipment:	##Stainless steel spoon & stainless steel bucket		
	□ OTHER (DESCRIBE)		
Equipment decontamination procedure:	exer SOP7.01a		
	□ OTHER (DESCRIBE)		
Sample date: 9/9/08	Sample time: 1336		
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:		
1L-52-ANE911-0908	35 spoon (bow) no water		
Subsample number and location:	sampled across entire floor of CB.		
Color of sample:	orange to dark brown w/ some		
Texture/particle size:	Five silts, sands, w some gravels		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	Orange color likely due to iron rust from steel plates and metal debris in the area.		
Amount and type of debris in bulk sample:	Lots of metal shavings, bolts, nuts, scrows in CB sample		
Amount and type of debris removed from final sample:	Less Han 1% metal debris		
Compositing notes:			
Sample jars collected (number, size, full or pa	ortial)? 4-403 jars 1-802 jar		
f not enough sample to fill all of the jars, list			
ars collected and related analytes sampled as per analyte priority list in work order).	Extrajar collected for consultant per LAS.		
.ab ID			
10001104	Duplicate sample collected? Y(N) Dupe ID		
Ouplicate in COC: Any deviations from standard procedures:			

SECTION 3 -	PHOTOG	RAPH LC)G		
Overview of CB showing drainage area	d				
Catch basin plan view prior to sampling showing solids	J			<u> </u>	
Lateral connections to/from CB	V				
Homogenized sample (sediment in bowl)	V				

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



CATCH BASIN SOLIDS SAMPLING EIELD DATA SHEET

Arrival Time: 1364
Address: No corner of NAta & Novaw fore 8675 N. Crawford St.

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT		
Independent Marine grands ship propellers outside in an uncovered area. Parked vehicles		
Girate mostly clear of debris		
No		
No obor		
1-21/2"		

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Date: 9/9/88 SECTION	12 - SAMPLE COLLECTION REPORT Node: WKCB1	
Sampling Equipment:	Distainless steel spoon & stainless steel bucket DITHER (DESCRIBE)	
Equipment decontamination procedure:	d∕Per SOP7.01a □ OTHER (DESCRIBE)	
Sample date: 9/9/08	Sample time: 1415	
Sample Identification Code: 1L-52- HNYCH-0908 8675NCRAWFORD	Sample collection technique and if/how overlying water was removed:	
Subsample number and location:	5 subsamples: each corner + middle	
Color of sample:	Dark gray / black	
Texture/particle size:	five silts w/ med to course sands	
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	metal Plakes visible in sample very small	
Amount and type of debris in bulk sample:	21% organic debris, abundant tiny metal flakes	
Amount and type of debris removed from final sample:	2/% organic debris, abundant tray metal flakes 2/% organic debris removed	
Compositing notes:		
Sample jars collected (number, size, full or pa	rtial)? 4-402 jars* 1-802 jor	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		
·	* one extra jar for consultant par LAS	
Lab ID FO 081105	Duplicate sample collected? Y/ Dupe ID	
Duplicate sample identification # on COC:		
Any deviations from standard procedures:		

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	
Catch basin plan view prior to sampling showing solids	
Lateral connections to/from CB	
Homogenized sample (sediment in bowl)	V

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Portland Harbor In Line Samp Project Name:

Project Number:

1020.001

Sampling Team: 0XB/RUB/LAS

Date:

Arrival Time:

Basin:

Node:

Address: N Crawbood under St Johns Eridge

Current weather and last known rainfall:

sumy dear

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Gravel road row. no curbs. Runoff from Independent Marine outers this CB.
Describe debris and/or clogging around, or in catch basin grate/cover:	Lots of sediment built up around CB and in grate.
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	0.1"-0.5"

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Cathedral Rout

Date: 9/9/08 SECTION	ON 2 - SAMPLE COLLECTION REPORT	Node: AN Z 152		
Sampling Equipment:	□ OTHER (DESCRIBE)			
Equipment decontamination procedure:	□ OTHER (DESCRIBE)			
Sample date: 9/4/0%	Sample time: 1449	Sample time: 1449		
Sample Identification Code:	Sample collection technique and if/how overlying	water was removed:		
Subsample number and location:	all CB solids			
Color of sample:	Dark brown			
Texture/particle size:				
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	decomposing organic odor but no obvior	us signs of contumnation		
Amount and type of debris in bulk sample:	50% organic debris 21% removed Corganics			
Amount and type of debris removed from final sample:	21% removed Corgunics			
Compositing notes:				
Sample jars collected (number, size, full or	partial)?			
If not enough sample to fill all of the jars, lis jars collected and related analytes sampled (as per analyte priority list in work order).	t			
FO 65.				
FO 081106	Duplicate sample collected? Y/N Dupe ID			
Du plicate sample identification # on COC :				
Any deviations from standard procedures:	No			

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	
Catch basin plan view prior to sampling showing solids	✓
Lateral connections to/from CB	
Homogenized sample (sediment in bowl)	V


ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

	FIELD DATA SH	EET
Project Name: Portland Harbor	Inline Samp.	Project Number:
Sampling Team: TXB/RCB	Date: 9/10/08	Arrival Time: 0815
Basin: 52	Node: ANE910	Address: N. Baltimore Ave & Branford - Eco
Clear, Cool 58°F	all:	
SECTION :	I - PRE-SAMPLING VISUA	L OBSERVATION REPORT
Describe potential solids or contamina	ant CB is downstr	eam of industrial dresidential

Date: 9/10/0% SECTION	N 2 - SAMPLE COLLECTION REPORT Node:								
Sampling Equipment:	©Stainless steel spoon & stainless steel bucket								
Equipment decontamination procedure:	Ger SOP7.01a □ OTHER (DESCRIBE)								
Sample date: 9/10/08	Sample time: 0820								
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:								
IL-52-ANE910-0908	per sof 5.01e								
Subsample number and location:	All CB solids								
Color of sample:	Gray								
Texture/particle size:	Primarily fine silts of medium to coarse sands								
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	Primarily fine silts of medium to coarse sands Wlarge percentage of organic leaf debris								
Amount and type of debris in bulk sample:	60% organic debos 20% silts of 20% medium to								
Amount and type of debris removed from final sample:	60% organic debris 20% 5/1/5 of 20% medium to consessions Perced applex 50% of organic leaf litter from bulk shild sample (~50% of bulk sample)								
Compositing notes:	The sample								
Sample jars collected (number, size, full or pa	artial)? 2-407								
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	Did not collect brain size - only PCBs, TOX of percent solids were collected (total)								
FO 081108									
Duplicate sample identification # on COC:	Duplicate sample collected? Y/N Dupe ID								
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jo								

SECTION 3 -	PHOTOGRA	APH LOG
Overview of CB showing drainage area	V	
Catch basin plan view prior to sampling showing solids	V	
Lateral connections to/from CB	V	
Homogenized sample (sediment in bowl)	V	

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

Portland Harbor Inline Samp. Sampling Team; Date:	
Sampling Team: Date: 9/10/08	Arrival Time: ORCO
Basin: 52 Node: AAE694	Address: RR Tracks@N. Baltimore & Bradfor
Current weather and last known rainfall; Clear cool \$ 58°F	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	CB is adjacent to RR tracks (Union Pacific) intercepting drainage from RR tracks of other heavy industrial areas (Toyota, etc.).
Describe debris and/or clogging around, or in catch basin grate/cover:	Coarse gravels near CB draining e area. CB grate is free of debris & sediments.
Is there standing water in catch basin?	NO
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	Depth of solids ranges between 0.0"-3.0". A majority of the solids in the CB are cemented y coarse (3/4 minus) gravels & five silts & sands
SITE DIAGRAM: Include street intersections, inl	
	lets and outlets, catch basin dimensions, etc.
Solids material only Sampled from center of Esextending to southwall ofca AAE694	AAE 498
in interest on the contract of	N. Bradford ST.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/1/2	Union Pacific RR Tracks
AAE 7	34

Sampling Equipment: OTHER (DESCRIBE)										
Equipment decontamination procedure: Per SOP7.01a OTHER (DESCRIBE)										
Sample date: 9/10/08 Sample time: 0905										
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:									
IL-52-AAE694-0908 Per SOP 5.01 e. Collected solids from center										
Subsample number and location:	Center of CB extending to south wall of									
Color of sample:	Gray									
Texture/particle size:	Fine silts & sands w/coarse gravels									
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None									
Amount and type of debris in bulk sample: 170% five sitts & sands 130% coarse grave										
Amount and type of debris removed from final sample:	170% fine sitts & sands 130% course gravels, metals of material from Removed approx. 5% of bulk sample, primarily Consisting of course 3/4 gravels & mbber chunks.									
Compositing notes:	12 TO 13 THY S! Cause 9/4 gravers of Mober Chunks,									
Sample jars collected (number, size, full or pa	irtial)? 4-407 1-807									
If not enough sample to fill all of the jars, list ars collected and related analytes sampled (as per analyte priority list in work order).										
_ab ID FO 081109	Duplicate sample collected? YN Dupe ID									
Duplicate sample identification # on COC:										
Any deviations from standard procedures:	0									

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	V
Catch basin plan view prior to sampling showing solids	✓
Lateral connections to/from CB	V
Homogenized sample (sediment in bowl)	

City of Portland Environmental Services

DAILY FIELD REPORT

244
Project Portland Harbor Stormwester InLine Samp Project No.
Location Basin 52 Date 9/9/08
Subject Catch Basin Sed Sounp By JKB, RCB, LAS
0900: Arrived on sike at N Burlington & RK tracks to inspect CBs.
0900: Arrived on site at N Burlington & RK tracks to inspect CBs. Referred to Archismages and located ANE813. Took photo. Also
located and inspected a CR in grass just west of RR backsand
located and inspected a CB in grass just west of RR hacksand determined it to be in Basin 50.
0915: Prepared to surple ANE 813 by vernoving CB grates. Some
solids from the surface of the grate fell into the CB during
grate removal, but will not be collected for the composite sample.
solids from the surface of the grate fell into the CB during grate removal, but will not be collected for the compasite sample. Sediments may Rom Fine sitt to coarse (1"+) gravel.
Jas spown
0925 Sample collected from entire floor of CBrand composited in
0925 Sample collected from entire floor of CB and composited in SS bowl. Large rocks removed. 3-402 jars, 1-802 jar collected.
2949 offsite
8950 On site at ANE 815, located at the corner of N Burlington &
0950 On site at ANE 815, located at the corner of N Burlington & N. Crawford. Two photos of site and CB prior to removing the grate
1006 Breate removed
1010 Sample collected from entire floor of CB of 55500p + placed in 55 bowl for compositing. 3-40z, 1-80z jar Alled.
for compositing. 5-402, 1-802 jar tilled.
1025 Investigated outlet from ANESIS to determine which of the 3 clustered
Mts in the interscetion of N. Burlington & N. Crawford its flow goes in to. Powed water into ANESIS and found that it was connected to the
middle Mit, which we perviously thought was abandoned and filled in place
Attachments but now appears to be a set Mit. This With has an outlet w/a
First state of the form of the the test of

City of Portland Environmental Services

Attachments

DAILY FIELD REPORT

Page Project Portland Harbor In Line Project No. , 1020.001 Location Basin 52 Date 9/9/08 Subject Catch Basin Solids Sampling BY JXB/REB/LAS vertical drop into AAE 569. ANE 815 Linknown MHID unknown connection Evertical outlets le main channel in mit AMESLA Crawford Stline Refer to 6/08 sampling AAE569

DAILY FIELD REPORT

Page <u>3</u> of ____

THE REPORT OF THE PARTY.	
Project	Portland Harbor In Line Project No. 1020.001
Location_	Basin 52 Date 9/9/08
Subject	catch basin solld samp By RCB/JXB/LAS
1106	
IVV	to remove. CB located at NE corner of N. Pittsburg and RR tracks.
1116	Sample collected from AAE 651. Limited sediment adjected from this
	location. 0-3/4" of sed in CB floor, but most of the sediment
	present is in front of the outlet pipe. Enough sediment to fill
	2-402 jars. No grain size awalysis from Huis location.
	2-402 jars. No grain size awalysis from this location. Sample had ~ 35% organics/trash/large pocks which were removed
	prior to filling jars.
1138	Offsite.
n da	Amend Language Language
1142	Arrived at ANE921. Lots of vegetation and sediment in audoround
	CB grate. Took photos. Removed CB grate. Some standing water
	in SE corner of CB, approx 2" deep. Bo CB has loss of 3cdiment
	Si end where the water has collected.
	JE WA WHEN I'VE WAIN THIS OFFICE.
1153_	Collected Sample + DUP.
1211	Broke for lunch
1304	Arrived on site at the ME corner of N Crawford and NAItz in front of Independent Marine, 8675 N Crawford States. No node number known
	of Independent Marine, 8675 N Crawford Street. No node number Known
	because it is not shown on the map. Just prior to sample collection we were asked to leave the site so Independent Marine could load
	we were asked to leave the site so Independent Marine could load
	and unload a truck. We will check out ANE 911 and return later.
Attachmei	nts

Attachments

DAILY FIELD REPORT

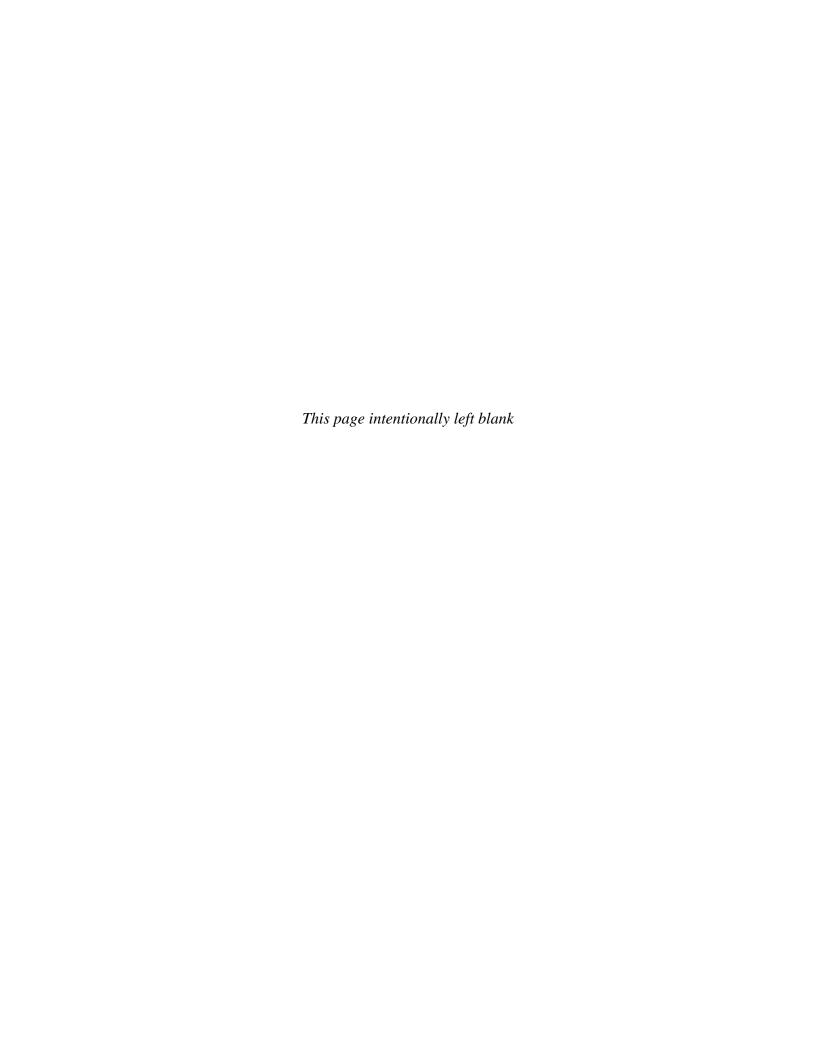
Page _ Project Portland Harbor In Line Project No. 1020.001 Location <u>Basin</u> 52 Date 9/9/08 Subject <u>Catch basin</u> solids samp. By fub/JXB/LAS 1326 Arrived at ANE 911 located on the NW side of Peninsula Iron Works (PIW near the RR tracks. Took photos. Removed grate w trypod owinch During sampling les 1336 Starting Started collecting sample. Abundant metal debris - filings, drilling cuttings, bolts, sevens, nuts. Also some chunks of what appears to On extre jor collected for consultant (no tyresunt) peel As. Arrived back at 8675 N. Cranford White we were gone, independent 1411 Marire Employees discharged water in to the CB during propeller grinding operations. LKS directed them to stop and notified SPCR 1415 Sample callected from 4 corners and middle of CB sampling the total depth at each subsample location. Arrived at AAE 673 at N. Crawford under St Johns Bridge. Took photos, Seds in CK are wet from report nuroff from Independent 1440 Marine (see notes above) Saughe collected @ AAE673. Not much schwent here to most of material in CB is organic debris. Extra jar Alles for consultant per 1449 . Offsite to WPCL. 1507

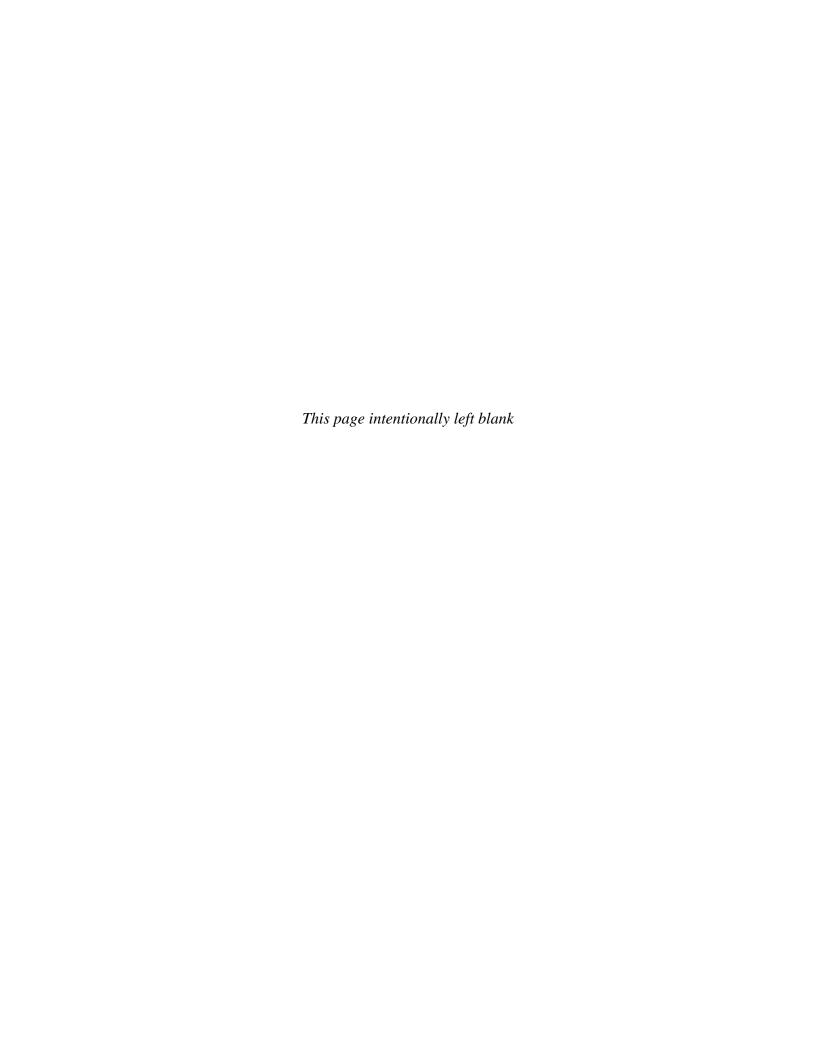
DAILY FIELD REPORT

Page 1 of 2

Project <u>PORTLAND HARBOR INLINE SAMP.</u> Location <u>BASIN SA</u> Subject <u>CATCH BASIN SED. SAMP.</u> Project No. 10 20.001 Date 9/10/08 By TXB/RCB
0815 - Arrived on site at N. Baltimore Ave of Bradford ST, near Union Pacific RR Tracks, to inspect CBs. Referenced ArcoIS Mobile Mapper of Localed CB ANE 910 on east corner of N. Baltimore. Took photo of CB grate of drainage area.
OBJO-Prepared to sample CB ANEGIO. Removed CB grate. Greate was postrolly clagged by minor organic debris. Depth of solids material in floor of CB ranged between 0.1" to 0.3" Wan average depth of approx. 0.1". Solids material primarily consisted of fine silts to medium/coarse sands falarge percentage of organic debris. Collected solids material w/a stainless spoon of placed Solids in stainless bowl. Determined that solids material was primarily 60% organics of leaf litter. Removed organic material of filled 2-402 sample jars.
0835 - Arnived on site at CB ANE 909 (west CB) located at N. Baltimore of Bradford ST. (perpendicular to Union Pacific RR Trads Inspected CB. CB grate was free of debris of sediment. Removed grate. Depth of solids material in floor of CB ranged between 0.1" to 1.0". Began to sample ANE 909. After During initial Sampling of CR it was determined that solids material Was primatily organic debris (making up 198% of bulk makind) As a result sampleable quantities of solids material were Not present. Did not sample CB ANE 909.
0900 - Arrived on site at CB AAE 694 located adjacent to PR tracks on N. Bradford ST. Took a photo of CB of drainage area. Attachments

City of Portland Environmental Services


DAILY FIELD REPORT



Page <u>2</u> of <u>2</u>

Project PORTLAND HARBOR INLINE SAMP. Project No. 1020.001
Location BASEN 52 Date 9/10/08
Subject CATCH BASTN SED. SAMP By JXB/PCB
CBAAEBY (10nt.) - Fook photo of CB & drainge area
CBAAEORY (cont.) - Fook photo of CB of drainage area. CBgrate was free of debrist sediment Removed grate
0905 - Prepared to sample CB AAE694. Depth of solids
material in floor of 08 was between 0,0" to 3,0" w/an
average depth of approx. 3.0.". Attempted to sample solids
material in CB using stainless spoon. Solids are remented
in CB(primarily on the (B corners). Able to remove solids
material at an average total depth of 3.0" from the
material at an average total depth of 3.0" from the center of the CB, extending to the south want of the CB.
Solids material primarily consisted of fine sills & sands
w/coarse (3/4 minus) gravels. Coarse gravels made up approx. 30% of the material in the bulk solids sample
Removed coarse a ravels & large metal & number changes.
from bulk sample (accountry for 15% of bulk sample)
Composited bulk material in stainless steel bowl & filled
4-407 \$ 1-802 sample jars
0977-Left Basin 52 for WPCL
으로 보고 있다. 이 이 전에 가장 보면 있다. 그는 이 이 이 전에 보고 있다. 그 이 이 전에 있고 있는 것 같아. 이 전에 가는 사람이 되었다. 그는 것이 되었다. 그는 것이 있었다면 할 것이 있는 것이 있는 것이 하는 것이 하는 것이 되었다. 이 이 이 그들로 되었다면 이 그리고 있다면 되었다. 그는 그리고 있는 것이 되었다. 그 그리고 있다. 그
Attachments
What the first control is the first control of the

2010 Sediment Trap Sampling

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services

6/17/2010 Date: Page:

AJA, PTB Collected By:

d Analyses		cled o		75=58, 2 273.1 g Total Wet Weight	75=48.2 258.9 g Total Wet Weight	75-54, 16.7 g Total Wet Weight	S= 46.6 266.9 g Total Wet Weight	[S = (o (g 974.4 g Total Wet Weight	75=66.6					shed By: 4.	Signature; Time:	Printed Name; Date:
Request	Metals	nls (As, Cd Cr, Ag, Zn) + Hg			0		•	(\$)	•			9			Time:	Date:
5			001	•	•	•	•	•	•					ad By: 3.		
	rganics	səfalar		 										Relinguishe	Signature:	Printed Name:
18		geners (All 209)	PCB Con	9	•	•	9	•	9			•				
STAW/THE		etain sampl		. 0	U	U	. 0	O	J			ত		. =		Date:
SEDIME		ossible to r	Sample Time	943	1026	1548	1038	1142				0221				
Matrix:		custody) 0 illest aliquot p ses.	Sample Date	6/17/10	6/17/10	6/16/10	6/17/10	6/17/10	C/17/10			0/17/10		d By: 2.		
		Chain-of-clied: 2/2/2010 ed: 6/16/201 use the sma ow-up analy	Point Code	52_ST1	52_ST2	52_ST3	52_ST3	52_ST4	Dup			EGBLANK		Relinquishe Signature:		Printed Name:
)5		basin 52 Sediment Trap Sediment traps instal Sediment traps remov PCL, care should be taken to volume for additional foll	Location	ST-52-AAE498-0610 N BALTIMORE & BRADFORD	ST-52-AAE513-0610 N BRADFORD & ALTA	ST-52-AAE700-0610 N PITSBURG SW OF RETRACKS STANDARD BOTTLE	ST-52-AAE700-0610 N PITTSBURG, SW OF RR TRACKS SIFT SED TRAP	ST-52-AAE516-0610 8675 N CRAWFORD ST	Duplicate			SIFT Equipment Blank				Date: 6/17/10
File Number: 1020.00		Fotal Solids to be done at WF	WPCL Sample I.D.	FO105694	FO105695	FO105696	FO105697	FO105698	FO105702			FO105699		nature:	Just 122	Printed Name: Peter Byon
	SEDIMENT	EDIMENT/waterd Analyses Organics General Metals	EDIMENT / WAY CE/LOW-level) General Metals General Metals General Metals General Metals Ag. Zn) + Hg Ag. Zn) + Hg	EDIMENT MAY CEA Congeners (All 209) PCB Congeners (All 209) PCB Anociors (Low-level) Grain Size Grain Size Time Type (As, Cd Cr, 175*	Requeste Cu. Pb. Ni, Ag. Zn) + Hg Time Type Cu. Pb. Ni, Ag. Zn) + Hg	Requester Cu. Pb. Ni. Ag. Zn) + Hg Total Metals (As. Cd Cr. Cu. Pb. Ni. Ag. Zn) + Hg Total Metals (As. Cd Cr. Cu. Pb. Ni. Ag. Zn) + Hg	PCB Congenera (All 209) PCB Congenera (All 209) PCB Congenera (All 209) PCB Congenera (Low-level) PCB Andreas Syocs Gu, Pb, Ni, Ag, Zn) + Hg Cu, Pb, Ni, Ag, Zn) + Hg Time Type Cu, Pb, Ni, Ag, Zn) + Hg	EDIMENT way continuous interesting in the toretain sample Sample Sample Congeners (All 209) PCB Congeners (All 209) General Action Size Cu. Pb. Vi. Ag. Zn) + Hg Cu. Pb. Vi. Ag. Zn) + Hg Cu. Pb. Vii. Ag. Zn) + Hg	EDIMENT MAY CE Congenera (All 209) Organics Time Type Congenera (All 209) PCB Congenera (All 209) PCB Congenera (All 209) PCB Congenera (All 209) PCB Congenera (All 209) Grain Size Grain Size Cu. Pb. Ni, Ag. Zn) + Hg Total Metals (As. Cd Cr.	PCB Congeners (All 209) Time Type PCB Congeners (All 209) PCB Congeneral Metals (As, Cd Cr, Cd	Column C	Time Type C C C C C C C C C	EDIMENT MAYGE EDIMENT MAYER Sample to retain sample to retain sample Sample Sample Sample Sample Sample C C General Time Type Rociors (Low-level) Organics Sample C C Syocs Sy	Requested Pasis 52 Sediment Trap Chain-of-custody Sediment Trap Chain-of-custody Sediment traps installed 2022010 Sediment traps installed 20220	Number 1020,005 Maint: SEDIMENT/Angle Angle Angle	

Time:

Received By:

Received By

Received By Signature:

Signature:

Signature:

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET

Project Name:	Project No.:	Date:	By: LXB
Portland Harbor Stormwater Samp.	1020.005	2/2/10	213
Site Address: N BALTIMORE + BRADFORD	Sample Pt Code: 52 - 571	Basin: 52	Hansen ID: A4은 낙영

SECTION 1 - INSTALLATION INFORMATION

Traffic control and/or site access concerns:

MH is on N side of RL tracks at entrance of
St Lohns Boat Rump. Can have heavy traffic
due to fisherman. Large semis use this road
to access industry N on Brad for 15T.

Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

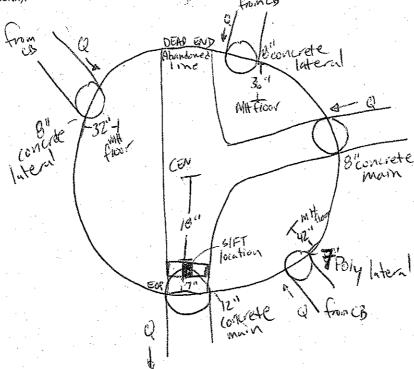
Base flow at 0.1 in t 0.5 fps No over buck up to here.

Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.):

No sample-able sediments present in pipe

Sed trap bottles installed on:

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):


SIFT is located in MH chamber due to restrictions of equipment for use
in this size pipe. SIFT is still positioned near enough the downstream EOP (7"
) hes from EOP) to capture all inputs into this MH chamber. SIFT is 18" downstream
of center of nocle. Upstream andle of SIFT is 16°

Pipe diameter (inches): 12

Distance from MH node (feet): 7,5

SED TRAP SITE DIAGRAM

(Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

		98989 1 49449
Pt Code: 53_511	SECTION 2 – MONTHLY FIELD CHECK INFORMATION	Hansen ID: AAEU9名
∫ate: 3 <u>} (</u> 5))∪	Estimated sed. depth per bottle (% by volume & inches): -Bettles removed/replaced? (\(\frac{1}{2}\)/N If removed which one(s)?	Archived ID:
By: TXB	US Bottle - True DS Bottle - ~0,5"	
Comments: On	: ===== = === 1 : (at 1.01(0.01(0.01(0.01(0.01(0.01(0.01(0.01	2/10
for the FYC	site to conduct first check of SIFT following the install date of 2/109-10 storm season. This will be the first check of all of the SIFT ent traps in Basin 52. SIFT was indited at the inlet above to	52-511 212/10 5 mali 815/17
US-Bottle	ent traps in Busin 52. SIFT was indicated of the inlet above to trap was un-obstructed fipe was welfted no standing water. when of leaves on traphonsing. Re-installed SIFT at an upward 18° mber - Transaction	· Thomas and
Primarycha	mber - Trace accumulation of solids, frimarily along the both humber - Trace accumulation of solids, frimarily along the both humber - Table 1	rom 41.59
DS Bottle - Secondary C	hamber - Total area of coopered solids was an average	
Photos Taken?	hamber - Total area of captured solids was on average 20 h by 13:0" in width - along the bottom invert of the chamber. There's the deposited on back filter screen. Solids were primarily fine	ouds Silk
Dr	ainage catchment area - 1495, pg	Take weight of
Date: /	Estimated sed. depth per bottle (% by Bottles removed/replaced? (Y)N sift silled	janthind 190.7
46/2010	volume & inches): Volume & inches): Secondary US Bottle - 10" DS-Bottle - 0.75" Secondary to Secondary t	Archived ID:
BY: JTM, PTB, MTS	Bottle - Bottle - (average) Final Removal? Y/N	'
Comments: Ons	ite for 2nd check. Entrant notes presence of ample coarse Material in primary, Leafy wisc. plastics on sift housing yet none in chamber. Accomulation in primary coarse material. Secondary accomulation is distributed throughout entire post of cylinder. Re-installed SEFT at an 180 angle	र्ड पाँगाव
Privacry	cause material. Secondary accomulation is distributed throughout entire posts	(52 - ST) (31-09)
US Bottle - Se	e comments above. Discarded primary econse solids, not representative.	
Secondary.	universation of fine, sands distributed throughout online cylinder bottom. Wetted	
fines	adhering to secondary screen.	
Photos Taken?/Y	NO 0001 Primary i Secondary challer 0002 Coarse material in primary	
	- close-up of coarse material in primary 0003 close-up of discarded pile from pri	mary
6-16-10	Estimated sed_depth per bottle (% by volume & inches): Bottles removed/replaced? **\text{V/N} If removed which one(s)?	Archived ID
By:	US Bottle - Trace DS Bottle - 0:4	
Comments: 2	site for removal perastoner request, 0.25" water in pipe flowi	n /4/7/20
Stowl Plastic	y, SIFT is free from debris, some leaf build up around hours also present. Primary has only a few fine gravel pieces, the	1015 1015 252 52-572
US Bottle -	e discarded.	100.89
Secondary Ac	comulatio of fires and siltolong screen. Invert has accumul	atro
Do-Pottie - 0 #	fires; sand + Silt, sleping from about 0.25" at the u/s en about 0.5" at the back d/s end.	<u>d</u>
otos Taken?		
Describe: 3	- 2 overview, I close up of Secondary Chamber.	
	secondary (minter.	

Pt. Code.	SECTION 2	- MONTHL)	FIELD CHECK INFORMATION	Hansen ID
Date:	Estimated sed. depth per bottle volume & inches):	(% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ву:	US Bottle - DS Bott Bottle - Bott	le - le -	Final Removal? Y/N	SALEMONIA STRUMENT AND
Comments:				Holding
US Bottle				Sticker
OO Bottle		•		
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. depth per bottle volume & inches):	(% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottl Bottle - Bottl	le - le -	Final Removal? Y/N	
Comments:				Holding
Bottle -				Sticker
DS Bottle -				
Photos Taken?	Y/N			
Describe:				·
Date:	Estimated sed. depth per bottle volume & inches):	(% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottl Bottle - Bottl	e - e -	Final Removal? Y/N	
Comments:	1			Holding
US Bottle -	1			Sticker
DS Bottle -		.*		
Photos Taken?	Ý/N			
scribe:			**	

Pt Code:	SE	CTION 2 - MONTE	ILY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. dep volume & inches):	th per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken	? Y/N			
Describe:	•			
Date:	Estimated sed. dept	th per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
Bottle -				
DS Bottle -				
Photos Taken	O SAN	1974		
Describe:				
Pt. Code:		SECTION 3 =	COMPOSITE SAMPLE	Hansen ID:

Pt. Code: 52-511	SECTION 3 - COMPOSIT	E SAMPLE	Hansen ID: ANEU98	
Sample ID: FO 105 694 affix FO number sticker	Duplicate sample collected at this site? YN	DUPLICATE ID:	and the second s	
Duplicate Sample ID on COC:	Any deviations from standard operating procedures? Y			
affix FO number sticker	Describe:			
Comments:			- 84 ¹⁴ 4	

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAPELED DATA SHEET

Project Name:	Project No.:	Date:	By: ECH,
Portland Harbor Stormwater Samp.	1020.005	2/2/10	JXB, MB
Site Address: NEAR ST JOHNS NEWASTORD & ALTA, PUMP STATION	Sample Pt Code: 52 – \$ T2	Basin: 52	Hansen ID: AAE 513

SECTION 1 – INSTALLATION INFORMATION

Traffic control and/or site access concerns: Te required. Site access limited to either approaching alongside tracks from s Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

Base flow & Orlin. and 0.4 fps Liver does not aylear to buch up to here-

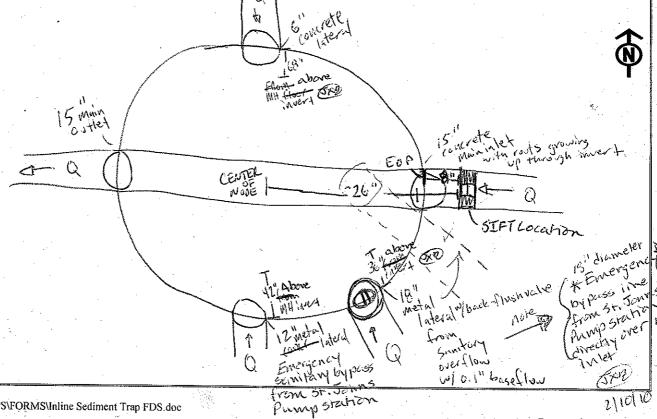
The trucky of This location has a sinitary, emergency SHOULD NOT BE ACCESSED DURING AT Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.):

Sed trap bottles

Trace fine sediments in invert are not ample enough to samples

installed on: UPSTYLEAM

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.): SIFT is installed upstream of MH Chamber in a 15" pipe; in from EDP


Pipe diameter (inches): 15

mit chamber 1 2 ft. from center of mit Chamber (node). Upstream aville et

Distance from MH node (feet): 🏑 🧷

SED TRAP SITE DIAGRAM

(Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

Pt. Code: 572_572	SECTION 2 – MONTHLY	FIELD CHECK INFORMATION	Hansen ID: AAEらいる
ate:		Bottles removed/replaced?♀⁄/N	no and complet
3/5 10 By == 0	Volume & inches): Yaman US Bottle Rottle Rottle Rottle	If removed which one(s)?	Archived ID:
By: JX3 MJS/ MAW	Bottle - Bottle - 25	Final Removal? Y(Ñ	
Comments: 5	istinterim checkofsIFT. Trop inle	taking went was free of obstruct	100/87/512
Leaf debna	d plastics collected on trap housing	Pipe was wetted - no standing	2/2/10 - 3/5/10
US Bottle -	d plostics collected on trap internation pipe or in SIFT, Re-inotal word 160 angle.	med sttttype sediment trap	IONA
Primary Ch	amber - Trace amounts of sol	ids present, primarily fire silts	36.Bg
DS Bottle - Secondary	Chamber - Total area of captured s	shids was on average 10,25"	
ina	19. depth by 3.0" in the bottom third of to	the chamber. Trace solids accumulate	4
Photos Taken?	ON back of Filter screen. Cap	the solids were primarily the	
Describe:	Overview of drainage catchment	area-1992ijpg	Tare weight of jar(t) lid
Date: ₁	Collected archived solids in primare Estimated sed depth per bottle (% by	Y & Secondary Chambers - 1994 jac Bottles removed/replaced? (Y)N solids revoved	188.7g
4/6/2010		If removed which one(s)? from primary and	Archived ID:
BA: 12M7 b1B	US-Bottle - Time DS-Bottle - Sie helout Bottle - Bottle - I	Secondary	
MTS	The state of the s	Final Removal? Y/N	- ATAIN
Comments: [10]	trant notes presence of leafy debris on SIF taboreously Approx. 0.5" flowing water	in pipe. Ro-installed sift at the angle.	1050
Primary		,	52-510
	ice solids accomulation		
Seconday			-
DS Bottle - Ap	ox. 0.5" water in seconday, drained through screen, s.d. 118" of fine adhoring to screen.	istide (fines, sand) 0.25° in invert of cylinder	:
Photos Taken?	IN 0004 primary and secondary chambe	VS	
			·
Describe:		<u> </u>	
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/r eplaced? *\mathcal{O}\N If removed which one(s)?	Archived ID:
By:	Bottle - 1/3" sed DS Bottle - 20.8" Bottle - over mort Bottle - (avg)	·	
LLB Y2V	site for final removal per clist.		
band but	not impacting eter Pipe is	wother but no flow.	6/16/10
Rail Road	tie replacement within the le	ast week - strong creosete ador	20 1105 27-5+2
US Bottle - F	not impacting STFT. Pipe is the replacement within the lone silts and sand on invert, organics were excluded. (M	about 1/8". Some pine needles	7 Pace 14239
Secondary - Va	The state of the s	action sees the composite july,	
DS Bottle - F	The sands and silts, Varying in to back). 1/8" files along to	depth from 3/4 To	
	18 thes along f	tace (screen).	
ptos Taken?	TN 76 - overview 77 - closenp of Secondary chami	624	
Describe:	78- Photo of mold		

Pt Gode	SECTION 2 - MON	THLY FIELD CHECK INFORMATION	Hensen ID:
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ਤੱy:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			Holding
US Bottle -			Sticker
DS Bottle -			
Photos Taken?	? Y/N		
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:	/		Holding
Bottle - DS Bottle -			Sticker
Photos Taken?	Y/N		
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches)	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			Holding
US Bottle -			Sticker
DS Bottle -			
Photos Taken?	KIN		
scribe:			

Pt. Code:	SECTIO	N 2 – MONTH	HLY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. depth per volume & inches):	bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived
கிy: 	US Bottle - DS Bottle -	S Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
JS Bottle -				Sticker
OS Bottle -				
Photos Taken	? Y/N			
Describe:				
Date:	Estimated sed, depth per l	bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived I
Ву:	US Bottle - D8 Bottle -	Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
Bottle -				Sticker
) No Dawla				
OS Bottle -				
hotos Taken?	Y/N		The state of the s	
escribe:				

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET

Project Name:	Project No.:	Date: ,	By: ムトB,
Portland Harbor Stormwater Samp.	1020.005	2/2/10	ECH, PTB
Site Address: N Pittsburgh SW of RR Tracks	Sample Pt Code: 52 - > 73	Basin: 52	Hansen ID: AAE 700

SECTION 1 - INSTALLATION INFORMATION

Traffic control and/or site access concerns:
Low traffic street between park and
WPCL. MH is located ~ 30 ft. from ER
trucks:

Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

Base flow @ 0.1" and 34 fps. River does not appear to buck up here

Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.): SAMPLEABLE Avg. depth of 2" in upstream line (10% five sands). Its, 70% large and with a set of pipe sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):

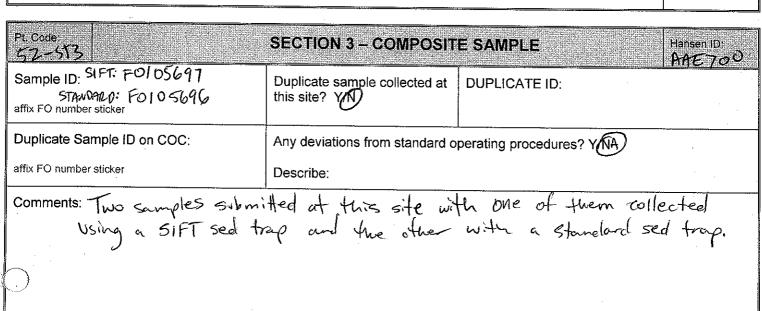
Sed trap bottles installed on:
Downstree in Pipe diameter

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):

Band is installed 16" ds of outlet EOD and 4" ds of center of node in a
20" pipe, immediately upstream of a seam in the fipe that is businaire to
separate. The SIFT is on the left side of the band-facing downstream with
an upward angle of 18 and due to the band is pitched slightly. The Standard buttle is on the right.

Distance from MH node (feet): 27

(inches) 🤧


SED TRAP SITE DIAGRAM Center of sift is 6.5 in from livert. Top of bottle is 10.5 in above invert. (Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

Control of the same of the second of the same of the s

Pt. Code:	SECTION 2 - MONTHL	Y FIELD CHECK INFORMATION	Hansen ID:
ate: 3 5 10 By: J×6 M56/Maw	Estimated sed. depth per bottle (% by volume & inches): PATMAN - ** Ilie" BS-Bottle - Bottle - Bottle -	Bottles-removed/replaced? O/N &d. Crom If removed which one(s)? primary a secondary composited Final Removal? YAN	Archived ID:
Primary Cham US Bottle	ber Trace amounts of solids accuming the bottom of the chamber's invert.	t. Main pipe was wetted - no standing un-obstructed. Peinstand SIFT at an mulated in chamber, primarily deposited	52-5B 2/2/10- 3/5/10 0940
the bottomine captured solice	where An accumulation of a 14" of so, were of the Chamber wi trace accumulation of the chamber with the scales of the service	olids in average depith by "4" in width alor habit of sollds on face of back filters will be sold observations. Captured stormwater ely full. Trace accumulation of sollds	19en.7g
Photos Taken?(y	In Drainage overview - 1480 ipg captured solids in secondary characters - 1	Primary chamber Wisolids - 1481.jpg mber - 1482-jpg 483.jpg	Tare weight wiid 190, Z
	Estimated sed. depth per bottle (% by volume & inches): **Primary: US Bottle - new DS Bottle - new DS Bottle - cave.)	If removed which one(s)? Gerondary : primary composited Final Removal? YN	Archived ID:
In py	ant notes presence of loafy debvis on 5. Reinstalled sift at an approximate 18 mary is fee of any accomplation has very fory fine silts, a 0.3" deep on average who	ift base and ~ 2" of flowing water "congle. "minimal fines in invest of chamber levery fine welled organics deposited on	YILLIO SIMI 52-573 76.69
- both	le.	ter and a frace of sediment. Reinstalled	
	N No photo taken of bettle secondary chamber		
	Estimated sed. depth per bottle (% by volume & inches): Secondary 1/4" Secondary 1/4" DS Bottle - Layer File DS Bottle - Fines + Bottle - Sil+ Bottle - Sand	Bottles removed/ replaced ? YN If removed which one(s)? Final Removal? N	Archived ID:
Comments: 80 5	te for removal of SIFT and Sod in present. No obstructions o but not on any openings, 0,2	f bottle logening. Debris aroung waster in pipe, flowing wo.54/s	1 No. 14 No. 1
Secondary - This	layer of very fine 51ts colder layer of Fine Sand and 50 and 1/4" thick at back. Ve	If about 3/4" thick toward	161. <i>89</i>
around	the removed full of water, as outside edge of bottom of N 83 - overview	60 Hle. ~ 1/4 to 1/2" depth.	
Describe:	84 Close up of Seco	ondary Chambel	

Pt. Code	SEC	CTION 2 - MONTH	ILY FIELD CHECK INFORMATION	Hansen ID
Date:	Estimated sed. depti volume & inches):	n per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ъу:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -				Sticker
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
Bottle -				
DS Bottle -			· .	
Photos Taken?	Y/N		The state of the s	
Describe:				
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -				Sticker
DS Bottle -				
Photos Taken?	Y/N			
cribe:				

Pt Code:	SECTION 2 - MONTH	ILY FIELD CHECK INFORMATION	Harrisen ID:
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ਰy:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			Holding Sticker
US Bottle -			
DS Bottle -			
Photos Taken?	Y/N		
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	**************************************
Comments:			Holding Sticker
Bottle -			
OS Bottle -			
Photos Taken?	Y/N	The state of the s	
De sc ribe:			

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAPFIELD DATA SHEET

Project Name:	Project No.:	Date:	By: 1×B
Portland Harbor Stormwater Samp.	1020.005	21210	PAR ECH
Site Address: 8675 N Crawford St	Sample Pt Code: 52_5F4	Basin: 52	Hansen ID:

SECTION 1 - INSTALLATION INFORMATION Traffic control and/or site access concerns: Describe flow conditions and depth and/or any standing Light traffic control on quiet street under water at time of install (does river appear to back up into this St. Johns Bridge. line intermittently?): This site is downstream of a government of or government of a No active flow or standing water. However pipe is wested. It's evidence of river backup. SHOULD NOT BE ACCESSED DURING RAIN. Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.): Strapy FADLE, None in main invert. Lateral directly above outlet has NI-Z" of sediment excounting that extends as for as can be seen of piper but starts "IZ" from EOP in MH Chamber. Sed trap bottles installed on: DOWN 5 THEAM

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.): SIFT is installed on downstream side of MH chamber - 2 ft from center of gode out of in from EOP in main ontiet SIFT is anyled upstream at 22° ande.

Pipe diameter (inches): 18

Distance from MH node (feet): 🤈

SED TRAP SITE DIAGRAM

(Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing in Earl Lunmapped using the top of the page as north):

poswetz

.Concrete

Pt Code:	SEC [*]	TION 2 – MONTHL	Y FIELD CHECK INFORMAT	ION	Hansen ID:
Jate: 3 6 10 By: JXB MJ5 MAW	Estimated sed. depth	per bottle (% by Secondary 1,5" DS Bottle - Bottle -	Bottles removed/replaced? D/N If removed which one(s)? 501,444 primare Final Removal? YD	from Yasecondan	ARFSVA
There was chambers	ed. Dignificant ac a significant ac · Remotalled trap	cumulation of ca o at an 24° upr	13	trap housily the trap	52-ST4 212/10- 3/5/10 1007
Enamber DS Bottle - ਤੋਟ ਤਿਕਾਰੇਤ ਹੈ ਤਹੇ। ਹੈਹੀਆਂ ਆਹੇਗ Photos Taken?	condary chamber— t. Average depth a along the bottom in the back fi	in average depth solids accumula of solids deposited vert of the chamb liter screen.	medium sands deposited in by ~2.0" in total width. Hed in chamber were prime in chamber was 11.5" by iter wifine silt adhered to r	arily fine 2301 in the face of	287.49
Describe: Ca	overview of dre sphured solids in pri sphured solids in sr Estimated sed. depth p volume & inches): Primary	inage area—1484. Many chamber—1490 Scondary Chamber	Jpg Jebris adhered to Sing Housing 1486. Jpg Housing 1486. Jpg Bottles removed/replaced? (YN If removed which one(s)? malest polymany? Se	Composited al from ee onclosely	Time weight of jar(t) ha 189.9 Archived ID:
Comments: Entre primary Primary US Bottle - Sm.	Bottle - ant notes leafy debri ry chamber meir. R all coarse gravels, organi	res	e, yet nothing obstructing inlet approximate 18 congle. Ins	~22° caryle i nally Gra 916110	HESE SOLIPS WERE COLLECTED IN A SEPARATE SECOND JAP APART FROM
Photos Taken?(\)	IN coos primary	close up of full 8	r) chambers		the first mouthly check solids, ptb y/c/10
	Estimated sed. depth p volume & inches): US Bottle - Small Bottle - Sand	• •	Bottles removed/replaced? N If removed which one(s)? Final Removal? N		Archived ID:
Comments: On			request. Considerable del Pipe is wolfed, but in invert against sci	- 1	572_574 6/16/16 1150-19 253-19
Seconday N DS Bottle - N at 16	ice accumulation of the court (u/s) to all u/s) to all u/s) to all u/s screen for		silts and fines. Appl. Very fine self ac	cumulation	THESE SCLIDS WE'VE COLLECTED IN A SEPARATE JAHLETON MONTHLY CHECK 1 + 2 SAVCE
Daa!b-:	- Overview - Closenp of S	reondary		h	HEY WE'KE FULL.

Pt. Code:	S	ECTION 2 - MONTH	LY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. de volume & inches):	pth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Arghived ID:
ъy:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:	*		/	
				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. de volume & inches):	oth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
	•			(Holding Sticker
Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. dep volume & inches):	oth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
US Bottle -				Holding Sticker
DS Bottle				
Photos Taken?	Y/N			
scribe:				

Pt. Code:	SECTION	ON 2 – MONTH	HLY FIELD CHECK INFORMATION	Hansep tD;
Date:	Estimated sed. depth pe volume & inches):	r bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
த்y:	US Bottle - [Bottle -	OS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed, depth per volume & inches):	bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
Ву:	US Bottle - D Bottle -	S Bottle - Bottle -	Final Removal? Y/N	
Comments:				
Bottle -				Holding Sticker
DS Bottle -				
Photos Taken?	Y/N		· · · · · · · · · · · · · · · · · · ·	
Describe:				

Sample ID: FO 105698 affix FO number sticker Duplicate sample collected at this site? Y/N Duplicate Sample ID on COC: Any deviations from standard operating procedures? Y/O Describe:	
affix FO number sticker FO/0570 Z Describe:	
OTA.	(A)
Comments: Fred An Equipment Blank on the SIFT was also concluc- on this chain.	ed and submitted

Project POLITLAND HARBOR STOCHWATER SAMP Project No. 1020.005 Location BASIN 52 Date 2/2/10 Subject 3/FT: 1/5 talls By 978, JXB, ECH	U
D942-Arrive on-site AAE 700. Set -up TC and entry equipment. Top-side observations indicate some sediment accomplation. During set-up a Parks Bureau employee informed us there was routine affrophiste application scheduled at the wPCL (adjacent to this site). We agreed they would not apply at this time to avoid potential air borne contamination of sampling equipment prior to installation. 0958-Entrunt confirms gipe sizes and takes photos (1372,pg upsteam).	
1054-Completed installation. (1374, jpg) Photo of finished installation of SIFT+ exended bottle set side-by-side in-situ (1375-jpg) 1106-Arrive en-site at DAE 516. Set up TC + entry equipment This profes has an lateral that can become very with said of flow during ctorist events in this site should not be usited during rainy conditions. Inlet photo (1376), downstream photo (1377)	新日本の 中の大人のまた、一名の古代書を作れています。 の一名の大人の一名の大名の大名の大名の大名の大名の大名の大名の大名の大名の大名の大名の大名の大名
Seament in lateral Inlet (1378). 1158-Completed installation of single SIFT in downstream withet of AMESIL. Photo in-situ (1379). 1315 - Arrive onsite at AAESI3, to install a screened Inline Flow-through (SIFT) Sediment trap. This node has a perched 18" diameter sanitary	
overflow lateral W back-flush valve from St. Johns Pump Station. Visits to this site during storm events should not occur due to increased potential for sanitary over flows from pump station of subsequent engulfment of entrant. Inlet photo (1380.jpg), downstream outlet (1385.jpg), soverflow lateral (1388.jpg), Intrusion of roots into inlet (1386.jpg) Attachments 1418 - Completed installation of a single SIFT in upstream inlet at node AAE 513 (52-512). Photo in-situ (1387.jpg) of SIFT	V

DAILY FIELD REPORT

Page 2 of Z

Project Portland Harbor Stormwater Samp. Project No.	1020.005
Location Basin 52 Date 2/z	110
Subject SIFT Installs By PTB/	DXB/ECH
1434- Arrive on site at AAEYGB to install one SIFT so	ediment trave.
Multiple percined CB laterals. Visits during storm events	
be conducted at this site due to cascading flow from	
entrants. Photos taken at 52-STI include: inlet photo (
downstream outlet (1392.jpg), and abandoned, dead-en	at inlet from
the west (1393.jpg).	
1511 - Completed installation of single STET in do	wastream
1511- Completed installation of single SIFT in do end of manhole vault (77" upstream from outlet ma	in pipe EOP)
Photo M-situ (1394. jpg) of SIFT.	pipe dianiele
마다 등에 가장 하는 것이 되었다. 그런 사람들은 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
[2] 보고 있는 경험 수입 되었다. 그런 보고 함께 보고 함께 보고 있다. 그런 보고 하는 것은 하는 것은 하는 것은 것을 보고 있는데, 그런 것이 없다. [2] 보고 하는 경험에 보고 있는데, 그런 그런 그런 보고 있는데, 그런	21.01.0
BUBLE (INC.) INC. INC. INC. INC. INC. INC. INC. INC.	21014
- 그리고 있는 것이 되는 것도 되는 것을 하는 것으로 되는 것을 되는 것을 보는 것을 보고 있는 것을 보는 것을 보는 것을 보는 것을 보는 것을 보는 것을 보는 것을 보고 있다. 	
마스 마스 마스 마스 마스 마스 마스 마스 마스 프로그 아이트 마스 마스 마스 마스 마스 마스 마스 네트 보는 아이트를 받는 것이다. 1982년 - 1983년 - 1987년 - 1983년 - 1987년 - 1982년 - 1988년	
는 사람이 가장 그렇게 되었다면 하는 것이 되었다면 하면 한 사람이 되었다. 그는 사람이 되는 것이 되었다면 하는 것이 되었다면 하는 것이다. 그렇게 하는 사용 사용을 보고 있다면 보고 있다면 하는 것이 되었다면 되었다면 하는 것이 되었다면 하는 것이 되었다면 하는 것이 되었다면 하는 것이다.	
Attachments	

Project Portland Harbor Stermwater Samp	Project No. 1020 005
Location Basin OFS2	Date 3/5/10
Subject Paily Notes	By JXB MJS / MAW
0909 - Arrive on site at AAE 700 (52-513) loc	ated at N. P. Hsburgh, just
southwest of RXR tracks. This will be the fix	
in Rasin 52 for the FY09-10 Storm season.	
Site 52_ST3 was installed Wa SIFT and a stando	ard sediment trap for a side-
by-side comparison of traps for analytical pury	poses. Both trap types were
in Facked upon (SE & innobstructed. Main pipe is	as metted - no standing water.
Standard sed, trap bottle was capped & remaind	for visual observations, and
then re-installed. Collected captured solids from:	SIFT & archivel in a goz
dark amber sediment jar/0940). [52.573 Photo	< 1480-jpg-1489.jpg]
0458 - On-site at ANFS16 (52-514) located at 8	675 N. Crawford ST. SIFT was
shorted of the inlet opening of the trap was unobsticed of the inlet opening of the trap was unobsticed to trap housing. Removed capture	rucled. Significant las Edebris ed Solids from SIFT & placed
Into an archived 802 sediment jan Large quan	hity of solids, primarily files
Into an archived 802 sediment jar Large quant teinedium Sands & silts captured in both chrumbers of trap. Re [52-STY Photos Catchment are: - 1484.jpg Collection	ed solids from born chambers - 1490/pg
	36_
1038 - DN-site at AAEST3 (52-ST2) located at N.	Brendford of Alta - near St.
Johns Pump Station. SIFT was in facked & unobstruc	ted. There was a build-up of
leaf debris and plustics on trap housing. Cleared del	ons. Main pipe was welled -no
Standing water. Captured solids in SIFT are from	acrily Fino silts. Archived
Captured solids in an 800 sediment Total Re-1	nstalled SIFT at 16 us angle.
52-ST2 Photos overview of cutchment area 1492, jug	y & secondary Chambers 1494.jpg
	Baltimore & Bradford, SIFT
was intacted & met opening of primary chamber w	as unobstructed. Minor build up
Attachments	

DAILY FIELD REPORT

Page <u>2</u> of <u>2</u>

Project Project			Project No. 107 a man		
	and Harbor Stormwater S		Project No. 102c. cos		
Location <u>Basi</u>			Date 3/5-110		
Subject <u>Dail</u>	4 Notes		By JX9/MJS/MAW		
1111 - 52-57	II (cont.) of leaf debris o	n trap housing. I	Main pipe was netted-		
no standing	j water Removed capture	d Solids from	SIFT & archived in a		
	centjar (1117). Collected				
Re-installed	4 SIFT at an upward 180	US ande			
152-STIP)	A SIFT at an upward 180 works Orallage catchmont even	1495, 105 Arch	wheel solids in primary &		
	(AD)				
	3/3//10				
the feet of the feet of	ed each Basin 52 archive	Million and a second of the second of the	shack at the WDCL to		
	the amount of solids ca				
			3/5/10		
	Total weight of jar(+)	Tave weight of Jar (+) Lid /9	3/5/10 Total weight of captured solids(g)		
52-STI	232,23	190.7	= '41.5'		
52-572	725.5g -	188.7	= 36.8 /		
52-573	218, q <u> </u>	190,2	<u> </u>		
52_STY	477.3g -	189,9	= 287.4 <		
Attachments					

DAILY FIELD REPORT

Page Project Parland Harbor Strawer Samp. Project No. 1020.005 Date 46/2010 Location N. Portland Subject SIFT checks BY JUM, PTB, MUS 0959 Arrive on site at 52 STI after approximately 0.1" of vain this morning. Minimal curb/lateral Entrant measured 1.2" of Flowing water in pipe. Ample large grave. in primary chamber. Took photo of primary gravel and secondary chamber of coarse material in material falled TXB to determine fate primary - no fine in primary exclusively course material. Composited fines, sands from secondary into composite lar. consulting wiTXB, discarded primary solick since size is not usually included for inline samples. Re-installed sill ans angle Departed site 1035 52-512 Entrant notes leaty debuts around STFT base 1040 obstructions to trap intel above weir. Approx 05 flowing water in pipe 1DAS Trace solids in primary 0.5" water in secondary. Surpod botton to drain water 450 Composited solids from secondary into composite jar as well as trace solids from 1050 promund angle Departed sile Rejustabled soft e ~ 160 109 Avolve @ 52-514. Entrant notes presence of leady debris trastion base Composified small gravels from primary and fines from secondary into a second 800 jur, This inv is nearly full. Reinstalled 31th departed site 1127 52-513. Entrant notes land debuts, 7.0" flowing water 1137 Composited fine sitts from secondary and minimal accomulation from primary 1141 Removed bottle adjacent to SIFT. Bottle is full, mostly withouter and a 1150 trace amount of solids Reinstalled SIFT a ~ 18° angle. Departed site 1158 Weaphed composite jars, recorded weights on jurs. Gee PAGE 1239 **Attachments**

					POPLTLAND
152 - S2 - S	\$72. ST 3	57.572	52_571	SITE	HAKBOR ST
676.3	295.5	305.7	363.2	VEIGHT JAK+11D +SEDS	PORTLAND HARBOR STORMWATER
212.4	190.2	188.7	1907	JARTUS JARTUS	SAMP 102
463.9	105.3	117.0	172.5	COLLECTED SEDS	1020.005
	26.7	36.8	1.5	MEIGHT PREVIOUSLY COLLECTED	OTFALL SZ MEN
4639	76.6	80.2	131.0	WEIGHT PAGE COLLECTED PAGE	OUTFALL SZ MONTH Z SIFT CHECKS 4/6/10 PTB
				PAGE 252	D

Page ____ of ___

Project Portland Harbor Stormwater Samp Project No. 1020,005 Location N. Baltimeret Bradford basin 52 Date 6-16-10
subject 52-STI Daily field notes By PTB, AJA
1000 On site at 52_STI for removal of
Sed STET per customer panest
Sed SIFT per constoner regnest. Weather has been cold and rainy for all of June. SIFT should have soon ample flow in recent weeks
of June SIFT should have soon ample
flow in recent weeks
1015 SIFT removed Three protos taken
Collected accumulated seds from secondary Chamber
into composite for . Triscarded pop Discarded fine gravels
Into composite for the gravels of Discarded fine gravels from primary chamber.
医骨骨部 医乳腺素 医乳腺性 医乳腺性 医乳腺性 医多种性 经收益 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
Kemored all equipment from manhole
1046 Departed site.
그렇게 되었다. 그는 사람들은 사람들은 사람들이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
1058 On site at FIFE 52-ST2 for removal of
Sed STFT
1115 Removed SIFT Processed Collected material from
both chambers, Removed all gear from node
NOTE: Molly film observed on surface of orchived sedsprior to addition of this
1133 Departed Site.
Attachments with the first transfer of the second of the s

DAILY FIELD REPORT

Page 2 of 2

2DV // / C	
Project PDX Harbor Stmuter Samp	Project No. 1020.005
Location Basin 52	Date 6-16-10
Location Basin 52 Subject 52 - ST4, ST3 daily notes	By PTB, AJA
1140 Arme at 52-ST4, 8675 N. To remove sift per assumer 1	Crawford St
To remove sift per customer 1	equest
	경기 방송하고 그리는 항공보다 - 필요된 발로 열리 공격 회
* using new jar because prev	lions jars are
full *	
1150 Removed Set trap processed mai	ferial into new
vas Removed all equipment.	from Node
[1] 조현 교회 (1965년 - 1일) 19 전 (1965년 1967년 - 19	
1205 departed site.	
[[[[[[[[] [[[] [[] [[] [[] [[] [[] [[]	
1208 Arrival at 52-5t3	
[하기 4] 하는 그 나는 한 학생들은 한 작업을 받는 그리고 하는 사람들은 하는 사람들은 사람들은 사람들은 하는 것이다.	
1215 Entrant notes lots of sediment with some kind of film or rold taken. Removed sed trap and all	- in line
with some beind of film or mold	on it Photo
	offier equipment
per customer request NOTE Archived seds	in for had moldy film on surface
1. 2 Secondary	1 St AME MONTHS SICHMINISTERING
1305 Depart site.	
Attachments	

Portland Harbor Sampling - EID 10'20: 00S Basin 52

Date: <u>6/16/</u> Crew: <u>A₃ ←</u>

						•					
THIS MONTH'S SED ACCUMULATION (g)	ිස <i>් 0 0 0 </i>	= 142.3g	= 161.89	= 253.19	II	II	II		H	II	II
WEIGHT OF PREVIOUSLY COLLECTED SEDS (g)	- 172.59	- [17.009	- 105.33	- NA							
TOTAL COLLECTED WEIGHT (g)	=273.39	759.39	=267.19	= 253.1g	ll .	II		=	11	=	=
TARE WEIGHT OF JAR + LID (g)	- 190.79	- 448-89-188.79 =259.33	- 190.29	- (90.83							
TOTAL WEIGHT SEDS + JAR + LID (g)	464.0 g	448,03	457.39	443,99) . "						
SITE	52-	52 - 572	52 - ST3	52- ST4				V	-	-	

Number of Filters Used:

milliliters (ml.):-

Est. total volume of Ultra Pure

DI used to remobilize adhered...

stormwater solids within bottle in

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Project Name: For Flund	tarber Stormwater Sam	vp	Project Numl	ber: 1020.005	
Sample Processing Conducted By: Sample Pt. Co		Removal Date	: [Processing Date:	
AJA, PTB	SZ-3T1	6/16/10		6/17/10	
Basin: 52	Hansen ID: AAE	Subbasin: NA			
Sediment Trap Location Des					
N Baltimore + Bradf	ord. SIFT located 18".				
	SEDIMENT TRAP PRO				
F ilter Equipment/Met hod:	Portland Harbor, 90-millimeter [Eield Operations (FO) Standar Equipment for Phthalates Teck	rd Operating Procedure	(SOP) 5.01b	conical glass-microfiltration system & Evaluation of Microfiltration 2007	
Filter brand, grade, porosity	in micrometers (µm) and materia	al (e.g., Fisher Scienth	ic. qualitative	P2, 1-5 µm colluloss filter paper);	
SIFT Sediment Trap Bottle ID:	그 하는 그 학생 44년 부분 학생 수 있을 하는 기원 하는 그 사람들은 그는 그 그 사람들은 사람들이 있다.	Sediment Trap E	Bottle ID:		
Weignt Total Est. Depth of Accumula PRE - Hemo G	ated Sed in Bottle (inches). 4/4.	Total Est. Depth	of Accumulat	ted Sed in Bottle (inches):	
Sample Processing Start Time: 9930	Sample Processing End Time: Oau Z	Sample Processi Time:	og Start	Sample Processing End Time:	

Number of Filters Used

milliliters (mL):

Est. total volume of Ultra Pure

DI used to remobilize adhered

stormwater solids within bottle in

Tare Weight [empty jar in grams (g)]: 190.75

POST HOMOGENIZATION Weight of Schs in jur of 1869: 463.85

Dewatered/Eiltered Sed. Weight (g): 273.19

Dewatered/Filtered Sed. Weight (g):

Sample Processing Notes/Comments:

Homogenize Composite Sub-samples

in the orthive collection jur using a

decontaminated stainless steel spatula.

