

TECHNICAL MEMORANDUM No. OF22-1

Outfall Basin 22 Inline Solids Sampling

TO:	Karen Tarnow, Oregon Department of Environmental Quality (DEQ)
FROM:	Dawn Sanders, City of Portland, Bureau of Environmental Services (BES) 7/ Linda Scheffler, BES 1/13
COPIES:	Kristine Koch, U.S. Environmental Protection Agency (EPA) Grant Sprick, Arcadis BBL, Inc. Mike Noll, Noll Environmental, Inc. Brian Fletcher, Delta Environmental Ted McCall, McCall Oil and Chemical Corp. Julia Fowler, GSI Water Solutions, Inc.
DATE:	April 3, 2008
SUBJECT:	Portland Harbor Source Control Investigation

Introduction

This technical memorandum summarizes the results of the City of Portland BES source control investigation of inline solids in the Outfall Basin 22 stormwater conveyance system. The objectives of this investigation were to evaluate whether inline solids within Basin 22 may be contributing contaminants to river sediment and to assess whether the spatial distribution of contaminants within conveyance system solids indicates the presence of potential sources within the basin.

The Basin 22 system conveys stormwater flow to the river from Forest Park and the Willbridge industrial area. Samples were collected at the downstream ends of the two main branches of the stormwater conveyance system along NW Front and Doane Avenues as well as from one location adjacent to Forest Park. The investigation results indicate that metals (copper and zinc), polynuclear aromatic hydrocarbons (PAHs), and bis(2-ethylhexyl)phthalate (BEHP) slightly exceeding applicable screening levels are being discharged into the Basin 22 conveyance system.

This Basin 22 investigation, conducted in June 2006, is part of the City's ongoing source control program associated with the Portland Harbor City of Portland Outfalls Project. These investigation results are submitted pursuant to the August 13, 2003, Intergovernmental Agreement between DEQ and the City.

Ph: 503-823-7740 Fax: 503-823-6995 • www.cleanriverspdx.org • Using recycled paper. • An Equal Opportunity Employer. For disability accommodation requests call 503-823-7740, Oregon Relay Service at 1-800-735-2900, or TDD 503-823-6868.

Basin 22 Configuration and Background

Figure 1 provides an overview of the Basin 22 stormwater conveyance system. The system consists of two main branches. The NW Doane Avenue branch extends southwest from NW Front Avenue in a 48-inch-diameter line. This branch conveys runoff from Forest Park, rights-of-way, industries on the west side of NW St. Helens Road, and two industrial facilities on NW Doane Avenue (Chevron Willbridge Distribution Center and ConocoPhillips Portland Terminal). The NW Front Avenue branch extends southeast from the intersection at NW Doane Avenue in a 30-inch-diameter line and conveys runoff from portions of the Paramount Petroleum (formerly Chevron USA Asphalt) and McCall Oil industrial facilities and the adjacent right-of-way. The two branches converge east of the intersection of these roads and discharge through a 60-inch-diameter pipe to Outfall 22.

According to the DEQ Environmental Cleanup Site Information (ECSI) database, there are three cleanup sites located within Basin 22 that comprise the majority of the basin. The Willbridge Bulk Fuel Area (ECSI No. 1549) extends along both sides of NW Doane Avenue and includes the ConocoPhillips, Chevron Willbridge, and Kinder Morgan Distribution Terminal sites. The McCall Oil (ECSI No. 134) and Chevron USA Asphalt Refinery (ECSI No. 1281) sites are located on NW Front Avenue. Contaminants of Interest (COI) for these sites include petroleum hydrocarbons, semivolatile organic compounds (SVOCs), volatile organic compounds (VOCs), polychlorinated biphenyls, PCBs, and metals (DEQ, 2005a-e).

Several facilities within Basin 22 have National Pollutant Discharge Elimination System (NPDES) stormwater permits including: Chevron Willbridge, ConocoPhillips, Brenntag Pacific (formerly Quadra and Great Western Chemical), and Paramount Petroleum (formerly Chevron USA Asphalt). The Brenntag Pacific site is included in the McCall Oil remedial investigation. DEQ cleanup sites and stormwater permittees are displayed on Figure 1.

Basin 22 was designated as a Priority 3 basin for source investigation based on elevated concentrations of polynuclear aromatic hydrocarbons (PAHs) detected in the surface sediment samples collected by the City near Outfall 22 in 2002 (CH2M HILL, 2004). Priority 3 designations were assigned to basins where significant concentrations of contaminants have been detected in sediment near the outfall and the contaminants likely are attributable to known upland sources which are currently being investigated under DEQ oversight. In 2005, based on a review of additional sediment data collected by the Lower Willamette Group (LWG) (Integral, 2005), EPA identified Willbridge Cove as an area of potential concern for polychlorinated biphenyls (PCBs) and cadmium (EPA, 2005). Outfall 22 discharges into Willbridge Cove.

In 2006, the City developed an analytical list for the basin source investigation from a review of sediment data collected in the vicinity of Outfall 22. Based on this evaluation, three metals (cadmium, copper and zinc), PCBs, PAHs, phthalates, and pesticides were selected as potential COI.

Field Activities

The City coordinated with DEQ regarding the source control investigation before conducting this work. Target sample locations were identified to represent solids from each main branch and from the portion of the basin above the Willbridge industrial area. An effort was made to collect additional samples at locations above and below known lateral connections, but final sampling

locations within the basin were limited by inline solids availability. Inline solids were sampled at three locations on June 27, 2006 (see Figure 1), with a duplicate sample collected at one location. Samples were collected using a stainless steel spoon and bowl, in accordance with BES Field Operations' Standard Operating Procedures. Photographs of the sampling locations and inline solids are included in Attachment A. Field notes recorded during sampling activities are provided in Attachment B. The three sampling locations are described as follows:

<u>Forest Park (Trash Rack AAP844)</u>: Inline solids were sampled from the 24-inch line immediately upstream of a trash rack (see Photo 7 in Attachment A) located south of NW St. Helens Road, in a portion of the conveyance system that conveys runoff from Forest Park and a small residential area along NW Willbridge Avenue. Based on grain size analysis of the sample composition, the sample was comprised of primarily finer material (clay, silt, and fine sand) along with approximately 30% gravel. No odor or visual evidence of contamination was noted.

<u>NW Doane Avenue Stormwater Branch (Manhole AAM080)</u>: Inline solids were sampled from the 48-inch line just upstream of manhole AAM080, representing contributions from Forest Park, the NW St. Helens Avenue and NW 57th Avenue rights-of-way and adjacent properties, and the NW Doane Avenue industrial area (Chevron-Willbridge and ConocoPhillips). Grain size analysis indicates that this sample was composed of sands and gravel, and had relatively no silt or clay. Water in the pipe exhibited a visible sheen, but no odor was noted in the sample.

<u>NW Front Avenue Stormwater Branch (Manhole AAM078)</u>: Inline solids were sampled from the 30-inch line just upstream from manhole AAM078, representing contributions from the NW Front Avenue right-of-way and portions of the Chevron Asphalt and McCall Oil sites. Similar to the sample from NW Doane Avenue, grain size analysis indicates that the sample was composed of sands and gravel with virtually no silts or clay. No odor or visual evidence of contamination was noted. A duplicate sample was collected at this location.

In an attempt to evaluate whether grain size affects chemical concentrations detected in stormwater solids, the samples were split following collection. One split sample was submitted directly for laboratory analyses. The other split sample was brought to the field laboratory and sieved with a 500-micron sieve. The coarse fraction of the sieved sample was discarded and the finer fraction was submitted for chemical analytical testing. The chemical analytical results of the split samples were then compared. As the comparison was inconclusive with regard to grain size, no further evaluation of these data or pursuit of this concept is being considered by the City.

Summary of Results

The three inline solids samples and one duplicate sample obtained from the basin conveyance system were analyzed for three metals (cadmium, copper, and zinc), PCBs, PAHs, phthalates, pesticides, total organic carbon, and grain size. Table 1 summarizes the physical and chemical analytical data results from this investigation. The laboratory analytical results and data review memorandum for the samples are provided in Attachment C.

The chemical data from the Basin 22 sampling were compared with the Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLVs) for bioaccumulation and toxicity (DEQ/EPA, 2005), and DEQ's Default Background Metal Concentrations for Soil (DEQ, 2002). The results of the comparisons are summarized as follows:

- Metals: Samples from NW Front Avenue exceeded JSCS toxicity SLVs for copper and zinc in either the normal sample or the duplicate sample, but not both samples. The fact that the normal and duplicate sample results were significantly different for these two metals suggests that homogenization of this sample matrix may be difficult for metals analyses. Lowest metals concentrations were in the Forest Park solids sample, where results are either similar or less than the DEQ background concentrations for cadmium, copper, and zinc.
- > PCBs: PCBs were not detected.
- PAHs: PAHs were detected at higher concentrations in the NW Doane Avenue branch. Benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene concentrations exceeded the JSCS toxicity SLVs at this location.
- Phthalates: BEHP was detected at similar concentrations at all three locations. The concentration in the trash rack sample exceeded the JSCS toxicity SLV.
- Pesticides: 4,4'-DDT was detected in the solids sample collected from the NW Doane Avenue branch sample (manhole AAM080) at a concentration greater than the JSCS bioaccumulation SLV. No pesticides were detected in the Forest Park sample or the NW Front Avenue samples.

Conclusions

The results of the Basin 22 source control investigation indicate that metals (copper and zinc), PAHs and BEHP are being discharged to the City stormwater conveyance system at concentrations that exceed JSCS SLVs, though exceedances were relatively small. The metals and PAH concentrations were the highest in the solid samples collected downstream of the industrial areas located along the NW Doane Avenue and NW Front Avenue branches. The NW Doane Avenue branch conveys runoff from several industrial sites that manufacture, store, and/or distribute petroleum products. The NW Front Avenue branch includes stormwater discharges from two permitted industries (Brenntag Pacific and Paramount Petroleum Corporation) that have exceeded permit benchmarks for copper and zinc (see Attachment D). These facilities represent potential sources of contaminants detected in the inline solids samples collected from the NW Doane Avenue and NW Front Avenue branches. BEHP concentrations were less than an order-of-magnitude above SLVs and did not present a distinct spatial pattern that indicated locations of significant sources.

Next Steps

Several facilities within Basin 22 are in the process of conducting stormwater pathway evaluations under DEQ oversight, including Chevron Willbridge, Chevron Asphalt, ConocoPhillips, and McCall Oil. Additionally, in 2007 the LWG collected stormwater and sediment trap samples in Basin 22. The City will evaluate data collected by the DEQ cleanup sites and the LWG to determine if additional source investigation is needed within Basin 22.

References

CH2M HILL. 2004. *Programmatic Source Control Remedial Investigation Work Plan for the City of Portland Outfalls Project*. Prepared for the City of Portland, Bureau of Environmental Services, March 19, 2004.

DEQ. 2002. DEQ Default Background Concentrations for Inorganic Contaminants in Various Environmental Media. Internal Memorandum from the Toxicology Workgroup to DEQ Project Managers, dated October 28, 2002.

DEQ. 2005a. DEQ Site Summary Report – Details for ECSI Site No. 1549. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed November 2006. www.deq.state.or.us/wmc/ECSI/ecsidetail.asp?seqnbr=1549.

DEQ. 2005b. DEQ Site Summary Report – Details for ECSI Site No. 134. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed November 2006. www.deg.state.or.us/wmc/ECSI/ecsidetail.asp?seqnbr=134.

DEQ. 2005c. DEQ Site Summary Report – Details for ECSI Site No. 1281. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed November 2006. www.deq.state.or.us/wmc/ECSI/ecsidetail.asp?seqnbr=1281.

DEQ. 2005d. DEQ Site Summary Report – Details for ECSI Site No. 25. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed November 2006. www.deq.state.or.us/wmc/ECSI/ecsidetail.asp?seqnbr=25.

DEQ. 2005e. DEQ Site Summary Report – Details for ECSI Site No. 970. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed November 2006. www.deq.state.or.us/wmc/ECSI/ecsidetail.asp?seqnbr=970.

DEQ/EPA. 2005. *Portland Harbor Joint Source Control Strategy*, Final, dated December 2005, as amended July 2007.

EPA. 2005. EPA Letter to Lower Willamette Group. Portland Harbor RI/FS – Identification of Round 3 Data Gap. December 2, 2005.

Integral. 2005. Portland Harbor RI/FS, Round 2A Sediment Site Characterization Report. Prepared for the Lower Willamette Group. June 2005.

Table

 Table 1 - Summary of Chemical Analytical Results, Inline Solids Sampling, Outfall Basin 22

Figure

Figure 1 – Basin 22, Inline Solids Sampling Locations

Attachments

Attachment A - Field Photographs Attachment B - Field Notes Attachment C - Laboratory Results Attachment D – NW Front Avenue Branch 1200-Z Stormwater Monitoring Data

Table 1 Summary of Chemical Analytical Results Inline Solids Sampling Outfall Basin 22

		Upstream			Downstream			
		Forest Park Trash Rack AAP844 FO 060748	NW Doane Avenue Manhole AAM080 48" line FO 060747	NW Front Avenue Manhole AAM078 30" line FO 060746	NW Front Avenue Manhole AAM078 Duplicate FO 060749	JSCS Screen	ing Level Value ⁽¹⁾	DEQ Default Background Metal Concentrations in Soil ⁽²⁾
Class Analyte	Units	6/27/2006	6/27/2006	6/27/2006	6/27/2006	Toxicity	Bioaccumulation	
Total Organic Carbon (TOC) (EPA 9060MC								
TOC	mg/Kg	16400	5290	2860	4430			
Grain Size (ASTM D421/422)								
Gravel (>4750 µm)	Fract %	29.8	18.8	21.4	47.7			
Coarse Sand (4750-2000 µm)	Fract %	10	16.1	12.3	14.5			
Medium Sand (2000-425 µm)	Fract %	14.2	24.3	24.6	22			
Fine Sand (425-75 µm)	Fract %	16.9	16.5	20.6	15.5			
Silt (3.2-75 µm)	Fract %	26.44	1.4	0.5	0.4			
Clay (<3.2 µm)	Fract %	2.7	0	0	0			
Metals (EPA 6020)								
Cadmium	mg/Kg	0.18	0.41	0.64	0.48	4.98	1	1
Copper	mg/Kg	35.9	51.3	75.3	376	149		36
Zinc	mg/Kg	79.6	316	670	336	459		86
<u></u>	88							
Polychlorinated Biphenyls (PCBs) (EPA 808								
PCB 1016	µg/Kg	12 U	12 U	11 U	11 U	530		
PCB 1221	µg/Kg	12 U	12 U	11 U	11 U			
PCB 1232	µg/Kg	12 U	12 U	11 U	11 U			
PCB 1242	µg/Kg	12 U	12 U	11 U	11 U			
PCB 1248	µg/Kg	12 U	12 U	11 U	11 U	1500		
PCB 1254	µg/Kg	12 U	12 U	11 U	11 U	300		
PCB 1260	µg/Kg	12 U	12 U	11 U	11 U	200		
To	tal PCBs μg/Kg	ND	ND	ND	ND	676	0.39	
Polynuclear Aromatic Hydrocarbons (PAHs)	(EPA 8270C-SIN	(I)						
1-Methylnaphthalene	µg/Kg	6.2 U	6	5.8 U	5.6 U			
2-Methylnaphthalene	µg/Kg	6.2 U	7.2	5.8 U	5.6 U	200		
Acenaphthene	µg/Kg	6.2 U	58	5.8 U	5.6 U	300		
Acenaphthylene	µg/Kg	6.2 U	5.9 U	5.8 U	6.7	200		
Anthracene	µg/Kg	6.9	76	5.8 U	5.6 U	845		
Benzo(a)anthracene	µg/Kg	44	610	33	92	1050		
Benzo(a)pyrene	µg/Kg	63	710	40	110	1450		
Benzofluoranthenes ⁽³⁾	µg/Kg	56	650	41	110	13000		
Benzo(g,h,i)perylene	µg/Kg	59	520	37	84	300		
Chrysene	µg/Kg	62	700	44	140	1290		
Dibenzo(a,h)anthracene	µg/Kg	10	160	10	23	1300		
Fluoranthene	µg/Kg	65	1000	46	80	2230	37000	
Fluorene	µg/Kg	6.2 U	42	5.8 U	5.6 U	536		
Indeno(1,2,3-cd)pyrene	µg/Kg	65	600	39	100	100		
Naphthalene	µg/Kg	6.2 U	17	5.8 U	5.6 U	561		
Phenanthrene	µg/Kg	29	640	18	17	1170		

Pyrene Phthalates (EPA 8270C-SIM)

µg/Kg

69

Bis(2-ethylhexyl)phthalate	µg/Kg	950	790	360	380	800	330	
Butylbenzylphthalate	µg/Kg	25 U	45	740	23 U			
Diethylphthalate	µg/Kg	12 U	12 U	12 U	11 U	600		
Dimethylphthalate	µg/Kg	12 U	1600	12 U	11 U			
Di-n-butylphthalate	µg/Kg	25 U	27	23 U	23 U	100	60	
Di-n-octylphthalate	µg/Kg	25 U	74	68	34			

58

98

1520

1900

870

			Upstream			Downstream			
			Forest Park Trash Rack AAP844 FO 060748	NW Doane Avenue Manhole AAM080 48" line FO 060747	NW Front Avenue Manhole AAM078 30" line FO 060746	NW Front Avenue Manhole AAM078 Duplicate FO 060749	JSCS Screen	ing Level Value ⁽¹⁾	DEQ Default Background Metal Concentrations in Soil ⁽²⁾
Class	Analyte	Units	6/27/2006	6/27/2006	6/27/2006	6/27/2006	Toxicity	Bioaccumulation	_
Pesticide	s (EPA 8081)								
	4,4'-DDD	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U	28	0.33	
	4,4'-DDE	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U	31.3	0.33	
	4,4'-DDT	µg/Kg	2.6 U	5.7	2.1 U	2.3 U	62.9	0.33	
		Total DDT ⁽⁴⁾ µg/Kg	ND	5.7	ND	ND		0.33	
	Aldrin	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U	40		
	Alpha-BHC	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U			
	Alpha-Chlordane	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U			
	Gamma-Chlordane	µg/Kg	1.3 U	1.9	1.1 U	1.1 U			
		Chlordane ⁽⁵⁾ µg/Kg	ND	1.9	ND	ND	17.6	0.37	
	Beta-BHC	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U			
	Delta-BHC	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U			
	Dieldrin	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U	61.8	0.0081	
	Endosulfan I	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U			
	Endosulfan II	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U			
	Endosulfan Sulfate	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U			
	Endrin	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U	207		
	Endrin aldehyde	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U			
	Endrin ketone	µg/Kg	2.6 U	2.5 U	2.1 U	2.3 U			
	Gamma-BHC (Lindane)	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U	4.99		
	Heptachlor	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U	10		
	Heptachlor epoxide	µg/Kg	1.3 U	1.3 U	1.1 U	1.1 U	16		
	Methoxychlor	µg/Kg	13 U	13 U	11 U	11 U			
	Toxaphene	µg/Kg	130 U	130 U	110 U	110 U			

Notes:

ND = not detected at concentrations greater than the laboratory reporting limit.

U = The analyte was not detected above the reported sample quantification limit.

Chemical units in micrograms per kilogram (µg/Kg) or milligrams per kilogram (mg/Kg) dry weight.

-- = No JSCS Screening Level Value has been established

 $\mu m = microns$

Fract % = Percent of soil retained in grain size category during grain size analysis.

⁽¹⁾JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007).

⁽²⁾DEQ Environmental Cleanup Program Memorandum to Cleanup Project Managers, Default Background Metal Concentrations in Soil. October 28, 2002.

(3) SLV is for Benzo(k)fluoranthene.

 $^{\rm (4)}$ This value reprepents the sum of DDD, DDE and DDT.

⁽⁵⁾ This value reprepents the sum of chlordane isomers.

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

Attachment A Field Photographs

Field Sampling Activities: June 27, 2006

Photo 1. Aboveground location of manhole AAM078, on NW Front Avenue looking east. Inline solids were collected from the 30-inch-diameter line, upstream of the manhole.

Photo 2. Looking upstream of manhole AAM078, in the 30-inch-diameter line.

Photo 3. Inline solids collected from upstream of manhole AAM078.

Photo 4. Aboveground location of manhole AAM080, on NW Doane Avenue looking northeast. Inline solids were collected from the 48-inch-diameter line, on the upstream side of this manhole.

Photo 5. Looking upstream from manhole AAM080, in the 48-inch-diameter line.

Photo 6. Inline solids collected from upstream of manhole AAM080.

Photo 7. Aboveground location of trash rack AAP844. Inline solids were collected in the 24-inchdiameter line between the trash rack and the overflow collector (to the right).

Photo 8. Looking from the trash rack upstream toward the overflow collector. Solids were collected from this 24-inch-diameter line.

Photo 9. Inline solids downstream of trash rack AAP844.

Photo 10. Inline solids collected from trash rack AAP844.