Visual Description of Final Compo	site Sample: V	ery dork gray, sand,	y silts. Mois	\(.	
COC Time (time composite jar is capped): の943		ed/Filtered-Sed. Weight in 73-Iq	Sample Jars Co partial): 3/4 /2	ollected (number, s what B oz . ja	size, full or ✓
Sample ID: FO105694 affix FO numbe		Duplicate sample collected?			
Duplicate Sample ID on COC:		Any deviations from standard	d operating proce	dures? YNA	
affix FO number sticker		Describe:			

4th Fitterseds = 3g

Page _ of Project Portland Harbor Stormwater Somp Project No. 1020.005 Location WPCL Date 6/16/10 Subject Standard Sed Trap Processing Notes BY PTB, ASA 1437 Set up filter apporatus for filtration of the standard sediment bothe from site 52-St3. This bottle was deployed alongside SIFT sediment trap for comparability 1449 Took photo and began processing. Weight to- Weight of UPDI bottle prior to processing 1st Filter applied. Began porring off expernate filter. Notable anaerobic decomposing odor. Trace recoverable solids and very few coarse organic particulates. 1505 2nd filter applied. Resumed filtration with 13 of water/supernate remaining in bottle. Znd filter has recoverable solids 18" in depth very dark The weight fine silts with some coarse organic wood fragments. Scraper off filter and added to composite jar. Weight of jor +1id + 2nd filter scds = 198.64 Thre weight = - 190.4 Weight of secs from 2nd filter = 8. Zg 515 3rd filter applied. Weighed upol bottle prior to ringing bottle = 297.5 q. Resumed filtration. 524 3rd filter has recoverable solids of very fine silts with particulates solids added to composite for weight of proflict 3 filtersels = 204 Twe Weight = - 190.40 1532 4th fifter applied Resumed 543 yth fifter has recoverable solids tine sands with Some coase organic pricles (mostly wood). Solids added to composite jour #3 Weight of in+lidt ALL seds = 207.10 Attachments Weight of UPDI bottle post rinsing = 135.59 297.5g - 135.5g = 162 mL of UPDI water used

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Project Name: Portland L	aclas Star	mula fer Sam	10	Project Nur	mber: 10 ZO. 005	
Sample Processing Conducted		ple Pt. Code:	1		Processing Date:	
ASA, PTB SZ-STZ		•	6/16/10		6/17/10	
Basin: 52	Han	sen ID: AAE 51	3	Subbasin:	NA	
Sediment Trap Location Descr				-1.4		
N BRADFORD & ALTA NEW	r St Johns ()	WP STATION SIFT I	ocated 9" up	stream from	EOP in MH chamber.	
	SEDIMENT	TRAP PROCE	SSING/FILTE	RATION N	OTES	
Filter Equipment/Method: Filter brand, grade, perosity in	Portland Harb [Eield Operation Equipment for micrometers ()	or, 90-millimeter (mn ons (EO) Standard O Phthalates Technica	n) stainless steel perating Procedu nl Momorandum -	filter support v re (SOP) 5.01 - September 1	r/conical-glass microfiltration-system	
Sediment Trap Bottle ID: 52		Sediment Trap Bottle ID:				
Total Est. Depth of Accumulate	ed Sed in Bottle	(Inches): 448.04	Total Est. Depth of Accumulated Sed in Bottle (inches):			
Sample Processing Start Time: 1020	Sample Proce	essing End	Sample Process Time:	sing Start	Sample Processing End Time:	
Number of Eilters Used:			Number of Filter	rs Used:		
Est. total-volume of Ultra-Pure Drused to remobilize adhered stormwater solids within bottle in milliliters (mL):			Est. total volume of Utra Pure DI used to remobilize ashered stormwater solids within bottle in milliliters (mL):			
Tare Weight [empty jar in grams (g ใช้รั ใช่MoGEN) マみつつべ เผ่งให้ อย่ Dewatered/Filtered Sed. Weight (g	16): 447.69	Tare Weight [jar and filtered sed. from Bottle1 in grams (g)]: Dewatered/Filtered sed. Weight (g):				
Sample Processing Notes/Com	moles in	Sample Process	sing Notes/C	omments.		
Homogenized compositions de steel sporn.	aintess					

Visual Description of Final Composit	te Sample: Very lak brown sandu	1 silt. Moist
COC Time (time composite jar is	Total Dewatered/Filtered-Sed. Weight in	Sample Jars Collected (number, size, full or partial)
Sample ID: FO105695	Duplicate sample collected?	
Duplicate Samplé ID on COC: affix FO number sticker	Any deviations from standard Describe:	d operating procedures? Y(NA)

Project Name:

CITY OF PORTLAND

Stormwater Samp

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

Project Number: 1070.005

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Cample 1 100033ling Conducted	ч Бу.	Sample Ft. Code.	Removal Dai	.e.	Processing Date:
AJA, PTB		52-553	6/16,	10	6/16/10
Basin: 5 Z		Hansen ID: AAE 70	0	Subbasin:	
Sediment Trap Location Desci	ription/Ad	dress:			
N P. Hsburgh SW of	PL Tra	chs, SIFT+Stando	rd trups loca	ted in-pipe	16" downstream of EOR in chante
	OFFIE				
		ENT TRAP PROCES			
[Field Operations (FO) Standard Equipment for Phthalates Technic			perating Procedu al Memorandum –	re (SOP) 5.01 - September 1	8. 20071.
Filter brand, grade, porosity in micrometers (µm) and material Fisher scientific, qualitative P5, 5-10.4m ce			.a., Fisher Scien	tific qualitative	e P2, 1-5 μm cellulose filter paper):
Sediment Trap Bottle ID: 5	2-ST3	<u>at taka anan jar</u>			52_ST3_*SIFT
Total Est. Depth of Accumulate	ed Sed in	Bottle (inches): 0.25	Total Est. Deptl	Fof Accumul - HomoGEN	ated Sed in Bottle (inches): 457.3
Sample Processing Start Time: 기니니역		Processing End	Sample Process Time: 1039	sing Start	Sample Processing End
Number of Filters Used:		4	Number of Filter		
Est. total volume of Ultra Pure DI used to remobilize adhered stormwater solids within bottle in milliliters (mL): 162			Est. total volume of Ultra Pure DI-used to remobilize adhered stormwater solids within bottle in milliliters (mL):-		
Tare Weight [empty jar in grams (g)]: 190.49 Dewatered/Filtered Sed. Weight (g): 16.79			Tare Weight [jar and filtered-sed-from Bottle1-in grams (g)]:190-2 POST-HOMOGOGNIZATION WEIGHT of seds in jor u/ 13/6): 457.1 Dewatered/Filtered Sed. Weight (g): 266.9		
Sample Processing Notes/Com Liquid has Strong an odor. Filtrate water is a po	nments:	c decomposing	Sample Processing Notes/Comments: Homogenized composite sub-samples in archive jury using deconved stainless Steel spoon.		
4	-		· · · · · · · · · · · · · · · · · · ·		

SIEL

SIFT VISUAL DESCRIPTION OF FINAL COMPOSITE SAMPLE: Very for L brown Wet silt.

DATE: 417/10 PPL: ASA, PTB PRES NAME: POX HARBOR

TOTAL WEIGHT OF SEDS IN GRAMS: 266.99 SAMPLE JARS COLLECTED: 7/8 Full 8 02 jor

SAMPLE ID: FO105697

CITY OF PORTLAND ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

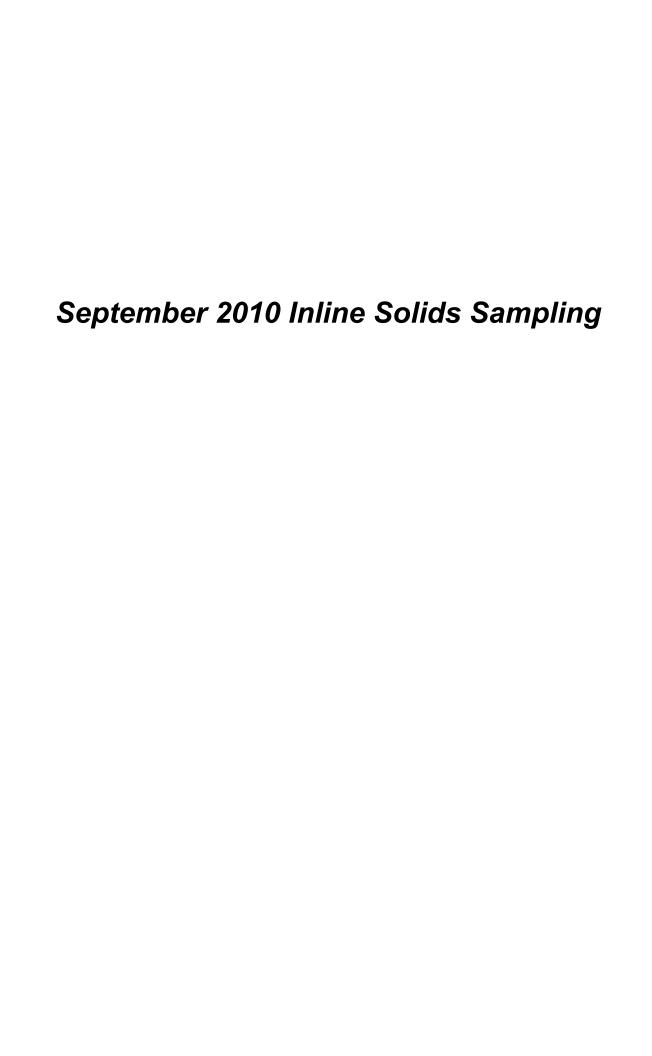
INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

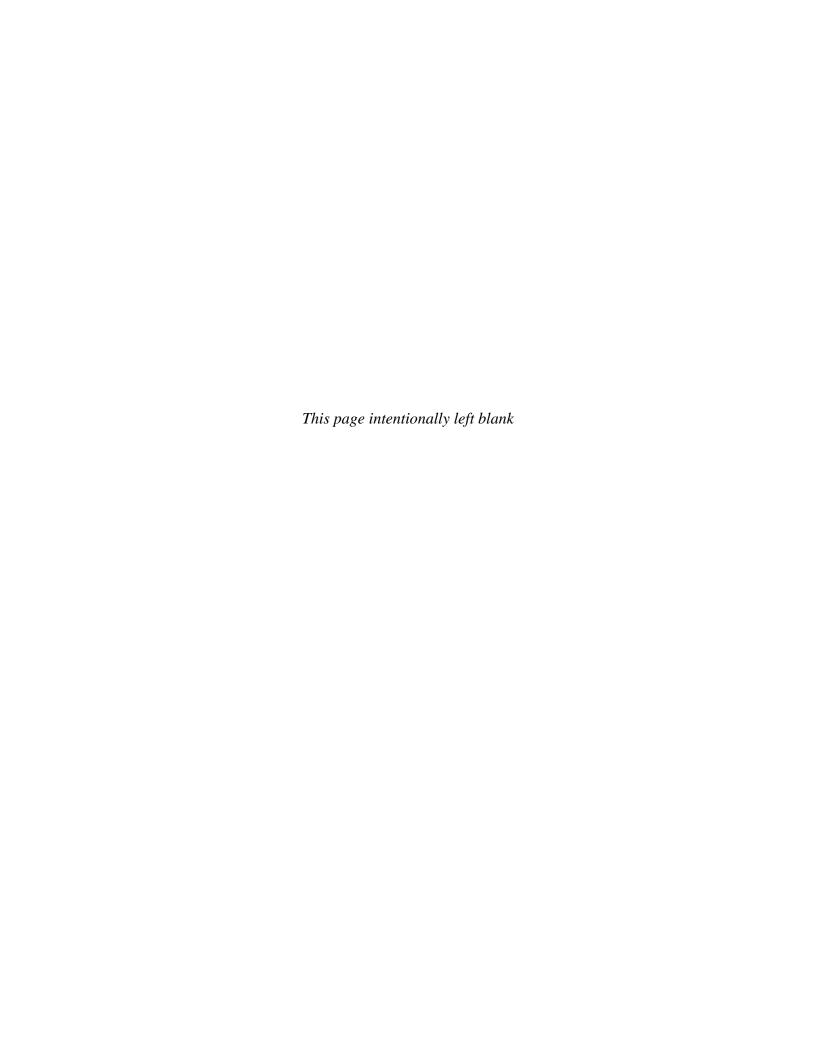
riojectivanie. Portland H	Stormunter San	UND CAN	Projectivui	nder. 1020.005	
Sample Processing Conducted	Sample Pt. Code:	Removal Dat	e:	Processing Date:	
AJA, PTB		52-STY	6/16/10	•	6/17/10
Basin: 52		Hansen ID: AAES	516	Subbasin:	NA
Sediment Trap Location Descri	iption/Ad				
8675 N Crawfor	5+/	SIFT located Z	feet upst	-clown stream	m of center of node.
	SEDIM	ENT TRAP PROCE	SSING/FILT	RATION N	OTES
[Field Operations (FO) Standard Equipment for Phthalates Techni			Operating Procedu	r e (SOP) 5.01	v/conical-glass-microfiltration-system -b-&-Evaluation-of-Microfiltration -8-2007
	microme	t ers (µm) and material ((e.g., Fisher Scien	tifie, qualitativ	e P2, 1-5 µm cellulose-filter paper):
SIFT Sediment Trap Bottle ID: 〜	factor of the		Sediment Trap	Bottle ID:	
Fotal Est Depth of Accumulate	d Sed in	Bottle (inches) 443,	Total Est. Depth	of Accumul	ated Sed in Bottle (inches):
Sample Processing Start Time: 1047_	Sample Time:	Processing End	Sample Proces Time:	sing Start	Sample Processing End Time:
Number of Filters Used (SED)	子ごぞ	GENIZATU.NJ	Number of Filte	rs Used:	
Est. total volume of Ultra Pure JAR 1: 207. 4 SED IN BULL 13709 DL used to remobilize adhered JAR 2: 413.4 JAR 4: 532-63342.4 stormwater solids within bottle in JAR3: 253.1 JAR 5: 556-314.4 milliliters (mL) [FMP TY BULL: 380.4] JAR 6: 556-7317.4 pro-7337.74			Est. total volume DI used to remob stormwater solids milliliters (mL):	ilize adhered	
Person Hender Jack Golden See Acore Rest Honoice No 2470 Neight (g): Dewatered/Eiltered Sed. Weight (g):			Tare Weight [jar and filtered sed. from Bottle1 in grams (g)]: Dewatered/Filtered Sed. Weight (g):		
Sample Processing Notes/Com been collected into three	ments:	otal solids have ate jars over	Sample Process	/ sing Notes/C	Comments:
the duration of destrym combined and homogen bowl then redistribute	rized i	in a deconned		<u></u>	
Sample Jars,					

Visual Description of Final Compo	site Sample: Dark brown very sanely s	il+ with <3% organic purticles. Moist
COC Time (time composite jar is capped): 1142	Total Dewatered/Filtered Sed. Weight in grams (g): 익거나 나	Sample Jars Collected (number, size, full or partial): 3 % (-1/1 8 02 - 1445
Sample ID: FO105698	Duplicate sample collected?	P (Y)N DUPLICATE ID DVP
Duplicate Sample ID on COC: affix FO number sticker FO / 0 5	Any deviations from standar 702 Describe:	rd operating procedures? Y(N)

Page ______ of _____

Project Portland Harbor Stormunter Samp Project No. 1020,005
Location WPCL Date 6/17/10
Subject SIFT Composite homogenization/processing By AJA, PTB
0930 Homogenizing all solids collected into archive jars throughout
deployment prior to submittal. Beginning with 52-STI. Took
photo after nomogenization. Used a decontaminated stainless
Steel Spatish (w/ soupy, tap, 01, Acetone, Methous, upoi) to homogenize the
composite sub-samples in the archive collection jar.
10943 Capped composite jar. Leady for submitted.
1020 Began homogenization. Hotel Strong anaerobic decomposition ador. 1026 (apped composite jor. 1035 Began homogenization. Strong ancerobic decomposition ador. 1038 Capped composite jor.
1020 Began honogenization, Hose Strong anaerobic decomposition ador.
1026 Capped composite jor.
of 52-5T3 SIFT or chapio
1035 Began homogenization. Strong ancerobic decomposition do!
103B Capped composite jal.
1042 52-574 was collected into three separate jars over the
duration of the SIFT deployment Contents of all 3 jars
combined into a deconned stainless steel bowl and homogenized
The first in collected with solids from 2/2/10-3/5/10 has an
orange jelly like substance congented on the surface of the
sediment. Upon removal substance is remarkably comprise.
Homogenized using stainless steel spoon. Weighted seds in bowl=1370
1142 Scooped composite from bowl into 3 8 oz. jurs as with each scoop
into a different for to have them all be equal in amount
Weight of bowl after scooping into jors = 389.49
burs labeled 4,5 &6. that composite was added to
Jar 4 Tare = 190.7g w/ seels = 532.8g Sed weight = 342.1g
Jar 5 Ture = 190.69 w/ seek = 505.09 Seel weight = 314.49 Jar 6 Ture = 191.00 w/ seek = 508.99 Seel weight = 317.99
Attachments Jor 6 Ture = 191.00, w/ seds = 508.93 Sed weight = 317.99 Attachments Total weight = 974.49


DAILY FIELD REPORT



Page 2 of 2

	1 age or
Project Portland Hurber Stormwater Samp	Project No. <u>↓0:20:005</u>
Location WKL	Date 6/17//0
Subject SIFT Composite homogenization/processing	
	BY AJA, PTB
1203 Prepared for SIFT equipment blank.	
120 Performed equipment blank on dec	onned stringes
steel SIFT sediment trap using UPDI	water ran twoigh
the SIFT. Blank to be performed on PCI	3 angeners and
total Metals per astomer regress.	
할머니는 그의 사람이 다일 하는 문에 회원의 경우 등을 가고 있을 때문에 전한 전상을 받는데 그리고 있는 수 있는	[경기 기가 교기하고 말하고 열차되지 않고 있다.
Attachments	

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 9/9/0Page: of 1

Page: 1 of _____

Date:	Printed Name:	Date:				Printed Name:	Print		Date:			Printed Name:	Date: P	Printed Name:
I (Tie)	Signature:	ime				- Samature:	oign.					oignature:	. Illus	o'Guatore:
•	Received By: 4.				Ļ	Received By:	2 Ke		!			Keceived By:	_	<u>a sy:</u> 1.
					د	0	7						_	, , ,
Date:	Printed Name:	Date:				Printed Name:	Print		Date:			Printed Name:	1 Date: 9/4/10-P	
Time:	Signature:	Time:				Signature:	Sign		Time:			Signature:		6
	Relinquished By: 4.				<u>ву:</u> 3.	Relinquished By:	Rel				Ву: 2.	Relinquished By: 2	_	Kelinguisned by: 1.
		•			. •		•	•	•	C	9/7/10	DUP	DUPLICATE	FO105873
												·		
											-			
												-		
					•		•	•	•	1001 C	9/8/10 1	52_14	IL-52-SJB1-0910 ODOT-SJB-WQMH	FO105872
					•		•	•	•	1214 C	9/7/10 1	52_8	IL-52-ANE911-0910 N ALTA & RR TRACKS	FO105871
				-	•		•	•	•	1145 ° C	9/7/10 1	52_13	IL-52-SJB2-0910 DISCHARGE TO AAE685	FO105870
	. *				Total So		TOC	[Sample Sample Time Type	Sample Sa Date T	Point : Code	Location	WPCL Sample i.D.
				· · · · · · · · · · · · · · · · · · ·	ldis		·	ngeners (All 209)	clors - LL	•		: (,	
						-	\dashv					ìе 	Basin 52 Inline	
	Field Comments		Metals	General	Gen	š	Organics		,					
	alyses	Requested Analyses	Requ							SEDIMENT	×	<u> </u>		File Number: 1020,001
		-			•						┙	NE SAN	LAND HARBOR INLI	Project Name: PORTLAND HARBOR INLINE SAMP

DAILY FIELD REPORT

	Page of
Project PORTLAWD HARBOR INLINE SAMP Location BASIN 52 Subject St. Johns Bridge Draining Shinpling	Project No. <u>1028.001</u> Date <u>9/7/10</u> By PTB, MJS, JJM
1129 Arrive on-site SJB2, ODOT my dis Top-side observations show water has p and saffered showers. Water level app still be able to get representative sav	그 발생하는 것 같을 내려왔다고 있는데 하는데 가능하고 모습니?
1145 Sample collected + jors filled. Site given po	pint code 52-13 with
1145 Sample collected & jars filled. Site given por location code 1L-52-5182-0910. Duplicate	collected here
1200 Arrive on-site CB ANE 911.	
■ 사용하는 이 제상하는 말을 하시는데 기계되고, 사용하면 함께 되는 것 되는 가능하다고, 제시되는 사용되는	
1214 Collected sample. Given code 52-8, same samples from this CB.	as previously collected
samples from this CB.	
Attachments	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAND	HARBOR NUNG	= SAMP	Project Number: 10 20.00
Sampling Team:	Date:	Arrival Time	Current Weather Conditions/Last Rain:
JUM, MJS, PTB	9/7/10	1129	overcast/A corple hours ago
Basin: 52	Node: 600 MH	ischaring to AAELOS	
#		<i>y</i>	

Sampling Location Description/Address:

NEDISON STREET AT NPHILADELPHIA AVE

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Standing water at 3" at its deepest. sheen on Describe any flowing or standing water water's surface observed in the line? Does river appear to back up to this No location? Describe rate/color/odor of flow: Are sediments observed in the line? Yes Are sample-able quantities of sediments Yes present in the line? Describe lateral extent of sample-able SEDS ABOVE WATER 4.5" DEEP X LONG X 18" WIDE. SEDS DISTRIBUTED ACROSS MH sediments present in the line: SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent a solids accumulation. 45 DEEP 18" HOPE 12" HOPE LOCATIONS = SEDS AT 1-3" IN DEPTH

NEDISON

Date: 9/7/10	1144	SEC	ΓΙΟΝ 2 - SA	MPLE COLLECTION REPORT Node: ODOT MH ASchorging to				
Sampling Equipment:			Stainless stee □ Other (Descr	ss steel spoon & stainless steel bucket Describe)				
Equipment Decontam	nination p	rocess:	Per SOP7.01					
917/10	Sample t	145	11-57	ntification: (IL-XX-NNNNN-mmyy) ? - らりB2-の910				
Sample location desc	ription: (ı	number of fe	eet from node	of entry) 3 SUB SAMPLES FROM MH CHAMBER				
Sample collection tecl	hnique:		Per SOP	5.01a				
Describe Color of san	nple:	,	Brownish	r gray.				
Describe Texture/Particle size: 70% Scul			70% Sand	s, 20% course gravel, 5% fines, 5% anywor gravels				
Describe visual or olfa bulk sediment sample				Sheen on water's surface Decomposed hydrocarbon odor				
Describe depth of soli	ds in are	a where sar	mple collected	: Panged from 1"-4.5"				
Describe amount and type of debris in sample:			nple:	< 1% glass + plastic				
Amount and type of debris removed from final sample:				None				
Compositing notes: μ	tomogen	ized sa	mple in col	lection breket				
Sample Jars Collected	d (numbe	er, size, full o	or partial)? 5	Full 40z. jars (3 for analysis, 2 for archive)				
If not enough sample collected and related a analyte priority list in v	analytes	sampled (as						
		ł						
FO10	5870							
Lab ID			Dupl	icate sample collected? Dupe ID				
Duplicate sample iden	itification	# on COC:		FO105873				
Any deviations from s	tandard p	procedures:	None					

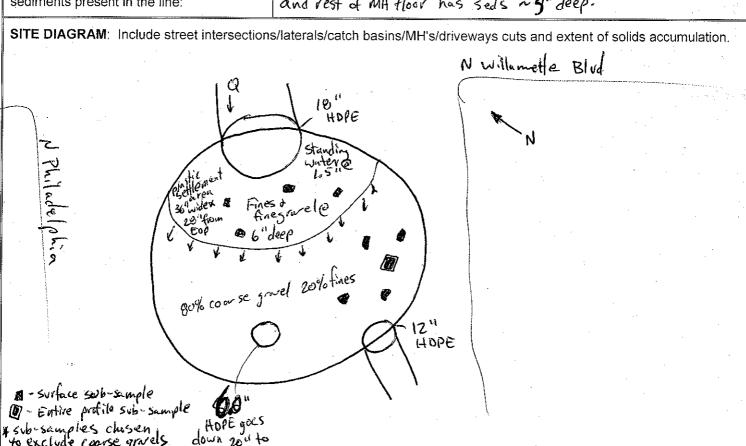
SECTION 3 - PHOTOGRAPH LOG				
Overview of node showing drainage area	6			
Plan view of sediments inline	Photos 1 + 2 of Berns on NE half 3 from Whalf			
Homogenized sample (sediment in bowl)	4+5			
Other?				

DAILY FIELD REPORT

	Page or
Project PORTLAND HARBOR INLINE SAMP	Project No. 22.00i
Location BASIN 5Z	Date 9/8/10
Subject St. Johns Bridge Draininge Sampling	BY AJA, PTB
0940 Arrive on site SIBI St. Johns Reidge Water	- Quality Manhale
at 11 Personal Augustian Harris Aller of	La cope MAH stander
of 40 Arrive on-site SJBI, St. Johns Bridge Water at N Philadelphia Ave & N Williamette Blud. Attempt thwarted by purhed or on MH lid. MH is clear in standing Jater. & Scample-able solids. Will do ent	I day There to Know
and the the util to at	
no standing safer, of sample -agic 301.65. Will do en	
1004 2 11 1 1 1 2 2 2 2 3 3 4 1	
1001 Collected sample from 5161, Homogenized Sample	e of 9 sub-samples.
1001 Collected sample from SJBI, Homogenized sample Filled jars + gave point code 52-14.	
	도로보인 : 이 그리는 것이다는 그는 동안 하를 보고 있을까요? 된 그 위에 나는 그리는 동안 하나 되었다면 하고 있다. 점점이다.
하는 사람들에 함께 가는 그들은 것이 있는 것이 되었다. 그들은 사이를 보는 것은 사람들에 가는 사람들이 되었다. 그는 것이 되었다. - 기본 사람들은 사람들은 사람들은 사람들이 가는 사람들이 되었다. 그는 사람들이 가는 사람들이 되었다. 그는 사람들이 되었다.	
Attachments	

ENVIRONMENTAL SERVICES

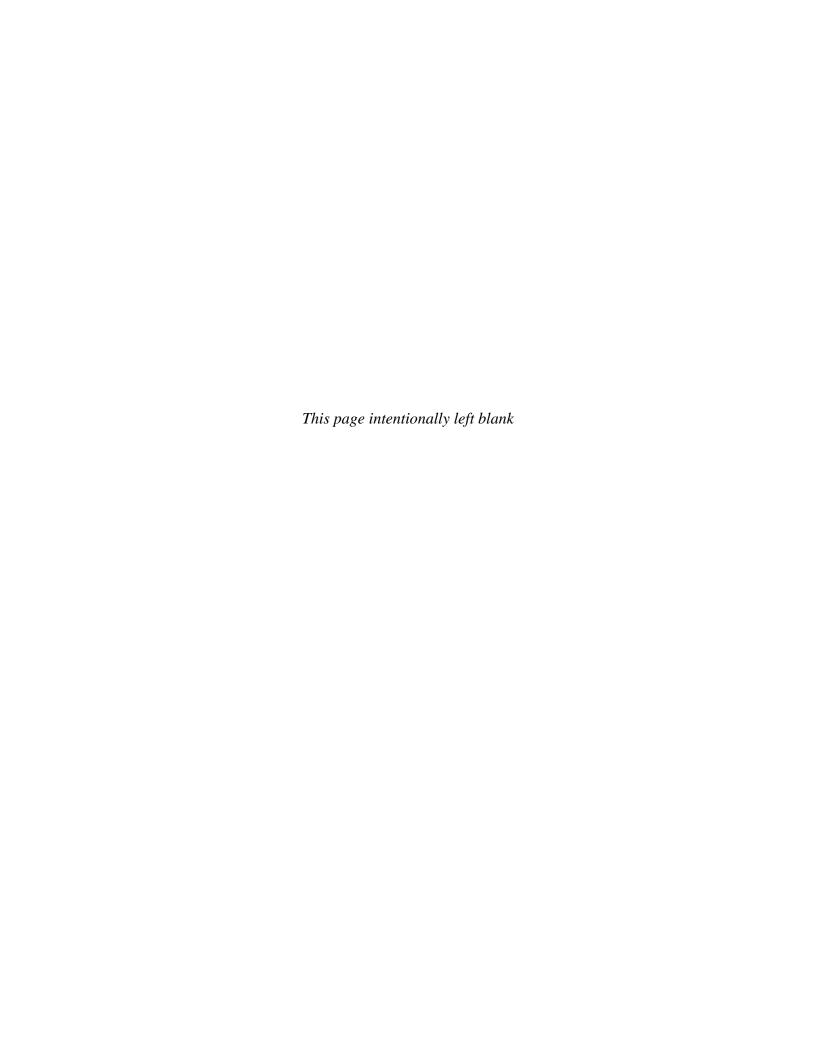
Vater Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

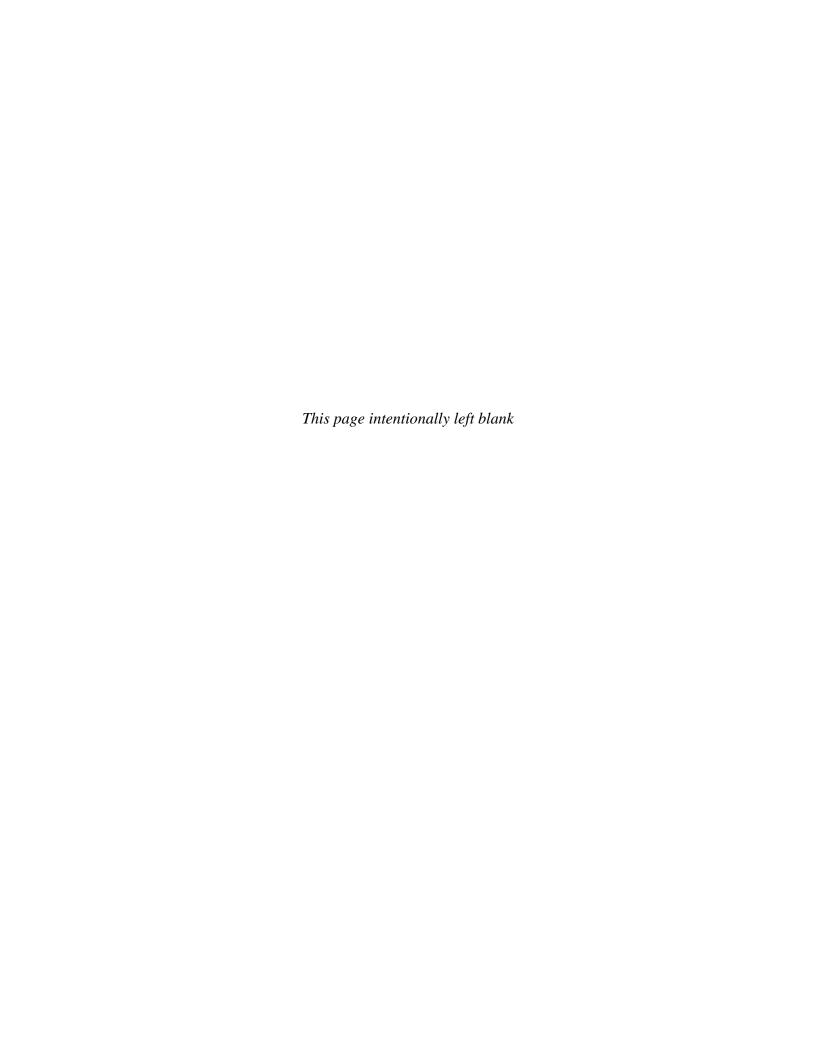

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PARAND	HARBOR INLINE	Samp	Project Number: 1020.001
Sampling Team: ASA, PT 8	Date: 9/8/(0	Arrival Time:	Current Weather Conditions/Last Rain: Sun ny/ Yesterday afterwon ~0.252.
Basin: 52	Node: ODOT 51	B ma wH	Subbasin: NA

Sampling Location Description/Address:

N Philadelphia Ave + N Willamette Blud under st. Johns Bridge


SECTION 1 - PF	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Starting water in settlement orea 1.5" deep
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	res
Describe lateral extent of sample-able sediments present in the line:	entire MH floor has seds. Settlement area has seds vou deep and rest of MH floor has seds ~ 5" deep.


standing water

Date: 9/8/10	SEC	TION 2	SAMP	LE COI	LECTION RE	PORT	Node: C	Toac NUM	+(
Sampling Equipment:		X Stainles □ Other (s steel spo Describe)	on & stainle	ss steel bucket				
Equipment Decontam	ination process:	₽ Per SO □ Other (P7.01a Describe)						ř
9/8/10	Sample time:		16 -	57 -	XX-NNNNNN-mr 31P0 - (865	5			MANAGE STATE OF STATE
Sample location desc	ription: (number of f	eet from n	ode of e	ntry) 4	sub-samples	5. 4 from 5 f	Selling i	area duber.	
Sample collection tech			P 5x			··········			
Describe Color of sam	nple:	Brown	Ň						
Describe Texture/Part	icle size:	90%	sand,	5 % f	he gravel, 5	% Fine	\$		
Describe visual or olfa bulk sediment sample		ontaminati	on in	Non					
Describe depth of soli	ds in area where sa	mple colle	cted:	Runge	from 5 - 6)) >			
Describe amount and type of debris in sample:				< 1%	paper, plastic	o organ	ics		
Amount and type of de	ole:	None							
Compositing notes: [omogenized g	ample	in co	lection	bucket			-	
Sample Jars Collected			?5f	VII 4	02. jar 5				
If not enough sample to fill all of the jars, list jacollected and related analytes sampled (as peanalyte priority list in work order).				-	•				
									-
FO105	5872					3	:		
Lab ID			Duplicate	sample o	collected? Y.N.	Dupe ID	i		
Duplicate sample iden	tification # on COC:								
Any deviations from st	andard procedures:	None	I						

SECTION	3 - PHOTOGRAPH LOG	
Overview of node showing drainage area	52	
Plan view of sediments inline	48-50	
Homogenized sample (sediment in bowl)	51	
Other?		

Water Pollution Control Laboratory 6543 N. Burfington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Bureau of Environmental Servic City of Portland Chair-of-Custody

Work Order #: | ₩ | 10 | 00 Date: 1 6 [[

Collected By:

\		
	Ses	

Client Name: Director's Office	Director'	s Office												Matrix.			100			1-		
Project Name: Portland Harbor	Portland	Harbor								•	,		-	VI CHILLY			5					
											7040							ľ				
Special Instructions:	ns:								_	ימ	nequested Allalyses	<u> </u>	326		-							
Basin 52 Surface Soils	e Soils															· · · · · · · · · · · · · · · · · · ·						
,							7														•	
	Commit	1	d		: Metals	u, Pb, N	210100**									· • • • • • • • • • • • • • • • • • • •			;			
Location ID	Date	Time	Туре	301														атон	# of Containers		Rem	Remarks
52_15	1/6/2011	1400	O	•	•											and a springer late that the same		- ,	N		Are	Area 1
52_16	1/6/2011	1435	O	•	•															<u> </u>	Are	Area 2
52_17	1/6/2011	1330	O	•	•	-							:					-			Are	Area 3
52_18	1/6/2011	1200	O	•	•						!										Are	Area 4
52_19	1/6/2011	1230	ပ	•	•	•	·				• •				<u>-</u>					· 	Are	Area 5
52_20	1/6/2011	1258	ပ	•	•	•	 				- 1	··								: ! 	Are	Area 6
52_21	1/6/2011	1518	O	•	•	•		······································	- 1.2					-	••••					· · · · · · · · · · · · · · · · · · ·	Are	Area 7

rəquiniy qe

8

2

8

8

Portland Harbor - Basin 52 Surface Soil COC (12-22-10).xls

TO BE ARCHIVED

Date: īme:

Received By: Signature:

Date:

Received By: Signature:

ပ

1/6/2011

DUP

1535

1/6/2011

52_22

Date: 1 | | 0 | 11

1500

1/6/2011

52_23

Relinquished Signature: cant Time: 1/2010

J091

名をという

Printed Name:

Area 8

•

Area 9

ö

Page

DAILY FIELD REPORT

____ of _

Page ___

Project FORTLAWD HARSOR Project No. Location BASIN 52 Date 1/6/11 Subject Gurface Soil Gampling Around ANE911. By MJS, PTB 1105 Met with Andrew Davidson, 651 who lived us out on sample location areas, including an additional spot atar CB ANE 911 1135 Began sampling of 52-18. Geored away coarse the gravel Proc to collection into composite bowl. 1200 Began humogenization and filled sample pars for 1210 Began samfling 52-19 1230 Hongemeral sumples and fillet are for 52-19. 1245 Began sampling 52-20 1258 Homogenized samples and filled jars to: 52-20. 10 Began sampling 52 75 17 30 Honogenizea gamples & Alled 340 Beron gampling 52-15.

1435 Homogenized Sumples & filled samplejons and duplicate.

1446 Bezan Sampling 52-23.

1405 Began Sampling

1500 Homogenized Sungles + filled jors

1400 Homogen Eed temples of filled ins. 52-15.

Attachments

City of Portland Environmental Services

DAILY FIELD REPORT

Page _____ of ____

Project PORTZAND HARBOR	Project No.
Location DASIN 52	Date 1/6/11
Subject Surface soil sumpling near ANE911	By M) S, PTB
1510 Begin Sampling 52-21. 1518 Homogenized Sample + filled jars.	
DIO Honogenices surfle 1 tilles 100.	
1526 Began sampling 52-22. Site added by A	Indian Davidson while
on-site. This site is NW of CB ANEGII At base	of N Alla between
composites 52-21 552-20, See m- SITE DIA	
more defail.	
1535 Completed rollection, homogenized sumple + fille	ed jors
1545 Returned to WPCL	
는 있는 것 같은 한 경우를 받는 것을 받는 것이 되었다. 그는 것이 되는 것이 되는 것이 되는 것이 되었다. 	
i de la filipa de la California de la calegación de la como de la California de la como de la como de la como d El control de la como d	
요한 보통하다 하는 사람들이 발표하는 사람들은 사람들이 되었다. 그는 사람들이 되었다. 보다는 사람들은 사람들이 발표하는 것들이 되었다. 사람들이 가장 사람들이 되었다.	
는 사람들은 사용하는 사용하는 사람들이 발생하는 사용이 되는 것이 되었다. 그 것은 것이 되었다. 그 것은 것은 사용하는 것이 되었다. [1988년 - 1988년	
<u> </u>	
Attachments	

NA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET PORTLAND Sample ID: WIIA060 - 01 HAMBOR Sampling Team: Point Code: Arrival Time: Address: NE of Rf Tracks conjucent to cathedral Park Basin: Node: Current weather: Date and time of last known rainfall: Last night SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = ____ in Rate of flow = ____ fps □ Brown ☐ Hydrocarbon Does river back up to this location? Yes or No | If river is backed up: Water Color ☐ Grey ☐ Sanitary Water Odor ☐ Clear Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? Yes or No Avg Depth of seds = _____ in Sed Depth Range = ____ in. to ___ If sediments present: SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations. 1Pon work. PAKKING A-E-916-sumple locations of linensions

				<u> </u>				
Date: , [] (/ 1	SECTION	12 - SAM	PLE CO	LLECTION REI	PORT	Node: AKEA 1	Point Code: 5Z - 15	
Sampling Equipment: 5	Stainless steel utens	sil & stainle	ss steel re	ceptacle Other	(Describe)			
Equipment Decontamination	process: 政Per	SOP7.01a	□ Devi	ations (Describe)		· · · · · · · · · · · · · · · · · · ·	Ann	
1/6/11 1340	-1400 Su	mple Identif	ication Co	de (IL-XX-NNNNI site - Area 1 - 1	N-mmyy) NE of PAL	Tacks adj	incent to p	
Sample location: NA From □		From line		lline, segment is F		·	-	
Sample collection technique	: □ Per SOP5.01e	Dev	riations (de	escribe below)				
Visual and olfactory observe	ations: /∨@ W/⊅ Sh	dor leen scoloration _		Color of sample	È Browr e □ Grey □ Other	n (describe)		
Sample composition/partidistribution (estimated perc	antages. Ollocia	ay <u>65</u> S aposed Orga	and <u>10</u> anics	Fine Gravel <u>10</u> Other (describe)	_ Coarse (Gravel 15	Debris	
If present, type of debris in	•			Removed debris?	, □ Yes (¯	Гуре & Amou	nt) □ No	
	SOP5.01e 由 Dev							
Sample Jars Collected (numb	oer, size, full or part	tial)? U (J11 40Z	jors FEEL	I'ms 1 K	11 8 0Z	jar	
not enough sample to fill all of the jars, list jars ollected and related analytes sampled (as per nalyte priority list in work order).		Jar	Size	Amount Full		Target Analy	yses	
* Yoz. Archive	•			21				
\$ 1802 Avenive								
W11A060-01	:	Duplicate	e sample (ple collected? Y/N)				
Portland Harbor 52_15	n COC:	Dup ID I	·					
Sampled: 04706/11 14:00 Field Data Sheet								
	SECTIO	ON 3 - PI	НОТОС	RAPH LOG				
Overview of node showing dra	ainage area		Filename	e(s): 52-15 Aren 1	overview (or	hing S 010611	<u> </u>	
Plan view of sediments inline			Filename					
domogenized sample (sedime	ent in bowl)		Filename	: 52-15 Aven (Hoini	isenized con	uposite 01061	1	
Other?			Filename	(s): 50/-Sample A	gamp 15mg	ruto		

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Project Name: Pos	Hand Harbe	۲			Sample ID:	VIIA06	0-02
Sampling Team: /ハフち.PTB	Date:	Λ	ival Time:	115	Point Code:		
Basin: 52	Node: Are	1	1 India Time:		52		
Current weather:		er L	·		Address: NE of R	Rtrack	3 behind
	v (as+ 1001	9	<u> </u>	661	BN Alta	· · · · · · · · · · · · · · · · · · ·	
	yeste	uday Pu	ner ing				
S	ECTION 1 - PRI	E-SAMPLIN	NG VISUAL	OBSER	RVATION R	EPORT	
Is there water inline? Yes o					of water =		e of flow =
Does river back up to this loc	cation? Yes or No If r	iver is backed i	up: Water Co	olor 🗆 🤇	Brown Grey Wa Clear	ater Odor	☐ Hydrocarbo
Are sediments observed in the	ne line? Yes or No	Are recov	verable quantitie	s of sedim	ents present in	the line?	
If sediments present: Av	Denth of sade -						
	g Deptit of 3cd3.—		sa bepin Range) = <u> </u>	in. to	in,	
		···			· · · · · · · · · · · · · · · · · · ·		
Estimated dimensions of sed SITE DIAGRAM: Include and extent of solids accum	iment deposit:street intersections/	in. by	in. OR		ar as can be see	en	on/ drivewa
Estimated dimensions of sed	iment deposit:street intersections/	in. by	in. OR erals/catch ba ations.	asins/MH's	ar as can be see	en	Jo- 0
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	in. by	in. OR	asins/MH's	ar as can be see	en low direction	
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	main lines/late	in. OR erals/catch battons.	offer drop b	ar as can be see	en low direction	Jo-co-fen
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	in. by	in. OR erals/catch battons. Canopy Cultings	offer drop b	ar as can be see	en low direction	Jo-co-fen
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	in. by main lines/late ubsample loca	in. OR erals/catch battons. Canopy Cultings	offer drop b	s/pipe sizes/ fl	en low direction	Jo-co-fen
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	in. by main lines/late ubsample loca	in. OR erals/catch battons. Canopy Cultings	offer drop b	s/pipe sizes/ fl	en low direction	Jo-co-fen
SITE DIAGRAM: Include and extent of solids accum	street intersections/ nulation as well as su	in. by main lines/late ubsample loca	in. OR erals/catch battons. Canopy Cultings	offer drop b	s/pipe sizes/ fl	en low direction	Jo-co-fen

Date: 1/6/11		SECTION 2	2 - SAM	PLE CO	LLECTION REP	ORT	Node: Area Z	Point Code:	
Sampling Equipment:	od Stainle	ss steel utensil	& stainles	s steel red	ceptacle Other	(Describe)			
Equipment Decontamin	ation proce	ess: 🗹 Per S	OP7.01a	□ Devi	ations (Describe)				
1 / / /	mple time	Samp 35 Suffac	ole Identifi	cation Co	de (IL-XX-NNNNN -Avea Z- NE of 1	I-mmyy) U-track	s behind h	wilding at 6610 N Alta	
Sample location: F	rom MH cl	namber □ Fr <i>W </i> 4	om line	If from	line, segment is Fr	om Node_	To N	lode	
Sample collection techn	ique: □ P	er SOP5.01e	⊡∕Dev	iations (de	escribe below)	5.619			
Visual and olfactory ob	servations V0V	_ ⊔ Sne∈	r en oloration		Color of sample		(describe) _		
Sample composition/ distribution (estimated	particle siz percentag	\ One Olay	55 sosed Orga	and <u>15</u> anics	Fine Gravel <u>1 D</u> Other (describe)	Coarse G	Gravel <u>⊋⊘</u>	Debris	
If present, type of debri	s in sampl		□ La □ Pla ics □ Pa		Removed debris?	✓ Yes (T	ype & Amoi	unt) 🗆 No	
Compositing notes	Per SOP	5.01e 🖬 Devia	ations (des	scribe)	5.019	**************************************			
Sample Jars Collected (r	number, si	ze, full or partia	1)? 4	-402,	1-80-6 F	h 11			
· · · · · · · · · · · · · · · · · · ·			1	Size	Amount Full		Target Ana	lyses	
	•	archive							
W11A060-	_	· · · · · · · · · · · · · · · · · · ·	Duplicate	e sample o	collected? (Y/N	W11A060-09			
Portland Harboi 52_16 Sampled: 01/06/11 1 Field Data Shee	4:35	COC:	Dup 10 }	fore		Samp	ortland Harbor DUP led: 01/06/11 0 ield Data Sheet	0:00	
		SECTIO	V 3 - PI	НОТОС	RAPH LOG		-		
Overview of node showing	g drainage	э агеа		Filename	e(s): 52-16 Are 20) resien lu	uking 5 0101	61(
Plan view of sediments in	lline			Filename					
Homogenized sample (se	ediment in	bowl)		Filename	: 52-16 Aven 2 Ho	majerized co.	mposite ola	óll	
Other?				Filename	e(s): Sub-Sample E	Soundin	photo		

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave.; Portland, OR 97203-5452

				Comple 1D.	
Project Name: portland H	arbor			Sample ID: Wi	1A060-03
Sampling Team:	Date:	Arrival T		Point Code:	
	1/6/11 Node: A		0	52-1	
	Node: Area 3			Address: NE .	FRR tracks behi
Current weather: Cool , ou	ercust			blds at 66	18 N Alta Rd
Date and time of last known rainfa	all: last nish	+			
	9				
SECTIO	N 1 - PRE-SAM	MPLING V	ISUAL OBS	ERVATION REF	PORT
Is there water inline? Yes or No	If present, water is	s: Flowing or	Standing Dep	th of water = i	n Rate of flow =fps
Does river back up to this location? You	es or No If river is b	packed up:	Water Color	□ Brown □ Grey Water □ Clear	☐ Hydrocarbon Odor ☐ Sanitary ☐ Other
Are sediments observed in the line?	Yes or No Ar	re recoverable	quantities of se	diments present in the	line? Yes or No
If sediments present: Avg Depth of	of seds =	in Sed De	oth Range =	in. to	in
Estimated dimensions of sediment dep	posit:in.	by	in. OR 🗆 A	As far as can be seen	
SITE DIAGRAM: Include street in	ntersections/main li	nes/laterals	/catch basins/N	/IH's/pipe sizes/ flow	direction/ driveways cuts
and extent of solids accumulation	as well as subsam	ple locations			
Cotch Bright ANEqui			eninsula i	von works	
				7.00	
			1-1-	Shavings b	n
A Company of the Comp					
9/48	The same of the sa				
478	18 18 18 18 18 18 18 18 18 18 18 18 18 1	50 D			
A l'deep amons coaise coase		©	8"x1" 1"deep	edse o	t sub-samples ed off the sw f driveway in
A l'deep amons coaise coase	among coorse graves littempted to stony ut of puddles	©	8"x9" 1"deep	Collein	f sub-samples ed off the sw

Date: 1/6/11	SECTION :	2 - SAM	PLE CC	LLECTION REP	ORT	Node: Area 3	Point Code: 52 – 17
Sampling Equipment: Stainl	ess steel utensil	& stainles	s steel re	ceptacle □ Other	(Describe)	11100	1-12-11
Equipment Decontamination pro-	cess: Per S	SOP7.01a	□ Dev	ations (Describe)			· · · · · · · · · · · · · · · · · · ·
Sample date: Sample tim		ple Identifi دو کما (م	cation Co	de (IL-XX-NNNNN Vea 3 - NE of RE	-mmyy) Truchs bel	hind building	at 6618 NAIL
Sample location ☐ From MH o			E				
Sample collection technique:	Per SOP5.01e	☑ Dev	iations (d	escribe below)	•		
Visual and olfactory observation √V	s: 👤 🛚 She	r en coloration		Color of sample		(describe) _	
Sample composition/particle s distribution (estimated percenta	Silu Clay	<u>55</u> Soosed Orga	and <u>5</u>	Fine Gravel <u>3 0</u> Other (describe)	Coarse C	Fravel <u>20</u> [Debris
If present, type of debris in samp				Removed debris?	ves (T laige	ype & Amou	int) 🗆 No
Compositing notes ☐ Per SOF	P5.01e ∰ Devia	ations (des	scribe)	5.01a			
Sample Jars Collected (number, s	size, full or partia	ıl)? 🛂 -	Hozi	1-802 411	Full	······································	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).			Size	Amount Full		Target Anal	yses
1-402 1-802	nrchiva		-				
W11A060-03		Duplicate	e sample	collected? Y(N)		<u></u>	
Dt Portland Harbor 52_17 Sampled: 01/06/11 13:30	COC:	Dup ID F	tere			· · · · · · · · · · · · · · · · · · ·	
Field Data Sheet	<u> </u>						
	SECTIO	N 3 - PI	НОТО	GRAPH LOG			
Overview of node showing drainag	je area		Filenam	e(s): Overyou lookin) NW		
Plan view of sediments inline			Filenam	e(s). Overview love.	~) ×		
Homogenized sample (sediment in	n bowl)		Filenam	e: 52-17 Aven 3 1	Homogeniz	ed composite	010611
Other?			Eilonom	2/21. S. h- Samuel 6		udar	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

			ATA OTILL!
	the BOR		Sample ID: W 4060-04
Sampling Team: Mよら, 作力的	Date: \ \ \ \ \ / //	Arrival Time:	Point Code: 52_18
Basin: 57	Node: ALEA 4		Address: NE of RF Tracks believed
Current weather: Cloudy			poor variation of the
Date and time of last known rainfa	all: Last night.		
SECTIO	N 1 - PRE-SAMI	PLING VISUAL OBSE	RVATION REPORT
Is there water inline? Yes or No N	If present, water is:	Flowing or Standing Depth o	of water = in Rate of flow = fps
Does river back up to this location? Y	es or No If river is bac	cked up:' * Water Color 🛛 🤆	Brown □ Hydrocarbon Grey Water Odor □ Sanitary Clear □ Other
Are sediments observed in the line?	Yes or No . Are	recoverable quantities of sedim	nents present in the line? (es) or No
If sediments present: WAAvg Depth	of seds = in	Sed Depth Range =	in. to in.
Estimated dimensions of sediment de	ALA	yin, OR 🛘 As f	
SITE DIAGRAM: Include street in and extent of solids accumulation CONVERT A-6:46'45'45'14 all dept CMASI	as well as subsample why B-6'x6'x3'' from e thiggine MEA	Dikling and mosty a	
	PAKING LOT		BUILDING

The state of the s							
Date: (/6/11 S	ECTION	2 - SAM	PLE CO	LLECTION RE	PORT	Node AREA 4	Point Code: 52-18
Sampling Equipment: 🌣 Stainless :	steel utensil	& stainles	ss steel re	ceptacle □ Othe	r (Describe)	I	-2-10
Equipment Decontamination process	: nex(PerS	SOP7.01a	□ Dev	ations (Describe)		,	
Sample date: Sample time:	Sam	ple Identifi ee Sa\ (ication Co	de (IL-XX-NNNNN Area LJ-NE of R	N-mmyy) LTracks b	ehirel 6600 M	U Baltimure Ave
Sample location: G From MH chan	nber □ Fr	om line	If fron	ı line, segment is F	rom Node	To No	ode
Sample collection technique: Per S Per Sol 5.01 c. Per S Per	Overying all tary Odo She Disco	en Soloration La	and 5 anics	escribe below) Lyrae(s fri) ected 11to Color of sampl Fine Gravel 5 Other (describe) Removed debris	e ☐ Grey ☐ Other Coarse G	(describe)	9ebris
Compositing notes Per SOP5.0 Sample Jars Collected (number, size,				18- jars 1	FUI 9	07	
If not enough sample to fill all of the jar collected and related analytes sampled analyte priority list in work order).		Size	Amount Full		Farget Analy		
\$ 1402 jor + 1802. j							
W11A060-04		Duplicate	e sample	collected? Y/N			
DI Portland Harbor 52_18 Sampled: 01/06/11 12:00 Field Data Sheet	DC:	Dep (T)	iore				
	SECTIO	N 3 - Pi	НОТОС	RAPH LOG			
Overview of node showing drainage ar	ea		Filenam	e(s): 52-18 Area 4 52-18 Area 4	Overview of	0611 White 1014	ect new 11
Plan view of sediments inline			Filenam		Ocea Alexa I	OCCUPATION OF THE PROPERTY OF	<u>्ञ शस्त्रा</u>
Homogenized sample (sediment in bov	vI)		Filename	e: 52-10 Area	4 Homogen	ized compo	He
Other?			Filename	e(s): Sampling ph	145		

NA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Project Name: ROATZAND Sample ID: W/A060 - 05 HARBOR Sampling Team: MSG, FTB Arrival Time: Point Code: Address: SN EDGE OF PARKING LOT ADDREEM TO 6600 N BALTIMERE AVE Node: Basin: Current weather: OVERLEAST Date and time of last known rainfall: LAST NIGHT SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = ____ in Rate of flow = ____ fps □ Brown ☐ Hydrocarbon Does river back up to this location? Yes or No | If river is backed up: Water Color ☐ Sanitary ☐ Grev Water Odor ☐ Clear □ Other Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? Yes or No Avg Depth of seds = ____ in Sed Depth Range = ____ in. to ____ in. If sediments present: Estimated dimensions of sediment deposit: _____ in. by ____ in. OR □ As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations. CORPLACE AND AND PEER DUMPSTER! CRASSI GRAVEL MARGIERS CRASSI CHEVEL CRASSI CHEVEL ON JOSESS CRASSI CHEVEL ON JOSESS CRASSI CHEVEL ON JOSESS ON JOSESS CRASSI CHEVEL ON JOSESS ON JOSESS CRASSI CHEVEL ON JOSESS ON JOS

KIL THACKS

White the second							
Date: 1/0/11	SECTION	2 - SAM	PLE CO	LLECTION RE	PORT	Node: AREAS	Point Code:
Sampling Equipment: Stainle	ss steel utensi	l & stainles	ss steel re	ceptacle □ Othe	r (Describe)		
Equipment Decontamination proc	ess: Pers	SOP7.01a	□ Dev	ations (Describe)			
Sample date: Sample time 1230 Sample location: From MH cl		ace Soil	(omposi	de (IL-XX-NNNNN C-Afen 5-SWe n line, segment is F	lge of las	kirylot adju	cent to block
Sample collection technique: □ P				escribe below)		10 10	
Visual and olfactory observations N	∷ _ □ She	or en coloration _		Color of sampl		n (describe)	
Sample composition/particle size distribution (estimated percentage	Onlo Glay	70 Soosed Orga	and <u> </u>	Fine Gravel 5 Other (describe)	Coarse	Gravel <u>Í 0</u> D	Debris
If present, type of debris in sampl			rge rocks astic per	Removed debris?	ArYes (Type & Amou	nt) □ No
Compositing notes	5.01e 🗷 Devia	ations (des	scribe) (er 60/5,0/a		<u> </u>	
Sample Jars Collected (number, si	ze, full or partia	al)? 4 (311 40	2. jors 1 1	full 8	07 jars	•
If not enough sample to fill all of the collected and related analytes sample analyte priority list in work order). **I Jor (402) Archived & cz jor work ed W11A060-05	enough sample to fill all of the jars, list jars of the properties of the priority list in work order). Low (Moz.) Archived Boz. Jar archived		Size	Ámount Full		Target Analy	/ses
Portland Harbor		Duplicate	e sample	collected? Y/N	-		
52_19 Du Sampled: 01706/11 12:30 Field Data Sheet	OC:	Oup 10 F	iere				
	<u></u>		-				
	SECTIO	N 3 - PI	НОТО	SRAPH LOG			
Overview of node showing drainage			Filenam	1 52-19 Area	50 vervi	w 010611	4
Plan view of sediments inline			Filenam	32-19 Aven 5	looking IVW	tram Sub-Sum	ple D ologi(
Homogenized sample (sediment in	bowl)		Filenam	52-19 Aven 5 H	onogenized	composite wi	th label 1010611
Other?			Filono	(a) Sub-samples	ampline	photos	

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INI INF SEDIMENT SAMPLING FIR

	L OLDINILIAI (SAMPLING FIELD L	ATA SHEET
Project Name: Partland	Harbon		Sample ID: WII A060 - 06
Sampling Team: Mつ3,PTB	Date:	Arrival Time:	Point Code: 52-20
Basin: 5 3	Node: ALEA (2	Address: Asea (a - 5a) and a f
Current weather: Overtus-	+	· · · · · · · · · · · · · · · · · · ·	Address: Area 6 - Sw edge of banking lot adjacent to 6000.
Date and time of last known rainf			V. Saltimore Ave
SECTIO	N 1 - PRE-SAM	PLING VISUAL OBSEI	RVATION REPORT
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Depth	of water = in Rate of flow = fps
Does river back up to this location?	es or No If river is be	icked up: Water Color 🗀 🤆	Brown □ Hydrocarbon Grey Water Odor □ Sanitary Clear □ Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of sedin	nents present in the line? Yes or No
If sediments present: Avg Depth	of seds = ir	n Sed Depth Range =	in. to in.
Estimated dimensions of sediment de	eposit: in. b	oyin. OR ☐ As f	ar as can be seen
and extent of solids accumulation	as well as subsample Shipping	e locations. stee!	s/pipe sizes/ flow direction/ driveways cuts
		E6"x6"x1"deep	
		DEXE! N'deep	CB ANEGII
		© 8'x8" 1"dec	ep "1"deep
	(pt) O(Pled Steel	Dut
			RR Franck

Date: 1/6/11	SECTION	2 - SAMF	PLE CO	LLECTION REF	PORT	Node: AZEA 6	Point Code: 52-28	
Sampling Equipment: ☑ Stainl	ess steel utens	il & stainles	s steel red	ceptacle □ Other	(Describe)	—	, , , , , ,	
Equipment Decontamination pro	cess: Per	SOP7.01a	□ Devi	ations (Describe)				
Sample date: Sample tim	e: Sam	iple Identific	cation Co	de (IL-XX-NNNNNI - Aren 6-GWels	N-mmyy) je of parki	ng lot adjacent	to 6600	
Sample location: From MH	chamber 🗆 F			NA line, segment is F		: To No	N Ballimere ode	
Sample collection technique:	Per SOP5.01e	VZ Devi	ations (de	scribe below)				
	□ Ode	or	·		₩ Brow	n		
Visual and olfactory observation No	s: □ She	een coloration _		Color of sample	e 🗆 Grey			
Sample composition/particle s distribution (estimated percenta	Olio Ola	y <u>65</u> Sa posed Orga	and <u>/ ()</u> inics< <u>&</u> %	Fine Gravel <u>5</u> Other (describe)	Coarse	Gravel 15 [Debris <u>5</u>	
If present, type of debris in sam		d □ Lar I ☑ Pla nics □ Pa _l	ge rocks stic per	Removed debris?	- Ψ Yes (<u>Cανικ</u>	Type & Amou	nt) □ No	
Compositing notes Per SOI	P5.01e □ Devi	iations (des	cribe)					
Sample Jars Collected (number, size, full or partial)? H Coll 402-jurs + (Coll 802. jur								
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		Jar	Size	Amount Full		Target Analy	/ses	
1802 and 140	z jar							
to be archived								
W11A060-06 Portland Harbor		Duplicate	e sample o	collected? Y/N				
Du 52_20 Sampled: 01/06/11 12:58 Field Data Sheet	OC:	Oup 10 14	iere					
	SECTIO	N 3 - Pl	НОТОС	RAPH LOG				
Overview of node showing draina	ge area		Filename	e(s): 52-20 Area 6 92-20 Area 6	Overview	leoking Niw		
Plan view of sediments inline			Filename		, were te	w woming ye		
Homogenized sample (sediment in	n bowl)		Filename	: 52.70 Aven 6 H	omogenie	ed composite	010611	
Other?				(s): Sur-Gample Ga	-			

MA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET PORTLAND HARBOR Sample ID: WILA060 -07 Project Name: t Point Code: 52-21Sampling Team: Date: Arrival Time: 116/11 MUS, PTB 1510 Basin: 52 Node: AREA Address: Pothole East of ANEGII Current weather: Overcast Date and time of last known rainfall: Last night SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No. If present, water is: Flowing or Standing Depth of water = ____ in Rate of flow = ____ fps □ Brown ☐ Hydrocarbon Does river back up to this location? Yes or No | If river is backed up: Water Color ☐ Grev Water Odor ☐ Sanitary □ Clear ☐ Other Are sediments observed in the line? Yes or No. Are recoverable quantities of sediments present in the line? Yes or No Avg Depth of seds = _____ in Sed Depth Range = _____ in. to _____ in. If sediments present: SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations. 538-54MPLE B. 3'x6"+ 2 IRON WORKS SUB-STAMPLE A - 8"X 10" X 4" ANEGII RN TRACKS

Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AMPLE CO	LLECTION REPO)RT No	ode:	Point Code: 52-Z1		
Sampling Equipment: A Stainless steel utensil & sta	inless steel re	ceptacle □ Other (□		Queen 1			
Equipment Decontamination process: Yer SOP7.	.01a □ Dev	ations (Describe)					
		de (IL-XX-NNNNN-r Area 7- Pothole Ea		炬911	Alama .		
Sample location: ☐ From MH chamber ☐ From lin		line, segment is Fro			ode		
Sample collection technique: Per 508 5.01a	Deviations (de	escribe below)					
☐ Odor Visual and olfactory observations:	r collection	_ Color of sample	Ŋ Brown □ Grey □ Other (de:	scribe)			
Sample composition/particle size distribution (estimated percentages): Silt/Clay 16 Decomposed	Sand <u>20</u> Organics	Fine Gravel 5 (Other (describe)	Coarse Grav	rel <u>5</u> D	ebris		
If present, type of debris in sample ⊵ <metal i<br="">■Corganics in the control of /metal>		Removed debris? ీ	Yes (Type Metal &n XCluded a	e & Amour upst lew + collec-	nt) es □ No fro VI		
Compositing notes Per SOP5.01e Provisions (describe) for SOF 5.01 a							
Sample Jars Collected (number, size, full or partial)? 🕹	1 full 4 o	z. jus. / A11	8 02. 1	v.V			
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	Jar Size	full 4 cz. jws. full 8 cz. jwv Jar Size Amount Full Target Analyses					
1 full 9 02, jor >ARCHIVED							
Lab W11A060-07 Dup	licate sample	collected? Y/N					
Dup Portland Harbor 52_21	alv fress						
SECTION 3	- РНОТО	SRAPH LOG					
Overview of node showing drainage area	Filenam	e(s):					
Plan view of sediments inline	Filenam	e:	·				
Homogenized sample (sediment in bowl)	Filenam	e: .					
Other?	Filename	e(s):					

ENVIRONMENTAL SERVICES

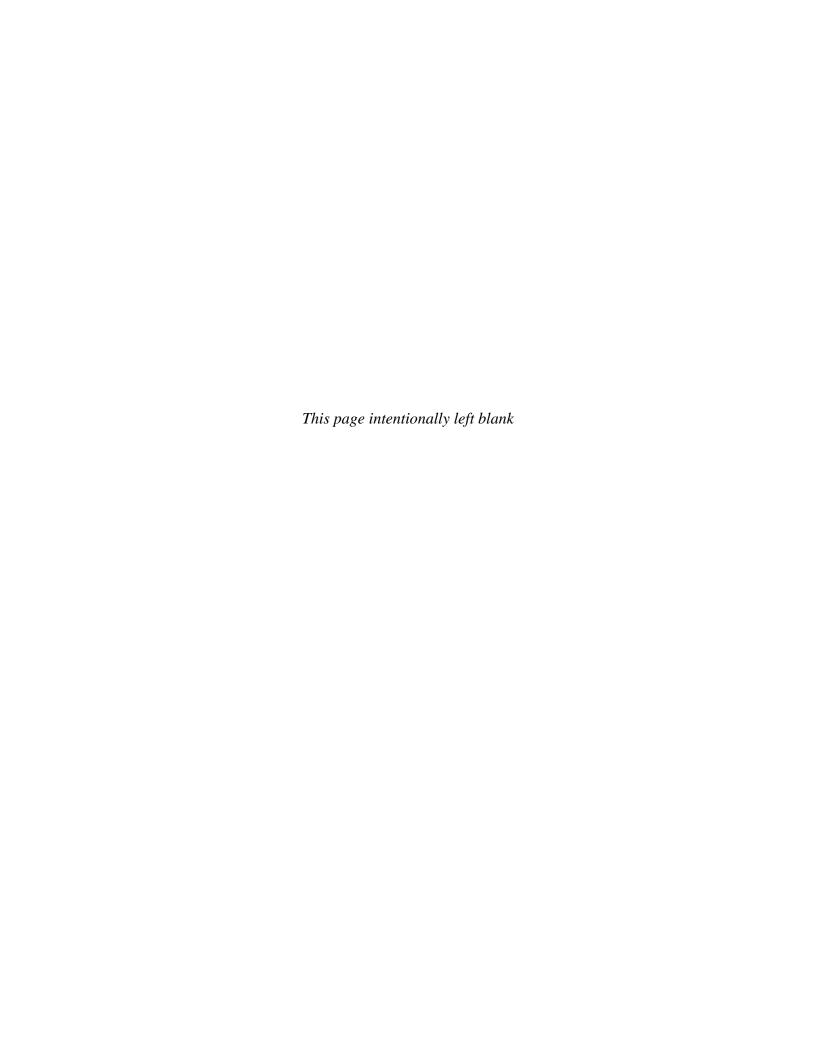
Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

			DATA STILL
Project Name: PORTZANO H	ALBOR		Sample ID: WHA 060 - 08
Sampling Team:	Date: 1/6/11	Arrival Time: 1526	Point Code: 52 – 27
Basin: 52	Node: Area 9		Address: Patholo NW of ANE911
Current weather: Overcast			
Date and time of last known rainfal	1: last night		
SECTIO	N1- PRE-SAM	PLING VISUAL OB	SERVATION REPORT
Is there water inline? Yes or No	If present, water is:	Flowing or Standing De	pth of water = in Rate of flow = f
Does river back up to this location? Ye	s or No If river is ba	cked up: Water Color	☐ Brown ☐ Hydrocarbon ☐ Grey Water Odor ☐ Sanitary ☐ Other ☐
Are sediments observed in the line?	es or No Are	recoverable quantities of s	ediments present in the line? Yes or No
If sediments present: Avg Depth o	f seds = ir	sed Depth Range =	in. to in.
Estimated dimensions of sediment dep	osit: in. b	yin. OR 🗆	As far as can be seen
and extent of solids accumulation a	ASPHALT	PREA INDIVINA	MH's/pipe sizes/ flow direction/ driveways cu

Date: 1/6/11 SECTION 2	- SAMI	PLE CO	LLECTION REPORT	Node: AREA 9	Point Code: 52 - 22
Sampling Equipment:	stainles	s steel red	ceptacle		~
Equipment Decontamination process: Per SC	P7.01a	□ Devi	ations (Describe)		
Sample date: Sample time: Sample 1/6/11 1526-1535 Suffect	e Identifi & S.i.	cation Cod	de (IL-XX-NNNNN-mmyy) - Aven 9 - Pothole NW) of ANE911	
Sample location N ^A □ From MH chamber □ From	m line	If from	line, segment is From Noo	de To N	lode
Sample collection technique: Per SOP5.01e PCL SOR 5.01a	⊅⊋ Devi	iations (de	escribe below)		
Visual and olfactory observations: ☐ Sheer	loration _			ey er (describe) _	
Sample composition/particle size distribution (estimated percentages): Silt/Clay Decomposition	25 Sa	and 40 anics	Fine Gravel <u>25</u> Coarse Other (describe)	e Gravel 10	Debris
☐ Wood If present, type of debris in sample ☐ Metal ☐ Organic	🗆 Pla		Removed debris?	(Type & Amo	unt) □ No
Compositing notes ☐ Per SOP5.01e ♣ Deviati	ions (des	scribe) <table-cell></table-cell>	15.0 a		
Sample Jars Collected (number, size, full or partial)	? 4 fr	11 402.	jors full 802. jo	~	
f not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		Size	Amount Full	Target Ana	lyses
* 1802 just 1402 jor to be excluded					
.ab W11A060-08	Duplicate	e sample (collected? Y/N\		44.
Folialia Harpor	Septiti				
SECTION	3 - PI	НОТОС	RAPH LOG		
Overview of node showing drainage area		Filename			
Plan view of sediments inline		Filename			
Homogenized sample (sediment in bowl)		Filename	e:		
Other?		Filename	e(e):		

ENVIRONMENTAL SERVICES


Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAND H	ARBOR		Sample ID: \$ W 11A060 - 10
Sampling Team: MSS, ITB	Date: 1/6///	Arrival Time:	Sample ID: \$ W 11A060 - 10 Point Code: 52 - 23
Basin: 52	Node: AKEA &	,	Address: SW & KL TRACKS ALLACEUT TO STJOHNS PS. EGGENERALFO
Current weather: FOGIOVENA	AST	,	1355-1255-17
Date and time of last known rainfa	II: LAST NIGHT		*
SECTIO	N1-PRF-SAM	IPLING VISUAL ORS	SERVATION REPORT
Is there water inline? Yes or No	· · · · · · · · · · · · · · · · · · ·		oth of water = in Rate of flow = fps
Does river back up to this location? Y	es or No If river is ba	acked up: Water Color	☐ Brown ☐ Hydrocarbon ☐ Grey Water Odor ☐ Sanitary ☐ Clear ☐ Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of se	ediments present in the line? Yes or No
If sediments present: Avg Depth of	of seds =i	n Sed Depth Range =	in. toin.
Estimated dimensions of sediment de	posit: in, b	pyin. OR 🛛 /	As far as can be seen
and extent of solids accumulation	g"x8"x2" Cleved W gravel	Canory Canory Cixc Cixc	MH's/pipe sizes/ flow direction/ driveways cuts FENCED APER WATTACLS
	1	STATION	

Date: 1/6/11 SECTION	ON 2 - 8	SAMPI	-E COL	LECTION	REPORT	Node: ALEA E	Point Code: 52-23	
Sampling Equipment: Stainless steel ut	ensil & st	ainless	steel rec	eptacle 🗆	Other (Describe)			
Equipment Decontamination process: 寅ɪ	Per SOP	7.01a	□ Devia	tions (Descr	ibe)			
Sample date: Sample time: 1445 1500 5	Sample Id	dentifica	ntion Cod posite -	e (IL-XX-NN Aven 8-90	NNNN-mmyy) of lettricles and	arent to St	Lokus Pump	
Sample location: ☐ From MH chamber	□ From I	ine	If from	line, segmer	nt is From Node_	To No	Station ode	
Sample collection technique: ☐ Per SOP5.0	1e 🗴	Devia	tions (de	scribe below)			
	Odor Sheen _ Discolora			Color of s	≜ x Brown ample □ Grey □ Other	(describe) _		
Sample composition/particle size Silt/ distribution (estimated percentages):	Clay <u>60</u> omposed	∑_San d Organ	d <u>/ </u>	Fine Grave Other (des	/O Coarse C	Gravel <u>ZU</u> [Debris	
If present, type of debris in sample	Vood letal rganics	□ Larg □ Plast □ Pape	tic	Removed de	ebris? □ Yes (T	ype & Amou	nt) - □ No -	
Compositing notes Per SOP5.01e To Deviations (describe) Per SOP 5-01 ALL TO BE ARCHIVED								
Sample Jars Collected (number, size, full or p	artial)?	46	11 4 02.	govs.	1 full 802.	JW ALL ARA	TO BE	
f not enough sample to fill all of the jars, list ja collected and related analytes sampled (as pe analyte priority list in work order).	irs	Jar Size Amount Full Target Anal			yses			
W11A060-10		<u></u>						
Portland Harbor 52_23								
Sampled: 01/06/11 15:00 Field Data Sheet	Du	plicate s	sample c	ollected? Y/	<u>(1)</u>			
Duplicate sample identification # on COC:	Ď.	p IO He	På.					
				-				
SECT	ION 3	- PH	отос	RAPH L	OG			
Overview of node showing drainage area		F	ilename	(s): 52-23,	Free 8 Overview 1	ocking NW	01664	
Plan view of sediments inline			ilename			<u>l</u>	-	
Homogenized sample (sediment in bowl)	<u></u>	F	ilename	52-23 A	ren 8 Homogenized	loupusite o	i 0611	
Other?	······································	F	ilename	(s):				

June 2008 Inline Solids Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review June 2008 Inline Solids Sampling City Outfall Basin 52

To: File

From: Karen Demsey, GSI Water Solutions, Inc. (GSI)

Date: November 17, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source investigation sampling event conducted by the City of Portland (City). Three inline solids samples (FO 080840, FO 080841 and FO 080842) and one duplicate inline solids sample (FO 080843) were collected in Outfall Basin 52 on June 26, 2008, and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed below:

- BES WPCL
 - o Total Solids SM 2540G
 - o Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 (Modified)
- Analytical Resources, Inc.
 - o Grain Size ASTM D421/422

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Laboratory duplicate precision within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the laboratory analyses are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

No analytes were detected in the method blanks.