Attachment B Field Notes

City of Portland **Environmental Services**

(? is`)

DAILY FIELD REPORT

 \bigcirc

	Page 2 of 2
Project IN-LINE SES SAMP Location BASIN 2.2 Subject FIDD NOTES	$\frac{1000.00}{\text{Date}}$
0700 PREPARE EQUIPMENT FOR TODAYS EDECONNER SAMPRING SPOOKSY BOWS PSSEMBTED GOOLAR, SAMPTE JA25 PAPER	PER SOP701a,
0830 NORT A TAN GRONT A DOAN & LINDA A DUSING DISCUSS TODAY WE WILL STAD THE THEN	
0400 SET UP AT AAM 208. LOT'S OC TRUSSIC CONTROL HERE BUT ISTUAN ENTERS MU. LOTS OF SEDS HU A FUL BUCKET OF SEDIMENT SEDS ENTROLS THERET. CALETT SAMPLE AND DUPLICATIS NT THI	nt de cide ta culler Louistied Aron Their
1000 BUNGET BUNGE AUDINE DILLUSS SHEVIS PERIPH TO AUDINS BUCKET OF SEDI BUNGE WILL WALL W) SEDS LETTER IN THE G	MENTS AT MPOL,
1020 SOT UP GR GATHY AT AAMOSO 1034 LOWLOT SAMPHE AT AAMOSO	
104 Priozes To MET SIDES	la provinsi se
1122 SET UP TO CO IN AN 785 Attachments	

City of Portland Environmental Services

í)

DAILY FIELD REPORT

.) i

	Page 2 of 3
Project IN-LING COS SAME	Project No, 1020-00) Date 6-27-06
Subject Field NOTES	**BY
BUL TOORDAT TIVENES WERE SED.	NP785 10 TD25 DOWN ST
BUT IT MAS JUST LAPLESS ACREENT	an a
NO SEDS BARDE FOR LUNCH.	97. 1995
	12. ENTER JULAUL RA
DARS OBSCRUS LOTS OF SEDIMENTS COULET MORE TIAN NELEDED GAR	22226. Siericic Arcievin Aug Assi
DARS OBSCRUS LOTS OF SEDIMENTS COULET MORE TIAN NELEDED GAR	10 <i>0</i> 00.
DATE OBSERVAS LOTS OF SEDIMENTS COULSET MORE THAN NELEDED CAR 1300 DURIVE AT CALBAC ALTAIS ON 1310 GO INO A BUS 878, NO SEDS, N	22226. - JUNINIC) Μ2CHUNI POR POSE
DAD OBSCRUS LOTS OF SEDIMENTS COULSUT MORE THAN NELOUD CAR 1300 DURIVE AT CALBAC ALTRIS ON	NW NICOLAJ.
DIRIVE NT CALBAC NETTONS CON COULSUT MONE THAN NELEDED CON 1300 DIRIVE NT CALBAC NETTONS ON 1310 GO INO A BB 878, No 5605, No BUGIN 15 1318 BO TO ABC DOD SEDS IN LATER.	NW NICOLAJ.
DIR OBSERVS LOTS OF SEDIMENTS COULSET MORE THAN NELEDED CHR 1300 DARIVE AT CALBAC ALTANS ON 1300 CO INO A BB 878, NO SEDS, NO BUSIN 15 1318 BO TO ABC DOB SEDS IN LATER.	120000 SIEVING ARCANA, PUR POSE NW NICOLA, SAMPLE COLLETED AL COLLET TIMESE MAL GROM ESCO, HOPE OC SUPS DID NOT CATURA

City of Portland

()

×

DAILY FIELD REPORT

).es.al.es

	Page of S
Project IN-LINE SED SAMP	Project No. 1020.00)
Location RPSIN 22 4 15	Date 6-27-06
Subject Fier Norres	ByJ
en e	
1410 RETURN TO WPCL -	to wrap up
1525 SAMPLES in CINLLED Lool	201 SUBMITTED TO
	15/13 MART CUAID
3 SAMPLES (FROM AAMO)S EXTRA MATERIAL THAT UP STAINIESS STEEL SAMPLING TALE FORS WPCL STAGING	-5 SEVED IN ATS
Anciniving AND POSSIBLE	SIEVING LATER TIME LABE
FOR EACH SAMPLE THIS	
DENTICAL FROM THE S	AMPLE SUBMITTED TODAY
TO THE LAB	
	s status and a second status a A second status and a second st
n and a second secon Second second second Second second	and a second
	Trible Harrister
Attachments	a her has seen a star her her her her her her her her her he

		ENV	/IR(DNME Water Polluti 6543 N.	PF PORTLAND NTAL SE ion control Laboratory Burlington Ave., , OR 97203-5452		CES		
	SEDIMENT SAMPLING FIELD DATA SHEET								
Date: 627	/66 Time:	0961		Current W	eather condition	s: _	SUNNY 80'S	· · ·	
Sampling Tear	n Present: r	NJH/B	cc)	JXB	8 1		2 A		
Basin: 22	₽	-	Node	AAM	078		Subbasin:		
Sampling Loca	tion Descriptio	n/Address:	তিওচ	s of	INTERSECTIO	<u>ט גע</u>	NW FRONT + 2	DANG-	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	FLOW is 2.9" DEF. 0.1-0.2 GPS Grew is WEAR
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO (MAYBE)
Are sediments observed in the line?	YES
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	AS FAR AS VISABLE UPSTLAM NONE DOWN STRAM

12-22-PAM078-0606

SITE DIAGRAM: Include street intersections/laterals/MHs/driveways cuts and extent of solids accumulation ^ -N -

NUS DOANE

No FRONT

RIVER

30"

,30

Date: 6/27/06 SEC	TION 2	- SAMPLE COLLEC	TION REPORT	Node: DAM 078		
Sampling Equipment:		nless steel spoon & stain	less steel bucket	an <mark>tarpan <u>al</u>fan an na an a</mark>		
	🗆 Oth	er (Describe)				
Equipment Decontamination process:	APer	SOP7.01a				
	🗆 Oth	er (Describe)		ч		
Sample date: 6-27-06	Sampl	e time: 0913	~			
Sample Identification: (IL-XX-NNNNN-m)L -		AAM078-06	06			
Sample location description: (number of feet from node of entry)	3, 1	UPSTREAM BROM	m,H.	Σ. Σ.		
Sample collection technique:	55 SP	GUN INTO BULIZE	2-			
Describe Color of sample:	DP2	nz GNEN	n to tota at t i i i i i i i i i i i i i i i i			
Describe Texture/Particle size:	GAN	VELS/LOBBLES -	> SANDS			
Describe visual or olfactory evidence of contamination:	No	NONS				
Desacribe depth of solids in area where sample collected:	2	DEP,	1			
Describe amount and type of debris in sample:	-					
Compositing notes:						
	21. W 22	Sample Jars Collected	5 4-02,	2 802		
If not enough sample to fill all of the jars, th	nen fill	Metals	One 4oz glass jar			
jars in this order:		PAHs/SVOCs	One 4oz glass jar			
		PCBs	One 4oz glass jar			
		TPH (two jars)	Two 4oz glass jars			
		тос	One 4oz glass jar			
		·.				
Duplicate sample collected?		205				
Duplicate sample fictitious identification # o	on COC:	· · · · · · · · · · · · · · · · · · ·				
Samples placed in chilled cooler?		En	a a			
Samples delivered to lab?		Lab ID Number: FO 060746				
Describe any deviations from standard pro	cedures:	Erouse Sample	Spub for t	Possible Stering		

	CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452								
	SEDIMENT SAMPLING FIELD DATA SHEET								
Date: 6-27 1	56 Time:	lu 20 Current Weather conditions:	SUNNY 80'S	12 12					
Sampling Tean	n Present: h	TH/ JXB/ BUL	5 B 8						
Basin: BA	sin Ja	Node: PAMOSO	Subbasin:						
Sampling Loca	tion Descriptic	N/Address: NUST S. C.L. INTERSECTION	og nig growt t	OANE					

SECTION 1 - PRE-	SAMPLING	G VISUAL OI	BSERVAT	ION REP	ORT	
Describe any flowing or standing water observed in the line?	718 \$\$ s,)-7"DEEP		2		
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO	5	a 2	•	• • • • • • • • •	te pre acquer
Are sediments observed in the line?	YES	×.,	-	а 2		
Are sample-able quantities of sediments present in the line?	YES		2 11		•	
Describe lateral extent of sample-able sediments present in the line:	PS FAR P	s usirne-	-			

SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation

North

Nho may 5 48" Par Johne 11-22-AAM080-0606 ŕ

Date: 6/27/06	SECTIO	ON 2	- SAMPLE CO	LECTION REPORT	Node: AAM080
Sampling Equipment:		V	iless steel spoon & er (Describe)	stainless steel bucket	
Equipment Decontamination p			SOP7.01a er (Describe)	2	
Sample date: 6- 27-0	6	Sample	e time:)0	39	51
Sample Identification: (IL-XX-N			-PAM080	- 0606	
Sample location description: (number of feet from node of e	entry)	6'	upstram or	NUDE IN 48" 21	1 Ne
Sample collection technique:		55 SP0	DN INTO BU	UPET,	
Describe Color of sample:		3100~1	N,		-
Describe Texture/Particle size:	:	CRAN	els - SANDS	+ Frier	
Describe visual or olfactory ev contamination:	vidence of	S ክኯድ	N OBSBIVE	ON WATER.	
Desacribe depth of solids in are sample collected:	ea where	つ,	2		5
Describe amount and type of d sample:	ebris in		2		
Compositing notes:	N/B		- 		
			Sample Jars Colle	ected	
If not enough sample to fill all o jars in this order:	of the jars, ther	n fill	Metals PAHs/SVOCs	One 4oz glass jar One 4oz glass jar	
			PCBs TPH (two jars)	One 4oz glass jar Two 4oz glass jars	
			TOC	One 4oz glass jars	
Duplicate sample collected?	i	2	No		
Duplicate sample fictitious iden	tification # on	COC:			
Samples placed in chilled coole					
Samples delivered to lab?	QUN		Lab ID Number:	FO 060747	
Describe any deviations from s	tandard proce	dures:	Excess	SAMPIE SAVED	FOR SIEVING

		EN\	/IR(DNME Water Pollut 6543 N		_ SE		CES	5	в.,	
÷.,		SEDIME		SAMPL	ING FI	ELD I	DATA	SHE	EET		5. R
Date: 6 -27-	of Time	1123		Current W	/eather co	ondition	s: 5,	NN	1 80'	s	4.
Sampling Tean	n Present:	M2H)3	NB	BCL		-1 					a
Basin: D.O	<u> </u>	5 E	Node	aar :	785			Subb	asin:		
Sampling Loca	tion Descript	ion/Address:	ÌN	PAZHLAU	Ŀς	ব্দ	τυρ	OF	PLANT	ßЛ	TADIN TRACKS

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT	
Describe any flowing or standing water observed in the line?	SMULL ARTESIAN SPRING TURWILD A CRACH IN THE PIPE AT TUE MID.	-
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO	
Are sediments observed in the line?	YLB MINOR AMIS DOWNSTROOM NO	2 3
Are sample-able quantities of sediments present in the line?	NO WAS, INAKT, EXPOSED AGREENTE OF THE PIPE	5
Describe lateral extent of sample-able sediments present in the line:	DOWNSTREPH OF MU IN 27.4	28 2

SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation

•				
Ň				His Dot in
1.				1 20'
				14
			/	/ /
\times	PLOT	•	/	/
×X.		46 11 - 12 - 12 - 12		/
\sim	NAP 185	K210	- / /	
\sim	X	-26	1.1	
	XXXX	27		
3 T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		1	/ /	
	- 18 X	x f	A	
	X	∞, \sim	/	
NOTE: 7 S-IN LI	NES,	XX_{X}		
PROBADY METH O	13 SEAVED	$\cdot \times$		
PBUR 30 UP	571E 18"21.	NE X	ά.	
			\sim	
			XX	
			\sim	

		·
	ENVIRO	CITY OF PORTLAND ONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452
	SEDIMENT	SAMPLING FIELD DATA SHEET
Date: 6-27-0	66 Time:)) 5)	Current Weather conditions: SVNN) 90'S
Sampling Team	Present: MJH BCL	JXB
Basin: みみ	Node	E AAP712 Subbasin:
Sampling Locati	on Description/Address: איא קד	IN YOUW STRATED ARED AT CATTA CATE LIVENON PLANT AT TOP OF NO DOANE
	SECTION 1 - PRE-	-SAMPLING VISUAL OBSERVATION REPORT
Describe any flor observed in the l	wing or standing water	minor from sprine vpstreepm
Does river appe Describe rate/co	ar to back up to this location? lor/odor of flow:	NO
Are sediments o	bserved in the line?	NO
Are sample-ab present in the lin	le quantities of sediments e?	NO
Describe later sediments prese		
SITE DIAGRAM	Include street intersections/lat ZNEV Row ALOS Supervised - Ion That is a	terals/MH's/driveways cuts and extent of solids accumulation

	1	<	
4		I.	\backslash
	Y	2	
N			-

CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

SEDIMENT SAMPLING FIELD DATA SHEET

Date: 6-27-06	Time:) 235	Ci	urrent Weather con-	ditions: Svn	UN 90'S	
Sampling Team Pre	sent:	<i>.</i>		10-00 17	annaithe store destructions	
Basin: Rasin	22	Node:	AAP 844	:	Subbasin:	,
Sampling Location [Description/Address:	TRACK	MACK AT	NW ST PRI	ous Rd +	NW 55Th-

	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	NO
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO
Are sediments observed in the line?	AS ADOF GAN
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	AS FAR AS VISIALE UP+ DOWN STREAM
	STUCTURE
N TRASP RACX	- 11-22-APP844-0606
N TIPSP RICK	- 12-22-AAP844-0606

Date: 6-27-06 SE	CTION 2	- SAMPLE COLLEC	TION REPORT	Node: ANP 834
Sampling Equipment:		nless steel spoon & stain er (Describe)	less steel bucket	
Equipment Decontamination process:		SOP7.01a er (Describe)		2
Sample date: 6-27-06	Samp	le time: 1238		•
Sample Identification: (IL-XX-NNNNN	-mmyy)	16-22-AAP8	44 -0606	
Sample location description: (number of feet from node of entry)	3057	UPSTRAM OF TRAS	SD RACK	
Sample collection technique:	2 کې	ROON INTO SS BON	ال	
Describe Color of sample:	Dr	GRAY	names sources as the state of the state	
Describe Texture/Particle size:	COBB	Was all the nay -	To FINE SANDS	а и т.
Describe visual or olfactory evidence of contamination:	ND	· · · · · ·		5
Desacribe depth of solids in area where sample collected:	3″			e
Describe amount and type of debris in sample:				
Compositing notes:				
		Sample Jars Collected	2 802, 5	4=02
If not enough sample to fill all of the jars, jars in this order:	then fill	Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	
Duplicate sample collected?		04		
Duplicate sample fictitious identification #	# on COC:		Pi	5 ²⁴ 5
Samples placed in chilled cooler?				
Samples delivered to lab?		Lab ID Number:	0 060748	
Describe any deviations from standard p	rocedures:			

Attachment C Laboratory Results

Groundwater Solutions, Inc.

55 SW Yamhill Street, Suite 400 Portland, Oregon 97204 ph: 503.239.8799 fx: 503.239.8940 e: groundwatersolutions.com

Laboratory Data QA/QC Review Upland Source Control Investigation City Outfall Basin 22

To:FileFrom:Robyn Cook, GSIDate:September 21, 2006

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during source control investigation sampling and analyses recently conducted by the City of Portland (City) in Outfall Basin 22. This includes a sampling round conducted in June, 2006. Solid samples were collected in the field, and a subset of each sample was sieved using a 500 micron sieve. The sieved samples were analyzed on a later date. The results of the sampling and analysis are presented in the Technical Memorandum No. OF 22-1.

The laboratory analysis for these source control program samples were completed by the City's BES laboratory and three subcontracted laboratories. The following analyses were conducted each laboratory for each of the sampling rounds:

- BES Laboratory
 - Metals (EPA Method 6020)
- Analytical Resources, Inc.
 - o Grain Size Analysis (ASTM D421/422)
- Test America
 - Total Organic Carbon (EPA Method 9060MOD)
- STL Laboratory
 - Semivolatile Organics (EPA Method 8270-SIM)
 - o Pesticides (EPA Method 8081A)
 - Polychlorinated Biphenyls (EPA Method 8082)

Attachment C of the Technical Memorandum No. OF 22-1 presents the BES laboratory LIMS summary report for all analyses associated with this Outfall Basin investigation and the subcontracted laboratory's data reports.

This QA/QC review is based upon the available documentation supplied from each laboratory. The QA/QC review of the analytical data consisted of reviewing the following for each laboratory report:

- Chain-of-custody complete and correct
- Analysis within holding times
- Chemicals of interest in method blanks
- Surrogate recoveries within accuracy control limits
- Laboratory duplicates within analytical accuracy control limits
- Laboratory blank spike recoveries within accuracy control limits
- Laboratory blank spike duplicate results within analytical precision control limits
- Matrix spike recoveries within accuracy control limits
- Matrix spike duplicate results within analytical precision control limits

The results of the laboratory report QA/QC review are presented for each sampling round below.

Whole Samples

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures were adequate and sample integrity was maintained through the sample collection and delivery process.

Analysis Holding Times

Semi-Volatile Organic Analyses

All samples were extracted and analyzed within the required holding times.

Pesticides Analyses

All samples were extracted and analyzed within the required holding times.

Polychlorinated Biphenyls (PCBs) Analyses

All samples were extracted and analyzed within the required holding times.

Metal Analyses

All samples were extracted and analyzed within the required holding times.

Total Organic Carbon Analyses

Only one sample had sufficient material for this analysis; this sample was analyzed within the required holding times.

Grain Size Analyses

Only one sample had sufficient material for this analysis; there are no required holding times for this analysis.

Method Blanks

Method blanks were processed during the laboratory analysis of SVOCs, pesticides, PCBs, total organic carbon (TOC) and metals. No chemicals were detected in the method blanks associated with TOC, metals, pesticides or PCBs. One analyte (bis(2-Ethylhexyl)phthalate) was detected in a method blank associated with the SVOC analysis. The samples contained bis(2-Ethylhexyl)phthalate at concentrations significantly higher than the method blank, therefore no data are qualified.

Surrogate Recoveries

Surrogate recoveries were completed during the laboratory analysis of SVOCs, pesticides and PCBs. All surrogate recoveries were within laboratory control limits for the analysis of SVOCs and PCBs. One of the surrogates analyzed with the pesticide blank and laboratory control sample during pesticide analysis (tetrachloro-m-xylene) was outside laboratory control limits. The surrogate recovery was just outside of the range of acceptable limits, and surrogate recoveries were within laboratory control limits for the sample analyses; therefore no data are qualified.

Laboratory Control Sample Recoveries

Laboratory control samples were processed during the laboratory analyses of SVOCs, PCBs, TOC, and metals. All laboratory blank spike recoveries were within laboratory control limits.

Laboratory Control Sample Duplicates

Laboratory blank spike duplicates were processed during the laboratory analysis of PCBs and SVOCs. The relative percent difference (RPD) between the laboratory blank and the laboratory blank spike duplicates were within quality control limits for both analyses.

Matrix Spike Recoveries

Laboratory matrix spikes and matrix spike duplicates were processed during the laboratory analysis of SVOCs, PCBs and TOC. The RPDs between the matrix spike and the matrix spike duplicates were within quality control limits all three analyses.

Sieved Samples

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures were adequate and sample integrity was maintained through the sample collection and delivery process.

Analysis Holding Times

Semi-Volatile Organic Analyses

All samples were extracted and analyzed within the required holding times.

Pesticides Analyses

All samples were extracted and analyzed within the required holding times.

Polychlorinated Biphenyls (PCBs) Analyses

All samples were extracted and analyzed within the required holding times.

Metal Analyses

All samples were extracted and analyzed within the required holding times.

Total Organic Carbon Analyses

All samples were analyzed within the required holding times.

Grain Size Analyses

There are no required holding times for this analysis.

Method Blanks

Method blanks were processed during the laboratory analysis of SVOCs, pesticides, PCBs, total organic carbon (TOC) and metals. No chemicals were detected in the method blanks associated with TOC, metals, pesticides or PCBs. Three analytes (bis(2-Ethylhexyl)phthalate, di-n-octyl phthalate and pyrene) were detected in a method blank associated with the SVOC analysis. Only phthalates are reported for this sampling event. The samples contained bis(2-ethylhexyl) phthalate at concentrations significantly higher than the method blank, therefore the samples are not qualified for that analyte. However, the samples contained di-n-octyl phthalate at concentrations that are not significantly higher than the method blank, and the samples are qualified by flagging the detected concentrations with a "J."

Surrogate Recoveries

Surrogate recoveries were completed during the laboratory analysis of SVOCs, pesticides and PCBs. All surrogate recoveries were within laboratory control limits.

Laboratory Control Sample Recoveries

Laboratory control samples were processed during the laboratory analyses of TOC, SVOCs, pesticides and PCBs. All laboratory blank spike recoveries were within laboratory control limits.

Laboratory Control Sample Duplicates

Laboratory blank spike duplicates were processed during the laboratory analysis of TOC, pesticides, PCBs and SVOCs. The relative percent difference (RPD) between the laboratory blank and the laboratory blank spike duplicates were within quality control limits for the analysis of TOC, SVOCs, pesticides and PCBs.

Matrix Spike Recoveries

Laboratory matrix spikes and matrix spike duplicates were processed during the laboratory analysis of TOC, SVOCs, pesticides, PCBs. The RPDs between the matrix spike and the matrix spike duplicates associated with SVOC, pesticide and PCB analysis were within quality control limits. The RPDs for the matrix spike and matrix spike duplicate associated with the TOC analysis exceeded quality control limits. Visual examination indicated that the RPD was outside

of quality control limits because the sample was not homogeneous, therefore no data are qualified.

				APR CO	ΰġ	ty o	f Po	City of Portland	τq		-	(Date:	90-(2-9
Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696	boratory	TO THE REAL			Bureau o		ironm	eau of Environmental Services	uy ervice	s S				Collected By: MJN 8cL	MJN Jyg
Project Name: PORTLAND HARBOR INLINE SAMP	AND HARBOR INL	INE SAI	ЧР								ſ				
File Number: 1020.001			rix:	OTHER							Requ	ueste	Requested Analyses		
			1				Gei	General		Me	Metals			Field Comments	S
OUTFALL 22										(u					
*STL will perform Pesticide /PCB and PAH analysis STL - Please send invoice to Howard Holmes at Northcreek and lab reports to Renee Chauvin or Jennifer Shackleford	e /PCB and PAH analys to Howard Holmes at N r Shackleford	sis Vorthcree	k and lab rep	oorts to		*2809/26	janic Carbon	9		tais (Cd, Cu, Z					
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample Time	Sample Type	Pesticide PAH*	Total Org	sis nisəD		əM IstoT					
	IL-22-AAM078-0606 upstream of node	22_1	27-Jun-06	t160	ß	•	•	•		•			EXTRA SI	SAMPLE PREDIVED IN STACING	ET IN STACING DRED
FO 060747	IL-22-AAM080-0606 upstream of node	22_2	27-Jun-06	1039	ც	•	•	•		•			יבי יבי	SAMPINE ATCHIVED IN	in Staciai
FO 060748	22-AAP844-0606 pstream of trash rack	22_3	27-Jun-06	85c1	U	•	•	•		•			Extra Stacin	אר אישר הענואילד אישר אישר אישר אישר אישר אישר אישר אישר	INVED IN SRIDCÉ
FO 060749	Duplicate	Dup	27-Jun-06		IJ	•	•	•		•					
9							ļ								
n _ 5							 								
Relinquished By: 1. 1		Relinquished By:	ed By: 2.					Relinquished By	ied By:	3.			Relinc	Relinquished By: 4.	
Signature: Bull	Time: 153 &	Signature:			Time:			Signature:				Time:	Signature:	ire:	Time:
Printed Name: M3CIJANA HOVSLY	R 6-27-06	Printed Name:		•	Date:		<u> </u>	Printed Name				Date	Printed Name		Date:
		Received By: Signature:	<u>By:</u> 2.		Time			Received By: Signature:		с.		Time:	Received Signature:	<u>Received By:</u> 4. Signature:	Time:
Printed Name And KIL	· 6 016/7 7/06	Printed Name:			Date:			Printed Name:				Date:	Printed Name:	l Name:	Date:
s./aid/1000/1020 001	NSampdoc/Portland Harbor W	later COC - OF 22.xls	DF 22.xls												

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0746	Sample Collected: Sample Received:	6/27/2006 06/27/06	09:17	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAND	HARBOR INLINE SAM 3-0606	Ρ		Report Page:	Page 1 of 3
		UPSTREAM	OF NODE			System ID:	AK05618
Sample Point	Code:	22_1				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	:	SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.64	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	75.3	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	670	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	2860	mg/Kg dry wt	50	EPA 9060 MOD	07/07/06
GRAIN SIZE BY SIEVE - ARI					
Coarse Sand (4750-2000 µm)	12.3	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (150-75 μm)	1.4	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (250-150 μm)	6.0	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (425-250 μm)	13.2	Fract %	0.1	ASTM D422	07/12/06
Gravel (1/2-3/8 in)	9.2	Fract %	0.1	ASTM D422	07/12/06
Gravel (1-3/4 in)	<0.1	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/4-1/2 in)	12.2	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/8 in-#4)	20.6	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (2000-850 μm)	12.7	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (850-425 µm)	11.9	Fract %	0.1	ASTM D422	07/12/06
Silt (<75)	0.5	Fract %	0.1	ASTM D422	07/12/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
4,4'-DDE	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
4,4'-DDT	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Aldrin	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Alpha-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Alpha-Chlordane	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Beta-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Delta-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Dieldrin	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Endosulfan I	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Endosulfan II	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Endosulfan Sulfate	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Endrin	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Endrin Aldehyde	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0746	Sample Collected: Sample Received:	6/27/2006 06/27/06	09:17	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca		PORTLANI IL-22-AAM0	D HARBOR INLINE SAM 78-0606	Р		Report Page:	Page 2 of 3
71001000,2000		UPSTREAM	1 OF NODE			System ID:	AK05618
Sample Point	Code:	22_1				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix		SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endrin ketone	<2.1	µg/Kg dry wt	2.1	EPA 8081	07/06/06
Gamma-BHC(Lindane)	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Gamma-Chlordane	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Heptachlor	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Heptachlor Epoxide	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Methoxychlor	<11	µg/Kg dry wt	11	EPA 8081	07/06/06
Toxaphene	<110	µg/Kg dry wt	110	EPA 8081	07/06/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1221	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1232	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1242	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1248	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1254	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1260	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Acenaphthene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Acenaphthylene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Anthracene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	33	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	40	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	37	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzofluoranthenes	41	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	360	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	740	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Chrysene	44	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	10	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Diethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Dimethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	<23	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	68	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0746	Sample Collected: Sample Received:	6/27/2006 06/27/06	09:17	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca		PORTLANI IL-22-AAM0	D HARBOR INLINE SAM 78-0606	Р		Report Page:	Page 3 of 3
		UPSTREAM	I OF NODE			System ID:	AK05618
Sample Point	Code:	22_1				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix		SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

					Analysis Date	
est Parameter	Result	Units	MRL	Method		
Fluoranthene	46	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	
Fluorene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	
Indeno(1,2,3-cd)pyrene	39	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	
Naphthalene	<5.8	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	
Phenanthrene	18	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	
Pyrene	58	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06	

End of Report for Sample ID: FO060746

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0747	Sample Collected: Sample Received:	6/27/2006 06/27/06	10:39	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN IL-22-AAM0	D HARBOR INLINE SAM 180-0606	Р		Report Page:	Page 1 of 3
		UPSTREAM	I OF NODE			System ID:	AK05619
Sample Point	Code:	22_2				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	:	SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.41	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	51.3	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	316	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	5290	mg/Kg dry wt	50	EPA 9060 MOD	07/07/06
GRAIN SIZE BY SIEVE - ARI					
Coarse Sand (4750-2000 μm)	16.1	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (150-75 μm)	1.4	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (250-150 µm)	3.6	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (425-250 µm)	11.5	Fract %	0.1	ASTM D422	07/12/06
Gravel (1/2-3/8 in)	16.3	Fract %	0.1	ASTM D422	07/12/06
Gravel (1-3/4 in)	<0.1	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/4-1/2 in)	2.5	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/8 in-#4)	22.9	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (2000-850 μm)	13.2	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (850-425 μm)	11.1	Fract %	0.1	ASTM D422	07/12/06
Silt (<75)	1.4	Fract %	0.1	ASTM D422	07/12/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
4,4'-DDE	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
4,4'-DDT	5.7	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Aldrin	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Alpha-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Alpha-Chlordane	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Beta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Delta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Dieldrin	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Endosulfan I	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Endosulfan II	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Endosulfan Sulfate	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Endrin	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Endrin Aldehyde	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0747	Sample Collected: Sample Received:	6/27/2006 06/27/06	10:39	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLANI	D HARBOR INLINE SAM 80-0606	Р		Report Page:	Page 2 of 3
, (dd) 000, 200d		UPSTREAM	OF NODE			System ID:	AK05619
Sample Point	Code:	22_2				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	:	SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endrin ketone	<2.5	µg/Kg dry wt	2.5	EPA 8081	07/06/06
Gamma-BHC(Lindane)	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Gamma-Chlordane	1.9	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Heptachlor	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Heptachlor Epoxide	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Methoxychlor	<13	µg/Kg dry wt	13	EPA 8081	07/06/06
Toxaphene	<130	µg/Kg dry wt	130	EPA 8081	07/06/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1221	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1232	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1242	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1248	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1254	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1260	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	6.0	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	7.2	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Acenaphthene	58	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Acenaphthylene	<5.9	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Anthracene	76	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	610	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	710	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	520	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Benzofluoranthenes	650	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	790	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	45	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Chrysene	700	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	160	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06
Diethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Dimethyl phthalate	1600	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	27	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	74	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0747	Sample Collected: Sample Received:	6/27/2006 06/27/06	10:39	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN IL-22-AAM	ND HARBOR INLINE SAM 080-0606	Р		Report Page:	Page 3 of 3
		UPSTREA	M OF NODE			System ID:	AK05619
Sample Point	Code:	22_2				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	:	SEDIMEN	Г			Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

				Analysis Date	
Result	Units	MRL	Method		
1000	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
42	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
600	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
17	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
640	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
870	µg/Kg dry wt	5.9	EPA 8270-SIM	07/07/06	
	1000 42 600 17 640	1000 μg/Kg dry wt 42 μg/Kg dry wt 600 μg/Kg dry wt 17 μg/Kg dry wt 640 μg/Kg dry wt	1000 μg/Kg dry wt 5.9 42 μg/Kg dry wt 5.9 600 μg/Kg dry wt 5.9 17 μg/Kg dry wt 5.9 640 μg/Kg dry wt 5.9	1000 μg/Kg dry wt 5.9 EPA 8270-SIM 42 μg/Kg dry wt 5.9 EPA 8270-SIM 600 μg/Kg dry wt 5.9 EPA 8270-SIM 17 μg/Kg dry wt 5.9 EPA 8270-SIM 640 μg/Kg dry wt 5.9 EPA 8270-SIM	

End of Report for Sample ID: FO060747

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0748	Sample Collected: Sample Received:	6/27/2006 06/27/06	12:38	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAND IL-22-AAP844	HARBOR INLINE SAM	Р		Report Page:	Page 1 of 3
		UPSTREAM (OF TRASH RACK			System ID:	AK05620
Sample Point	Code:	22_3				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	::	SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample.

Fest Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.18	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	35.9	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	79.6	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	16400	mg/Kg dry wt	50	EPA 9060 MOD	07/07/06
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	2.7	Fract %	0.1	ASTM D421/422	07/12/06
Coarse Sand (4750-2000 µm)	10.0	Fract %	0.1	ASTM D421/422	07/12/06
Fine Sand (425-75 μm)	16.9	Fract %	0.1	ASTM D421/422	07/12/06
Gravel (>4750 μm)	29.8	Fract %	0.1	ASTM D421/422	07/12/06
Medium Sand (2000-425 μm)	14.2	Fract %	0.1	ASTM D421/422	07/12/06
Silt (13-9 µm)	1.3	Fract %	0.1	ASTM D421/422	07/12/06
Silt (22-13 µm)	2.2	Fract %	0.1	ASTM D421/422	07/12/06
Silt (32-22 μm)	5.8	Fract %	0.1	ASTM D421/422	07/12/0
Silt (7-3.2 µm)	<0.1	Fract %	0.1	ASTM D421/422	07/12/0
Silt (75-32 μm)	15.8	Fract %	0.1	ASTM D421/422	07/12/0
Silt (9-7 µm)	1.3	Fract %	0.1	ASTM D421/422	07/12/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
4,4'-DDE	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
4,4'-DDT	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
Aldrin	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/0
Alpha-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Alpha-Chlordane	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Beta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Delta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/0
Dieldrin	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/0
Endosulfan I	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/0
Endosulfan II	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
Endosulfan Sulfate	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
Endrin	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
Endrin Aldehyde	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06
Endrin ketone	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/06/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0748	Sample Collected: Sample Received:	6/27/2006 06/27/06	12:38	Sample Status:	COMPLETE AND VALIDATED
Proj./Compan Address/Loca	•	PORTLAND IL-22-AAP844	HARBOR INLINE SAM	Р		Report Page:	Page 2 of 3
		UPSTREAM	OF TRASH RACK			System ID:	AK05620
Sample Point	Code:	22_3				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	c:	SEDIMENT				Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Gamma-BHC(Lindane)	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Gamma-Chlordane	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Heptachlor	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Heptachlor Epoxide	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/06/06
Methoxychlor	<13	µg/Kg dry wt	13	EPA 8081	07/06/06
Toxaphene	<130	µg/Kg dry wt	130	EPA 8081	07/06/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1221	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1232	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1242	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1248	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1254	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1260	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Acenaphthene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Acenaphthylene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Anthracene	6.9	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	44	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	63	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	59	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Benzofluoranthenes	56	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	950	µg/Kg dry wt	25	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	<25	µg/Kg dry wt	25	EPA 8270-SIM	07/07/06
Chrysene	62	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	10	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Diethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Dimethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	<25	µg/Kg dry wt	25	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	<25	µg/Kg dry wt	25	EPA 8270-SIM	07/07/06
Fluoranthene	65	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Fluorene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Indeno(1,2,3-cd)pyrene	65	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0748	Sample Collected: Sample Received:	6/27/2006 06/27/06	12:38	Sample Status:	COMPLETE AND VALIDATED
Proj./Compan Address/Loca	•	PORTLAN IL-22-AAP8	ID HARBOR INLINE SAM 344-0606	Р		Report Page:	Page 3 of 3
		UPSTREAM	M OF TRASH RACK			System ID:	AK05620
Sample Point	Code:	22_3				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	c:	SEDIMENT	-			Collected By:	MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
Naphthalene	<6.2	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Phenanthrene	29	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06
Pyrene	69	µg/Kg dry wt	6.2	EPA 8270-SIM	07/07/06

End of Report for Sample ID: FO060748

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F0060	0749	Sample Collected: Sample Received:	6/27/2006 06/27/06	00:00	Sample Status:	COMPLETE AND VALIDATED
Proj./Compan Address/Loca	•	PORTLAND DUPLICATE	HARBOR INLINE SAM	Ρ		Report Page:	Page 1 of 3
Sample Point Sample Type: Sample Matrix		DUP GRAB SEDIMENT				System ID: EID File # : LocCode: Collected By:	AK05621 1020.001 PORTHARI MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.48	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	376	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	336	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	4430	mg/Kg dry wt	50	EPA 9060 MOD	07/07/06
GRAIN SIZE BY SIEVE - ARI					
Coarse Sand (4750-2000 μm)	14.5	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (150-75 μm)	1.1	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (250-150 μm)	4.3	Fract %	0.1	ASTM D422	07/12/06
Fine Sand (425-250 µm)	10.1	Fract %	0.1	ASTM D422	07/12/06
Gravel (1/2-3/8 in)	9.2	Fract %	0.1	ASTM D422	07/12/06
Gravel (1-3/4 in)	3.5	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/4-1/2 in)	17.1	Fract %	0.1	ASTM D422	07/12/06
Gravel (3/8 in-#4)	17.9	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (2000-850 μm)	11.9	Fract %	0.1	ASTM D422	07/12/06
Medium Sand (850-425 µm)	10.1	Fract %	0.1	ASTM D422	07/12/06
Silt (<75)	0.4	Fract %	0.1	ASTM D422	07/12/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
4,4'-DDE	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
4,4'-DDT	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Aldrin	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Alpha-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Alpha-Chlordane	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Beta-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Delta-BHC	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Dieldrin	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Endosulfan I	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Endosulfan II	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Endosulfan Sulfate	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Endrin	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Endrin Aldehyde	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0749	Sample Collected: Sample Received:	6/27/2006 06/27/06	00:00	Sample Status:	COMPLETE AND VALIDATED
Proj./Compan Address/Loca	•	PORTLAND DUPLICATE	HARBOR INLINE SAM	Ρ		Report Page:	Page 2 of 3
Sample Point Sample Type: Sample Matrix		DUP GRAB SEDIMENT				System ID: EID File # : LocCode: Collected By:	AK05621 1020.001 PORTHARI MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endrin ketone	<2.3	µg/Kg dry wt	2.3	EPA 8081	07/06/06
Gamma-BHC(Lindane)	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Gamma-Chlordane	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Heptachlor	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Heptachlor Epoxide	<1.1	µg/Kg dry wt	1.1	EPA 8081	07/06/06
Methoxychlor	<11	µg/Kg dry wt	11	EPA 8081	07/06/06
Toxaphene	<110	µg/Kg dry wt	110	EPA 8081	07/06/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1221	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1232	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1242	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1248	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1254	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
Aroclor 1260	<11	µg/Kg dry wt	11	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Acenaphthene	<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Acenaphthylene	6.7	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Anthracene	<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	92	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	110	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	84	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Benzofluoranthenes	110	µg/Kg dry wt	11	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	380	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	<23	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Chrysene	140	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	23	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06
Diethyl phthalate	<11	µg/Kg dry wt	11	EPA 8270-SIM	07/07/06
Dimethyl phthalate	<11	µg/Kg dry wt	11	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	<23	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	34	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0749	Sample Collected: Sample Received:	6/27/2006 06/27/06	00:00	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN	D HARBOR INLINE SAM	Р		Report Page:	Page 3 of 3
Sample Point		DUP				System ID: EID File # :	AK05621 1020.001
Sample Type: Sample Matrix		GRAB SEDIMENT				LocCode: Collected By:	PORTHARI MJH/JXB/BCL

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One phthalate was detected in the method blank but at insignificant concentration compared to the sample. LAB: Grain size analysis for this sample was by sieve only; the sample did not contain enough fines for the hydrometer portion of the analysis.

				Analysis	
Result	Units	MRL	Method	Date	
80	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
100	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
<5.6	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
17	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
98	µg/Kg dry wt	5.6	EPA 8270-SIM	07/07/06	
	80 <5.6 100 <5.6 17	80 μg/Kg dry wt <5.6	80 μg/Kg dry wt 5.6 <5.6	80 μg/Kg dry wt 5.6 EPA 8270-SIM <5.6	

End of Report for Sample ID: FO060749

August 24, 2006

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/28/06 15:55. The following list is a summary of the Work Orders contained in this report, generated on 08/24/06 16:31.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PPF1182	Portland Harbor	36238

TestAmerica - Portland, OR

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

City of Portland Water Pollution Laboratory
6543 N. Burlington Ave.
Portland, OR 97203

Portland Harbor Project Name: Project Number: 36238 Project Manager:

Jennifer Shackelford

Report Created: 08/24/06 16:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 060746	PPF1182-01	Soil	06/27/06 09:17	06/28/06 15:55
FO 060747	PPF1182-02	Soil	06/27/06 10:39	06/28/06 15:55
FO 060748	PPF1182-03	Soil	06/27/06 12:38	06/28/06 15:55
FO 060749	PPF1182-04	Soil	06/27/06 00:00	06/28/06 15:55

TestAmerica - Portland, OR

Heula Hu

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

City of Portland Water Pollution Laboratory	Project Name:	Portland Harbor	Report Created: 08/24/06 16:31
6543 N. Burlington Ave.	Project Number:	36238	
Portland, OR 97203	Project Manager:	Jennifer Shackelford	
	istry Paramete TestAmerica - Seat	rs by APHA/EPA Methods	

		10	stranene	u Deun	.ic, w/1					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPF1182-01 (FO 060746)		So	il		Samj	pled: 06	5/27/06 09:	17		
Total Organic Carbon	EPA 9060 mod.	2860		569	mg/kg dry	1x	6G14068	07/07/06 21:50	0 07/14/06 18:19	
PPF1182-02 (FO 060747)		So	Soil Sampled: 06/27/06 10:39							
Total Organic Carbon	EPA 9060 mod.	5290		661	mg/kg dry	1x	6G14068	07/07/06 21:50	0 07/14/06 18:52	
PPF1182-03 (FO 060748)		So	il		Samj	pled: 06	5/27/06 12::	38		
Total Organic Carbon	EPA 9060 mod.	16400		678	mg/kg dry	1x	6G14068	07/07/06 21:50	0 07/14/06 18:58	
PPF1182-04 (FO 060749)		So	il		Samj	pled: 06	5/27/06 00:0	00		
Total Organic Carbon	EPA 9060 mod.	4430		587	mg/kg dry	1x	6G15011	07/07/06 20:48	8 07/15/06 13:06	

Hauland blus

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

i i	rtland Water Perington Ave. R 97203	Project N Project N Project N	lumber:	36238	nd Har r Shacke			Report Created: 08/24/06 16:31			
		Physical	Paramet Te	ers by A stAmeric			1/EPA	Metho	ds		
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPF1182-01	(FO 060746)		So	il		Sam	pled: 06	5/27/06 09:	17		
Dry Weight		BSOPSPL003R0 8	87.9		1.00	%	1x	6G07017	07/07/06 08:34	4 07/08/06 00:00	
PPF1182-02	(FO 060747)		So	il		Sam	pled: 06	5/27/06 10:	39		
Dry Weight		BSOPSPL003R0 8	75.6		1.00	%	1x	6G07017	07/07/06 08:34	4 07/08/06 00:00	
PPF1182-03	(FO 060748)		So	il		Sam	pled: 06	5/27/06 12:	38		
Dry Weight		BSOPSPL003R0 8	73.7		1.00	%	1x	6G07017	07/07/06 08:34	4 07/08/06 00:00	

PPF1182-04	(FO 060749)		Sampled: 06/27/06 00:00							
Dry Weight		BSOPSPL003R0 8	85.2		1.00	%	1x	6G07017	07/07/06 08:34	07/08/06 00:00

Hauland Hus

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

City of Portland Water I	Pollution La	boratory		Project Name:	Portla	nd Har	bor				
6543 N. Burlington Ave.				Project Number:	36238					Report Crea	ated:
Portland, OR 97203				Project Manager:	Jennife	r Shacke	lford			08/24/06 1	6:31
Conventio	nal Chemist	rv Parame	ters hv /	APHA/EPA Mo	thods	- Labor	ratory O	uality Co	ntrol R	esults	
		r y 1 ur unic	•	America - Seattle		Luboi	utory Q	unity Co		esuits	
QC Batch: 6G14068	Soil Pr	eparation M	lethod:	General Prepar	ation						
Analyte	Method	Result	MDL*	MRL Units	Dil	Source Result	Spike 9 Amt Ri	د EC (Limits)	RPD (L	imits) Analyzed	Notes
Blank (6G14068-BLK1)							Extract	ed: 07/14/06	17:13		
Total Organic Carbon	EPA 9060 mod.	ND		500 mg/kg we	t 1x					07/14/06 17:13	
LCS (6G14068-BS1)							Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	25700		500 mg/kg we	t 1x		29900 86.	0% (72-130)		07/14/06 17:19	
Duplicate (6G14068-DUP1)				QC Source: BPG	022-01		Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	16600		753 mg/kg dry	1x	8050			69.4% (3	35) 07/14/06 17:35	Q-1
Duplicate (6G14068-DUP2)				QC Source: BPG	023-01		Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	15600		942 mg/kg dry	1x	11500			30.3% (3	35) 07/14/06 17:57	
Duplicate (6G14068-DUP3)				QC Source: BPG	024-01		Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	22400		947 mg/kg dry	/ 1x	23200			3.51% (3	35) 07/14/06 18:12	
Duplicate (6G14068-DUP4)				QC Source: PPF1	182-01		Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	3160		569 mg/kg dry	/ 1x	2860			9.97% (3	35) 07/14/06 18:45	
Matrix Spike (6G14068-MS1	1)			QC Source: BPG	022-01		Extract	ed: 07/07/06	21:50		
Total Organic Carbon	EPA 9060 mod.	25600		753 mg/kg dry	/ 1x	8050	12900 13	5% (40-160)		07/14/06 17:42	
QC Batch: 6G15011	Soil Pr	eparation M	lethod:	General Prepara	ation						
Analyte	Method	Result	MDL*	MRL Units	Dil	Source Result	Spike 9, Amt RI	ہ (Limits) EC	RPD (L	imits) Analyzed	Notes
Blank (6G15011-BLK1)							Extract	ed: 07/15/06	12:50		
Total Organic Carbon	EPA 9060 mod.	ND		500 mg/kg we	t 1x					07/15/06 12:50	
LCS (6G15011-BS1)							Extract	ed: 07/07/06	20:48		
Total Organic Carbon	EPA 9060 mod.	27600		500 mg/kg we	t 1x		29900 92.	3% (72-130)	·	07/15/06 12:57	
Duplicate (6G15011-DUP1)				QC Source: BPG	064-01		Extract	ed: 07/07/06	20:48		
Total Organic Carbon	EPA 9060 mod.	18500		1150 mg/kg dry	/ 1x	20800			11.7% (3	35) 07/15/06 13:27	
Matrix Spike (6G15011-MS1				QC Source: BPG(0.01.01		_	ed: 07/07/06			

Hauland tolu

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Howard Holmes, Project Manager

City of Portland Water Pollution Laboratory	Project Name:	Portland Harbor	
6543 N. Burlington Ave.	Project Number:	36238	Report Created:
Portland, OR 97203	Project Manager:	Jennifer Shackelford	08/24/06 16:31

Conventional Chemistry Parameters by APHA/EPA Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA										
QC Batch: 6G15011 Soil Preparation Method: General Preparation										
Analyte	Method	Result	MDL*	MRL Units	Dil	Source Result	Spike ⁰ / _A (Limits) ⁰ / _{RPD} (Limits) Analyzed Notes			
Matrix Spike (6G15011-MS	1)			QC Source: BPG0064	-01		Extracted: 07/07/06 20:48			
Total Organic Carbon	EPA 9060 mod.	28800		1150 mg/kg dry	1x	20800	9540 83.9% (40-160) 07/15/06 13:36			

Hauland Hu

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

City of Portland Water Pollution Laboratory	Project Name:	Portland Harbor	
6543 N. Burlington Ave.	Project Number:	36238	Report Created:
Portland, OR 97203	Project Manager:	Jennifer Shackelford	08/24/06 16:31

Physical Parameters by APHA/ASTM/EPA Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA												
QC Batch: 6G07017 Soil Preparation Method: Dry Weight												
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	C ^(Limits) R	PM (Limits)	Analyzed	Notes
Blank (6G07017-BLK1)								Extracted	1: 07/07/06 08	3:34		
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x				07	/08/06 00:00	

Hauland Hus

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6543 N. Burlington Ave. Portland, OR 97203

Portland Harbor Project Name: Project Number: 36238 Project Manager:

Jennifer Shackelford

Report Created: 08/24/06 16:31

Notes and Definitions

Report Specific Notes:

O-14 Visual examination indicates the RPD and/or matrix spike recovery is outside the control limit due to a non-homogeneous sample matrix.