Surrogate Recoveries

No surrogate recovery exceptions are noted in the WPCL report.

Matrix Spike/Matrix Spike Duplicate

TA reports that the MS or MSD result exceeds the control limits for TOC analysis. The laboratory did not indicate this QC exception impacted the analytical results. No MS/MSD recovery exceptions are noted in the WPCL report.

Laboratory Control Samples

An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit. No LC recovery exceptions are noted in the WPCL report.

Other

The WPCL report includes the following notes in relation to PCB analysis:

• For samples FO 080840, FO 080841 and FO 080843, the report states that non-PCB components interfered with quantitation of Aroclor 1254 at the low concentrations detected; the detected concentrations of Aroclor 1254 in these samples are therefore reported as estimated values.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

6/26/2008

| _으 |

Page:

Collected By:

RCB/WCR/LAP

			.A					ŀ)C.xls	s:\eid\1000\1020.001\Sampdoc\Lbwer Harbor Sed COC.xls	s:\eid\1000\1020.001\Sar	
Date:	Printed Name:		Date:			**	Printed Name;	감		Date:			Printed Name:	6/26/08 Pri	iona Kluch	X
Time)) (1) (5) (8)	Time	-			Signature:	Sis		Time:			Signature:	Es 2 SS.	and line	, K-
	Received By: 4.		2:478] 42		ω	₽V.	Received By:	Z)				2	Received By:			Naccelved by:
Date:	Printed Name:		Date			22	Printed Name:	킖		Date:			Printed Name:	Co/2608	"MANOY CIBELS TOWN	Bacelivad B
Time:		in de la companya de La companya de la companya de	Times		•		Signature:	Sig		Time:			Signature:	165 /	13	Tinted Name
	Relinquished By: 4.	ingi inte	mes-		3	Relinquished By:	inquis	<u>,</u>				Ву: 2.	Relinquished By:		ed By: 1.	Somethics:
		a desired to a		·	! 											
			· · · · · · · · · · · · · · · · · · ·					 '				ļ				
							-									
			N STANSFERENCE		<u> </u>		+-	-				ļ	<u> </u>			
		ا درون المحادث	e de la managada de la companya de					 								
			Section (September 2)													
			overesses and	•			•	•	•	C		6/26/08	DUP	DUPLICATE	. 0 000843	-
				•			•	•	•	C	1458	6/26/08	52_3	IL-52-AAE513-0608 N ALTA & BRADFORD		ָר ת ס כ
				•			•	•	•	n	1108	6/26/08	52_2	IL-52-AAE569-E-0608 N BURLINGTON & CRAWFORD	FO 080841	7 O
			Magazoort vita-	• 1	·		•	•	•	C	0921	6/26/08	52_1	IL-52-AAE553-0608 N BURLINGTON & RR	FO 080840	FC
			way processor		Total Met	J. W. 11 012	Total Sol	TOC	PCB Aro	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.	WPC
			sagend of the constraint of th	Cu, Pb, Zn	lals				clors - LL				*	West Control of the C		
			personal social soci)										OUTFALL 52		i.
	Field Comments	a-1. 1.	S	Metals	H		General	ြို့								
	Requested Analyses	ed A	leques	יג						i i	SEDIMENT	Matrix:			File Number: 1020.001	File N
												MP	INE SA	Project Name: PORTLAND HARBOR INLINE SAMP	t Name: PORTL	Projec

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

09:21

Sample ID: FO080840

Sample Collected: 06/26/08 Sample Received: 06/26/08

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

N BURLINGTON & RR CROSSING

Report Page: Page 1 of 2

Address/Location:

IL-52-AAE553-0608

AM06039

Sample Point Code:

52_1

System ID: EID File #:

1020.001

Sample Type:

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL	· · · · · · · · · · · · · · · · · · ·				
TOTAL SOLIDS	82.1	% W/W	0.01	SM 2540 G	07/01/08
METALS			•		
ARSENIC	1.94	mg/Kg dry wt	0.50	EPA 6020	07/03/08
CADMIUM	0.72	mg/Kg dry wt	0.10	EPA 6020	07/03/08
COPPER	106	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	23.7	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	588	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS			•		·
POLYCHLORINATED BIPHENYLS (PCB)		•			
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	EST 26	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	29	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS		÷			
TOTAL ORGANIC CARBON	36000	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI		•			
Clay (<3.2 μm)	1.78	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 μm)	21.86	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μ m)	0.91	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 μ m)	2.54	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μm)	9.09	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μ m)	19.73	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	25.09	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μ m)	16.76	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	0.45	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 μm)	< 0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 μm)	0.89	Fract %	0.01	ASTM D421/422	07/16/08

Report Date: 08/26/08

Validated By:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080840 Sample Collected: 06/26/08 09:21 Sample Status: COMPLETE AND

Sample Received: 06/26/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 2 of 2

Address/Location: IL-52-AAE553-0608

N BURLINGTON & RR CROSSING

Sample Point Code: 52_1

System ID: AM06039

EID File #: 1020.001

Sample Type:GRABLocCode:PORTHARISample Matrix:SEDIMENTCollected By:RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (75-32 μm)	0.92	Fract %	0.01	ASTM D421/422	07/16/08
Silt (9-7 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080840

<u></u>

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080841 Sample Collected: 06/26/08 11:08

Sample Received: 06/26/08

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location: IL-52-AAE569-E-0608

N BURLINGTON & CRAWFORD

Sample Point Code:

Sample Type: **GRAB** Sample Matrix:

52_2

SEDIMENT

Report Page: Page 1 of 2

System ID:

AM06040

EID File #: LocCode:

1020.001

Collected By: RCB/WCR

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	84.9	% W/W	0.01	SM 2540 G	07/01/08
METALS					
ARSENIC	2.09	mg/Kg dry wt	0.50	EPA 6020	07/03/08
CADMIUM	0.29	mg/Kg dry wt	0.10	EPA 6020	07/03/08
COPPER	33.6	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	70.7	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	109	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	EST 27	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	23	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	5500	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI			<i>‡</i>		
Clay (<3.2 μm)	1.97	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 μm)	3.06	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μ m)	10.80	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 µm)	20.91	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 µm)	31.12	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μm)	8.08	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	2.85	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μm)	11.79	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 µm)	0.66	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	1.32	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 μm)	0.66	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 μm)	1.97	Fract %	0.01	ASTM D421/422	07/16/08

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO080841	Sample Collected: 06/26/08	11:08	Sample Status:	COMPLETE AND
1 0000041	Sample Received: 06/26/08		•	VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Repo	rt Page:	Page 2 of 2
--	----------	-------------

Address/Location: IL-52-AAE569-E-0608 AM06040 N BURLINGTON & CRAWFORD System ID:

EID File #: 1020.001 Sample Point Code: 52_2 **PORTHARI** Sample Type: **GRAB** LocCode:

Collected By: RCB/WCR Sample Matrix: SEDIMENT

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (75-32 <i>µ</i> m)	4.80	Fract %	0.01	ASTM D421/422	07/16/08
Silt (9-7 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08
			and the second s		

End of Report for Sample ID: FO080841

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080842

Sample Collected: 06/26/08 Sample Received: 06/26/08 14:58

COMPLETE AND Sample Status:

VALIDATED

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-52-AAE513-0608

N ALTA & BRADFORD

Sample Point Code:

52_3 **GRAB**

Sample Type: Sample Matrix:

SEDIMENT

Report Page:

Page 1 of 2

System ID:

AM06041

EID File #:

1020.001

LocCode:

PORTHARI

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

			B # TO I	Method	Analysis Date
Test Parameter	Result	Units	MRL	Wethod	
GENERAL			0.01	SM 2540 G	07/01/08
TOTAL SOLIDS	53.1	% W/W	0.01	31VI 2040 G	07701700
METALS			0.50	EDA 6000	07/03/08
ARSENIC	7.67	mg/Kg dry wt	0.50	EPA 6020 EPA 6020	07/03/08
CADMIUM	0.93	mg/Kg dry wt	0.10		07/03/08
COPPER	1240	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	81.6	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	649	mg/Kg dry wt	0.50	EPA 6020	07/03/00
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PCB)		•		ED 4 0000	07/02/08
Aroclor 1016/1242	<10	μ g/Kg dry wt	. 10	EPA 8082	07/02/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	114	µg/Kg dry wt ⋅	10	EPA 8082	07/02/08
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS					07/08/08
TOTAL ORGANIC CARBON	120000	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI				4 OTM D 401 /400	07/16/08
Clay (<3.2 μm)	4.46	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 µm)	21.47	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μ m)	4.89	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 µm)	4.25	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μ m)	7.84	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μm)	4.32	Fract %	0.01	ASTM D421/422	
Medium Sand (2000-850 μm)	16.73	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μ m)	11.32	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 µm)	2.55	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 µm)	3.83	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 µm)	7.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 µm)	2.55	Fract %	0.01	ASTM D421/422	07/16/08
Silt (75-32 μm)	8.13	Fract %	0.01	ASTM D421/422	07/16/08
		1			

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080842

Sample Collected: 06/26/08

14:58

Sample Status: COMPLETE AND

VALIDATED

Sample Received: 06/26/08

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE513-0608

N ALTA & BRADFORD

System ID:

AM06041

Sample Point Code:

52 3

EID File #:

1020.001

Sample Type:

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (9-7 μm)	0.64	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080842

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO080843

Sample Collected: 06/26/08 Sample Received: 06/26/08 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

DUPLICATE

Sample Point Code:

DUP

System ID:

AM06042 1020.001

Sample Type:

GRAB

EID File #: LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

· · · · · · · · · · · · · · · · · · ·					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL				0110540.0	07/04/00
TOTAL SOLIDS	83.1	% W/W	0.01	SM 2540 G	07/01/08
METALS				ED 4 0000	07/02/09
ARSENIC	1.39	mg/Kg dry wt	0.50	EPA 6020	07/03/08 07/03/08
CADMIUM	0.56	mg/Kg dry wt	0.10	EPA 6020	
COPPER	117	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	22.0	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	431	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS				•	•
POLYCHLORINATED BIPHENYLS (PCB)		•		FD4 0000	07/02/08
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μ g/Kg dry wt	. 10	EPA 8082	07/02/08
Aroclor 1254	EST 22	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	21	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS	-				07/00/00
TOTAL ORGANIC CARBON	35000	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 \(\mu\min)\)	1.25	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 µm)	19.36	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μm)	. 1.35	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 µm)	3.81	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μm)	11.87	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μm)	24.66	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	17.46	Fract %	0.01	ASTM D421/422	
Medium Sand (850-425 μm)	17.33	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 µm)	1.25	Fract %	0.01	ASTM D421/422	07/16/0
Silt (32-22 µm)	0.83	Fract %	0.01	ASTM D421/422	07/16/0
Silt (7-3.2 μm)	0.83	Fract %	0.01	ASTM D421/422	07/16/0

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080843

Sample Collected: 06/26/08

00:00

Sample Status: COMPLETE AND

Sample Received: 06/26/08

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page: Page 2 of 2

Address/Location:

DUPLICATE

System ID:

AM06042

Sample Point Code:

DUP

EID File #:

1020.001

Sample Type:

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

		-		Analysis
Result	Units	MRL	Method	Date
0.01 <0.01	Fract % Fract %	0.01 0.01	ASTM D421/422 ASTM D421/422	07/16/08 07/16/08
	0.01	0.01 Fract %	0.01 Fract % 0.01	0.01 Fract % 0.01 ASTM D421/422

End of Report for Sample ID: FO080843

Report Date: 08/26/08

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 30, 2008

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/26/08 17:45. The following list is a summary of the Work Orders contained in this report, generated on 07/30/08 16:04.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	<u>ProjectNumber</u>
PRF0963	Portland Harbor	36238

TestAmerica Portland

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 07/30/08 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 080840	PRF0963-01	Soil	06/26/08 09:21	06/26/08 17:45
FO 080841	PRF0963-02	Soil	06/26/08 11:08	06/26/08 17:45
FO 080842	PRF0963-03	Soil	06/26/08 14:58	06/26/08 17:45
FO 080843	PRF0963-04	Soil	06/26/08 00:00	06/26/08 17:45

TestAmerica Portland

Howard Holmes, Project Manager

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203

Portland Harbor Project Name:

Project Number: 36238 Project Manager: Jennifer Shackelford

Report Created: 07/30/08 16:04

Total Organic Carbon

TestAmerica Tacoma

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0963-01 (FO 080840)	Soil Sampled: 06/26/08 09:21								
Total Organic Carbon	9060	36000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
						_				
PRF0963-02 (FO 080841)		Soil			Samı	oled: 06/26	/08 11:08		
Total Organic Carbon	9060	5500		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
PRF0963-03 (FO 080842)	Soil Sampled: 06/26/08 14:58								
Total Organic Carbon	9060	120000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
PRF0963-04 (FO 080843)		Soil			Samı	oled: 06/26	/08 00:00		
Total Organic Carbon	9060	35000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	

TestAmerica Portland

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

36238 Report Created: 6543 N. Burlington Ave. Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 07/30/08 16:04

Total Organic Carbon - Laboratory Quality Control Results TestAmerica Tacoma QC Batch: 33831 Soil Preparation Method: NA REC (Limits) RPD MDL* MRL Source Spike Analyte Method Result Units Dil (Limits) Analyzed Notes Result QC Source: PRF0963-01 Matrix Spike (104901S) Extracted: 07/08/08 11:21 Total Organic Carbon 9060 50600 2000 mg/Kg 1x 36000 10000 146% (76-128) 07/08/08 11:21 QC Source: PRF0963-01 Duplicate (104901X) Extracted: 07/08/08 11:21 Total Organic Carbon 9060 35300 2000 mg/Kg 1x 36000 (20) 07/08/08 11:21 Blank (580-33831-1) QC Source: Extracted: 07/08/08 11:21 Total Organic Carbon 9060 ND 2000 mg/Kg 1x 07/08/08 11:21 QC Source: Extracted: 07/08/08 11:21 LCS (580-33831-2) Total Organic Carbon 9060 5500 2000 1x 3400 162% 07/08/08 11:21

mg/Kg

TestAmerica Portland

Howard Holmes, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford07/30/08 16:04

Notes and Definitions

Report Specific Notes:

F - MS or MSD exceeds the control limits

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting -Limits Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic Signature - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager

Test/America

11720 North Crock Pkwy N State 400, Bothell, WA 98011-8244 11922 F. First Ave. Spokane, WA 99206-5302 9405 SW Nambus Ave. Beaverton, OR 97008 7145

than the Common and Appendix St., Also Anchorage, AK 9080 (2.1), for

425-420-9200 FAX 420-9210 L.... 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

ANALYTICAL TESTING CORPO	RATION					00000) , ¬
	CHAIN OF CUSTO	ODY REPORT		W	ork Order,#:		
CLIENT: City of Portland		INVOICE TO:	A CONTRACTOR OF THE PROPERTY O		TURNA	ROUND REQUEST	
REPORT TO Jennifer Shace	Charles Lytte			in Business Days * Organic & Inorganic Analyses 7 5 -4 3 2 1 -1			
PHONE: FAX:		P.O. NUMBER. 36238		7	(77) Petroleum	Hydrocarbon Analyses	
		PRESERV	ATIVE		5 4	3 2 1 <	IJ
PROJECT NAME: Portained Harbor-							
PROJECT NUMBER: Inline Scap		REQUESTED /	NALYSES	* 7		Specify: ss than standard may incur I	Bush Charges
SAMPLED BY:	ر يو ع					!	
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE TIME	Size (OC)				MATRIX # OF (W, S, O) CONT.	LOCATION - COMMENTS	WO ID
FO 080840 6/26/08 092	$21 \times X$				S 2		
841) 110					5 2		
842 (145					5 2		
843	XX				5 2		
4 313							
<u>s</u>							
6							
7							
8							
19			2				
RELEASED BY. Acret Chut PRINT NAME: Rona Kuch FIRM	CT + P. M.	DATE 6/26/08	PRINT NAME: Rold	>	FIRM:	DATE: 6	126/18
PRINT NAME: RELEASED BY: PRINT NAME: FIRM	City of Portlane	DATE: 6/26/08.	RECEIVED BY James of	tret	— 17 Tu	DATE	[24]
PRINT NAME: 1964 FIRM	741	TIME: 1300	PRINT NAME 3. Ivela	n y l	FIRM:	TEMP: S,S	1.43
TA1-1099 0907		11.45				PAG	E OF

TestAmerica Sample Receipt Checklist Work Order No. Received by: Unpacked by: Logged-in by: Client: "(section B) *(section A) Date:(¿ Project: Initials: Time: L Temperature out of range: Not enough Ice No Ice Ice Melted ***ESI Clients (see Section C) W/in 4 Hours Other. plastic glass NA (oil/air OR ESI client) Temperature Blank: Cooler Temperature (IR): Sample Status: Custody Seals: (# (If N circled, see NOD) Signature: Y N Dated: Received from: General: None Intact? Ν TA Courier Container Type: # Containers Match COC? Υ Senvoy Ν none given #Cooler(s) UPS IDs Match COC? Ν #Box(s) Fed Ex For Analyses Requested: _None (#Other: Client Cyanide checked? Υ Ν TDP Coolant Type: Correct Type-& Preservation? Ν **USPS** Gel/ Blue Ice Adequate Volume? Υ Ν SDS Loose Ice Mid-Valley Within Hold Time? Ν None GS/TA Volatiles/ Oil Quality: Packing Material: GS/Senvov VOAs/ Syringes free of Headspace? Υ Ν **Bubble Bags** Other: TB on COC? not provided Υ Ν NA Styrofoam Cubbies Metals: Peanuts HNO3 Preserved? Υ Ν NA Other: None (Dissolved Metals Filtered? Υ Ν NA *ESI Clients Only: FED EX/ UPS: Was the tracking paper keepable? YES Temperature Blank: °C not provided DIGI #1 #2 If circled NO, what is the Tracking number? All preserved bottles checked FED EX NA (voas/soils/all unp.) Goldstreak **UPS** DHL Other: ____ All preserved accordingly? N (see NOD) NA (voas/soils/all unp.) **Project Managers:**

(Initial/Date)

PM Reviewed:

Comments:

July 16, 2008

Mr. Howard Holmes Test America, Inc. 9405 SW Nimbus Ave. Beaverton, OR 97008

Subject: Project No.: PRF0963;

ARI Project No.: ND94

Dear Mr. Holmes,

The following pages provide the information you requested. Please call me to discuss any questions or comments you may have on the data or its presentation.

Best Regards,

Analytical Resources Incorporated

taylor Mckenzie for Harold Benny Harold Benny

Geotechnical Division Manager

206-695-6246

haroldb@arilabs.com

Enclosures

cc: File ND94

Client: Test America, Inc. ARI Project No.: ND94

Client Project No.: PRF0963

Case Narrative

- 1. Four samples were submitted for grain size distribution according to ASTM D421/D422.
- 2. A standard "milkshake" mixer was used to disperse the samples.
- 3. An assumed specific gravity of 2.65 was used in the calculations.
- 4. Sample PRF0963-03 contained abundant organic material, which may have broken down during the sieving process, affecting grain size analysis.

Date: 7/16/08

- 5. The data is provided in summary tables and plots.
- 6. There were no further anomalies in this project.

Approved by: <u>Fuylor McKenzre</u>
Title: Lead Technician

SUBCONTRACT ORDER

ND 94

TestAmerica Portland PRF0963

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Analytical Resources, Inc. (ARI) 4611 S 134th Place, Suite 100

Tukwilla, WA 98168
Phone :(206) 621-6490
Fax: 206-621-7523
Project Location:

Receipt Temperature:

°C

Y / N

Ice:

Analysis	Units	Due	Expires	Comments	Ą.
Sample ID: PRF0963-01	Soil		Sampled: 06/26/08	3.09:21	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 09:21	sub to Analytical Resource	es Inc (ARI)
Containers Supplied: 8 oz. jar (A)			·		
Sample ID: PRF0963-02	Soil		Sampled: 06/26/08	3 11:08	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 11:08	sub to Analytical Resourc	es Inc (ARI)
Containers Supplied: 8 oz. jar (A)		•			
Sample ID: PRF0963-03	Soil		Sampled: 06/26/08	14:58	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 14:58	sub to Analytical Resourc	es Inc (ARI)
Containers Supplied: 8 oz. jar (A)					
Sample ID: PRF0963-04	Soil		Sampled: 06/26/08	00:00	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 00:00	sub to Analytical Resourc	es Inc (ARI)
Containers Supplied: 8 oz. jar (A)					

7- 2-08 3:15 Released By Date/Time

Date/Time

Released By

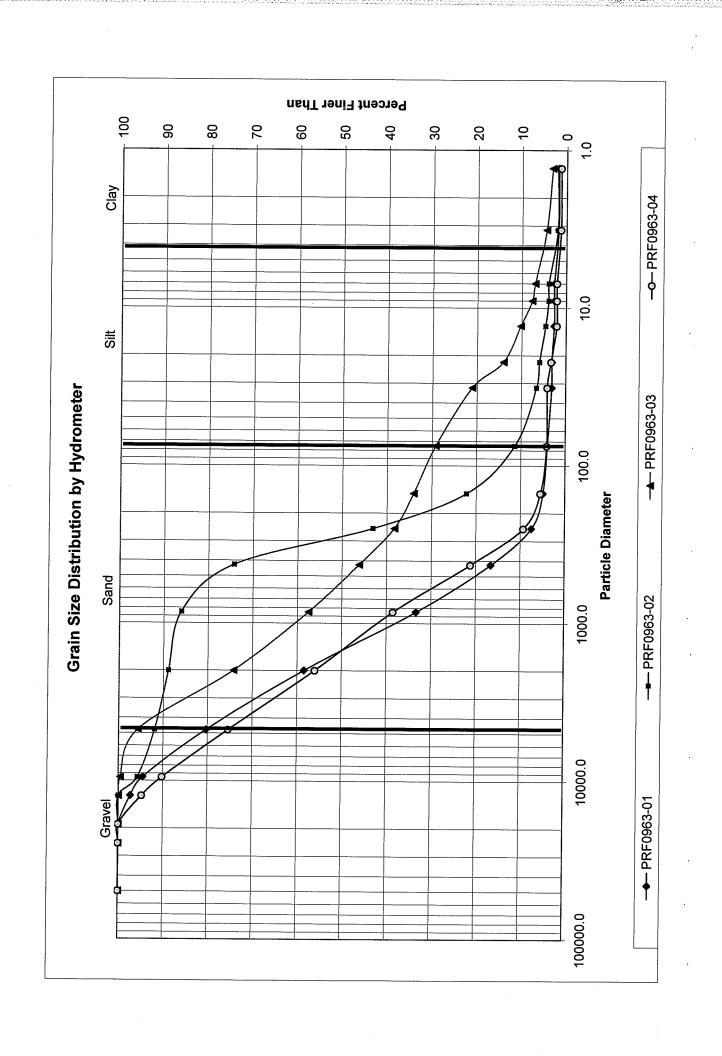
Received By

7/3/cv 1000

Received By Date/Time

Page 1 of 1

Test America, Inc. PRF0963


			_		_
	1.3	1.8		3.2	1.2
	3.2	1.8	2.0	4.5	1.2
	7	2.7	3.9	7.0	2.1
	6	2.7	3.9	7.7	2.1
	13	2.7	4.6	10.2	2.1
	22	3.1	5.9	21.0 14.0 10.2	3.3
	32	3.1	6.6	21.0	4.2 4.2
Φ	#200 (75)	4.0	11.4	29.2	4.2
Percent Finer (Passing) Than the Indicated Size	#100 (150)	4.9 4.0	43.1 22.2 11.4 6.6	34.1	5.5
the Indic	#60 (250)	7.5	43.1	38.3	9.3
g) Than	#40 (425)	16.6	74.2	46.2	21.2
(Passin	#20 (850)	33.3	86.0		38.5 21.2
ent Finer	#10 (2000)	58.4	88.9 86.0	74.2 57.5	56.0
Perce	#4 #10 (4750) (2000)	80.3 58.4 33.3 16.6 7.5	91.9	95.7	75.3 56.0
	3/8"	94.5	95.8	9.66	90.2
	1/2"	97.3	100.0	100.0	94.7
	3/4"	100.0	100.0	100.0	100.0
	1"	100.0	100.0	100.0	100.0
	2"	100.0	100.0	100.0	100.0
	Sieve Size (microns)	PRF0963-01 100.0 100.0 100.0 97.3 94.5	PRF0963-02 100.0 100.0 100.0 100.0 95.8	PRF0963-03 100.0 100.0 100.0 100.0 99.6	PRF0963-04 100.0 100.0 100.0 94.7 90.2

Testing performed according to ASTM D421/D422

Test America, Inc. PRF0963

Percent Retained in Each Size Fraction

Description)%	%Coarse Gravel	vel		% Gravel		% Coarse Sand	% Medium Sand	m Sand	ŏ	% Fine Sand	_	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt	% Clay
Particle Size (microns)	3-2"	2-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	1-3/4" 3/4-1/2" 1/2-3/8" 3/8"-4750 4750-2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	2-6	7-3.2	<3.2
PRF0963-01	0.00	0.00	00.0	2.75	2.76 14.22	14.22	21.86	25.09	16.76	60.6	2.54	0.91	0.92	0.00	0.45	0.00	0.00	0.89	1 78
PRF0963-02	0.00	0.00	0.00	0.00	4.24	3.84	3.06	2.85	11.79	31.12	20.91	10.80	4.80	99.0	1.32	0.66	00.0	197	1 97
PRF0963-03	0.00	0.00	0.00	0.00	0.40	3.92	21.47	16.73	11.32	7.84	4.25	4.89	8.13	7.01	3.83	2.55	0.64	2.55	4 46
PRF0963-04	0.00	0.00	0.00	5.25	4.57	4.57 14.84	19.36	17.46	17.33	11.87	3.81	1.35	0.01	0.83	1.25	0.00	0.00	0.83	1.25

September 2008 Catch Basin Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review September 2008 Inline Solids Sampling City Outfall Basin 52

To: File

From: Julia Fowler, GSI Water Solutions, Inc. (GSI)

Date: November 11, 2008

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source investigation sampling event conducted by the City of Portland (City) in September 2008. Nine inline solids samples (FO081100 through FO081106, FO081108, and FO081109) and one duplicate sample (FO091107) were collected in Outfall Basin 52 on September 9 and 10, 2008.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - o Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - o Total Metals EPA 6020
- TestAmerica (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Analytical Resources, Incorporated (ARI)
 - o Grain size ASTM D421/422

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Laboratory duplicate precision within laboratory control limits.
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

A method blank was processed during the subcontracted laboratory analysis of TOC. TOC was detected at 5.9 milligrams per a kilogram (mg/Kg) in the blank sample. This value is greater than the method detection limit but below the method reporting limit of 100 mg/Kg. The laboratory did not indicate this detection impacted the analytical results. No issues with regard to method blank detections are noted in the WPCL report.

Surrogate Recoveries

No surrogate recovery exceptions are noted in the WPCL report.

Matrix Spike/Matrix Spike Duplicate

No MS/MSD recovery exceptions are noted in the WPCL report. MS/MSD samples were not utilized as part of the subcontracted laboratory analysis.

Laboratory Control Samples

An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit. No LC recovery exceptions are noted in the WPCL report.

Other

The WPCL report includes the following notes in relation to PCB analysis:

- FO081100 (52_4), FO081101 (52_5), FO081105 (52_9), FO081108 (52_11): "Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap)."
- FO081102 (52_6): "Detected PCB appears to be a mix of Aroclors, predominantly Arclor 1260 with some 1016/1242 and 1254; concentrations are flagged as estimates due to high surrogate recoveries and pattern overlap."
- FO081103 (52_7), FO081107 (DUP): "Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids."
- FO081104 (52_8): "PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte."
- FO081106 (52_10): "MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences."

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services Charles Castons

Date: 9/10/2008

Page:_ 을 1 1

Collected By:

RCB/JXB/LAS

		İs	52 (8-27-08).x	mp COC - OF	or Inline Sa	ortland Hart	\Sampdoc\	Simple of the sample of the sample of the sample of the sample of the samp coc. Of 52 (8-27-08) xis	C:::::::::::::::::::::::::::::::::::::
Printed Name: Date:	Date:	Frinted Name:		Date:				WIN SHOOK	S:HEID (1000) AND
	Time:	Signature:		Time:			Signature:		rinted Name
Received By: 4.		Received By: 3.				1 2	Received By:		ignature.
Printed Name: Date:	Date:	Printed Name:		Date:			The state of the s	2/10 Q	KANDY C BELSION
Signature: Time:	lime:	G.					inted Name:	Date: 1	rinted Name:
Relinguished By: 4.		Kelinquished By: 3.		ime:			Signature:	Time: //25	ignature:
		Н					elinguisho		Veninhalien DA'.
	•	•	•	O .	0905	9/10/08	52_12	N Bradford & RR Tracks	FO 081109
2 jars only - no grain size analysis	2 ja	•	•	ဂ	0820	9/10/08	52_11	N Baltimore & Bradford	FO 081108
		•	•	0		9/9/08	PLP	DUPLICATE	FO 081107
Dode t changed back to original - PHA	•	•	•	C	1449	9/9/08	52_10	IL-52-MAZ-162-0908 V Crawford & St Johns Br	FO 081106
	•	•	•	С	1415	9/9/08	52_9	8675 N Clawford, 1912 652 9	FO 081105
	•	•	•	С	1336	9/9/08	52_8	IL-52-ANE911-0908 N Alta & RR Tracks	FO 081104
		•	•	C .	1153	9/9/08	52_7	IL-52-ANE921-0908 PIW Parking Lot	FO 081103
2 jars only - no grain size analysis	2 je	•	•	С	1116	9/9/08	52_6	IL-52-AAE651-0908 N Pittsburg & RR Tracks	FO 081102
		•	•	C	1010	9/9/08	52_5	IL-52-ANE815-0908 N Burlington & Crawford	FO 081101
			•	C	0925	9/9/08	52_4	IL-52-ANE813-0908 N Burlington & RR Tracks	FO 081100
		Total Sol	PCB Aroo	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
	als (As, Cd li, Ag, Zn)	e	clors - LL						
	, Cr, Cu,					NG G	IN SAMPL	OUTFALL 52 CATCH BASIN SAMPLING	
Field Comments	Metals	General)						
Analyses	Requested Analyses			TN	SEDIMENT	Matrix:)1	File Number: 1020.001
				•		MP	INE SA	TLAND HARBOR IN	Project Name: PORTLAND HARBOR INLINE SAMP

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081100

Sample Collected: 09/09/08

09:25

Sample Status: COMPLETE AND

VALIDATED

Sample Received: 09/10/08

Report Page:

Page 1 of 1

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP IL-52-ANE813-0908

System ID:

AM08407

N BURLINGTON & RR TRACKS

EID File #:

Sample Point Code: Sample Type:

52_4

LocCode:

1020.001 **PORTHARI**

Sample Matrix:

COMPOSITE **SEDIMENT**

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					÷
TOTAL SOLIDS	98.9	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS	·				
POLYCHLORINATED BIPHENYLS (PCB)					•
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 29	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	38	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	22500	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI		•			
Clay (<3.2 µm)	2.18	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	19.98	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	4.30	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 µm)	4.67	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 µm)	7.32	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	22.96	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	19.60	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	11.28	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	0.82	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	1.09	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	0.82	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.45	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	1.44	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	1.09	Fract %	0.01	ASTM D421/422	09/12/08
•			*		

End of Report for Sample ID: FO081100

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081101 Sample Collected: 09/09/08 10:10 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 1 of 1

Address/Location: IL-52-ANE815-0908

N BURLINGTON & CRAWFORD System ID: AM08408

Sample Point Code: 52_5 EID File #: 1020.001
Sample Type: COMPOSITE LocCode: PORTHARI

Sample Matrix: SEDIMENT Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	91.3	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS				•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 30	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	28	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	35900	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI	4				
Clay (<3.2 µm)	3.10	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	16.88	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	6.37	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	6.54	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	9.07	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μ m)	20.02	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	14.07	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	10.89	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	0.69	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 μm)	2.76	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 µm)	3.45	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.41	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	3.06	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	0.69	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081101

Report Date: 10/08/08 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081102

Sample Collected: 09/09/08 Sample Received: 09/10/08 11:16

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-52-AAE651-0908

N PITTSBURG & RR TRACKS

System ID:

AM08409

Sample Point Code:

52_6

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1016/1242 and 1254; concentrations are flagged as estimates due to high surrogate recoveries and pattern overlap.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	95.1	% W/W	0.01	SM 2540 G	09/12/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)				•	
Aroclor 1016/1242	EST 37	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 108	μg/Kg dry wt	10	EPA 8082 ,	09/24/08
Aroclor 1260	EST 203	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	63800	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08

End of Report for Sample ID: FO081102

Validated By:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081103

Sample Collected: 09/09/08 Sample Received: 09/10/08 11:53

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

AM08410

IL-52-ANE921-0908 PIW PARKING LOT

System ID:

Sample Point Code:

52 7

EID File #:

1020.001 **PORTHARI**

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids.

Test Parameter	Result	Units	MRL	Method	Analysis Date
	Nesult	Ointo	1411 / [Medica	
GENERAL		a. 14.04.	0.04	01405400	00/40/00
TOTAL SOLIDS	47.3	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1221	<40	μ g/Kg dry wt	40	EPA 8082	09/24/08
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1254	EST 33	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1260	60	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
OUTSIDE ANALYSIS			•	•	
TOTAL ORGANIC CARBON	64100	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay ($<3.2 \mu m$)	5.38	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	9.75	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.63	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μm)	9.20	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	11.33	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	6.32	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μ m)	12.32	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	11.58	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μ m)	2.69	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 μm)	4.31	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 µm)	5.38	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	4.31	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	5.63	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μ m)	2.15	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081103

Validated By:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081104

Sample Collected: 09/09/08

13:36

Sample Status: COMPLETE AND

Sample Received: 09/10/08

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-ANE911-0908 N ALTA & RR TRACKS

System ID:

AM08411

Sample Point Code:

52_8

EID File #:

1020.001

Sample Type:

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE **SEDIMENT**

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte.

Test Parameter	Result	Units	MRL.	Method	Analysis Date
GENERAL	· · ·				
TOTAL SOLIDS	90.3	% W/W	0.01	SM 2540 G	09/10/08
METALS		•			•
ARSENIC	7.42	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	0.59	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	563	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	5000	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	272	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.036	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	321	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.84	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	437	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PCB)		•			
Aroclor 1016/1242	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1221	<2000	μ g/Kg dry wt	2000	EPA 8082	09/29/08
Aroclor 1232	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1248	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1254	<1000	μ g/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1260	8160	μ g/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1262	<1000	μ g/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1268	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	32400	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	1.34	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	22.81	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μ m)	2.98	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 µm)	4.03	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 µm)	6.59	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	30.68	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	17.33	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	9.64	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	0.27	Fract %	0.01	ASTM D421/422	09/12/08
		11.2			•

Report Date: 10/08/08

Comments:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081104 Sample Collected: 09/09/08 13:36 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 2 of 2

Address/Location: IL-52-ANE911-0908

N ALTA & RR TRACKS System ID: AM08411

Sample Point Code: 52_8 EID File #: 1020.001

Sample Type:COMPOSITELocCode:PORTHARISample Matrix:SEDIMENTCollected By:RCB/JXB/LAS

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as

applicable. LAB: PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (22-13 µm)	1.34	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	0.57	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081104

Ву:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: **FO081105**

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:15

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-52-8675NCRAWFORD-0908

8675 N CRAWFORD

System ID:

Page 1 of 2 AM08412

Sample Point Code:

52_9

EID File #:

Report Page:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1254 with some 1260 (estimated due to pattern overlap).

Test Parameter	Result	Units	MRL.	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	62.9	% W/W	0.01	SM 2540 G	09/10/08
METALS			•	•	
ARSENIC	7.08	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	1.91	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	5260	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	13500	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	150	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.087	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	3050	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	1.36	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	3120	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/29/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1254	60	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1260	EST 29	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
OUTSIDE ANALYSIS	. •				
TOTAL ORGANIC CARBON	60800	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 µm)	2.81	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	13.30	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.66	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	9.06	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μ m)	11.66	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	7.84	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	16.61	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	12.30	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: **FO081105**

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:15

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-52-8675NCRAWFORD-0908

Page 2 of 2

Sample Point Code:

8675 N CRAWFORD

System ID:

Report Page:

AM08412

52 9

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode:

PORTHARI Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1254 with some 1260 (estimated due to pattern overlap).

Took Dougue etcu	D14	1114-	aun:	المصاغمالة	Analysis Date
Test Parameter	Result	Units	MRL	Method	Date
Silt (13-9 µm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	2.40	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 µm)	2.00	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.00	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	8.74	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081105

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081106

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:49

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-AAE673-0908

AM08413

Sample Point Code:

52_10

N CRAWFORD & ST JOHNS UPDATED DATA System ID: EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

REASON: Adda/Nod

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL	,			,	
TOTAL SOLIDS	64.9	% W/W	0.01	SM 2540 G	09/10/08
METALS				·	
ARSENIC	5.62	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	1.22	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	954	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	2170	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	110	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.085	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	512	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.35	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	1160	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS				•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1221	<200	μg/Kg dry wt	200	EPA 8082	09/29/08
Aroclor 1232	<100	μ g/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1248	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1254	<100	μ g/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1260	<100	µg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1262	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1268	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	113000	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI	•				*
Clay (<3.2 µm)	7.47	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μ m)	15.20	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	4.74	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 µm)	4.00	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	6.14	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μ m)	20.36	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μ m)	12.75	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	9.28	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/21/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081106

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:49

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE673-0908

N CRAWFORD & ST JOHNS

System ID:

AM08413

Sample Point Code:

52 10

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (13-9 µm)	1.07	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	4.27	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 µm)	5.33	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 µm)	3.73	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	2.46	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	3,20	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081106

Report Date: 10/21/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081107

Sample Collected: 09/09/08 Sample Received: 09/10/08 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

DUPLICATE

System ID:

AM08414

Sample Point Code:

DUP

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode:

PORTHARI Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids.

Test Parameter	Result	Units	MRL	Method	Analysis Date
rest raidiffeter	Result	Onits	IVITL	Wethod	Date
GENERAL					
TOTAL SOLIDS	50.5	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS	-			•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	09/24/08
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1254	EST 61	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1260	83	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	77200	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 µm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	9.26	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.29	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μm)	9.23	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	11.43	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	5.50	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	10.76	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	11.52	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	2.83	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	6.61	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	5.15	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	2.83	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081107

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081108 Sample Collected: 09/10/08 08:20 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 1 of 1

Address/Location: IL-52-ANE910-0908

N BALTIMORE & BRADFORD System ID: AM08415
Sample Point Code: 52_11 EID File #: 1020.001

Sample Type: COMPOSITE LocCode: PORTHARI

Sample Matrix: SEDIMENT Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

		Units		Method	Analysis Date
Test Parameter	Result		MRL		
GENERAL					
TOTAL SOLIDS	97.5	% W/W	0.01	SM 2540 G	09/12/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					-
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/29/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1254	EST 123	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1260	515	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	85400	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08

End of Report for Sample ID: FO081108

Validated By:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081109

Sample Collected: 09/10/08 Sample Received: 09/10/08 09:05

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-AAE694-0908

N BRADFORD & RR TRACKS

System ID:

AM08416

Sample Point Code:

EID File #:

1020.001

Sample Type:

52_12

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
	Nesult	Office	MIXE	Hictiou	
GENERAL	05.0	0/ 14/04/	0.04	CM 0540 C	00/10/00
TOTAL SOLIDS	95.6	% W/W	0.01	SM 2540 G	09/10/08
METALS					
ARSENIC	2.61	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	0.51	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	46.4	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	69.7	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	39.1	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.125	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	25.8	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.10	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	187	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	54	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	40700	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	3.25	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	14.44	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μ m)	3.26	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	3.21	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μ m)	4.80	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	46.31	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	8.47	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	5.84	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μ m)	1.00	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/08/08

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081109

Sample Collected: 09/10/08 Sample Received: 09/10/08 09:05

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE694-0908 N BRADFORD & RR TRACKS

System ID:

AM08416

Sample Point Code:

52_12

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode:

PORTHARI Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (22-13 µm)	. 1.75	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 µm)	2.00	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.25	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	2.42	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	1.00	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081109

Report Date: 10/08/08

Validated By:

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

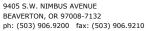
ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

September 30, 2008

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

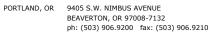

Enclosed are the results of analyses for samples received by the laboratory on 09/10/08 16:40. The following list is a summary of the Work Orders contained in this report, generated on 09/30/08 09:50.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PRI0356	Portland Harbor	36238

TestAmerica Portland

City of Portland Water Pollution Laboratory Project Name: Portland Harbor


6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 09/30/08 09:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 081100	PRI0356-01	Soil	09/09/08 09:25	09/10/08 16:40
FO 081101	PRI0356-02	Soil	09/09/08 10:10	09/10/08 16:40
FO 081102	PRI0356-03	Soil	09/09/08 11:16	09/10/08 16:40
FO 081103	PRI0356-04	Soil	09/09/08 11:53	09/10/08 16:40
FO 081104	PRI0356-05	Soil	09/09/08 13:36	09/10/08 16:40
FO 081105	PRI0356-06	Soil	09/09/08 14:15	09/10/08 16:40
FO 081106	PRI0356-07	Soil	09/09/08 14:49	09/10/08 16:40
FO 081107	PRI0356-08	Soil	09/09/08 00:00	09/10/08 16:40
FO 081108	PRI0356-09	Soil	09/10/08 08:20	09/10/08 16:40
FO 081109	PRI0356-10	Soil	09/09/08 09:05	09/10/08 16:40

TestAmerica Portland

Howard Holmes, Project Manager

Report Created:

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Project Number: 36238
Portland, OR 97203 Project Manager: Jennife

Project Manager: Jennifer Shackelford 09/30/08 09:50

Portland Harbor

Organic Carbon, Total (TOC)

Project Name:

TestAmerica Connecticut

				10	StAme	ica Conne	ecticut				
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRI0356-01	(FO 081100)			Soil			Samp	oled: 09/09/	/08 09:25		
Total Organic C Duplicates	arbon -	9060	22500		100	mg/Kg	1x	20178	09/19/08 13:38	09/19/08 13:38	
PRI0356-02	(FO 081101)			Soil			Samp	oled: 09/09/	/08 10:10		
Total Organic C Duplicates	arbon -	9060	35900		100	mg/Kg	1x	20178	09/19/08 13:51	09/19/08 13:51	
PRI0356-03	(FO 081102)			Soil			Samp	oled: 09/09/	/08 11:16		
Total Organic C Duplicates	arbon -	9060	63800		100	mg/Kg	1x	20178	09/19/08 14:05	09/19/08 14:05	
PRI0356-04	(FO 081103)			Soil			Samp	oled: 09/09/	/08 11:53		
Total Organic C Duplicates	arbon -	9060	64100		100	mg/Kg	1x	20178	09/19/08 14:19	09/19/08 14:19	
PRI0356-05	(FO 081104)			Soil			Samp	oled: 09/09/	/08 13:36		
Total Organic C Duplicates	arbon -	9060	32400		100	mg/Kg	1x	20178	09/19/08 14:47	09/19/08 14:47	
PRI0356-06	(FO 081105)			Soil			Samp	oled: 09/09/	/08 14:15		
Total Organic C Duplicates	arbon -	9060	60800		100	mg/Kg	1x	20178	09/19/08 15:02	09/19/08 15:02	
PRI0356-07	(FO 081106)			Soil			Samp	oled: 09/09/	/08 14:49		
Total Organic C Duplicates	arbon -	9060	113000		100	mg/Kg	1x	20178	09/19/08 15:16	09/19/08 15:16	
PRI0356-08	(FO 081107)			Soil			Samp	oled: 09/09/	/08 00:00		
Total Organic C Duplicates	arbon -	9060	77200		100	mg/Kg	1x	20178	09/19/08 15:31	09/19/08 15:31	
PRI0356-09	(FO 081108)			Soil			Samp	oled: 09/10/	/08 08:20		
Total Organic C Duplicates	arbon -	9060	85400		100	mg/Kg	1x	20178	09/19/08 15:45	09/19/08 15:45	
PRI0356-10	(FO 081109)			Soil			Samp	oled: 09/09/	/08 09:05		
Total Organic C Duplicates	arbon -	9060	40700		100	mg/Kg	1x	20178	09/19/08 16:13	09/19/08 16:13	

TestAmerica Portland

Howard Holmes, Project Manager

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/30/08 09:50

	O	rganic Carbo			Laborato Connectio	-	ality Con	itrol Re	sults					
QC Batch: 20178	Soil Pro	eparation Met	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
LCS (220-20178-5)				QC Source	:			Extra	acted:	09/19/08 13	3:24			
Total Organic Carbon - Duplicates	9060	4670		100	mg/Kg	1x		3530	132%	(28-172)			09/19/08 13:24	
Blank (220-20178-6)				QC Source	:			Extra	acted:	09/19/08 13	:31			
Total Organic Carbon - Duplicates	9060	5.9		100	mg/Kg	1x							09/19/08 13:31	J

TestAmerica Portland

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford09/30/08 09:50

Notes and Definitions

Report Specific Notes:

Sample result is greater than the MDL but below the CRDL

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

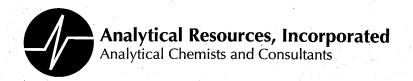
ununon round on the ununytreal raw data

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic
Signature
- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.


TestAmerica Portland

Howard Holmes, Project Manager

Test/America

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 1977 F. Fit a Ave. Spokane, WA 99206-530?)405 SW Numbus Ave. Beaverton, OR 97008-7145 where the tagget and expressions are two continuings. All 1994 of the ϵ 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 FAX 906-9210
ANALYTICAL TESTING CORPORATION		
CHAIN OF	CUSTODY REPORT	Work Order #: RIO350
REPORT TO Jennifer Shackelford	Charles Lytle	TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses 7 5 4 3 2 1 1
PROJECT NAME: PORTIANA HAR DUC PROJECT NUMBER:	P.O. NUMBER: 36 238 PRESERVATIVE REQUESTED ANALYSES	Petroleum Hydro varbon Analyses 5 4 3 2 1 < 1 OTHER Specify:
Touge Same		* Turnaround Requests less than standard may incur Rush Charges.
CLIENT SAMPLE SAMPLING DATE TIME	3.7	MATRIX # OF LOCATION TA (W. S. O) CONT. COMMENTS WO ID
1FU 081100 9191089:25 X >		2 2
, FO 081101 10:10 X >		S 2
150 08/105 11:16 X		S 1
4 FO 08 1103 11:53 X X		S 2
FO 081104 13:36 X X		S 2
· · ·	<	S 2
, <u>, , , , , , , , , , , , , , , , , , </u>	X	S 2
	(S 2
FO 081108 9/10/08 8:20 X		S 1 S 2
10 FO 081109 1 9:05 X >	DATE 9/10/8 RECEIVED BY 186 VE	DATE 7/10/8
PRINT NAME: KOSEN WOLL AND FIRM: City of C	DATE: 9/0/C RECEIVED BY.	FIRM: [A] TIME: 15.120 DATE: 9-10-0
PRINT NAME: Soh FIRM: TAP	TIME: 16, 40 PRINT NAME.	TEMP: THE 16:40
ADDITIONAL REMARKS:		29° PAGE OF

	Tes	stAmerica Sample	Receipt Che	cklist		Coolar (King)
Received by:	Unpacked by:	Logged-in by:		Work Order No. TRI	-0354	
*(section A)	*(section B)	1 (Client: City of T	Brtland	
Date: 9-10-08	Date: 9-10-08	Date:	3	Project: Portland	Harbon	^
Time: /6 3 4/0	Initials:	Initials:		!empera	ture out of range	; ;
***ESI Clients (see Section C	J	lass NA (oil/air samples	5, ESI client)	Digi #1 Digi #2 Temperature Blank:	No lco W	ot enough Ice Dice e Melted (in 4 Hours her:
Custody Seals: (#	_)		В	<u>Sample Status:</u> (If N circled, see N		
Signature: Y N Dated:	Receiv	ved from:	Genera	<u>ıl</u> :	•	
X_None	<u>ixederv</u>			ntact?	\sqrt{Y} N	
Container Type:		XTA Courier Senvoy	 #	Containers Match COC?	Y	none given
#Cooler(s)		UPS	ID	s Match COC?	$\langle Y \rangle N$	
#Box(s)		Fed Ex	For Ana	alyses Requested:	\bigcirc	-)
None (#Other:)	Client	Cy	/anide Checked?	Y _ N	(NA)
Coolant Type:		TDP	Co	orrect Type & Preservation?	Y	\bigcirc
Gel Ice		DHL	l Ad	dequate Volume?	$\begin{pmatrix} \mathbf{Y} & \mathbf{N} \end{pmatrix}$	
X Loose Ice		SDS	İ			,
None		Mid-Valley	l .	ithin Hold Time?	₩ N	
		GS/TA		es/ Oil Quality: s/ Syringes free of Headspace?	. V . N	\sim
Packing Material:		GS/Senvoy		•	YN	NA)
Bubble Ba	_	Other:	ļ ^{TB} o	on COC? not provided	Y N	(NA)
Styrofoam	Cubbies		Metals:			
Peanuts	0.1			NO3 Preserved?	Y N	(NA)
_X_None (Other:)		l Di:	ssolved Metals Filtered?	Y N	NA
***ESI Clients Only:			FED EX/ UPS:	Was the tracking paper keep	able? YES	NO
Temperature Blank:	°C not provided	Digi: # 1 #2	If circled	NO, what is the Tracking number	?	
All preserved bottl All preserved acco		NA (voas/soils/all unp.) IOD) NA (voas/soils/all unp.)	FED EX	Goldstreak UPS DH		ner:
Comments:		Project	Managers:			
	ı	PM Reviewed:		(Initial/Date)		

October 6, 2008

Mr. Howard Holmes Test America, Inc. 9405 SW Nimbus Ave. Beaverton, OR 97008

Subject:

Project No.: PRI0356;

ARI Project No.: NO98

Dear Mr. Holmes,

The following pages provide the information you requested. Please call me to discuss any questions or comments you may have on the data or its presentation.

Best Regards,

Analytical Resources Incorporated

Lieuna Sunth for Havold Benny.

Harold Benny

Geotechnical Division Manager

206-695-6246

haroldb@arilabs.com

Enclosures

cc: File NO98

Client: Test America, Inc.

ARI Project No.: NO98

Client Project: PRI0356

Case Narrative

- 1. Eight samples were received on September 12, 2008, and were in good condition.
- 2. The samples were submitted for grain size distribution, according to ASTM D422. The samples were prepared according to ASTM D421 (dry prep).
- 3. The samples contained organic material such as twigs, roots, leaves, etc. that may have broke down during the analysis, and may have affected the reported grain size distribution.
- 4. An assumed specific gravity of 2.65 was used in the calculations.
- 5. A standard milkshake mixer type device was used to disperse the samples.
- 6. The data is provided in summary tables and plots.
- 7. There were no further anomalies in the samples or test method.

Approved by: A

Title:

Laboratory Supervisor

Date

N098

SUBCONTRACT ORDER

TestAmerica Portland PRI0356

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Analytical Resources, Inc. (ARI) 4611 S 134th Place, Suite 100

Tukwilla, WA 98168 Phone :(206) 621-6490 Fax: 206-621-7523 Project Location:

Receipt Temperature:_

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments	A
Sample ID: PRI0356-01	Soil				٨
Grain Size (ASTM) - SUB	ug/l	09/24/08	Sampled: 09/09 03/08/09 09:25	9/08 09:25 sub to Analytical Reso	rces Inc (ARI)
Containers Supplied:	ugn	00/2-1/00	00/00/00 00.20	oub to / way tour / cook	arece into (/ tr tr)
8 oz. jar (A)					
Sample ID: PRI0356-02	Soil		Sampled: 09/0 9	/08 10·10	13
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 10:10	sub to Analytical Resou	ırces Inc (ARI)
Containers Supplied:					
8 oz. jar (A)					
Sample ID: PRI0356-04	Soil		Sampled: 09/0 9	/08 11:53	C
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 11:53	sub to Analytical Resou	ırces Inc (ARI)
Containers Supplied:					
8 oz. jar (A)			•		
Sample ID: PRI0356-05	Soil		Sampled: 09/0 9	/08 13:36	D
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 13:36	sub to Analytical Resou	rces Inc (ARI)
Containers Supplied:					
8 oz. jar (A)					·
Sample ID: PRI0356-06	Soil		Sampled: 09/0 9	/08 14·15	F.
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 14:15	sub to Analytical Resou	rces Inc (ARI)
Containers Supplied:					
8 oz. jar (A)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Sample ID: PRI0356-07	Soil		Sampled: 09/0 9	/08 14·49	F
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 14:49	sub to Analytical Resou	rces Inc (ARI)
Containers Supplied:	-			-	, ,
8 oz. jar (A)					

Released By

Released By

Date/Time

Received By

111110 93

Date/Time

Received By

200,11110

Date/Time

Page 1 of 2

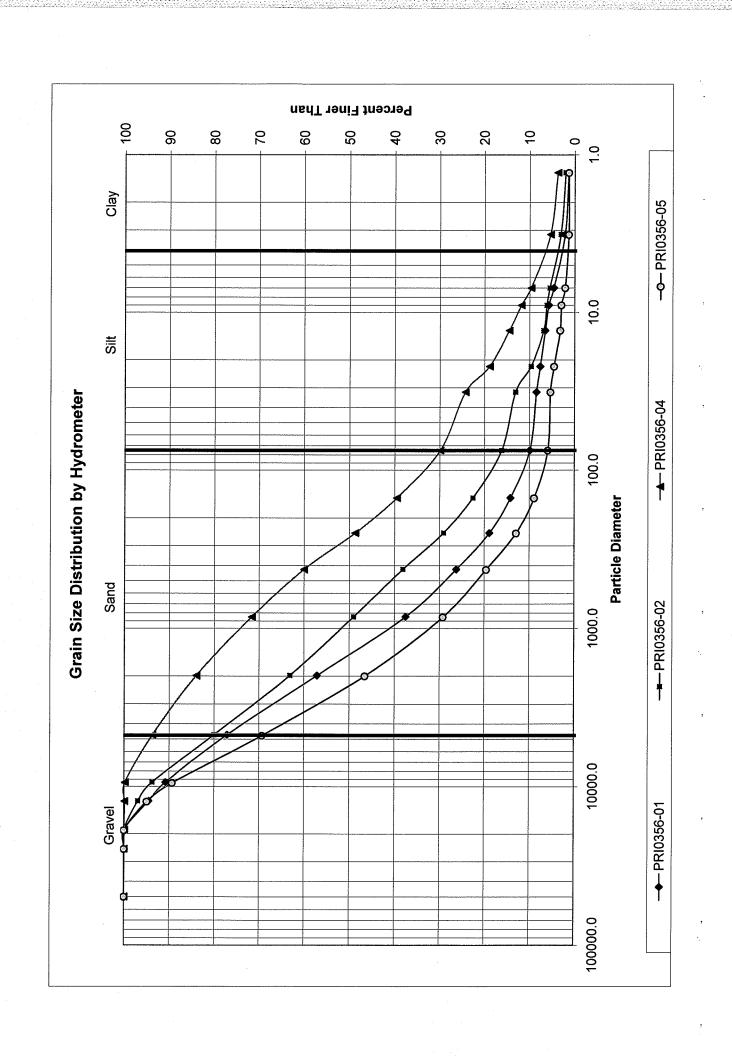
1078

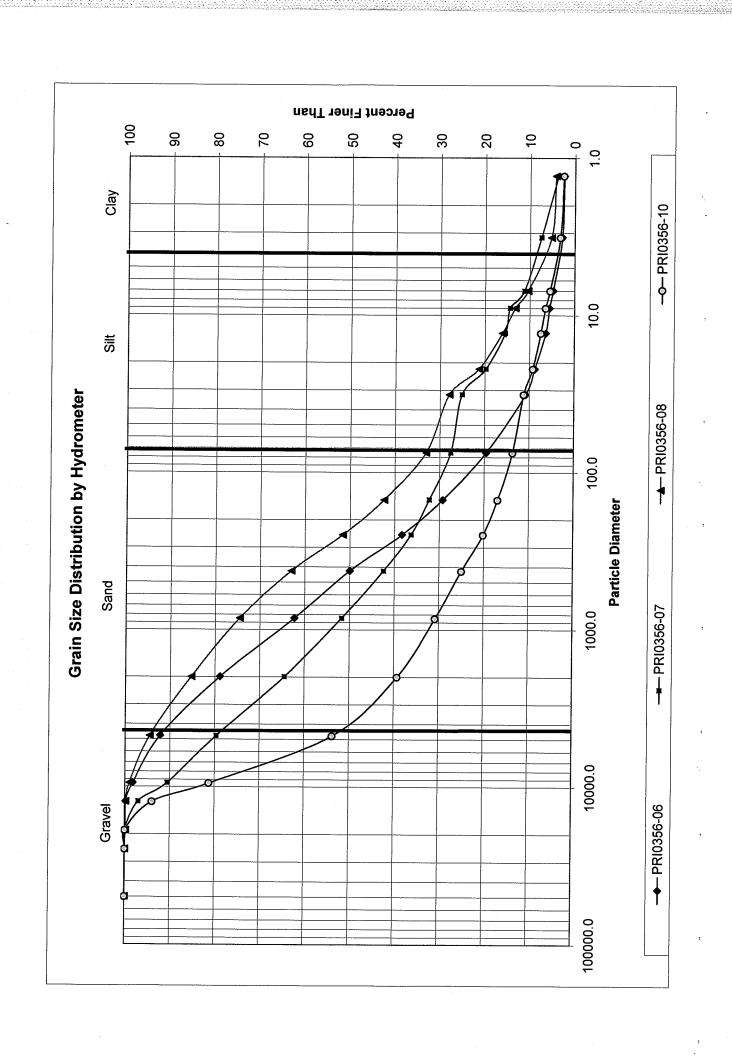
SUBCONTRACT ORDER

TestAmerica Portland PRI0356

Analysis	Units	Due	Expires	Comments
Sample ID: PRI0356-08	Soil		Sampled: 09/09/08 00:00	G
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 00:00	sub to Analytical Resources Inc (ARI
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRI0356-10	Soil		Sampled: 09/09/08 09:05	H H
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 09:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:				·
8 oz. jar (A)				

Test America, Inc. PRI0356


				т -	_	Т		1	
	1.3	4.	2.1	3.8	13	24	3.7	4 3	2.5
	3.2	2.2	3.1	5.4	13	28	7.5	5.2	3.2
	7	4.6	5.5	9.7	2.1	4.8	11.2	10.4	5.5
	6	5.7	6.2	11.8	3.0	5.6	14.4	13.2	6.5
	13	6.5	6.9	14.5	3.2	6.4	15.5	16.1	7.5
	22	7.6	9.7		4.6	8.8	19.7	21.3	+
	32	8.5	13.1	_	_	10.8	25.1	27.9	11.2
Φ	#200 (75)	9.6	16.2	29.9		19.6	27.5	33.0	13.7
Percent Finer (Passing) Than the Indicated Size	#100	14.2	22.5	39.5	8.9	29.2	32.3	42.3	16.9
the Indic	#60 (250)	18.9	29.1	48.7	13.0	38.3	36.3	51.5	20.1
ıg) Than	#40 (425)	26.2	38.1	0.09	19.5	49.9	42.4	63.0	24.9
r (Passin	#20 (850)	37.5	49.0	71.6	29.2	62.2	51.7	74.5	30.8
ent Fine	#10 (2000)	57.1	63.1	83.9	46.5	78.9	64.4	85.2	39.3
Perc	#4 (4750)	77.0	80.0	93.7	69.3	92.2	79.6	94.5	53.7
	3/8"	90.8	93.7	99.8	89.3	98.2	90.5	99.0	81.2
	1/2"	94.5	96.9	99.9	94.9	99.8	97.0	99.8	94.0
	3/4"	100.0 100.0 100.0 94.5	100.0 100.0 100.0 96.9	100.0 100.0 99.9	100.0 100.0 100.0 94.9	100.0 100.0 99.9	100.0 100.0 100.0 97.0 90.5	100.0 100.0 99.8 99.8 99.0	100.0
	ا "	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	2"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Sieve Size (microns)	PRI0356-01	PRI0356-02	PRI0356-04	PRI0356-05	PRI0356-06	PRI0356-07	PRI0356-08	PRI0356-10 100.0 100.0 100.0 94.0 81.2


Testing performed according to ASTM D421/D422

Test America, Inc. PRI0356

Percent Retained in Each Size Fraction

Description)%	%Coarse Gravel			% Gravel	-	% Coarse Sand	% Medit	% Medium Sand		% Fine Sand	73	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt	% Clay
Particle Size (microns)	3-2"	2-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	1/2-3/8" 3/8"-4750 4750-2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	2-6	7-3.2	<3.2
PR10356-01	0.00	00.0	00.0	5.48	3.77	13.71	19.98	19.60	11.28	7.32	4.67	4.30	1.44	0.82	1.09	0.82	1 09	2.45	2.18
PR10356-02	0.00	00.0	00.0	3.06	3.20	13.76	16.88	14.07	10.89	9.07	6.54	6.37	3.06	3.45	2.76	69 0	090	241	2 40
PR10356-04	0.00	00.0	0.08	0.03	0.10	6.11	9.75	12.32	11.58	11.33	9.20	9.63	5.63	5.38	4.31	2 69	2.15	431	2 20 2
PRI0356-05	0.00	0.00	00.0	5.11	5.58	19.99	22.81	17.33	9.64	6.59	4.03	2 98	0.57	080	1.34	0.27	080	080	2000
PR10356-06	0.00	00'0	0.07	0.09	1.65	6.03	13.30	16.61	12.30	11.66	90.6	9 66	8.74	200	2.40	0.80	08.0	20.00	£0.0
PR10356-07	0.00	00'0	00.0	2.97	6.49	10.90	15.20	12.75	9.28	6.14	4.00	4 74	2.46	5.33	4 27	107	3.20	3 73	7.47
PR10356-08	0.00	00.00	0.18	0.02	0.82	4.48	9.26	10.76	11.52	11.43	9.23	9.29	5.15	6.61	5.20	2.83	2 83	5.70	7.47
PRI0356-10	0.00	0.00	0.00	6.03	12.73	27.55	14.44	8.47	5.84	4.80	3.21	3.26	2.42	2.00	1.75	1.00	100	2.25	3.25
																		1	2

2010 Sediment Trap Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review 2010 Sediment Trap Sampling City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: October 18, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) between February 2010 and June 2010. Five sediment trap samples (FO105694, FO105695, FO105696, FO105697, FO105698), one duplicate sample (FO105702), and one equipment blank sample (FO105699) were collected in City Outfall Basin 52 between February 2, 2010 and June 17, 2010.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - o Metals EPA 6020
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Pace Analytical Services (Pace)
 - o PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Due to poor internal standard recoveries and interferences in the OC extracts, some samples were re-extracted and run in separate batches during the subcontracted laboratory analysis of PCB congeners. As a result, three method blanks were processed during the PCB laboratory analysis; one with each batch. One method blank was analyzed with sample FO105694. A second method blank was processed with sample FO105696. A third method blank was processed with samples FO105695, FO105697, FO105698 and FO105702. PCB congeners 31 and 52 were detected in the first method blank. The concentrations of these two congeners in the associated sample were less than 10 times the concentrations detected in the method blank; therefore, the results are qualified with a "B" flag in the subcontracted report. PCB congeners 1, 2, 3, 11, 20, 28, 31, and 52 were detected in the method blank processed with sample FO105696. The concentrations of congeners 1, 2, 3, and 11 in the sample were less than 10 times the concentrations in the method blank; therefore, the results are qualified with a "B" flag in the subcontracted report and as potentially high estimates "J" in the accompanying data tables. Concentrations of congeners 20, 28, 31, and 52 in the sample were 10 times greater than the concentrations detected in the method blank; therefore, the results are not qualified. No analytes were detected in the method blank processed along with the remaining PCB congener samples.

Two method blanks were processed during the laboratory analysis of TOC. There is no reported detection of TOC in either method blank sample.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. With the exception of sample FO105696 and its associated QC samples, the labeled internal standard recoveries obtained for the sample extracts were within the method-specified control limits. Internal standard recoveries outside of method-specified control limits are flagged "R" in the subcontracted laboratory report. Congeners associated with the impacted internal standards in sample FO105696 are qualified as estimates (EST).