Laboratory Reporting Conventions:

- Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET
- Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND
- NR/NA _ Not Reported / Not Available
- Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry
- Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis.
- RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD _
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. _ *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Howard Holmes, Project Manager

Test Analytical testing corporation

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nunbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

			С	HAIN	OF C	USTO	DDY R	EPORT						Work Or	·der #:	PPFII	82
Called	CLIENT: City of P REPORT TO: ADDRESS: Jen		ackelburo				INVOICE		irle.	s Ly	t/ e				in I	ROUND REQUEST Business Days * Inorganic Analyses	
d Test Amer	PHONE: PROJECT NAME: COHRA PROJECT NUMBER:	FAX: A Harbon Inline	r Siamp	- LAW LEVEZ (A)	2-LEVEL		P.O. NUN		PRESERV UESTED A					5 5 5 5 5 5 7 0		4 3 2 Hydrocarbon Analyses 3 2 1 Specify:	1 <1
ନ	SAMPLED BY: CLIENT SAMPLE IDENTIFICATION		MPLING ME/TIME	Pert/Page	PAH Lai	TOC	Grain							* Turnaround MATRIX (W, S, O)	# OF CONT.	than standard may incur LOCATION / COMMENTS	Rush Charges NCA WO ID
m asso	FO 060746	6/27/00	0917	X	\times	Х	X							S	5		
	, FU 060747		1039	X	\times	\times	X							2	5		
6/28	FU 060748		1238	X	\times	\times	Х							S	5		
Rink	. FO 060749	4		X	X	\times	X							S	5		
,	6		<u> </u>														
	8																
	10 RELEASED BY: Monally		· · · · · · · · · · · · · · · · · · ·				DATE	6/28/	26	RECEIVED	Rot Rot	Goo				DATE	558/00
	PRINT NAME: Kong K RELEASED BY:		FIRM: C	hy : f (C.M.	nd	TIME:	¢/28/ 43	0	PRINT NAM	B	5F	~	FIRM	TA #		14:30
	PRINT NAME:		FIRM:				TIME:			RECEIVED	E:			FIRM:			ab 15.55
	ADDITIONAL REMARKS: COC REV 09/2004	end Low	·Level	Pest	icide	s / ^C	BS a	nd LOV	J-Le	<u>vel</u> r	'AH .	to STL	- .				GE OF

Non-Conformances? Circle Y or N (If Y, see other side)

TEST AMERICA	SAMOLE	DECEIDE	CHECKLICT
TEST AMERICA	SAMPLE	KEUEIP I	CHECKLIST

Received By: (applies to temp at receipt)	Logged-in By:	Unpacked/Labeled B	y: Cooler ID: (of)
Date: <u>6/25/0</u> 6 Time: <u>74:30</u> Initials: <u>79.4</u>	Date: <u>C(2</u> 25 Initials: <u>CF</u>	Date: <u>U(2%</u> Initials: <u>LF</u>	Work Order No Client: <i>of Pourland</i> Project:
Container Type: Cooler Box None/Other Refrigerant: Gel Ice Pack Loose Ice None/Other	Ship. Contain On Bottles	None	Packing Material Bubble Bags Styrofoam Foam Packs None/Other One DCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Cooler Temperature (<i>IF</i>	<u>R): </u> C Plastic G (circle one	lass (Frozen filters, Ted	GS Other llars and aqueous Metals exempt)
Temperature Blank?	°C or NA	Trip Blank?	Y or N or NA
Sample Containers: Intact? Provided by NCA? Correct Type? #Containers match COC IDs/time/date match COC		Client QAPP Pre Adequate Volum (for tests requested) Water VOAs: He	e? Y or N or NA
Hold Times in hold?	\		
Is the Chain of Custody			$Y \ \ or \ \ N \ \ If N,$ circle the items that were incomplete
	<u></u>		
Total access set up? Has client been contacted reg PM Initials:	-	Time:	Y or N Y or N If Y,/ Date Time

(rev 3, 09/12/05)

July 13, 2006

Mr. Howard Holmes Test America, Inc. 9405 SW Nimbus Ave. Beaverton, OR 97008

Subject: Project No.: PPF1182; ARI Project No.: JO49

Dear Mr. Holmes;

The following pages provide the information you requested. The report consists of tables, plots, and a narrative describing the testing methods. Please call me to discuss any questions, or comments you may have on the data or its presentation.

Best Regards, Analytical Resources Incorporated

Baur

Harold Benny Geotechnical Division Manager 206-695-6246 haroldb@arilabs.com

Enclosures

cc: File JO49

Client: Test America

ARI Project No.: JO49

Client Project: PPF1182

Case Narrative

- 1. Four samples were received on June 30, 2006, and were in good condition.
- 2. The samples were tested for grain size distribution according to ASTM D-422.
- 3. A visual examination of the grain size was performed on each sample. It was determined that all the samples would be tested by sieve only method except for PPF1182-03. This sample contained enough fines to be tested by hydrometer and sieve, and was prepared using the dry prep method ASTM D-421.
- 4. A specific gravity of 2.65 was assumed for the calculations. This appeared to be a reasonable assumption.
- 5. A "milkshake" mixer was used to disperse the hydrometer portion of the sample.
- 6. The data is provided in summary tables and plots.
- 7. There were no perceived anomalies to the samples or testing.

<u>tanfor mckenzie</u> Lead Vechnician Approved by: Title:

Date: 7/12/02

SUBCONTRACT ORDER

5049

TestAmerica - Portland, OR

PPF1182

SENDING LABORATORY:

TestAmerica - Portland, OR 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210 Project Manager: Howard Holmes

RECEIVING LABORATORY:

Rosa Environmental & Geotechnical Laboratory/ARI 4611 S. 134th Place Suite 100 Tukwila, WA 98168 Phone :(206) 695-6200 Fax: (206) 695-6201

Analysis	Due		Expires	Laboratory ID	Comments
Sample ID: PPF1182-01	Soil	Sam	pled:06/27/06 09:17	J049A	
Grain Size (ASTM) - SUB	07/12/06	23:59	12/24/06 09:17		
Containers Supplied:					
<u>8 oz. jar (A)</u>		41244,11144,100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			
Sample ID: PPF1182-02	Soil	Sam	pled:06/27/06 10:39	Jo49 B	
Grain Size (ASTM) - SUB	07/12/06	23:59	12/24/06 10:39		
Containers Supplied:					
8 oz. jar (A)					
Sample ID: PPF1182-03	Soil	Sam	pled:06/27/06 12:38	J049C	
Grain Size (ASTM) - SUB	07/12/06	23:59	12/24/06 12:38		
Containers Supplied:					
8 oz. jar (A)					
Sample ID: PPF1182-04	Soil	Sam	pled:06/27/06 00:00	J&49D	
Grain Size (ASTM) - SUB	07/12/06	23:59	12/24/06 00:00		
Containers Supplied:					
8 oz. jar (A)					

Cong the 6/30/06 2015 011 Released By Date Received By

Cooler Receipt Form

RI Client: TEST Am	Project Name:	
OC NO.:	Delivered By: $-/Ap \leq/Ap \leq$	
racking NO.:		
RI Job No.:	Lims NO.:	
reliminary Examination Phase:		
1. Were intact, properly signed and dated custody	seals attached	
To the outside of the cooler?		YES NO
2. Were custody papers included with the cooler	·	··· YES NO
3. Were custody papers properly filled out (ink, sig	ned etc.)?	YES NO
4. Complete custody forms and attach all shipping		
ooler Accepted BY: 156 Cong to	Date: <u>6/36/06</u>	Time: <u>/0/5</u> _
og-IN Phase:		
5. Was a temperature blank include in the cooler?		YES NO
6. Record Cooler Temperature		<u>5,2 °</u>
7. What kind of packing material was used?		ICE
8. Was sufficient ice used (if appropriate)?		YES NO
9. Were all bottles sealed in separate plastic bags? .		YES (NO)
10. Did all bottles arrive in good condition (unbroken		(YES) NO
11. Were all bottle labels complete and legible?		YES NO
12. Did all bottle labels and tags agree with custody provide the state of the stat	papers?	(TES) NO
13. Were all bottles used correct for the requested an	nalyses?	(YES) NO
14. Do any of the analyses (bottles) require preservat	tive?	
(If so, Preservation checklist must be attached)		YES NO
15. Were all VOA vials free of air bubbles?	· · · · · · · · · · · · · · · · · · ·	YES NO
16. Was sufficient amount of sample sent in each bot	tle?	YES NO
17. Notify Project Manager of any discrepancies or co	oncerns	OK NA
210		
oler Opened By: 1000 Congla	Date: <u>6/32/86</u>	Time 6015
plain any discrepancies or negative responses:		***************
		·
		ne an
	·	

16F

Revision7(1/10/01)

Test America PPF1182

Percent Finer Than Indicated Size, By ASTM D422

PPF1182-02	PPF1182-01	Sample ID
30.1	13.4	Moisture Content (%)
100.0	100.0	4
100.0	100.0	3/4"
97.5	87.8	1/2"
81.2	78.6	
58.3	58.1	#4
42.2	45.7	#10
28.9	33.1	#20
17.8	21.2	#40
6.3	7.9	#60
2.8	2.0	#100
1.4	0.5	#200
	30 1 100 0 100 0 97 5 81 2 58 3 42 2 28 9 17 8 6.3 2.8	100.0 100.0 87.8 78.6 58.1 45.7 33.1 21.2 7.9 2.0 100.0 100.0 97.5 81.2 58.3 42.2 28.9 17.8 6.3 2.8

JO49

Test America PPF1182

Percent Retained in Each Size Fraction, By ASTM D422

PPF1182-04 3.5 17.1 9.2 17.9 14.5 11.9	PPF1182-02 0.0	PPF1182-01 0.0	Sieve Size (microns)
17.1 9.2 17.9 14.5 11.9	0.0	0.(
9.2 17.9 14.5 11.9			1-3/4"
17.9 14.5 11.9	2.5	12.2	3/4-1/2"
17.9 14.5 11.9	16.3	9.2	1/2-3/8"
11.9	22.9	20.6	3/8-#4
11.9	16.1	12.3	4750-2000
	13.2	12.7	4750-2000 2000-850 850-425
10.1		11.9	850-425
10.1	11.5	13.2	425-250
4.3	3.6	6.0	250-150
 	1.4	1.4	150-75
0.4	1.4	0.5	<75

ANALYTICAL RESOURCES

Test America PPF1182

Percent Finer (Passing) Than the Indicated Size

PPF1182-03	Sieve Size (microns)
100.0	3/4"
90.3	1/2"
83.1	3/8"
70.2	#4 (4750)
60.2	#10 (2000)
52.2	#20 (850)
46.0	#40 (425)
40.7	#60 (250)
36.1	#100 (150)
29.1	#200 (75)
13.3	32
7.5	22
5.3	13
4.0	Q
2.7	7
2.7	3.2
2.7	1.3

Testing performed according to ASTM D421/D422

JO49

Test America PPF1182

Percent Retained in Each Size Fraction

2.7	0.0	1.3	1.3	2.2	5.8	15.8	16.9	14.2	10.0	29.8	PPF1182-03
<3.2	7-3.2	9-7	13-9	22-13	32-22	75-32	425-75	2000-425	4750-2000 2000-425	> 4750	Particle Size (microns)
% Clay	% Very Fine Silt	% Fine Silt	% Fine Silt	% Medium Silt	% Coarse Silt	% Very Coarse Silt	% Fine Sand	% Medium Sand	% Coarse Sand	% Gravel	Description

J049

ANALYTICAL RESOURCES INCORPORATED

Test Merica ANALYTICAL TESTING CORPORATION

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

	С	HAIN OF CUS	TODY REPORT		Work Order #: PPF1182
CLIENT: City of Po	Mand		INVOICE TO:	1999 - 199	TURNAROUND REQUEST
	iifer Shackelfurd		Charl	es Lytle	in Business Days * Organic & Inorganic Analyses
	FAX:	A Company	P.O. NUMBER: 362		STD. 7 5 4 3 2 1 < 1
PROJECT NAME: PROJECT NAME: PROJECT NUMBER:	d Harbor Inline Samp	191-191-C		D ANALYSES	5 4 3 2 1 <1
SAMPLED BY:		3 E 3 C			OTHER Specify: * Turnaround Requests less than standard may incur Rush Charge
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	Pert/Past EPA 8081-40 PAH 460- 8270-51M	6rain Size		MATRIX # OF LOCATION / NCA (W, S, O) CONT. COMMENTS WO II
FO 060746	6/27/06 0917	$ X \times X $	$\langle \times $		S 5
2 FO 060747	1 1039	$\times \times \times$	$\langle \times$		S 5
, FO 060748	/238	$\times \times \times$	$\langle X $		S 5
F0 060749	-	$\times \times \times$			S 5
5					
6	-	· · · · · · · · · · · · · · · · · · ·			
8	-				
9					
10					
RELEASED BY: 10000100 PRINT NAME: Rong K	Meh FIRM: CII	hy of Cortland	date: \$/28/06 time: 430	RECEIVED BY 15014	FIRM: TAA TIME: 14
RELEASED BY:		/	DATE:	RECEIVED BY:	DATE: Cab FIRM: TIME: BS: Se
PRINT NAME: ADDITIONAL REMARKS:	FIRM:	Quelo 11 - 1	TIME:		FIRM: TIME: 15:55
COC REV 09/2004	nal Low Level	resticides//	los and Lobi-L	evel PAH to STL.	1.7 PAGE for 1

ANALYTICAL REPORT

Job Number: 580-2965-1

Job Description: PPF1182

For: TestAmerica Analytical Testing Corp. 9405 SW Nimbus Ave Beaverton, OR 97008

Attention: Howard Holmes

Ton

Tom Coyner Project Manager I tcoyner@stl-inc.com 07/25/2006

Project Manager: Tom Coyner

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Case Narrative for project: 580-2965

CHLORINATED PESTICIDES

Samples 580-2965-1 through 580-2965-4 were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A. The samples were prepared on 07/06/2006 and analyzed on 07/12/2006, which was within the method required holding time. **Tetrachloro-m-xylene had a recovery of 129%, which failed the LCS recovery criteria of 49 - 123%.**

----LCS 580-8618/2-A-----

Tetrachloro-m-xylene had a recovery of 130%, which failed the LCS recovery criteria of 49 - 123%.

No difficulties were encountered during the chlorinated pesticides analyses.

POLYCHLORINATED BIPHENYLS (PCB'S)

Samples 580-2965-1 through 580-2965-4 were analyzed for polychlorinated biphenyls (PCB's) in accordance with EPA SW-846 Method 8082. The samples were prepared on 07/07/2006 and analyzed on 07/10/2006, which was within the method required holding time. No difficulties were encountered during the PCB analyses.

SEMIVOLATILE ORGANICS

Samples 580-2965-1 through 580-2965-4 were analyzed for semivolatile organics in accordance with EPA SW-846 Method 8270C. The samples were prepared on 07/07/2006 and analyzed on 07/14/2006 and 07/25/2006, which was within the method required holding time. Bis(2-ethylhexyl) phthalate was detected in method blank MB 580-8685/1-A at a level exceeding the reporting limit. The associated sample results have been flagged "B".

METHOD SUMMARY

Client: TestAmerica Analytical Testing Corp.

Description	Lab Location	Method Preparation Method
Matrix: Solid		
Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)	STL-SEA	SW846 8270C
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Organochlorine Pesticides by Gas Chromatography	STL-SEA	SW846 8081A
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Polychlorinated Biphenyls (PCBs) by Gas Chromatography	STL-SEA	SW846 8082
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Percent Moisture	STL-SEA	EPA PercentMoisture

LAB REFERENCES:

STL-SEA = STL-Seattle

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
SAMPLE SUMMARY

Client: TestAmerica Analytical Testing Corp.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
580-2965-1	PPF1182-01	Solid	06/27/2006 0917	06/30/2006 0900
580-2965-2	PPF1182-02	Solid	06/27/2006 1039	06/30/2006 0900
580-2965-3	PPF1182-03	Solid	06/27/2006 1238	06/30/2006 0900
580-2965-4	PPF1182-04	Solid	06/27/2006 0000	06/30/2006 0900

SAMPLE RESULTS

Client: TestAmerica Analytical Testing Corp.

Client Sample ID	: PPF1182-01								
Lab Sample ID:	580-2965-1			Date Sampled: 06/27/2006 0917					
Client Matrix:	Solid	% Moisture:	13.9	Date Received: 06/30/2006 0900					
	8270C Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)								
Method:	8270C	Analysi	s Batch: 580-8140	Instrument ID: SEA023					
Preparation:	3550B	Prep Ba	atch: 580-8685	Lab File ID: HP01938.D					
Dilution:	1.0			Initial Weight/Volume: 10.0493 g					
Date Analyzed:	07/14/2006 1656			Final Weight/Volume: 10 mL					
Date Prepared:	07/07/2006 1341			Injection Volume:					
Analyte	Dr	yWt Corrected: Y	Result (ug/Kg)	Qualifier RL					
Naphthalene		-	ND	5.8					
2-Methylnaphthale	ene		ND	5.8					
1-Methylnaphthale	ene		ND	5.8					
Acenaphthylene			ND	5.8					
Acenaphthene			ND	5.8					
Fluorene			ND	5.8					
Phenanthrene			18	5.8					
Anthracene			ND	5.8					
Fluoranthene			46	5.8					
Pyrene			58	5.8					
Benzo[a]anthracer	ne		33	5.8					
Chrysene Benzofluoranthene	_		44 41	5.8 12					
Benzo[a]pyrene	3		40	5.8					
Indeno[1,2,3-cd]py	rene		39	5.8					
Dibenz(a,h)anthra			10	5.8					
Benzo[g,h,i]peryle			37	5.8					
Bis(2-ethylhexyl) p			360	B 23					
Butyl benzyl phtha			740	23					
Diethyl phthalate			ND	12					
Dimethyl phthalate	e		ND	12					
Di-n-butyl phthalat	e		ND	23					
Di-n-octyl phthalat	e		68	23					
Surrogate			%Rec	Acceptance Limits					
Nitrobenzene-d5			98	38 - 141					
2-Fluorobiphenyl			89	42 - 140					
Terphenyl-d14			83	42 - 151					

Client: TestAmerica Analytical Testing Corp.

Client Sample ID	: PPF1182-02	2		
Lab Sample ID: Client Matrix:	580-2965-2 Solid	% Moisture:	22.3	Date Sampled: 06/27/2006 1039 Date Received: 06/30/2006 0900
Chefit Matrix.	30110	% Moisture.	22.3	Date Received: 06/30/2006 0900
	8270C Semivola	tile Organic Compo	ounds by GC/MS (S	elective Ion Monitoring)
Method:	8270C		is Batch: 580-8140	Instrument ID: SEA023
Preparation:	3550B	Prep B	atch: 580-8685	Lab File ID: HP01958.D
Dilution:	1.0			Initial Weight/Volume: 10.8685 g
Date Analyzed:	07/25/2006 093			Final Weight/Volume: 10 mL
Date Prepared:	07/07/2006 134	41		Injection Volume:
Analyte	l	DryWt Corrected: Y	Result (ug/Kg)	Qualifier RL
Naphthalene			17	5.9
2-Methylnaphthale	ene		7.2	5.9
1-Methylnaphthale	ene		6.0	5.9
Acenaphthylene			ND	5.9
Acenaphthene			58	5.9
Fluorene			42	5.9
Phenanthrene			640	5.9
Anthracene			76	5.9
Fluoranthene			1000	5.9
Pyrene			870	5.9
Benzo[a]anthracer	ne		610	5.9
Chrysene			700	5.9
Benzofluoranthene	9		650	12
Benzo[a]pyrene			710	5.9
Indeno[1,2,3-cd]py			600	5.9
Dibenz(a,h)anthra			160	5.9
Benzo[g,h,i]peryle			520	5.9
Bis(2-ethylhexyl) p			790	24
Butyl benzyl phtha	liate		45	24
Diethyl phthalate			ND	12 12
Dimethyl phthalate			1600 27	
Di-n-butyl phthalat Di-n-octyl phthalat			27 74	24 24
Surrogate			%Rec	Acceptance Limits
Nitrobenzene-d5			98	38 - 141
2-Fluorobiphenyl			90 94	42 - 140
Terphenyl-d14			94	42 - 151

Client: TestAmerica Analytical Testing Corp.

Client Sample ID:	PPF1182	-03		
Lab Sample ID: Client Matrix:	580-2965 Solid	-3 % Moisture:	26.5	Date Sampled: 06/27/2006 1238 Date Received: 06/30/2006 0900
8	8270C Semiv	olatile Organic Compo	ounds by GC/MS (Se	elective Ion Monitoring)
Method:	8270C		s Batch: 580-8140	Instrument ID: SEA023
Preparation:	3550B	Prep Ba	atch: 580-8685	Lab File ID: HP01956.D
Dilution:	1.0			Initial Weight/Volume: 10.9233 g
Date Analyzed:	07/25/2006			Final Weight/Volume: 10 mL
Date Prepared:	07/07/2006	1341		Injection Volume:
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifier RL
Naphthalene		,	ND	6.2
2-Methylnaphthalei	ne		ND	6.2
1-Methylnaphthale			ND	6.2
Acenaphthylene			ND	6.2
Acenaphthene			ND	6.2
Fluorene			ND	6.2
Phenanthrene			29	6.2
Anthracene			6.9	6.2
Fluoranthene			65	6.2
Pyrene			69	6.2
Benzo[a]anthracen	е		44	6.2
Chrysene			62	6.2
Benzofluoranthene			56	12
Benzo[a]pyrene			63	6.2
Indeno[1,2,3-cd]py			65	6.2
Dibenz(a,h)anthrac			10 59	6.2 6.2
Benzo[g,h,i]peryler Bis(2-ethylhexyl) pl			950	25
Butyl benzyl phthal			950 ND	25
Diethyl phthalate			ND	12
Dimethyl phthalate			ND	12
Di-n-butyl phthalate			ND	25
Di-n-octyl phthalate			ND	25
Surrogate			%Rec	Acceptance Limits
Nitrobenzene-d5			110	38 - 141
2-Fluorobiphenyl			117	42 - 140
Terphenyl-d14			120	42 - 151

Client: TestAmerica Analytical Testing Corp.