Interfering background constituents impacted the measurement of some PCB congeners and some isotopically-labeled internal standards. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. Estimated maximum possible concentrations (EMPCs) are provided for affected congeners, and values are qualified with an "EMPC" flag. These values are not included in the total homolog and total PCB values. Congeners associated with impacted internal standards are qualified as estimates.

Due to the poor internal standard recovery in sample FO105696 and its associated QC samples, total homolog and total PCB concentrations for this sample are considered estimates. For the remaining five samples, estimated congener value(s) are not significant relative to the total PCB concentration (i.e. <1%), and total homolog and total PCB concentrations are considered only slightly biased.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples were processed during the subcontracted analysis of TOC. Analyte recoveries and relative percent differences (RPDs) were within laboratory control limits for the MS/MSD samples.

Laboratory Control Samples

As with the method blank samples, three sets of LC/DLC samples were processed during the laboratory analysis of PCB congeners; one with each batch. LC and DLC recoveries and RPDs were within laboratory control limits for the batch that included sample FO105694 and the batch that included samples FO105695, FO105697, FO105698, and FO105702. The spikes associated with sample FO105696 exhibited elevated recoveries for congeners 1, 3, and 4 due to their association with poorly recovered internal standards. Spiked congener 1 was not recovered and is flagged "NC" (not calculated) in the subcontracted laboratory report. LC/DLC samples were processed during the laboratory analysis of TOC. LC and DLC recoveries and RPDs were within laboratory control limits for the TOC analysis.

Other

During the PCB congener analysis, the initial extraction batch that included samples FO105695, FO105696, FO105697, FO105698, and FO105702 exhibited poor internal standard recovery and

interferences in the QC extracts. Accordingly, the sample set was re-extracted, with the exception of sample FO105696 for which insufficient volume was available for re-extraction.

A separate PCB congener analysis was conducted for the field equipment blank sample, FO105699. No congeners were detected in the field blank or in the laboratory blank processed with this sample. All associated QA/QC samples were within method specified reporting limits.

WPCL reports that method reporting limits associated with the PCB Aroclor analysis were elevated in samples FO105695 and FO105697 due to low percent solids. Sample FO105697 exhibited trace levels of PCB tentatively identified as mixed Aroclors 1254/1260. Sample FO105694 exhibited trace levels of Aroclor 1260 slightly below the method reporting limit (MRL). Several unidentified non-Aroclor chromatographic peaks were detected in samples FO105697, FO105698, and FO105702. WPCL reports that quantification of PCB Aroclors may be imprecise in samples FO105698 and FO105702 due to overlapping components of the detected Aroclors.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 6/17/2010

Collected By: Page: AJA, PTB

			188	8										1	ı	(1		
roject Name: PORTLAND HARBOR STORMWATER SAMP	LAND HARBOR ST	ORMWA	TER SAN	P															
ile Number: 1020.005	0		Matrix:	SEDIMENT/WARK	DESTAN/II										ě	E .	ST.	Requested Analyses	
		1 - 			1		O _Z O	Organics	S		ଦୁ	eneral	<u>ವ</u>		z	Metals	ı"	Comments	ents
B	Basin 52 Sediment Trap Chain-of-custody Sediment traps installed: 2/2/2010 Sediment trans removed: 6/16/2010	Chain-of-c led: 2/2/2010 ed: 6/16/2010	ustody			209)	evel)								Cr,	lg		Analyses askled per PHA-6/21/10	HA-6/21/10
Total Solids to be done at WPCL, care should be taken to use the smallest allquot possible to retain sample volume for additional follow-up analyses.	21, care should be taken to use the smalles volume for additional follow-up analyses	use the sma ow-up analys	llest aliquot po ses.	ossible to ret	ain sample	geners (All	lors (Low-	nalates			·····				ıls (As, Co	, Ag, Zn) + I		(no Mr)	
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample Time	Sample Type	PCB Con	PCB Aroo	PAH+Pht	SVOCs		Grain Siz	TOC	TS*		Total Met	Cu, Pb, Ni			
FO105694	ST-52-AAE498-0610 NBALTIMORE & BRADFORD	52_ST1	6/17/10	943	C	•	•					•	•		•			TS=58, 2 273.1 g Total Wet Weight	Wet Weight
FO105695	ST-52-AAE513-0610 N BRADFORD & ALTA	52_ST2	6/17/10	1026	O .	•			-		-	0	•		6			TS=48.2 258.9 g Total Wet Weight	Wet Weight
FO105696	ST-52-AAE700-0610 NPITISBURG, SW OF RR TRACKS STANDARD BOTTLE	52_ST3	6/16/10	1548	Ö	9							. •	. 2 7				15-54 16.7 g Total Wet Weight	Vet Weight
FO105697	ST-52-AAE700-0610 NPITISBURG, SW OF RR TRACKS SET SED TRAP:	52_ST3	6/17/10	1038	n	•	•				<u> </u>	6	•	÷	•			15=46.6 266.9 g Total Wet Weight	Wet Weight
FO105698	ST-52-AAE516-0610 8675 N CRAWFORD ST	52_ST4	6/17/10	1142	0	49	•					•	•		(5)			TS= (c/c, (g 974.4 g Total Wet Weight	Wet Weight
FO105702	Duplicate	Dup	C/17/10	Man Miller	7.	•	•		<u> </u>		0				•			75-66.6	
					·				-,		·	···:		* .					
														,					
FO105699	SIFT Equipment Blank	ECOBLANK	6/17/10	1230	J.	•									0				
								<u> </u>		 									
ature: MA My	757 Ime: 5	Relinquished By: Signature:	1 By: 2.		Time:			<u></u>	Relinquished By: Signature:	ishec	Ϋ́	ယ				.	Time:	Relinguished By: 4.	• Time:
reived By:	+ Date: 6/17/10	Printed Name:			Date:			꾸	Printed Name:	me:							Date:	Printed Name:	Date:
	1900/1920 005 - Portland Harbor Signmung	Signature:	. 2.		Time:	<u> </u>		<u>8</u> 1≥0	Received By: Signature:	id By		. <u>.</u>	'				Time:	Received By: 4. Signature:	Time:
1 / Kiting		# bamploam	profit water bamp bempacet 17 2008_2009 Sediment Trap SamplingsPortland Harbor Stormwater Basin 52 Sed Trap COCs (6-16-19) x/s	2000 Sedimer	t-Trap Sam	Bingli	o rtla r	4	porto	OTTON	# 4	agin (20 22	1 7 8	8	3	के	0).xl3	

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105694

Sample Collected: 06/17/10 Sample Received: 06/17/10

09:43

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE498-0610

System ID:

AO05580

Sample Point Code:

N BALTIMORE & BRADFORD

EID File #:

1020.005

Sample Type:

52_ST1 COMPOSITE

LocCode:

PORTHASW

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: In addition to the Aroclor 1248 reported, this sample contains trace level of Aroclor 1260 (est. 9 ug/Kg).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	58.2	% W/W	0.01	SM 2540 G	06/17/10
METALS				•	
ARSENIC	3.19	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	0.66	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	99.5	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	97.3	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	59.3	mg/Kg dry wt	Ó.10	EPA 6020	06/25/10
MERCURY	0.048	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	43.2	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.21	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	350	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PO	CB)				
Aroclor 1016/1242	´ <10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	[°] 11	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	46000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL COM			•		07/45/40
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	07/15/10

End of Report for Sample ID: FO105694

Validated By:

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105695

Sample Collected: 06/17/10 Sample Received: 06/17/10 10:26

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

AO05581

ST-52-AAE513-0610 N BRADFORD & ALTA NEAR ST JOHNS PS

System ID:

Sample Point Code:

52 ST2

EID File #: LocCode:

1020.005

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

Collected By: AJA/PTB

PORTHASW

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Reporting limits for PCB Aroclors are raised due to low %solids.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	48.2	% W/W	0.01	SM 2540 G	06/17/10
METALS					
ARSENIC	5.25	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.01	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	162	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	254	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	86.5	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.068	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	99.2	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.39	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	. 462	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PO	CB)	•			
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	06/22/10
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1260	130	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	81000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL COM	IGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105695

Validated By:

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105696

Sample Collected: 06/16/10

15:48

Sample Status: COMPLETE AND

Sample Received: 06/17/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE700-0610

System ID:

AO05582

Sample Point Code:

N PITTSBURGH SW OF RR TRKS- STANDARD BOT

EID File #:

1020.005

Sample Type:

52_ST3

LocCode:

PORTHASW

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

Comments:

Wet Weight: 16.7g QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL TOTAL SOLIDS	54.1	% W/W	0.01	SM 2540 G	06/17/10
OUTSIDE ANALYSIS POLYCHLORINATED BIPHENYL CONGE! Refer to Contract Report	NERS -PACE Completed	ng/Kg dry wt	·	EPA 1668 MOD	07/14/10

End of Report for Sample ID: FO105696

Validated By:

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105697

Sample Collected: 06/17/10 Sample Received: 06/17/10

10:38

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Address/Location:

Page 1 of 1

ST-52-AAE700-0610 N PITTSBURGH SW OF RR TRKS- SIFT SEDTRAP

System ID:

AO05583

Sample Point Code:

52 ST3

EID File #:

1020.005

Sample Type:

LocCode:

PORTHASW

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Reporting limits for PCB Aroclors are raised due to low %solids. This sample exhibited trace level PCB tentatively identified as mixed Aroclors 1254/1260. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	46.6	% W/W	0.01	SM 2540 G	06/17/10
METALS	•				
ARSENIC	4.57	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.51	mg/Kg dry.wt	0.10	EPA 6020	06/25/10
CHROMIUM	98.5	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	150	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	104	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.112	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	60.0	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.25	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	730	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS	,	·		•	
POLYCHLORINATED BIPHENYLS (PCE	3)				
Aroclor 1016/1242	[′] <20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	06/22/10
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1260	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1268	·<20	μg/Kg dry wt	20	EPA 8082	06/22/10
OUTSIDE ANALYSIS				e e e e e e e e e e e e e e e e e e e	
TOTAL ORGANIC CARBON	84000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CONG					:_
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105697

Report Date: 08/20/10 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105698

Sample Collected: 06/17/10

Sample Status: COMPLETE AND

Sample Received: 06/17/10

VALIDATED

Proj./Company Name:

PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE516-0610

System ID:

AO05584

Sample Point Code:

8675 N CRAWFORD ST 52_ST4

EID File #:

1020.005

Sample Type:

COMPOSITE

LocCode:

PORTHASW

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Quantification of PCB Aroclors may be imprecise due to overlapping components of the detected Aroclors. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	66.6	% W/W	0.01	SM 2540 G	06/17/10
METALS	1				
ARSENIC	3.34	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.18	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	243	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	309	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	89.8	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.079	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	112	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.21	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	692	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					•
POLYCHLORINATED BIPHENYLS (PC	B)				
Aroclor 1016/1242	[*] 78	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	110	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	35000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CON	GENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105698

Report Date: 08/20/10 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105699

Sample Collected: 06/17/10 Sample Received: 06/17/10 12:30

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Address/Location:

Page 1 of 1

SIFT EQUIPMENT BLANK

System ID:

AO05585

Sample Point Code:

EQBLANK

EID File #:

1020.005

Sample Type: Sample Matrix: **GRAB DIWTR** LocCode: Collected By: AJA/PTB

PORTHASW

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
METALS	•				
MERCURY	<0.0020	μg/L	0.002	WPCLSOP M-10.02	06/25/10
METALS BY ICP-MS (TOTAL) - 8					
ARSENIC	<0.10	μg/L	0.1	EPA 200.8	06/24/10
CADMIUM	<0.10	μg/L	0.1	EPA 200.8	06/24/10
CHROMIUM	< 0.40	μg/L	0.4	EPA 200.8	06/24/10
COPPER	0.36	μg/L	0.2	EPA 200.8	06/24/10
LEAD	<0.10	μg/L	0.1	EPA 200.8	06/24/10
NICKEL	<0.20	μg/L	0.2	EPA 200.8	06/24/10
SILVER	<0.10	μg/L	0.1	EPA 200.8	06/24/10
ZINC	<0.50	μg/L	0.5	EPA 200.8	06/24/10
OUTSIDE ANALYSIS					
POLYCHLORINATED BIPHENYL CONGE	NERS -PACE			•	
Refer to Contract Report	Completed	ng/L		EPA 1668 MOD	06/30/10

End of Report for Sample ID: FO105699

Report Date: 08/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105702 Sample Collected: 06/17/10 00:00 Sample Status: COMPLETE AND

Sample Received: 06/17/10 VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP Report Page: Page 1 of 1

Address/Location: DUPLICATE

 Sample Point Code:
 DUP
 System ID:
 AO05699

 EID File #:
 1020.005

Sample Type:COMPOSITELocCode:PORTHASWSample Matrix:SEDIMENTCollected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Quantification of PCB Aroclors may be imprecise due to overlapping components of the detected Aroclors. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
ARSENIC	2.81	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.05	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	280	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	339	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	204	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.067	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	122	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.19	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	613	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS	•				
POLYCHLORINATED BIPHENYLS (P	CB)				
Aroclor 1016/1242	101	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	· <10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	422	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS	•				
TOTAL ORGANIC CARBON	40000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL COM	NGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105702

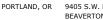
Report Date: 08/20/10 Validated By:

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

August 18, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203


RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/22/10 16:45. The following list is a summary of the Work Orders contained in this report, generated on 08/18/10 13:27.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTF0689	Portland Harbor	Stormwater Basin 52

TestAmerica Portland

06/17/10 11:42

06/17/10 00:00

06/22/10 16:45

06/22/10 16:45

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name: Report Created: 6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Portland, OR 97203 Jennifer Shackelford 08/18/10 13:27 Project Manager:

ANALYTICAL REPORT FOR SAMPLES Sample ID **Date Received** Laboratory ID Matrix **Date Sampled** FO105694 PTF0689-01 Other dry 06/17/10 09:43 06/22/10 16:45 FO105695 PTF0689-02 Other dry 06/17/10 10:26 06/22/10 16:45 FO105696 PTF0689-03 Other dry 06/17/10 15:48 06/22/10 16:45 FO105697 PTF0689-04 Other dry 06/17/10 10:38 06/22/10 16:45

Other dry

Other dry

PTF0689-05

PTF0689-06

TestAmerica Portland

FO105698

FO105702

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Analytical Case Narrative

TestAmerica - Portland, OR

PTF0689

This report is not complete without the analytical data from Pace Analytical for the PCB analysis.

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

 $\textbf{City of Portland Water Pollution Laboratory} \qquad \qquad Project \, Name: \qquad \textbf{Portland Harbor}$

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Percent Dry Weight (Solids) per ASTM D2216-80

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01	(FO105694)			Ot	her dry		Sam	pled: 06/17/	10 09:43		
% Solids		ASTM D2216-80	58.2		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-02	(FO105695)			Ot	her dry		Sam	pled: 06/17/	10 10:26		
% Solids		ASTM D2216-80	48.2		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-03	(FO105696)			Ot	her dry		Sam	pled: 06/17/	10 15:48		
% Solids		ASTM D2216-80	54.1		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-04	(FO105697)			Ot	her dry		Sam	pled: 06/17/	10 10:38		
% Solids		ASTM D2216-80	46.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-05	(FO105698)			Ot	her dry		Sam	pled: 06/17/	10 11:42		
% Solids		ASTM D2216-80	66.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-06	(FO105702)			Ot	her dry		Sam	pled: 06/17/	10 00:00		
% Solids		ASTM D2216-80	66.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	

TestAmerica Portland

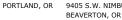
Com una (. North Cock)

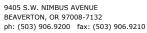
Christina Woodcock For Darrell Auvil, Project Manage

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27


Organic Carbon, Total (TOC)


TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01 (FO105694)			Othe	r dry		Samp	oled: 06/17	/10 09:43		
Total Organic Carbon	9060	46000		2000	mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-02 (FO105695)			Othe	r dry		Samj	oled: 06/17/	/10 10:26		
Total Organic Carbon	9060	81000		2000	mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-04 (FO105697)			Othe	r dry		Samp	oled: 06/17/	/10 10:38		
Total Organic Carbon	9060	84000		2000	mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-05 (FO105698)			Othe	r dry		Samp	oled: 06/17/	/10 11:42		
Total Organic Carbon	9060	35000		2000	mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-06 (FO105702)			Othe	r dry		Samı	oled: 06/17/	/10 00:00		
Total Organic Carbon	9060	40000		2000	mg/Kg	1x	67155	07/02/10 09:12	07/02/10 09:12	

TestAmerica Portland

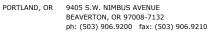
Christina Woodcock For Darrell Auvil, Project Manage

6543 N. Burlington Ave. Portland, OR 97203

Project Name: **Portland Harbor**

Project Number: Stormwater Basin 52
Project Manager: Jennifer Shackelford

Report Created: 08/18/10 13:27


Percent Moisture

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01 (FO10	05694)		Oth	er dry		Samp	oled: 06/17/	10 09:43		
Percent Moisture	Moisture	41		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids	"	59		0.10	"	"	"	"	"	
PTF0689-02 (FO10	05695)		Oth	er dry		Samp	oled: 06/17/	10 10:26		
Percent Moisture	Moisture	52		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids	"	48		0.10	"	"	"	"	"	
PTF0689-04 (FO10	05697)		Oth	er dry		Samj	oled: 06/17/	10 10:38		
Percent Moisture	Moisture	52		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids	"	48		0.10	"	"	"	"	"	
PTF0689-05 (FO10	05698)		Oth	er dry		Samı	oled: 06/17/	10 11:42		
Percent Moisture	Moisture	32		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids	n	68		0.10	"	"	"	"	"	
PTF0689-06 (FO10	05702)		Oth	er dry		Samp	oled: 06/17/	10 00:00		
Percent Moisture	Moisture	32		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids	"	68		0.10	"	"	"	"	"	

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manage

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.

Project Number: Stormwater Basin 52

Project Manager: Jennifer Shackelford 08/18/10 13:27

	Oı	rganic Carbon,	,	TOC) - I TestAmeric		y Qua	ility Con	trol Re	esults					
QC Batch: 67010	Soil Pro	eparation Metho	d: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (580-67010-3)				QC Source:				Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	ND		2000	mg/Kg	1x							07/01/10 09:11	
LCS (580-67010-4)				QC Source:				Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	4900		2000	mg/Kg	1x		3400	144%	(12.8-187)			07/01/10 09:11	
Duplicate (580-67010-7)				QC Source:	580-67010-5			Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	7700		2000	mg/Kg	1x	8000	-			4%	(50)	07/01/10 09:11	
Matrix Spike (580-67010-8)				QC Source:	580-67010-5			Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	27700		2000	mg/Kg	1x	8000	18400	107%	(76-128)			07/01/10 09:11	
Matrix Spike Dup (580-67010-9)				QC Source:	580-67010-5			Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	29300		2000	mg/Kg	1x	8000	20000	107%	(76-128)	6%	(28)	07/01/10 09:11	
QC Batch: 67155	Soil Pro	eparation Metho	d: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (201665S)				QC Source:	PTF0689-06			Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	55600		2000	mg/Kg	1x	40000	19000	84%	(76-128)			07/02/10 09:12	
Duplicate (201665X)				QC Source:	PTF0689-06			Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	36900		2000	mg/Kg	1x	40000				7%	(50)	07/02/10 09:12	
Blank (580-67155-3)				QC Source:				Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	ND		2000	mg/Kg	1x							07/02/10 09:12	
LCS (580-67155-4)				QC Source:				Extr	acted:	07/02/10 09	:12			
200 0/100 1)														

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

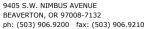
9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Percent Moisture - Laboratory Quality Control Results

TestAmerica Seattle


QC Batch: 67064	Soil Pre	paration Metl	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Duplicate (580-67064-2)				QC Source:	580-67064-	1		Extr	acted:	07/02/10 16	5:19			
Percent Solids	Moisture	81		0.10	%	1x	81				0%	(20)	07/02/10 16:19	
Percent Moisture	"	19		0.10	"	"	19				1%	"	"	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Portland Harbor

City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Stormwater Basin 52 Report Created: Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

FestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA

425-420-9200 FAX 420-9210

9405 SW Nimbus Ave, Beaverton, OR 2000 W International Airport Rd Ste A10, Anchorage, AK

	X				
509-924-9200 FAX 924-9290	503-906-9200 FAX 906-9210 🔀	907-563-9200 FAX 563-9210	9		
509-924-9200	503-906-9200	907-563-9200	とソグレ	1960	'I #: /
99206-5302	97008-7145	99502-1119	1	1	ork Order #:

CHAIN OF CUSTODY REPORT

CTIENT TO THE CONTRACTOR	INVOICE TO:	TURNAROUND REQUEST
- } }		in Business Days *
ADDRESS. Tennite Svacker 10	Commence Color	Organic & Inorganic Analyses
)	7	7 5 4 3 2 1 <1
PHONE: FAX:	P.O. NUMBER:	STD. Petroleum Hydrocarbon Analyses
PROJECT NAME: 0, 14 1, 1 Harban Chrowete &	PRESERVATIVE	5 4 3 2 1 <1
THE COLUMN TO TH		STD.
	REQUESTED ANALYSES	OTHER Specify:
SAMPLED BY:		* Turnaround Requests less than standard may incur Rush Charges.
CLIENT SAMPLE SAMPLING OF SOME DENTIFICATION DATE/TIME CONTROL OF SOME		MATRIX # OF LOCATION/ TA (W, S, O) CONT. COMMENTS WO ID
, 70105694 6/17/10 0943 X X		O 2 TS=58,2%
FD105695 1 1026 X		2 73=48.2%
3. 701051096		1 TS= 54.1%
1 F0105697 X		2 TS= 46.6%
5 F0105698 142 X		2 75= 66.690
× 1005702 V 20750107		V 2 TS=166.69.
α		
J. W. W. W. W. W. W. W. W. W. W. W. W. W.	7	
RELEASED BY: WHO LINE CON FIRM: C. of PDX	DATE: 6/27/16 RECEIVED BY: MALTINAME: MACHINE	DATE: 6/22/10 TIME: 12:46
RELEASED BY: BY PRINT NAME: OS PREM: THEM: THEM:	DATE: 6/22/10 RECEIVED BY PREMY NAME: 1814 STUMMER PRINTINAME: 1814 STUMMER PRINTINAME: 1816 STU	POT FIRM: THE TIME: 11,195
ADDITIONAL REMARKS: of Measu sand to PACE		TEMP:
		TAL-1000(0408)

Note: Please use given TS results for calculations, ble of limited sample volume FOIOSTORIO has extremely limited volume a 15g plase our regardless

TestAmerica Portland

Sample Receiving Checklist

	c Orde		
Clien	it Nan	e and Project: City of fort and	-
Time	Zone:		
□ED	T/EST	□CDT/CST □MDT/MST □PDT/PST □AK □OTHER	
		Checks: Temperature out of Range	-
	oler #(s erature		
10111		#1 Digi #2 IR GunW/in 4 Hrs of collection	n
	<u>L</u>	Other:	
N/A	Yes	No Initials: 15	
		1. If ESI client, were temp blanks received? If no, document on NOD.	
		2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.	
		3. Chain of Custody present? If no, document on NOD.	
		4. Bottles received intact? If no, document on NOD.	
		5. Sample is not multiphasic? If no, document on NOD.	
- www.		6. Proper Container and preservatives used? If no, document on NOD.	
	<u> </u>	7. pH of all samples checked and meet requirements? If no, document on NOD.	
		8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.	
		9. HF Dilution required?	
		10. Sufficient volume provided for all analysis? If no, document on NOD and consult PM before proceeding.	
		11. Did chain of custody agree with samples received? If no, document on NOD.	
	4	12. Is the "Sampled by" section of the COC completed?	
12		13. Were VOA/Oil Syringe samples without headspace?	
		☐ 14. Were VOA vials preserved? ☐ HCl ☐ Sodium Thiosulfate ☐ Ascorbic Acid	
		15. Did samples require preservation with sodium thiosulfate?	
		16. If yes to #15, was the residual chlorine test negative? If no, document on NOD.	
		17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD	•
2		18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? no, document on NOD and contact PM before proceeding.	lf
10		19. Are analyses with short holding times received in hold?	
	D	20. Was Standard Turn Around (TAT) requested?	
		21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.	

TestAmerica Portland

Sample Receiving Checklist

Wor	k Ord	er#	PT1-0689
Logi	in Ch	ecks	initials MA
N/A	Yes	No	Titiliais, A.A.
1 1/12	X		22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
Wi '		П	23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
7			no, document on NOD and contact PM.
	X		24. Did the chain of custody include "received by" and "relinquished by" signatures,
1	/ •		dates and times?
χ_{j}			25. Were special log in instructions read and followed?
	X		26. Were tests logged checked against the COC?
X	′ 🖂 -		27. Were rush notices printed and delivered?
X			28. Were short hold notices printed and delivered?
	X		29. Were subcontract COCs printed?
M	·П		30. Was HF dilution logged?
<i>!</i>			
Lab	eling	and	Storage Checks: Initials:
N/A	Yes	No	
	X		31. Were the subcontracted samples/containers put in Sx fridge?
			32. Were sample bottles and COC double checked for dissolved/filtered metals?
			33. Did the sample ID, Date, and Time from label match what was logged?
			34. Were Foreign sample stickers affixed to each container and containers stored in
			foreign fridge?
			35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
	X		36. Was an NOD for created for noted discrepancies and placed in folder?
Doce form	ment a	ıny pı).	roblems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10132108

Sample Receipt Date: 06/24/2010

Client Project #: PTF0689

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

August 18, 2010

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

August 18, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of sample extracted.

The initial extraction batch, that included samples PTF0689-02 through PTF0689-06, exhibited poor internal standard recovery and interferences in the QC extracts. The sample extracts also yielded poor recoveries but did not exhibit the interferences seen in the QC samples. Due to these issues the sample set was re-extracted, with the exception of sample PTF0689-03 for which insufficient volume was available for re-extraction. The results for the re-extracted samples were not consistent in their agreement with the initial extracts. Upon further investigation, it was determined that these samples were re-extracted without the Dean-Stark attachments on the Soxhlets and that all samples may not have been mixed with sufficient sodium sulfate to thoroughly dry the sample matrix. This could account for an inefficient extraction on the second sample set and generally lower analyte concentrations being determined. Therefore, the samples were extracted a third time under optimal extraction conditions and those results are included in this report. Sample PTF0689-01 (FO105694) was initially extracted in a separate batch and did not require re-extraction. Results from the third extraction set were in good agreement with the initial results for these samples.

The isotopically-labeled PCB internal standards in the sample extracts were generally recovered at 46-118%. Sample PTF0689-03 (FO105696) exhibited lower recoveries of 1-94%. With the exception of sample PTF0689-03 (FO105696), the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Those sample and QC recoveries outside of the method specified ranges were flagged "R" on the results tables. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained except where very low recoveries were exhibited.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks associtated with samples PTF0689-01 and PTF0689-03 to contain low levels of selected PCB congeners. The remaining blank was found to be free of PCB congeners at the reporting limits. Any sample levels determined to be within ten times the levels in the associated method blank were flagged "B" on the results tables and may have originated, at least partially, in the laboratory. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were generally recovered at 93-122% with relative percent differences of 0.0-19.8%. The spikes associated with sample PTF0689-03 exhibited elevated recoveries for congeners 1, 3 and 4 due to their association with internal standards that were very poorly recovered. Congener #1 was not recovered in LCS-25717 and was flagged "NC" as not calculated. These results indicate high levels of accuracy and precision for these analyses except where very low recoveries were exhibited. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN000642010A
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
C-MN-01	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 C-MN-01 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan C-MN-01 South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 9909 027-053-137 Wyoming

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER **TestAmerica Portland**

WCP.16

PTF0689 **RECEIVING LABORATORY:** SENDING LABORATORY: Pace Analytical Services, Inc - Minneapolis TestAmerica Portland 1700 Elm Street Suite 200 9405 SW Nimbus Ave. Minneapolis, MN 55414 Beaverton, OR 97008 Phone: (503) 906-9200 Phone: (612) 607-1700 Fax: (612) 607-6444 Fax: (503) 906-9210 Project Manager: Darrell Auvil Project Location: OR - OREGON Receipt Temperature: Limited Volume - Please use solids results Dry weight needs Excel EDD Standard TAT is requested unless specific due date is requested. => Due Date: Initials: **Analysis** Units **Expires** Comments Sample ID: PTF0689-01 (FO105694 - Other dry) Sampled: 06/17/10 09:43 12/14/10 09:43 ***209 Congeners*** TS=58.2% 1668 Coplanar PCBs - SUB ug/l O) Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-02 (FO105695 - Other dry) Sampled: 06/17/10 10:26 **/**S=48.2% 12/14/10 10:26 ***209 Congeners*** 1668 Coplanar PCBs - SUB ug/l Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-03 (FO105696 - Other dry) Sampled: 06/17/10 15:48 ***209 Congeners*** (TS=54.1% 1668 Coplanar PCBs - SUB ug/l 12/14/10 15:48 Containers Supplied: DDI 8 oz. jar (A) Sample ID: PTF0689-04 (FO105697 - Other dry) Sampled: 06/17/10 10:38 ***209 Congeners*** TS=46.6% 1668 Coplanar PCBs - SUB ug/l 12/14/10 10:38 Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-05 (FO105698 - Other dry) Sampled: 06/17/10 11:42 ***209 Congeners* TS=66.6% 12/14/10 11:42 1668 Coplanar PCBs - SUB ug/l DUS Containers Supplied:

4 oz. jar (A) Sample ID: PTF0689-06 (FO105702 - Other dry)

Sampled: 06/17/10 00:00 TS=66.6% ***209 Congeners*** 1668 Coplanar PCBs - SUB ug/l 12/14/10 00:00 Containers Supplied:

4 oz. jar (A)

Date/Time Released By

T-6 Received By Released By Report No.....10132108_1668A

Page 1 of 1 Date/Time

Page 5 of 82

Pace Analytical*

Sample Condition Upon Receipt

Client Name:

SCUR(.1672)
Project # [0132108

,									
Tracking #: 4170			ommerci	al 🛘	Pace	Other	*	rojaka 15 Rojaka najar	
Custody Seal on Cool	er/Box Present: 🔲 y	98 🔲 no	Ser	als inta	ct: C] yes		no Parij (Nema)	
Packing Material:	Bubble Wrap Bub	- ble Bags [] None		Other			Temp Blank: Yes No	
Thermometer Used	80344042 oi 179425	Type of	lae: W	et B	lue No	ne		Samples on ice, cooling process has i	ogun
Cooler Temperature	6.0	Biologic	al Tise	16 ls F	rozen: Y	Yes No		Date and initials of person exam	Ining
Temp should be above free	ezing to 6 ⁶ C			Con	nmente:	:	į	contents: <u>4/29//08</u> 4	 -
Chain of Custody Preser	nt:	1JYes 🗆	No □N	A 1.					
Chain of Custody Filled	Out:	ØYes □	No DN	A 2.					
Chain of Custody Reling	lnispeq:	ZYes D	No 🗆N	A 3.					
Sampler Name & Signat	ure on COC:	□Yes □	NO DIN	A 4.					-
Samples Arrived within I-	łold Time:	Elyes D	No DNA	A 5.					***************************************
Short Hold Time Analys	sis (<72hr):	∐Yes Di	60 □N/	A 6.					-
Rush Turn Around Time	e Requested:	□Yes ⊠f	VA DIV	7.	1		····		******
Sufficient Volume:		∐Yes J2f	√ DN/	8.	imited	volu	NUL		
Correct Containers Used	:	Tyes D	6 DNA	9.					
-Pace Containers Use	d:	CIYes CA	IO DINA	1					1
Containers intact:		□Yes □N	o DNA	10.					
Filtered volume received	for Dissolved tests	∐Yes ⊡N	O DINA	11.					
Sample Labels match CO	OC:	ØYes ,□N	o 🗆 N/A	12.					
-includes date/time/ID/	/Analysis Matrix:	SL							1
Ali containers needing acid/bar checked. Noncompliance are	se preservation have been noted in 13.	□Yes □N	DZIN/A	13.			09	H2SO4 NaOH H	,
All containers needing preser		□Yes □Ne	D 🗆 N/A	Samp	, #				ļ
compliance with EPA recomm	nendation.	الما 100 سال	/ WINT	 			<u>1:</u> -		
Exceptions: VOA,Colform, TOC,	Oll and Grease, WI-DRO (wate	r Dyes Ziv)	initial v comple				ot # of added reservative	- 1
Samples checked for dech	ilorination:	□Yes □No	ENVA	14.					
Headepace in VOA Vials (>6mm):	□Yes □No	(ZKVA	15.					
Trip Blank Present:		□Yes □No	DANA	16.					
Frip Blank Custody Seals F	Present	□Yes □No	DNA						
ace Trip Blank Lot # (if pu	ırchased):								
Sient Notification/ Resol	ution:		**************************************	····		,	Eic	eld Data Required? Y / N	بسيمسند
Person Contacted:		}	Date/T	ime:	()	11/8	I. IC	eld Data Required? Y / N	
Comments/ Resolution:	The state of the s		-	_	- 30 -	1211 T	,		
·	668-909	5-100	1 17	4 T	du	7	15	Fans Fass	******
	1	, 					1	- WANTER CRASE	
·····	-								

Project Manager Review	v:	N	A-LL	_				Date: CAPID	
			111		*****	***********	■	- SON 110	-

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Routi-Coalytical SEMMIO**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

1132

SUBCONTRACT ORDER TestAmerica Portland

PTF0689

10135375819111

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature: °C

Ice: Y / N

needs Excel EDD	Ada	sitional volume	
Standard TAT is i	requested unless specific d	ue date is requested. => Due Date:	Initials:
Analysis	Units	Expires	Comments
Sample ID: PTF068	89-01 (FO105694 - Other dr	ry) Sampled: 06/17/10 09:4:	2
1668 Coplanar PC	Bs - SUB ug/l	12/14/10 09:43	***209 Congeners*** TS=58.2%
Containers Supplie 4 oz. jar (A)	% · ·		
Sample ID: PTF068	9-02 (FO105695 - Other dr	y) Sampled: 06/17/10 10:26	8
1668 Coplanar PC	Bs - SUB ug/l	12/14/10 10:26	***209 Congeners*** TS=48.2%
Containers Supplie 4 oz. jar (A)	d: 8 oz. jar (C)		02/
Sample ID: PTF068	9-03 (FO105696 - Other dr	y) Sampled: 06/17/10 15:48	3
1668 Coplanar PC	Bs - SUB ug/l	12/14/10 15:48	***209 Congeners*** TS=54.1%
Containers Supplie 8 oz. jar (A)	d: DD		
Sample ID: PTF068	-	y) Sampled: 06/17/10 10:38	1
1668 Coplanar PCI	Bs - SUB ug/l	12/14/10 10:38	***209 Congeners*** TS=46.6%
Containers Supplied			જો
4 oz. jar (A)	8 oz. jar (C)		
Sample ID: PTF068	9-05 (FO105698 - Other dr	y) Sampled: 06/17/10 11:42	
1668 Coplanar PC	3s - SUB ug/l	12/14/10 11:42	***209 Congeners*** TS=66.6%
Containers Supplied	d:		$\mathcal{O}_{\mathcal{I}_{\chi}}$
4 oz. jar (A)	8 oz. jar (C)		
Sample ID: PTF0689	9-06 (FO105702 - Other dr	Sampled: 06/17/10 00:00	
1668 Coplanar PCE	Bs - SUB ug/l	12/14/10 00:00	***209 Congeners*** TS=66.6%
Containers Supplied	d:		300(
4 oz. jar (A)	8/oz. jar (C)		
Herrica	/V/ 8/6	5/10 Masspe	Pace 8410 0947
Released By	Date/Ti	me Received By	Date/Time

Released Report No.....10132108_balane

Received By

Date/TimePage 7 Pofg82 of 1

~ (110				10/20/00
S CAR (1-2012) sa	mple Con	ditio	n Upon Receipt	10130108
Pace Analytical Client Name	. Tect	Lucio	a Portland 1	Project #
One it value	». <u>1031 /</u>	rue r	a los iguno	
Courler: 💟 Fed Ex 🔲 UPS 🔲 USPS 🔲 Cli	ent 🗆 Com	mercial	Pace Other	(O)a(G)).
Fracking #: 417075259436			/	(Rio), (Due) Date
Custody Seal on Cooler/Box Present: Dyes	s 🔲 no	Seal	sintact: yes	no Proj Name
Packing Material: 🔲 Bubble Wrap 🔻 Bubbl	le Bags	None	Other	Temp Blank: Yes No
Thermometer Used 80344042 or (179425)	Type of Ice	: (We)	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 2,2	Biological	Tissu	is Frozen: Yes No	Date and initials of person examining contents: & Low Australia
Temp should be above freezing to 6°C			Comments:	comente. C 15-00 - 45 /
Chain of Custody Present:	☑Yes □No	□N⁄A	1.	
Chain of Custody Filled Out:	DYYes □No	□N/A	2.	
Chain of Custody Relinquished:	Yes Dyo	□N⁄A	3.	
Sampler Name & Signature on COC:	Dyss WNo	□N/A	4.	
Samples Arrived within Hold Time:	MYes □No	□N⁄A	5.	
Short Hold Time Analysis (<72hr):	☐Yes DWVø	□n/a	6.	
Rush Turn Around Time Requested:	□Yes DiNo	□N⁄A	7.	
Sufficient Volume:	Yes INO	□N⁄A	8.	
Correct Containers Used:	Mys □No		9.	
-Pace Containers Used:	Yes □No			
ontainers intact:	ĎVes □No			
litered volume received for Dissolved tests	☐Yes ☐No			
Sample Labels match COC:	MYes □No	□N⁄A	12.	}
-Includes date/time/ID/Analysis Matrix: Il containers needing acid/base preservation have been	ノー	/_	EONH	H2SO4 NaOH HCI
necked. Noncompliance are noted in 13.	□Yes □No	ÉKVA	 13 . ⊔	
li containers needing preservation are found to be in empliance with EPA recommendation.	□Yes □No	EN/A	Samp #	
ompliance with EFA recommendation. coeptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (wate	_{er} :⊡Yes DVNo	1	Initial when completed	Lot # of added preservative
amples checked for dechlorination:	□Yes □No	ŮŊ/A		
eadspace in VOA Vials (>6mm):	□Yes □No	DOM		
rip Blank Present:	□Yee □No	™ pva		
rip Blank Custody Seals Present	□Yes □No	MNA		Í
ace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:				Field Data Required? Y / N
Person Contacted:		Date/		i wa waa isquirea: 1 / 14
Comments/ Resolution: Resolution:	1/2/2	50	SOUNDES O	TENGRO-DIM AC
	++ (++))	- January By	11 200 1 30 11 13)
Project Manager Review:	W	4++	•	Date: 8 0 0

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Renth-Calydical SEIMMES**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

Client's Sample ID PTF0689-01 (FO105694)
Lab Sample ID 10132108001
Filename P100720A_12
Injected By SMT
Total Amount Extracted 17.5 g
% Moisture 41.8

Dilution 10.2 g Dry Weight Extracted Collected 06/17/2010 09:43 **ICAL ID** P100720A04 Received 06/24/2010 09:55 07/15/2010 15:45 CCal Filename(s) P100720A03 Extracted Method Blank ID BLANK-25744 Analyzed 07/20/2010 18:50

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.552	3.04	2.0	1.33	66
13C-4-MoCB	3	13.014	2.74	2.0	1.61	80
13C-2,2'-DiCB	4	13.385	1.58	2.0	1.27	63
13C-4,4'-DiCB	15	21.545	1.56	2.0	1.72	86
13C-2,2',6-TrCB	19	17.866	1.04	2.0	1.35	68
13C-3,4,4'-TrCB	37	29.856	1.05	2.0	1.81	91
13C-2,2',6,6'-TeCB	54	21.892	0.80	2.0	1.53	76
13C-3,4,4',5-TeCB	81	37.151	0.80	2.0	1.86	93
13C-3,3',4,4'-TeCB	77	37.737	0.80	2.0	1.93	97
13C-2,2',4,6,6'-PeCB	104	28.448	1.54	2.0	1.54	77
13C-2,3,3',4,4'-PeCB	105	41.343	1.59	2.0	1.82	91
13C-2,3,4,4',5-PeCB	114	40.689	1.60	2.0	1.80	90
13C-2,3',4,4',5-PeCB	118	40.135	1.56	2.0	1.81	91
13C-2,3',4,4',5'-PeCB	123	39.800	1.56	2.0	1.80	90
13C-3,3',4,4',5-PeCB	126	44.529	1.58	2.0	1.81	91
13C-2,2',4,4',6,6'-HxCB	155	34.652	1.26	2.0	1.51	76
13C-HxCB (156/157)	156/157	47.614	1.28	4.0	3.47	87
13C-2,3',4,4',5,5'-HxCB	167	46.407	1.27	2.0	1.77	89
13C-3,3',4,4',5,5'-HxCB	169	50.967	1.26	2.0	1.74	87
13C-2,2',3,4',5,6,6'-HpCB	188	40.622	1.06	2.0	1.73	87
13C-2,3,3',4,4',5,5'-HpCB	189	53.616	1.05	2.0	1.85	93
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.121	0.90	2.0	1.79	89
13C-2,3,3',4,4',5,5',6-OcCB	205	56.785	0.90	2.0	1.72	86
13C-2,2',3,3',4,4',5,5',6-NoCB	206	59.285	0.77	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	53.013	0.80	2.0	1.72	86
13CDeCB	209	61.655	0.73	2.0	1.56	78
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.262	1.03	2.0	1.77	89
13C-2,3,3',5,5'-PeCB	111	37.754	1.59	2.0	1.72	86
13C-2,2',3,3',5,5',6-HpCB	178	43.757	1.05	2.0	1.67	83
Recovery Standards						
13C-2,5-DiCB	9	16.285	1.55	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.392	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.920	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.321	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	56.138	0.92	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.5
2				ND		24.5
3				ND		24.5
4		13.397	1.42	27.5		24.5
5				ND		24.5
6				ND		24.5
7				ND		24.5
8		17.495	1.56	59.1		24.5
9				ND		24.5
10				ND		24.5
11		20.778	1.50	185		147
12	12/13			ND		49.0
13	12/13			ND		49.0
14	12/10			ND		24.5
15		21.581	1.69	63.2		24.5
16		21.497	1.01	46.4		24.5
17		20.910	1.07	46.6		24.5
18	18/30	20.382	1.06	89.3		49.0
19	. 5, 55			ND		24.5
20	20/28	25.279	1.01	203		49.0
21	21/33	25.564	1.02	113		49.0
22	33	26.017	1.01	80.2		24.5
23				ND		24.5
24				ND		24.5
25				ND		24.5
26	26/29			ND		49.0
27	_5/_5			ND		24.5
28	20/28	25.279	1.01	(203)		49.0
29	26/29			NĎ		49.0
30	18/30	20.382	1.06	(89.3)		49.0
31		24.927	1.02	`168 B		24.5
32		22.177	0.99	33.8		24.5
33	21/33	25.564	1.02	(113)		49.0
34				` NĎ		24.5
35				ND		24.5
36				ND		24.5
37		29.890	1.04	91.1		24.5
38				ND		24.5
39				ND		24.5
40	40/41/71			ND		147
41	40/41/71			ND		147
42		29.135	0.75	61.3		49.0
43	43/73			ND		98.1
44	44/47/65	28.532	0.79	233		147
45	45/51			ND		98.1
46				ND		49.0
47	44/47/65	28.532	0.79	(233)		147
48				NĎ		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.962	0.80	122		98.1
50	50/53			ND		98.1
51	45/51			ND		98.1
52		27.408	0.80	284 B		49.0
53	50/53			ND		98.1
54				ND		49.0
55				ND		49.0
56		33.814	0.78	97.5		49.0
57				ND		49.0
58				ND		49.0
59	59/62/75			ND		147
60	33, 32, 13	34.048	0.79	50.7		49.0
61	61/70/74/76	32.741	0.76	481		196
62	59/62/75			ND		147
63	00/02/10			ND		49.0
64		29.923	0.81	106		49.0
65	44/47/65	28.532	0.79	(233)		147
66	1 17 17 00	33.093	0.74	178		49.0
67				ND		49.0
68				ND		49.0
69	49/69	27.962	0.80	(122)		98.1
70	61/70/74/76	32.741	0.76	(481)		196
71	40/41/71			ND		147
72	40/41/71			ND		49.0
73	43/73			ND		98.1
74	61/70/74/76	32.741	0.76	(481)		196
7 5	59/62/75			ND		147
76	61/70/74/76	32.741	0.76	(481)		196
77	01/10/1-4/10	37.771	0.78	56.0		49.0
78				ND		49.0
79				ND		49.0
80				ND		49.0
81				ND		49.0
82		37.369	1.61	476		49.0
83		35.440	1.65	194		49.0
84		32.959	1.57	707		49.0
85	85/116/117	36.849	1.57	430		147
86	86/87/97/108/119/125	36.195	1.57	2170		294
87	86/87/97/108/119/125	36.195	1.57	(2170)		294 294
88	88/91	32.724	1.57	202		98.1
89	00/91	32.724 	1.57	ND		49.0
90	90/101/113	34.954	1.57	2160		147
91	88/91	32.724	1.57	(202)		98.1
91 92	00/31	32.72 4 34.317	1.56	(202) 416		49.0
92 93	93/98/100/102	34.31 <i>1</i> 	1.56	ND		49.0 196
93 94	33/30/100/10Z					
94 95		31.785	 1 <u>5</u> 0	ND 1440		49.0 49.0
		31.785	1.58	1440 ND		
96				ND		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	36.195	1.57	(2170)		294
98	93/98/100/102			` NĎ		196
99		35.558	1.60	740		49.0
100	93/98/100/102			ND		196
101	90/101/113	34.954	1.57	(2160)		147
102	93/98/100/102			ND		196
103				ND		49.0
104				ND		49.0
105		41.376	1.51	1570		49.0
106				ND		49.0
107	107/124	39.448	1.57	136		98.1
108	86/87/97/108/119/125	36.195	1.57	(2170)		294
109	00/01/01/100/110/120	39.699	1.46	201		49.0
110	110/115	37.033	1.57	3990		98.1
111	110/110			ND		49.0
112				ND		49.0
113	90/101/113	34.954	1.57	(2160)		147
114	30/101/113	40.705	1.50	95.5		49.0
115	110/115	37.033	1.57	(3990)		98.1
116	85/116/117	36.849	1.57	(430)		147
117	85/116/117	36.849	1.57	(430)		147
118	03/110/117	40.152	1.52	3200		49.0
119	86/87/97/108/119/125	36.195	1.57	(2170)		294
120	00/07/97/100/119/123		1.57	ND		49.0
121				ND ND		49.0
121				ND ND		49.0
123		39.800	1.22 I	ND 	52.1	49.0
123	107/124	39.448	1.57	(136)	52. I 	98.1
125	86/87/97/108/119/125	36.195	1.57	(2170)		294
126	80/87/97/100/119/123		1.57	(2170) ND		49.0
120				ND ND		49.0
127	128/166		1.24	1460		98.1
120	129/138/163	44.646 43.355	1.24	7690		147
130	129/130/103	42.684	1.23	527		49.0
			1.23	122		
131 132		39.783 40.253	1.25	2510		49.0 49.0
			1.25			
133	404/440	40.756		80.6		49.0
134	134/143	39.163	1.25	399		98.1
135	135/151	37.989	1.25	1270		98.1
136		35.457	1.25	520		49.0
137	400/400/400	42.902	1.24	455		49.0
138	129/138/163	43.355	1.23	(7690)		147
139	139/140	39.548	1.24	102		98.1
140	139/140	39.548	1.24	(102)		98.1
141		42.265	1.25	110Ó		49.0
142	40.4/4.40			ND (200)		49.0
143	134/143	39.163	1.25	(399)		98.1
144		38.576	1.27	209		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.0
146		41.427	1.23	689		49.0
147	147/149	38.945	1.24	3440		98.1
148	,			ND		49.0
149	147/149	38.945	1.24	(3440)		98.1
150	,			ND		49.0
151	135/151	37.989	1.25	(1270)		98.1
152	100/101			ND		49.0
153	153/168	42.064	1.23	3750		98.1
154	100/100			ND		49.0
155				ND		49.0
156	156/157	47.597	1.25	1240		98.1
157	156/157	47.597	1.25	(1240)		98.1
158	130/137	43.741	1.24	797		49.0
159		43.741	1.24	ND		49.0
160				ND ND		49.0
161				ND ND		49.0
162				ND ND		49.0
163	129/138/163	43.355	1.23	(7690)		147
164	129/130/103		1.25	(7690) 464		49.0
		43.036				
165	100/100	44.040	4.04	ND (4.400)		49.0
166	128/166	44.646	1.24	(1460)		98.1
167	450/400	46.423	1.23	347		49.0
168	153/168	42.064	1.23	(3750)		98.1
169			4.05	ND		49.0
170	474/470	50.330	1.05	1080		49.0
171	171/173	46.692	1.04	364		98.1
172	474/470	48.352	1.05	174		49.0
173	171/173	46.692	1.04	(364)		98.1
174		45.585	1.06	803		49.0
175				ND		49.0
176		41.913	1.04	97.0		49.0
177		46.038	1.04	513		49.0
178		43.791	1.08	135		49.0
179		41.007	1.03	249		49.0
180	180/193	49.022	1.04	1640		98.1
181				ND		49.0
182				ND		49.0
183	183/185	45.333	1.04	542		98.1
184				ND		49.0
185	183/185	45.333	1.04	(542)		98.1
186				ND		49.0
187		44.713	1.05	695		49.0
188				ND		49.0
189		53.638	0.98	55.1		49.0
190		50.883	1.11	196		49.0
191				ND		49.0
192				ND		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	49.022	1.04	(1640)		98.1
194		56.160	0.88	` 184		73.6
195		53.358	0.89	85.3		73.6
196		51.722	0.92	107		73.6
197	197/200			ND		147
198	198/199	51.034	0.89	206		147
199	198/199	51.034	0.89	(206)		147
200	197/200			` NĎ		147
201				ND		73.6
202				ND		73.6
203		51.923	0.89	125		73.6
204				ND		73.6
205				ND		73.6
206				ND		73.6
207				ND		73.6
208				ND		73.6
209				ND		73.6

Conc = Concentration EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	335	
Total Trichloro Biphenyls	871	
Total Tetrachloro Biphenyls	1670	
Total Pentachloro Biphenyls	18100	
Total Hexachloro Biphenyls	27200	
Total Heptachloro Biphenyls	6540	
Total Octachloro Biphenyls	707	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	55400	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix Dilution

Client's Sample ID PTF0689-02 (FO105695)
Lab Sample ID 10132108002-2R
Filename P100815B_07
Injected By BAL
Total Amount Extracted 21.1 g
% Moisture 51.8

10.2 g Dry Weight Extracted Collected 06/17/2010 10:26 **ICAL ID** P100815B02 Received 06/24/2010 09:55 08/10/2010 17:35 CCal Filename(s) P100815B 01 Extracted Method Blank ID BLANK-26032 Analyzed 08/15/2010 22:12

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.396	3.74	2.0	1.08	62 I
13C-4-MoCB	3	12.846	3.31	2.0	1.44	72
13C-2,2'-DiCB	4	13.194	1.60	2.0	1.23	61
13C-4,4'-DiCB	15	21.342	1.62	2.0	1.55	77
13C-2,2',6-TrCB	19	17.663	1.09	2.0	1.21	60
13C-3,4,4'-TrCB	37	29.624	1.01	2.0	1.69	84
13C-2,2',6,6'-TeCB	54	21.658	0.83	2.0	1.63	82
13C-3,4,4',5-TeCB	81	36.903	0.78	2.0	1.27	63
13C-3,3',4,4'-TeCB	77	37.506	0.79	2.0	1.20	60
13C-2,2',4,6,6'-PeCB	104	28.182	1.63	2.0	1.72	86
13C-2,3,3',4,4'-PeCB	105	41.095	1.55	2.0	1.15	57
13C-2,3,4,4',5-PeCB	114	40.441	1.58	2.0	1.20	60
13C-2,3',4,4',5-PeCB	118	39.871	1.65	2.0	1.29	65
13C-2,3',4,4',5'-PeCB	123	39.536	1.53	2.0	1.23	62
13C-3,3',4,4',5-PeCB	126	44.281	1.56	2.0	1.00	50
13C-2,2',4,4',6,6'-HxCB	155	34.387	1.29	2.0	2.09	105
13C-HxCB (156/157)	156/157	47.334	1.26	4.0	2.31	58
13C-2,3',4,4',5,5'-HxCB	167	46.126	1.31	2.0	1.36	68
13C-3,3',4,4',5,5'-HxCB	169	50.671	1.31	2.0	1.12	56
13C-2,2',3,4',5,6,6'-HpCB	188	40.340	1.04	2.0	2.05	102
13C-2,3,3',4,4',5,5'-HpCB	189	53.234	1.06	2.0	1.45	72
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.791	0.91	2.0	1.92	96
13C-2,3,3',4,4',5,5',6-OcCB	205	56.274	0.94	2.0	1.53	76
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.688	0.72	2.0	1.85	93
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.609	0.84	2.0	1.54	77
13CDeCB	209	61.231	0.77	2.0	1.83	91
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.012	1.17	2.0	2.04	102
13C-2,3,3',5,5'-PeCB	111	37.490	1.53	2.0	1.40	70
13C-2,2',3,3',5,5',6-HpCB	178	43.476	1.10	2.0	1.74	87
Recovery Standards						
13C-2,5-DiCB	9	16.093	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.142	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.672	1.49	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.057	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.670	0.86	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.408	2.85	44.1		24.6
2		12.595	2.86	25.6		24.6
3		12.858	3.03	56.6		24.6
4 5		13.206	1.53	246		24.6
5				ND		24.6
6		16.692	1.52	126		24.6
7		16.345	1.55	24.9		24.6
8		17.280	1.56	581		24.6
9		16.129	1.50	39.6		24.6
10				ND		24.6
11		20.587	1.53	1380		148
12	12/13	20.934	1.49	98.4		49.2
13	12/13	20.934	1.49	(98.4)		49.2
14				NĎ		24.6
15		21.366	1.61	810		24.6
16		21.270	1.04	463		24.6
17		20.695	1.09	465		24.6
18	18/30	20.180	1.06	620		49.2
19		17.675	0.99	134		24.6
20	20/28	25.063	1.02	2140		49.2
21	21/33	25.331	1.04	1210		49.2
22	, 00	25.784	1.00	872		24.6
23				ND		24.6
24				ND		24.6
25		24.325	1.03	157		24.6
26	26/29	24.039	0.99	373		49.2
27	20/20	20.970	0.99	95.6		24.6
28	20/28	25.063	1.02	(2140)		49.2
29	26/29	24.039	0.99	(373)		49.2
30	18/30	20.180	1.06	(620)		49.2
31	10/00	24.710	1.03	1880		24.6
32		21.926	1.04	361		24.6
33	21/33	25.331	1.04	(1210)		49.2
34	21/00			ND		24.6
35		29.205	0.95	96.8		24.6
36				ND		24.6
37		29.658	1.01	1140		24.6
38		20.000		ND		24.6
39				ND		24.6
40	40/41/71	29.440	0.78	1240		148
41	40/41/71	29.440	0.78	(1240)		148
42	40/41/11	28.886	0.78	584		49.2
43	43/73	20.000		ND		98.4
44	44/47/65	28.283	0.79	2240		148
4 4 45	45/51	25.146	0.79	375		98.4
46	75/51	25.499	0.80	143		49.2
47	44/47/65	28.283	0.76	(2240)		148
48	77/ 7 1/00	28.031	0.80	440		49.2
		_0.00.	0.00			

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	27.729	0.78	1240		98.4
50	50/53	24.341	0.78	282		98.4
51	45/51	25.146	0.80	(375)		98.4
52		27.176	0.79	372Ó		49.2
53	50/53	24.341	0.78	(282)		98.4
54				` NĎ		49.2
55				ND		49.2
56		33.565	0.73	976		49.2
57				ND		49.2
58				ND		49.2
59	59/62/75	28.668	0.84	213		148
60	00/02//0	33.817	0.77	468		49.2
61	61/70/74/76	32.492	0.75	4150		197
62	59/62/75	28.668	0.84	(213)		148
63	39/02/13	32.140	0.73	76.8		49.2
64		29.691	0.79	1000		49.2
65	44/47/65	28.283	0.79	(2240)		148
66	44/41/03	32.861	0.76	2000		49.2
67		31.855	0.76	83.9		49.2
68		31.000	0.73	ND		49.2
69	49/69	27.729	0.78	(1240)		98.4
70			0.76			96.4 197
70	61/70/74/76	32.492	0.75	(4150)		
71	40/41/71	29.440	0.78	(1240)		148
72	40/70			NĎ		49.2
73	43/73			ND (4450)		98.4
74	61/70/74/76	32.492	0.75	(4150)		197
75	59/62/75	28.668	0.84	(213)		148
76	61/70/74/76	32.492	0.75	(4150)		197
77		37.523	0.74	640		49.2
78				ND		49.2
79		35.813	0.74	57.8		49.2
80				ND		49.2
81				ND		49.2
82		37.104	1.54	962		49.2
83		35.175	1.54	597		49.2
84		32.693	1.59	2180		49.2
85	85/116/117	36.584	1.48	922		148
86	86/87/97/108/119/125	35.930	1.57	8110		295
87	86/87/97/108/119/125	35.930	1.57	(8110)		295
88	88/91	32.458	1.62	935		98.4
89		33.213	1.55	96.2		49.2
90	90/101/113	34.689	1.57	23900		148
91	88/91	32.458	1.62	(935)		98.4
92		34.068	1.56	3360		49.2
93	93/98/100/102	31.905	1.54	274		197
94				ND		49.2
95		31.536	1.56	15100		49.2
96		28.635	1.41	57.0		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.930	1.57	(8110)		295
98	93/98/100/102	31.905	1.54	`(274)		197
99		35.293	1.54	`268Ó		49.2
100	93/98/100/102	31.905	1.54	(274)		197
101	90/101/113	34.689	1.57	(23900)		148
102	93/98/100/102	31.905	1.54	(274)		197
103	00/00/100/102	30.798	1.54	67.5		49.2
104				ND		49.2
105		41.129	1.55	4110		49.2
106				ND		49.2
107	107/124	39.183	1.50	526		98.4
108	86/87/97/108/119/125	35.930	1.57	(8110)		295
109	80/87/97/108/119/123	39.452	1.58	804		49.2
110	110/115	36.768	1.56	18900		98.4
110	110/115	30.700	1.56	ND		49.2
111				ND ND		49.2 49.2
112	90/101/113	34.689	1.57	(23900)		49.2 148
	90/101/113	34.009	1.57	(23900)		
114	440/445	40.458	1.44	203		49.2
115	110/115	36.768	1.56	(18900)		98.4
116	85/116/117	36.584	1.48	(922)		148
117	85/116/117	36.584	1.48	(922)		148
118	00/07/07/400/440/407	39.904	1.52	12000		49.2
119	86/87/97/108/119/125	35.930	1.57	(8110)		295
120				ND		49.2
121				ND		49.2
122		40.240	1.62	117		49.2
123		39.535	1.60	124		49.2
124	107/124	39.183	1.50	(526)		98.4
125	86/87/97/108/119/125	35.930	1.57	(8110)		295
126		44.265	1.24 I		305	49.2
127				ND		49.2
128	128/166	44.365	1.24	8380		98.4
129	129/138/163	43.074	1.25	102000		148
130		42.420	1.26	4190		49.2
131		39.519	1.21	659		49.2
132		39.988	1.26	25200		49.2
133		40.491	1.24	993		49.2
134	134/143	38.882	1.26	3290		98.4
135	135/151	37.708	1.25	34600		98.4
136		35.192	1.25	10800		49.2
137		42.638	1.34	1100		49.2
138	129/138/163	43.074	1.25	(102000)		148
139	139/140	39.301	1.30	548		98.4
140	139/140	39.301	1.30	(548)		98.4
141	-	41.984	1.25	22800		49.2
142				ND		49.2
143	134/143	38.882	1.26	(3290)		98.4
144	-	38.294	1.25	5690		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.2
146		41.162	1.25	13200		49.2
147	147/149	38.663	1.24	73900		98.4
148	,	37.070	1.31	63.7		49.2
149	147/149	38.663	1.24	(73900)		98.4
150	,	34.806	1.31	111		49.2
151	135/151	37.708	1.25	(34600)		98.4
152	100/101			ND		49.2
153	153/168	41.783	1.24	93900		98.4
154	100/100	37.976	1.09	571		49.2
155				ND		49.2
156	156/157	47.317	1.23	7760		98.4
157	156/157	47.317	1.23	(7760)		98.4
158	130/137	43.476	1.24	8400		49.2
159		45.405	1.47 I		67.3	49.2
160		45.405	1.47 1	ND	07.5 	49.2
161				ND		49.2
162		45.657	1.21	298		49.2
163	129/138/163	43.074	1.25	(102000)		148
164	129/130/103	42.755	1.32	5820		49.2
165		42.755	1.32	ND		49.2
166	128/166	44.365	1.24	(8380)		98.4
167	120/100	46.143	1.24	3460		49.2
168	153/168	41.783	1.22	(93900)		98.4
	155/166	50.688	1.47 l		 157	49.2
169		50.000	1.47 1	20600	157	49.2 49.2
170	171/173	46.378	1.04	39600		
171 172	171/173	40.370	1.04	12100 6690		98.4 49.2
	171/173	48.038 46.378	1.03			49.2 98.4
173 174	171/173	45.288	1.04	(12100) 35600		49.2
174		40.200 44.447	1.04			49.2 49.2
175		44.147 41.632	1.03	1770 4850		49.2
176		45.740	1.04	20800		49.2
177		43.493	1.04	7180		49.2
178		40.726	1.04	13900		49.2
180	180/193	48.709	1.05	83300		98.4
181	160/193	40.709	1.05	03300 ND		49.2
182				ND ND		49.2
183	183/185			26800		49.2 98.4
103	103/103	45.053 	1.04 	20000 ND		49.2
184 185	183/185	45.053	1.04	ND (26800)		49.2 98.4
	103/103	45.053	1.04			49.2
186 187		44.416	1.05	ND 41000		49.2
107			1.05	41000		49.2 49.2
188		40.357	1.01 1.01	60.5		49.2 49.2
189		53.256	1.01	1680		49.2
190		50.554	1.03	7910		49.2
191		49.061	1.03	1660		49.2
192				ND		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.709	1.05	(83300)		98.4
194		55.692	0.89	`1440Ó		73.8
195		52.954	0.89	5970		73.8
196		51.359	0.90	8460		73.8
197	197/200	47.820	0.89	2400		148
198	198/199	50.688	0.90	13000		148
199	198/199	50.688	0.90	(13000)		148
200	197/200	47.820	0.89	(2400)		148
201		46.763	0.91	`185Ó		73.8
202		45.824	0.90	2200		73.8
203		51.560	0.89	8520		73.8
204				ND		73.8
205		56.317	0.89	915		73.8
206		58.709	0.78	2880		73.8
207		53.665	0.82	383		73.8
208		52.652	0.78	597		73.8
209		61.296	0.71	423		73.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

Congener Group	Concentration ng/Kg	
Congener Group	ng/kg	
Total Monochloro Biphenyls	126	
Total Dichloro Biphenyls	3310	
Total Trichloro Biphenyls	10000	
Total Tetrachloro Biphenyls	19900	
Total Pentachloro Biphenyls	96100	
Total Hexachloro Biphenyls	427000	
Total Heptachloro Biphenyls	305000	
Total Octachloro Biphenyls	57700	
Total Nonachloro Biphenyls	3860	
Decachloro Biphenyls	423	
Total PCBs	924000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTF0689-03 (FO105696)
Lab Sample ID 10132108003
Filename P100717A_05
Injected By BAL
Total Amount Extracted 13.8 g

Total Amount Extracted13.8 gMatrixSolid% Moisture45.9Dilution5Dry Weight Extracted7.48 gCollected06/17

 Dry Weight Extracted
 7.48 g
 Collected
 06/17/2010 15:48

 ICAL ID
 P100717A02
 Received
 06/24/2010 09:55

 CCal Filename(s)
 P100717A_01
 Extracted
 07/14/2010 15:15

 Method Blank ID
 BLANK-25716
 Analyzed
 07/17/2010 11:57

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.600	0.75	2.0	0.00755	1 IR
13C-4-MoCB	3	13.038	2.66	2.0	0.306	15 R
13C-2,2'-DiCB	4	13.410	1.79	2.0	0.0297	1 R
13C-4,4'-DiCB	15	21.557	1.55	2.0	1.23	61
13C-2,2',6-TrCB	19	17.879	1.18	2.0	0.175	9 R
13C-3,4,4'-TrCB	37	29.858	1.04	2.0	1.78	89
13C-2,2',6,6'-TeCB	54	21.926	0.77	2.0	0.745	37
13C-3,4,4',5-TeCB	81	37.136	0.78	2.0	1.81	90
13C-3,3',4,4'-TeCB	77	37.723	0.80	2.0	1.60	80
13C-2,2',4,6,6'-PeCB	104	28.450	1.58	2.0	1.45	73
13C-2,3,3',4,4'-PeCB	105	41.312	1.52	2.0	1.54	77
13C-2,3,4,4',5-PeCB	114	40.658	1.55	2.0	1.57	79
13C-2,3',4,4',5-PeCB	118	40.105	1.56	2.0	1.64	82
13C-2,3',4,4',5'-PeCB	123	39.769	1.53	2.0	1.61	81
13C-3,3',4,4',5-PeCB	126	44.465	1.57	2.0	1.29	64
13C-2,2',4,4',6,6'-HxCB	155	34.654	1.28	2.0	1.70	85
13C-HxCB (156/157)	156/157	47.516	1.25	4.0	3.25	81
13C-2,3',4,4',5,5'-HxCB	167	46.343	1.27	2.0	1.66	83
13C-3,3',4,4',5,5'-HxCB	169	50.820	1.30	2.0	1.46	73
13C-2,2',3,4',5,6,6'-HpCB	188	40.608	1.04	2.0	1.88	94
13C-2,3,3',4,4',5,5'-HpCB	189	53.426	1.03	2.0	1.81	90
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.058	0.91	2.0	1.85	92
13C-2,3,3',4,4',5,5',6-OcCB	205	56.530	0.90	2.0	1.82	91
13C-2,2',3,3',4,4',5,5',6-NoCB	206	59.008	0.79	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.865	0.83	2.0	1.68	84
13CDeCB	209	61.616	0.69	2.0	1.69	84
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.264	1.09	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	37.740	1.61	2.0	1.54	77
13C-2,2',3,3',5,5',6-HpCB	178	43.710	1.07	2.0	1.72	86
Recovery Standards						
13C-2,5-DiCB	9	16.309	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.393	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.906	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.274	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.926	0.89	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.612	2.82	893 B		33.4
2		12.775	2.93	180 B		33.4
3		13.062	3.40	87.5 B		33.4
4		13.422	1.39	200		33.4
5				ND		33.4
6		16.908	1.59	83.8		33.4
7				ND		33.4
8		17.508	1.57	205		33.4
9				ND		33.4
10				ND		33.4
11		20.790	1.53	397 B		201
12	12/13			ND		66.9
13	12/13			ND		66.9
14				ND		33.4
15		21.593	1.54	441		33.4
16		21.509	1.07	174		33.4
17		20.922	1.06	365		33.4
18	18/30	20.407	1.06	723		66.9
19		17.903	1.06	81.3		33.4
20	20/28	25.297	1.03	1680		66.9
21	21/33	25.582	1.04	746		66.9
22	, 00	26.035	1.01	609		33.4
23				ND		33.4
24				ND		33.4
25		24.576	1.03	119		33.4
26	26/29	24.274	1.04	279		66.9
27	20,20	21.210	1.11	61.6		33.4
28	20/28	25.297	1.03	(1680)		66.9
29	26/29	24.274	1.04	(279)		66.9
30	18/30	20.407	1.06	(723)		66.9
31	10/00	24.945	1.02	1480		33.4
32		22.178	1.01	294		33.4
33	21/33	25.582	1.04	(746)		66.9
34	21/00			ND		33.4
35		29.422	1.03	34.7		33.4
36				ND		33.4
37		29.892	1.03	387		33.4
38				ND		33.4
39				ND		33.4
40	40/41/71	29.691	0.77	580		201
41	40/41/71	29.691	0.77	(580)		201
42	10/11//1	29.137	0.82	296		66.9
43	43/73	29.107		ND		134
44	44/47/65	28.550	0.80	986		201
45	45/51	25.381	0.79	210		134
46	10/01	25.561	0.79	ND		66.9
47	44/47/65	28.550	0.80	(986)		201
48	11/71/00	28.299	0.79	237		66.9
				— -		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

49	IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
50 50/53 24,593 0.80 162	40	40/60	27.000	0.80	E70		124
51 45/51 25,381 0.79 (210)							
52 27,427 0.78 965 66.9 53 50/53 24,593 0.80 (162) 134 54 ND 66.9 55 ND 66.9 56 33.816 0.78 184 66.9 57 ND 66.9 58 ND 66.9 59 59/62/75 ND 66.9 61 61/70/74/76 32,2726 0.78 960 2268 62 59/62/75 ND 201 63 62 59/62/75 ND 66.9 65 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
53 50/53 24,593 0.80 (162) 134 54 ND 66,9 55 ND 66,9 56 33.816 0.78 184 66,9 57 ND 66,9 58 ND 66,9 59 59/62/75 ND 66,9 61 61/70/74/76 32.726 0.78 960 268 62 59/62/75 ND 66.9 63 ND 66.9 66 64 29.925 0.80 458 66.9 66.9 66 44/47/65 28.550 0.80 (986) 201 66.9 67 ND		45/51			(210)		
54 55 56 33.816 0.78 184		F0/F0					
55		50/53					
56 33.816 0.78 184 66.9 57 ND 66.9 59 59/62/75 ND 66.9 61 61/70/74/76 32.726 0.78 960 268 62 59/62/75 ND 201 63 ND 201 63 ND 66.9 64 29.925 0.80 458 66.9 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 66.9 66.9 67 ND 66.9 66.9 67 49/69 27.980 0.80 (578) 134<							
57							
58 ND 66.9 59 59/62/75 ND 201 60 61 61/70/74/76 32.726 0.78 960 268 62 59/62/75 ND 201 63 ND 66.9 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 66.9 67 ND 66.9 68 ND 66.9 69 49/69 27.980 0.80 (578) 134 70 61/70/74/76 32.726 0.78 (960) 268 71 40/41/71 29.691 0.77	56						
59 59/62/75 ND 201 60 61 61/70/74/76 32.726 0.78 960 268 62 59/62/75 ND 201 63 ND 66.9 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 66.9 67 ND 66.9 67 ND 66.9 68 ND 66.9 69 49/69 27.980 0.80 (578) 134 70 61/70/74/76 32.726 0.78 (960) 268 71 40/41/71 29.691 0.77 (580) </td <td>57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>66.9</td>	57						66.9
60							
61 61/70/74/76 32.726 0.78 960 268 62 59/62/75 ND 201 63 ND 66.9 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 66.9 67 ND 66.9 68 49/69 27.980 0.80 (578) ND 66.9 69 49/69 27.980 0.80 (578) 134 70 61/70/74/76 32.726 0.78 (960) 268 71 40/41/71 29.691 0.77 (580) 201 72 ND 66.9 73 43/73 ND 66.9 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 66.9 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 ND 66.9 83 ND 66.9 84 ND 66.9 85 85/116/117 ND 66.9 85 85/116/117 ND 66.9 86 86/87/97/108/119/125 36.181 1.57 597 ND 66.9 87 86/87/97/108/119/125 36.181 1.57 597 ND 66.9 88 88/91 32.709 1.54 (172) ND 66.9 90 90/101/113 34.940 1.60 821 ND 66.9 91 88/91 32.709 1.54 (172) ND 66.9 93 93/98/100/102 ND ND 66.9 94 95 31.787 1.56 835 66.9		59/62/75					
62 59/62/75 ND 66.9 63 64 29.925 0.80 458 86.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 ND 66.9 67 ND 66.9 68 ND 66.9 69 49/69 27.980 0.80 (578) 134 70 61/70/74/76 32.726 0.78 (960) 268 71 40/41/71 29.691 0.77 (580) 201 72 ND ND 66.9 73 43/73 ND 66.9 73 43/73 ND 66.9 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 86.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/17 ND 66.9 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 597 401 88 88/91 32.709 1.54 (172) 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 ND 66.9 93 93/98/100/102 ND 66.9 95 31.787 1.56 835 66.9			34.051	0.76			66.9
63 64 64 29.925 0.80 458 66.9 65 44/47/65 28.550 0.80 (986) 201 66 33.095 0.78 464 66.9 67 ND ND 66.9 67 ND 66.9 68 ND 66.9 69 49/69 27.980 0.80 (578) ND 66.9 67 61/70/74/76 32.726 0.78 (960) 201 72 ND ND 66.9 73 43/73 ND ND 66.9 73 43/73 ND 66.9 74 61/70/74/76 32.726 0.78 (960) 288 75 59/62/75 ND ND 268 76 61/70/74/76 32.726 0.78 (960) 288 77 61/70/74/76 32.726 0.78 (960) 288 77 37.740 0.76 68.4 66.9 78 ND ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 86.9 85 85/116/117 ND 66.9 85 85/116/117 ND 86.9 87 88 88/91 32.961 1.58 258 66.9 89 90 90/101/113 34.940 1.60 821 ND ND 66.9 91 93 93/98/100/102 ND ND ND			32.726	0.78			
64		59/62/75			ND		
64	63				ND		66.9
65			29.925	0.80	458		66.9
66	65	44/47/65	28.550	0.80	(986)		201
67 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69							
68					ND		
69							
70 61/70/74/76 32.726 0.78 (960) 268 71 40/41/71 29.691 0.77 (580) 201 72 ND 66.9 73 43/73 ND 134 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND ND 66.9 80 ND ND 66.9 80 ND 66.9 81 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 66.9 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 597 401 88 88/91 32.709 1.54 172 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 93 93/98/100/102 ND 66.9 93 93/98/100/102 ND 66.9 94 95 31.787 1.56 835 66.9		49/69					
71 40/41/71 29.691 0.77 (580) 201 72 ND 66.9 73 43/73 ND 134 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 208 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 85/116/117 ND 66.9 <							
72 ND 66.9 73 43/73 ND 134 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 81 ND 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/							
73 43/73 ND 134 74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 401 86 86/87/97/108/119/125 36.181 1.57 597		40/41//1					66.0
74 61/70/74/76 32.726 0.78 (960) 268 75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401		13/73					
75 59/62/75 ND 201 76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 66.9 85 85/797/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401							
76 61/70/74/76 32.726 0.78 (960) 268 77 37.740 0.76 68.4 66.9 78 ND 66.9 79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 84 32.961 1.58 258 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 <td></td> <td></td> <td></td> <td></td> <td>(900)</td> <td></td> <td></td>					(900)		
77 78 78 79 79 79 79 70 70 70 70 70 71 71 71 72 75 76 77 78 79 79 70 70 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71							
78 79 79 79 79 79 79 79 79 79 79 79 79 79		01/70/74/70					
79 ND 66.9 80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 66.9 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172)							
80 ND 66.9 81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND							
81 ND 66.9 82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 134 92 90/101/113 34.940 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835							
82 37.338 1.62 114 66.9 83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 93 93/98/100/102 ND 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835							
83 ND 66.9 84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
84 32.961 1.58 258 66.9 85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 94 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9				-			
85 85/116/117 ND 201 86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 94 34.319 1.56 181 66.9 94 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
86 86/87/97/108/119/125 36.181 1.57 597 401 87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9	84				258		
87 86/87/97/108/119/125 36.181 1.57 (597) 401 88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
88 88/91 32.709 1.54 172 134 89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
89 ND 66.9 90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
90 90/101/113 34.940 1.60 821 201 91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9	88	88/91	32.709				
91 88/91 32.709 1.54 (172) 134 92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9	89				ND		66.9
92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9							
92 34.319 1.56 181 66.9 93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9	91	88/91	32.709	1.54			
93 93/98/100/102 ND 268 94 ND 66.9 95 31.787 1.56 835 66.9	92		34.319	1.56			66.9
94 ND 66.9 95 31.787 1.56 835 66.9		93/98/100/102					
95 31.787 1.56 835 66.9							
			31.787	1.56			

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	36.181	1.57	(597)		401
98	93/98/100/102			ND		268
99	00/00/100/102	35.543	1.56	293		66.9
100	93/98/100/102			ND		268
101	90/101/113	34.940	1.60	(821)		201
102	93/98/100/102			ND		268
103	39/30/100/102			ND		66.9
104				ND		66.9
105		41.346	1.57	356		66.9
106				ND		66.9
107	107/124			ND		134
107	86/87/97/108/119/125	36.181	1.57	(597)		401
108	80/87/97/100/119/123		1.57	ND		66.9
110	110/115	37.019	1.57	1190		134
111	110/113	37.019	1.57	ND		66.9
112				ND ND		66.9
113	90/101/113	34.940	1.60	(821)		201
113	90/101/113	34.940	1.60	(621) ND		66.9
114	110/115	37.019	1.57	(1190)		134
	85/116/117	37.019	1.57			-
116				ND ND		201
117	85/116/117			ND		201
118	00/07/07/400/440/405	40.138	1.54	717		66.9
119	86/87/97/108/119/125	36.181	1.57	(597)		401
120				NĎ		66.9
121				ND		66.9
122				ND		66.9
123	407/404			ND		66.9
124	107/124			ND (507)		134
125	86/87/97/108/119/125	36.181	1.57	(597)		401
126				ND		66.9
127	100/100			ND		66.9
128	128/166	44.599	1.26	233		134
129	129/138/163	43.308	1.24	1350		201
130		42.654	1.24	86.6		66.9
131				ND		66.9
132		40.222	1.24	412		66.9
133				ND		66.9
134	134/143			ND		134
135	135/151	37.958	1.23	341		134
136		35.443	1.26	144		66.9
137				ND		66.9
138	129/138/163	43.308	1.24	(1350)		201
139	139/140			ND		134
140	139/140			ND		134
141		42.234	1.24	208		66.9
142				ND		66.9
143	134/143			ND		134
144				ND		66.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		66.9
146		41.396	1.23	148		66.9
147	147/149	38.931	1.25	827		134
148	1177110			ND		66.9
149	147/149	38.931	1.25	(827)		134
150	1 177 1 10			ND		66.9
151	135/151	37.958	1.23	(341)		134
152	100,101			ND		66.9
153	153/168	42.033	1.24	881		134
154	100/100			ND		66.9
155				ND		66.9
156	156/157	47.516	1.24	172		134
157	156/157	47.516	1.24	(172)		134
158	100/107	43.710	1.25	134		66.9
159				ND		66.9
160				ND		66.9
161				ND		66.9
162				ND		66.9
163	129/138/163	43.308	1.24	(1350)		201
164		42.989	1.24	93.3		66.9
165				ND		66.9
166	128/166	44.599	1.26	(233)		134
167				NĎ		66.9
168	153/168	42.033	1.24	(881)		134
169				` NĎ		66.9
170		50.233	1.07	307		66.9
171	171/173			ND		134
172				ND		66.9
173	171/173			ND		134
174		45.538	1.07	248		66.9
175				ND		66.9
176				ND		66.9
177		45.974	1.02	143		66.9
178				ND		66.9
179		40.977	1.04	90.0		66.9
180	180/193	48.925	1.04	574		134
181				ND		66.9
182				ND		66.9
183	183/185	45.286	1.04	166		134
184				ND		66.9
185	183/185	45.286	1.04	(166)		134
186				NĎ		66.9
187		44.666	1.02	265		66.9
188				ND		66.9
189				ND		66.9
190				ND		66.9
191				ND		66.9
192				ND		66.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.925	1.04	(574)		134
194		55.948	0.88	`12Í		100
195				ND		100
196				ND		100
197	197/200			ND		201
198	198/199			ND		201
199	198/199			ND		201
200	197/200			ND		201
201				ND		100
202				ND		100
203				ND		100
204				ND		100
205				ND		100
206		59.052	0.76	108		100
207				ND		100
208				ND		100
209		61.660	0.68	116		100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

Congener Group	Concentration ng/Kg	
Congener Group	lig/Ng	
Total Monochloro Biphenyls	1160	
Total Dichloro Biphenyls	1330	
Total Trichloro Biphenyls	7030	
Total Tetrachloro Biphenyls	6260	
Total Pentachloro Biphenyls	5530	
Total Hexachloro Biphenyls	5030	
Total Heptachloro Biphenyls	1790	
Total Octachloro Biphenyls	121	
Total Nonachloro Biphenyls	108	
Decachloro Biphenyls	116	
Total PCBs	28500	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

PTF0689-04 (FO105697) Client's Sample ID Lab Sample ID 10132108004-2R Filename P100815B_08 Injected By BAL Total Amount Extracted 21.5 g % Moisture 53.4

Dilution 10.0 g Dry Weight Extracted Collected 06/17/2010 10:38 **ICAL ID** P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted 08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/15/2010 23:17

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.420	3.96	2.0	0.803	48 I
13C-4-MoCB	3 4	12.871	3.23	2.0	1.28	64
13C-2,2'-DiCB	4	13.218	1.65	2.0	1.12	56
13C-4,4'-DiCB	15	21.377	1.63	2.0	1.39	70
13C-2,2',6-TrCB	19	17.687	1.02	2.0	1.20	60
13C-3,4,4'-TrCB	37	29.690	1.05	2.0	1.48	74
13C-2,2',6,6'-TeCB	54	21.691	0.74	2.0	1.58	79
13C-3,4,4',5-TeCB	81	36.967	0.81	2.0	1.08	54
13C-3,3',4,4'-TeCB	77	37.554	0.82	2.0	1.05	53
13C-2,2',4,6,6'-PeCB	104	28.231	1.58	2.0	1.80	90
13C-2,3,3',4,4'-PeCB	105	41.159	1.54	2.0	1.06	53
13C-2,3,4,4',5-PeCB	114	40.472	1.62	2.0	1.16	58
13C-2,3',4,4',5-PeCB	118	39.935	1.55	2.0	1.14	57
13C-2,3',4,4',5'-PeCB	123	39.600	1.59	2.0	1.16	58
13C-3,3',4,4',5-PeCB	126	44.362	1.53	2.0	0.926	46
13C-2,2',4,4',6,6'-HxCB	155	34.418	1.28	2.0	2.19	110
13C-HxCB (156/157)	156/157	47.380	1.23	4.0	2.24	56
13C-2,3',4,4',5,5'-HxĆB	167	46.206	1.25	2.0	1.23	62
13C-3,3',4,4',5,5'-HxCB	169	50.767	1.15	2.0	1.07	54
13C-2,2',3,4',5,6,6'-HpCB	188	40.405	1.05	2.0	2.37	118
13C-2,3,3',4,4',5,5'-HpCB	189	53.316	0.99	2.0	1.53	77
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.871	0.87	2.0	2.03	102
13C-2,3,3',4,4',5,5',6-OcCB	205	56.376	0.93	2.0	1.53	76
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.790	0.76	2.0	2.11	105
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.691	0.89	2.0	1.57	79
13CDeCB	209	61.333	0.69	2.0	2.00	100
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.062	1.03	2.0	1.78	89
13C-2,3,3',5,5'-PeCB	111	37.554	1.57	2.0	1.32	66
13C-2,2,3,3,5,5,6-HpCB	178	43.557	1.02	2.0	1.72	86
Recovery Standards						
13C-2,5-DiCB	9	16.117	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.191	0.77	2.0	ŇA	NA
13C-2,2',4,5,5'-PeCB	101	34.703	1.51	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.104	1.33	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.773	0.98	2.0	ŇA	NA
, ,-,-, , ,-,-	-			-		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Page 32 of 82

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.444	2.94	46.7		25.0
2		12.619	3.24	31.8		25.0
2 3		12.883	3.08	75.9		25.0
4		13.242	1.47	237		25.0
4 5 6				ND		25.0
6		16.717	1.47	135		25.0
7		16.381	1.57	25.8		25.0
8		17.316	1.56	602		25.0
9		16.153	1.46	41.8		25.0
10				ND		25.0
11		20.623	1.57	751		150
12	12/13	20.982	1.51	109		49.9
13	12/13	20.982	1.51	(109)		49.9
14				NĎ		25.0
15		21.413	1.55	919		25.0
16		21.306	1.01	501		25.0
17		20.742	1.07	493		25.0
18	18/30	20.203	1.05	666		49.9
19		17.699	1.02	136		25.0
20	20/28	25.095	1.03	2080		49.9
21	21/33	25.364	1.02	1150		49.9
22		25.816	1.02	861		25.0
23				ND		25.0
24				ND		25.0
25		24.374	1.03	159		25.0
26	26/29	24.072	1.01	362		49.9
27		20.994	1.13	104		25.0
28	20/28	25.095	1.03	(2080)		49.9
29	26/29	24.072	1.01	(362)		49.9
30	18/30	20.203	1.05	(666)		49.9
31		24.743	1.04	Ì81Ó		25.0
32		21.976	1.02	391		25.0
33	21/33	25.364	1.02	(1150)		49.9
34				ND		25.0
35		29.237	0.99	75.9		25.0
36				ND		25.0
37		29.707	1.02	1130		25.0
38				ND		25.0
39				ND		25.0
40	40/41/71	29.472	0.83	1580		150
41	40/41/71	29.472	0.83	(1580)		150
42	40/70	28.918	0.80	671		49.9
43	43/73			ND		99.9
44	44/47/65	28.365	0.78	3650		150
45	45/51	25.246	0.79	851		99.9
46	4.4.4.7.10.5	25.514	0.83	187		49.9
47	44/47/65	28.365	0.78	(3650)		150
48		28.080	0.81	479		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.761	0.79	1780		99.9
50	50/53	24.374	0.79	654		99.9
51	45/51	25.246	0.79	(851)		99.9
52	. 6, 6 .	27.208	0.79	3570		49.9
53	50/53	24.374	0.79	(654)		99.9
54				ND		49.9
55				ND		49.9
56		33.597	0.76	779		49.9
57				ND		49.9
58				ND		49.9
59	59/62/75	28.700	0.77	244		150
60	00/02/70	33.848	0.76	369		49.9
61	61/70/74/76	32.540	0.75	3500		200
62	59/62/75	28.700	0.77	(244)		150
63	39/02/13	32.188	0.81	74.2		49.9
64		29.740	0.79	1100		49.9
65	44/47/65	28.365	0.78	(3650)		150
66	44/47/03	32.892	0.78	1720		49.9
67		31.903	0.76	79.7		49.9
68		31.903	0.62	ND		49.9
69	49/69	27.761	0.79	(1780)		99.9
70			0.79			200
	61/70/74/76 40/41/71	32.540	0.75	(3500)		200 150
71 72	40/41/71	29.472		(1580)		49.9
	40/70			NĎ		
73	43/73			ND (2500)		99.9
74	61/70/74/76	32.540	0.75	(3500)		200
75 70	59/62/75	28.700	0.77	(244)		150
76 77	61/70/74/76	32.540	0.75	(3500)		200
77 70		37.587	0.78	413 ND		49.9
78				ND		49.9
79				ND		49.9
80				ND		49.9
81			4.50	ND		49.9
82		37.151	1.53	921		49.9
83		35.206	1.60	492		49.9
84	05/440/445	32.741	1.57	2130		49.9
85	85/116/117	36.615	1.37	1040		150
86	86/87/97/108/119/125	35.978	1.52	5000		300
87	86/87/97/108/119/125	35.978	1.52	(5000)		300
88	88/91	32.507	1.55	1630		99.9
89		33.244	1.46	73.0		49.9
90	90/101/113	34.737	1.56	8390		150
91	88/91	32.507	1.55	(1630)		99.9
92		34.116	1.57	1750		49.9
93	93/98/100/102	31.953	1.50	518		200
94		31.065	1.47	152		49.9
95		31.568	1.56	7020		49.9
96		28.650	1.58	110		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.978	1.52	(5000)		300
98	93/98/100/102	31.953	1.50	(518)		200
99		35.357	1.57	282Ó		49.9
100	93/98/100/102	31.953	1.50	(518)		200
101	90/101/113	34.737	1.56	(8390)		150
102	93/98/100/102	31.953	1.50	`(518)		200
103		30.830	1.52	`15 8		49.9
104				ND		49.9
105		41.176	1.53	2820		49.9
106				ND		49.9
107	107/124	39.231	1.44	295		99.9
108	86/87/97/108/119/125	35.978	1.52	(5000)		300
109		39.499	1.45	` 42Ź		49.9
110	110/115	36.816	1.58	10200		99.9
111				ND		49.9
112				ND		49.9
113	90/101/113	34.737	1.56	(8390)		150
114		40.505	1.60	` 136		49.9
115	110/115	36.816	1.58	(10200)		99.9
116	85/116/117	36.615	1.37	`(1040)		150
117	85/116/117	36.615	1.37	(1040)		150
118		39.969	1.54	6200		49.9
119	86/87/97/108/119/125	35.978	1.52	(5000)		300
120				ND		49.9
121				ND		49.9
122		40.321	1.44	92.9		49.9
123		39.616	1.39	127		49.9
124	107/124	39.231	1.44	(295)		99.9
125	86/87/97/108/119/125	35.978	1.52	(5000)		300
126		44.362	1.97 I		84.5	49.9
127		42.802	1.52	58.3		49.9
128	128/166	44.429	1.23	2460		99.9
129	129/138/163	43.138	1.25	16400		150
130		42.484	1.25	1090		49.9
131		39.566	1.31	219		49.9
132		40.036	1.25	5250		49.9
133	40.4/4.40			ND		49.9
134	134/143	38.929	1.26	845		99.9
135	135/151	37.755	1.25	5680		99.9
136		35.240	1.27	2280		49.9
137 138	120/120/162	42.685	1.23	799		49.9 150
	129/138/163	43.138	1.25	(16400)		
139 140	139/140	39.331	1.19 1.19	256 (256)		99.9 99.9
140	139/140	39.331 42.048	1.19	(256) 2770		49.9
141		42.046	1.23	ND		49.9 49.9
142	134/143	38.929	1.26	(845)		49.9 99.9
143	104/140	38.359	1.25	793		49.9
177		30.333	1.20	1 33		70.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.9
146		41.226	1.24	2290		49.9
147	147/149	38.728	1.24	12200		99.9
148	,			ND		49.9
149	147/149	38.728	1.24	(12200)		99.9
150	,	34.854	1.24	70.6		49.9
151	135/151	37.755	1.25	(5680)		99.9
152	100/101			ND		49.9
153	153/168	41.847	1.24	12200		99.9
154	100/100	38.023	1.22	368		49.9
155				ND		49.9
156	156/157	47.380	1.24	1730		99.9
157	156/157	47.380	1.24	(1730)		99.9
158	190/197	43.523	1.23	1470		49.9
159			1.25	ND		49.9
160				ND		49.9
161				ND		49.9
162				ND		49.9
163	129/138/163	43.138	1.25	(16400)		150
164	129/130/103	42.802	1.26	1010		49.9
165		42.002	1.20	ND		49.9
166	128/166	44.429	1.23	(2460)		99.9
167	120/100	46.223	1.25	664		49.9
168	153/168	41.847	1.23	(12200)		99.9
169	155/166	41.047	1.24	(12200) ND		49.9
170		50.063	1.05	3470		49.9
170	171/173	46.441	1.05	1140		99.9
171	171/173	48.118	1.06	618		49.9
172	171/173	46.441	1.07	(1140)		99.9
173	17 1/173	45.351	1.04	3450		49.9
174		44.194	0.99	183		49.9
175		41.696	1.03	513		49.9
177		45.804	1.03	2020		49.9
178		43.557	1.03	818		49.9
179		40.773	1.03	1670		49.9
180	180/193	48.772	1.02	7280		99.9
181	100/193	40.772	1.05	ND		49.9
182				ND ND		49.9
183	183/185	45.100	1.05	2490		99.9
184	163/163	45.100	1.05	ND		49.9
185	183/185	45.100	1.05	(2490)		99.9
186	163/163	45.100	1.05	(2490) ND		49.9
187		44.479	1.05	4390		49.9
188		44.479	1.05	4390 ND		49.9 49.9
189		53.359	1.03	ที่ปี 173		49.9 49.9
190		50.633	1.03	733		49.9 49.9
190		49.141	1.03	733 142		49.9 49.9
191		49.141	1.05	ND		49.9 49.9
132				ND		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.772	1.05	(7280)		99.9
194		55.794	0.90	`161Ó		74.9
195		53.014	0.86	612		74.9
196		51.438	0.90	943		74.9
197	197/200	47.883	0.88	292		150
198	198/199	50.750	0.88	1790		150
199	198/199	50.750	0.88	(1790)		150
200	197/200	47.883	0.88	`(292)		150
201		46.843	0.92	` 265		74.9
202		45.888	0.93	361		74.9
203		51.639	0.88	1090		74.9
204				ND		74.9
205		56.398	0.92	116		74.9
206		58.812	0.79	858		74.9
207		53.725	0.83	104		74.9
208		52.712	0.71	305		74.9
209		61.398	0.65	760		74.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	154	
Total Dichloro Biphenyls	2820	
Total Trichloro Biphenyls	9920	
Total Tetrachloro Biphenyls	21700	
Total Pentachloro Biphenyls	52500	
Total Hexachloro Biphenyls	70900	
Total Heptachloro Biphenyls	29100	
Total Octachloro Biphenyls	7070	
Total Nonachloro Biphenyls	1270	
Decachloro Biphenyls	760	
Total PCBs	196000	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

PTF0689-05 (FO105698) Client's Sample ID Lab Sample ID 10132108005-2R Filename P100815B_09 Injected By BAL Total Amount Extracted 15.3 g % Moisture 33.4

Dilution 10.2 g Dry Weight Extracted Collected **ICAL ID** P100815B02 Received CCal Filename(s) P100815B 01 Extracted

06/17/2010 11:42 06/24/2010 09:55 08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/16/2010 00:23

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.444	3.44	2.0	0.930	46
13C-4-MoCB	3	12.895	2.84	2.0	1.23	61
13C-2,2'-DiCB	4	13.242	1.56	2.0	1.06	53
13C-4,4'-DiCB	15	21.402	1.66	2.0	1.36	68
13C-2,2',6-TrCB	19	17.700	1.12	2.0	1.16	58
13C-3,4,4'-TrCB	37	29.708	1.04	2.0	1.48	74
13C-2,2',6,6'-TeCB	54	21.726	0.82	2.0	1.48	74
13C-3,4,4',5-TeCB	81	36.953	0.79	2.0	1.13	56
13C-3,3',4,4'-TeCB	77	37.556	0.78	2.0	1.12	56
13C-2,2',4,6,6'-PeCB	104	28.249	1.57	2.0	1.69	84
13C-2,3,3',4,4'-PeCB	105	41.145	1.48	2.0	1.18	59
13C-2,3,4,4',5-PeCB	114	40.474	1.57	2.0	1.14	57
13C-2,3',4,4',5-PeCB	118	39.921	1.64	2.0	1.16	58
13C-2,3',4,4',5'-PeCB	123	39.585	1.57	2.0	1.18	59
13C-3,3',4,4',5-PeCB	126	44.331	1.50	2.0	1.01	51
13C-2,2',4,4',6,6'-HxCB	155	34.437	1.24	2.0	1.94	97
13C-HxCB (156/157)	156/157	47.367	1.26	4.0	2.32	58
13C-2,3',4,4',5,5'-HxCB	167	46.176	1.28	2.0	1.22	61
13C-3,3',4,4',5,5'-HxCB	169	50.687	1.27	2.0	1.13	56
13C-2,2',3,4',5,6,6'-HpCB	188	40.390	1.10	2.0	2.11	105
13C-2,3,3',4,4',5,5'-HpCB	189	53.255	1.02	2.0	1.41	71
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.841	0.93	2.0	1.90	95
13C-2,3,3',4,4',5,5',6-OcCB	205	56.294	0.92	2.0	1.51	75
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.730	0.79	2.0	1.71	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.652	0.80	2.0	1.62	81
13CDeCB	209	61.231	0.64	2.0	1.83	91
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.096	1.12	2.0	1.76	88
13C-2,3,3',5,5'-PeCB	111	37.539	1.55	2.0	1.34	67
13C-2,2',3,3',5,5',6-HpCB	178	43.510	1.03	2.0	1.64	82
Recovery Standards						
13C-2,5-DiCB	9	16.154	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.209	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.739	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.090	1.23	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.712	0.95	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.456	3.19	221		24.5
2		12.643	2.81	39.9		24.5
3		12.919	3.19	159		24.5
4		13.266	1.59	1950		24.5
3 4 5		17.160	1.44	98.7		24.5
6		16.753	1.54	957		24.5
7		16.393	1.55	191		24.5
8		17.340	1.55	4720		24.5
9		16.178	1.57	327		24.5
10		13.518	1.65	102		24.5
11		20.635	1.55	768		147
12	12/13	20.995	1.58	382		48.9
13	12/13	20.995	1.58	(382)		48.9
14	12/10			ND		24.5
15		21.426	1.56	3280		24.5
16		21.318	1.08	3330		24.5
17		20.743	1.05	3300		24.5
18	18/30	20.216	1.05	6330		48.9
19	10/30	17.724	1.07	908		24.5
20	20/28	25.113	1.02	10500		48.9
21	21/33	25.381	1.02	6400		48.9
22	21/33	25.851	1.05	4150		24.5
23		25.651	1.05	ND		24.5
23 24		21.162	1.05	95.7		24.5
2 4 25		24.392	1.03	823		24.5 24.5
25 26	26/29	24.392 24.107	1.02	2010		24.5 48.9
20 27	26/29		1.04	2010		
27	20/20	21.019	1.06 1.02	616		24.5
28	20/28	25.113	1.02	(10500)		48.9
29	26/29	24.107	1.04	(2010)		48.9
30	18/30	20.216		(6330)		48.9
31		24.761	1.03	9750		24.5
32	04/00	21.994	1.03	2200		24.5
33	21/33	25.381	1.03	(6400)		48.9
34		23.553	1.00	37.8		24.5
35		29.255	1.00	183		24.5
36				ND		24.5
37		29.725	1.02	2890		24.5
38				ND 17.0		24.5
39		28.115	0.99	47.2		24.5
40	40/41/71	29.490	0.77	5610		147
41	40/41/71	29.490	0.77	(5610)		147
42	40/70	28.937	0.78	`2640		48.9
43	43/73	27.494	0.74	332		97.9
44	44/47/65	28.350	0.79	11300		147
45	45/51	25.180	0.79	2100		97.9
46		25.566	0.81	721		48.9
47	44/47/65	28.350	0.79	(11300)		147
48		28.098	0.78	2130		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.779	0.79	6520		97.9
50	50/53	24.409	0.78	1520		97.9
51	45/51	25.180	0.79	(2100)		97.9
52	. 6, 6 .	27.226	0.79	19200		48.9
53	50/53	24.409	0.78	(1520)		97.9
54	30,00			ND		48.9
55				ND		48.9
56		33.632	0.76	2390		48.9
57				ND		48.9
58				ND		48.9
59	59/62/75	28.719	0.78	888		147
60	00/02/70	33.867	0.77	1220		48.9
61	61/70/74/76	32.559	0.77	14400		196
62	59/62/75	28.719	0.78	(888)		147
63	39/02/13	32.190	0.78	263		48.9
64		29.741	0.78	4500		48.9
65	44/47/65	28.350	0.79	(11300)		147
66	44/47/03	32.928	0.77	5540		48.9
67		31.905	0.80	218		48.9
68		31.903	0.60	ND		48.9
69	49/69	27.779	0.79	(6520)		97.9
70	61/70/74/76	32.559	0.79	(14400)		196
70 71	40/41/71	29.490	0.77	(5610)		147
71	40/41/71	29.490	0.77	ND		48.9
73	43/73	27.494	0.74			97.9
73 74		32.559	0.74	(332)		97.9 196
74 75	61/70/74/76 59/62/75		0.77	(14400)		147
75 76		28.719 32.559	0.78	(888)		196
	61/70/74/76			(14400)		
77 70		37.590	0.77	421		48.9
78		36.651	0.70	113		48.9
79		35.879	0.72	136		48.9
80				ND		48.9
81			 4 55	ND		48.9
82		37.154	1.55	2650		48.9
83		35.225	1.71	1390		48.9
84	05/440/447	32.760	1.57	6640		48.9
85	85/116/117	36.651	1.55	3380		147
86	86/87/97/108/119/125	35.997	1.56	15900		294
87	86/87/97/108/119/125	35.997	1.56	(15900)		294
88	88/91	32.525	1.58	2900		97.9
89	00/101/110	33.263	1.53	210		48.9
90	90/101/113	34.756	1.57	22900		147
91	88/91	32.525	1.58	(2900)		97.9
92	00/00/400/:55	34.118	1.56	4220		48.9
93	93/98/100/102	31.955	1.61	628		196
94		31.100	1.52	97.4		48.9
95		31.586	1.56	19600		48.9
96		28.685	1.74	173		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.997	1.56	(15900)		294
98	93/98/100/102	31.955	1.61	(628)		196
99		35.359	1.60	782Ó		48.9
100	93/98/100/102	31.955	1.61	(628)		196
101	90/101/113	34.756	1.57	(22900)		147
102	93/98/100/102	31.955	1.61	(628)		196
103		30.848	1.61	103		48.9
104				ND		48.9
105		41.179	1.55	7680		48.9
106				ND		48.9
107	107/124	39.250	1.53	775		97.9
108	86/87/97/108/119/125	35.997	1.56	(15900)		294
109	33/31/31/133/113/123	39.485	1.57	1090		48.9
110	110/115	36.835	1.57	24500		97.9
111	110/110			ND		48.9
112				ND		48.9
113	90/101/113	34.756	1.57	(22900)		147
114	30, 13 1, 113	40.508	1.58	465		48.9
115	110/115	36.835	1.57	(24500)		97.9
116	85/116/117	36.651	1.55	(3380)		147
117	85/116/117	36.651	1.55	(3380)		147
118	09/110/117	39.954	1.52	18600		48.9
119	86/87/97/108/119/125	35.997	1.56	(15900)		294
120	00/01/31/100/113/129			ND		48.9
121				ND		48.9
122		40.307	1.67	215		48.9
123		39.619	1.63	287		48.9
124	107/124	39.250	1.53	(775)		97.9
125	86/87/97/108/119/125	35.997	1.56	(15900)		294
126	00/07/37/100/119/129			(13300) ND		48.9
127				ND		48.9
128	128/166	44.415	1.26	3650		97.9
129	129/138/163	43.124	1.25	21800		147
130	129/130/103	42.453	1.27	1540		48.9
131		39.569	1.26	430		48.9
132		40.038	1.24	7600		48.9
133		40.541	1.19	260		48.9
134	134/143	38.948	1.16	1350		97.9
135	135/151	37.791	1.10	5820		97.9
136	133/131	35.259	1.26	3000		48.9
137		42.688	1.18	1410		48.9
138	129/138/163	43.124	1.16	(21800)		147
139	139/140	39.351	1.22	(21800) 447		97.9
140	139/140	39.351	1.22	(447)		97.9 97.9
140	139/140	42.034	1.22	3490		48.9
141		42.034	1.24	3490 ND		48.9 48.9
142	134/143					
143	134/143	38.948	1.16	(1350)		97.9 48.9
144		38.361	1.26	1070		40.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

145	IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
146	145				ND		48.9
147 147/149 38,730 1.26 13700 97,9 149 147/149 38,730 1.26 (13700) 97,9 150 151 135/151 37,791 1.24 (5820) 48,9 152 ND 48,9 153 153/168 41,833 1.25 13800 97,9 154 38,026 1,11 145 48,9 155 ND 48,9 156 156/157 47,350 1.24 3150 97,9 158 43,526 1.25 2240 48,9 160 ND 48,9 161 ND 48,9 162 45,690 1,18 49,5 48,9 163 129/138/163 43,124 1,25 (1800) 147 164 42,805 1,22 1270 48,9					2530		48.9
148 — — ND — 48.9 149 147/149 38.730 1.26 (13700) — 97.9 150 — — ND — 48.9 151 135/151 37.791 1.24 (5820) — 97.9 152 — ND — 48.9 153 153/168 41.833 1.25 13800 — 97.9 154 38.026 1.11 145 — 48.9 155 — ND — 48.9 155 — — ND — 48.9 155 — ND — 48.9 156 156/157 47.350 1.24 3150 — 97.9 9.7 157 156/157 47.350 1.24 (3150) — 97.9 168 — — ND — 48.9 169 — — — ND — 48.9 169		147/149	38 730				
149 147/149 38,730 1.26 (13700)		,			ND		48.9
150		147/149					
151	150	,			ND		48.9
152		135/151	37.791				
153 153/168 41.833 1.25 13800	152						48.9
154 38.026 1.11 145		153/168	41.833	1.25			
155				1.11			
156 156/157 47.350 1.24 3150 97.9 157 156/157 47.350 1.24 (3150) 97.9 158 43.526 1.25 2240 48.9 159 ND 48.9 160 ND 48.9 161 ND 48.9 162 45.690 1.18 49.5 48.9 163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800)					ND		
157 156/157 47.350 1.24 (3150) 97.9 158 43.526 1.25 2240 48.9 159 ND 48.9 160 ND 48.9 161 ND 48.9 162 45.690 1.18 49.5 48.9 163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 48.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 48.9 170 50.33 1.04 2330 48.9	156	156/157					97.9
158 43.526 1.25 2240 48.9 159 ND 48.9 160 ND 48.9 161 ND 48.9 162 45.690 1.18 49.5 48.9 163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 <t< td=""><td>157</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	157						
159	158	100/107	43.526	1.25	2240		48 9
160 ND 48.9 161 ND 48.9 162 45.690 1.18 49.5 48.9 163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.333 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 17	159						
161 ND 48.9 162 45.690 1.18 49.5 48.9 163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 48.9 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 48.9 173 171/173 46.428 1.03 (815) 97.9 48.9 48.9 175 44.197							48.9
162 45.690 1.18 49.5	161				ND		48 9
163 129/138/163 43.124 1.25 (21800) 147 164 42.805 1.22 1270 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 <t< td=""><td>162</td><td></td><td></td><td></td><td></td><td></td><td>48.9</td></t<>	162						48.9
164 42.805 1.22 1270 48.9 165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 179 40.776 1.06 893 97.9 180 180/193		129/138/163	43 124				
165 ND 48.9 166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9		123/130/103		1.20			
166 128/166 44.415 1.26 (3650) 97.9 167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 180 180/193 48.742 1.03 3920 <td< td=""><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td></td<>					ND		
167 46.193 1.19 930 48.9 168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 <	166	128/166			(3650)		97.0
168 153/168 41.833 1.25 (13800) 97.9 169 ND 48.9 170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9	167	120/100		1.20	(3030)		
169	168	153/168		1.15	(13800)		97.0
170 50.033 1.04 2330 48.9 171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 <tr< td=""><td></td><td>155/100</td><td></td><td></td><td>(13000) ND</td><td></td><td>48 Q</td></tr<>		155/100			(13000) ND		48 Q
171 171/173 46.428 1.03 815 97.9 172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9					3330		40.9 48.0
172 48.071 1.05 383 48.9 173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9	170	171/173		1.07			
173 171/173 46.428 1.03 (815) 97.9 174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187	172	1717173	48.720 48.071	1.05	383		18 Q
174 45.321 1.04 1990 48.9 175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 189 5		171/173		1.03			
175 44.197 1.01 109 48.9 176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 189 53.277 1.13 123 48.9 190 50	173	1717173	45 321	1.03	1990		18 Q
176 41.682 1.06 340 48.9 177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587<			44.107	1.04			
177 45.774 1.03 1180 48.9 178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094<			41 682	1.01			
178 43.543 1.05 404 48.9 179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9				1.00	1180		
179 40.776 1.06 893 48.9 180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9			13.77	1.05	404		40.3 48 Q
180 180/193 48.742 1.03 3920 97.9 181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	179		40.776	1.06	893		48.9
181 46.193 0.91 53.3 48.9 182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	180	180/193		1.00	3920		
182 ND 48.9 183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9		100/133					
183 183/185 45.086 1.06 1490 97.9 184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	182				ND		48.9
184 ND 48.9 185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	183	183/185			1/90		97.0
185 183/185 45.086 1.06 (1490) 97.9 186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	184	100/100					48 9
186 ND 48.9 187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	185	183/185					
187 44.466 1.08 2160 48.9 188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9		.00/100	10.000				
188 ND 48.9 189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	187		44 466		2160		
189 53.277 1.13 123 48.9 190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9	188				ND		48 9
190 50.587 1.01 451 48.9 191 49.094 1.07 99.2 48.9							
191 49.094 1.07 99.2 48.9	190			1.13	451		48 Q
	191			1.07			48 9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.742	1.03	(3920)		97.9
194		55.712	0.90	` 55 8		73.4
195		52.975	0.88	226		73.4
196		51.375	0.90	357		73.4
197	197/200			ND		147
198	198/199	50.721	0.89	689		147
199	198/199	50.721	0.89	(689)		147
200	197/200			` NĎ		147
201		46.813	0.97	107		73.4
202		45.874	0.87	152		73.4
203		51.576	0.91	413		73.4
204				ND		73.4
205				ND		73.4
206		58.730	0.85	342		73.4
207				ND		73.4
208		52.652	0.86	92.7		73.4
209		61.295	0.63	119		73.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	420	
Total Dichloro Biphenyls	12800	
Total Trichloro Biphenyls	53500	
Total Tetrachloro Biphenyls	82100	
Total Pentachloro Biphenyls	142000	
Total Hexachloro Biphenyls	89600	
Total Heptachloro Biphenyls	16700	
Total Octachloro Biphenyls	2500	
Total Nonachloro Biphenyls	435	
Decachloro Biphenyls	119	
Total PCBs	400000	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix Dilution

PTF0689-06 (FO105702) Client's Sample ID Lab Sample ID 10132108006-2R P100815B_10 Filename Injected By BAL Total Amount Extracted 15.4 g % Moisture 33.4

10.2 g Dry Weight Extracted Collected 06/17/2010 **ICAL ID** P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted

08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/16/2010 01:28

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.432	4.32	2.0	0.741	48 I
13C-4-MoCB	3	12.883	2.91	2.0	1.39	70
13C-2,2'-DiCB	4	13.230	1.60	2.0	1.21	61
13C-4,4'-DiCB	15	21.413	1.56	2.0	1.47	73
13C-2,2',6-TrCB	19	17.687	1.09	2.0	1.23	62
13C-3,4,4'-TrCB	37	29.707	1.11	2.0	1.60	80
13C-2,2',6,6'-TeCB	54	21.725	0.80	2.0	1.61	80
13C-3,4,4',5-TeCB	<u>81</u>	36.985	0.80	2.0	1.24	62
13C-3,3',4,4'-TeCB	77	37.571	0.82	2.0	1.17	58
13C-2,2',4,6,6'-PeCB	104	28.248	1.57	2.0	1.89	94
13C-2,3,3',4,4'-PeCB	105	41.143	1.57	2.0	1.26	63
13C-2,3,4,4,5-PeCB	114 118	40.472 39.919	1.55 1.58	2.0 2.0	1.26 1.31	63 66
13C-2,3',4,4',5-PeCB	123	39.601	1.56	2.0	1.31	66
13C-2,3',4,4',5'-PeCB 13C-3,3',4,4',5-PeCB	126	44.329	1.57	2.0	1.07	53
13C-2,2',4,4',6,6'-HxCB	155	34.436	1.21	2.0	2.13	107
13C-E,2,4,4,0,0-11XCB	156/157	47.364	1.24	4.0	2.40	60
13C-2,3',4,4',5,5'-HxCB	167	46.157	1.34	2.0	1.31	65
13C-3,3',4,4',5,5'-HxCB	169	50.701	1.32	2.0	1.14	57
13C-2,2',3,4',5,6,6'-HpCB	188	40.389	1.09	2.0	2.30	115
13C-2,3,3',4,4',5,5'-HpCB	189	53.273	1.11	2.0	1.44	72
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.838	0.96	2.0	1.94	97
13C-2,3,3',4,4',5,5',6-OcCB	205	56.356	0.87	2.0	1.60	80
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.748	0.84	2.0	1.72	86
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.648	0.80	2.0	1.55	78
13CDeCB	209	61.270	0.75	2.0	1.83	91
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.079	1.01	2.0	1.81	91
13C-2,3,3',5,5'-PeCB	111	37.555	1.51	2.0	1.47	74
13C-2,2',3,3',5,5',6-HpCB	178	43.524	1.09	2.0	1.79	90
Recovery Standards						
13C-2,5-DiCB	9	16.141	1.64	2.0	NA	NA
13C-2,3-51CB 13C-2,2',5,5'-TeCB	52	27.192	0.80	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	34.704	1.61	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB	138	43.088	1.01	2.0	NA NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.731	0.97	2.0	NA NA	NA NA
100 2,2,0,0,7,7,0,0-0000	137	55.751	0.37	2.0	I W/T	I W/A

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.456	3.10	281		24.4
2		12.631	3.24	50.4		24.4
2 3		12.907	3.19	180		24.4
4		13.254	1.58	2260		24.4
4 5 6		17.148	1.58	122		24.4
6		16.741	1.55	1160		24.4
7		16.405	1.58	236		24.4
8		17.340	1.56	5770		24.4
9		16.166	1.56	402		24.4
10		13.506	1.56	129		24.4
11		20.623	1.55	997		146
12	12/13	20.994	1.53	438		48.8
13	12/13	20.994	1.53	(438)		48.8
14				NĎ		24.4
15		21.426	1.56	3610		24.4
16		21.318	1.06	4150		24.4
17		20.743	1.06	4160		24.4
18	18/30	20.203	1.04	7740		48.8
19		17.723	1.07	1140		24.4
20	20/28	25.112	1.03	13100		48.8
21	21/33	25.381	1.03	8080		48.8
22		25.850	1.03	5080		24.4
23				ND		24.4
24		21.174	1.03	157		24.4
25		24.391	1.03	1020		24.4
26	26/29	24.106	1.02	2490		48.8
27		21.018	1.05	763		24.4
28	20/28	25.112	1.03	(13100)		48.8
29	26/29	24.106	1.02	(2490)		48.8
30	18/30	20.203	1.04	(7740)		48.8
31		24.760	1.03	12100		24.4
32		21.993	1.01	2640		24.4
33	21/33	25.381	1.03	(8080)		48.8
34		23.536	0.98	46.1		24.4
35		29.254	0.96	239		24.4
36				ND		24.4
37		29.724	1.02	3440		24.4
38				ND		24.4
39		28.097	0.91	62.2		24.4
40	40/41/71	29.489	0.80	6470		146
41	40/41/71	29.489	0.80	(6470)		146
42		28.936	0.78	3070		48.8
43	43/73	27.477	0.74	384		97.6
44	44/47/65	28.349	0.79	12000		146
45	45/51	25.180	0.78	2480		97.6
46	4.4.4.7.10.7	25.548	0.78	851		48.8
47	44/47/65	28.349	0.79	(12000)		146
48		28.097	0.77	2550		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.779	0.78	7030		97.6
50	50/53	24.408	0.80	1750		97.6
51	45/51	25.180	0.78	(2480)		97.6
52		27.225	0.79	1860Ó		48.8
53	50/53	24.408	0.80	(1750)		97.6
54				ND		48.8
55				ND		48.8
56		33.631	0.76	2490		48.8
57				ND		48.8
58				ND		48.8
59	59/62/75	28.718	0.77	1080		146
60		33.866	0.76	1290		48.8
61	61/70/74/76	32.558	0.76	13100		195
62	59/62/75	28.718	0.77	(1080)		146
63	00/02//0	32.189	0.76	280		48.8
64		29.741	0.79	4940		48.8
65	44/47/65	28.349	0.79	(12000)		146
66	44/4//00	32.927	0.77	5640		48.8
67		31.904	0.76	264		48.8
68		31.304	0.70	ND		48.8
69	49/69	27.779	0.78	(7030)		97.6
		27.779	0.76			97.0
70	61/70/74/76	32.558	0.76	(13100)		195
71	40/41/71	29.489	0.80	(6470)		146
72	40/70	30.697	0.73	48.8		48.8
73	43/73	27.477	0.74	(384)		97.6
74	61/70/74/76	32.558	0.76	(13100)		195
75	59/62/75	28.718	0.77	(1080)		146
76	61/70/74/76	32.558	0.76	(13100)		195
77		37.588	0.77	493		48.8
78				ND		48.8
79		35.878	0.89	81.5		48.8
80				ND		48.8
81				ND		48.8
82		37.152	1.58	1800		48.8
83		35.224	1.44	973		48.8
84		32.759	1.56	4790		48.8
85	85/116/117	36.649	1.55	2100		146
86	86/87/97/108/119/125	35.995	1.56	11200		293
87	86/87/97/108/119/125	35.995	1.56	(11200)		293
88	88/91	32.524	1.56	2150		97.6
89	33/31	33.262	1.64	170		48.8
90	90/101/113	34.754	1.57	17300		146
91	88/91	32.524	1.56	(2150)		97.6
92	00/3 I	34.117	1.57	3040		48.8
93	93/98/100/102	31.971	1.61	590		46.6 195
93 94	33/30/100/102	31.082	1.57	82.1		48.8
94 95			1.57	15500		48.8 48.8
		31.585		15500		
96		28.684	1.62	153		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.995	1.56	(11200)		293
98	93/98/100/102	31.971	1.61	` (590)		195
99		35.358	1.53	537 Ó		48.8
100	93/98/100/102	31.971	1.61	(590)		195
101	90/101/113	34.754	1.57	(17300)		146
102	93/98/100/102	31.971	1.61	(590)		195
103		30.847	1.54	87.7		48.8
104				ND		48.8
105		41.177	1.52	5020		48.8
106				ND		48.8
107	107/124	39.248	1.52	498		97.6
108	86/87/97/108/119/125	35.995	1.56	(11200)		293
109	00/01/01/100/110/120	39.500	1.50	698		48.8
110	110/115	36.834	1.57	17600		97.6
111	110/110			ND		48.8
112				ND		48.8
113	90/101/113	34.754	1.57	(17300)		146
114	30, 13 1, 113	40.506	1.50	321		48.8
115	110/115	36.834	1.57	(17600)		97.6
116	85/116/117	36.649	1.55	(2100)		146
117	85/116/117	36.649	1.55	(2100)		146
118	03/110/117	39.953	1.53	12200		48.8
119	86/87/97/108/119/125	35.995	1.56	(11200)		293
120	00/01/31/100/119/123			ND		48.8
121				ND		48.8
122		40.288	1.45	139		48.8
123		39.617	1.55	210		48.8
124	107/124	39.248	1.52	(498)		97.6
125	86/87/97/108/119/125	35.995	1.56	(11200)		293
126	80/87/97/100/119/123		1.50	(11200) ND		48.8
127				ND ND		48.8
127	128/166	44.413	1.24	2590		97.6
129	129/138/163	43.122	1.24	20000		146
130	129/130/103	43.122 42.468	1.23	1110		48.8
131		39.567	1.23	311		48.8
132		40.036	1.16	6360		48.8
132			1.27	214		48.8
	134/143	40.540	1.21			
134		38.930	1.20	1050		97.6
135	135/151	37.773	1.27 1.25	6490 2810		97.6
136		35.241	1.25			48.8
137	120/120/162	42.686	1.19	846		48.8
138	129/138/163	43.122	1.25	(20000)		146
139	139/140	39.349	1.24	291		97.6
140	139/140	39.349	1.24	(291)		97.6
141		42.049	1.25	3860		48.8
142	40.4/4.40			ND (4050)		48.8
143	134/143	38.930	1.25	(1050)		97.6
144		38.360	1.27	`114Ó		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.8
146		41.210	1.26	2350		48.8
147	147/149	38.729	1.26	14100		97.6
148	,			ND		48.8
149	147/149	38.729	1.26	(14100)		97.6
150	,			ND		48.8
151	135/151	37.773	1.27	(6490)		97.6
152				ND		48.8
153	153/168	41.847	1.26	16100		97.6
154		38.024	1.13	97.8		48.8
155				ND		48.8
156	156/157	47.364	1.23	2350		97.6
157	156/157	47.364	1.23	(2350)		97.6
158	100/101	43.524	1.24	1930		48.8
159				ND		48.8
160				ND		48.8
161				ND		48.8
162		45.721	1.07	84.0		48.8
163	129/138/163	43.122	1.25	(20000)		146
164	. = 0, . 0 0, . 0 0	42.803	1.23	1150		48.8
165				ND		48.8
166	128/166	44.413	1.24	(2590)		97.6
167	120/100	46.191	1.25	749		48.8
168	153/168	41.847	1.26	(16100)		97.6
169	100/100			ND		48.8
170		50.047	1.05	4150		48.8
171	171/173	46.425	1.04	1390		97.6
172	,	48.085	1.05	677		48.8
173	171/173	46.425	1.04	(1390)		97.6
174	,	45.335	1.03	3790		48.8
175		44.195	1.09	210		48.8
176		41.680	1.03	599		48.8
177		45.788	1.03	2170		48.8
178		43.541	1.04	774		48.8
179		40.774	1.04	1670		48.8
180	180/193	48.739	1.04	8680		97.6
181				ND		48.8
182				ND		48.8
183	183/185	45.084	1.03	3090		97.6
184				ND		48.8
185	183/185	45.084	1.03	(3090)		97.6
186				` NĎ		48.8
187		44.463	1.04	4450		48.8
188				ND		48.8
189		53.295	0.97	213		48.8
190		50.584	1.05	850		48.8
191		49.108	1.04	183		48.8
192				ND		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.739	1.04	(8680)		97.6
194		55.731	0.91	`162Ó		73.2
195		52.993	0.92	631		73.2
196		51.389	0.88	975		73.2
197	197/200	47.851	0.85	285		146
198	198/199	50.718	0.89	1540		146
199	198/199	50.718	0.89	(1540)		146
200	197/200	47.851	0.85	`(285)		146
201		46.811	0.92	233		73.2
202		45.889	0.90	290		73.2
203		51.590	0.90	1070		73.2
204				ND		73.2
205		56.377	0.80	112		73.2
206		58.748	0.81	627		73.2
207		53.705	0.86	87.3		73.2
208		52.692	0.84	151		73.2
209		61.313	0.74	194		73.2

Conc = Concentration EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	511	
Total Dichloro Biphenyls	15100	
Total Trichloro Biphenyls	66400	
Total Tetrachloro Biphenyls	84800	
Total Pentachloro Biphenyls	102000	
Total Hexachloro Biphenyls	86100	
Total Heptachloro Biphenyls	32900	
Total Octachloro Biphenyls	6760	
Total Nonachloro Biphenyls	865	
Decachloro Biphenyls	194	
Total PCBs	396000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Matrix

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-25716 Filename P100716B_06 Injected By BAL

Total Amount Extracted 10.1 g Extracted 07/14/2010 15:15 ICAL ID P100716B02 Analyzed 07/16/2010 23:56

CCal Filename(s) P100716B_01 Dilution NA

	1 1007 100	_01		Dilation	147 (
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes							
13C-2-MoCB	1	9.564	2.56	2.0	0.0457	2	R
13C-4-MoCB	3	13.014	2.69	2.0	0.501	25	-
13C-2,2'-DiCB	3 4	13.386	1.67	2.0	0.157	8	R
13C-4,4'-DiCB	15	21.533	1.58	2.0	1.34	67	-
13C-2,2',6-TrCB	19	17.855	1.17	2.0	0.450		R
13C-3,4,4'-TrCB	37	29.875	1.07	2.0	1.32	66	• •
13C-2,2',6,6'-TeCB	54	21.893	0.78	2.0	1.01	50	
13C-3,4,4',5-TeCB	81	37.253	0.79	2.0	0.515	26	
13C-3,3',4,4'-TeCB	77	37.857	0.78	2.0	0.445		R
13C-2,2',4,6,6'-PeCB	104	28.449	1.58	2.0	3.48		R
13C-2,3,3',4,4'-PeCB	105	41.445	1.59	2.0	1.60	80	٠.
13C-2,3,4,4',5-PeCB	114	40.791	1.59	2.0	1.52	76	
13C-2,3',4,4',5-PeCB	118	40.255	1.65	2.0	1.45	72	
13C-2,3',4,4',5'-PeCB	123	39.903	1.56	2.0	1.45	72	
13C-3,3',4,4',5-PeCB	126	44.564	1.58	2.0	1.84	92	
13C-2,2',4,4',6,6'-HxCB	155	34.721	1.24	2.0	1.44	72	
13C-HxCB (156/157)	156/157	47.566	1.27	4.0	6.13		R
13C-2,3',4,4',5,5'-HxCB	167	46.409	1.30	2.0	2.68	134	• •
13C-3,3',4,4',5,5'-HxCB	169	50.819	1.26	2.0	3.52		R
13C-2,2',3,4',5,6,6'-HpCB	188	40.724	1.03	2.0	0.534	27	• •
13C-2,3,3',4,4',5,5'-HpCB	189	53.404	1.04	2.0	1.79	90	
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.124	0.90	2.0	0.954	48	
13C-2,3,3',4,4',5,5',6-OcCB	205	56.465	0.88	2.0	1.67	84	
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.943	0.77	2.0	1.59	79	
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.844	0.82	2.0	1.50	75	
13CDeCB	209	61.508	0.70	2.0	1.49	75	
	200	01.000	0.70	2.0	1.40	70	
Cleanup Standards	00	05.000	4.00	0.0	4.00	00	
13C-2,4,4'-TrCB	28	25.230	1.06	2.0	1.66	83	
13C-2,3,3',5,5'-PeCB	111	37.873	1.55	2.0	1.24	62	
13C-2,2',3,3',5,5',6-HpCB	178	43.810	1.05	2.0	1.78	89	
Recovery Standards							
13C-2,5-DiCB	9	16.285	1.57	2.0	NA	NA	
13C-2,2',5,5'-TeCB	52	27.393	0.80	2.0	NA	NA	
13C-2,2',4,5,5'-PeCB	101	35.006	1.62	2.0	NA	NA	
13C-2,2',3,4,4',5'-HxCB	138	43.391	1.30	2.0	NA	NA	
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.861	0.92	2.0	NA	NA	
, ,-,-, ,-,-,-							

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

1 9.576 2.80 192 24.7 2 12.763 3.27 86.3 24.7 3 13.038 3.36 37.9 24.7 4 ND 24.7 5 ND 24.7 6 ND 24.7 7 ND 24.7 8 ND 24.7 10 ND 24.7 11 20.767 1.54 181 148 12 12/13 ND 49.4 14 ND 24.7 15 ND 49.4 16 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 18 18/30 ND 24.7 19 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 19 ND 24.7 24.7 25 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 24.7 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 30 18/30 ND 24.7 31 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39	IUPAC	Co-elutions	RT	Datia	Concentration	EMPC	EML
2	IUPAC	Co-elutions	K I	Ratio	ng/Kg	ng/Kg	ng/Kg
3			9.576				
4	2						
5	3		13.038	3.36	37.9		
7	4						
7	5						
7	6						
9	7						
10	8						
11 20.767 1.54 181							
12 12/13 ND 49.4 13 12/13 ND 49.4 14 ND 24.7 15 ND 24.7 16 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 18 18/30 ND 24.7 20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 49.4 35 ND 49.4 36 ND 49.4 37 32 ND 49.4 38 ND 49.4 39 40/41/71 ND 24.7 38 ND 24.7 37 38 ND 24.7 38 ND 24.7 37 38 ND 24.7 38 ND 24.7 39 ND							
13	11		20.767	1.54			
14							
15		12/13					
16	14						
17 18 18/30					ND		24.7
17 18 18/30	16				ND		24.7
19	17				ND		24.7
20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 29 26/29 ND 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 24.7 35 ND 24.7	18	18/30			ND		49.4
20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 29 26/29 ND 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 24.7 35 ND 24.7					ND		
21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 36 ND 24.7 37	20	20/28	25.263	1.01			
22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 27 ND 49.4 27 ND 49.4 27 ND 49.4 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33					ND		
24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22						
24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24						
26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 40 40/41/71 ND 148 41 40/41/7	25						
27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 <		26/29					
28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 </td <td>27</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	27						
29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 98.7 44 44/47/65	28	20/28	25.263	1.01			
30 18/30 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 98.7 43 43/73 ND 98.7 44 44/47/65 ND	29	26/29			` NĎ		
31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	30	18/30					
32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	31		24.928	1.00	44.8		24.7
33 21/33 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	32						
34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	33	21/33					
35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	34						
36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	35						
37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	36						
38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	37						
39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	38						
40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	39						
41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	40	40/41/71					
42 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148							
43 43/73 ND 98.7 44 44/47/65 ND 148		-:					
44 44/47/65 ND 148		43/73					98.7
TO TO/O1 11D 30.1	45	45/51			ND		98.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.4
47	44/47/65			ND		148
48				ND		49.4
49	49/69			ND		98.7
50	50/53			ND		98.7
51	45/51			ND		98.7
52		27.393	0.77	82.7		49.4
53	50/53			ND		98.7
54				ND		49.4
55				ND		49.4
56				ND		49.4
57				ND		49.4
58				ND		49.4
59	59/62/75			ND		148
60				ND		49.4
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63				ND		49.4
64				ND		49.4
65	44/47/65			ND		148
66				ND		49.4
67				ND		49.4
68				ND		49.4
69	49/69			ND		98.7
70	61/70/74/76			ND		197
71	40/41/71			ND		148
72				ND		49.4
73	43/73			ND		98.7
74	61/70/74/76			ND		197
75	59/62/75			ND		148
76	61/70/74/76			ND		197
77				ND		49.4
78				ND		49.4
79				ND		49.4
80				ND		49.4
81				ND		49.4
82				ND		49.4
83				ND		49.4
84				ND		49.4
85	85/116/117			ND		148
86	86/87/97/108/119/125			ND		296
87	86/87/97/108/119/125			ND		296
88	88/91			ND		98.7
89				ND		49.4
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		98.7
92	33, 31			ND		49.4
93	93/98/100/102			ND		197
94	00,00,100,102			ND		49.4
95				ND		49.4
96				ND		49.4
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99				ND		49.4
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103	30,30,130,132			ND		49.4
104				ND		49.4
105				ND		49.4
106				ND		49.4
107	107/124			ND		98.7
108	86/87/97/108/119/125			ND		296
109	00,01,01,100,110,120			ND		49.4
110	110/115			ND		98.7
111				ND		49.4
112				ND		49.4
113	90/101/113			ND		148
114	00, 10 1, 110			ND		49.4
115	110/115			ND		98.7
116	85/116/117			ND		148
117	85/116/117			ND		148
118	33, 1.13, 1.11			ND		49.4
119	86/87/97/108/119/125			ND		296
120	00,01,01,100,110,120			ND		49.4
121				ND		49.4
122				ND		49.4
123				ND		49.4
124	107/124			ND		98.7
125	86/87/97/108/119/125			ND		296
126	00,01,01,100,110,120			ND		49.4
127				ND		49.4
128	128/166			ND		98.7
129	129/138/163			ND		148
130	120, 100, 100			ND		49.4
131				ND		49.4
132				ND		49.4
133				ND		49.4
134	134/143			ND		98.7
135	135/151			ND		98.7
100	100, 101			110		00.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		49.4
137				ND		49.4
138	129/138/163			ND		148
139	139/140			ND		98.7
140	139/140			ND		98.7
141	100,110			ND		49.4
142				ND		49.4
143	134/143			ND		98.7
144				ND		49.4
145				ND		49.4
146				ND		49.4
147	147/149			ND		98.7
148				ND		49.4
149	147/149			ND		98.7
150				ND		49.4
151	135/151			ND		98.7
152				ND		49.4
153	153/168			ND		98.7
154				ND		49.4
155				ND		49.4
156	156/157			ND		98.7
157	156/157			ND		98.7
158				ND		49.4
159				ND		49.4
160				ND		49.4
161				ND		49.4
162				ND		49.4
163	129/138/163			ND		148
164				ND		49.4
165				ND		49.4
166	128/166			ND		98.7
167				ND		49.4
168	153/168			ND		98.7
169				ND		49.4
170				ND		49.4
171	171/173			ND		98.7
172				ND		49.4
173	171/173			ND		98.7
174				ND		49.4
175				ND		49.4
176				ND		49.4
177				ND		49.4
178				ND		49.4
179				ND		49.4
180	180/193			ND		98.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.4
182				ND		49.4
183	183/185			ND		98.7
184				ND		49.4
185	183/185			ND		98.7
186				ND		49.4
187				ND		49.4
188				ND		49.4
189				ND		49.4
190				ND		49.4
191				ND		49.4
192				ND		49.4
193	180/193			ND		98.7
194				ND		74.0
195				ND		74.0
196				ND		74.0
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		74.0
202				ND		74.0
203				ND		74.0
204				ND		74.0
205				ND		74.0
206				ND		74.0
207				ND		74.0
208				ND		74.0
209				ND		74.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKEE BLANK-25716 P100716B_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	317	
Total Dichloro Biphenyls	181	
Total Trichloro Biphenyls	100	
Total Tetrachloro Biphenyls	82.7	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	681	

ND = Not Detected
Results reported on a dry weight basis

Solid

Matrix

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-25744
Filename P100717A_10
Injected By BAL