Client Sample ID:	: PPF1182-04	L		
Lab Sample ID:	580-2965-4			Date Sampled: 06/27/2006 0000
Client Matrix:	Solid	% Moisture:	15.5	Date Received: 06/30/2006 0900
	8270C Semivola	tile Organic Compo	ounds by GC/MS (S	elective Ion Monitoring)
Method:	8270C	-	s Batch: 580-8140	Instrument ID: SEA023
Preparation:	3550B	Prep Ba	atch: 580-8685	Lab File ID: HP01957.D
Dilution:	1.0			Initial Weight/Volume: 10.4781 g
Date Analyzed:	07/25/2006 09			Final Weight/Volume: 10 mL
Date Prepared:	07/07/2006 134	41		Injection Volume:
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifier RL
Naphthalene		,	ND	5.6
2-Methylnaphthale	ne		ND	5.6
1-Methylnaphthale			ND	5.6
Acenaphthylene			6.7	5.6
Acenaphthene			ND	5.6
Fluorene			ND	5.6
Phenanthrene			17	5.6
Anthracene			ND	5.6
Fluoranthene			80	5.6
Pyrene			98	5.6
Benzo[a]anthracer	ie		92	5.6
Chrysene Benzofluoranthene			140 110	5.6 11
Benzo[a]pyrene	;		110	5.6
Indeno[1,2,3-cd]py	rono		100	5.6
Dibenz(a,h)anthrac			23	5.6
Benzo[g,h,i]peryler			84	5.6
Bis(2-ethylhexyl) p			380	23
Butyl benzyl phtha			ND	23
Diethyl phthalate			ND	11
Dimethyl phthalate			ND	11
Di-n-butyl phthalate			ND	23
Di-n-octyl phthalate	e		34	23
Surrogate			%Rec	Acceptance Limits
Nitrobenzene-d5			96	38 - 141
2-Fluorobiphenyl			95	42 - 140
Terphenyl-d14			96	42 - 151

Client Sample ID	: PPF1182-01			
Lab Sample ID: Client Matrix:	580-2965-1 Solid	% Moisture:	13.9	Date Sampled: 06/27/2006 0917 Date Received: 06/30/2006 0900
	8081A C	Organochlorine Pe	sticides by Gas Ch	romatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 07/12/2006 1538 07/06/2006 0915	Prep Ba	s Batch: 580-8899 atch: 580-8618	Instrument ID: SEA035 Lab File ID: ECD20276.D Initial Weight/Volume: 10.8104 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
Analyte	Di	ryWt Corrected: Y	Result (ug/Kg)	Qualifier RL
Aldrin alpha-BHC beta-BHC gamma-BHC (Linc 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor Heptachlor Endrin ketone Toxaphene alpha-Chlordane	, ,		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{c} 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 2.1\\ 2.1\\$
gamma-Chlordane Surrogate	;		ND %Rec	1.1 Acceptance Limits
Tetrachloro-m-xyle DCB Decachlorob			47 49	I 49 - 123 40 - 158

Client: TestAmerica Analytical Testing Corp.

Client Sample ID	: PPF1182-02				
Lab Sample ID: Client Matrix:	580-2965-2 Solid	% Moisture:	22.3	Date Sampled:06/27/20061039Date Received:06/30/20060900	
	8081A Or	ganochlorine Pe	sticides by Gas Ch	romatography	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 07/12/2006 1557 07/06/2006 0915		s Batch: 580-8899 atch: 580-8618	Instrument ID: SEA035 Lab File ID: ECD20277.D Initial Weight/Volume: 10.2289 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY	
Analyte	Dry	Wt Corrected: Y	Result (ug/Kg)	Qualifier RL	
Aldrin			ND	1.3	
alpha-BHC			ND	1.3	
beta-BHC			ND	1.3	
delta-BHC			ND	1.3	
gamma-BHC (Lind	lane)		ND	1.3	
4,4'-DDD			ND	2.5	
4,4'-DDE			ND	2.5	
4,4'-DDT			5.7	2.5	
Dieldrin			ND	2.5	
Endosulfan I			ND	1.3	
Endosulfan II			ND	2.5	
Endosulfan sulfate	9		ND	2.5	
Endrin			ND	2.5	
Endrin aldehyde			ND	2.5	
Heptachlor			ND	1.3	
Heptachlor epoxid Methoxychlor	e		ND ND	1.3 13	
Endrin ketone			ND	2.5	
Toxaphene			ND	2.5 130	
alpha-Chlordane			ND	1.3	
gamma-Chlordane	9		1.9	M 1.3	
Surrogate			%Rec	Acceptance Limits	
Tetrachloro-m-xyle	ene		54	49 - 123	
DCB Decachlorob			50	40 - 158	

Client: TestAmerica Analytical Testing Corp.

Client Sample ID	: PPF1182-03			
Lab Sample ID: Client Matrix:	580-2965-3 Solid	% Moisture:	26.5	Date Sampled: 06/27/2006 1238 Date Received: 06/30/2006 0900
	8081A O	rganochlorine Pe	sticides by Gas Ch	romatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 07/12/2006 1617 07/06/2006 0915	•	s Batch: 580-8899 atch: 580-8618	Instrument ID: SEA035 Lab File ID: ECD20278.D Initial Weight/Volume: 10.5849 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
Analyte	Dr	Wt Corrected: Y	Result (ug/Kg)	Qualifier RL
Aldrin alpha-BHC beta-BHC gamma-BHC (Lind 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor Heptachlor Endrin ketone Toxaphene alpha-Chlordane	, ,		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{c} 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 2.6\\ 2.6\\ 2.6\\ 2.6\\ 2.6\\ 2.6\\ 2.6\\ 2.6$
gamma-Chlordane)		ND	1.3
Surrogate Tetrachloro-m-xyle DCB Decachlorob			%Rec 123 81	Acceptance Limits 49 - 123 40 - 158

Client: TestAmerica Analytical Testing Corp.

Client Sample ID:	PPF1182-04							
Lab Sample ID: Client Matrix:	580-2965-4 Solid	% Moisture:	15.5	Date Sampled:06/27/20060000Date Received:06/30/20060900				
8081A Organochlorine Pesticides by Gas Chromatography								
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 07/12/2006 1636 07/06/2006 0915		s Batch: 580-8899 atch: 580-8618	Instrument ID: SEA035 Lab File ID: ECD20279.D Initial Weight/Volume: 10.5006 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY				
Analyte	Dr	/Wt Corrected: Y	Result (ug/Kg)	Qualifier RL				
Aldrin alpha-BHC beta-BHC gamma-BHC (Lind 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor			ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.1 1.1 1.1 1.1 1.1 2.3 2.3 2.3 2.3 2.3 1.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3				
Endrin ketone Toxaphene alpha-Chlordane gamma-Chlordane			ND ND ND ND	2.3 110 1.1 1.1				
Surrogate Tetrachloro-m-xyle DCB Decachlorobi			%Rec 53 46	Acceptance Limits 49 - 123 40 - 158				

Client: TestAmerica Analytical Testing Corp.

Client Sample ID:	PPF1182-01				
Lab Sample ID:	580-2965-1			Date Sampled: 06/27/2006 0917	
Client Matrix:	Solid	% Moisture:	13.9	Date Received: 06/30/2006 0900	
	8082 Polych	lorinated Biphen	yls (PCBs) by Gas	Chromatography	
Method:	8082	Analysi	s Batch: 580-8967	Instrument ID: SEA034	
Preparation:	3550B	Prep Ba	atch: 580-8673	Lab File ID: PCB1950.D	
Dilution:	1.0			Initial Weight/Volume: 10.8121 g	
Date Analyzed:	07/10/2006 1854			Final Weight/Volume: 10 mL	
Date Prepared:	07/07/2006 1126			Injection Volume:	
				Column ID: PRIMARY	
Analyte	Dry	Wt Corrected: Y	Result (mg/Kg)	Qualifier RL	
PCB-1016			ND	0.011	
PCB-1221			ND	0.011	
PCB-1232			ND	0.011	
PCB-1242			ND	0.011	
PCB-1248			ND	0.011	
PCB-1254			ND	0.011	
PCB-1260			ND	0.011	
Surrogate			%Rec	Acceptance Limits	
Tetrachloro-m-xyle	ne		98	60 - 123	
DCB Decachlorobi	phenyl		88	65 - 126	

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Client Sample ID	: PPF1182-02			
Lab Sample ID: Client Matrix:	580-2965-2 Solid	% Moisture:	22.3	Date Sampled: 06/27/2006 1039 Date Received: 06/30/2006 0900
	8082 Polycl	hlorinated Biphen	yls (PCBs) by Gas	Chromatography
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 07/10/2006 1917 07/07/2006 1126	Prep Ba	s Batch: 580-8967 atch: 580-8673	Instrument ID: SEA034 Lab File ID: PCB1951.D Initial Weight/Volume: 10.4825 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
Analyte	Dr	yWt Corrected: Y	Result (mg/Kg)	Qualifier RL
PCB-1016 PCB-1221			ND ND	0.012 0.012
PCB-1232 PCB-1242			ND ND	0.012 0.012
PCB-1248 PCB-1254			ND ND	0.012 0.012
PCB-1260 Surrogate			ND %Rec	0.012 Acceptance Limits
Tetrachloro-m-xyle			101 93	60 - 123 65 - 126

STL Seattle

Client Sample ID:	PPF1182-03				
Lab Sample ID:	580-2965-3			Date Samp	led: 06/27/2006 1238
Client Matrix:	Solid	% Moisture:	26.5	Date Recei	ved: 06/30/2006 0900
	8082 Polych	lorinated Bipher	yls (PCBs) by Gas	Chromatography	
Method:	8082	Analysi	s Batch: 580-8967	Instrument ID:	SEA034
Preparation:	3550B	Prep Ba	atch: 580-8673	Lab File ID:	PCB1952.D
Dilution:	1.0			Initial Weight/Vo	olume: 10.8933 g
Date Analyzed:	07/10/2006 1941			Final Weight/Vo	lume: 10 mL
Date Prepared:	07/07/2006 1126			Injection Volume	e:
				Column ID:	PRIMARY
Analyte	Dry	Wt Corrected: Y	Result (mg/Kg)	Qualifier	RL
PCB-1016			ND		0.012
PCB-1221			ND		0.012
PCB-1232			ND		0.012
PCB-1242			ND		0.012
PCB-1248			ND		0.012
PCB-1254			ND		0.012
PCB-1260			ND		0.012
Surrogate			%Rec	Ac	ceptance Limits
Tetrachloro-m-xyle	ne		101	60 - 123	
DCB Decachlorobi	phenyl		91	6	65 - 126

Client Sample ID): PPF1182-04					
Lab Sample ID: Client Matrix:	580-2965-4 Solid	% Moisture:	15.5	Date Samp Date Rece		
	8082 Polychl	orinated Bipher	nyls (PCBs) by Gas	Chromatography		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 3550B 1.0 07/10/2006 2004 07/07/2006 1126	,	is Batch: 580-8967 atch: 580-8673	Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo Injection Volum Column ID:	olume: 10 mL	0
Analyte	Dry	Wt Corrected: Y	Result (mg/Kg)	Qualifier	RL	
PCB-1016			ND		0.011	

Dilution: Date Analyzed: Date Prepared:	1.0 07/10/2006 07/07/2006			Initial Weight/\ Final Weight/V Injection Volur Column ID:	/olume: 10 mL
Analyte		DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
PCB-1016			ND		0.011
PCB-1221			ND		0.011
PCB-1232			ND		0.011
PCB-1242			ND		0.011
PCB-1248			ND		0.011
PCB-1254			ND		0.011
PCB-1260			ND		0.011
Surrogate			%Rec	A	Acceptance Limits
Tetrachloro-m-xyl	ene		94		60 - 123
DCB Decachlorob	piphenyl		90		65 - 126

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Client: TestAmerica Analytical Testing Corp.

		General Chemistry		
Client Sample ID:	PPF1182-01			
Lab Sample ID: Client Matrix:	580-2965-1 Solid		Date Sampled: Date Received:	
Analyte	Result	Qual Units	RL	Dil Method
Percent Solids	86 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur
Percent Moisture	14 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur
Client Sample ID:	PPF1182-02			
Lab Sample ID: Client Matrix:	580-2965-2 Solid		Date Sampled: Date Received:	
Analyte	Result	Qual Units	RL	Dil Method
Percent Solids	78 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur
Percent Moisture	22 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur
Client Sample ID:	PPF1182-03			
Lab Sample ID: Client Matrix:	580-2965-3 Solid		Date Sampled: Date Received:	
Analyte	Result	Qual Units	RL	Dil Method
Percent Solids	73 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur
Percent Moisture	27 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 082	0.10 3	1.0 PercentMoistur

Client: TestAmerica Analytical Testing Corp.

		General Chemistry			
Client Sample ID:	PPF1182-04				
Lab Sample ID: Client Matrix:	580-2965-4 Solid		Date Sampled: Date Received		27/2006 0000 30/2006 0900
Analyte	Result	Qual Units	RL	Dil	Method
Percent Solids	84 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 0823	0.10	1.0	PercentMoisture
Percent Moisture	16 Anly Batch: 580-8555	% Date Analyzed 07/03/2006 0823	0.10	1.0	PercentMoisture

DATA REPORTING QUALIFIERS

Client: TestAmerica Analytical Testing Corp.

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
GC Semi VOA		
	I	Indicates the presence of an interference, recovery is not calculated.
	Μ	Manual integrated compound.
	Х	Surrogate exceeds the control limits

QUALITY CONTROL RESULTS

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS Semi VOA				
Prep Batch: 580-8685				
LCS 580-8685/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-8685/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8685/1-A	Method Blank	Solid	3550B	
580-2965-1	PPF1182-01	Solid	3550B	
580-2965-2	PPF1182-02	Solid	3550B	
580-2965-3	PPF1182-03	Solid	3550B	
580-2965-4	PPF1182-04	Solid	3550B	
Analysis Batch:580-81	40			
LCS 580-8685/2-A	Lab Control Spike	Solid	8270C	580-8685
LCSD 580-8685/3-A	Lab Control Spike Duplicate	Solid	8270C	580-8685
MB 580-8685/1-A	Method Blank	Solid	8270C	580-8685
580-2965-1	PPF1182-01	Solid	8270C	580-8685
580-2965-2	PPF1182-02	Solid	8270C	580-8685
580-2965-3	PPF1182-03	Solid	8270C	580-8685
580-2965-4	PPF1182-04	Solid	8270C	580-8685

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC Semi VOA				
Prep Batch: 580-8618				
LCS 580-8618/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-8618/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8618/1-A	Method Blank	Solid	3550B	
580-2965-1	PPF1182-01	Solid	3550B	
580-2965-2	PPF1182-02	Solid	3550B	
580-2965-3	PPF1182-03	Solid	3550B	
580-2965-4	PPF1182-04	Solid	3550B	
Prep Batch: 580-8673				
LCS 580-8673/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-8673/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8673/1-A	Method Blank	Solid	3550B	
580-2965-1	PPF1182-01	Solid	3550B	
580-2965-2	PPF1182-02	Solid	3550B	
580-2965-3	PPF1182-03	Solid	3550B	
580-2965-4	PPF1182-04	Solid	3550B	
Analysis Batch:580-88	99			
LCS 580-8618/2-A	Lab Control Spike	Solid	8081A	580-8618
LCSD 580-8618/3-A	Lab Control Spike Duplicate	Solid	8081A	580-8618
MB 580-8618/1-A	Method Blank	Solid	8081A	580-8618
580-2965-1	PPF1182-01	Solid	8081A	580-8618
580-2965-2	PPF1182-02	Solid	8081A	580-8618
580-2965-3	PPF1182-03	Solid	8081A	580-8618
580-2965-4	PPF1182-04	Solid	8081A	580-8618
Analysis Batch:580-89	67			
LCS 580-8673/2-A	Lab Control Spike	Solid	8082	580-8673
LCSD 580-8673/3-A	Lab Control Spike Duplicate	Solid	8082	580-8673
MB 580-8673/1-A	Method Blank	Solid	8082	580-8673
580-2965-1	PPF1182-01	Solid	8082	580-8673
580-2965-2	PPF1182-02	Solid	8082	580-8673
580-2965-3	PPF1182-03	Solid	8082	580-8673
580-2965-4	PPF1182-04	Solid	8082	580-8673
General Chemistry				
Analysis Batch:580-85	55			
580-2965-1	PPF1182-01	Solid	PercentMoisture	
580-2965-2	PPF1182-02	Solid	PercentMoisture	
580-2965-3	PPF1182-03	Solid	PercentMoisture	
580-2965-4	PPF1182-04	Solid	PercentMoisture	

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Surrogate Recovery Report

8270C Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)

Client N	latrix:	Solid

Lab Sample ID	Client Sample	(FBP) (%Rec)	(NBZ) (%Rec)	(TPH) (%Rec)
580-2965-1	PPF1182-01	89	98	83
580-2965-2	PPF1182-02	94	98	94
580-2965-3	PPF1182-03	117	110	120
580-2965-4	PPF1182-04	95	96	96
LCS 580-8685/2-A		102	106	98
LCSD 580-8685/3-A		106	109	97
MB 580-8685/1-A		99	104	99

Surrogate		Acceptance Limits
(FBP)	2-Fluorobiphenyl	42 - 140
(NBZ)	Nitrobenzene-d5	38 - 141
(TPH)	Terphenyl-d14	42 - 151

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Surrogate Recovery Report

8081A Organochlorine Pesticides by Gas Chromatography

Client	Matrix:	Solid

Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(TCX 1) (%Rec)
580-2965-1	PPF1182-01	49	47 I
580-2965-2	PPF1182-02	50	54
580-2965-3	PPF1182-03	81	123
580-2965-4	PPF1182-04	46	53
LCS 580-8618/2-A		127	130 X
LCSD 580-8618/3-A		124	129 X
MB 580-8618/1-A		125	130 X

Surrogate		Acceptance Limits
(DCB 1)	DCB Decachlorobiphenyl	40 - 158
(TCX 1)	Tetrachloro-m-xylene	49 - 123

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Surrogate Recovery Report

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Matrix: Solid

Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(TCX 1) (%Rec)
580-2965-1	PPF1182-01	88	98
580-2965-2	PPF1182-02	93	101
580-2965-3	PPF1182-03	91	101
580-2965-4	PPF1182-04	90	94
LCS 580-8673/2-A		99	105
LCSD 580-8673/3-A		106	109
MB 580-8673/1-A		97	106

Surrogate		Acceptance Limits
(DCB 1)	DCB Decachlorobiphenyl	65 - 126
(TCX 1)	Tetrachloro-m-xylene	60 - 123

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: TestAmerica Analytical Testing Corp.

Method Blank - Batch: 580-8685

Lab Sample ID:MB 580-8685/1-AClient Matrix:SolidDilution:1.0Date Analyzed:07/14/2006Date Prepared:07/07/20061341

Analysis Batch: 580-8140 Prep Batch: 580-8685 Units: ug/Kg

Quality Control Results

Job Number: 580-2965-1

Method: 8270C Preparation: 3550B

Instrument ID: SEA023 Lab File ID: HP01930.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume:

Analyte	Result	Qual	RL
Naphthalene	ND		5.0
2-Methylnaphthalene	ND		5.0
1-Methylnaphthalene	ND		5.0
Acenaphthylene	ND		5.0
Acenaphthene	ND		5.0
Fluorene	ND		5.0
Phenanthrene	ND		5.0
Anthracene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzofluoranthene	ND		10
Benzo[a]pyrene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Bis(2-ethylhexyl) phthalate	35		20
Butyl benzyl phthalate	ND		20
Diethyl phthalate	ND		10
Dimethyl phthalate	ND		10
Di-n-butyl phthalate	ND		20
Di-n-octyl phthalate	ND		20
Surrogate	% Rec	Acceptance Limits	
Nitrobenzene-d5	104	38 - 141	
2-Fluorobiphenyl	99	42 - 140	
Terphenyl-d14	99	42 - 151	

Page 27 of 34

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Laboratory Con Laboratory Con		/ Report - Batch: 580-8685	Method: 8270C Preparation: 3550B
LCS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 580-8685/2-A Solid 1.0 07/14/2006 1415 07/07/2006 1341	Analysis Batch: 580-8140 Prep Batch: 580-8685 Units: ug/Kg	Instrument ID: SEA023 Lab File ID: HP01931.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume:
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 580-8685/3-A Solid 1.0 07/14/2006 1438 07/07/2006 1341	Analysis Batch: 580-8140 Prep Batch: 580-8685 Units:ug/Kg	Instrument ID: SEA023 Lab File ID: HP01932.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume:

		<u>% Rec.</u>			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qua
Naphthalene	103	112	54 - 131	9	26
2-Methylnaphthalene	118	129	51 - 138	9	27
1-Methylnaphthalene	117	126	50 - 150	8	30
Acenaphthylene	107	117	52 - 130	9	28
Acenaphthene	102	112	50 - 144	9	27
Fluorene	109	121	50 - 134	11	31
Phenanthrene	101	110	55 - 133	8	28
Anthracene	107	113	52 - 135	6	27
Fluoranthene	98	106	54 - 135	7	36
Pyrene	101	109	47 - 152	8	31
Benzo[a]anthracene	117	125	55 - 135	7	27
Chrysene	90	96	59 - 133	7	26
Benzofluoranthene	53	55	43 - 154	5	31
Benzo[a]pyrene	107	113	54 - 138	6	30
Indeno[1,2,3-cd]pyrene	105	117	45 - 153	11	29
Dibenz(a,h)anthracene	108	122	50 - 150	12	30
Benzo[g,h,i]perylene	97	112	54 - 142	14	28
Surrogate		LCS % Rec	LCSD %	Rec	Acceptance Limits
Nitrobenzene-d5		106	109		38 - 141
2-Fluorobiphenyl		102	106		42 - 140
Terphenyl-d14		98	97		42 - 151

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: TestAmerica Analytical Testing Corp.

Method Blank - Batch: 580-8618

Lab Sample ID: MB 580-8618/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 07/12/2006 1439 Date Prepared: 07/06/2006 0915

Analysis Batch: 580-8899 Prep Batch: 580-8618 Units: ug/Kg

Quality Control Results

Job Number: 580-2965-1

Method: 8081A Preparation: 3550B

Instrument ID: SEA035 Lab File ID: ECD20273.D Initial Weight/Volume: 10.0 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	RL
Aldrin	ND		1.0
alpha-BHC	ND		1.0
beta-BHC	ND		1.0
delta-BHC	ND		1.0
gamma-BHC (Lindane)	ND		1.0
4,4'-DDD	ND		2.0
4,4'-DDE	ND		2.0
4,4'-DDT	ND		2.0
Dieldrin	ND		2.0
Endosulfan I	ND		1.0
Endosulfan II	ND		2.0
Endosulfan sulfate	ND		2.0
Endrin	ND		2.0
Endrin aldehyde	ND		2.0
Heptachlor	ND		1.0
Heptachlor epoxide	ND		1.0
Methoxychlor	ND		10
Endrin ketone	ND		2.0
Toxaphene	ND		100
alpha-Chlordane	ND		1.0
gamma-Chlordane	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Tetrachloro-m-xylene DCB Decachlorobiphenyl	130 X 125	49 - 123 40 - 158	

Page 29 of 34

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Laboratory Control/ Method: 8081A Laboratory Control Duplicate Recovery Report - Batch: 580-8618 Preparation: 3550B LCS Lab Sample ID: LCS 580-8618/2-A Analysis Batch: 580-8899 Instrument ID: SEA035 Prep Batch: 580-8618 Client Matrix: Solid Lab File ID: ECD20274.D Units: ug/Kg Initial Weight/Volume: Dilution: 1.0 10.0 g Date Analyzed: 07/12/2006 1459 Final Weight/Volume: 10 mL Date Prepared: 07/06/2006 0915 Injection Volume: Column ID: PRIMARY LCSD Lab Sample ID: LCSD 580-8618/3-A Analysis Batch: 580-8899 Instrument ID: SEA035 Client Matrix: Solid Prep Batch: 580-8618 Lab File ID: ECD20275.D Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 10.0 g 07/12/2006 1518 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: 07/06/2006 0915 Injection Volume: Column ID: PRIMARY

		<u>% Rec.</u>			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Aldrin	96	98	53 - 126	2	24
alpha-BHC	77	78	41 - 128	1	28
beta-BHC	92	94	48 - 121	3	32
delta-BHC	85	88	22 - 153	4	36
gamma-BHC (Lindane)	84	86	50 - 127	2	29
4,4'-DDD	81	85	44 - 141	4	41
4,4'-DDE	79	82	47 - 140	3	40
4,4'-DDT	74	75	34 - 159	1	47
Dieldrin	81	83	53 - 134	2	32
Endosulfan I	80	82	52 - 122	2	31
Endosulfan II	96	99	53 - 132	3	36
Endosulfan sulfate	82	84	42 - 128	2	43
Endrin	83	91	46 - 138	10	36
Endrin aldehyde	93	96	12 - 179	3	47
Heptachlor	103	107	50 - 130	4	31
Heptachlor epoxide	84	86	49 - 123	2	31
Methoxychlor	92	93	46 - 154	1	46
Endrin ketone	88	89	45 - 127	1	45
alpha-Chlordane	80	81	46 - 118	2	33
gamma-Chlordane	83	85	49 - 122	2	32
Surrogate		LCS % Rec	LCSD %	Rec	Acceptance Limits
Tetrachloro-m-xylene		130	K 129	Х	49 - 123
DCB Decachlorobiphenyl		127	124		40 - 158

Calculations are performed before rounding to avoid round-off errors in calculated results.

Job Number: 580-2965-1

Client: TestAmerica Analytical Testing Corp.

Method Blank - Batch: 580-8673

Lab Sample ID:MB 580-8673/1-AClient Matrix:SolidDilution:1.0Date Analyzed:07/10/2006 1434Date Prepared:07/07/2006 1126

A Analysis Batch: 580-8967 Prep Batch: 580-8673 Units: mg/Kg

Method: 8082 Preparation: 3550B

Instrument ID: SEA034 Lab File ID: PCB1939.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	RL
PCB-1016	ND		0.010
PCB-1221	ND		0.010
PCB-1232	ND		0.010
PCB-1242	ND		0.010
PCB-1248	ND		0.010
PCB-1254	ND		0.010
PCB-1260	ND		0.010
Surrogate	% Rec	Acceptance Limits	
Tetrachloro-m-xylene	106	60 - 123	
DCB Decachlorobiphenyl	97	65 - 126	

Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 580-8673

Method: 8082 Preparation: 3550B

LCS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 580-8673/2-A Solid 1.0 07/10/2006 1457 07/07/2006 1126	Prep	sis Batch: 5 Batch: 580- mg/Kg		La Ini Fir Inj	strument ID: SEA034 ab File ID: PCB1940.D itial Weight/Volume: 10 g nal Weight/Volume: 10 mL jection Volume: olumn ID: PRIMARY						
LCSD Lab Sample	ID: LCSD 580-8673/3-A	Analy	sis Batch: 5	80-8967	Ins	strument ID: SEA034						
Client Matrix:	Solid	Prep	Batch: 580-	8673	La	Lab File ID: PCB1941.D						
Dilution:	1.0	Units:	mg/Kg		Ini	Initial Weight/Volume: 10 g						
Date Analyzed:	07/10/2006 1521				Fir	Final Weight/Volume: 10 mL						
Date Prepared:	07/07/2006 1126				Inj	Injection Volume:						
					Co	olumn ID: PRIMARY						
		9	<u>6 Rec.</u>									
Analyte		LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual						
PCB-1260			99 107 65 - 132		8	8						
Surrogate			LCS % Rec LCSD %			Rec Acceptance Limits						
Tetrachloro-m-xylene			105 109			60 - 123						
DCB Decachlorobi	9	9	106		65 - 126							

Calculations are performed before rounding to avoid round-off errors in calculated results.

#2965

SUBCONTRACT ORDER

TestAmerica - Portland, OR

PPF1182

SENDING LABORATORY:

TestAmerica - Portland, OR 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210 Project Manager: Howard Holmes

RECEIVING LABORATORY:

Severn Trent Laboratories - Tacoma 5755 8th Street East Tacoma, WA 98424 Phone :253-922-2310 Fax: 253-922-5047

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: PPF1182-01	Soil	Sampled:06/27/06 09:17		
8270 SIM PAH	07/12/06 23	:59 07/11/06 09:17		Low Level
8081 A/8082 Pest/PCB	07/12/06 23	:59 07/11/06 09:17		Low Level
Containers Supplied:				2
<u>4 oz. jar (C)</u>	<u>4 oz. jar (D</u>))		
Sample ID: PPF1182-02	Soil	Sampled:06/27/06 10:39		
8270 SIM PAH	07/12/06 23	:59 07/11/06 10:39		Low Level
8081A/8082 Pest/PCB	07/12/06 23	:59 07/11/06 10:39		Low Level
Containers Supplied:			12 M	
4 oz. jar (C)	4 oz. jar (D))		2021
Sample ID: PPF1182-03	Soil	Sampled:06/27/06 12:38		
8270 SIM PAH	07/12/06 23	:59 07/11/06 12:38		Low Level
8081A/8082 Pest/PCB	07/12/06 23	:59 07/11/06 12:38		Low Level
Containers Supplied:				
<u>4 oz. jar (C)</u>	<u>4 oz. jar (E</u>))		20 m
Sample ID: PPF1182-04	Soil	Sampled:06/27/06 00:00		
8270 SIM PAH	07/12/06 23	:59 07/11/06 00:00		Low Level
8081A/8082 Pest/PCB	07/12/06 23	:59 07/11/06 00:00		Low Level
Containers Supplied:				
<u>4 oz. jar (C)</u>	4 oz. jar (I))		

6/30/06 0900 8104 Date Received By Date Released By

Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 FAX 420-9210 11922 E. First Ave. Spokane, WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 503-9266-9200 FAX 906-9210 al Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210	Work Order #: PPF [1] 82	TURNAROUND REQUEST In Business Days *	ganic Anatyses	XI 7 5 4 3 2 1 <1	5 4 3 2 1	570.	OTHER Specify:	* Turnaround Requests less than standard may incur Rush Charges	MATRIX # OF LOCATION / NCA (W.S.O) CONT. COMMENTS WOID	S 5	S 5	S 5	S 5						FIRM 1 A FIRME 1 ATE 6 128/06	PATE/ CLD	TEMP:
 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. Fust Ave., Spokane, WA 99206-5302 9405 SW Nünbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 		Marles Lytle	X	8	PRESERVATIVE		REQUESTED ANALYSES										×		RECEIVED BY (15014120	RECEIVED BY: PRINT NAME:	evel PAH to STL.
7.hl	FODY REPORT	INVOICE TO. Chârli		P.O. NUMBER: 36238	PRESER		REQUESTEI		70C 5:25		X		X						DATE 6/28/06 TIME /430	DATE:	Pesticides/PCBS and LOW-LOVEL PAH
	CHAIN OF CUSTODY REPORT	- -	E	Dr	91 17	77- 7 M0	つり フ-1 52	63	2022 1421 8493 1429	$ X \times X $	$_{39} \times \times \times$	$\times \times \times \times 8$	$\frac{\times}{\times}$			· · ·			FIRM: Cipy of CarHand		. 1
LESL MERGENERATION	-	r CI I	(threader) hackeldig	FAX:	A Healer		JUNC SUMMT		SAMPLING DATE/TIME	6/27/06 0917	1 1039	1238					-		Ined FIRM	FIRM:	nd Luw Level
Lest.		City	ADDRESS. J. CNP	PHONE:	PROJECT NAME: CALHE	PROJECT NUMBER:		SAMPLED BY:	CLIENT SAMPLE IDENTIFICATION	- Fa 060746	50 060747	5 FO 060748	FO 060749	Ŷ	ی	7			REJEASED BY: KUTA/UL	RELEASED BY: PRINT NAME:	ADDITTOMAL REMARKS: A S& MA

Called Tost Amer (2) OPSN _ (170 Rtdk.

LOGIN SAMPLE RECEIPT CHECK LIST

Client: TestAmerica Analytical Testing Corp.

Job Number: 580-2965-1

Login Number: 2965

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	temp above 6.0 c
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

		A A A A A A A A A A A A A A A A A A A	32	AND CO	02	<u>it</u>	Ъ Г Р	City of Portland	קל	4	(680/	-
water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696	aboratory				Bureau	of En	viron	eau of Environmental Services	uy tervices			Collected By: MTH	_
Project Name: POR1	PORTLAND HARBOR INLINE SAMP	LINE SA	MP										
File Number: 1020.001	1		Matrix	OTHER						Req	Requested Analyses		
		1					0	General		Metals		Field Comments	
OUTFALL 22										(1	J.L	FC 0607 -> F020746 (22-1)	
*STL will perform Pesticide /PCB and PAH analysis	de /PCB and PAH analy	/sis					LDON			Cu, Zr	•	(272) 1 L 2 (27.3)	
STL - Please send invoice to Howard Holmes at Northcreek and lab reports to Renee Chauvin or Jennifer Shackleford	e to Howard Holmes at er Shackleford	Northcre	ek and lab re	ports to		sBCBs'	eD oinel			,bJ) els		Sieved nut sieved	
CLUMES SHOWS	/ no "5" per PHA 7/146 Boint	l∦∽Boint ∖ Code	Sample Date	Sample Time	Sample Tvpe	·	*HA* otal Org			iem Isto			
FO 060767	IL-22-AAM078-0606-8 upstream of node	20 1.0	27- lun-06	0917	<u>د</u>					1	N N	NUTF THESE SAMPLES IN THE	
FO 060768	IL-22-AAM080-0606-s	22 B		1039	0	•				•	CUEF	1.5	
F0 060769	IL-22-AAP844-0606-	22 84		1238	0	•	•			•	Pror Fer	From BASIN J- UN 6 - 27 - 06.	-) L'AÉ
۱		\ 									CUNUS LEATS	o usidie a Sco-michen Stanners	ک کنیا
											TUESE	1 14 2	
											nct	THE SIEVE n	
											Nert	NETE: Samples wey sieved by account.	
											1-1%	1-1/21 DI water The water wine	
											disco	disconted .	
2													
Relinquished By: 1.	0	Relinquished By	ied By: 2.					Relinquished By	ed By: 3.			Relinquished By: 4.	
Signature: J M M M	Time: 1449	Signature:			Time:			Signature:			Time:	Signature:	
Printed Name: MICUNAR HAUSER	× 6-30-06	Printed Name:			Date			Printed Name:			Date:	Printed Name: Date	
Received By: 1. Signature: And U.	[Received By: Signature:	<u>By:</u> 2.		Time:			Received By: Signature:	<u>к</u> З		Time:	<u>Received By:</u> 4. Signature: Time:	
Printed Name: RONA KINC	2h 6/30/06	Printed Name			Date:			Printed Name:			Date:	Printed Name: Date:	
s:\eid\1000\1020.00	Sampdoc	/ater COC - (DF 22a.xls										

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0767	Sample Collected: Sample Received:	6/27/2006 06/30/06	09:17	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	-	PORTLAI	ND HARBOR INLINE SAM	-		Report Page:	Page 1 of 2
Addie33/2004			M OF NODE	012		System ID:	AK05744
Sample Point	Code:	22_1a				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	c :	SEDIMEN	Т			Collected By:	MJH

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.67	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	385	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	390	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	4070	mg/Kg dry wt	50	EPA 9060 MOD	07/10/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	EST 0.48	µg/Kg dry wt	2.4	EPA 8081	07/07/06
4,4'-DDE	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
4,4'-DDT	EST 2.2	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Aldrin	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Alpha-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Alpha-Chlordane	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Beta-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Delta-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Dieldrin	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endosulfan I	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Endosulfan II	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endosulfan Sulfate	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin Aldehyde	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin ketone	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Gamma-BHC(Lindane)	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Gamma-Chlordane	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Heptachlor	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Heptachlor Epoxide	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Methoxychlor	<12	µg/Kg dry wt	12	EPA 8081	07/07/06
Toxaphene	<120	µg/Kg dry wt	120	EPA 8081	07/07/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1221	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1232	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1242	<12	µg/Kg dry wt	12	EPA 8082	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	FO06	0767	Sample Collected: Sample Received:	6/27/2006 06/30/06	09:17	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	-	PORTLAN	ND HARBOR INLINE SAM 1078-0606 RINSED/SIEVED	-		Report Page:	Page 2 of 2
Addie33/2000			M OF NODE	012		System ID:	AK05744
Sample Point	Code:	22_1a				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	c:	SEDIMEN	Т			Collected By:	MJH

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Aroclor 1248	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1254	<12	μg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1260	<12	μg/Kg dry wt	12	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	EST 3.8	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	EST 3.5	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Acenaphthene	EST 2.7	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Acenaphthylene	EST 3.4	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Anthracene	EST 5.6	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	58	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	69	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	61	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Benzofluoranthenes	70	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	860	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	150	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Chrysene	73	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	15	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Diethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Dimethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	EST 6.4	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	EST 54	µg/Kg dry wt	24	EPA 8270-SIM	07/07/06
Fluoranthene	79	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Fluorene	EST 3.4	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Indeno(1,2,3-cd)pyrene	63	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Naphthalene	EST 3.9	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Phenanthrene	34	μg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06
Pyrene	96	µg/Kg dry wt	6.1	EPA 8270-SIM	07/07/06

End of Report for Sample ID: FO060767

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0768	Sample Collected: Sample Received:	6/27/2006 06/30/06	10:39	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN IL-22-AAM	ID HARBOR INLINE SAM 080-0606 RINSED/SIEVED	-		Report Page:	Page 1 of 2
		UPSTREAM	M OF NODE			System ID:	AK05745
Sample Point	Code:	22_2a				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	c:	SEDIMENT	Ī			Collected By:	MJH

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.46	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	49.5	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	320	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	7490	mg/Kg dry wt	50	EPA 9060 MOD	07/10/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
4,4'-DDE	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
4,4'-DDT	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Aldrin	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Alpha-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Alpha-Chlordane	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Beta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Delta-BHC	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Dieldrin	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Endosulfan I	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Endosulfan II	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Endosulfan Sulfate	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Endrin	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Endrin Aldehyde	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Endrin ketone	<2.6	µg/Kg dry wt	2.6	EPA 8081	07/07/06
Gamma-BHC(Lindane)	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Gamma-Chlordane	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Heptachlor	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Heptachlor Epoxide	<1.3	µg/Kg dry wt	1.3	EPA 8081	07/07/06
Methoxychlor	<13	µg/Kg dry wt	13	EPA 8081	07/07/06
Toxaphene	<130	µg/Kg dry wt	130	EPA 8081	07/07/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<13	µg/Kg dry wt	13	EPA 8082	07/07/06
Aroclor 1221	<13	µg/Kg dry wt	13	EPA 8082	07/07/06
Aroclor 1232	<13	µg/Kg dry wt	13	EPA 8082	07/07/06
Aroclor 1242	<13	µg/Kg dry wt	13	EPA 8082	07/07/06

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0768	Sample Collected: Sample Received:	6/27/2006 06/30/06	10:39	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN	ID HARBOR INLINE SAM 080-0606 RINSED/SIEVED	-		Report Page:	Page 2 of 2
		UPSTREA	M OF NODE			System ID:	AK05745
Sample Point	Code:	22_2a				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix	:	SEDIMENT	Г			Collected By:	MJH

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Aroclor 1248	<13	µg/Kg dry wt	13	EPA 8082	07/07/06
Aroclor 1254	<13	µg/Kg dry wt	13	EPA 8082	07/07/06
Aroclor 1260	EST 3.9	µg/Kg dry wt	13	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	EST 2.3	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	EST 2.0	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Acenaphthene	EST 3.7	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Acenaphthylene	EST 3.1	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Anthracene	7.8	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	61	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	73	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	60	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Benzofluoranthenes	62	µg/Kg dry wt	14	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	370	µg/Kg dry wt	28	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	EST 13	µg/Kg dry wt	28	EPA 8270-SIM	07/07/06
Chrysene	61	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	13	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Diethyl phthalate	<14	µg/Kg dry wt	14	EPA 8270-SIM	07/07/06
Dimethyl phthalate	EST 2.0	µg/Kg dry wt	14	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	<28	µg/Kg dry wt	28	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	EST 24	µg/Kg dry wt	28	EPA 8270-SIM	07/07/06
Fluoranthene	86	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Fluorene	EST 3.3	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Indeno(1,2,3-cd)pyrene	63	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Naphthalene	7.9	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Phenanthrene	37	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06
Pyrene	99	µg/Kg dry wt	6.9	EPA 8270-SIM	07/07/06

End of Report for Sample ID: FO060768

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0769	Sample Collected: Sample Received:	6/27/2006 06/30/06	12:38	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN IL-22-AAP8	ND HARBOR INLINE SAM 344-0606 RINSED/SIEVED	-		Report Page:	Page 1 of 2
		UPSTREA	M OF TRASH RACK			System ID:	AK05746
Sample Point	Code:	22_3a				EID File # :	1020.001
Sample Type:		GRAB				LocCode:	PORTHARI
Sample Matrix: SEDIMENT		Г			Collected By:	MJH	

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
CADMIUM	0.14	mg/Kg dry wt	0.10	EPA 6020	07/05/06
COPPER	27.6	mg/Kg dry wt	0.25	EPA 6020	07/05/06
ZINC	62.5	mg/Kg dry wt	0.50	EPA 6020	07/05/06
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	16000	mg/Kg dry wt	50	EPA 9060 MOD	07/10/06
PESTICIDES BY EPA 8081 - STL					
4,4'-DDD	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
4,4'-DDE	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
4,4'-DDT	2.9	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Aldrin	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Alpha-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Alpha-Chlordane	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Beta-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Delta-BHC	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Dieldrin	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endosulfan I	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Endosulfan II	EST 1.3	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endosulfan Sulfate	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin Aldehyde	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Endrin ketone	<2.4	µg/Kg dry wt	2.4	EPA 8081	07/07/06
Gamma-BHC(Lindane)	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Gamma-Chlordane	1.3	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Heptachlor	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Heptachlor Epoxide	<1.2	µg/Kg dry wt	1.2	EPA 8081	07/07/06
Methoxychlor	<12	µg/Kg dry wt	12	EPA 8081	07/07/06
Toxaphene	<120	µg/Kg dry wt	120	EPA 8081	07/07/06
POLYCHLORINATED BIPHENYLS (PCBs) - STL					
Aroclor 1016	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1221	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1232	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1242	<12	µg/Kg dry wt	12	EPA 8082	07/07/06

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID:	F006	0769	Sample Collected: Sample Received:	6/27/2006 06/30/06	12:38	Sample Status:	COMPLETE AND VALIDATED
Proj./Company Address/Loca	•	PORTLAN IL-22-AAP8	ID HARBOR INLINE SAM 344-0606 RINSED/SIEVED			Report Page:	Page 2 of 2
		UPSTREAM	M OF TRASH RACK			System ID:	AK05746
Sample Point	Code:	22_3a				EID File # :	1020.001
Sample Type: GRAB					LocCode:	PORTHARI	
Sample Matrix: SEDIMENT		-			Collected By:	MJH	

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Di-n-octylphthalate was detected in the method blank at more than 1/10th the amount in the samples. Two other semi-volatile analytes were also detected in the blank but at insignificant levels compared to concentrations in the sample. NOTE: Other results flagged as EST are above the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Aroclor 1248	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1254	12	µg/Kg dry wt	12	EPA 8082	07/07/06
Aroclor 1260	<12	µg/Kg dry wt	12	EPA 8082	07/07/06
SEMI-VOLATILE ORGANICS, CUSTOM - STL					
1-Methylnaphthalene	EST 4.9	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
2-Methylnaphthalene	7.5	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Acenaphthene	14	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Acenaphthylene	EST 5.7	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Anthracene	24	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(a)anthracene	250	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(a)pyrene	300	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzo(g,h,i)perylene	260	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Benzofluoranthenes	320	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Bis(2-ethylhexyl) phthalate	980	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Butylbenzylphthalate	350	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Chrysene	300	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Dibenzo(a,h)anthracene	71	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Diethyl phthalate	<12	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Dimethyl phthalate	EST 4.1	µg/Kg dry wt	12	EPA 8270-SIM	07/07/06
Di-n-butyl phthalate	EST 4.0	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Di-n-octyl phthalate	EST 130	µg/Kg dry wt	23	EPA 8270-SIM	07/07/06
Fluoranthene	400	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Fluorene	17	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Indeno(1,2,3-cd)pyrene	310	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Naphthalene	10	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Phenanthrene	200	μg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06
Pyrene	390	µg/Kg dry wt	5.8	EPA 8270-SIM	07/07/06

End of Report for Sample ID: FO060769

September 01, 2006

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 07/03/06 11:15. The following list is a summary of the Work Orders contained in this report, generated on 08/31/06 20:00.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PPG0024	Portland Harbor	36238

TestAmerica - Portland, OR

Howard Holmes, Project Manager

City of Portland Water Pollution Laboratory
6543 N. Burlington Ave.
Portland, OR 97203

Portland Harbor Project Name: Project Number: 36238 Project Manager:

Jennifer Shackelford

Report Created: 08/31/06 20:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F0060767	PPG0024-01	Soil	06/27/06 09:17	07/03/06 11:15
F0060768	PPG0024-02	Soil	06/27/06 10:39	07/03/06 11:15
F0060769	PPG0024-03	Soil	06/27/06 12:38	07/03/06 11:15

TestAmerica - Portland, OR

Heula Yu

Howard Holmes, Project Manager

City of Portland Water Pol	lution Laboratory
----------------------------	-------------------

6543 N. Burlington Ave. Portland, OR 97203

Portland Harbor Project Name: Project Number: Project Manager:

36238 Jennifer Shackelford

Report Created: 08/31/06 20:00

Conventional Chemistry Parameters by APHA/EPA Methods TestAmerica - Seattle, WA										
Analyte	Method	Result	MDL*	MRL Units	Dil	Batch	Prepared	Analyzed	Notes	
PPG0024-01 (F0060767)		Soil Sampled: 06/27/06 09:17								
Total Organic Carbon	EPA 9060 mod.	4070		689 mg/kg dry	1x	6G18030	07/10/06 12:48	8 07/17/06 12:51		
PPG0024-02 (F0060768)		Soi	il	Sam	pled: 00	6/27/06 10:3	39			
Total Organic Carbon	EPA 9060 mod.	7490		923 mg/kg dry	1x	6G18030	07/10/06 12:48	8 07/17/06 13:21		
PPG0024-03 (F0060769)		Soi	Soil Sampled: 06/27/06 12:38							
Total Organic Carbon	EPA 9060 mod.	16000		813 mg/kg dry	1x	6G18030	07/10/06 12:48	8 07/17/06 13:36		

TestAmerica - Portland, OR

Haulus Yu

Howard Holmes, Project Manager

City of Portland Water 1 6543 N. Burlington Ave. Portland, OR 97203	Ŷ	5	et Name: Portland Harbor et Number: 36238 et Manager: Jennifer Shackelford						Report Created: 08/31/06 20:00		
Physical Parameters by APHA/ASTM/EPA Methods TestAmerica - Seattle, WA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PPG0024-01 (F0060767)		Soil Sampled: 06/27/06 09:17									

Dry Weight		BSOPSPL003R0 8	72.6		1.00	%	1x	6G11058	07/11/06 14:48	07/12/06 00:00
PPG0024-02	(F0060768)		Soil	Soil Sampled: 06/27/06 10:39						
Dry Weight		BSOPSPL003R0 8	54.2		1.00	%	1x	6G11058	07/11/06 14:48	07/12/06 00:00
PPG0024-03	(F0060769)		Soil			Sam	pled: 06	5/27/06 12:3	8	
Dry Weight		BSOPSPL003R0 8	61.5		1.00	%	1x	6G11058	07/11/06 14:48	07/12/06 00:00