 Total Amount Extracted
 10.2 g
 Extracted
 07/15/2010 15:45

 ICAL ID
 P100717A02
 Analyzed
 07/17/2010 17:26

CCal Filename(s) P100717A_01 Dilution 5

CCai Filename(s)	P100/1/A	_01		Dilution	5	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.600	2.98	2.0	1.09	55
13C-4-MoCB	3	13.063	2.72	2.0	1.31	65
13C-2,2'-DiCB	4	13.447	1.67	2.0	1.10	55
13C-4,4'-DiCB	15	21.619	1.54	2.0	1.40	70
13C-2,2',6-TrCB	19	17.928	1.08	2.0	1.07	54
13C-3,4,4'-TrCB	37	29.944	1.07	2.0	1.46	73
13C-2,2',6,6'-TeCB	54	21.978	0.80	2.0	1.28	64
13C-3,4,4',5-TeCB	81	37.289	0.80	2.0	0.685	34
13C-3,3',4,4'-TeCB	77	37.893	0.84	2.0	0.573	29
13C-2,2',4,6,6'-PeCB	104 105	28.518 41.482	1.63 1.59	2.0 2.0	2.17 1.32	109 66
13C-2,3,3',4,4'-PeCB 13C-2,3,4,4',5-PeCB	114	40.811	1.56	2.0	1.32	65
13C-2,3',4,4',5-PeCB	118	40.274	1.54	2.0	1.20	60
13C-2,3',4,4',5'-PeCB	123	39.939	1.52	2.0	1.20	60
13C-3,3',4,4',5-PeCB	126	44.601	1.61	2.0	1.55	77
13C-2,2',4,4',6,6'-HxCB	155	34.774	1.27	2.0	1.42	71
13C-HxCB (156/157)	156/157	47.620	1.26	4.0	4.33	108
13C-2,3',4,4 ['] ,5,5'-HxĆB	167	46.446	1.29	2.0	2.10	105
13C-3,3',4,4',5,5'-HxCB	169	50.890	1.26	2.0	2.27	114
13C-2,2',3,4',5,6,6'-HpCB	188	40.761	1.03	2.0	0.790	39
13C-2,3,3',4,4',5,5'-HpCB	189	53.494	1.06	2.0	1.63	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.161	0.92	2.0	1.13	57
13C-2,3,3',4,4',5,5',6-OcCB	205	56.576	0.92	2.0	1.45	72
13C-2,2',3,3',4,4',5,5',6-NoCB	206	59.055	0.79	2.0	1.42	71
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.912	0.76	2.0	1.28	64
13CDeCB	209	61.641	0.65	2.0	1.40	70
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.315	1.04	2.0	1.57	78
13C-2,3,3',5,5'-PeCB	111	37.893	1.59	2.0	0.993	50
13C-2,2',3,3',5,5',6-HpCB	178	43.846	1.02	2.0	1.47	74
Recovery Standards						
13C-2,5-DiCB	9	16.406	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.462	0.82	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	35.042	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.410	1.28	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.951	0.93	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.6
2				ND		24.6
3				ND		24.6
4				ND		24.6
5				ND		24.6
5 6				ND		24.6
7				ND		24.6
8				ND		24.6
9				ND		24.6
10				ND		24.6
11				ND		148
12	12/13			ND		49.3
13	12/13			ND		49.3
14	, .0			ND		24.6
15				ND		24.6
16				ND		24.6
17				ND		24.6
18	18/30			ND		49.3
19	10/00			ND		24.6
20	20/28			ND		49.3
21	21/33			ND		49.3
22	21/33			ND ND		24.6
23				ND		24.6
24				ND		24.6
25				ND		24.6
26	26/29			ND		49.3
27	20/23			ND ND		24.6
28	20/28			ND ND		49.3
29	26/29			ND ND		49.3
30	18/30			ND ND		49.3
31	10/30	24.997	1.06	31.9		24.6
32		24.557		ND		24.6
33	21/33			ND		49.3
34	21/00			ND		24.6
35				ND		24.6
36				ND		24.6
37				ND ND		24.6
38				ND ND		24.6
39				ND ND		24.6
40	40/41/71			ND ND		148
41	40/41/71			ND ND		148
42	TU/TI/I			ND ND		49.3
43	43/73			ND ND		98.5
43 44	44/47/65			ND ND		148
45	45/51			ND ND		98.5
	TU/U I			IND		30.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.3
47	44/47/65			ND		148
48				ND		49.3
49	49/69			ND		98.5
50	50/53			ND		98.5
51	45/51			ND		98.5
52		27.478	0.81	60.0		49.3
53	50/53			ND		98.5
54				ND		49.3
55				ND		49.3
56				ND		49.3
57				ND		49.3
58				ND		49.3
59	59/62/75			ND		148
60				ND		49.3
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63				ND		49.3
64				ND		49.3
65	44/47/65			ND		148
66				ND		49.3
67				ND		49.3
68				ND		49.3
69	49/69			ND		98.5
70	61/70/74/76			ND		197
71	40/41/71			ND		148
72				ND		49.3
73	43/73			ND		98.5
74	61/70/74/76			ND		197
75	59/62/75			ND		148
76	61/70/74/76			ND		197
77				ND		49.3
78				ND		49.3
79				ND		49.3
80				ND		49.3
81				ND		49.3
82				ND		49.3
83				ND		49.3
84				ND		49.3
85	85/116/117			ND		148
86	86/87/97/108/119/125			ND		296
87	86/87/97/108/119/125			ND		296
88	88/91			ND		98.5
89				ND		49.3
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		98.5
92				ND		49.3
93	93/98/100/102			ND		197
94	00,00,100,102			ND		49.3
95				ND		49.3
96				ND		49.3
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99	30,30,130,132			ND		49.3
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103	00,00,100,102			ND		49.3
104				ND		49.3
105				ND		49.3
106				ND		49.3
107	107/124			ND		98.5
108	86/87/97/108/119/125			ND		296
109	00,01,01,100,110,120			ND		49.3
110	110/115			ND		98.5
111	6, 6			ND		49.3
112				ND		49.3
113	90/101/113			ND		148
114				ND		49.3
115	110/115			ND		98.5
116	85/116/117			ND		148
117	85/116/117			ND		148
118				ND		49.3
119	86/87/97/108/119/125			ND		296
120				ND		49.3
121				ND		49.3
122				ND		49.3
123				ND		49.3
124	107/124			ND		98.5
125	86/87/97/108/119/125			ND		296
126				ND		49.3
127				ND		49.3
128	128/166			ND		98.5
129	129/138/163			ND		148
130				ND		49.3
131				ND		49.3
132				ND		49.3
133				ND		49.3
134	134/143			ND		98.5
135	135/151			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		49.3
137				ND		49.3
138	129/138/163			ND		148
139	139/140			ND		98.5
140	139/140			ND		98.5
141	100/110			ND		49.3
142				ND		49.3
143	134/143			ND		98.5
144				ND		49.3
145				ND		49.3
146				ND		49.3
147	147/149			ND		98.5
148	,			ND		49.3
149	147/149			ND		98.5
150				ND		49.3
151	135/151			ND		98.5
152				ND		49.3
153	153/168			ND		98.5
154				ND		49.3
155				ND		49.3
156	156/157			ND		98.5
157	156/157			ND		98.5
158				ND		49.3
159				ND		49.3
160				ND		49.3
161				ND		49.3
162				ND		49.3
163	129/138/163			ND		148
164				ND		49.3
165				ND		49.3
166	128/166			ND		98.5
167				ND		49.3
168	153/168			ND		98.5
169				ND		49.3
170				ND		49.3
171	171/173			ND		98.5
172				ND		49.3
173	171/173			ND		98.5
174				ND		49.3
175				ND		49.3
176				ND		49.3
177				ND		49.3
178				ND		49.3
179				ND		49.3
180	180/193			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML ng/Kg
IUPAC	CO-elulions	Kı	Kalio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.3
182				ND		49.3
183	183/185			ND		98.5
184				ND		49.3
185	183/185			ND		98.5
186				ND		49.3
187				ND		49.3
188				ND		49.3
189				ND		49.3
190				ND		49.3
191				ND		49.3
192				ND		49.3
193	180/193			ND		98.5
194				ND		73.9
195				ND		73.9
196				ND		73.9
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		73.9
202				ND		73.9
203				ND		73.9
204				ND		73.9
205				ND		73.9
206				ND		73.9
207				ND		73.9
208				ND		73.9
209				ND		73.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKER BLANK-25744 P100717A_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	31.9	
Total Tetrachloro Biphenyls	60.0	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	91.9	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26032
Filename P100815B_06
Injected By BAL

Injected By BAL Matrix Solid
Total Amount Extracted 10.4 g Extracted 08/10/2010 17:35

ICAL ID P100815B02 Analyzed 08/15/2010 21:06

CCal Filename(s) P100815B_01 Dilution NA

CCal Filename(s)	P100815B	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.396	3.58	2.0	1.44	72
13C-4-MoCB	3	12.834	3.07	2.0	1.54	77
13C-2,2'-DiCB	. 4	13.194	1.63	2.0	1.32	66
13C-4,4'-DiCB	15	21.317	1.66	2.0	1.64	82
13C-2,2',6-TrCB	19	17.639	1.06	2.0	1.28	64
13C-3,4,4'-TrCB	37	29.639	1.13	2.0	1.43	72
13C-2,2',6,6'-TeCB	54	21.641	0.76	2.0	1.64	82
13C-3,4,4',5-TeCB	81 77	36.967	0.81	2.0	0.870	44
13C-3,3',4,4'-TeCB	77 104	37.587	0.80	2.0	0.807	40
13C-2,2',4,6,6'-PeCB	104 105	28.197 41.159	1.56 1.63	2.0 2.0	2.48 1.35	124
13C-2,3,3',4,4'-PeCB	114	40.471	1.63	2.0	1.39	68 70
13C-2,3,4,4',5-PeCB 13C-2,3',4,4',5-PeCB	118	39.952	1.47	2.0	1.34	67
13C-2,3',4,4',5'-PeCB	123	39.616	1.52	2.0	1.34	67
13C-3,3',4,4',5-PeCB	126	44.278	1.60	2.0	1.48	74
13C-2,2',4,4',6,6'-HxCB	155	34.452	1.26	2.0	1.79	89
13C-HxCB (156/157)	156/157	47.279	1.25	4.0	3.83	96
13C-2,3',4,4',5,5'-HxCB	167	46.122	1.28	2.0	1.85	93
13C-3,3',4,4',5,5'-HxCB	169	50.566	1.28	2.0	2.21	110
13C-2,2',3,4',5,6,6'-HpCB	188	40.421	1.00	2.0	1.07	54
13C-2,3,3',4,4',5,5'-HpCB	189	53.100	1.04	2.0	1.72	86
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.821	0.87	2.0	1.40	70
13C-2,3,3',4,4',5,5',6-OcCB	205	56.118	0.88	2.0	1.68	84
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.510	0.78	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.518	0.77	2.0	1.54	77
13CDeCB	209	60.989	0.70	2.0	1.55	78
Ole and a Oter devile						
Cleanup Standards	00	05 044	4.00	0.0	4.00	00
13C-2,4,4'-TrCB	28	25.011	1.09	2.0	1.99	99 74
13C-2,3,3',5,5'-PeCB	111	37.570	1.57	2.0	1.42	71
13C-2,2',3,3',5,5',6-HpCB	178	43.490	1.07	2.0	2.08	104
Recovery Standards						
13C-2,5-DiCB	9	16.153	1.60	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.124	0.78	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.720	1.51	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.087	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.493	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML
IUPAC	Co-elutions	KI	Ratio	ng/Kg	ng/Kg	ng/Kg
1				ND		23.9
				ND		23.9
2 3 4				ND		23.9
4				ND		23.9
5 6				ND		23.9
6				ND		23.9
7				ND		23.9
8				ND		23.9
9				ND		23.9
10				ND		23.9
11				ND		144
12	12/13			ND		47.9
13	12/13			ND		47.9
14				ND		23.9
15				ND		23.9
16				ND		23.9
17				ND		23.9
18	18/30			ND		47.9
19				ND		23.9
20	20/28			ND		47.9
21	21/33			ND		47.9
22				ND		23.9
23				ND		23.9
24				ND		23.9
25				ND		23.9
26	26/29			ND		47.9
27				ND		23.9
28	20/28			ND		47.9
29	26/29			ND		47.9
30	18/30			ND		47.9
31				ND		23.9
32				ND		23.9
33	21/33			ND		47.9
34				ND		23.9
35				ND		23.9
36				ND		23.9
37				ND		23.9
38				ND		23.9
39				ND		23.9
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		47.9
43	43/73			ND		95.8
44	44/47/65			ND		144
45	45/51			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		47.9
47	44/47/65			ND		144
48	1 1, 11,00			ND		47.9
49	49/69			ND		95.8
50	50/53			ND		95.8
51	45/51			ND		95.8
52				ND		47.9
53	50/53			ND		95.8
54				ND		47.9
55				ND		47.9
56				ND		47.9
57				ND		47.9
58				ND		47.9
59	59/62/75			ND		144
60	30, 32, 13			ND		47.9
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	33,32,13			ND		47.9
64				ND		47.9
65	44/47/65			ND		144
66	1 1, 11,00			ND		47.9
67				ND		47.9
68				ND		47.9
69	49/69			ND		95.8
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72	10, 11,11			ND		47.9
73	43/73			ND		95.8
74	61/70/74/76			ND		192
75	59/62/75			ND		144
76	61/70/74/76			ND		192
. 5 77	3 17 1 37 1 17 3			ND		47.9
78				ND		47.9
79				ND		47.9
80				ND		47.9
81				ND		47.9
82				ND		47.9
83				ND		47.9
84				ND		47.9
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		287
87	86/87/97/108/119/125			ND		287
88	88/91			ND		95.8
89	33,31			ND		47.9
90	90/101/113			ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		95.8
92	33, 31			ND		47.9
93	93/98/100/102			ND		192
94	00,00,100,102			ND		47.9
95				ND		47.9
96				ND		47.9
97	86/87/97/108/119/125			ND		287
98	93/98/100/102			ND		192
99	00,00,100,102			ND		47.9
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	30/30/100/102			ND		47.9
104				ND		47.9
105				ND		47.9
106				ND		47.9
107	107/124			ND		95.8
108	86/87/97/108/119/125			ND		287
109	00/01/01/100/110/120			ND		47.9
110	110/115			ND		95.8
111	110/119			ND		47.9
112				ND		47.9
113	90/101/113			ND		144
114	00/101/110			ND		47.9
115	110/115			ND		95.8
116	85/116/117			ND		144
117	85/116/117			ND		144
118	33, 113, 111			ND		47.9
119	86/87/97/108/119/125			ND		287
120	00,01,01,100,110,120			ND		47.9
121				ND		47.9
122				ND		47.9
123				ND		47.9
124	107/124			ND		95.8
125	86/87/97/108/119/125			ND		287
126				ND		47.9
127				ND		47.9
128	128/166			ND		95.8
129	129/138/163			ND		144
130				ND		47.9
131				ND		47.9
132				ND		47.9
133				ND		47.9
134	134/143			ND		95.8
135	135/151			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
400				ND		
136 137				ND ND		47.9 47.9
137	129/138/163			ND ND		47.9 144
139	139/140			ND ND		95.8
140	139/140			ND ND		95.6 95.8
140	139/140			ND ND		95.6 47.9
142				ND ND		47.9 47.9
143	134/143			ND ND		95.8
144	134/143			ND ND		47.9
145				ND		47.9
146				ND		47.9
147	147/149			ND		95.8
148	147/143			ND		47.9
149	147/149			ND		95.8
150	1 11/1 10			ND		47.9
151	135/151			ND		95.8
152	100/101			ND		47.9
153	153/168			ND		95.8
154	100/100			ND		47.9
155				ND		47.9
156	156/157			ND		95.8
157	156/157			ND		95.8
158				ND		47.9
159				ND		47.9
160				ND		47.9
161				ND		47.9
162				ND		47.9
163	129/138/163			ND		144
164				ND		47.9
165				ND		47.9
166	128/166			ND		95.8
167				ND		47.9
168	153/168			ND		95.8
169				ND		47.9
170				ND		47.9
171	171/173			ND		95.8
172				ND		47.9
173	171/173			ND		95.8
174				ND		47.9
175				ND		47.9
176				ND		47.9
177				ND		47.9
178				ND		47.9
179	400/400			ND		47.9
180	180/193			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
101 AC	CO-cidiloris	IXI	Natio	lig/Ng	iig/itg	ng/ng
181				ND		47.9
182				ND		47.9
183	183/185			ND		95.8
184				ND		47.9
185	183/185			ND		95.8
186				ND		47.9
187				ND		47.9
188				ND		47.9
189				ND		47.9
190				ND		47.9
191				ND		47.9
192				ND		47.9
193	180/193			ND		95.8
194				ND		71.8
195				ND		71.8
196				ND		71.8
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		71.8
202				ND		71.8
203				ND		71.8
204				ND		71.8
205				ND		71.8
206				ND		71.8
207				ND		71.8
208				ND		71.8
209				ND		71.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKIT BLANK-26032 P100815B_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-25717 P100716B_03

10.4 g

P100716B02 P100716B_01 BLANK-25716 Matrix Solid Dilution NA

Extracted 07/14/2010 15:15 Analyzed 07/16/2010 20:39

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1		NC	NC	2.0	0.000	0	R
3	1.0	2.05	205 R	2.0	0.180	9	R
4	1.0	2.84	284 R	2.0	0.0161	1	R
15	1.0	1.15	115	2.0	1.28	64	
19	1.0	1.08	108	2.0	0.154	8	R
37	1.0	1.11	111	2.0	1.23	61	
54	1.0	0.978	98	2.0	0.790	39	
81	1.0	0.961	96	2.0	0.442	22	R
77	1.0	1.00	100	2.0	0.377	19	R
104	1.0	0.988	99	2.0	3.80	190	R
105	1.0	0.970	97	2.0	1.53	76	
114	1.0	0.974	97	2.0	1.48	74	
118	1.0	1.05	105	2.0	1.44	72	
123	1.0	1.01	101	2.0	1.39	70	
126	1.0	0.996	100	2.0	1.86	93	
155	1.0	0.939	94	2.0	1.38	69	
156/157	2.0	2.07	103	4.0	6.15	154	R
167	1.0	1.06	106	2.0	2.57	128	
169	1.0	1.000	100	2.0	3.58	179	R
188	1.0	1.00	100	2.0	0.415	21	R
189	1.0	1.02	102	2.0	1.71	86	
202	1.0	1.00	100	2.0	0.767	38	
205	1.0	1.03	103	2.0	1.63	81	
206	1.0	0.991	99	2.0	1.54	77	
208	1.0	1.02	102	2.0	1.38	69	
209	1.0	1.01	101	2.0	1.46	73	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCS-25745 P100720A_05

10.3 g P100720A04

P100720A 03 BLANK-25744 Matrix Solid Dilution NA

Extracted 07/15/2010 15:45 Analyzed 07/20/2010 11:11

Injected By SMT

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1	1.0	1.08	108	2.0	1.30	65	
3	1.0	1.08	108	2.0	1.47	74	
4	1.0	0.934	93	2.0	1.23	61	
15	1.0	1.04	104	2.0	1.69	84	
19	1.0	1.01	101	2.0	1.22	61	
37	1.0	1.08	108	2.0	1.70	85	
54	1.0	0.959	96	2.0	1.64	82	
81	1.0	0.936	94	2.0	0.779	39	
77	1.0	1.01	101	2.0	0.647	32	
104	1.0	0.938	94	2.0	2.94	147	R
105	1.0	1.02	102	2.0	1.76	88	
114	1.0	1.01	101	2.0	1.65	82	
118	1.0	1.10	110	2.0	1.54	77	
123	1.0	1.00	100	2.0	1.62	81	
126	1.0	1.02	102	2.0	2.20	110	
155	1.0	0.956	96	2.0	1.47	74	
156/157	2.0	2.05	102	4.0	5.66	142	R
167	1.0	1.01	101	2.0	2.71	135	
169	1.0	1.05	105	2.0	3.13	156	R
188	1.0	0.972	97	2.0	0.725	36	
189	1.0	1.01	101	2.0	1.97	98	
202	1.0	0.974	97	2.0	1.19	59	
205	1.0	1.02	102	2.0	1.83	92	
206	1.0	0.976	98	2.0	1.81	90	
208	1.0	0.997	100	2.0	1.53	77	
209	1.0	0.965	97	2.0	1.73	87	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26033 P100815B_03

10.8 g

P100815B02 P100815B_01 BLANK-26032 Matrix Dilution Solid NA

Extracted 08/10/2010 17:35 Analyzed 08/15/2010 17:49

Injected By BAL

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.08	108	2.0	1.59	79	
3	1.0	1.05	105	2.0	1.71	86	
4	1.0	1.04	104	2.0	1.40	70	
15	1.0	1.06	106	2.0	1.79	89	
19	1.0	1.05	105	2.0	1.36	68	
37	1.0	1.05	105	2.0	1.52	76	
54	1.0	1.01	101	2.0	1.72	86	
81	1.0	0.970	97	2.0	0.949	47	
77	1.0	0.985	99	2.0	0.932	47	
104	1.0	0.993	99	2.0	2.54	127	
105	1.0	1.11	111	2.0	1.45	73	
114	1.0	1.02	102	2.0	1.46	73	
118	1.0	1.16	116	2.0	1.45	73	
123	1.0	1.18	118	2.0	1.42	71	
126	1.0	0.972	97	2.0	1.87	94	
155	1.0	0.987	99	2.0	1.69	84	
156/157	2.0	2.07	103	4.0	4.16	104	
167	1.0	1.05	105	2.0	1.90	95	
169	1.0	1.09	109	2.0	2.67	134	
188	1.0	1.09	109	2.0	0.903	45	
189	1.0	1.10	110	2.0	1.75	87	
202	1.0	1.04	104	2.0	1.21	61	
205	1.0	1.22	122	2.0	1.64	82	
206	1.0	1.14	114	2.0	1.60	80	
208	1.0	1.11	111	2.0	1.43	72	
209	1.0	1.13	113	2.0	1.56	78	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCSD-25718 P100716B_04

10.2 g

P100716B02 P100716B_01 BLANK-25716 Matrix Solid Dilution NA

Extracted 07/14/2010 15:15 Analyzed 07/16/2010 21:44

Injected By BAL

	N	Native Analy	tes	La	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry	
1	1.0	3.21	321 R	2.0	0.0334	2	IR	
3	1.0	1.41	141	2.0	0.411	21	R	
4	1.0	1.26	126	2.0	0.135	7	R	
15	1.0	1.13	113	2.0	1.33	67		
19	1.0	0.998	100	2.0	0.374	19	R	
37	1.0	1.13	113	2.0	1.24	62		
54	1.0	0.959	96	2.0	0.934	47		
81	1.0	0.998	100	2.0	0.457	23	R	
77	1.0	1.01	101	2.0	0.401	20	R	
104	1.0	1.00	100	2.0	3.74	187	R	
105	1.0	1.07	107	2.0	1.55	77		
114	1.0	1.00	100	2.0	1.50	75		
118	1.0	1.09	109	2.0	1.44	72		
123	1.0	1.02	102	2.0	1.43	72		
126	1.0	1.00	100	2.0	1.88	94		
155	1.0	0.968	97	2.0	1.51	75		
156/157	2.0	2.04	102	4.0	6.44	161	R	
167	1.0	1.03	103	2.0	2.75	138		
169	1.0	1.01	101	2.0	3.80	190	R	
188	1.0	0.954	95	2.0	0.481	24	R	
189	1.0	0.983	98	2.0	1.92	96		
202	1.0	1.04	104	2.0	0.868	43		
205	1.0	0.979	98	2.0	1.74	87		
206	1.0	1.01	101	2.0	1.61	80		
208	1.0	1.01	101	2.0	1.56	78		
209	1.0	0.997	100	2.0	1.60	80		

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID

LCSD-25746 P100720A_06

10.5 g P100720A04 P100720A03 BLANK-25744 Matrix Solid Dilution NA

Extracted 07/15/2010 15:45 Analyzed 07/20/2010 12:16

Injected By SMT

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	-
1	1.0	1.13	113	2.0	1.26	63	-
3	1.0	1.06	106	2.0	1.57	79	
4	1.0	0.981	98	2.0	1.25	62	
15	1.0	1.07	107	2.0	1.88	94	
19	1.0	0.989	99	2.0	1.22	61	
37	1.0	1.10	110	2.0	1.65	83	
54	1.0	0.949	95	2.0	1.57	78	
81	1.0	0.961	96	2.0	0.822	41	
77	1.0	0.971	97	2.0	0.721	36	
104	1.0	0.970	97	2.0	2.67	133	
105	1.0	1.04	104	2.0	1.40	70	
114	1.0	0.959	96	2.0	1.41	70	
118	1.0	1.06	106	2.0	1.34	67	
123	1.0	0.953	95	2.0	1.37	69	
126	1.0	1.00	100	2.0	1.77	88	
155	1.0	0.982	98	2.0	1.73	87	
156/157	2.0	2.01	101	4.0	5.29	132	
167	1.0	1.000	100	2.0	2.53	127	
169	1.0	0.968	97	2.0	2.96	148 F	R
188	1.0	0.975	97	2.0	0.777	39	
189	1.0	0.965	96	2.0	1.78	89	
202	1.0	0.977	98	2.0	1.20	60	
205	1.0	0.957	96	2.0	1.75	87	
206	1.0	0.967	97	2.0	1.69	85	
208	1.0	0.985	99	2.0	1.56	78	
209	1.0	0.961	96	2.0	1.65	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCSD-26034 P100815B_04

10.4 g

P100815B02 P100815B_01 BLANK-26032 Matrix Solid Dilution NA

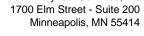
Extracted 08/10/2010 17:35 Analyzed 08/15/2010 18:55

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.16	116	2.0	1.33	67	
3	1.0	1.09	109	2.0	1.59	80	
4	1.0	1.01	101	2.0	1.24	62	
15	1.0	1.16	116	2.0	1.65	83	
19	1.0	1.01	101	2.0	1.33	67	
37	1.0	1.19	119	2.0	1.45	72	
54	1.0	1.01	101	2.0	1.71	86	
81	1.0	0.985	99	2.0	0.889	44	
77	1.0	0.965	96	2.0	0.876	44	
104	1.0	0.980	98	2.0	2.53	127	
105	1.0	1.06	106	2.0	1.44	72	
114	1.0	1.04	104	2.0	1.43	71	
118	1.0	1.18	118	2.0	1.41	70	
123	1.0	1.00	100	2.0	1.43	72	
126	1.0	0.996	100	2.0	1.58	79	
155	1.0	0.993	99	2.0	1.83	91	
156/157	2.0	2.00	100	4.0	3.87	97	
167	1.0	1.04	104	2.0	1.90	95	
169	1.0	1.01	101	2.0	2.17	108	
188	1.0	0.999	100	2.0	1.17	59	
189	1.0	1.03	103	2.0	1.79	90	
202	1.0	0.982	98	2.0	1.43	71	
205	1.0	1.00	100	2.0	1.72	86	
206	1.0	1.03	103	2.0	1.63	82	
208	1.0	1.04	104	2.0	1.54	77	
209	1.0	1.01	101	2.0	1.66	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis


ND = Not Detected

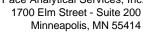
NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results


Client **Test America**

Spike 1 ID LCS-25717 Spike 2 ID LCSD-25718 Spike 1 Filename Spike 2 Filename P100716B_03 P100716B_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	-1000	321		
4-MoCB	3	205	141	37.0	
2,2'-DiCB	4	284	126	77.1	
4,4'-DiCB	15	115	113	1.8	
2,2',6-TrCB	19	108	100	7.7	
3,4,4'-TrCB	37	111	113	1.8	
2,2',6,6'-TeCB	54	98	96	2.1	
3,3',4,4'-TeCB	77	100	101	1.0	
3,4,4',5-TeCB	81	96	100	4.1	
2,2',4,6,6'-PeCB	104	99	100	1.0	
2,3,3',4,4'-PeCB	105	97	107	9.8	
2,3,4,4',5-PeCB	114	97	100	3.0	
2,3',4,4',5-PeCB	118	105	109	3.7	
2,3',4,4',5'-PeCB	123	101	102	1.0	
3,3',4,4',5-PeCB	126	100	100	0.0	
2,2',4,4',6,6'-HxCB	155	94	97	3.1	
(156/157)	156/157	103	102	1.0	
2,3',4,4',5,5'-HxCB	167	106	103	2.9	
3,3',4,4',5,5'-HxCB	169	100	101	1.0	
2,2',3,4',5,6,6'-HpCB	188	100	95	5.1	
2,3,3',4,4',5,5'-HpCB	189	102	98	4.0	
2,2',3,3',5,5',6,6'-OcCB	202	100	104	3.9	
2,3,3',4,4',5,5',6-OcCB	205	103	98	5.0	
2,2',3,3',4,4',5,5',6-NoCB	206	99	101	2.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	102	101	1.0	
Decachlorobiphenyl	209	101	100	1.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client **Test America**

<u> Pace Analytical</u>

LCS-25745 Spike 1 ID Spike 2 ID LCSD-25746 Spike 1 Filename Spike 2 Filename P100720A_05 P100720A_06

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	108	113	4.5	
4-MoCB	3	108	106	1.9	
2,2'-DiCB	4	93	98	5.2	
4,4'-DiCB	15	104	107	2.8	
2,2',6-TrCB	19	101	99	2.0	
3,4,4'-TrCB	37	108	110	1.8	
2,2',6,6'-TeCB	54	96	95	1.0	
3,3',4,4'-TeCB	77	101	97	4.0	
3,4,4',5-TeCB	81	94	96	2.1	
2,2',4,6,6'-PeCB	104	94	97	3.1	
2,3,3',4,4'-PeCB	105	102	104	1.9	
2,3,4,4',5-PeCB	114	101	96	5.1	
2,3',4,4',5-PeCB	118	110	106	3.7	
2,3',4,4',5'-PeCB	123	100	95	5.1	
3,3',4,4',5-PeCB	126	102	100	2.0	
2,2',4,4',6,6'-HxCB	155	96	98	2.1	
(156/157)	156/157	102	101	1.0	
2,3',4,4',5,5'-HxCB	167	101	100	1.0	
3,3',4,4',5,5'-HxCB	169	105	97	7.9	
2,2',3,4',5,6,6'-HpCB	188	97	97	0.0	
2,3,3',4,4',5,5'-HpCB	189	101	96	5.1	
2,2',3,3',5,5',6,6'-OcCB	202	97	98	1.0	
2,3,3',4,4',5,5',6-OcCB	205	102	96	6.1	
2,2',3,3',4,4',5,5',6-NoCB	206	98	97	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	100	99	1.0	
Decachlorobiphenyl	209	97	96	1.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26033
 Spike 2 ID
 LCSD-26034

 Spike 1 Filename
 P100815B_03
 Spike 2 Filename
 P100815B_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	108	116	7.1	
4-MoCB	3	105	109	3.7	
2,2'-DiCB	4	104	101	2.9	
4,4'-DiCB	15	106	116	9.0	
2,2',6-TrCB	19	105	101	3.9	
3,4,4'-TrCB	37	105	119	12.5	
2,2',6,6'-TeCB	54	101	101	0.0	
3,3',4,4'-TeCB	77	99	96	3.1	
3,4,4',5-TeCB	81	97	99	2.0	
2,2',4,6,6'-PeCB	104	99	98	1.0	
2,3,3',4,4'-PeCB	105	111	106	4.6	
2,3,4,4',5-PeCB	114	102	104	1.9	
2,3',4,4',5-PeCB	118	116	118	1.7	
2,3',4,4',5'-PeCB	123	118	100	16.5	
3,3',4,4',5-PeCB	126	97	100	3.0	
2,2',4,4',6,6'-HxCB	155	99	99	0.0	
(156/157)	156/157	103	100	3.0	
2,3',4,4',5,5'-HxCB	167	105	104	1.0	
3,3',4,4',5,5'-HxCB	169	109	101	7.6	
2,2',3,4',5,6,6'-HpCB	188	109	100	8.6	
2,3,3',4,4',5,5'-HpCB	189	110	103	6.6	
2,2',3,3',5,5',6,6'-OcCB	202	104	98	5.9	
2,3,3',4,4',5,5',6-OcCB	205	122	100	19.8	
2,2',3,3',4,4',5,5',6-NoCB	206	114	103	10.1	
2,2',3,3',4,5,5',6,6'-NoCB	208	111	104	6.5	
Decachlorobiphenyl	209	113	101	11.2	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10131888

Sample Receipt Date: 06/22/2010

Client Project #: PTF0605

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

July 21, 2010

Nate Habte, Project Manager (612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

July 19, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 0.25-0.75 parts per trillion and were adjusted for sample volume.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 17-111%. With twenty two exceptions, flagged "R" on the results tables, the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCB congeners at the reporting limits. This indicates that the sample preparation steps did not significantly impact the measurement of the native congeners in the field sample.

Laboratory spike samples were also prepared with the sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 94-104% with relative percent differences of 0-4.0%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTF0605

10131888

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Phone :(612) 607-1700 Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature:

Ice: Y / N

needs Excel EDD

Analysis

Standard TAT is requested unless specific due date is requested. => Due Date: 3 Weeks Initials:

Comments

Sample ID: PTF0605-01 (FO105699 - Water)

Units

Sampled: 06/17/10 12:30

209 Congeners to Pace

1668 Coplanar PCBs - SUB ug/l

12/14/10 12:30

Expires

Containers Supplied:

1L Amber - Unpres. (A)

F380

Date/Time

Pageived By

6:12:10 0918 16:22

-

Received By

Date/TimePage 5 of 25 of 1

Released Report No.....10131888_PRESIANE

	M Steres of Markets			
Face Analytical Client Name	: Test A	tmx ica	Project #	10131888
,	D.	land	-	
Courter: Z Fed Ex UPS USPS Clie	ent D Commercia	Pace Other	Osili	ial .
Tracking #: 4/70 - 7525 700,			P(d) I)(je/bate)
Custody Seal on Cooler/Box Present:	no Sea	ls intact:	□ no Proj. i	Jame)
Packing Material: Bubble Wrap Bubble	e Bage None	Other	Temp Blank: Ye	os No
Thermometer Used 80344042 or 19425)	Type of ice: Ave	Blue None		ooling process has begun
Cooler Temperature	Biological Tissu	e is Frozen: Yes N		ale of person examining
Temp should be above freezing to 6°C		Comments:	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Present:	ZYes DNo DNA	A 1.	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Filled Out:	ZYes DNo DN/	A 2.		
Chain of Custody Relinquished:	Ches Ono Ona	A 3.		
Sampler Name & Signature on COC:	□Yes ☑No □N/	A 4.		
Samples Arrived within Hold Time:	ZVes DNo DNA	A 5.		
Short Hold Time Analysis (<72hr):	□Yes □No □N//	6.		
Rush Turn Around Time Requested:	□Yes ☑No □N/	7.		
Sufficient Volume:	Yes DNo DN/	8.		
Correct Containers Used:	Yes DNo DNA	9.		
-Pace Containers Used:	□Yes ZNo □N/A			
Containers Intact:	Dres DNo DNA	10.		
Filtered volume received for Dissolved tests	□Yes □No ZN/A	11.		
Sample Labels match COC:	ZIYes DNo DN/A	12.		
-Includes date/time/ID/Analysis Matrix:	T			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes □No □N/A	13.	HN03 H2SO4	NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □NA	Samp #		
	. Dyes ZNo	Initial when	Lot # of added	
Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (water	, -, -, -, -, -, -, -, -, -, -, -, -, -,	completed	preservative	
Samples checked for dechlorination:	☐Yes ☐No ZN/A	 		
Headspace in VOA Vials (>6mm):	TYPE THE TANK			
Trip Blank Present:	Yes INO ZN/A	i		
Trip Blank Custody Seals Present	□Yes □No □Ñ/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:		, 1	Field Data Required	i? Y / N
Person Contacted: Dor(1211 Au	√ Date/	Time: (6)	1619147	
Comments/ Resolution:			,	
-1668-20	7 conf	igned ->	tull scan	<u></u>
- Stan Tr	tt Jest	yte vote	on coc	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
				
Project Manager Review:	NAH		Date:	01/76

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read Polar Seinbles, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID Lab Sample ID Filename

Filename Injected By Total Amount Extracted

% Moisture Dry Weight Extracted

ICAL ID CCal Filename(s) Method Blank ID PTF0605-01 (FO105699)

10131888001 P100709B_08

BAL 1030 mL NA NA

NA P100709B02 P100709B_01 BLANK-25552 Matrix Water Dilution NA

Collected 06/17/2010 12:30 Received 06/22/2010 09:42 Extracted 06/30/2010 19:30 Analyzed 07/10/2010 08:00

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-4,4'-DiCB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',5-PeCB 13C-2,2',4,4',5,6'-HxCB 13C-4,2',4,4',6,6'-HxCB 13C-4,2',4,4',6,6'-HxCB 13C-2,3',4,4',5,5'-HxCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157	9.540 12.991 13.363 21.523 17.844 29.810 21.894 37.072 37.659 28.418 41.264 40.557 39.722 44.400 34.607 47.453 46.262	2.94 3.16 1.65 1.59 1.09 1.11 0.80 0.79 0.80 1.59 1.62 1.60 1.59 1.29 1.27	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.399 0.445 0.343 0.558 0.389 1.10 0.544 1.62 1.72 0.724 1.93 1.88 1.87 1.85 2.08 1.08 4.30 2.10	20 R 22 R 17 R 28 19 R 55 27 81 86 36 96 94 94 93 104 54 108 105
13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB	169 188 189 202 205 206 208 209	50.756 40.560 53.348 45.994 56.431 58.888 52.809 61.496	1.29 1.08 1.04 0.93 0.91 0.77 0.80 0.70	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.22 1.35 2.19 1.54 1.92 1.66 1.60	111 68 110 77 96 83 80 77
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	25.232 37.676 43.663	1.09 1.61 1.06	2.0 2.0 2.0	0.933 1.54 1.60	47 77 80
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	16.275 27.362 34.858 43.227 55.827	1.62 0.80 1.63 1.27 0.92	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.244
2				ND		0.244
3				ND		0.244
4				ND		0.244
5				ND		0.244
6				ND		0.244
7				ND		0.244
8				ND		0.244
9				ND		0.244
10				ND		0.244
11				ND		1.46
12	12/13			ND		0.487
13	12/13			ND		0.487
14	12/13			ND		0.244
15				ND ND		0.244
16				ND ND		0.244
17				ND ND		0.244
18	18/30			ND ND		0.487
	16/30					0.467
19	00/00			ND		
20	20/28			ND		0.487
21	21/33			ND		0.487
22				ND		0.244
23				ND		0.244
24				ND		0.244
25				ND		0.244
26	26/29			ND		0.487
27				ND		0.244
28	20/28			ND		0.487
29	26/29			ND		0.487
30	18/30			ND		0.487
31				ND		0.244
32				ND		0.244
33	21/33			ND		0.487
34				ND		0.244
35				ND		0.244
36				ND		0.244
37				ND		0.244
38				ND		0.244
39				ND		0.244
40	40/41/71			ND		1.46
41	40/41/71			ND		1.46
42				ND		0.487
43	43/73			ND		0.974
44	44/47/65			ND		1.46
45	45/51			ND		0.974
46				ND		0.487
47	44/47/65			ND		1.46
48				ND		0.487
				·		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		0.974
50	50/53			ND		0.974
51	45/51			ND		0.974
52				ND		0.487
53	50/53			ND		0.974
54				ND		0.487
55				ND		0.487
56				ND		0.487
57				ND		0.487
58				ND		0.487
59	59/62/75			ND		1.46
60				ND		0.487
61	61/70/74/76			ND		1.95
62	59/62/75			ND		1.46
63				ND		0.487
64				ND		0.487
65	44/47/65			ND		1.46
66				ND		0.487
67				ND		0.487
68				ND		0.487
69	49/69			ND		0.974
70	61/70/74/76			ND		1.95
71	40/41/71			ND		1.46
72	10/ 11// 1			ND		0.487
73	43/73			ND		0.974
74	61/70/74/76			ND		1.95
75	59/62/75			ND		1.46
76	61/70/74/76			ND		1.95
77	01/10/11/10			ND		0.487
78				ND		0.487
79				ND		0.487
80				ND		0.487
81				ND		0.487
82				ND		0.487
83				ND		0.487
84				ND		0.487
85	85/116/117			ND		1.46
86	86/87/97/108/119/125			ND		2.92
87	86/87/97/108/119/125			ND		2.92
88	88/91			ND		0.974
89	00/31			ND		0.487
90	90/101/113			ND		1.46
91	88/91			ND		0.974
92	33, 31			ND		0.487
93	93/98/100/102			ND		1.95
94	33,30,100,102			ND		0.487
95				ND		0.487
96				ND ND		0.487
90				ND		0.407

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		2.92
98	93/98/100/102			ND		1.95
99				ND		0.487
100	93/98/100/102			ND		1.95
101	90/101/113			ND		1.46
102	93/98/100/102			ND		1.95
103				ND		0.487
104				ND		0.487
105				ND		0.487
106				ND		0.487
107	107/124			ND		0.974
108	86/87/97/108/119/125			ND		2.92
109	00/07/07/100/110/120			ND		0.487
110	110/115			ND		0.974
111	110/110			ND		0.487
112				ND		0.487
113	90/101/113			ND		1.46
114	30/101/119			ND		0.487
115	110/115			ND		0.974
116	85/116/117			ND		1.46
117	85/116/117			ND		1.46
118	03/110/117			ND		0.487
119	86/87/97/108/119/125			ND		2.92
120	00/07/97/100/119/125			ND ND		0.487
120				ND ND		0.487
121				ND ND		0.487
123				ND ND		0.487
123	107/124			ND ND		0.467
125	86/87/97/108/119/125			ND ND		2.92
126	00/07/97/100/119/125			ND ND		0.487
120				ND ND		0.487
127	128/166			ND ND		0.467
120	129/138/163			ND ND		1.46
130	129/136/163					
				ND ND		0.487
131				ND		0.487
132				ND		0.487
133	404/440			ND		0.487
134	134/143			ND		0.974
135	135/151			ND		0.974
136				ND		0.487
137	400/400/400			ND		0.487
138	129/138/163			ND		1.46
139	139/140			ND		0.974
140	139/140			ND		0.974
141				ND		0.487
142	10.1/1.10			ND		0.487
143	134/143			ND		0.974
144				ND		0.487

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Page 12 of 25

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.487
146				ND		0.487
147	147/149			ND		0.974
148				ND		0.487
149	147/149			ND		0.974
150				ND		0.487
151	135/151			ND		0.974
152				ND		0.487
153	153/168			ND		0.974
154				ND		0.487
155				ND		0.487
156	156/157			ND		0.974
157	156/157			ND		0.974
158				ND		0.487
159				ND		0.487
160				ND		0.487
161				ND		0.487
162				ND		0.487
163	129/138/163			ND		1.46
164				ND		0.487
165				ND		0.487
166	128/166			ND		0.974
167				ND		0.487
168	153/168			ND		0.974
169				ND		0.487
170				ND		0.487
171	171/173			ND		0.974
172				ND		0.487
173	171/173			ND		0.974
174				ND		0.487
175				ND		0.487
176				ND		0.487
177				ND		0.487
178				ND		0.487
179				ND		0.487
180	180/193			ND		0.974
181				ND		0.487
182				ND		0.487
183	183/185			ND		0.974
184				ND		0.487
185	183/185			ND		0.974
186				ND		0.487
187				ND		0.487
188				ND		0.487
189				ND		0.487
190				ND		0.487
191				ND		0.487
192				ND		0.487

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193			ND		0.974
194				ND		0.731
195				ND		0.731
196				ND		0.731
197	197/200			ND		1.46
198	198/199			ND		1.46
199	198/199			ND		1.46
200	197/200			ND		1.46
201				ND		0.731
202				ND		0.731
203				ND		0.731
204				ND		0.731
205				ND		0.731
206				ND		0.731
207				ND		0.731
208				ND		0.731
209				ND		0.731

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Water

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Matrix

Lab Sample ID BLANK-25552
Filename P100702A_07
Injected By CVS

Total Amount Extracted 1020 mL Extracted 06/30/2010 19:30 ICAL ID P100702A02 Analyzed 07/02/2010 16:43

CCal Filename(s) P100702A_01 Dilution NA

CCal Filename(s)	P100702A	_01		Dilution	NA		
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-4,4'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-3,4,4'-TrCB 13C-3,3',4,4'-TrCB 13C-2,2',4,6,6'-PeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	9.552 13.027 13.399 21.561 17.881 29.854 21.920 37.118 37.705 28.462 41.312 40.641 40.088 39.752 44.449 34.652 47.502 46.311 50.807 40.608 53.392 46.043 56.497 58.977 52.853 61.564	3.03 2.86 1.61 1.53 1.08 1.04 0.80 0.79 0.79 1.62 1.63 1.59 1.60 1.27 1.27 1.26 1.28 1.07 1.04 0.92 0.91 0.77 0.79	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0890 0.106 0.100 0.327 0.151 1.08 0.294 1.91 1.96 0.841 2.19 2.17 2.14 2.25 1.13 3.67 1.88 1.88 1.88 1.98 1.79 1.79 1.89 1.77 1.74 1.69	4 5 5 16 8 54 15 96 98 42 110 109 107 113 57 92 94 94 84 99 90 94 88 87 84	RRRRR R
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	25.275 37.722 43.711	1.04 1.57 1.05	2.0 2.0 2.0	0.722 1.80 1.82	36 90 91	
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	16.311 27.405 34.904 43.275 55.872	1.60 0.79 1.61 1.28 0.91	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA NA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.246
2				ND		0.246
3				ND		0.246
4				ND		0.246
4 5 6 7				ND		0.246
ő				ND		0.246
7				ND		0.246
8				ND		0.246
9				ND		0.246
10				ND		0.246
11				ND		1.48
12	12/13			ND		0.492
13	12/13			ND		0.492
14	,.0			ND		0.246
15				ND		0.246
16				ND		0.246
17				ND		0.246
18	18/30			ND		0.492
19	. 0, 00			ND		0.246
20	20/28			ND		0.492
21	21/33			ND		0.492
22	, 00			ND		0.246
23				ND		0.246
24				ND		0.246
25				ND		0.246
26	26/29			ND		0.492
27				ND		0.246
28	20/28			ND		0.492
29	26/29			ND		0.492
30	18/30			ND		0.492
31				ND		0.246
32				ND		0.246
33	21/33			ND		0.492
34				ND		0.246
34 35				ND		0.246
36				ND		0.246
37				ND		0.246
38				ND		0.246
39				ND		0.246
40	40/41/71			ND		1.48
41	40/41/71			ND		1.48
42	 •			ND		0.492
43	43/73			ND		0.984
44	44/47/65			ND		1.48
45	45/51			ND		0.984

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.492
47	44/47/65			ND		1.48
48				ND		0.492
49	49/69			ND		0.984
50	50/53			ND		0.984
51	45/51			ND		0.984
52				ND		0.492
53	50/53			ND		0.984
54				ND		0.492
55				ND		0.492
56				ND		0.492
57				ND		0.492
58				ND		0.492
59	59/62/75			ND		1.48
60				ND		0.492
61	61/70/74/76			ND		1.97
62	59/62/75			ND		1.48
63				ND		0.492
64				ND		0.492
65	44/47/65			ND		1.48
66				ND		0.492
67				ND		0.492
68				ND		0.492
69	49/69			ND		0.984
70	61/70/74/76			ND		1.97
71	40/41/71			ND		1.48
72				ND		0.492
73	43/73			ND		0.984
74	61/70/74/76			ND		1.97
75	59/62/75			ND		1.48
76	61/70/74/76			ND		1.97
77				ND		0.492
78				ND		0.492
79				ND		0.492
80				ND		0.492
81				ND		0.492
82				ND		0.492
83				ND		0.492
84				ND		0.492
85	85/116/117			ND		1.48
86	86/87/97/108/119/125			ND		2.95
87	86/87/97/108/119/125			ND		2.95
88	88/91			ND		0.984
89	 -			ND		0.492
90	90/101/113			ND		1.48

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		0.984
92	00/00/400/400			ND		0.492
93	93/98/100/102			ND		1.97
94				ND		0.492
95				ND		0.492
96	00/07/07/400/440/405			ND		0.492
97	86/87/97/108/119/125			ND		2.95
98	93/98/100/102			ND		1.97
99	00/00/400/400			ND		0.492
100	93/98/100/102			ND		1.97
101	90/101/113			ND		1.48
102	93/98/100/102			ND		1.97
103				ND		0.492
104				ND		0.492
105				ND		0.492
106				ND		0.492
107	107/124			ND		0.984
108	86/87/97/108/119/125			ND		2.95
109				ND		0.492
110	110/115			ND		0.984
111				ND		0.492
112				ND		0.492
113	90/101/113			ND		1.48
114				ND		0.492
115	110/115			ND		0.984
116	85/116/117			ND		1.48
117	85/116/117			ND		1.48
118				ND		0.492
119	86/87/97/108/119/125			ND		2.95
120				ND		0.492
121				ND		0.492
122				ND		0.492
123				ND		0.492
124	107/124			ND		0.984
125	86/87/97/108/119/125			ND		2.95
126	00/01/01/100/110/120			ND		0.492
127				ND		0.492
128	128/166			ND		0.984
129	129/138/163			ND		1.48
130	120/100/100			ND ND		0.492
131				ND ND		0.492
132				ND ND		0.492
133				ND ND		0.492
134	134/143			ND ND		0.492
135	135/151			ND ND		0.984
100	100/101			ואט		0.304

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion
X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.492
137				ND ND		0.492 0.492
137	129/138/163			ND ND		
139	139/140			ND ND		1.48 0.984
140	139/140			ND ND		0.984
140	139/140			ND ND		0.492
141				ND ND		0.492
143	134/143			ND ND		0.492
144	134/143			ND ND		0.492
145				ND ND		0.492
146				ND ND		0.492
147	147/149			ND ND		0.492
148	147/149			ND ND		0.492
149	147/149			ND ND		0.492
150	147/143			ND ND		0.492
151	135/151			ND ND		0.984
152	155/151			ND ND		0.492
153	153/168			ND		0.984
154	155/100			ND ND		0.492
155				ND ND		0.492
156	156/157			ND ND		0.984
157	156/157			ND ND		0.984
158	130/137			ND		0.492
159				ND		0.492
160				ND		0.492
161				ND		0.492
162				ND		0.492
163	129/138/163			ND		1.48
164	120/100/100			ND		0.492
165				ND		0.492
166	128/166			ND		0.984
167	.23, .00			ND		0.492
168	153/168			ND		0.984
169	100, 100			ND		0.492
170				ND		0.492
171	171/173			ND		0.984
172	,			ND		0.492
173	171/173			ND		0.984
174	,			ND		0.492
175				ND		0.492
176				ND		0.492
177				ND		0.492
178				ND		0.492
179				ND		0.492
180	180/193			ND		0.984
				• •=		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.492
182				ND		0.492
183	183/185			ND		0.984
184				ND		0.492
185	183/185			ND		0.984
186				ND		0.492
187				ND		0.492
188				ND		0.492
189				ND		0.492
190				ND		0.492
191				ND		0.492
192				ND		0.492
193	180/193			ND		0.984
194				ND		0.738
195				ND		0.738
196				ND		0.738
197	197/200			ND		1.48
198	198/199			ND		1.48
199	198/199			ND		1.48
200	197/200			ND		1.48
201				ND		0.738
202				ND		0.738
203				ND		0.738
204				ND		0.738
205				ND		0.738
206				ND		0.738
207				ND		0.738
208				ND		0.738
209				ND		0.738

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKBN BLANK-25552 P100702A_07

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-25553 P100702A_03 1020 mL

P100702A02 P100702A_01 BLANK-25552 Matrix Water Dilution NA

Extracted 06/30/2010 19:30 Analyzed 07/02/2010 12:22

Injected By CVS

	ı	Native Analyt	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.02	102	2.0	0.147	7	R
3	1.0	1.02	102	2.0	0.224	11	R
4	1.0	1.04	104	2.0	0.214	11	R
15	1.0	0.987	99	2.0	0.452	23	R
19	1.0	0.985	99	2.0	0.309	15	R
37	1.0	0.981	98	2.0	1.06	53	
54	1.0	0.943	94	2.0	0.419	21	R
81	1.0	0.967	97	2.0	2.09	104	
77	1.0	0.981	98	2.0	2.20	110	
104	1.0	0.979	98	2.0	0.774	39	
105	1.0	0.997	100	2.0	2.14	107	
114	1.0	0.971	97	2.0	2.09	105	
118	1.0	0.983	98	2.0	2.09	105	
123	1.0	0.971	97	2.0	2.10	105	
126	1.0	0.980	98	2.0	2.25	113	
155	1.0	0.963	96	2.0	1.18	59	
156/157	2.0	1.99	100	4.0	3.88	97	
167	1.0	1.000	100	2.0	1.93	97	
169	1.0	0.993	99	2.0	1.92	96	
188	1.0	0.991	99	2.0	1.81	91	
189	1.0	1.01	101	2.0	2.08	104	
202	1.0	0.988	99	2.0	1.95	97	
205	1.0	0.983	98	2.0	1.98	99	
206	1.0	0.981	98	2.0	1.86	93	
208	1.0	0.969	97	2.0	1.90	95	
209	1.0	0.988	99	2.0	1.76	88	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s)

Method Blank ID

LCSD-25554 P100702A_04

1000 mL P100702A02 P100702A 01

P100702A_01 BLANK-25552 Matrix Water Dilution NA

Extracted 06/30/2010 19:30 Analyzed 07/02/2010 13:26

Injected By CVS

	M	Native Analy	tes	La	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.04	104	2.0	0.130	7	 R
3	1.0	1.02	102	2.0	0.146	7	R
4	1.0	1.06	106	2.0	0.135	7	R
15	1.0	1.03	103	2.0	0.189	9	R
19	1.0	0.980	98	2.0	0.138	7	R
37	1.0	0.991	99	2.0	0.957	48	
54	1.0	0.935	94	2.0	0.181	9	R
81	1.0	0.998	100	2.0	2.04	102	
77	1.0	1.00	100	2.0	2.09	104	
104	1.0	0.978	98	2.0	0.669	33	
105	1.0	1.01	101	2.0	2.29	114	
114	1.0	0.978	98	2.0	2.23	111	
118	1.0	0.991	99	2.0	2.26	113	
123	1.0	0.977	98	2.0	2.27	114	
126	1.0	0.984	98	2.0	2.39	120	
155	1.0	0.956	96	2.0	1.17	58	
156/157	2.0	2.01	101	4.0	3.99	100	
167	1.0	0.988	99	2.0	2.03	101	
169	1.0	0.998	100	2.0	1.99	100	
188	1.0	0.990	99	2.0	1.92	96	
189	1.0	1.01	101	2.0	2.21	110	
202	1.0	0.992	99	2.0	2.09	104	
205	1.0	0.989	99	2.0	2.05	103	
206	1.0	0.970	97	2.0	1.92	96	
208	1.0	0.986	99	2.0	1.97	99	
209	1.0	0.973	97	2.0	1.80	90	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

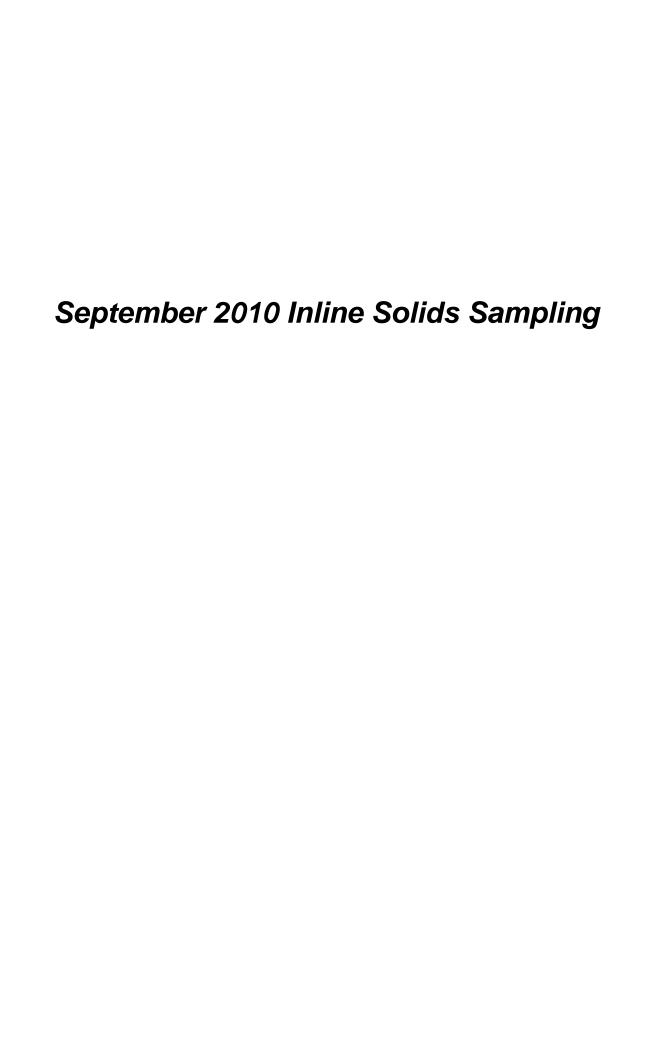
NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America


 Spike 1 ID
 LCS-25553
 Spike 2 ID
 LCSD-25554

 Spike 1 Filename
 P100702A_03
 Spike 2 Filename
 P100702A_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	102	104	1.9	
4-MoCB	3	102	102	0.0	
2,2'-DiCB	4	104	106	1.9	
4,4'-DiCB	15	99	103	4.0	
2,2',6-TrCB	19	99	98	1.0	
3,4,4'-TrCB	37	98	99	1.0	
2,2',6,6'-TeCB	54	94	94	0.0	
3,3',4,4'-TeCB	77	98	100	2.0	
3,4,4',5-TeCB	81	97	100	3.0	
2,2',4,6,6'-PeCB	104	98	98	0.0	
2,3,3',4,4'-PeCB	105	100	101	1.0	
2,3,4,4',5-PeCB	114	97	98	1.0	
2,3',4,4',5-PeCB	118	98	99	1.0	
2,3',4,4',5'-PeCB	123	97	98	1.0	
3,3',4,4',5-PeCB	126	98	98	0.0	
2,2',4,4',6,6'-HxCB	155	96	96	0.0	
(156/157)	156/157	100	101	1.0	
2,3',4,4',5,5'-HxCB	167	100	99	1.0	
3,3',4,4',5,5'-HxCB	169	99	100	1.0	
2,2',3,4',5,6,6'-HpCB	188	99	99	0.0	
2,3,3',4,4',5,5'-HpCB	189	101	101	0.0	
2,2',3,3',5,5',6,6'-OcCB	202	99	99	0.0	
2,3,3',4,4',5,5',6-OcCB	205	98	99	1.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	97	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	97	99	2.0	
Decachlorobiphenyl	209	99	97	2.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Inline Solids Investigation City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: November 11, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in September 2010. Three inline solids samples (FO105870, FO105871, FO105872) and one duplicate sample (FO105873) were collected in Outfall Basin 52 on September 7 and 8, 2010.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - o Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Pace Analytical Services (Pace)
 - o PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary

report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Method blanks were processed during the subcontracted laboratory analyses of PCB congeners and TOC. No analytes were detected in the method blanks for either analysis.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. Internal standard recoveries are within control limits with three exceptions in the QC samples, which are flagged "R" in the subcontracted laboratory report. All internal standards run with the field samples were recovered within control criteria, and the data are not qualified further.

Interfering background constituents impacted the measurement of some PCB congeners and internal standards. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. Estimated maximum possible concentrations (EMPCs) are provided for affected congeners, and values are qualified with an EMPC flag. These values are not included in the total homolog and total PCB values.

Because estimated congener value(s) are not significant relative to the total PCB concentration (i.e. <1%), total homolog and total PCB concentrations are considered only slightly biased.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples were processed during the subcontracted analysis of TOC. Analyte recoveries and relative percent differences (RPDs) are within laboratory control limits for all MS/MSD samples.

Laboratory Control Samples

Two sets of LC/DLC samples were processed during the laboratory analysis of PCB congeners. All LC and DLC recoveries and RPDs are within laboratory control limits. An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit.

Other

WPCL reports that inconsistent results during the matrix QC for the PCB Aroclor analysis in sample FO105870 (sample SJB2) indicate a non-homogeneous sample matrix; therefore, PCB results are considered estimates.

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review Inline Solids Investigation City Outfall Basin 52

To: File

From: Karen Demsey, GSI Water Solutions, Inc. (GSI)

Date: December 12, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in September 2010. Three inline solids primary samples and one duplicate sample were collected in Outfall Basin 52 on September 7 and 8, 2010. The samples were initially analyzed for polychlorinated biphenyls and other parameters in September 2010 and then archived for potential additional analysis in the future. In November 2011, additional analyses were requested for the three primary samples (FO105870, FO105871, and FO105872). The samples were reanalyzed under new laboratory identification numbers (W11K141-01, W11K141-02 and W11K141-03, respectively). The City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) conducted following analyses on these samples:

- Total Solids SM 2540G
- Total Metals EPA 6020

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL. The QA/QC review of the analytical data consisted of reviewing the following elements, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Standard reference sample recoveries within accuracy control limits
- Duplicate sample recoveries within laboratory control limits
- Matrix spike sample results within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

The recommended method-specific holding time was exceeded due to delayed request for metals analysis. Because the samples were properly preserved, the results for detections above the method reporting limits are considered usable but biased slightly low. However, the detected results are considered acceptable for the purposes of this investigation.

Method Blanks

A laboratory methods blank was processed during the metals analysis. No analytes were detected in the method blank.

Standard Reference

A laboratory sample of standard reference material was analyzed during the metals analysis. Analyte recoveries were within laboratory control limits for the standard reference material sample.

Duplicate Analysis

A duplicate analysis of one of the field samples was performed during the metals analysis. All relative percent differences between the duplicate analysis and primary analysis of the source sample were within laboratory control limits.

Matrix Spike

A matrix spike sample was processed during the metals analysis. Analyte recoveries were within laboratory control limits for the matrix spike sample.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 2

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Page: Date: 9/8/10

Collected By: ASA, PB

				*		-										•		
Project Name: PORTLAND HARBOR INLINE SAMP	AND HARBOR INL	INE SA	MP P												, .	•		
File Number: 1020.001			Matrix:	SEDIMENT		1.								١.,,	Reque	sted A	Requested Analyses	
								Orga	Organics			ଜୁ	General		Metals		Field Comments	
	Basin 52 Inline	ne		Υ.	/)		·		.,,							
				and the second			II 209									-		····
`A						clors - LL	geners (A	·				dis						
		Point	Sample	Sample	Sample	B Aro	B Cor	C				tal Sol						
WPCL Sample I.D.	Location	Code	Date	Time	Туре	PCI	PCI	TO				Tot						
FO105870	IL-52-SJB2-0910 DISCHARGE TO AAE685	52_13	9/7/10	1145	С	•	•	•				•						
FO105871	IL-52-ANE911-0910 N ALTA & RR TRACKS	52_8	9/7/10	1214	С	•	•	•				•		y and the same				
FO105872	IL-52-SJB1-0910 ODOT-SJB-WQMH	52_14	9/8/10	1001	С	•	•	•				•						
																		·
					,			· · · · · · <u>-</u>								•		
FO105873	DUPLICATE	DUP	9/7/10		C	•	•	•				•			·	-		
Signature: 7	Time: / 27	Relinguished By: 2.	ed By: 2.		Time:				Relin	Relinquished By:	ed By	ယ		A.			shed By: 4.	
	Date	rinted Name:			Date:				Drinted N	2								ime
Andrew ,	trasborg 7/8/10	Spraived R	<u>-</u> د		Çare:			_	Descript E	D all		J				Date;		Date:
2	:	Signature:			Time:			40-1-	Signature:	Signature:	1:	ç		1		Time:	Signature:	Time:
Printed Name: Walk CVZ	allement Cot Date of 18/10 18	Printed Name:			Date:				Printed Name:	Name:						Date:	Printed Name: Da	Date:

Portland Harbor Inline Samp COC - OF 52 (9-7&8-10) xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105870

Sample Collected: 09/07/10 Sample Received: 09/08/10

11:45

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

ODOT MANHOLE DISCHARGING TO AAE685

Report Page: Page 1 of 1

Address/Location:

IL-52-SJB2-0910

System ID:

AO07999

Sample Point Code:

52_13

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Inconsistent results for matrix QC for PCB analysis indicate non-homogeneous sample matrix; PCB results should be considered estimates.

			-		Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL				4	
TOTAL SOLIDS	86.9	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)				•	
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1221	· <20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	60	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1254	35	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS	•				,
TOTAL ORGANIC CARBON	8710	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CONGEN	ERS -PACE	•	J .		
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105870

Validated By: Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

12:14

Sample ID: FO105871

Sample Collected: 09/07/10

Sample Received: 09/08/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-52-ANE911-0910

N ALTA & RR TRACKS

Sample Point Code:

52 8

Sample Type: Sample Matrix: COMPOSITE

SEDIMENT

Page 1 of 1 Report Page:

System ID:

AO08000

EID File #:

1020.001

LocCode: Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	84.0	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)		•			-
Aroclor 1016/1242	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1221	<400	μg/Kg dry wt	400	EPA 8082	09/10/10
Aroclor 1232	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1248	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1254	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1260	2860	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1262	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1268	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	28600	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CONGE	NERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105871

Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105872

Sample Collected: 09/08/10 Sample Received: 09/08/10

10:01

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page: Page 1 of 1

Address/Location:

IL-52-SJB1-0910

AO08001

SOLIDS FROM ST JOHNS BRIDGE WQ MANHOLE 52_14

System ID:

Sample Point Code: Sample Type:

EID File #: LocCode:

1020.001

Sample Matrix:

COMPOSITE **SEDIMENT**

Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	77.5	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	.10	EPA 8082	09/10/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	97	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1254	66	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	20100	mg/Kg dry wt	100	EPA 9060 MOD	09/17/10
POLYCHLORINATED BIPHENYL CONGENER	S -PACE		•		
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105872

Report Date: 10/18/10 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105873

Sample Collected: 09/07/10 Sample Received: 09/08/10 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

FIELD DUPLICATE

System ID:

AO08002

Sample Point Code:

Sample Type:

DUP

EID File #: LocCode:

1020.001 PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	85.7	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS	4				
POLYCHLORINATED BIPHENYLS (PO	CB)				•
Aroclor 1016/1242	· <10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	76	μg/Kg dry wt	. 10	EPA 8082	09/10/10
Aroclor 1254	26	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS	•				
TOTAL ORGANIC CARBON	7580	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CON	IGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105873

Report Date: 10/18/10

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

September 24, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor Inline

Enclosed are the results of analyses for samples received by the laboratory on 09/09/10 16:05. The following list is a summary of the Work Orders contained in this report, generated on 09/24/10 14:31.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTI0295	Portland Harbor Inline	30001516

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave.Project Number:30001516Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford09/24/10 14:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO105870	PTI0295-01	Soil	09/07/10 11:45	09/09/10 16:05
FO105871	PTI0295-02	Soil	09/07/10 12:14	09/09/10 16:05
FO105872	PTI0295-03	Soil	09/07/10 10:01	09/09/10 16:05
FO105873	PTI0295-04	Soil	09/07/10 00:00	09/09/10 16:05

TestAmerica Portland

Onell W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor Inline** Project Name:

6543 N. Burlington Ave. Project Number: 30001516 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTI0295-01 (FO105870)			Soil			Samp	oled: 09/07	/10 11:45		
Total Organic Carbon - Duplicates	9060	8710	30.0	100	mg/Kg	1x	42822	09/16/10 20:44	09/16/10 20:44	
PTI0295-02 (FO105871)			Soil			Samp	oled: 09/07	/10 12:14		
Total Organic Carbon - Duplicates	9060	28600	30.0	100	mg/Kg	1x	42822	09/16/10 20:58	09/16/10 20:58	
PTI0295-03 (FO105872)	Soil Sampled: 09/07/10 10:01									
Total Organic Carbon - Duplicates	9060	20100	30.0	100	mg/Kg	1x	42822	09/17/10 09:18	09/17/10 09:18	
PTI0295-04 (FO105873)	Soil Sampled: 09/07/10 00:00									
Total Organic Carbon - Dunlicates	9060	7580	30.0	100	mg/Kg	1x	42822	09/16/10 21:58	09/16/10 21:58	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor Inline** Project Name:

6543 N. Burlington Ave. Project Number: 30001516 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

Organic Carbon, Total (TOC) - Laboratory Quality Control Results TestAmerica Connecticut														
QC Batch: 42822	Soil Pro	eparation Metl	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike Dup (133083D)				QC Source:	PTI0295-0)3		Extr	acted:	09/16/10 21	:51			
Total Organic Carbon - Duplicates	9060	137000	30.0	100	mg/Kg	1x	20100	124000	95%	(75-125)	0.1%	(20)	09/16/10 21:51	
Matrix Spike (133083S)				QC Source:	PTI0295-0)3		Extr	acted:	09/16/10 21	:44			
Total Organic Carbon - Duplicates	9060	137200	30.0	100	mg/Kg	1x	20100	122000	96%	(75-125)			09/16/10 21:44	
LCS (220-42822-6)				QC Source:				Extr	acted:	09/16/10 18	3:25			
Total Organic Carbon - Duplicates	9060	5134	30.0	100	mg/Kg	1x		4110	125%	(28-172)			09/16/10 18:25	
Blank (220-42822-7)				QC Source:				Extr	acted:	09/16/10 18	3:32			
Total Organic Carbon - Duplicates	9060	ND	30.0	100	mg/Kg	1x							09/16/10 18:32	

TestAmerica Portland

and W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory **Portland Harbor Inline** Project Name:

6543 N. Burlington Ave. Project Number: 30001516 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

and W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

CERTIFICATION SUMMARY

Subcontracted Laboratories

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 - Minneapolis, MN 55414

Analysis Performed: 1668 PCB 209 Congeners - SUB

Samples: PTI0295-01, PTI0295-02, PTI0295-03, PTI0295-04

TestAmerica Connecticut

128 Long Hill Cross Road - Shelton, CT 06484

Method Performed: 9060

Samples: PTI0295-01, PTI0295-02, PTI0295-03, PTI0295-04

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave,Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

* Turnaround Requests less than standard may incur Rush Charges <1 TURNAROUND REQUEST DATE LOCATION/ COMMENTS in Business Days * OTHER Specify: Work Order #: # OF CONT. MATRIX (W, S, O) \circ CHAIN OF CUSTODY REPORT Charles Lythe RECEIVED BY: RECEIVED BY: REQUESTED ANALYSES PRESERVATIVE P.O. NUMBER: 56 138 ERM: City of POIT ANDINE: 1250 DATE: 9/9/17 INVOICE TO REPORT TO: Jennifer Shackelford PROJECT NUMBER: PORTHAND HARBOR INLINE PROJECT NUMBER: BASIN 52 ||天 100 1214 SAMPLING DATE/TIME CLIENT: City of Portland 9/4/10 F0105873 F0105872 F0105370 F0105871 CLIENT SAMPLE IDENTIFICATION SAMPLED BY: PRINT NAME:

TAL-1000(0408)

TestAmerica Portland

Sample Receiving Checklist

	k Ord nt Nar		PT10295 Date/Time Rece d Project: CITY OF POVE 10	ived: 919110 1405
	Zone; T/EST	Γ	CDT/CST MDT/MST PDT/P	ST AK OTHER
Coo	ackin oler #(erature Dig	(s): es: 0		Temperature out of Range: Not enough or No IceIce MeltedW/in 4 Hrs of collectionOther:
N/A	Yes	No		Initials:
			1. If ESI client, were temp blanks received? I	
			2. Cooler Seals intact? (N/A if hand delivered	
	1		3. Chain of Custody present? If no, documer	
			4. Bottles received intact? If no, document o	
			5. Sample is not multiphasic? If no, docume	
			6. Proper Container and preservatives used?	
			7. pH of all samples checked and meet require	
			8. Cyanide samples checked for sulfides and	meet requirements? If no, notify PM.
			9. HF Dilution required?	
			10. Sufficient volume provided for all analysPM before proceeding.11. Did chain of custody agree with samples	
			12. Is the "Sampled by" section of the COC of	
	<u></u> Ш.		13. Were VOA/Oil Syringe samples without	
	, U		14. Were VOA vials preserved? ☐HCl ☐S	
			15. Did samples require preservation with so	
			16. If yes to #15, was the residual chlorine to	
			17. Are dissolved/field filtered metals bottle	
			18. Is sufficient volume provided for client in no, document on NOD and contact PM before	requested MS/MSD or matrix duplicates? If re proceeding.
		_	19. Are analyses with short holding times re	
		_ _	20. Was Standard Turn Around (TAT) reque	
		L	21. Receipt date(s) < 48 hours past the collection	chon date(s)? If no, notify 1 w.