TestAmerica - Portland, OR

Hauland Olus

Howard Holmes, Project Manager

City of Portland Water F 6543 N. Burlington Ave. Portland, OR 97203 Convention	Pollution La			Project Na Project Nu Project M	umber: anager:	36238 Jennife	r Shacke	lford	Qual	ity Co	ntrol R	lesu	Report Crea 08/31/06 20	
		•		America -	,			·	-	•				
QC Batch: 6G18030	Soil Pr	eparation M	ethod:	General	Prepara	tion								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	[%] ∧ (I RPD (I	Limit	s) Analyzed	Notes
Blank (6G18030-BLK1)								Ext	racted:	07/17/06	10:59			
Total Organic Carbon	EPA 9060 mod.	ND		500	mg/kg wet	1x							07/17/06 10:59	
LCS (6G18030-BS1)								Ext	racted:	07/07/06	12:48			
Total Organic Carbon	EPA 9060 mod.	28200		500	mg/kg wet	1x		29900	94.3%	(72-130)			07/17/06 11:08	
Duplicate (6G18030-DUP1)				QC Sourc	e: BPG00	96-21		Ext	racted:	07/10/06	12:48			
Total Organic Carbon	EPA 9060 mod.	22300		611	mg/kg dry	1x	21700				2.73% ((35)	07/17/06 12:20	
Duplicate (6G18030-DUP2)				QC Sourc	e: PPG00	24-01		Ext	racted:	07/10/06	12:48			
Total Organic Carbon	EPA 9060 mod.	4120		689	mg/kg dry	1x	4070				1.22% ((35)	07/17/06 13:12	
Duplicate (6G18030-DUP3)				QC Sourc	e: BPG02	81-02		Ext	racted:	07/13/06	12:48			
Total Organic Carbon	EPA 9060 mod.	986		715	mg/kg dry	1x	1770				56.9% ((35)	07/17/06 15:17	Q-14
Matrix Spike (6G18030-MS1	.)			QC Sourc	e: BPG00	96-21		Ext	racted:	07/10/06	12:48			
Total Organic Carbon	EPA 9060 mod.	60400		611	mg/kg dry	1x	21700	18800	206%	(40-160)			07/17/06 12:23	Q-14

TestAmerica - Portland, OR

Hauland tolu Howard Holmes, Project Manager

City of Portland Water Pollution Laboratory	Project Name:	Portland Harbor	
6543 N. Burlington Ave.	Project Number:	36238	Report Created:
Portland, OR 97203	Project Manager:	Jennifer Shackelford	08/31/06 20:00

Physi	cal Paramete	rs by APH		/EPA N merica -			borator	y Qua	lity (Control	Res	ults		
QC Batch: 6G11058	Soil Pre	paration N	lethod: D	ry Weig	ht									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (6G11058-BLK1)								Extr	acted:	07/11/06	14:48			
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x						0	07/12/06 00:00	

TestAmerica - Portland, OR

Hauland Hus

Howard Holmes, Project Manager

City of Portland	Water	Pollution	Laboratory
-------------------------	-------	-----------	------------

6543 N. Burlington Ave.

Portland Harbor Project Name: Project Number: 36238 Project Manager: Jennifer Shackelford

Report Created: 08/31/06 20:00

Notes and Definitions

Report Specific Notes:

Portland, OR 97203

O-14 Visual examination indicates the RPD and/or matrix spike recovery is outside the control limit due to a non-homogeneous sample matrix.

Laboratory Reporting Conventions:

- Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET
- Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND
- NR/NA _ Not Reported / Not Available
- Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry
- Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis.
- RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD _
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. _ *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

Howard Holmes, Project Manager

Test America ANALYTICAL TESTING CORPORATION

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W. International Airport Rd Ste A10. Anenorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

ィる

		ΓΩΟΥ REPORT	Work Order #: PPGOOJC
CLIENT: City of Firthand REPORT TO: Address: Jennifer Shackel PHONE: FAX:		INVOICE TO:	
REPORT TO:		Charles Lytle	TURNAROUND REQUEST in Business Days *
address: Jenniter Shackel	ford	Critic Tex Cyric	Organic & Inorganic Analyses
PHONE: FAX:	ių že	P.O. NUMBER: 36238	STD Petroleum Hydrocarbon Analyses
PROJECT NAME: Fortland Harbor	747	PRESERVATIVE	5 4 3 2 1 < 1
PROJECT NUMBER: Inline Samp			STD.
SAMPLED BY:	3 20 7	REQUESTED ANALYSES	OTHER Specify:
	-1-1 1 - 1 - 1 2 - 2 - 1		* Turnaround Requests less than standard may mean Rush Charges
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE:TIME	P4240 54		MATRIX # OF LOCATION FA (W. S. O) CONT. COMMENTS WO ID
FO060767 6/27/06 0917	$\cdot \times \times \times$		S 3 X
F0060768 / 1039	$ \times \times \times $		S 3 (A)
FO 060769 1238	$\times \times \times \times$		5 3 x
RELEASED BY: DATE . Kn Maren FIRME	in it Portland	DATE: 7/3/06 RECEIVED BY: THME: 0948 PRINT NAME: 74915	DATE: 7-3-06
LLEASED BY		DATE: RECEIVED BY:	DATE
RINT NAME: FIRM: DDITIONAL REMARKS:		TIME: PRINT NAME: CCCC	HRAE TIME 7:48
REREVISEDING Dend Low-leve	1 Pest/PCBs	and Low-level PAH to STL	MAGE OF L
Note: By relinquishing samples to Payment for services is due	TestAmerica, client agrees to within 30 days from the date o	bay for the services requested on this chain of custody form and for any additional and fination of the first of the service and the service a	nalyses performed off this project. nless otherwise contracted.

Circle Y or N (If Y, see other side)

TEST AMERICA SAI	MPLE RECEIPT	CHECKLIST
------------------	--------------	-----------

,

Received By: (applies to temp at receipt)	Logged-in By:	Unpacked/Labeled E	By: Cooler ID: (of)
Date: 7.3.00 Time: 1.44 Initials:	Date: Initials:	Date: 3 Initials: 34	Work Order No PPG0024 Client:
Container Type:	<u>CO</u> (<u>C Seals:</u>	Packing Material
Cooler	Ship. Contai	nerSign By	Bubble Bags Styrofoam
Box	On Bottles	Date	Foam Packs
None/Other	- ¥	None	None/Other Other
Refrigerant: Gel Ice Pack Loose Ice		_None	Received Via: Bill# Fed Ex Client UPS NCA Courier
None/Other R	ve		DHL Mid Valley
			Servoy TDP
	> 0	6	GS Other
Cooler Temperature (<u>IF</u>	<u>R):</u> d)Plastic ((circle of	Blass (Frozen filters, Te	dlars and aqueous Metals exempt)
Temperature Blank?	C or NA	Trip Blank?	Y or N or NA
Intact?	Alor N	Metals Preserve	ed? Y or N or NA
Provided by NCA?		Client QAPP Pro	
Correct Type?		Adequate Volun	ne? (Y dr N
#Containers match CO	C? Y or N	(for tests requested) Water VOAs: H	eadspace? Y or N or NA
IDs/time/date match CC	0C? Y or N	Comments:	
Hold Times in hold?	γ or N		
PROJECT MANAGEM	ENT		
Is the Chain of Custody	complete?		Y or N If N, circle the items that were incomplete
Comments,Problems	- 14		
	······································		
Total access set up? Has client been contacted regi	arding non-conformances?		YorN YorN IfY,/
PM Initials:	Date:	Time:	Date Time

ANALYTICAL REPORT

Job Number: 580-2989-1

Job Description: Portland Harbor Inline Samp

For: City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Attention: Peter Abrams

Ton

Tom Coyner Project Manager I tcoyner@stl-inc.com 07/19/2006

Project Manager: Tom Coyner

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Case Narrative for: 580-2989

CHLORINATED PESTICIDES

Samples 580-2989-1 through 580-2989-3 were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A. The samples were prepared on 07/07/2006 and analyzed on 07/13/2006, which was within the method required holding time. No difficulties were encountered during the chlorinated pesticides analyses.

POLYCHLORINATED BIPHENYLS (PCB'S)

Samples 580-2989-1 through 580-2989-3 were analyzed for polychlorinated biphenyls (PCB's) in accordance with EPA SW-846 Method 8082. The samples were prepared on 07/07/2006 and analyzed on 07/10/2006, which was within the method required holding time. No difficulties were encountered during the PCB analyses.

SEMIVOLATILE ORGANICS

Samples 580-2989-1 through 580-2989-3 were analyzed for semivolatile organics in accordance with EPA SW-846 Method 8270C. The samples were prepared on 07/07/2006 and analyzed on 07/14/2006, which was within the method required holding time. Bis(2-ethylhexyl) phthalate was detected in method blank MB 580-8685/1-A at a level exceeding the reporting limit. The associated sample results have been flagged "B".

Di-n-octyl phthalate and Pyrene were detected in method blank MB 580-8685/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged "J". The associated sample results have been flagged "B".

PERCENT SOLIDS

Samples 580-2989-1 through 580-2989-3 were analyzed for percent solids in accordance with EPA Method 160.3 Modified. The samples were analyzed on 07/07/2006, which was within the required method holding time. No difficulties were encountered during the percent solids analyses.

METHOD SUMMARY

Client: City of Portland BES

Description	Lab Location	Method Preparation Method
Matrix: Solid		
Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)	STL-SEA	SW846 8270C
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Organochlorine Pesticides by Gas Chromatography	STL-SEA	SW846 8081A
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Polychlorinated Biphenyls (PCBs) by Gas Chromatography	STL-SEA	SW846 8082
Ultrasonic Extraction (Low Level)	STL-SEA	SW846 3550B
Percent Moisture	STL-SEA	EPA PercentMoisture

LAB REFERENCES:

STL-SEA = STL-Seattle

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8270C	Frans, Ben	BF
SW846 8081A	Loague, Steve	SL
SW846 8082	Marfiak, Steve T	STM
EPA PercentMoisture	Durrant, Stephanie	SD

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
580-2989-1	PPG0024-01	Solid	06/27/2006 0917	07/06/2006 0815
580-2989-2	PPG0024-02	Solid	06/27/2006 1039	07/06/2006 0815
580-2989-3	PPG0024-03	Solid	06/27/2006 1238	07/06/2006 0815

SAMPLE RESULTS

	500 0000 V				D / D / · ·	
Lab Sample ID:	580-2989-1	0/ 1 · · ·	40.4			06/27/2006 0917
Client Matrix:	Solid	% Moisture:	19.4		Date Received:	07/06/2006 0815
8	3270C Semivolatile	e Organic Compo	ounds by GC/MS (S	Selective Ion N	lonitoring)	
Method:	8270C		s Batch: 580-8140	Inst	rument ID: SEA	023
Preparation:	3550B	Prep Ba	atch: 580-8685	Lab	File ID: HP0	1933.D
Dilution:	1.0			Initia	al Weight/Volume:	10.1765 g
Date Analyzed:	07/14/2006 1501			Fina	al Weight/Volume:	10 mL
Date Prepared:	07/07/2006 1341			Inje	ction Volume:	
Analyte	Dry	Wt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Naphthalene			3.9	J	0.66	6.1
2-Methylnaphthalei	ne		3.5	J	0.72	6.1
1-Methylnaphthalei	ne		3.8	J	0.89	6.1
Acenaphthylene			3.4	J	0.69	6.1
Acenaphthene			2.7	J	0.68	6.1
Fluorene			3.4	J	0.71	6.1
Phenanthrene			34		0.85	6.1
Anthracene			5.6	J	0.60	6.1
Fluoranthene			79		0.57	6.1
Pyrene			96	В	0.59	6.1
Benzo[a]anthracen	e		58		0.91	6.1
Chrysene			73		0.66	6.1
Benzofluoranthene			70		1.5	12
Benzo[a]pyrene			69		0.63	6.1
Indeno[1,2,3-cd]py			63		1.7	6.1
Dibenz(a,h)anthrac			15		1.7	6.1
Benzo[g,h,i]peryler			61	_	2.0	6.1
Bis(2-ethylhexyl) pl			860	В	3.5	24
Butyl benzyl phthal	ate		150 ND		7.9	24
Diethyl phthalate			ND		12	12
Dimethyl phthalate			ND		1.4	12
Di-n-butyl phthalate Di-n-octyl phthalate			6.4 54	J B	2.3 1.3	24 24
Surrogate			%Rec	Acceptance Limits		
2-Fluorobiphenyl			88		42 - 14	
Nitrobenzene-d5			91		38 - 14	
Terphenyl-d14			75		42 - 15	

Job Number: 580-2989-1

Client Sample ID:	PPG002	4-02					
Lab Sample ID:	580-2989	9-2				Date Sampled: 0	6/27/2006 1039
Client Matrix:	Solid		% Moisture:	28.2		Date Received: (07/06/2006 0815
	3270C Semiv	olatile Or	ganic Compo	ounds by GC/MS (Selective Ion	Monitoring)	
Method:	8270C		•	s Batch: 580-8140	In	strument ID: SEA0	
Preparation:	3550B		Prep Ba	atch: 580-8685	La	b File ID: HP01	936.D
Dilution:	1.0				In	tial Weight/Volume:	10.0914 g
Date Analyzed:	07/14/2006	1610			Fi	nal Weight/Volume:	10 mL
Date Prepared:	07/07/2006	1341			Inj	ection Volume:	
Analyte		Dry/W/t	Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Naphthalene		Diyvvt		7.9	Quannel	0.75	6.9
2-Methylnaphthaler				2.0	J	0.75	6.9 6.9
1-Methylnaphthaler				2.3	J	1.0	6.9
Acenaphthylene				3.1	J	0.78	6.9
Acenaphthene				3.7	J	0.77	6.9
Fluorene				3.3	J	0.81	6.9
Phenanthrene				37	U	0.97	6.9
Anthracene				7.8		0.68	6.9
Fluoranthene				86		0.64	6.9
Pyrene				99	В	0.67	6.9
Benzo[a]anthracen	е			61		1.0	6.9
Chrysene				61		0.74	6.9
Benzofluoranthene				62		1.8	14
Benzo[a]pyrene				73		0.71	6.9
Indeno[1,2,3-cd]pyi	rene			63		2.0	6.9
Dibenz(a,h)anthrac	ene			13		1.9	6.9
Benzo[g,h,i]perylen	e			60		2.2	6.9
Bis(2-ethylhexyl) pł	nthalate			370	В	4.0	28
Butyl benzyl phthal	ate			13	J	8.9	28
Diethyl phthalate				ND		14	14
Dimethyl phthalate				2.0	J	1.6	14
Di-n-butyl phthalate				ND		2.6	28
Di-n-octyl phthalate)			24	JΒ	1.5	28
Surrogate				%Rec		Acceptance Limits	
2-Fluorobiphenyl				93		42 - 140	
Nitrobenzene-d5				103		38 - 141	
Terphenyl-d14				98		42 - 151	

Job Number: 580-2989-1

-							
Client Sample ID:	PPG002	4-03					
Lab Sample ID:	580-2989	9-3				Date Sampled: (06/27/2006 1238
Client Matrix:	Solid		% Moisture:	22.2		Date Received:	07/06/2006 0815
8	3270C Semiv	olatile Or	ganic Compo	ounds by GC/MS (Selective Ion	Monitoring)	
Method:	8270C		Analysi	s Batch: 580-8140	In	strument ID: SEA	023
Preparation:	3550B		Prep Ba	atch: 580-8685	La	ab File ID: HP0 ²	1937.D
Dilution:	1.0				In	itial Weight/Volume:	10.9910 g
Date Analyzed:	07/14/2006	1633			Fi	nal Weight/Volume:	10 mL
Date Prepared:	07/07/2006					jection Volume:	
Analuta			Como eta di V		Qualifian	MDL	
Analyte		Dryvvt	Corrected: Y	Result (ug/Kg)	Qualifier		RL
Naphthalene				10		0.64	5.8
2-Methylnaphthaler				7.5		0.69	5.8
1-Methylnaphthaler	ne			4.9	J	0.85	5.8
Acenaphthylene				5.7	J	0.66	5.8
Acenaphthene				14 17		0.65 0.68	5.8 5.8
Fluorene				200		0.82	5.8
Phenanthrene Anthracene				200 24		0.82	5.8
Fluoranthene				400		0.54	5.8
Pyrene				390	В	0.57	5.8
Benzo[a]anthracene	0			250	Б	0.87	5.8
Chrysene	0			300		0.63	5.8
Benzofluoranthene				320		1.5	12
Benzo[a]pyrene				300		0.60	5.8
Indeno[1,2,3-cd]pyr	rene			310		1.7	5.8
Dibenz(a,h)anthrac				71		1.6	5.8
Benzo[g,h,i]perylen				260		1.9	5.8
Bis(2-ethylhexyl) ph				980	В	3.4	23
Butyl benzyl phthala				350		7.6	23
Diethyl phthalate				ND		12	12
Dimethyl phthalate				4.1	J	1.4	12
Di-n-butyl phthalate)			4.0	J	2.2	23
Di-n-octyl phthalate)			130	В	1.3	23
Surrogate				%Rec	Acceptance Limits		ce Limits
2-Fluorobiphenyl				76		42 - 140	
Nitrobenzene-d5				84		38 - 141	
Terphenyl-d14				68		42 - 151	

Job Number: 580-2989-1

Client Sample ID: PPG0024-01 Lab Sample ID: 580-2989-1 Date Sampled: 06/27/2006 0917 **Client Matrix:** Date Received: Solid % Moisture: 19.4 07/06/2006 0815 8081A Organochlorine Pesticides by Gas Chromatography Method: 8081A Analysis Batch: 580-8942 Instrument ID: SEA035 Preparation: 3550B Prep Batch: 580-8691 Lab File ID: ECD20294.D Dilution: Initial Weight/Volume: 10.3339 g 1.0 07/13/2006 1340 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 07/07/2006 1420 Injection Volume: Column ID: PRIMARY Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 1.2 Aldrin ND 0.13 alpha-BHC ND 0.13 1.2 beta-BHC ND 0.16 1.2 delta-BHC ND 0.14 1.2 gamma-BHC (Lindane) ND 0.14 1.2 4,4'-DDD 0.48 J 0.32 2.4 4,4'-DDE ND 0.27 2.4 4,4'-DDT 2.2 J 0.32 2.4 Dieldrin ND 0.27 2.4 Endosulfan I ND 0.14 1.2 Endosulfan II ND 0.32 2.4 Endosulfan sulfate ND 0.41 2.4 Endrin ND 0.51 2.4 Endrin aldehyde ND 0.30 2.4 Heptachlor ND 0.16 1.2 Heptachlor epoxide 0.15 ND 1.2 Methoxychlor ND 1.6 12 Endrin ketone ND 0.30 2.4 Toxaphene ND 12 120 0.14 alpha-Chlordane ND 1.2 gamma-Chlordane ND 0.14 1.2 %Rec Acceptance Limits Surrogate 49 - 123 109 Tetrachloro-m-xylene DCB Decachlorobiphenyl 107 40 - 158

Analytical Data

Job Number: 580-2989-1

Client Sample ID	: PPG0024-02					
Lab Sample ID:	580-2989-2				Date Sampled:	06/27/2006 1039
Client Matrix:	Solid	% Moisture:	28.2		Date Received:	07/06/2006 0815
	8081A (Organochlorine Pe	sticides by Gas Ch	romatography	,	
Method:	8081A	Analysi	s Batch: 580-8942	Instr	ument ID: SE	A035
Preparation:	3550B	Prep Ba	atch: 580-8691	Lab	File ID: EC	D20297.D
Dilution:	1.0			Initia	l Weight/Volume	: 10.5590 g
Date Analyzed:	07/13/2006 144	2			Weight/Volume	
Date Prepared:	07/07/2006 142				tion Volume:	
						RIMARY
Analyte	C	PryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Aldrin		_	ND		0.14	1.3
alpha-BHC			ND		0.14	1.3
beta-BHC			ND		0.17	1.3
delta-BHC			ND		0.16	1.3
gamma-BHC (Linc	dane)		ND		0.15	1.3
4,4'-DDD			ND		0.35	2.6
4,4'-DDE			ND		0.30	2.6
4,4'-DDT			ND		0.35	2.6
Dieldrin			ND		0.29	2.6
Endosulfan I			ND		0.16	1.3
Endosulfan II			ND		0.35	2.6
Endosulfan sulfate	9		ND		0.45	2.6
Endrin			ND		0.56	2.6
Endrin aldehyde			ND		0.33	2.6
Heptachlor			ND		0.18	1.3
Heptachlor epoxid	е		ND		0.17	1.3
Methoxychlor			ND		1.8	13
Endrin ketone			ND		0.33	2.6
Toxaphene			ND		13	130
alpha-Chlordane			ND		0.16	1.3
gamma-Chlordane	e		ND		0.16	1.3
Surrogate			%Rec		· · · ·	ance Limits
Tetrachloro-m-xyle			106		49 - 1	
DCB Decachlorob	piphenyl		103		40 - 1	58

Job Number: 580-2989-1

Client Sample ID	: PPG0024-	-03				
Lab Sample ID:	580-2989-	3			Date Sampled:	06/27/2006 1238
Client Matrix:	Solid	% Moisture:	22.2		Date Received:	07/06/2006 0815
	8081	A Organochlorine Pe	sticides by Gas Ch	romatograph	ıy	
Method:	8081A	Analysi	s Batch: 580-8942	Inst	rument ID: SE	A035
Preparation:	3550B		atch: 580-8691	Lab	File ID: EC	D20298.D
Dilution:	1.0				al Weight/Volume	
Date Analyzed:	07/13/2006 1	502			al Weight/Volume:	-
Date Prepared:	07/07/2006 1				ection Volume:	TO THE
Date i repared.	01/01/2000 1	420				RIMARY
				00	unin id. F	
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Aldrin			ND		0.13	1.2
alpha-BHC			ND		0.13	1.2
beta-BHC			ND		0.16	1.2
delta-BHC			ND		0.14	1.2
gamma-BHC (Lind	lane)		ND		0.14	1.2
4,4'-DDD	,		ND		0.32	2.4
4,4'-DDE			ND		0.28	2.4
4,4'-DDT			2.9		0.32	2.4
Dieldrin			ND		0.27	2.4
Endosulfan I			ND		0.14	1.2
Endosulfan II			1.3	J	0.32	2.4
Endosulfan sulfate	•		ND		0.41	2.4
Endrin			ND		0.51	2.4
Endrin aldehyde			ND		0.31	2.4
Heptachlor			ND		0.16	1.2
Heptachlor epoxide	e		ND		0.15	1.2
Methoxychlor			ND		1.6	12
Endrin ketone			ND		0.31	2.4
Toxaphene			ND		12	120
alpha-Chlordane			ND		0.14	1.2
gamma-Chlordane)		1.3		0.14	1.2
Surrogate			%Rec		Accepta	ance Limits
Tetrachloro-m-xyle	ene		119		49 - 12	23
DCB Decachlorob	iphenyl		107		40 - 1	58