TestAmerica Portland Sample Receiving Checklist

Work Order #: **PT10295**

,		
Logi	in Ch	ks: Initials:
N/A	Yes	
		22. Sufficient volume provided for all analysis? If no, document on NOD & contact Pl
		23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
		no, document on NOD and contact PM.
		24. Did the chain of custody include "received by" and "relinquished by" signatures,
	•	dates and times?
		25. Were special log in instructions read and followed?
		26. Were tests logged checked against the COC?
		27. Were rush notices printed and delivered?
		28. Were short hold notices printed and delivered?
		29. Were subcontract COCs printed?
		30. Was HF dilution logged?
•		
Lab	eling	nd Storage Checks: Initials:
N/A	Yes	0
		31. Were the subcontracted samples/containers put in Sx fridge?
		32. Were sample bottles and COC double checked for dissolved/filtered metals?
		33. Did the sample ID, Date, and Time from label match what was logged?
		34. Were Foreign sample stickers affixed to each container and containers stored in
		foreign fridge?
Z,		35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
\mathbb{Z}		36. Was an NOD for created for noted discrepancies and placed in folder?
	iment (NOD	problems or discrepancies and the actions taken to resolve them on a Notice of Discrepan

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil **Test America** 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY **ANALYSIS FOR PCBs**

Report Information:

Pace Project #: 10138002

Sample Receipt Date: 09/14/2010

Client Project #: Portland Harbor InlineB

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

October 12, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 12, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on four samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 41-129%. With three exceptions, flagged "R" on the QC results tables, the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks be free of PCB congeners at the reporting limits. This indicates that the sample preparation procedures did not significantly contribute to the levels determined for the field samples.

Laboratory spike samples were also prepared with each sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 88-136% with relative percent differences of 0.0-13.2%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the samples.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTI0295

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444 Project Location: OR - OREGON

Receipt Temperature: °C

Ice: Y / N

needs Excel EDD

Analysis

Sample ID: PTI0295-01 (FO105870 - Soil)

Units

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-02 (FO105871 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-03 (FO105872 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-04 (FO105873 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Comments

Sampled: 09/07/10 11:45

03/06/11 11:45

Expires

Sampled: 09/07/10 12:14

03/06/11 12:14

209 Congeners to Pace

Sampled: 09/07/10 10:01 ***209 Congeners*** to Pace

Sampled: 09/07/10 00:00

03/06/11 00:00

03/06/11 10:01

209 Congeners to Pace

Vow Phas Pace MN 9/14/10 1005 7-4.4

Received By

Date/Timpage 5 of 56 of 1

Sample Condition Upon Receipt

Pace Analyticai" Project # 10/38005 Client Name: Courier: V Fed Ex UPS USPS Client Commercial Pace Other Optional Tracking #: 41 70 75 26 1642 Proj. Due Date Proj. Name Custody Seal on Cooler/Box Present:

✓ yes

□ no Seals intact: √ yes ☐ no Packing Material: Bubble Wrap Temp Blank: Yes No Thermometer Used 80344042 or (79425) Type of Ice: Weh Blue None Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: 1/14/10 458 Temp should be above freezing to 6°C Comments: MYes □No **□N/A** Chain of Custody Present: DWee □No □N⁄A Chain of Custody Filled Out: Yes DNo **□N/A** Chain of Custody Relinquished: Sampler Name & Signature on COC: □Yes ☑No □N/A Wes DNo **□N/A** Samples Arrived within Hold Time: ☐Yes ☐No Short Hold Time Analysis (<72hr): □N/A UYes ENo **□N/A** Rush Turn Around Time Requested: ØYes □No Sufficient Volume: **□N/A** □N⁄A SWes □No Correct Containers Used: WYes □No -Pace Containers Used: □N/A Yes DNo Containers Intact: □N/A 10 DINZA ☐Yes ☐No Filtered volume received for Dissolved tests 11. ØYes □No Sample Labels match COC: □N/A -Includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been NaOH ĽM/A ☐Yes ☐No 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Lot # of added Initial when ☐Yes ☐Wo Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water completed preservative ☐Yes ☐No DK/A Samples checked for dechlorination: 14. Headspace in VOA Vials (>6mm): □Yes □No DINVA 15 ☐Yes ☐No 52N/Á Trip Blank Present: 16. Trip Blank Custody Seals Present ☐Yes ☐No 12N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Y / N 11:00 Person Contacted: Date/Time: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Received Adaptical SelmBits, inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Date:

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

PTI0295-01 (FO105870) Client's Sample ID Lab Sample ID 10138002001 Filename P101001A_06 Injected By BAL Solid Total Amount Extracted 12.4 g Matrix 18.4 Dilution % Moisture 10.1 g Dry Weight Extracted Collected 09/07/2010 11:45 **ICAL ID** P101001A02 Received 09/14/2010 10:05 09/29/2010 14:40 CCal Filename(s) P101001A 01 Extracted Method Blank ID BLANK-26482 Analyzed 10/01/2010 08:46

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.120	3.60	2.0	1.19	60
13C-4-MoCB	3	12.547	3.48	2.0	1.38	69
13C-2,2'-DiCB	4	12.882	1.61	2.0	1.52	76
13C-4,4'-DiCB	15	21.077	1.60	2.0	1.41	71
13C-2,2',6-TrCB	19	17.363	0.93	2.0	1.48	74
13C-3,4,4'-TrCB	37	29.391	1.06	2.0	1.62	81
13C-2,2',6,6'-TeCB	54	21.377	0.80	2.0	1.62	81
13C-3,4,4',5-TeCB	81	36.685	0.83	2.0	1.47	73
13C-3,3',4,4'-TeCB	77	37.272	0.80	2.0	1.50	75
13C-2,2',4,6,6'-PeCB	104	27.933	1.67	2.0	1.71	86
13C-2,3,3',4,4'-PeCB	105	40.877	1.60	2.0	1.39	69
13C-2,3,4,4',5-PeCB	114	40.207	1.60	2.0	1.37	69
13C-2,3',4,4',5-PeCB	118	39.636	1.63	2.0	1.38	69
13C-2,3',4,4',5'-PeCB	123	39.301	1.59	2.0	1.37	69
13C-3,3',4,4',5-PeCB	126	44.046	1.41	2.0	1.44	72
13C-2,2',4,4',6,6'-HxCB	155	34.137	1.28	2.0	2.07	104
13C-HxCB (156/157)	156/157	47.065	1.25	4.0	2.50	62
13C-2,3',4,4 ['] ,5,5'-HxCB	167	45.891	1.22	2.0	1.42	71
13C-3,3',4,4',5,5'-HxCB	169	50.418	1.26	2.0	1.21	61
13C-2,2',3,4',5,6,6'-HpCB	188	40.106	1.04	2.0	2.59	129
13C-2,3,3',4,4',5,5'-HpCB	189	52.981	1.01	2.0	1.50	75
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.555	0.92	2.0	2.29	114
13C-2,3,3',4,4',5,5',6-OcCB	205	55.955	0.87	2.0	1.75	88
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.326	0.83	2.0	1.90	95
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.356	0.78	2.0	1.67	84
13CDeCB	209	60.805	0.73	2.0	1.79	89
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.780	1.03	2.0	1.77	89
13C-2,3,3',5,5'-PeCB	111	37.272	1.58	2.0	1.71	86
13C-2,2',3,3',5,5',6-HpCB	178	43.241	1.06	2.0	2.00	100
Recovery Standards						
13C-2,5-DiCB	9	15.805	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.893	0.82	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.422	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.806	1.24	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.352	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Page 9 of 56

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

II IDAO	On abother	DT	D-C-	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.132	3.14	47.7		24.8
2				ND		24.8
3		12.571	2.99	34.9		24.8
4		12.906	1.48	634		24.8
5		16.800	1.35	29.6		24.8
4 5 6 7		16.392	1.50	279		24.8
7		16.057	1.42	53.3		24.8
8		16.992	1.54	1340		24.8
9		15.841	1.47	94.4		24.8
10		13.182	1.40	43.3		24.8
11				ND		149
12	12/13	20.670	1.35	151		49.6
13	12/13	20.670	1.35	(151)		49.6
14	12, 10			ND		24.8
15		21.101	1.53	1180		24.8
16		20.981	1.04	1250		24.8
17		20.418	1.05	1350		24.8
18	18/30	19.879	1.03	2750		49.6
19	10/00	17.387	1.06	343		24.8
20	20/28	24.797	1.03	4850		49.6
21	21/33	25.065	1.03	2610		49.6
22	21/33	25.535	1.04	1720		24.8
23		25.555	1.04	ND		24.8
24		20.825	1.04	75.6		24.8
25		24.076	1.03	348		24.8
26	26/29	23.791	1.05	815		49.6
27	20/29	20.682	1.06	237		24.8
28	20/28	24.797	1.03	(4850)		49.6
29	26/29	23.791	1.05	(815)		49.6
30	18/30	19.879	1.03	(2750)		49.6
31	10/30	24.445	1.03	4190		24.8
32		21.662	1.04	1060		24.8
33	21/33	25.065	1.02	(2610)		49.6
34	21/33	25.005	1.03	ND		24.8
35		28.955	1.03	72.0		24.8
36		20.955	1.03	ND		24.8
37		29.425	1.04	1300		24.8
38		29.423	1.04	ND		24.8
39		27.799	1.05	27.1		24.8
40	40/41/71	29.190	0.77	2310		24.6 149
40 41		29.190 29.190	0.77	(2310)		149
41 42	40/41/71	28.620	0.77	1070		49.6
42 43	43/73	26.620 27.161	0.78	136		49.6 99.1
43 44	43/73 44/47/65	28.033	0.79 0.78	4380		149
44 45		26.033 24.864	0.78	763		99.1
	45/51	24.864 25.233	0.78 0.77	763 256		49.6
46 47	44/47/65		0.77	(4380)		49.6 149
	44/41/00	28.033	0.78			
48		27.782	0.79	868		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

		5.	5 4	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	27.480	0.78	2520		99.1
50	50/53	24.076	0.79	549		99.1
51	45/51	24.864	0.78	(763)		99.1
52		26.927	0.78	7210		49.6
53	50/53	24.076	0.79	(549)		99.1
54	30,00			ND		49.6
55		32.795	0.68	69.5		49.6
56		33.332	0.79	1230		49.6
57				ND		49.6
58				ND		49.6
59	59/62/75	28.419	0.78	338		149
60	03/02/10	33.567	0.79	699		49.6
61	61/70/74/76	32.259	0.78	6430		198
62	59/62/75	28.419	0.78	(338)		149
63	39/02/13	31.907	0.73	132		49.6
64		29.442	0.78	1870		49.6
65	44/47/65	28.033	0.78	(4380)		149
66	44/47/03	32.611	0.78	2760		49.6
67		31.605	0.79	103		49.6
68		31.005	0.76	ND		49.6 49.6
69	49/69	27.480	0.78	(2520)		99.1
70						
70 71	61/70/74/76 40/41/71	32.259	0.78 0.77	(6430) (2310)		198
7 1 72	40/41/71	29.190				149
	40/70			NĎ		49.6
73 74	43/73	27.161	0.79	(136)		99.1
	61/70/74/76	32.259	0.78	(6430)		198
75 70	59/62/75	28.419	0.78	(338)		149
76 77	61/70/74/76	32.259	0.78	(6430)		198
77 70		37.306	0.78	206		49.6
78				ND		49.6
79				ND		49.6
80				ND		49.6
81			4.50	ND 700		49.6
82		36.870	1.56	736		49.6
83		34.925	1.55	320		49.6
84		32.460	1.58	2010		49.6
85	85/116/117	36.367	1.56	847		149
86	86/87/97/108/119/125	35.696	1.55	4340		297
87	86/87/97/108/119/125	35.696	1.55	(4340)		297
88	88/91	32.208	1.55	854		99.1
89		32.963	1.46	71.6		49.6
90	90/101/113	34.455	1.56	5860		149
91	88/91	32.208	1.55	(854)		99.1
92		33.835	1.58	1080		49.6
93	93/98/100/102	31.655	1.54	240		198
94				ND		49.6
95		31.286	1.56	5590		49.6
96				ND		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI Lab Sample ID 101 Filename P10

PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.696	1.55	(4340)		297
98	93/98/100/102	31.655	1.54	(240)		198
99	93/96/100/102	35.059	1.55	2190		49.6
100	93/98/100/102	31.655	1.53	(240)		198
100		31.000				149
	90/101/113	34.455	1.56	(5860)		
102	93/98/100/102	31.655	1.54	(240)		198
103				ND		49.6
104		40.004		ND		49.6
105		40.894	1.59	1640		49.6
106	107/101			ND		49.6
107	107/124	38.966	1.58	180		99.1
108	86/87/97/108/119/125	35.696	1.55	(4340)		297
109		39.201	1.62	260		49.6
110	110/115	36.535	1.56	6390		99.1
111				ND		49.6
112				ND		49.6
113	90/101/113	34.455	1.56	(5860)		149
114		40.207	1.53	` 114		49.6
115	110/115	36.535	1.56	(6390)		99.1
116	85/116/117	36.367	1.56	(847)		149
117	85/116/117	36.367	1.56	(847)		149
118		39.670	1.58	¥11Ó		49.6
119	86/87/97/108/119/125	35.696	1.55	(4340)		297
120				` NĎ		49.6
121				ND		49.6
122		40.005	1.65	57.7		49.6
123		39.318	1.70	93.1		49.6
124	107/124	38.966	1.58	(180)		99.1
125	86/87/97/108/119/125	35.696	1.55	(4340)		297
126	30,31,31,130,110,120			ND		49.6
127				ND		49.6
128	128/166	44.130	1.24	523		99.1
129	129/138/163	42.839	1.25	3500		149
130	120/100/100	42.168	1.25	235		49.6
131		39.268	1.29	80.8		49.6
132		39.737	1.26	1410		49.6
133				ND		49.6
134	134/143	38.647	1.26	281		99.1
135	135/151	37.507	1.25	1110		99.1
136	133/131	34.941	1.25	584		49.6
136		42.403	1.23	210		49.6
137	129/138/163	42.839	1.25	(3500)		149
139	139/140			ND ND		99.1
140	139/140			ND		99.1
141		41.766	1.25	586		49.6
142	101/110			ND (224)		49.6
143	134/143	38.647	1.26	(281)		99.1
144		38.077	1.28	196		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.6
146		40.928	1.26	400		49.6
147	147/149	38.429	1.25	2690		99.1
148				ND		49.6
149	147/149	38.429	1.25	(2690)		99.1
150				` NĎ		49.6
151	135/151	37.507	1.25	(1110)		99.1
152				` NĎ		49.6
153	153/168	41.565	1.25	2340		99.1
154				ND		49.6
155				ND		49.6
156	156/157	47.081	1.25	364		99.1
157	156/157	47.081	1.25	(364)		99.1
158		43.241	1.24	348		49.6
159				ND		49.6
160				ND		49.6
161				ND		49.6
162				ND		49.6
163	129/138/163	42.839	1.25	(3500)		149
164		42.520	1.28	215		49.6
165				ND		49.6
166	128/166	44.130	1.24	(523)		99.1
167	.23, 133	45.924	1.23	108		49.6
168	153/168	41.565	1.25	(2340)		99.1
169	100,100			ND		49.6
170		49.764	0.98	226		49.6
171	171/173	46.142	1.15	100		99.1
172	,			ND		49.6
173	171/173	46.142	1.15	(100)		99.1
174	,	45.052	1.03	269		49.6
175				ND		49.6
176		41.380	1.03	53.7		49.6
177		45.505	1.05	162		49.6
178		43.275	1.11	65.5		49.6
179		40.475	1.03	162		49.6
180	180/193	48.473	1.04	477		99.1
181	100/100			ND		49.6
182				ND		49.6
183	183/185	44.801	1.02	236		99.1
184	100/100			ND		49.6
185	183/185	44.801	1.02	(236)		99.1
186	100/100			ND		49.6
187		44.180	1.04	356		49.6
188				ND		49.6
189				ND		49.6
190				ND		49.6
191				ND		49.6
192				ND		49.6
102				ND		₹5.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.473	1.04	(477)		99.1
194				` NĎ		74.4
195				ND		74.4
196				ND		74.4
197	197/200			ND		149
198	198/199			ND		149
199	198/199			ND		149
200	197/200			ND		149
201				ND		74.4
202				ND		74.4
203				ND		74.4
204				ND		74.4
205				ND		74.4
206				ND		74.4
207				ND		74.4
208				ND		74.4
209				ND		74.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	82.6	
Total Dichloro Biphenyls	3800	
Total Trichloro Biphenyls	23000	
Total Tetrachloro Biphenyls	33900	
Total Pentachloro Biphenyls	37000	
Total Hexachloro Biphenyls	15200	
Total Heptachloro Biphenyls	2110	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	115000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Analyzed

09/07/2010 12:14

09/14/2010 10:05

09/29/2010 14:40

10/01/2010 09:51

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0295-02 (FO105871) Lab Sample ID 10138002002 Filename P101001A_07 Injected By BAL Total Amount Extracted 13.1 g Matrix Dilution % Moisture 19.0 10.6 g Dry Weight Extracted Collected ICAL ID P101001A02 Received CCal Filename(s) P101001A 01 Extracted

BLANK-26482

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.061	3.15	2.0	1.28	64
13C-4-MoCB	3	12.500	3.01	2.0	1.38	69
13C-2,2'-DiCB	4	12.835	1.49	2.0	1.54	77
13C-4,4'-DiCB	15	21.054	1.81	2.0	1.25	63
13C-2,2',6-TrCB	19	17.316	1.00	2.0	1.28	64
13C-3,4,4'-TrCB	37	29.393	1.12	2.0	1.23	62
13C-2,2',6,6'-TeCB	54	21.360	0.79	2.0	1.24	62
13C-3,4,4',5-TeCB	81	36.671	0.81	2.0	1.03	52
13C-3,3',4,4'-TeCB	77	37.258	0.82	2.0	1.01	51
13C-2,2',4,6,6'-PeCB	104	27.917	1.54	2.0	1.38	69
13C-2,3,3',4,4'-PeCB	105	40.846	1.59	2.0	0.976	49
13C-2,3,4,4',5-PeCB	114	40.175	1.61	2.0	0.983	49
13C-2,3',4,4',5-PeCB	118	39.639	1.59	2.0	0.981	49
13C-2,3',4,4',5'-PeCB	123	39.287	1.55	2.0	0.977	49
13C-3,3',4,4',5-PeCB	126	44.032	1.58	2.0	0.969	48
13C-2,2',4,4',6,6'-HxCB	155	34.122	1.27	2.0	1.32	66
13C-HxCB (156/157)	156/157	47.067	1.23	4.0	1.74	43
13C-2,3',4,4',5,5'-HxĆB	167	45.877	1.24	2.0	0.889	44
13C-3,3',4,4',5,5'-HxCB	169	50.404	1.15	2.0	0.813	41
13C-2,2',3,4',5,6,6'-HpCB	188	40.092	1.04	2.0	1.67	83
13C-2,3,3',4,4',5,5'-HpCB	189	52.984	1.00	2.0	1.02	51
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.558	0.91	2.0	1.53	76
13C-2,3,3',4,4',5,5',6-OcCB	205	55.980	0.88	2.0	1.07	54
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.351	0.86	2.0	1.17	58
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.359	0.83	2.0	1.14	57
13CDeCB	209	60.765	0.73	2.0	1.04	52
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.748	1.05	2.0	1.69	85
13C-2,3,3',5,5'-PeCB	111	37.258	1.57	2.0	1.74	87
13C-2,2',3,3',5,5',6-HpCB	178	43.227	1.04	2.0	1.91	95
Recovery Standards						
13C-2,5-DiCB	9	15.771	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.861	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.407	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.791	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.355	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		23.5
2		12.260	2.76	24.4		23.5
2 3				ND		23.5
4		12.883	1.37	78.8		23.5
4 5 6				ND		23.5
6		16.370	1.36	44.6		23.5
7				ND		23.5
8		16.969	1.46	173		23.5
9				ND		23.5
10				ND		23.5
11		20.263	1.40	168		141
12	12/13			ND		47.0
13	12/13			ND		47.0
14				ND		23.5
15		21.066	1.52	130		23.5
16		20.958	1.06	158		23.5
17		20.371	1.06	178		23.5
18	18/30	19.844	1.06	380		47.0
19		17.340	1.04	54.0		23.5
20	20/28	24.781	1.03	697		47.0
21	21/33	25.050	1.04	350		47.0
22		25.502	1.04	241		23.5
23				ND		23.5
24				ND		23.5
25		24.044	1.00	46.2		23.5
26	26/29	23.775	1.02	106		47.0
27		20.670	1.03	34.5		23.5
28	20/28	24.781	1.03	(697)		47.0
29	26/29	23.775	1.02	(106)		47.0
30	18/30	19.844	1.06	(380)		47.0
31		24.429	1.03	` 56Ź		23.5
32		21.629	1.06	154		23.5
33	21/33	25.050	1.04	(350)		47.0
34				NĎ		23.5
35		28.940	1.12	23.9		23.5
36				ND		23.5
37		29.410	1.05	223		23.5
38				ND		23.5
39				ND		23.5
40	40/41/71	29.158	0.79	528		141
41	40/41/71	29.158	0.79	(528)		141
42		28.605	0.75	232		47.0
43	43/73			ND		94.1
44	44/47/65	28.018	0.78	856		141
45	45/51	24.832	0.76	163		94.1
46	4.4.4.7.10.5	25.217	0.70	57.6		47.0
47	44/47/65	28.018	0.78	(856)		141
48		27.766	0.79	171		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

Page 17 of 56

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.464	0.79	502		94.1
50	50/53	24.060	0.80	139		94.1
51	45/51	24.832	0.76	(163)		94.1
52		26.894	0.79	285Ó		47.0
53	50/53	24.060	0.80	(139)		94.1
54				NĎ		47.0
55				ND		47.0
56		33.317	0.75	347		47.0
57				ND		47.0
58				ND		47.0
59	59/62/75			ND		141
60		33.552	0.78	156		47.0
61	61/70/74/76	32.244	0.77	1430		188
62	59/62/75			ND		141
63				ND		47.0
64		29.426	0.78	426		47.0
65	44/47/65	28.018	0.78	(856)		141
66		32.596	0.78	684		47.0
67				ND		47.0
68				ND		47.0
69	49/69	27.464	0.79	(502)		94.1
70	61/70/74/76	32.244	0.77	(1430)		188
71	40/41/71	29.158	0.79	(528)		141
72				ND		47.0
73	43/73			ND		94.1
74	61/70/74/76	32.244	0.77	(1430)		188
75	59/62/75			ND		141
76	61/70/74/76	32.244	0.77	(1430)		188
77		37.274	0.76	366		47.0
78				ND		47.0
79		35.581	0.81	110		47.0
80				ND		47.0
81				ND		47.0
82		36.838	1.64	379		47.0
83		34.910	1.53	913		47.0
84		32.428	1.55	2560		47.0
85	85/116/117	36.335	1.50	584		141
86	86/87/97/108/119/125	35.681	1.57	11200		282
87	86/87/97/108/119/125	35.681	1.57	(11200)		282
88	88/91	32.193	1.57	688		94.1
89		32.931	1.47	104		47.0
90	90/101/113	34.440	1.56	58300		141
91	88/91	32.193	1.57	(688)		94.1
92		33.803	1.57	7350		47.0
93	93/98/100/102	31.640	1.59	278		188
94				ND		47.0
95		31.271	1.56	42300		47.0
96		28.353	1.63	56.3		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0295-02 (FO105871)
Lab Sample ID 10138002002
Filename P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.681	1.57	(11200)		282
98	93/98/100/102	31.640	1.59	(278)		188
99		35.044	1.56	Ì94Ó		47.0
100	93/98/100/102	31.640	1.59	(278)		188
101	90/101/113	34.440	1.56	(58300)		141
102	93/98/100/102	31.640	1.59	` (278)		188
103		30.533	1.53	`101		47.0
104				ND		47.0
105		40.896	1.55	3050		47.0
106				ND		47.0
107	107/124	38.951	1.53	516		94.1
108	86/87/97/108/119/125	35.681	1.57	(11200)		282
109		39.203	1.54	` 105Ó		47.0
110	110/115	36.520	1.56	37900		94.1
111				ND		47.0
112				ND		47.0
113	90/101/113	34.440	1.56	(58300)		141
114		40.242	1.42	189		47.0
115	110/115	36.520	1.56	(37900)		94.1
116	85/116/117	36.335	1.50	(584)		141
117	85/116/117	36.335	1.50	(584)		141
118		39.672	1.56	18000		47.0
119	86/87/97/108/119/125	35.681	1.57	(11200)		282
120		37.744	1.58	162		47.0
121				ND		47.0
122		40.008	1.47	82.1		47.0
123	407/404	39.286	1.56	184		47.0
124	107/124	38.951	1.53	(516)		94.1
125	86/87/97/108/119/125	35.681	1.57 1.99 l	(11200)		282
126		44.049 42.389	1.55	 EG E	588	47.0 47.0
127 128	128/166	42.369 44.133	1.55	56.5 19800		94.1
128	129/138/163	44.133 42.825	1.24	284000		9 4 .1 141
130	129/130/103	42.025	1.25	10100		47.0
131		39.253	1.25	1660		47.0 47.0
132		39.739	1.25	72800		47.0
133		40.259	1.25	2590		47.0
134	134/143	38.633	1.25	9630		94.1
135	135/151	37.459	1.24	96400		94.1
136	100/101	34.927	1.26	30300		47.0
137		42.372	1.22	1070		47.0
138	129/138/163	42.825	1.25	(284000)		141
139	139/140	39.035	1.27	862		94.1
140	139/140	39.035	1.27	(862)		94.1
141		41.752	1.25	69200		47.0
142				ND		47.0
143	134/143	38.633	1.25	(9630)		94.1
144		38.046	1.24	15900		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		47.0
146		40.913	1.25	35000		47.0
147	147/149	38.431	1.25	215000		94.1
148		36.838	1.20	84.1		47.0
149	147/149	38.431	1.25	(215000)		94.1
150		34.541	1.24	181		47.0
151	135/151	37.459	1.24	(96400)		94.1
152				` NĎ		47.0
153	153/168	41.550	1.25	269000		94.1
154		37.727	1.25	1030		47.0
155				ND		47.0
156	156/157	47.067	1.26	17200		94.1
157	156/157	47.067	1.26	(17200)		94.1
158		43.227	1.25	`2350Ó		47.0
159		45.122	0.74 I		542	47.0
160				ND		47.0
161				ND		47.0
162		45.374	0.68 I		173	47.0
163	129/138/163	42.825	1.25	(284000)		141
164		42.506	1.25	17700		47.0
165				ND		47.0
166	128/166	44.133	1.24	(19800)		94.1
167		45.910	1.25	8220		47.0
168	153/168	41.550	1.25	(269000)		94.1
169		50.438	1.40	486		47.0
170		49.750	1.04	102000		47.0
171	171/173	46.128	1.05	35700		94.1
172	474470	47.788	1.04	17000		47.0
173	171/173	46.128	1.05	(35700)		94.1
174		45.038	1.05	101000		47.0
175		43.898	1.04 1.06	4910		47.0
176		41.366	1.06	14500		47.0
177		45.491	1.04 1.05	61000		47.0
178 179		43.244 40.477	1.05	19200 40400		47.0 47.0
179	180/193	40.477 48.459	1.04	212000		94.1
181	160/193	45.910	1.03	439		47.0
182		45.910	1.01	ND		47.0 47.0
183	183/185	44.787	1.03	78600		94.1
184	103/103	40.997	1.03	78.0		47.0
185	183/185	44.787	1.03	(78600)		94.1
186	103/103		1.03	(70000) ND		47.0
187		44.166	1.04	108000		47.0
188		40.125	1.04	96.5		47.0 47.0
189		52.984	1.04	4210		47.0
190		50.304	1.05	17400		47.0
191		48.828	1.05	4340		47.0
192				ND		47.0
- —				-		· · · -

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.459	1.03	(212000)		94.1
194		55.377	0.89	` 2800Ó		70.6
195		52.682	0.89	13400		70.6
196		51.092	0.89	18500		70.6
197	197/200	47.554	0.88	5940		141
198	198/199	50.438	0.90	28600		141
199	198/199	50.438	0.90	(28600)		141
200	197/200	47.554	0.88	(5940)		141
201		46.514	0.89	`451Ó		70.6
202		45.575	0.89	4160		70.6
203		51.310	0.90	17800		70.6
204				ND		70.6
205		56.002	0.89	1910		70.6
206		58.351	0.78	4290		70.6
207		53.372	0.78	624		70.6
208		52.402	0.79	620		70.6
209		60.830	0.71	116		70.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	24.4	
Total Dichloro Biphenyls	594	
Total Trichloro Biphenyls	3210	
Total Tetrachloro Biphenyls	9020	
Total Pentachloro Biphenyls	188000	
Total Hexachloro Biphenyls	1200000	
Total Heptachloro Biphenyls	821000	
Total Octachloro Biphenyls	123000	
Total Nonachloro Biphenyls	5530	
Decachloro Biphenyls	116	
Total PCBs	2350000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0295-03 (FO105872) Lab Sample ID 10138002003 Filename P101009A_07 Injected By BAL Solid Total Amount Extracted 13.4 g Matrix 23.5 Dilution % Moisture 10.3 g Dry Weight Extracted Collected 09/07/2010 10:01 **ICAL ID** P101009A02 Received 09/14/2010 10:05 10/06/2010 16:40 CCal Filename(s) P101009A 01 Extracted Method Blank ID BLANK-26574 Analyzed 10/09/2010 07:28

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126	8.378 11.720 12.055 20.118 16.428 28.408 20.427 35.668 36.289 26.949 39.860 39.206 38.670 38.334 43.063	2.97 2.02 1.60 1.60 1.15 1.07 0.81 0.77 0.81 1.54 1.56 1.60 1.61 1.57	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.32 1.38 1.40 1.61 1.37 1.59 1.50 1.42 1.42 1.58 1.31 1.36 1.35 1.34	66 78 I 70 81 68 80 75 71 71 79 66 68 68 68
13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-1,3',4,4',5,5'-HxCB 13C-2,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB	155 156/157 167 169 188 189 202 205 206 208 209	33.170 46.081 44.924 49.434 39.139 51.959 44.589 54.739 56.915 51.377 59.243	1.29 1.26 1.27 1.24 1.06 1.03 0.91 0.90 0.76 0.84 0.71	2.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.79 2.67 1.41 1.33 1.96 1.56 1.81 1.58 1.67 1.55	89 67 71 66 98 78 90 79 83 77
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	23.797 36.305 42.275	1.06 1.59 1.03	2.0 2.0 2.0	1.59 1.47 1.61	80 73 80
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	14.931 25.926 33.438 41.822 54.178	1.60 0.82 1.66 1.29 0.89	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

ILIDAO	On abotions	DT	Datia	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		8.402	3.19	79.2		24.4
		11.480	3.34	25.2		24.4
3		11.732	3.22	64.1		24.4
4		12.079	1.53	987		24.4
5		15.877	1.63	35.8		24.4
2 3 4 5 6		15.506	1.56	399		24.4
7		15.158	1.51	71.6		24.4
8		16.093	1.60	1910		24.4
9		14.931	1.67	111		24.4
10		12.343	1.47	62.4		24.4
11		19.351	1.54	401		146
12	12/13	19.723	1.57	310		48.7
13	12/13	19.723	1.57	(310)		48.7
14	12/10			ND		24.4
15		20.142	1.58	3330		24.4
16		20.034	1.07	3730		24.4
17		19.471	1.04	3450		24.4
18	18/30	18.944	1.05	6030		48.7
19	10/30	16.464	1.08	1010		24.4
20	20/28	23.831	1.03	12300		48.7
21	21/33	24.099	1.03	5660		48.7
22	21/33	24.552	1.04	4070		24.4
23				ND		24.4 24.4
23				ND ND		
24						24.4
25	00/00	23.093	1.02	877		24.4
26	26/29	22.825	1.04	1960		48.7
27	00/00	19.747	1.12	945		24.4
28	20/28	23.831	1.03	(12300)		48.7
29	26/29	22.825	1.04	(1960)		48.7
30	18/30	18.944	1.05	(6030)		48.7
31		23.479	1.04	8900		24.4
32		20.712	1.04	3320		24.4
33	21/33	24.099	1.04	(5660)		48.7
34		22.271	1.14	34.4		24.4
35		27.972	1.01	233		24.4
36				ND		24.4
37		28.425	1.03	3310		24.4
38				ND		24.4
39		26.798	0.92	52.3		24.4
40	40/41/71	28.190	0.78	8110		146
41	40/41/71	28.190	0.78	(8110)		146
42		27.653	0.80	3880		48.7
43	43/73	26.195	0.79	423		97.4
44	44/47/65	27.050	0.79	13500		146
45	45/51	23.881	0.78	3160		97.4
46		24.250	0.76	1040		48.7
47	44/47/65	27.050	0.79	(13500)		146
48		26.798	0.78	2830		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.497	0.79	7910		97.4
50	50/53	23.110	0.78	2160		97.4
51	45/51	23.881	0.78	(3160)		97.4
52		25.960	0.79	ì690Ó		48.7
53	50/53	23.110	0.78	(2160)		97.4
54				` NĎ		48.7
55				ND		48.7
56		32.332	0.78	2990		48.7
57				ND		48.7
58				ND		48.7
59	59/62/75	27.435	0.80	1400		146
60		32.566	0.78	1590		48.7
61	61/70/74/76	31.275	0.78	11900		195
62	59/62/75	27.435	0.80	(1400)		146
63		30.923	0.77	31 7		48.7
64		28.458	0.78	6220		48.7
65	44/47/65	27.050	0.79	(13500)		146
66		31.627	0.78	` 671Ó		48.7
67		30.621	0.78	302		48.7
68				ND		48.7
69	49/69	26.497	0.79	(7910)		97.4
70	61/70/74/76	31.275	0.78	(11900)		195
71	40/41/71	28.190	0.78	(8110)		146
72		29.431	0.74	` 51.9		48.7
73	43/73	26.195	0.79	(423)		97.4
74	61/70/74/76	31.275	0.78	(11 ⁹⁰⁰)		195
75	59/62/75	27.435	0.80	(1400)		146
76	61/70/74/76	31.275	0.78	(11900)		195
77		36.305	0.79	571		48.7
78				ND		48.7
79		34.595	0.79	73.5		48.7
80				ND		48.7
81				ND		48.7
82		35.853	1.61	1330		48.7
83		33.941	1.65	699		48.7
84		31.460	1.56	3900		48.7
85	85/116/117	35.366	1.58	1590		146
86	86/87/97/108/119/125	34.696	1.56	9470		292
87	86/87/97/108/119/125	34.696	1.56	(9470)		292
88	88/91	31.225	1.59	1950		97.4
89		31.963	1.56	190		48.7
90	90/101/113	33.472	1.57	13100		146
91	88/91	31.225	1.59	(1950)		97.4
92		32.851	1.57	2270		48.7
93	93/98/100/102	30.688	1.57	515		195
94		29.833	1.46	82.0		48.7
95		30.286	1.56	11400		48.7
96		27.385	1.69	153		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.696	1.56	(9470)		292
98	93/98/100/102	30.688	1.57	(515)		195
99		34.092	1.61	`473Ó		48.7
100	93/98/100/102	30.688	1.57	(515)		195
101	90/101/113	33.472	1.57	(13100)		146
102	93/98/100/102	30.688	1.57	` (515)́		195
103		29.598	1.62	74.3		48.7
104				ND		48.7
105		39.894	1.57	3790		48.7
106				ND		48.7
107	107/124	37.982	1.60	323		97.4
108	86/87/97/108/119/125	34.696	1.56	(9470)		292
109		38.234	1.57	` 50Ó		48.7
110	110/115	35.551	1.57	11100		97.4
111				ND		48.7
112				ND		48.7
113	90/101/113	33.472	1.57	(13100)		146
114		39.240	1.59	` 236		48.7
115	110/115	35.551	1.57	(11100)		97.4
116	85/116/117	35.366	1.58	`(1590)́		146
117	85/116/117	35.366	1.58	(1590)		146
118		38.686	1.54	`862Ó		48.7
119	86/87/97/108/119/125	34.696	1.56	(9470)		292
120				NĎ		48.7
121				ND		48.7
122		39.022	1.75	104		48.7
123		38.351	1.60	158		48.7
124	107/124	37.982	1.60	(323)		97.4
125	86/87/97/108/119/125	34.696	1.56	(9 ⁴ 70)		292
126				ND		48.7
127				ND		48.7
128	128/166	43.130	1.23	1340		97.4
129	129/138/163	41.856	1.24	8760		146
130		41.218	1.24	534		48.7
131		38.267	1.30	166		48.7
132		38.753	1.24	3000		48.7
133		39.290	1.18	96.2		48.7
134	134/143	37.664	1.08	484		97.4
135	135/151	36.507	1.28	2460		97.4
136		33.941	1.27	1450		48.7
137	100/100/100	41.403	1.24	457		48.7
138	129/138/163	41.856	1.24	(8760)		146
139	139/140	38.049	1.22	154		97.4
140	139/140	38.049	1.22	(154)		97.4
141		40.782	1.25	139Ó		48.7
142	404/440		4.00	ND (404)		48.7
143	134/143	37.664	1.08	(484)		97.4 49.7
144		37.077	1.21	370		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.7
146		39.961	1.24	973		48.7
147	147/149	37.462	1.26	5840		97.4
148	,			ND		48.7
149	147/149	37.462	1.26	(5840)		97.4
150				NĎ		48.7
151	135/151	36.507	1.28	(2460)		97.4
152				` NĎ		48.7
153	153/168	40.581	1.26	6160		97.4
154				ND		48.7
155				ND		48.7
156	156/157	46.081	1.24	1240		97.4
157	156/157	46.081	1.24	(1240)		97.4
158		42.258	1.22	` 87Ó		48.7
159				ND		48.7
160				ND		48.7
161				ND		48.7
162		44.488	1.22	51.0		48.7
163	129/138/163	41.856	1.24	(8760)		146
164		41.537	1.25	` 482		48.7
165				ND		48.7
166	128/166	43.130	1.23	(1340)		97.4
167		44.924	1.22	369		48.7
168	153/168	40.581	1.26	(6160)		97.4
169				ND		48.7
170		48.747	1.05	1250		48.7
171	171/173	45.159	1.03	417		97.4
172		46.819	1.02	207		48.7
173	171/173	45.159	1.03	(417)		97.4
174		44.069	1.00	1140		48.7
175		42.945	1.06	57.2		48.7
176		40.397	1.01	174		48.7
177		44.522	1.05	686		48.7
178		42.291	1.06	232		48.7
179		39.491	1.05	528		48.7
180	180/193	47.489	1.04	2520		97.4
181				ND		48.7
182				ND		48.7
183	183/185	43.834	1.07	930		97.4
184	100/105	40.004		ND (222)		48.7
185	183/185	43.834	1.07	(930)		97.4
186				ND		48.7
187		43.214	1.06	1270		48.7
188				ND 50.0		48.7
189		51.980	1.11	59.0		48.7
190		49.300	1.05	252		48.7
191		47.841	1.06	50.8		48.7
192				ND		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.489	1.04	(2520)		97.4
194		54.200	0.92	· 547		73.1
195		51.678	0.94	202		73.1
196		50.105	0.89	297		73.1
197	197/200			ND		146
198	198/199	49.434	0.89	657		146
199	198/199	49.434	0.89	(657)		146
200	197/200			` NĎ		146
201		45.544	0.91	78.0		73.1
202		44.605	0.90	144		73.1
203		50.323	0.91	440		73.1
204				ND		73.1
205				ND		73.1
206		56.959	0.77	395		73.1
207				ND		73.1
208		51.398	0.79	122		73.1
209		59.286	0.75	137		73.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	168	
Total Dichloro Biphenyls	7620	
Total Trichloro Biphenyls	55900	
Total Tetrachloro Biphenyls	92000	
Total Pentachloro Biphenyls	76300	
Total Hexachloro Biphenyls	36600	
Total Heptachloro Biphenyls	9770	
Total Octachloro Biphenyls	2360	
Total Nonachloro Biphenyls	517	
Decachloro Biphenyls	137	
Total PCBs	281000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

Client's Sample ID PTI0295-04 (FO105873)
Lab Sample ID 10138002004
Filename P101001A_08
Injected By BAL
Total Amount Extracted 12.3 g
% Moisture 16.2

 % Moisture
 16.2
 Dilution
 5

 Dry Weight Extracted
 10.3 g
 Collected
 09/07/2010

 ICAL ID
 P101001A02
 Received
 09/14/2010

 ICAL ID
 P101001A02
 Received
 09/14/2010
 10:05

 CCal Filename(s)
 P101001A_01
 Extracted
 09/29/2010
 14:40

 Method Blank ID
 BLANK-26482
 Analyzed
 10/01/2010
 10:57

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.120	3.05	2.0	1.38	69
13C-4-MoCB	3	12.559	2.82	2.0	1.58	79
13C-2,2'-DiCB	4	12.894	1.69	2.0	1.78	89
13C-4,4'-DiCB	15	21.077	1.59	2.0	1.55	77
13C-2,2',6-TrCB	19	17.339	1.02	2.0	1.57	79
13C-3,4,4'-TrCB	37	29.407	1.11	2.0	1.66	83
13C-2,2',6,6'-TeCB	54	21.393	0.81	2.0	1.57	78
13C-3,4,4',5-TeCB	81	36.684	0.81	2.0	1.53	77
13C-3,3',4,4'-TeCB	77	37.271	0.80	2.0	1.54	77
13C-2,2',4,6,6'-PeCB	104	27.932	1.61	2.0	1.78	89
13C-2,3,3',4,4'-PeCB	105	40.859	1.61	2.0	1.47	73
13C-2,3,4,4',5-PeCB	114	40.205	1.62	2.0	1.50	75
13C-2,3',4,4',5-PeCB	118	39.652	1.59	2.0	1.46	73
13C-2,3',4,4',5'-PeCB	123	39.300	1.55	2.0	1.49	74
13C-3,3',4,4',5-PeCB	126	44.045	1.57	2.0	1.53	76
13C-2,2',4,4',6,6'-HxCB	155	34.136	1.27	2.0	1.87	94
13C-HxCB (156/157)	156/157	47.080	1.25	4.0	2.96	74
13C-2,3',4,4 ['] ,5,5'-HxĆB	167	45.889	1.24	2.0	1.52	76
13C-3,3',4,4',5,5'-HxCB	169	50.433	1.25	2.0	1.52	76
13C-2,2',3,4',5,6,6'-HpCB	188	40.105	1.07	2.0	1.95	98
13C-2,3,3',4,4',5,5'-HpCB	189	52.979	1.02	2.0	1.63	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.554	0.91	2.0	1.86	93
13C-2,3,3',4,4',5,5',6-OcCB	205	55.975	0.91	2.0	1.72	86
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.302	0.79	2.0	1.82	91
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.375	0.78	2.0	1.72	86
13CDeCB	209	60.781	0.70	2.0	1.72	86
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.780	1.08	2.0	1.72	86
13C-2,3,3',5,5'-PeCB	111	37.271	1.61	2.0	1.75	87
13C-2,2',3,3',5,5',6-HpCB	178	43.240	1.06	2.0	2.00	100
Recovery Standards						
13C-2,5-DiCB	9	15.817	1.64	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.892	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.421	1.56	2.0	NA	ŇA
13C-2,2',3,4,4',5'-HxCB	138	42.804	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.350	0.91	2.0	NA	NA
100 2,2,0,0,1,1,0,0 0000	101	55.555	0.01	2.0	1 1/1	1 1/1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.132	2.91	37.8		24.2
				ND		24.2
3		12.571	3.00	30.6		24.2
2 3 4 5		12.918	1.49	479		24.2
5				ND		24.2
6		16.404	1.55	236		24.2
7		16.057	1.55	46.4		24.2
8		16.991	1.53	1090		24.2
9		15.829	1.45	78.9		24.2
10		13.182	1.39	33.0		24.2
11				ND		145
12	12/13	20.670	1.38	117		48.5
13	12/13	20.670	1.38	(117)		48.5
14	12/13	20.670	1.30	ND		24.2
			1.53	ND		
15 16		21.101		921		24.2
		20.981	1.07 1.04	938		24.2
17	40/00	20.406	1.04	1010		24.2
18	18/30	19.879	1.04	2020		48.5
19	00/00	17.375	1.07	265		24.2
20	20/28	24.797	1.04	3320		48.5
21	21/33	25.065	1.04	1780		48.5
22		25.534	1.05	1190		24.2
23				ND		24.2
24		20.837	0.92	33.5		24.2
25		24.076	1.04	235		24.2
26	26/29	23.791	1.04	558		48.5
27		20.682	1.10	182		24.2
28	20/28	24.797	1.04	(3320)		48.5
29	26/29	23.791	1.04	(558)		48.5
30	18/30	19.879	1.04	(2020)		48.5
31		24.444	1.02	`281Ó		24.2
32		21.661	1.04	787		24.2
33	21/33	25.065	1.04	(1780)		48.5
34				` NĎ		24.2
35		28.955	1.02	60.5		24.2
36				ND		24.2
37		29.424	1.05	816		24.2
38				ND		24.2
39				ND		24.2
40	40/41/71	29.189	0.79	1380		145
41	40/41/71	29.189	0.79	(1380)		145
42	10,71,71	28.636	0.78	649		48.5
43	43/73	20.030		ND		96.9
44	44/47/65	28.032	0.78	2310		145
44 45	45/51	24.864	0.78	515		96.9
45 46	45/51	24.664 25.232	0.81	175		48.5
	44/47/65	20.232	0.79	(2210)		40.0 4 4 E
47	CO/14/ PP	28.032	0.78	(2310)		145
48		27.781	0.78	539		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.479	0.78	1380		96.9
50	50/53	24.076	0.79	345		96.9
51	45/51	24.864	0.81	(515)		96.9
52	10/01	26.926	0.78	3110		48.5
53	50/53	24.076	0.79	(345)		96.9
54	30/33			ND		48.5
5 5				ND		48.5
56		33.331	0.79	571		48.5
57			0.79	ND		48.5
58				ND		48.5
59	59/62/75	28.418	0.77	213		145
60	39/02/73	33.582	0.77	334		48.5
61	61/70/74/76	32.258	0.78	2850		194
62	59/62/75	28.418	0.79	(213)		145
	59/62/75	20.410	0.77	67.8		48.5
63 64		31.906	0.79			
	44/47/05	29.441	0.78	1040		48.5
65	44/47/65	28.032	0.78	(2310)		145
66		32.626	0.79	1320		48.5
67		31.604	0.79	57.8		48.5
68	40/00			ND (4000)		48.5
69	49/69	27.479	0.78	(1380)		96.9
70	61/70/74/76	32.258	0.79	(2850)		194
71	40/41/71	29.189	0.79	(1380)		145
72				ND		48.5
73	43/73			ND		96.9
74	61/70/74/76	32.258	0.79	(2850)		194
75	59/62/75	28.418	0.77	(213)		145
76	61/70/74/76	32.258	0.79	(2850)		194
77		37.288	0.79	103		48.5
78				ND		48.5
79				ND		48.5
80				ND		48.5
81				ND		48.5
82		36.852	1.57	327		48.5
83		34.924	1.54	142		48.5
84		32.459	1.57	767		48.5
85	85/116/117	36.366	1.56	396		145
86	86/87/97/108/119/125	35.695	1.57	1880		291
87	86/87/97/108/119/125	35.695	1.57	(1880)		291
88	88/91	32.224	1.56	361		96.9
89				ND		48.5
90	90/101/113	34.454	1.57	2500		145
91	88/91	32.224	1.56	(361)		96.9
92		33.834	1.55	468		48.5
93	93/98/100/102			ND		194
94				ND		48.5
95		31.285	1.55	2170		48.5
96				ND		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.695	1.57	(1880)		291
98	93/98/100/102			` NĎ		194
99		35.058	1.59	992		48.5
100	93/98/100/102			ND		194
101	90/101/113	34.454	1.57	(2500)		145
102	93/98/100/102			` NĎ		194
103				ND		48.5
104				ND		48.5
105		40.893	1.58	1030		48.5
106				ND		48.5
107	107/124	38.964	1.62	103		96.9
108	86/87/97/108/119/125	35.695	1.57	(1880)		291
109	30,01,01,100,110,120	39.216	1.55	165		48.5
110	110/115	36.533	1.57	2940		96.9
111	110/110			ND		48.5
112				ND		48.5
113	90/101/113	34.454	1.57	(2500)		145
114	33/131/113	40.205	1.58	66.1		48.5
115	110/115	36.533	1.57	(2940)		96.9
116	85/116/117	36.366	1.56	(396)		145
117	85/116/117	36.366	1.56	(396)		145
118	03/110/117	39.669	1.58	2440		48.5
119	86/87/97/108/119/125	35.695	1.57	(1880)		291
120	00/07/97/100/119/123		1.57	ND		48.5
121				ND		48.5
122				ND		48.5
123				ND		48.5
124	107/124	38.964	1.62	(103)		96.9
125	86/87/97/108/119/125	35.695	1.57	(1880)		291
126	80/87/97/100/119/123		1.57	(1880) ND		48.5
127				ND ND		48.5
127	128/166	44.129	1.23	441		96.9
120	129/138/163	42.838	1.25	2860		145
130	129/130/103	42.030 42.184	1.23	183		48.5
131		42.104	1.30	ND		48.5
132		39.736	1.24	877		48.5
		39.736	1.24	ND		48.5 48.5
133	404/440					
134	134/143	38.646	1.27	163		96.9
135	135/151	37.472	1.24	632		96.9
136		34.940	1.29	278		48.5
137	120/120/162	42.402	1.25	157		48.5
138	129/138/163	42.838	1.25	(2860)		145
139	139/140			ND ND		96.9
140	139/140		4.00	ND		96.9
141		41.748	1.22	493		48.5
142	40.4/4.40			ND (400)		48.5
143	134/143	38.646	1.27	(163)		96.9
144		38.076	1.20	112		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		
145		40.926	1.25	314		48.5 48.5
_	147/149	38.445	1.23	1670		96.9
147 148	147/149	30.443	1.24	ND		48.5
	147/149	38.445	1.24	(1670)		96.9
149	147/149	30.443	1.24	(1670) ND		
150	105/151	37.472	1.24			48.5
151 152	135/151	31.412	1.24	(632) ND		96.9 48.5
152	152/169	41.547	1.25	1860		
	153/168	41.547	1.25	ND		96.9 48.5
154				ND ND		48.5
155	450/457					48.5
156	156/157	47.080	1.27	387		96.9
157	156/157	47.080	1.27	(387)		96.9
158		43.240	1.26	290		48.5
159				ND		48.5
160				ND		48.5
161				ND		48.5
162	100/100/100	40.000	4.05	ND (2000)		48.5
163	129/138/163	42.838	1.25	(2860)		145
164		42.519	1.27	175		48.5
165	100/100			ND		48.5
166	128/166	44.129	1.23	(441)		96.9
167	450/400	45.923	1.28	123		48.5
168	153/168	41.547	1.25	(1860)		96.9
169				NĎ		48.5
170		49.762	1.03	487		48.5
171	171/173	46.141	1.09	149		96.9
172	474/470	47.801	1.03	81.7		48.5
173	171/173	46.141	1.09	(149)		96.9
174		45.051	1.05	403		48.5
175				ND		48.5
176		41.396	1.02	52.8		48.5
177		45.503	1.02	250		48.5
178		43.257	1.02	77.2		48.5
179		40.490	1.08	139		48.5
180	180/193	48.471	1.04	869		96.9
181				ND		48.5
182				ND		48.5
183	183/185	44.799	1.03	282		96.9
184				ND		48.5
185	183/185	44.799	1.03	(282)		96.9
186				ND		48.5
187		44.179	1.04	411		48.5
188				ND		48.5
189				ND		48.5
190		50.299	1.07	71.2		48.5
191				ND		48.5
192				ND		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.471	1.04	(869)		96.9
194		55.393	0.86	`14 5		72.7
195				ND		72.7
196		51.104	0.88	80.2		72.7
197	197/200			ND		145
198	198/199	50.450	0.90	155		145
199	198/199	50.450	0.90	(155)		145
200	197/200			` NĎ		145
201				ND		72.7
202				ND		72.7
203		51.322	0.92	88.3		72.7
204				ND		72.7
205				ND		72.7
206				ND		72.7
207				ND		72.7
208				ND		72.7
209				ND		72.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

Congener Group	Concentration ng/Kg	
Congener Group	lig/Kg	
Total Monochloro Biphenyls	68.4	
Total Dichloro Biphenyls	3000	
Total Trichloro Biphenyls	16000	
Total Tetrachloro Biphenyls	17000	
Total Pentachloro Biphenyls	16700	
Total Hexachloro Biphenyls	11000	
Total Heptachloro Biphenyls	3270	
Total Octachloro Biphenyls	468	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	67500	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26482
Filename P100930B_09

Injected By BAL Matrix Solid Total Amount Extracted 10.4 g Extracted 09/29

 Total Amount Extracted
 10.4 g
 Extracted
 09/29/2010 14:40

 ICAL ID
 P100930B02
 Analyzed
 09/30/2010 22:55

CCal Filename(s) P100930B_01 Dilution NA

CCal Filename(s)	P100930B	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes		0.004	0.40	0.0	4.00	05
13C-2-MoCB	1	9.061	3.18	2.0	1.30	65 74
13C-4-MoCB 13C-2,2'-DiCB	3 4	12.487 12.834	3.06 1.59	2.0 2.0	1.42 1.62	71 81
13C-4,4'-DiCB	15	21.006	1.54	2.0	1.43	71
13C-2,2',6-TrCB	19	17.279	1.08	2.0	1.67	83
13C-3,4,4'-TrCB	37	29.359	1.06	2.0	1.49	74
13C-2,2',6,6'-TeCB	54	21.310	0.79	2.0	1.54	 77
13C-3,4,4',5-TeCB	81	36.837	0.82	2.0	0.553	28
13C-3,3',4,4'-TeCB	77	37.441	0.80	2.0	0.540	27
13C-2,2',4,6,6'-PeCB	104	27.883	1.58	2.0	4.44	222 R
13C-2,3,3',4,4'-PeCB	105	41.046	1.60	2.0	1.43	71
13C-2,3,4,4',5-PeCB	114	40.375	1.56	2.0	1.37	68
13C-2,3',4,4',5-PeCB	118	39.839	1.66	2.0	1.26	63
13C-2,3',4,4',5'-PeCB	123	39.504	1.52	2.0	1.29	65
13C-3,3',4,4',5-PeCB	126	44.165	1.49	2.0	2.07	103
13C-2,2',4,4',6,6'-HxCB	155	34.255	1.23 1.26	2.0	1.58	79
13C-HxCB (156/157) 13C-2,3',4,4',5,5'-HxCB	156/157 167	47.116 45.959	1.26	4.0 2.0	5.41 2.45	135 122
13C-3,3',4,4',5,5'-HxCB	169	50.386	1.24	2.0 2.0	2.45 2.90	145
13C-2,2',3,4',5,6,6'-HpCB	188	40.275	1.09	2.0	0.770	38
13C-2,3,3',4,4',5,5'-HpCB	189	52.896	1.06	2.0	1.77	89
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.641	0.91	2.0	1.58	7 9
13C-2,3,3',4,4',5,5',6-OcCB	205	55.827	0.90	2.0	1.82	91
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.177	0.77	2.0	1.88	94
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.314	0.79	2.0	1.85	92
13CDeCB	209	60.634	0.69	2.0	1.77	88
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.714	1.05	2.0	1.65	83
13C-2,3,3',5,5'-PeCB	111	37.458	1.60	2.0	1.34	67
13C-2,2',3,3',5,5',6-HpCB	178	43.377	1.08	2.0	2.06	103
Recovery Standards						
13C-2,5-DiCB	9	15.734	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.844	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.523	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.941	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.224	0.91	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML
IUPAC	Co-elutions	K I	Ratio	ng/Kg	ng/Kg	ng/Kg
1				ND		24.1
2				ND		24.1
3				ND		24.1
4 5 6				ND		24.1
5				ND		24.1
6				ND		24.1
7				ND		24.1
8				ND		24.1
9				ND		24.1
10				ND		24.1
11	40/40			ND		144
12	12/13			ND		48.1
13	12/13			ND		48.1
14				ND ND		24.1
15						24.1
16				ND		24.1
17 18	18/30			ND ND		24.1 48.1
	18/30			ND ND		
19 20	20/28			ND ND		24.1 48.1
20 21	20/26 21/33			ND ND		48.1 48.1
22	21/33			ND ND		24.1
23				ND ND		24.1
23 24				ND ND		24.1
25				ND ND		24.1
26 26	26/29			ND ND		48.1
27	20/23			ND ND		24.1
28	20/28			ND		48.1
29	26/29			ND		48.1
30	18/30			ND		48.1
31	10/00			ND		24.1
32				ND		24.1
33	21/33			ND		48.1
34	,,			ND		24.1
35				ND		24.1
36				ND		24.1
37				ND		24.1
38				ND		24.1
39				ND		24.1
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.1
43	43/73			ND		96.2
44	44/47/65			ND		144
45	45/51			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.1
47	44/47/65			ND		144
48				ND		48.1
49	49/69			ND		96.2
50	50/53			ND		96.2
51	45/51			ND		96.2
52	16/61			ND		48.1
53	50/53			ND		96.2
54	00/00			ND		48.1
55				ND		48.1
56				ND		48.1
57				ND		48.1
58				ND		48.1
59	59/62/75			ND		144
60	00/02/10			ND		48.1
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	33/02/19			ND		48.1
64				ND ND		48.1
65	44/47/65			ND ND		144
66	44/47/03			ND ND		48.1
67				ND ND		48.1
68				ND ND		48.1
69	49/69			ND ND		96.2
70	49/09 61/70/74/76			ND ND		192
70 71	40/41/71			ND ND		144
71 72	40/41/71			ND ND		48.1
	40/70					
73	43/73			ND		96.2
74	61/70/74/76			ND		192
75 70	59/62/75			ND ND		144
76	61/70/74/76			ND		192
77				ND		48.1
78				ND		48.1
79				ND		48.1
80				ND		48.1
81				ND		48.1
82				ND		48.1
83				ND		48.1
84				ND		48.1
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		289
87	86/87/97/108/119/125			ND		289
88	88/91			ND		96.2
89				ND		48.1
90	90/101/113			ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.2
92				ND		48.1
93	93/98/100/102			ND		192
94				ND		48.1
95				ND		48.1
96				ND		48.1
97	86/87/97/108/119/125			ND		289
98	93/98/100/102			ND		192
99	00,00,100,100			ND		48.1
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	00/00/100/102			ND		48.1
103				ND		48.1
105				ND		48.1
106				ND ND		48.1
107	107/124			ND ND		96.2
107	86/87/97/108/119/125			ND ND		289
108	00/07/97/100/119/123			ND ND		48.1
1109	110/115			ND ND		96.2
110	110/115			ND ND		
						48.1
112	00/404/440			ND		48.1
113	90/101/113			ND		144
114	440/445			ND		48.1
115	110/115			ND		96.2
116	85/116/117			ND		144
117	85/116/117			ND		144
118	00/07/07/400/440/407			ND		48.1
119	86/87/97/108/119/125			ND		289
120				ND		48.1
121				ND		48.1
122				ND		48.1
123				ND		48.1
124	107/124			ND		96.2
125	86/87/97/108/119/125			ND		289
126				ND		48.1
127				ND		48.1
128	128/166			ND		96.2
129	129/138/163			ND		144
130				ND		48.1
131				ND		48.1
132				ND		48.1
133				ND		48.1
134	134/143			ND		96.2
135	135/151			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OC CIGHOTIS		ratio		119/119	
136				ND		48.1
137				ND		48.1
138	129/138/163			ND		144
139	139/140			ND		96.2
140	139/140			ND		96.2
141				ND		48.1
142				ND		48.1
143	134/143			ND		96.2
144				ND		48.1
145				ND		48.1
146				ND		48.1
147	147/149			ND		96.2
148				ND		48.1
149	147/149			ND		96.2
150				ND		48.1
151	135/151			ND		96.2
152	100/101			ND		48.1
153	153/168			ND		96.2
154	100/100			ND		48.1
155				ND		48.1
156	156/157			ND ND		96.2
157	156/157			ND ND		96.2
158	130/137			ND		48.1
159				ND ND		48.1
160				ND ND		48.1
161				ND ND		48.1
162				ND ND		48.1 48.1
162	129/138/163			ND ND		46.1 144
	129/138/163					
164				ND		48.1
165	400/400			ND		48.1
166	128/166			ND		96.2
167	450/400			ND		48.1
168	153/168			ND		96.2
169				ND		48.1
170				ND		48.1
171	171/173			ND		96.2
172				ND		48.1
173	171/173			ND		96.2
174				ND		48.1
175				ND		48.1
176				ND		48.1
177				ND		48.1
178				ND		48.1
179				ND		48.1
180	180/193			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		48.1
182				ND		48.1
183	183/185			ND		96.2
184				ND		48.1
185	183/185			ND		96.2
186				ND		48.1
187				ND		48.1
188				ND		48.1
189				ND		48.1
190				ND		48.1
191				ND		48.1
192				ND		48.1
193	180/193			ND		96.2
194				ND		72.2
195				ND		72.2
196				ND		72.2
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.2
202				ND		72.2
203				ND		72.2
204				ND		72.2
205				ND		72.2
206				ND		72.2
207				ND		72.2
208				ND		72.2
209				ND		72.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKNV BLANK-26482 P100930B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26574
Filename P101008A_04
Injected By BAL

Injected By BAL Matrix Solid

 Total Amount Extracted
 10.4 g
 Extracted
 10/06/2010 16:40

 ICAL ID
 P101008A02
 Analyzed
 10/08/2010 16:25

CCal Filename(s) P101008A_01 Dilution NA

CCai Fileriairie(5)	F IU IUUOA	_01		Dilution	INA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.390	3.12	2.0	1.32	66
13C-4-MoCB	3	11.733	3.11	2.0	1.46	73
13C-2,2'-DiCB	4	12.057	1.58	2.0	1.45	73
13C-4,4'-DiCB	15	20.109	1.54	2.0	1.32	66
13C-2,2',6-TrCB	19	16.442	1.04	2.0	1.49	75
13C-3,4,4'-TrCB	37	28.412	1.11	2.0	1.40	70
13C-2,2',6,6'-TeCB	54	20.413	0.79	2.0	1.56	78
13C-3,4,4',5-TeCB	81	35.823	0.83	2.0	0.787	39
13C-3,3',4,4'-TeCB	77	36.410	0.79	2.0	0.808	40
13C-2,2',4,6,6'-PeCB	104	26.953	1.59	2.0	2.87	144
13C-2,3,3',4,4'-PeCB	105	39.999	1.61	2.0	1.42	71
13C-2,3,4,4',5-PeCB	114	39.345	1.57	2.0	1.43	72
13C-2,3',4,4',5-PeCB	118	38.792	1.62	2.0	1.36	68
13C-2,3',4,4',5'-PeCB	123	38.473	1.61	2.0	1.40	70
13C-3,3',4,4',5-PeCB	126	43.118	1.54	2.0	1.79	90
13C-2,2',4,4',6,6'-HxCB	155	33.274	1.22	2.0	1.55	77
13C-HxCB (156/157)	156/157	46.086	1.27	4.0	4.10	103
13C-2,3',4,4`,5,5'-HxĆB	167	44.929	1.24	2.0	1.94	97
13C-3,3',4,4',5,5'-HxCB	169	49.339	1.26	2.0	2.36	118
13C-2,2',3,4',5,6,6'-HpCB	188	39.261	1.07	2.0	0.960	48
13C-2,3,3',4,4',5,5'-HpCB	189	51.835	1.06	2.0	1.64	82
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.627	0.92	2.0	1.37	68
13C-2,3,3',4,4',5,5',6-OcCB	205	54.594	0.87	2.0	1.73	87
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.749	0.80	2.0	1.59	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.275	0.80	2.0	1.63	82
13CDeCB	209	59.013	0.70	2.0	1.44	72
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.784	1.03	2.0	1.61	80
13C-2,3,3',5,5'-PeCB	111	36.461	1.57	2.0	1.39	69
13C-2,2',3,3',5,5',6-HpCB	178	42.363	1.02	2.0	1.80	90
Recovery Standards						
13C-2,5-DiCB	9	14.968	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.913	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.543	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.927	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.034	0.88	2.0	NA	NA
, , , , , , ,			-			

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.0
2				ND		24.0
2 3				ND		24.0
4				ND		24.0
5				ND		24.0
5 6				ND		24.0
7				ND		24.0
8				ND		24.0
9				ND		24.0
10				ND		24.0
11				ND		144
12	12/13			ND		48.0
13	12/13			ND		48.0
14	.20			ND		24.0
15				ND		24.0
16				ND		24.0
17				ND		24.0
18	18/30			ND		48.0
19				ND		24.0
20	20/28			ND		48.0
21	21/33			ND		48.0
22	,,			ND		24.0
23				ND		24.0
24				ND		24.0
25				ND		24.0
26	26/29			ND		48.0
27				ND		24.0
28	20/28			ND		48.0
29	26/29			ND		48.0
30	18/30			ND		48.0
31				ND		24.0
32				ND		24.0
33	21/33			ND		48.0
34				ND		24.0
35				ND		24.0
36				ND		24.0
37				ND		24.0
38				ND		24.0
39				ND		24.0
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.0
43	43/73			ND		96.1
44	44/47/65			ND		144
45	45/51			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.0
47	44/47/65			ND		144
48	, .,,,,,			ND		48.0
49	49/69			ND		96.1
50	50/53			ND		96.1
51	45/51			ND		96.1
52	16/61			ND		48.0
53	50/53			ND		96.1
54	33,33			ND		48.0
55				ND		48.0
56				ND		48.0
57				ND		48.0
58				ND		48.0
59	59/62/75			ND		144
60	33/32/13			ND		48.0
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	00,00,00			ND		48.0
64				ND		48.0
65	44/47/65			ND		144
66				ND		48.0
67				ND		48.0
68				ND		48.0
69	49/69			ND		96.1
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72				ND		48.0
73	43/73			ND		96.1
74	61/70/74/76			ND		192
75	59/62/75			ND		144
76	61/70/74/76			ND		192
77				ND		48.0
78				ND		48.0
79				ND		48.0
80				ND		48.0
81				ND		48.0
82				ND		48.0
83				ND		48.0
84				ND		48.0
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		288
87	86/87/97/108/119/125			ND		288
88	88/91			ND		96.1
89				ND		48.0
90	90/101/113			ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.1
92				ND		48.0
93	93/98/100/102			ND		192
94	00,00,100,102			ND		48.0
95				ND		48.0
96				ND		48.0
97	86/87/97/108/119/125			ND		288
98	93/98/100/102			ND		192
99	00,00,100,102			ND		48.0
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	30/30/100/102			ND		48.0
104				ND		48.0
105				ND		48.0
106				ND		48.0
107	107/124			ND		96.1
108	86/87/97/108/119/125			ND		288
109	00/01/01/100/110/120			ND		48.0
110	110/115			ND		96.1
111	110/119			ND		48.0
112				ND		48.0
113	90/101/113			ND		144
114	00/101/110			ND		48.0
115	110/115			ND		96.1
116	85/116/117			ND		144
117	85/116/117			ND		144
118	33, 113, 111			ND		48.0
119	86/87/97/108/119/125			ND		288
120	00,01,01,100,110,120			ND		48.0
121				ND		48.0
122				ND		48.0
123				ND		48.0
124	107/124			ND		96.1
125	86/87/97/108/119/125			ND		288
126				ND		48.0
127				ND		48.0
128	128/166			ND		96.1
129	129/138/163			ND		144
130				ND		48.0
131				ND		48.0
132				ND		48.0
133				ND		48.0
134	134/143			ND		96.1
135	135/151			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.0
137				ND		48.0
138	129/138/163			ND		144
139	139/140			ND		96.1
140	139/140			ND		96.1
141	100/110			ND		48.0
142				ND		48.0
143	134/143			ND		96.1
144				ND		48.0
145				ND		48.0
146				ND		48.0
147	147/149			ND		96.1
148	,			ND		48.0
149	147/149			ND		96.1
150				ND		48.0
151	135/151			ND		96.1
152				ND		48.0
153	153/168			ND		96.1
154				ND		48.0
155				ND		48.0
156	156/157			ND		96.1
157	156/157			ND		96.1
158				ND		48.0
159				ND		48.0
160				ND		48.0
161				ND		48.0
162				ND		48.0
163	129/138/163			ND		144
164				ND		48.0
165				ND		48.0
166	128/166			ND		96.1
167				ND		48.0
168	153/168			ND		96.1
169				ND		48.0
170				ND		48.0
171	171/173			ND		96.1
172				ND		48.0
173	171/173			ND		96.1
174				ND		48.0
175				ND		48.0
176				ND		48.0
177				ND		48.0
178				ND		48.0
179				ND		48.0
180	180/193			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
IUFAC	CO- c iulions	N i	Natio	lig/Ng	iig/Kg	ng/rtg
181				ND		48.0
182				ND		48.0
183	183/185			ND		96.1
184				ND		48.0
185	183/185			ND		96.1
186				ND		48.0
187				ND		48.0
188				ND		48.0
189				ND		48.0
190				ND		48.0
191				ND		48.0
192				ND		48.0
193	180/193			ND		96.1
194				ND		72.0
195				ND		72.0
196				ND		72.0
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.0
202				ND		72.0
203				ND		72.0
204				ND		72.0
205				ND		72.0
206				ND		72.0
207				ND		72.0
208				ND		72.0
209				ND		72.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKOO BLANK-26574 P101008A_04

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26483 P100930B_10

10.2 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 00:01

Injected By BAL

	r	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	0.990	99	2.0	1.47	73	
3	1.0	1.06	106	2.0	1.54	77	
4	1.0	0.979	98	2.0	1.72	86	
15	1.0	1.14	114	2.0	1.41	70	
19	1.0	0.876	88	2.0	1.66	83	
37	1.0	0.992	99	2.0	1.52	76	
54	1.0	0.962	96	2.0	1.59	79	
81	1.0	1.06	106	2.0	0.680	34	
77	1.0	0.953	95	2.0	0.663	33	
104	1.0	0.955	96	2.0	3.37	169 F	R
105	1.0	1.02	102	2.0	1.39	69	
114	1.0	1.09	109	2.0	1.31	66	
118	1.0	1.14	114	2.0	1.24	62	
123	1.0	1.06	106	2.0	1.22	61	
126	1.0	1.01	101	2.0	1.95	97	
155	1.0	0.955	96	2.0	1.66	83	
156/157	2.0	2.11	105	4.0	4.28	107	
167	1.0	1.06	106	2.0	2.11	106	
169	1.0	1.05	105	2.0	2.24	112	
188	1.0	1.02	102	2.0	0.939	47	
189	1.0	1.06	106	2.0	1.66	83	
202	1.0	0.970	97	2.0	1.79	90	
205	1.0	1.01	101	2.0	1.75	88	
206	1.0	0.978	98	2.0	1.80	90	
208	1.0	1.03	103	2.0	1.73	86	
209	1.0	1.32	132	2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26575 P101009A_04

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 04:14

Injected By BAL

	ı	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.11	111	2.0	1.34	67
3	1.0	1.13	113	2.0	1.52	76
4	1.0	0.992	99	2.0	1.45	72
15	1.0	1.13	113	2.0	1.71	85
19	1.0	1.01	101	2.0	1.36	68
37	1.0	1.07	107	2.0	1.71	85
54	1.0	0.983	98	2.0	1.67	83
81	1.0	1.04	104	2.0	1.01	51
77	1.0	1.01	101	2.0	1.05	53
104	1.0	1.02	102	2.0	2.13	107
105	1.0	1.10	110	2.0	1.42	71
114	1.0	1.03	103	2.0	1.39	69
118	1.0	1.24	124	2.0	1.32	66
123	1.0	1.10	110	2.0	1.36	68
126	1.0	1.04	104	2.0	1.72	86
155	1.0	1.00	100	2.0	1.62	81
156/157	2.0	2.17	109	4.0	3.40	85
167	1.0	1.10	110	2.0	1.70	85
169	1.0	1.03	103	2.0	1.70	85
188	1.0	1.00	100	2.0	1.45	73
189	1.0	1.08	108	2.0	1.70	85
202	1.0	0.979	98	2.0	1.92	96
205	1.0	1.05	105	2.0	1.66	83
206	1.0	1.02	102	2.0	1.77	89
208	1.0	0.983	98	2.0	1.65	82
209	1.0	1.21	121	2.0	1.63	81

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCSD-26484 P100930B_11 10.4 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 01:06

Injected By BAL

	ı	Native Analy	tes	Labeled Analytes				
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery		
1	1.0	1.04	104	2.0	1.42	71		
3	1.0	1.05	105	2.0	1.53	76		
4	1.0	1.06	106	2.0	1.71	85		
15	1.0	1.11	111	2.0	1.44	72		
19	1.0	0.977	98	2.0	1.58	79		
37	1.0	1.02	102	2.0	1.60	80		
54	1.0	0.984	98	2.0	1.62	81		
81	1.0	1.07	107	2.0	0.736	37		
77	1.0	0.989	99	2.0	0.698	35		
104	1.0	0.943	94	2.0	3.48	174	R	
105	1.0	1.09	109	2.0	1.46	73		
114	1.0	1.07	107	2.0	1.37	68		
118	1.0	1.14	114	2.0	1.29	64		
123	1.0	1.09	109	2.0	1.30	65		
126	1.0	1.01	101	2.0	2.02	101		
155	1.0	1.01	101	2.0	1.64	82		
156/157	2.0	2.18	109	4.0	4.30	108		
167	1.0	1.10	110	2.0	2.13	107		
169	1.0	1.06	106	2.0	2.31	115		
188	1.0	1.05	105	2.0	0.981	49		
189	1.0	1.07	107	2.0	1.81	90		
202	1.0	0.960	96	2.0	1.96	98		
205	1.0	1.01	101	2.0	1.86	93		
206	1.0	0.990	99	2.0	1.95	97		
208	1.0	0.976	98	2.0	1.88	94		
209	1.0	1.36	136	2.0	1.78	89		

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCSD-26576 P101009A_05

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 05:19

Injected By BAL

	N	Native Analy	tes	Lal	peled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.14	114	2.0	1.45	73
3	1.0	1.19	119	2.0	1.59	79
4	1.0	1.02	102	2.0	1.53	77
15	1.0	0.991	99	2.0	1.48	74
19	1.0	1.01	101	2.0	1.43	72
37	1.0	1.09	109	2.0	1.62	81
54	1.0	1.01	101	2.0	1.26	63
81	1.0	1.05	105	2.0	0.925	46
77	1.0	1.02	102	2.0	0.957	48
104	1.0	1.01	101	2.0	2.54	127
105	1.0	1.11	111	2.0	1.24	62
114	1.0	1.08	108	2.0	1.34	67
118	1.0	1.19	119	2.0	1.34	67
123	1.0	1.15	115	2.0	1.33	66
126	1.0	1.07	107	2.0	1.26	63
155	1.0	1.01	101	2.0	2.04	102
156/157	2.0	2.21	111	4.0	3.64	91
167	1.0	1.11	111	2.0	1.76	88
169	1.0	1.09	109	2.0	2.14	107
188	1.0	0.994	99	2.0	1.36	68
189	1.0	1.07	107	2.0	1.68	84
202	1.0	1.03	103	2.0	1.23	61
205	1.0	0.997	100	2.0	1.71	85
206	1.0	0.979	98	2.0	1.71	85
208	1.0	1.04	104	2.0	1.56	78
209	1.0	1.28	128	2.0	1.84	92

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26483
 Spike 2 ID
 LCSD-26484

 Spike 1 Filename
 P100930B_10
 Spike 2 Filename
 P100930B_11

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	99	104	4.9	
4-MoCB	3	106	105	0.9	
2,2'-DiCB	4	98	106	7.8	
4,4'-DiCB	15	114	111	2.7	
2,2',6-TrCB	19	88	98	10.8	
3,4,4'-TrCB	37	99	102	3.0	
2,2',6,6'-TeCB	54	96	98	2.1	
3,3',4,4'-TeCB	77	95	99	4.1	
3,4,4',5-TeCB	81	106	107	0.9	
2,2',4,6,6'-PeCB	104	96	94	2.1	
2,3,3',4,4'-PeCB	105	102	109	6.6	
2,3,4,4',5-PeCB	114	109	107	1.9	
2,3',4,4',5-PeCB	118	114	114	0.0	
2,3',4,4',5'-PeCB	123	106	109	2.8	
3,3',4,4',5-PeCB	126	101	101	0.0	
2,2',4,4',6,6'-HxCB	155	96	101	5.1	
(156/157)	156/157	105	109	3.7	
2,3',4,4',5,5'-HxCB	167	106	110	3.7	
3,3',4,4',5,5'-HxCB	169	105	106	0.9	
2,2',3,4',5,6,6'-HpCB	188	102	105	2.9	
2,3,3',4,4',5,5'-HpCB	189	106	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	97	96	1.0	
2,3,3',4,4',5,5',6-OcCB	205	101	101	0.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	99	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	103	98	5.0	
Decachlorobiphenyl	209	132	136	3.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26575
 Spike 2 ID
 LCSD-26576

 Spike 1 Filename
 P101009A_04
 Spike 2 Filename
 P101009A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	111	114	2.7	
4-MoCB	3	113	119	5.2	
2,2'-DiCB	4	99	102	3.0	
4,4'-DiCB	15	113	99	13.2	
2,2',6-TrCB	19	101	101	0.0	
3,4,4'-TrCB	37	107	109	1.9	
2,2',6,6'-TeCB	54	98	101	3.0	
3,3',4,4'-TeCB	77	101	102	1.0	
3,4,4',5-TeCB	81	104	105	1.0	
2,2',4,6,6'-PeCB	104	102	101	1.0	
2,3,3',4,4'-PeCB	105	110	111	0.9	
2,3,4,4',5-PeCB	114	103	108	4.7	
2,3',4,4',5-PeCB	118	124	119	4.1	
2,3',4,4',5'-PeCB	123	110	115	4.4	
3,3',4,4',5-PeCB	126	104	107	2.8	
2,2',4,4',6,6'-HxCB	155	100	101	1.0	
(156/157)	156/157	109	111	1.8	
2,3',4,4',5,5'-HxCB	167	110	111	0.9	
3,3',4,4',5,5'-HxCB	169	103	109	5.7	
2,2',3,4',5,6,6'-HpCB	188	100	99	1.0	
2,3,3',4,4',5,5'-HpCB	189	108	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	98	103	5.0	
2,3,3',4,4',5,5',6-OcCB	205	105	100	4.9	
2,2',3,3',4,4',5,5',6-NoCB	206	102	98	4.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	98	104	5.9	
Decachlorobiphenyl	209	121	128	5.6	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

December 08, 2011

Linda Scheffler Director's Office

 Work Order
 Project
 Received

 W11K141
 Portland Harbor
 09/08/10 16:33

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

Renee Chauvin

Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: Portland Harbor
Work Order: W11K141
Received: 9/8/10 16:33

Submitted By: Field Operations

Client: Director's Office
Project Mgr: Linda Scheffler
WQDB #: Janus329

			Sample Collection Date				
<u>Sample</u>	<u>Laboratory ID</u>	<u>Matrix</u>	<u>Type</u>	<u>Start</u>	<u>End</u>	<u>Qualifier</u>	
52_13	W11K141-01	Sediment	Composite	09/07/10 11:45	09/07/10 11:45		
52_8	W11K141-02	Sediment	Composite	09/07/10 12:14	09/07/10 12:14		
52_14	W11K141-03	Sediment	Composite	09/08/10 10:01	09/08/10 10:01		

Case Narrative

These samples were originally analyzed for PCB Aroclors, PCB Congeners, TOC, and Total Solids in September 2010.

Request for Metals analysis was received on 11/16/11. To ensure accurate dry-weight correction for Metals analysis, each sample was re-analyzed for Total Solids using sample from the same container used for the Metals analysis.

Analyte	Result	Units	MRL	Dilution B	atch	Prepared	Analyzed	Method	Qualifier
General Chemistry									
Total Solids									
52_13 : W11K141-01 Total solids	83.2	% W/W	0.01	B1 ⁻	1K285	11/17/11	11/18/11	SM 2540G	H5
52_8 : W11K141-02 Total solids	81.6	% W/W	0.01	B1 ⁻	1K285	11/17/11	11/18/11	SM 2540G	H5
52_14: W11K141-03 Total solids	77.9	% W/W	0.01	B11	1K285	11/17/11	11/18/11	SM 2540G	H5

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

Page 2 of 6

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W1K141 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

							· · ·		
Total Metals Total Metals by ICPMS									
•									
52_13 : W11K141-01			0.500		D4414447	4.4/00/4.4	10/00/44	FDA 0000	
Arsenic	2.18	mg/kg dry	0.500	20	B11K417		12/03/11	EPA 6020	H5
Cadmium	0.351	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	89.8	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	44.8	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	40.3	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0168	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	27.1	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	ND	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	332	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
52_8 : W11K141-02									
Arsenic	4.61	mg/kg dry	0.500	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Cadmium	0.464	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	659	mg/kg dry	0.500	400	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	873	mg/kg dry	0.200	400	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	105	mg/kg dry	0.100	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0173	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	431	mg/kg dry	0.200	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	0.235	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	316	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
52_14 : W11K141-03									
Arsenic	4.03	mg/kg dry	0.500	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Cadmium	1.02	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	159	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	188	mg/kg dry	0.200	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	151	mg/kg dry	0.100	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0466	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	41.8	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	0.202	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	632	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11K141 Project Mgr: Linda Scheffler

Quality Control Report

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier		
Total Solids - Batch B11K285											
Duplicate (B11K285-DUP1)			Source: W11K124-02								
Total solids	97.4	% W/W	0.01		97.4		0.03 (5)	11/17/11 :11/18/11			
Duplicate (B11K285-DUP2) Source: W11K141-03											
Total solids	77.0	% W/W	0.01		77.9		1 (5)	11/17/11 :11/18/11			

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Total Metals by ICPMS - Ba	tch B11K417								
Blank (B11K417-BLK1)									
Arsenic	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Cadmium	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Chromium	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Copper	ND	mg/kg wet	0.200					11/26/11 :12/03/11	
Lead	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Mercury	ND	mg/kg wet	0.0100					11/26/11 :12/03/11	
Nickel	ND	mg/kg wet	0.200					11/26/11 :12/03/11	
Silver	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Zinc	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Standard Reference Material	(B11K417-SRM1))							
Arsenic	236	mg/kg wet	0.500	225		105 (75-125)		11/26/11 :12/03/11	
Cadmium	76.1	mg/kg wet	0.100	69.1		110 (75-125)		11/26/11 :12/03/11	
Chromium	142	mg/kg wet	0.500	124		115 (75-125)		11/26/11 :12/03/11	
Copper	72.5	mg/kg wet	0.200	78.8		92 (75-125)		11/26/11 :12/03/11	
Lead	238	mg/kg wet	0.100	223		107 (75-125)		11/26/11 :12/03/11	
Mercury	5.303	mg/kg wet	0.0100	5.15		103 (75-125)		11/26/11 :12/03/11	
Nickel	196	mg/kg wet	0.200	172		114 (75-125)		11/26/11 :12/03/11	
Silver	36.2	mg/kg wet	0.100	35.2		103 (75-125)		11/26/11 :12/03/11	
Zinc	394	mg/kg wet	0.500	349		113 (75-125)		11/26/11 :12/03/11	
Duplicate (B11K417-DUP1)			Source: W11K141-01						
Arsenic	2.27	mg/kg dry	0.500		2.18		4 (20)	11/26/11 :12/03/11	
Cadmium	0.338	mg/kg dry	0.100		0.351		4 (20)	11/26/11 :12/03/11	
Chromium	90.0	mg/kg dry	0.500		89.8		0.3 (20)	11/26/11 :12/03/11	
Copper	44.5	mg/kg dry	0.200		44.8		0.6 (20)	11/26/11 :12/03/11	
Lead	42.2	mg/kg dry	0.100		40.3		5 (20)	11/26/11 :12/03/11	
Mercury	0.01585	mg/kg dry	0.0100		0.01677		6 (20)	11/26/11 :12/03/11	
Nickel	28.0	mg/kg dry	0.200		27.1		3 (20)	11/26/11 :12/03/11	

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11K141 Project Mgr: Linda Scheffler

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch	B11K417								
Duplicate (B11K417-DUP1)			Source: W11K141-01						
Silver	ND	mg/kg dry	0.100		ND		(20)	11/26/11 :12/03/11	
Zinc	321	mg/kg dry	0.500		332		4 (20)	11/26/11 :12/03/11	
Matrix Spike (B11K417-MS1)			Source: W11K141-01						
Arsenic	15.1	mg/kg dry	0.500	12.3	2.18	105 (75-125)		11/26/11 :12/03/11	
Cadmium	13.0	mg/kg dry	0.100	12.9	0.351	98 (75-125)		11/26/11 :12/03/11	
Chromium	134	mg/kg dry	0.500	38.8	89.8	113 (75-125)		11/26/11 :12/03/11	
Copper	112	mg/kg dry	0.200	64.6	44.8	104 (75-125)		11/26/11 :12/03/11	
Lead	107	mg/kg dry	0.100	64.6	40.3	103 (75-125)		11/26/11 :12/03/11	
Mercury	0.6771	mg/kg dry	0.0100	0.646	0.01677	102 (75-125)		11/26/11 :12/03/11	
Nickel	93.9	mg/kg dry	0.200	64.6	27.1	103 (75-125)		11/26/11 :12/03/11	
Silver	10.4	mg/kg dry	0.100	11.6	ND	89 (75-125)		11/26/11 :12/03/11	
Zinc	410	mg/kg dry	0.500	64.6	332	119 (75-125)		11/26/11 :12/03/11	

Qualifiers

H5 Holding time was exceeded due to delayed request for analysis.

Definitions

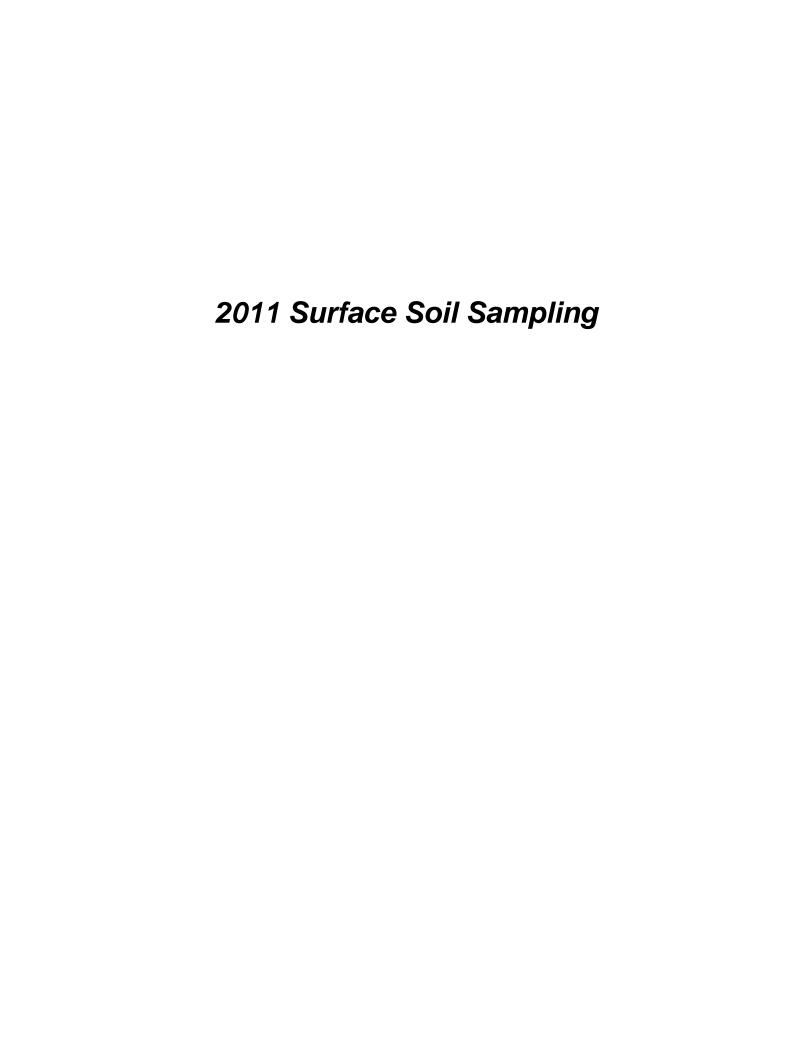
DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Project Name: PORTLAND HARBOR INLINE SAMP



0/10 . 으

Bureau of Environmental Services Declineted Analyses Work Order: WILLIA! Collected By: ASA, PB Page 6 of 6

Portland Harbor Inline Samp COC - OF 52 (9-7&8-10).xls

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review 2011 Surface Soil Sampling City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: June 24, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in January 2011. Nine composited, surface soil samples (W11A060-01 – W11A060-08, W11A060-10) and one duplicate sample (W11A060-09) were collected in portions of City right-of-way (ROW) in Outfall Basin 52.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and a subcontracted laboratory. The following laboratories conducted the analyses listed:

- BES WPCL
 - o Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - Total Solids SM 2540G
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060

The WPCL summary report and the subcontracted laboratory report for all analyses associated with this sampling event are attached.

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratory. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times

- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times with two exceptions. WPCL reports that because of a delayed request for analysis of archived sample, W11A060-10, TOC and Total Solids were analyzed after the recommended method holding times had expired. However, because the sample analysis date (1/27/11) was less than one month after the collection date (1/6/11), the results are not expected to be significantly impacted, and the data is not further qualified.

Method Blanks

Method blanks were processed during the analyses of metals, PCB Aroclors, and TOC for the initial batch of samples (W11A060-01 – W11A060-09). No analytes were detected in any of the method blanks for the initial batch of samples.

A second set of method blanks was processed during the analyses of metals, PCB Aroclors, and TOC for archived sample, W11A060-10. No analytes were detected in the second set of method blanks except for copper, which was detected in the method blank processed during the metals analysis. However, because the concentration of copper in sample W11A060-10 was greater than ten times the concentration detected in the associated method blank, the data are not further qualified.

Surrogate Recoveries

Surrogate recoveries were completed during the analysis of PCB Aroclors. All surrogate recoveries were within laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For the initial batch of samples (W11A060-01 – W11A060-09), MS samples were processed during the analyses of metals, PCB Aroclors, and TOC, and MSD samples were processed during the analyses of PCB Aroclors and TOC. During the metals analysis, MS recoveries for chromium and copper were outside laboratory control limits. WPCL also reports that MS recovery results for zinc are not applicable because the sample concentration is greater than four times the spike amount. Aroclor 1016/1242 and Aroclor 1260 were spiked in MS/MSD samples processed during the PCB Aroclor analysis. MS/MSD recoveries and RPDs for Aroclor 1016/1242 were within laboratory control limits. WPCL reports that calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample. MS/MSD recoveries and relative percent differences (RPDs) were within laboratory control limits for the TOC analysis.

For archived sample, W11A060-10, MS samples were processed during the analyses of metals, PCB Aroclors, and TOC, and MSD samples were processed during the analysis of PCB Aroclors. During the metals analysis, the MS recovery for zinc was slightly above laboratory control limits. However, because all other metals QC data were within laboratory control limits, the associated sample result for zinc is not further qualified. Aroclor 1016/1242 and Aroclor 1260 were spiked in MS/MSD samples processed during the PCB Aroclor analysis. MS/MSD recoveries and RPDs for Aroclor 1016/1242 were within laboratory control limits. WPCL reports that calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample. The MS recovery of TOC was within laboratory control limits.

Laboratory Control Samples

LC samples were processed during the analyses of PCB Aroclors and TOC for the initial batch of samples (W11A060-01 – W11A060-09) and the archived sample, W11A060-10. All LC sample recoveries were within laboratory control limits.

Laboratory Duplicate Samples

For the initial batch of samples (W11A060-01 – W11A060-09), laboratory duplicate samples were processed during the analyses of total solids, metals, and TOC. RPDs for laboratory duplicate samples processed during the total solids and TOC analyses were within laboratory control limits. For the laboratory duplicate sample processed during the metals analysis (duplicate of W11A060-01), RPDs for chromium and nickel were above laboratory control limits. Accordingly, WPCL reports that results for chromium and nickel in sample W11A060-01 should be considered estimates due to non-homogenous sample matrix. These results are flagged as estimates ("J") in the accompanying data table.

Laboratory duplicate samples were processed during the total solids, metals, and TOC analyses of archived sample, W11A060-10. RPDs for all analyses were within laboratory control limits.

Other

WPCL reports that MS/MSD and duplicate sample results for sample W11A060-01 indicate non-homogenous sample matrix. Additionally, WPCL reports that a high matrix spike recovery for zinc in sample W11A060-10 indicates a non-homogenous sample matrix.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Work Order #: ₩ 060

Date: 16 [[[

Collected By:

Soil

Matrix:

Portland Harbor

Project Name:

Client Name: Director's Office

Containers HOLD HOLD	TO BE ARCHIVED Date: Time:
	Received By: Signature: Printed Name:
	Date: Time:
Requested Analyses	Date:)
Red	اد کاملا
Totals Metals (Cr, Cu, Pb, Ni, Zn) PCB Aroclors	Signature: Printed Name: Nac(LEM7)
Φ	Signature 1500 C Signature Bu:
oils Sample Date Date (1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011	1/6/2011 14 Show Sarin 52 Surface
Special Instructions: Basin 52 Surface Soils 52_15	bage 14 of 29 Portland Harbo

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Bureau of Environmental Services

Work Order #: WIN A DLO

Date: 1 6 [[

Collected By: FO PTB

Soii

Matrix:

Portland Harbor Director's Office

Project Name: Client Name:

TO BE ARCHIVED Remarks Area 2 Area 3 Area 5 Area 6 Area 1 Area 4 Area 7 Area 9 Area 8 Date: Time: Containers eg() Received By: Printed Name: Signature: атон Date: Time: Requested Analyses Printed Name: Time:1600 **Jackson** PCB Aroclors X X X (Ct, Cu, Pb, Ni, Zn) Received By: rinted Name: Totals Metals 100 Sample Type \circ O Date: 1 [b |]1 Expant Time 1606 \circ \circ O O O \circ \circ Sample Time 1400 1435 1330 1200 1230 1258 1518 1500 1535 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 1/6/2011 Sample Date 1/6/2011 Basin 52 Surface Soils Special Instructions: Location ID 52_15 52 16 52_17 52_18 52_19 52_20 52 21 52_22 52 23 DUP Page 15 of 29 гар үлшрөц 2 02 03 8 8 90 07] 8 60

Page

Portland Harbor - Basin 52 Surface Soil COC (12-22-10).xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

February 14, 2011

Linda Scheffler Director's Office

 Work Order
 Project
 Received

 W11A060
 Portland Harbor
 01/06/11 16:06

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

Renee Chauvin

Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler
Received: 1/6/11 16:06 WQDB #: Janus329

Submitted By: Field Operations

				Sample Col	lection Date	
<u>Sample</u>	Laboratory ID	<u>Matrix</u>	Type	<u>Start</u>	<u>End</u>	Qualifier
52_15	W11A060-01	Soil	Composite	01/06/11 14:00	01/06/11 14:00	
52_16	W11A060-02	Soil	Composite	01/06/11 14:35	01/06/11 14:35	
52_17	W11A060-03	Soil	Composite	01/06/11 13:30	01/06/11 13:30	
52_18	W11A060-04	Soil	Composite	01/06/11 12:00	01/06/11 12:00	
52_19	W11A060-05	Soil	Composite	01/06/11 12:30	01/06/11 12:30	
52_20	W11A060-06	Soil	Composite	01/06/11 12:58	01/06/11 12:58	
52_21	W11A060-07	Soil	Composite	01/06/11 15:18	01/06/11 15:18	
52_22	W11A060-08	Soil	Composite	01/06/11 15:35	01/06/11 15:35	
DUP	W11A060-09	Soil	Composite	01/06/11 00:00	01/06/11 00:00	
52_23	W11A060-10	Soil	Composite	01/06/11 15:00	01/06/11 15:00	

Case Narrative

Sample 52 23 (W11A060-10):

Request for analysis was made on 1/26/11 for this sample, originally labelled as an archive sample. Because of the delayed request for analysis, TOC and Total Solids were analyzed after the method holding times had expired.

Metals

Matrix duplicate and spike results for sample 52_15 (W11A060-01) indicate non-homogenous sample matrix. A second duplicate also produced high RPDs for several elements. For sample 52_23 (W11A060-10), high matrix spike recovery for Zinc indicates non-homogeneous sample matrix. Analytical system QC results show that the analysis was in control for both batches, and the RPDs and recoveries outside of acceptance limits were due to the matrix.

PCB Aroclor matrix QC:

The matrix spike and matrix spike duplicate samples were fortified with Aroclors 1016/1242 and 1260. Calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample.

Analyte	Result	Units	MRL Dilution	Batch	Prepared	Analyzed	Method	Qualifier
On and Observators								

General Chemistry

Total Solids

52 15: W11A060-01

Total solids **80.1** % W/W 0.01 B11A115 01/08/11 01/09/11 SM 2540G

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

85.3

% W/W

Units Analyte Result MRL Dilution Batch Prepared Analyzed Method Qualifier **General Chemistry Total Solids** 52_16: W11A060-02 Total solids 0.01 01/09/11 SM 2540G 91.9 B11A115 01/08/11 % W/W 52_17: W11A060-03 Total solids SM 2540G 89.7 0.01 B11A115 01/08/11 01/09/11 % W/W 52_18: W11A060-04 Total solids 88.3 0.01 B11A115 01/08/11 01/09/11 SM 2540G % W/W 52_19: W11A060-05 Total solids 0.01 01/08/11 01/09/11 SM 2540G 69.6 % W/W B11A115 52 20: W11A060-06 Total solids 0.01 B11A115 01/08/11 01/09/11 SM 2540G 73.9 % W/W 52 21: W11A060-07 Total solids 0.01 B11A115 01/08/11 01/09/11 SM 2540G 76.7 % W/W 52_22 : W11A060-08 Total solids 89.6 % W/W 0.01 B11A115 01/08/11 01/09/11 SM 2540G DUP: W11A060-09 Total solids SM 2540G 92.1 % W/W 0.01 B11A115 01/08/11 01/09/11 52_23: W11A060-10

0.01

B11A368

01/26/11

01/27/11

Reported: 02/14/11 14:52

Total solids

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

SM 2540G

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Total Metals by ICPMS									
52_15 : W11A060-01									
Chromium	131	mg/kg dry	0.500	200	B11A113	01/08/11	01/12/11	EPA 6020	M1
Copper	169	mg/kg dry	0.200	200	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	181	mg/kg dry	0.100	200	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	49.3	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	M1
Zinc	358	mg/kg dry	0.500	200	B11A113	01/08/11	01/12/11	EPA 6020	
52_16 : W11A060-02									
Chromium	296	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	415	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	84.2	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	113	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	142	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_17 : W11A060-03									
Chromium	549	mg/kg dry	0.500	300	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	444	mg/kg dry	0.200	300	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	56.3	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	302	mg/kg dry	0.200	300	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	198	mg/kg dry	0.500	300	B11A113	01/08/11	01/13/11	EPA 6020	
52_18 : W11A060-04									
Chromium	31.1	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
Copper	57.0	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	172	mg/kg dry	0.100	40	B11A113	01/08/11	01/13/11	EPA 6020	
Nickel	32.7	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Zinc	211	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_19 : W11A060-05									
Chromium	57.1	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
Copper	161	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	149	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	57.5	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Zinc	273	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_20 : W11A060-06									
Chromium	136	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	422	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	113	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	99.7	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	408	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
52_21 : W11A060-07									
Chromium	216	mg/kg dry	0.500	100	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	224	mg/kg dry	0.200	100	B11A113	01/08/11	01/13/11	EPA 6020	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

						<u> </u>			
otal Metals									
otal Metals by ICPMS									
52_21 : W11A060-07									
Lead	75.9	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	144	mg/kg dry	0.200	100	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	523	mg/kg dry	0.500	100	B11A113	01/08/11	01/13/11	EPA 6020	
52_22 : W11A060-08									
Chromium	304	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	541	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	47.1	mg/kg dry	0.100	20	B11A113	01/08/11	01/13/11	EPA 6020	
Nickel	144	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	178	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
DUP: W11A060-09									
Chromium	104	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	436	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	96.7	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	81.8	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	146	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_23 : W11A060-10									
Chromium	40.0	mg/kg dry	0.500	20	B11A371	01/27/11	01/27/11	EPA 6020	
Copper	69.8	mg/kg dry	0.200	20	B11A371	01/27/11	01/27/11	EPA 6020	
Lead	101	mg/kg dry	0.100	20	B11A371	01/27/11	01/27/11	EPA 6020	
Nickel	25.6	mg/kg dry	0.200	20	B11A371	01/27/11	01/27/11	EPA 6020	
Zinc	164	mg/kg dry	0.500	20	B11A371	01/27/11	01/27/11	EPA 6020	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

<u>Po</u>	lych	<u>lorinate</u>	<u>d Bip</u>	heny	<u>/IS (</u>	PCBs	L
	_						

Polychlorinated Biphenyls	(FCDS)									
PCB Aroclors by GC-ECD										
52_15 : W11A060-01										
Aroclor 1016/1242	ND	ug/kg dry		10.0		B11A124		01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0		B11A124		01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000		B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	21700	ug/kg dry		1000		B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	()				
Tetrachloro-m-xylene	18.7		24.2	78%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	27.7		24.2	115%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_16: W11A060-02										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	11900	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	,)				
Tetrachloro-m-xylene	17.3		21.0	82%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	17.5		21.0	83%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_17 : W11A060-03										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	10700	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	14.9		18.4	81%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	15.1		18.4	82%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_18 : W11A060-04										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0		B11A124	01/10/11	01/11/11	EPA 8082	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Client: Director's Office **Portland Harbor** Work Order: W11A060 Project Mgr: Linda Scheffler

Units Analyte Result MRL Dilution Batch Prepared Analyzed Method Qualifier

CB Aroclors by GC-ECD										
52_18 : W11A060-04										
Aroclor 1248	ND	ug/kg dry		10.0) 1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	606	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	16.3		20.0	82%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	21.5		20.0	108%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_19 : W11A060-05										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	1170	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	23.4		27.8	84%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	22.3		27.8	80%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_20 : W11A060-06										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	846	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		50.0		B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	24.4		22.8	107%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	19.6		22.8	86%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_21 : W11A060-07										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D:
A100101 1204	ND	ug/kg ury				D 1 17 (12 1				

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

, a.a., to								,		Qua0
olychlorinated Biphenyls	(PCBs)									
CB Aroclors by GC-ECD	<u>(1 003)</u>									
52 21 : W11A060-07										
Aroclor 1262	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result	.5 5 . 7	Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	20.8		24.6	84%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	26.6		24.6	108%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_22 : W11A060-08										
Aroclor 1016/1242	ND	ug/kg dry		10.0) 1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		100		B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	1240	ug/kg dry		100		B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result	.5 5 . 7	Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	14.7		20.5	72%		B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	14.6		20.5	71%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
DUP : W11A060-09										
Aroclor 1016/1242	ND	ug/kg dry		10.0) 1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	10500	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	13.1		18.4	71%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	12.7		18.4	69%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52 23 : W11A060-10										
Aroclor 1016/1242	ND	ug/kg dry		10.0) 1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0) 1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0		B11A384		01/27/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0) 1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D
Aroclor 1260	7120	ug/kg dry		1000	100	B11A384	01/27/11	01/27/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D
Aroclor 1268	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D
Surrogate	Result	- 1	Expected	%Rec	Limits(%	5)				

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Polychlorinated Biphenyls (PCBs)

PCB Aroclors by GC-ECD

52 23: W11A060-10

 Surrogate
 Result
 Expected
 %Rec
 Limits(%)

 Tetrachloro-m-xylene
 18.5
 22.1
 83%
 62.5-132
 B11A384
 01/27/11

 Tetrachloro-m-xylene
 18.5
 22.1
 83%
 62.5-132
 B11A384
 01/27/11
 01/27/11
 EPA 8082

 Decachlorobiphenyl
 24.2
 22.1
 109%
 43.5-150
 B11A384
 01/27/11
 01/27/11
 EPA 8082

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Quality Control Report

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Solids - Batch B11A115									
Duplicate (B11A115-DUP1)			Source: W11A060-01						
Total solids	82.2	% W/W	0.01		80.1		3 (20)	01/08/11 :01/09/11	
Total Solids - Batch B11A368									
Duplicate (B11A368-DUP1)			Source: W11A060-10						
Total solids	84.8	% W/W	0.01		85.3		0.6 (20)	01/26/11 :01/27/11	

Total Metals - QC

Analyte R	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch B11A1	13								
Blank (B11A113-BLK1)									
Chromium	ND	mg/kg wet	0.500					01/08/11 :01/12/11	
Copper	ND	mg/kg wet	0.200					01/08/11 :01/12/11	
Lead	ND	mg/kg wet	0.100					01/08/11 :01/12/11	
Nickel	ND	mg/kg wet	0.200					01/08/11 :01/12/11	
Zinc	ND	mg/kg wet	0.500					01/08/11 :01/12/11	
Standard Reference Material (B11A113-S	SRM1)								
Chromium	129.0	mg/kg wet	0.500	124		104 (75-125)		01/08/11 :01/12/11	
Copper	69.68	mg/kg wet	0.200	66.7		104 (75-125)		01/08/11 :01/12/11	
Lead	221.4	mg/kg wet	0.100	223		99 (75-125)		01/08/11 :01/12/11	
Nickel	181.7	mg/kg wet	0.200	172		106 (75-125)		01/08/11 :01/12/11	
Zinc	397.9	mg/kg wet	0.500	349		114 (75-125)		01/08/11 :01/12/11	
Duplicate (B11A113-DUP1)		Source	e: W11A060-01						
Chromium	59.28	mg/kg dry	0.500		130.9		75 (20)	01/08/11 :01/12/11	M1, N
Copper	146.1	mg/kg dry	0.200		169.2		15 (20)	01/08/11 :01/12/11	
Lead	196.5	mg/kg dry	0.100		181.0		8 (20)	01/08/11 :01/12/11	
Nickel	34.11	mg/kg dry	0.200		49.25		36 (20)	01/08/11 :01/12/11	M1, N
Zinc	332.6	mg/kg dry	0.500		357.9		7 (20)	01/08/11 :01/12/11	
Matrix Spike (B11A113-MS1)		Source	e: W11A060-01						
Chromium	88.67	mg/kg dry	0.500	45.7	130.9	-92 (75-125)		01/08/11 :01/12/11	M4, N
Copper	169.9	mg/kg dry	0.200	76.1	169.2	0.9 (75-125)		01/08/11 :01/12/11	M4, N
Lead	239.1	mg/kg dry	0.100	76.1	181.0	76 (75-125)		01/08/11 :01/12/11	
Nickel	107.9	mg/kg dry	0.200	76.1	49.25	77 (75-125)		01/08/11 :01/12/11	
Zinc	395.1	mg/kg dry	0.500	76.1	357.9	49 (75-125)		01/08/11 :01/12/11	M9
Total Metals by ICPMS - Batch B11A3	71								

Reported: 02/14/11 14:52

Blank (B11A371-BLK1)

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS	6 - Batch B11A371								
Blank (B11A371-BLK1)									
Chromium	ND	mg/kg wet	0.500					01/27/11 :01/27/11	
Copper	0.212	mg/kg wet	0.200					01/27/11 :01/27/11	B2
Lead	ND	mg/kg wet	0.100					01/27/11 :01/27/11	
Nickel	ND	mg/kg wet	0.200					01/27/11 :01/27/11	
Zinc	ND	mg/kg wet	0.500					01/27/11 :01/27/11	
Standard Reference Ma	terial (B11A371-SRM1))							
Chromium	127.7	mg/kg wet	0.500	124		103 (75-125)		01/27/11 :01/27/11	
Copper	68.93	mg/kg wet	0.200	66.7		103 (75-125)		01/27/11 :01/27/11	
Lead	218.3	mg/kg wet	0.100	223		98 (75-125)		01/27/11 :01/27/11	
Nickel	174.2	mg/kg wet	0.200	172		101 (75-125)		01/27/11 :01/27/11	
Zinc	377.4	mg/kg wet	0.500	349		108 (75-125)		01/27/11 :01/27/11	
Duplicate (B11A371-DU	P2)	;	Source: W11A060-10						
Chromium	37.43	mg/kg dry	0.500		40.04		7 (20)	01/27/11 :01/27/11	
Copper	74.20	mg/kg dry	0.200		69.76		6 (20)	01/27/11 :01/27/11	
Lead	98.17	mg/kg dry	0.100		100.7		3 (20)	01/27/11 :01/27/11	
Nickel	25.43	mg/kg dry	0.200		25.61		0.7 (20)	01/27/11 :01/27/11	
Zinc	166.6	mg/kg dry	0.500		164.0		2 (20)	01/27/11 :01/27/11	
Matrix Spike (B11A371-	MS1)	;	Source: W11A060-10						
Chromium	71.50	mg/kg dry	0.500	35.9	40.04	88 (75-125)		01/27/11 :01/27/11	
Copper	131.1	mg/kg dry	0.200	59.8	69.76	103 (75-125)		01/27/11 :01/27/11	
Lead	165.6	mg/kg dry	0.100	59.8	100.7	109 (75-125)		01/27/11 :01/27/11	
Nickel	80.73	mg/kg dry	0.200	59.8	25.61	92 (75-125)		01/27/11 :01/27/11	
Zinc	241.1	mg/kg dry	0.500	59.8	164.0	129 (75-125)		01/27/11 :01/27/11	M5, N

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Polychlorinated Biphenyls (PCBs) - QC

			_	Spike	Source	%Rec	RPD	Prepared: Analyzed	Qualifie
Analyte	Result	Units	MRL	Level	Result	(Limits)	(Limit)	Analyzed	Qualific
PCB Aroclors by GC-ECD - Batch	B11A124								
Blank (B11A124-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1221	ND	ug/kg wet	20.0					01/10/11 :01/11/11	
Aroclor 1232	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1248	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1254	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1260	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1262	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1268	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Surrogate									
Tetrachloro-m-xylene	19.0		ug/kg wet	19.9		95		01/10/11 :01/11/11	
Decachlorobiphenyl	20.1		ug/kg wet	19.9		101		01/10/11 :01/11/11	
LCS (B11A124-BS1)									
Aroclor 1016/1242	101.9	ug/kg wet	10.0	100		102 (85.4-116.4		01/10/11 :01/11/11	
Aroclor 1260	94.60	ug/kg wet	10.0	100		95 (64.1-133.6)		01/10/11 :01/11/11	
Surrogate									
Tetrachloro-m-xylene	19.3		ug/kg wet	20.0		97 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	20.5		ug/kg wet	20.0		102 (43.5-150)		01/10/11 :01/11/11	
Matrix Spike (B11A124-MS1)			Source: W11A060-09						
Aroclor 1016/1242	86.71	ug/kg dry	10.0	94.7	ND	92 (55.2-135.4)		01/10/11 :01/11/11	١
Surrogate									
Tetrachloro-m-xylene	17.1		ug/kg dry	18.9		90 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	17.6		ug/kg dry	18.9		93 (43.5-150)		01/10/11 :01/11/11	
Matrix Spike Dup (B11A124-MSD1)			Source: W11A060-09						
Aroclor 1016/1242	80.45	ug/kg dry	10.0	103	ND	78 (55.2-135.4)	7 (20)	01/10/11 :01/11/11	١
Surrogate									
Tetrachloro-m-xylene	17.4		ug/kg dry	20.6		85 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	18.8		ug/kg dry	20.6		92 (43.5-150)		01/10/11 :01/11/11	
PCB Aroclors by GC-ECD - Batch	B11A384								
Blank (B11A384-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1221	ND	ug/kg wet	20.0					01/27/11 :01/27/11	
Aroclor 1232	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1248	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1254	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1260	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1262	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1268	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Surrogate		-							
Tetrachloro-m-xylene	18.7		ug/kg wet	20.0		94		01/27/11 :01/27/11	
Decachlorobiphenyl	17.8		ug/kg wet	20.0		89		01/27/11 :01/27/11	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: **Portland Harbor** Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

Polychlorinated Biphenyls (PCBs) - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
PCB Aroclors by GC-ECD - Bate	ch B11A384								
LCS (B11A384-BS1)									
Aroclor 1016/1242	95.74	ug/kg wet	10.0	100		96 (80-120)		01/27/11 :01/27/11	
Aroclor 1260	85.42	ug/kg wet	10.0	100		85 (64.1-133)		01/27/11 :01/27/11	
Surrogate									
Tetrachloro-m-xylene	17.7		ug/kg wet	20.0		88 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	17.2		ug/kg wet	20.0		86 (43.5-150)		01/27/11 :01/27/11	
Matrix Spike (B11A384-MS1)			Source: W11A060-10						
Aroclor 1016/1242	90.92	ug/kg dry	10.0	118	ND	77 (55.2-135.4)		01/27/11 :01/27/11	N
Surrogate									
Tetrachloro-m-xylene	17.5		ug/kg dry	23.6		74 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	25.7		ug/kg dry	23.6		109 (43.5-150)		01/27/11 :01/27/11	
Matrix Spike Dup (B11A384-MSD1)		Source: W11A060-10						
Aroclor 1016/1242	107.3	ug/kg dry	10.0	118	ND	91 (55.2-135.4)	17 (20)	01/27/11 :01/27/11	N
Surrogate									
Tetrachloro-m-xylene	19.9		ug/kg dry	23.5		84 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	18.9		ug/kg dry	23.5		80 (43.5-150)		01/27/11 :01/27/11	

Qualifiers

B2	Analyte was detected in the Method Blank, but at a concentration less than one tenth the amount in the sample.	
----	--	--

D2 The sample required dilution due to high levels of target analytes.

M1 Matrix duplicate precision measurement indicates non-homogenous sample matrix. The result should be considered an

estimate.

M4 Based on low matrix spike recovery, the sample result may be a low estimate due to matrix interference.

M5 Based on high matrix spike recovery, the sample result should be considered an estimate due to matrix effect and/or

non-homogeneous matrix.

Matrix spike recovery control limits are not applicable because the sample concentration is greater than 4 times the spike M9

amount.

Refer to case narrative. Ν

Definitions

DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503) 906-9200

TestAmerica Job ID: PUA0215

TestAmerica Sample Delivery Group: PUA0215

Client Project/Site: W11A060

Client Project Description: Portland Harbor

Revision: 1

For:

City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

Attn: Jennifer Shackelford

Drull W. Sail

Authorized for release by:

2/14/2011 1:31 PM

Darrell Auvil
Project Manager

darrell.auvil@testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 14

Page 16 of 29

TestAmerica Job ID: PUA0215 SDG: PUA0215

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	9
Certification Summary	11
Chain of Custody	12

3

4

6

Q

9

10

Sample Summary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060

TestAmerica Job ID: PUA0215

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
PUA0215-01	W11A060-01	Soil	01/06/11 14:00	01/07/11 18:01
PUA0215-02	W11A060-02	Soil	01/06/11 14:35	01/07/11 18:01
PUA0215-03	W11A060-03	Soil	01/06/11 13:30	01/07/11 18:01
PUA0215-04	W11A060-04	Soil	01/06/11 12:00	01/07/11 18:01
PUA0215-05	W11A060-05	Soil	01/06/11 12:30	01/07/11 18:01
PUA0215-06	W11A060-06	Soil	01/06/11 12:58	01/07/11 18:01
PUA0215-07	W11A060-07	Soil	01/06/11 15:18	01/07/11 18:01
PUA0215-08	W11A060-08	Soil	01/06/11 15:35	01/07/11 18:01
PUA0215-09	W11A060-09	Soil	01/06/11 00:00	01/07/11 18:01
PUA0215-10	W11A060-10	Soil	01/06/11 15:00	01/07/11 18:01

3

4

5

7

8

9

Case Narrative

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

Job ID: PUA0215

Laboratory: TestAmerica Portland

Narrative

Amended report to reflect addition of sample #10 for TOC analysis.

TestAmerica Job ID: PUA0215

2

3

4

J

Q

Qualifier Definition/Glossary

Client: City of Portland Water Pollution Laboratory

TestAmerica Job ID: PUA0215 Project/Site: W11A060

SDG: PUA0215

Glossary

Glossary **Glossary Description**

Listed under the "D" column to designate that the result is reported on a dry weight basis.

Detection Summary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060

Analyte

Total Organic Carbon - Duplicates

TestAmerica Job ID: PUA0215

SDG: PUA0215

3

Client Sample ID: W11A060-01						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	23000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-02						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	13000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-03						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	13000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-04						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	34000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-05						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	84000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-06						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	45000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-07						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	70000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-08						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	20000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-09						La	b Sample II	D: PUA0215-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	15000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-10						La	h Sample ΙΓ	D: PUA0215-1

Prep Type

total

RL

100

MDL Unit

mg/Kg

Dil Fac D Method

9060

Result Qualifier

Analytical Data

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

TestAmerica Job ID: PUA0215

3

Client Sample ID: W11A060-01							Lab S	ample ID: PUA	0215-01
Date Collected: 01/06/11 14:00									trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	23000		100		mg/Kg		01/18/11 17:15	01/18/11 17:15	1
Client Sample ID: W11A060-02							Lab S	Sample ID: PUA	0215-02
Date Collected: 01/06/11 14:35									trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	13000		100		mg/Kg		01/18/11 17:28	01/18/11 17:28	1
Client Sample ID: W11A060-03							Lab S	Sample ID: PUA	0215-03
Date Collected: 01/06/11 13:30									trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	13000		100		mg/Kg		01/18/11 17:41	01/18/11 17:41	1
Client Sample ID: W11A060-04							Lab S	Sample ID: PUA	0215-04
Date Collected: 01/06/11 12:00								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	34000		100		mg/Kg		01/18/11 17:55	01/18/11 17:55	1
Client Sample ID: W11A060-05							Lab S	Sample ID: PUA	0215-05
Date Collected: 01/06/11 12:30								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	84000		100		mg/Kg		01/18/11 18:30	01/18/11 18:30	1
Client Sample ID: W11A060-06							Lab S	Sample ID: PUA	0215-06
Date Collected: 01/06/11 12:58								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	45000		100		mg/Kg		01/18/11 18:51	01/18/11 18:51	1
Client Sample ID: W11A060-07							Lab S	Sample ID: PUA	0215-07
Date Collected: 01/06/11 15:18								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	70000		100		mg/Kg		01/18/11 19:05	01/18/11 19:05	1
Client Sample ID: W11A060-08							Lab S	Sample ID: PUA	0215-08
Date Collected: 01/06/11 15:35								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	20000		100		mg/Kg		01/18/11 19:18	01/18/11 19:18	1
Client Sample ID: W11A060-09							Lab S	Sample ID: PUA	0215-09
Date Collected: 01/06/11 00:00								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Page 7 of 14

Analytical Data

Client: City of Portland Water Pollution Laboratory

Date Received: 01/07/11 18:01

Project/Site: W11A060 SDG: PUA0215

Method: 9060 - Organic Carbon, Total (TOC)

Client Sample ID: W11A060-10 Lab Sample ID: PUA0215-10 Date Collected: 01/06/11 15:00

Matrix: Soil

TestAmerica Job ID: PUA0215

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac **Total Organic Carbon - Duplicates** 25000 100 mg/Kg 02/03/11 14:01 02/03/11 14:01

3

Quality Control Data

Client: City of Portland Water Pollution Laboratory TestAmerica Job ID: PUA0215

Project/Site: W11A060 SDG: PUA0215

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: 220-47194-6 Client Sample ID: 220-47194-6

Matrix: Soil Prep Type: total Analysis Batch: 47194 Prep Batch: 47194 P Blank Blank

Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Total Organic Carbon - Duplicates 100 ND mg/Kg 01/18/11 17:08 01/18/11 17:08

Lab Sample ID: 220-47194-5 Client Sample ID: 220-47194-5 **Prep Type: total**

Matrix: Soil

Prep Batch: 47194_P Analysis Batch: 47194

LCS LCS Spike % Rec. Added Result Qualifier Limits Analyte Unit % Rec Total Organic Carbon - Duplicates 4110 5240 mg/Kg 127 28 - 172

Client Sample ID: W11A060-08 Lab Sample ID: 145368D

Matrix: Soil

Analysis Batch: 47194 Prep Batch: 47194 P

% Rec. RPD Sample Sample Spike Matrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D % Rec Limits **RPD** Limit Total Organic Carbon - Duplicates 20000 106000 127000 100 75 - 125 2 mg/Kg 20

Lab Sample ID: 145368S Client Sample ID: W11A060-08

Matrix: Soil

Analysis Batch: 47194 Prep Batch: 47194_P Sample Sample Spike Matrix Spike Matrix Spike % Rec.

Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits Total Organic Carbon - Duplicates 20000 113000 129000 mg/Kg 97 75 - 125

Lab Sample ID: 145368X Client Sample ID: W11A060-08

Matrix: Soil

Analysis Batch: 47194

Prep Batch: 47194_P Sample Sample **Duplicate Duplicate** RPD

Result Qualifier Result Qualifier Unit **RPD** Limit Analyte Total Organic Carbon - Duplicates 20000 21400 mg/Kg 20

Lab Sample ID: 220-47655-6 Client Sample ID: 220-47655-6

Matrix: Soil Prep Type: total Analysis Batch: 47655 Prep Batch: 47655_P

Blank Blank Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac 100 ND 02/03/11 13:22 Total Organic Carbon - Duplicates 02/03/11 13:22 mg/Kg

Lab Sample ID: 220-47655-5 Client Sample ID: 220-47655-5 Prep Type: total

Matrix: Soil

Analysis Batch: 47655 Prep Batch: 47655 P

Spike LCS LCS % Rec. Added Analyte Result Qualifier Unit % Rec Limits Total Organic Carbon - Duplicates 4110 4540 mg/Kg 111 28 - 172

Lab Sample ID: 1453610S Client Sample ID: W11A060-10 **Matrix: Soil Prep Type: total**

Analysis Batch: 47655 Prep Batch: 47655_P Spike % Rec. Sample Sample Matrix Spike Matrix Spike

Result Qualifier Added Result Qualifier Unit % Rec Limits Total Organic Carbon - Duplicates 25000 119000 149000 mg/Kg 104

Page 9 of 14

3

6

8

Prep Type: total

Prep Type: total

Prep Type: total

Quality Control Data

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

Method: 9060 - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: 1453610X Client Sample ID: W11A060-10 **Matrix: Soil Analysis Batch: 47655**

Prep Type: total Prep Batch: 47655_P

TestAmerica Job ID: PUA0215

Sample Sample **Duplicate Duplicate** RPD Result Qualifier Result Qualifier Unit RPD Limit Total Organic Carbon - Duplicates 25000 24900 0.4 20 mg/Kg

3

Certification Summary

Client: City of Portland Water Pollution Laboratory

TestAmerica Connecticut

TestAmerica Connecticut

TestAmerica Connecticut

TestAmerica Connecticut

Project/Site: W11A060

State Program

State Program

NELAC

NELAC

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica Portland		USDA		P330-07-XXXXXX	11/13/10
TestAmerica Portland	Alaska	Alaska UST	10	UST-012	12/26/10
TestAmerica Portland	Alaska	State Program	10	OR00040	04/21/11
TestAmerica Portland	California	State Program	9	2597	09/30/11
TestAmerica Portland	Oregon	NELAC	10	OR100021	01/09/12
TestAmerica Portland	Washington	State Program	10	C586	06/23/11
TestAmerica Connecticut		NRC		06-30139-01	02/28/15
TestAmerica Connecticut		USDA		S-70244	02/20/11
TestAmerica Connecticut	Connecticut	State Program	1	PH-0497	12/31/12

2

2

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Massachusetts

New Jersey

Rhode Island

New York

TestAmerica Job ID: PUA0215

M-CT023

CT410

10602

LAO00226

SDG: PUA0215

3

6

Ω

06/30/11

06/30/11

04/01/11

12/30/11

a

4.0

^{*} Any expired certifications in this list are currently pending renewal and are considered valid.

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11A060

PU	AO	21	5
u ~	$I \setminus \bigcup$	~ ·	レノ

City of Portland Water Pollution Control Lab 6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5650 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503) 906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-8210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-8210 Fax: 503-8210 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-8210 Fax: 503-823-5656 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-823-5666 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-9210 Fax: 503-906-92			ORATORY:	RECEIVING LAB	•		SENDING LABORATORY:
Name		5.9°C	7008 6-9200	9405 SW Nimbu Beaverton, OR 9 Phone :(503) 90			6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 Fax: 503-823-5656
Analysis Due Expires Laboratory ID Comments Sample ID: W11A060-01 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-02 Solid Sampled:01/06/11 14:35 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-02 Solid Sampled:01/06/11 14:35 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-03 Solid Sampled:01/06/11 13:30 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C)		D REQUEST	TURNAROUN	[V]o			WPCL Project Name
Sample ID: W11A060-01 Solid Sampled:01/06/11 14:00							Portland Harbor
Out-TOC Solid 01/21/11 17:00 01/20/11 14:00 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-02 Solid Sampled:01/06/11 14:35 Out-TOC Solid 01/21/11 17:00 01/20/11 14:35 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-03 Solid Sampled:01/06/11 13:30 Out-TOC Solid 01/21/11 17:00 01/20/11 13:30 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid 01/21/11 17:00 01/20/11 12:00 Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30		Comments	Laboratory ID	Expires		Due	Analysis
Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-02 Solid Sampled:01/06/11 14:35 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-03 Solid Sampled:01/06/11 13:30 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid O1/21/11 17:00 O1/20/11 12:00 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid O1/21/11 17:00 O1/20/11 12:30 Out-TOC Solid O1/21/11 17:00 O1/20/11 12:30				ed:01/06/11 14:00	Sample	Solid	Sample ID: W11A060-01
Out-TOC Solid 01/21/11 17:00 01/20/11 14:35 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-03 Solid Sampled:01/06/11 13:30 Out-TOC Solid 01/21/11 17:00 01/20/11 13:30 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)	· · · · · · · · · · · · · · · · · · ·			01/20/11 14:00	00	01/21/11 17:00	Containers Supplied:
Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-03 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid O1/21/11 17:00 O1/20/11 12:00 Out-TOC Solid Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid				ed:01/06/11 14:35	Sampl	Solid	Sample ID: W11A060-02
Out-TOC Solid 01/21/11 17:00 01/20/11 13:30 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid 01/21/11 17:00 01/20/11 12:00 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				01/20/11 14:35	00	01/21/11 17:00	Containers Supplied:
Out-TOC Solid 01/21/11 17:00 01/20/11 13:30 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-04 Solid Sampled:01/06/11 12:00 Out-TOC Solid 01/21/11 17:00 01/20/11 12:00 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				ed:01/06/11 13:30	Sampl	Solid	Sample ID: W11A060-03
Out-TOC Solid 01/21/11 17:00 01/20/11 12:00 Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				01/20/11 13:30	.00	01/21/11 17:00	Out-TOC Solid Containers Supplied:
Containers Supplied: G jar amber 4 oz (C) Sample ID: W11A060-05 Solid Sampled:01/06/11 12:30 Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				ed:01/06/11 12:00	Sampl	Solid	Sample ID: W11A060-04
Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				01/20/11 12:00	:00	01/21/11 17:00	Containers Supplied:
Out-TOC Solid 01/21/11 17:00 01/20/11 12:30 Containers Supplied: G jar amber 4 oz (C)				ed:01/06/11 12:30	Sampl	Solid	Sample ID: W11A060-05
				01/20/11 12:30	:00	01/21/11 17:00	Out-TOC Solid Containers Supplied:
Available 1/7/11 FERGANO 1/7/11 Released By Belsons 1/7/11 1801 Mila Man 1/11	 Iso 1	//7/// Date	AND	J.Per	1861		Released By Released By

Page 1 of 2

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11A060

PUA0215

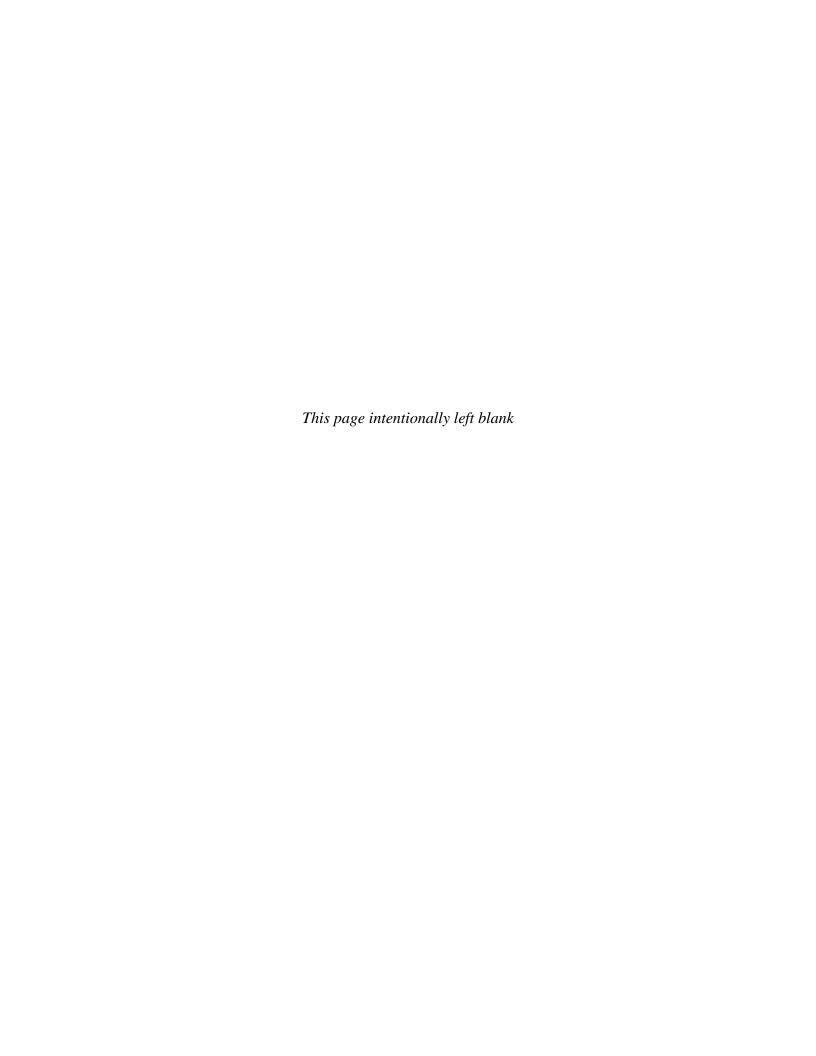
					<u> </u>
Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: W11A060-06	Solid	Sampled:01/06/11 12:58			
Out-TOC Solid	01/21/11 17:00	01/20/11 12:58			
Containers Supplied:					
G jar amber 4 oz (C)				·	
Sample ID: W11A060-07	Solid	Sampled:01/06/11 15:18			
Out-TOC Solid	01/21/11 17:00	01/20/11 15:18			
Containers Supplied:					
G jar amber 4 oz (C)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Sample ID: W11A060-08	Solid	Sampled:01/06/11 15:35			
Out-TOC Solid	01/21/11 17:00	01/20/11 15:35			
Containers Supplied:					
G jar amber 4 oz (C)				· .	
Sample ID: W11A060-09	Solid	Sampled:01/06/11 00:00	•	<u> </u>	
Out-TOC Solid	01/21/11 17:00	01/20/11 00:00			
Containers Supplied:					
G jar amber 4 oz (C)				•	

Released By

Released By

Date

Page 2 of 2



Portland Sample Control Checklist

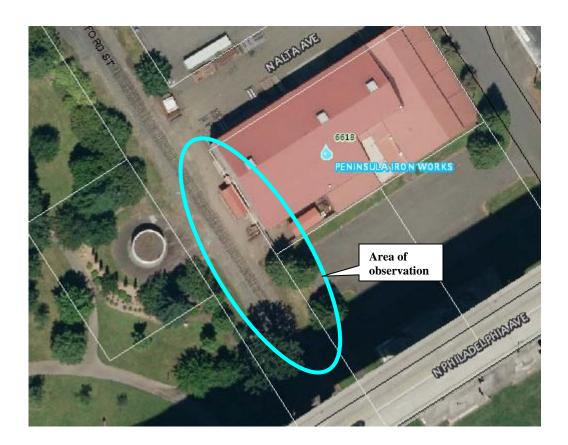
1 of thank Sample Control Checkinst
Work Order #: PUAO2 5 Date/Time Received: 1711 180/
Client Name: CITY OF POYTIANOC
Project Name: WYTOGO Time Zone:
□EDT/EST □CDT/CST □MDT/MST □PDT/PST □AK □OTHER
Unpacking Checks: Cooler (s): Temperature (s): Digi #1 Digi #2 IR Gun Temperature (s): Loc Melted W/in 4 Hrs of collection
Z (Plastic Glass) Ice Not Needed Other:
☐ (☐Plastic ☐Glass)
Ice used: (circle one) GEL LOOSE) BLUE OTHER: Initials VV
N/A Yes No
1. If ESI client, were temp blanks received? If no, document on NOD.
2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.
3. Chain of Custody present? Along with "received by" & "relinquished by" signatures with date & time? If no, document on NOD.
4. Bottles received intact? If no, document on NOD.
5. Sample is not multiphasic? If no, document on NOD.
☐
7. Proper Container and preservatives used? If no, document on NOD.
☐ 8. pH of all samples checked and meet requirements? If no, document on NOD.
9. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
☐ ☐ 10. HF Dilution required?
☐ 11. Sufficient volume provided for all analysis and requested MS/MSD? If no,
document on NOD and consult PM before proceeding. 12. Did chain of custody agree with samples received? If no, document on NOD.
☐ ☐ 13. Were VOA samples received without headspace?
14. Did samples require preservation with sodium thiosulfate?
☐ ☐ 15. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
☐ 16. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
☐ ☐ 17. Are analyses with short holding times received in hold?
☐ ☐ 18. Were special log- in instrictions read and followed?
Checklist Reviewed: Log-in initials: Labeler initials:

9405 SW Nimbus Ave, Beaverton OR 97008 tel 503.906.9200 fax 503.906.9210 www.testamericainc.com

APPENDIX D Industrial Source Control Memo

Water Pollution Control Laboratory

6543 N. Burlington Avenue, Bldg 217, Portland, Oregon 97203 • Dan Saltzman, Commissioner • Dean Marriott, Director


Industrial Source Control Memo

Date: March 16, 2012
To: Linda Scheffler
From: Loren Shelley

Subject: Wet Weather Field Observations on 1/19/12

Vicinity of Peninsula Iron Works – 6618 N Alta

Industrial Stormwater staff conducted field observations during a heavy rain event on January 19, 2012 along the rail line adjacent to the Peninsula Iron Works (PIW) site. Photos from the site visit are included below for your review. As shown, large volumes of stormwater had accumulated around the southern corner of the PIW building and along the nearby rail line. Stormwater was flowing toward trenches that crossed the rail line in several locations. These trenches appeared to be manmade and conveyed stormwater to a landscaped area in Cathedral Park, where it appeared to be infiltrating into the soils and grassy area.

Photos show stormwater ponding near the PIW site and adjacent to the rail line. Stormwater entered what appeared to be manmade trenches, directing the flow across the rail line and into Cathedral Park.

Stormwater entering Cathedral Park landscape

Trenched water crossing rail line into Cathedral Park

Ponded water near PIW storage area

PIW activity areas at N Alta and N Bradford streets

Ponding near PIW scrap storage area

Railroad tracks and ponding northwest of PIW

Looking south toward St Johns Bridge