Job Number: 580-2989-1

Job Number: 580-2989-1

06/27/2006 0917

07/06/2006 0815

10.0334 g

10 mL

SEA034

PCB1942.D

Date Sampled:

Date Received:

Client Sample ID: PPG0024-01 Lab Sample ID: 580-2989-1 Client Matrix: Solid % Moisture: 19.4 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 580-8967 Instrument ID: Preparation: Prep Batch: 580-8673 3550B Lab File ID: Dilution: 1.0 Initial Weight/Volume: Date Analyzed: 07/10/2006 1545 Final Weight/Volume:

Date Prepared: 0	7/07/2006 1126			tion Volume:	
			Colu	mn ID:	PRIMARY
Analyte	DryWt Corrected: Y	<pre> / Result (mg/Kg) </pre>	Qualifier	MDL	RL
PCB-1016		ND		0.0072	0.012
PCB-1221		ND		0.0072	0.012
PCB-1232		ND		0.0072	0.012
PCB-1242		ND		0.0072	0.012
PCB-1248		ND		0.0072	0.012
PCB-1254		ND		0.0019	0.012
PCB-1260		ND		0.0019	0.012
Surrogate		%Rec		Acce	eptance Limits
Tetrachloro-m-xylene		98		60	- 123
DCB Decachlorobiphe	enyl	86		65	- 126

Client Sample ID: PPG0024-02 Lab Sample ID: 580-2989-2 Date Sampled: 06/27/2006 1039 **Client Matrix:** Date Received: Solid % Moisture: 28.2 07/06/2006 0815 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 580-8967 Instrument ID: SEA034 Preparation: 3550B Prep Batch: 580-8673 Lab File ID: PCB1945.D Dilution: Initial Weight/Volume: 1.0 10.8241 g 10 mL Date Analyzed: 07/10/2006 1656 Final Weight/Volume: Date Prepared: 07/07/2006 1126 Injection Volume: Column ID: PRIMARY DryWt Corrected: Y Qualifier MDL RL Analyte Result (mg/Kg) PCB-1016 ND 0.0075 0.013 PCB-1221 ND 0.0075 0.013 PCB-1232 ND 0.0075 0.013 PCB-1242 ND 0.0075 0.013 PCB-1248 ND 0.0075 0.013 PCB-1254 ND 0.0019 0.013 PCB-1260 J 0.0039 0.0019 0.013 Surrogate %Rec Acceptance Limits Tetrachloro-m-xylene 105 60 - 123 DCB Decachlorobiphenyl 93 65 - 126

Client: City of Portland BES

Analytical Data

Job Number: 580-2989-1

Client Sample ID: PPG0024-03 Lab Sample ID: 580-2989-3 Date Sampled: 06/27/2006 1238 **Client Matrix:** Date Received: Solid % Moisture: 22.2 07/06/2006 0815 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography Method: 8082 Analysis Batch: 580-8967 Instrument ID: SEA034 PCB1946.D Preparation: 3550B Prep Batch: 580-8673 Lab File ID: Dilution: Initial Weight/Volume: 1.0 10.5026 g Date Analyzed: 07/10/2006 1719 Final Weight/Volume: 10 mL Date Prepared: 07/07/2006 1126 Injection Volume: Column ID: PRIMARY DryWt Corrected: Y Qualifier MDL RL Analyte Result (mg/Kg) PCB-1016 ND 0.0071 0.012 PCB-1221 ND 0.0071 0.012 PCB-1232 ND 0.0071 0.012 PCB-1242 ND 0.0071 0.012 PCB-1248 ND 0.0071 0.012 PCB-1254 0.012 J 0.0018 0.012 PCB-1260 ND 0.0018 0.012 Surrogate %Rec Acceptance Limits Tetrachloro-m-xylene 104 60 - 123 DCB Decachlorobiphenyl 96 65 - 126

Client: City of Portland BES

Analytical Data

Job Number: 580-2989-1

Client: City of Portland BES

Job Number: 580-2989-1

		General Chemistry			
Client Sample ID:	PPG0024-01				
Lab Sample ID: Client Matrix:	580-2989-1 Solid		Date Sampled: Date Received		7/2006 0917 6/2006 0815
Analyte	Result	Qual Units RL	RL	Dil	Method
Percent Solids	81 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture
Percent Moisture	19 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture
Client Sample ID:	PPG0024-02				
Lab Sample ID: Client Matrix:	580-2989-2 Solid		Date Sampled: Date Received		7/2006 1039 6/2006 0815
Analyte	Result	Qual Units RL	RL	Dil	Method
Percent Solids	72 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture
Percent Moisture	28 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture
Client Sample ID:	PPG0024-03				
Lab Sample ID: Client Matrix:	580-2989-3 Solid		Date Sampled: Date Received		7/2006 1238 6/2006 0815
Analyte	Result	Qual Units RL	RL	Dil	Method
Percent Solids	78 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture
Percent Moisture	22 Anly Batch: 580-8694	H % 0.10 Date Analyzed 07/07/2006 1512	0.10	1.0	PercentMoisture

DATA REPORTING QUALIFIERS

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chemistry		
	Н	Sample was prepped or analyzed beyond the specified holding time

QUALITY CONTROL RESULTS

Client: City of Portland BES

Job Number: 580-2989-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS Semi VOA				
Prep Batch: 580-8685				
LCS 580-8685/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-8685/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8685/1-A	Method Blank	Solid	3550B	
580-2989-1	PPG0024-01	Solid	3550B	
580-2989-1MS	Matrix Spike	Solid	3550B	
580-2989-1MSD	Matrix Spike Duplicate	Solid	3550B	
580-2989-2	PPG0024-02	Solid	3550B	
580-2989-3	PPG0024-03	Solid	3550B	
Analysis Batch:580-81	40			
LCS 580-8685/2-A	Lab Control Spike	Solid	8270C	580-8685
LCSD 580-8685/3-A	Lab Control Spike Duplicate	Solid	8270C	580-8685
MB 580-8685/1-A	Method Blank	Solid	8270C	580-8685
580-2989-1	PPG0024-01	Solid	8270C	580-8685
580-2989-1MS	Matrix Spike	Solid	8270C	580-8685
580-2989-1MSD	Matrix Spike Duplicate	Solid	8270C	580-8685
580-2989-2	PPG0024-02	Solid	8270C	580-8685
580-2989-3	PPG0024-03	Solid	8270C	580-8685

Client: City of Portland BES

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC Semi VOA				
Prep Batch: 580-8673	}			
LCS 580-8673/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-8673/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8673/1-A	Method Blank	Solid	3550B	
580-2989-1	PPG0024-01	Solid	3550B	
580-2989-1MS	Matrix Spike	Solid	3550B	
580-2989-1MSD	Matrix Spike Duplicate	Solid	3550B	
580-2989-2	PPG0024-02	Solid	3550B	
580-2989-3	PPG0024-03	Solid	3550B	
Prep Batch: 580-8691	l			
LCS 580-8691/2-B	Lab Control Spike	Solid	3550B	
LCSD 580-8691/3-B	Lab Control Spike Duplicate	Solid	3550B	
MB 580-8691/1-A	Method Blank	Solid	3550B	
580-2989-1	PPG0024-01	Solid	3550B	
580-2989-1MS	Matrix Spike	Solid	3550B	
580-2989-1MSD	Matrix Spike Duplicate	Solid	3550B	
580-2989-2	PPG0024-02	Solid	3550B	
580-2989-3	PPG0024-03	Solid	3550B	
Analysis Batch:580-8	967			
LCS 580-8673/2-A	Lab Control Spike	Solid	8082	580-8673
LCSD 580-8673/3-A	Lab Control Spike Duplicate	Solid	8082	580-8673
MB 580-8673/1-A	Method Blank	Solid	8082	580-8673
580-2989-1	PPG0024-01	Solid	8082	580-8673
580-2989-1MS	Matrix Spike	Solid	8082	580-8673
580-2989-1MSD	Matrix Spike Duplicate	Solid	8082	580-8673
580-2989-2	PPG0024-02	Solid	8082	580-8673
580-2989-3	PPG0024-03	Solid	8082	580-8673
Analysis Batch:580-8	942			
LCS 580-8691/2-B	Lab Control Spike	Solid	8081A	580-8691
LCSD 580-8691/3-B	Lab Control Spike Duplicate	Solid	8081A	580-8691
MB 580-8691/1-A	Method Blank	Solid	8081A	580-8691
580-2989-1	PPG0024-01	Solid	8081A	580-8691
580-2989-1MS	Matrix Spike	Solid	8081A	580-8691
580-2989-1MSD	Matrix Spike Duplicate	Solid	8081A	580-8691
580-2989-2	PPG0024-02	Solid	8081A	580-8691
580-2989-3	PPG0024-03	Solid	8081A	580-8691

General Chemistry

Analysis Batch:580-8694			
580-2989-1	PPG0024-01	Solid	PercentMoisture
580-2989-2	PPG0024-02	Solid	PercentMoisture
580-2989-3	PPG0024-03	Solid	PercentMoisture

Quality Control Results

Client: City of Portland BES

Job Number: 580-2989-1

Surrogate Recovery Report

8270C Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)

Client Matrix: Solid				
Lab Sample ID	Client Sample	(FBP) (%Rec)	(NBZ) (%Rec)	(TPH) (%Rec)
580-2989-1	PPG0024-01	88	91	75
580-2989-2	PPG0024-02	93	103	98
580-2989-3	PPG0024-03	76	84	68
580-2989-1MS	PPG0024-01	97	104	82
580-2989-1MSD	PPG0024-01	95	101	84
LCS 580-8685/2-A		102	106	98
LCSD 580-8685/3-A		106	109	97
MB 580-8685/1-A		99	104	99
Surrogate			Acceptance	Limits

Surrogate		Acceptance Limits
(FBP)	2-Fluorobiphenyl	42 - 140
(NBZ)	Nitrobenzene-d5	38 - 141
(TPH)	Terphenyl-d14	42 - 151

Quality Control Results

Client: City of Portland BES

Job Number: 580-2989-1

Surrogate Recovery Report

8081A Organochlorine Pesticides by Gas Chromatography

Client Matrix: Solid			
Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(TCX 1) (%Rec)
580-2989-1	PPG0024-01	107	109
580-2989-2	PPG0024-02	103	106
580-2989-3	PPG0024-03	107	119
580-2989-1MS	PPG0024-01	92	101
580-2989-1MSD	PPG0024-01	90	99
LCS 580-8691/2-B		107	118
LCSD 580-8691/3-B		81	96
MB 580-8691/1-A		96	101
Surrogate			Acceptance Limits

(DCB 1)DCB Decachlorobiphenyl40 - 158(TCX 1)Tetrachloro-m-xylene49 - 123

Quality Control Results

Client: City of Portland BES

Job Number: 580-2989-1

Surrogate Recovery Report

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

(DCB 1)

(TCX 1)

Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(TCX 1) (%Rec)
580-2989-1	PPG0024-01	86	98
580-2989-2	PPG0024-02	93	105
580-2989-3	PPG0024-03	96	104
580-2989-1MS	PPG0024-01	93	99
580-2989-1MSD	PPG0024-01	91	102
LCS 580-8673/2-A		99	105
LCSD 580-8673/3-A		106	109
MB 580-8673/1-A		97	106
Surrogate			Acceptance Limits

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

65 - 126

60 - 123

STL Seattle

Quality Control Results

Job Number: 580-2989-1

Method Blank - Batch: 580-8685

Client: City of Portland BES

Lab Sample ID:MB 580-8685/1-AClient Matrix:SolidDilution:1.0Date Analyzed:07/14/2006Date Prepared:07/07/20061341

Analysis Batch: 580-8140 Prep Batch: 580-8685 Units: ug/Kg

Method: 8270C Preparation: 3550B

Instrument ID: SEA023 Lab File ID: HP01930.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume:

Analyte	Result	Qual	MDL	RL
Naphthalene	ND		0.54	5.0
2-Methylnaphthalene	ND		0.59	5.0
1-Methylnaphthalene	ND		0.73	5.0
Acenaphthylene	ND		0.56	5.0
Acenaphthene	ND		0.56	5.0
Fluorene	ND		0.58	5.0
Phenanthrene	ND		0.70	5.0
Anthracene	ND		0.49	5.0
Fluoranthene	ND		0.46	5.0
Pyrene	0.50	J	0.48	5.0
Benzo[a]anthracene	ND		0.75	5.0
Chrysene	ND		0.54	5.0
Benzofluoranthene	ND		1.3	10
Benzo[a]pyrene	ND		0.52	5.0
Indeno[1,2,3-cd]pyrene	ND		1.4	5.0
Dibenz(a,h)anthracene	ND		1.4	5.0
Benzo[g,h,i]perylene	ND		1.6	5.0
Bis(2-ethylhexyl) phthalate	35		2.9	20
Butyl benzyl phthalate	ND		6.5	20
Diethyl phthalate	ND		10	10
Dimethyl phthalate	ND		1.2	10
Di-n-butyl phthalate	ND		1.9	20
Di-n-octyl phthalate	15	J	1.1	20
Surrogate	% Rec		Acceptance Limits	
2-Fluorobiphenyl	99		42 - 140	
Nitrobenzene-d5	104		38 - 141	
Terphenyl-d14	99		42 - 151	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 580-2989-1

Method: 8270C Laboratory Control Duplicate Recovery Report - Batch: 580-8685 Preparation: 3550B Analysis Batch: 580-8140 Instrument ID: SEA023

Prep Batch: 580-8685 Lab File ID: HP01931.D Units: ug/Kg Initial Weight/Volume: 1.0 10 g 10 mL 07/14/2006 1415 Final Weight/Volume: Date Prepared: 07/07/2006 1341 Injection Volume: LCSD Lab Sample ID: LCSD 580-8685/3-A Analysis Batch: 580-8140 Instrument ID: SEA023 Client Matrix: Solid Prep Batch: 580-8685 Lab File ID: HP01932.D 1.0 Units: ug/Kg Initial Weight/Volume: 10 g 07/14/2006 1438 Final Weight/Volume: 10 mL Date Analyzed: Date Prepared: 07/07/2006 1341 Injection Volume:

	<u>%</u>	<u>% Rec.</u>			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Naphthalene	103	112	54 - 131	9	26
2-Methylnaphthalene	118	129	51 - 138	9	27
1-Methylnaphthalene	117	126	50 - 150	8	30
Acenaphthylene	107	117	52 - 130	9	28
Acenaphthene	102	112	50 - 144	9	27
Fluorene	109	121	50 - 134	11	31
Phenanthrene	101	110	55 - 133	8	28
Anthracene	107	113	52 - 135	6	27
Fluoranthene	98	106	54 - 135	7	36
Pyrene	101	109	47 - 152	8	31
Benzo[a]anthracene	117	125	55 - 135	7	27
Chrysene	90	96	59 - 133	7	26
Benzofluoranthene	53	55	43 - 154	5	31
Benzo[a]pyrene	107	113	54 - 138	6	30
Indeno[1,2,3-cd]pyrene	105	117	45 - 153	11	29
Dibenz(a,h)anthracene	108	122	50 - 150	12	30
Benzo[g,h,i]perylene	97	112	54 - 142	14	28
Bis(2-ethylhexyl) phthalate	110	116	23 - 154	5	60
Butyl benzyl phthalate	114	119	44 - 147	5	60
Diethyl phthalate	98	109	51 - 135	11	26
Dimethyl phthalate	107	119	52 - 133	11	60
Di-n-butyl phthalate	102	108	43 - 144	5	60
Di-n-octyl phthalate	112	116	40 - 148	4	31

Page 25 of 33

Client: City of Portland BES

Laboratory Control/

Dilution:

Client Matrix: Solid Dilution: Date Analyzed:

LCS Lab Sample ID: LCS 580-8685/2-A
Quality Control Results

Job Number: 580-2989-1

Client: City of Portland BES

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 580-8685

Method: 8270C Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	580-2989-1 Solid 1.0 07/14/2006 1524 07/07/2006 1341	Analysis Batch: 580-8140 Prep Batch: 580-8685	Instrument ID: SEA023 Lab File ID: HP01934.D Initial Weight/Volume: 10.2065 g Final Weight/Volume: 10 mL Injection Volume:
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	580-2989-1 Solid 1.0 07/14/2006 1547 07/07/2006 1341	Analysis Batch: 580-8140 Prep Batch: 580-8685	Instrument ID: SEA023 Lab File ID: HP01935.D Initial Weight/Volume: 10.7731 g Final Weight/Volume: 10 mL Injection Volume:

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Naphthalene	94	104	54 - 131	5	26	
2-Methylnaphthalene	110	118	51 - 138	2	27	
1-Methylnaphthalene	108	119	50 - 150	4	30	
Acenaphthylene	94	105	52 - 130	6	28	
Acenaphthene	94	102	50 - 144	3	27	
Fluorene	98	110	50 - 134	5	31	
Phenanthrene	99	106	55 - 133	2	28	
Anthracene	78	93	52 - 135	12	27	
Fluoranthene	75	95	54 - 135	16	36	
Pyrene	80	100	47 - 152	15	31	
Benzo[a]anthracene	110	121	55 - 135	4	27	
Chrysene	80	90	59 - 133	5	26	
Benzofluoranthene	45	49	43 - 154	3	31	
Benzo[a]pyrene	91	99	54 - 138	3	30	
Indeno[1,2,3-cd]pyrene	80	86	45 - 153	2	29	
Dibenz(a,h)anthracene	85	94	50 - 150	4	30	
Benzo[g,h,i]perylene	69	76	54 - 142	4	28	
Bis(2-ethylhexyl) phthalate	114	107	23 - 154	7	60	
Butyl benzyl phthalate	97	109	44 - 147	5	60	
Diethyl phthalate	89	99	51 - 135	5	26	
Dimethyl phthalate	98	107	52 - 133	4	60	
Di-n-butyl phthalate	75	92	44 - 144	14	60	
Di-n-octyl phthalate	108	117	40 - 148	3	31	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: City of Portland BES

Method Blank - Batch: 580-8691

Lab Sample ID:MB 580-8691/1-AClient Matrix:SolidDilution:1.0Date Analyzed:07/13/2006Date Prepared:07/07/20061420

Method: 8081A Preparation: 3550B

Instrument ID: SEA035 Lab File ID: ECD20291.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	MDL	RL
Aldrin	ND		0.11	1.0
alpha-BHC	ND		0.11	1.0
beta-BHC	ND		0.13	1.0
delta-BHC	ND		0.12	1.0
gamma-BHC (Lindane)	ND		0.12	1.0
4,4'-DDD	ND		0.27	2.0
4,4'-DDE	ND		0.23	2.0
4,4'-DDT	ND		0.27	2.0
Dieldrin	ND		0.22	2.0
Endosulfan I	ND		0.12	1.0
Endosulfan II	ND		0.27	2.0
Endosulfan sulfate	ND		0.34	2.0
Endrin	ND		0.42	2.0
Endrin aldehyde	ND		0.25	2.0
Heptachlor	ND		0.14	1.0
Heptachlor epoxide	ND		0.13	1.0
Methoxychlor	ND		1.3	10
Endrin ketone	ND		0.25	2.0
Toxaphene	ND		10	100
alpha-Chlordane	ND		0.12	1.0
gamma-Chlordane	ND		0.12	1.0
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	101		49 - 123	
DCB Decachlorobiphenyl	96		40 - 158	

Analysis Batch: 580-8942

Prep Batch: 580-8691

Units: ug/Kg

Quality Control Results

Job Number: 580-2989-1

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 580-2989-1

Client: City of Portland BES

Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 580-8691

Method: 8081A Preparation: 3550B

LCS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCS 580-8691/2-B Solid 1.0 07/13/2006 1302 07/07/2006 1420	Analysis Batch: 580-8942 Prep Batch: 580-8691 Units: ug/Kg	Instrument ID: SEA035 Lab File ID: ECD20292.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCSD 580-8691/3-B Solid 1.0 07/13/2006 1321 07/07/2006 1420	Analysis Batch: 580-8942 Prep Batch: 580-8691 Units:ug/Kg	Instrument ID: SEA035 Lab File ID: ECD20293.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
Analyte		<u>% Rec.</u> LCS LCSD Limit	RPD RPD Limit LCS Qual LCSD Qual

Aldrin	77	72	53 - 126	6	24
alpha-BHC	61	58	41 - 128	5	28
beta-BHC	71	66	48 - 121	7	32
delta-BHC	68	62	22 - 153	9	36
gamma-BHC (Lindane)	67	63	50 - 127	6	29
4,4'-DDD	68	60	44 - 141	12	41
4,4'-DDE	64	58	47 - 140	10	40
4,4'-DDT	58	51	34 - 159	13	47
Dieldrin	65	59	53 - 134	8	32
Endosulfan I	64	59	52 - 122	8	31
Endosulfan II	78	70	53 - 132	11	36
Endosulfan sulfate	65	58	42 - 128	11	43
Endrin	67	60	46 - 138	12	36
Endrin aldehyde	76	71	12 - 179	7	47
Heptachlor	79	74	50 - 130	7	31
Heptachlor epoxide	68	63	49 - 123	7	31
Methoxychlor	67	57	46 - 154	16	46
Endrin ketone	68	61	45 - 127	11	45
alpha-Chlordane	64	59	46 - 118	8	33
gamma-Chlordane	66	61	49 - 122	8	32
Surrogate		LCS % Rec	LCSD %	Rec	Acceptance Limits
Tetrachloro-m-xylene		118	96		49 - 123
DCB Decachlorobiphenyl		107	81		40 - 158

Quality Control Results

Job Number: 580-2989-1

Client: City of Portland BES

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 580-8691

Method: 8081A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	580-2989-1 Solid 1.0 07/13/2006 1400 07/07/2006 1420	Analysis Batch: 580-8942 Prep Batch: 580-8691	Instrument ID: SEA035 Lab File ID: ECD20295.D Initial Weight/Volume: 10.1261 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	580-2989-1 Solid 1.0 07/13/2006 1423 07/07/2006 1420	Analysis Batch: 580-8942 Prep Batch: 580-8691	Instrument ID: SEA035 Lab File ID: ECD20296.D Initial Weight/Volume: 10.1507 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Aldrin	71	72	53 - 126	2	24	
alpha-BHC	59	61	41 - 128	3	28	
beta-BHC	68	71	48 - 121	3	32	
delta-BHC	66	69	22 - 153	3	36	
gamma-BHC (Lindane)	65	67	50 - 127	3	29	
4,4'-DDD	67	68	44 - 141	2	41	
4,4'-DDE	61	63	47 - 140	3	40	
4,4'-DDT	43	44	34 - 159	3	47	
Dieldrin	59	61	53 - 134	3	32	
Endosulfan I	58	60	52 - 122	3	31	
Endosulfan II	71	73	53 - 132	2	36	
Endosulfan sulfate	66	68	42 - 128	2	43	
Endrin	80	83	46 - 138	3	36	
Endrin aldehyde	71	73	12 - 179	2	47	
Heptachlor	69	72	50 - 130	4	31	
Heptachlor epoxide	62	64	49 - 123	3	31	
Methoxychlor	66	66	46 - 154	0	46	
Endrin ketone	65	67	45 - 127	2	45	
alpha-Chlordane	57	59	46 - 118	3	33	
gamma-Chlordane	59	61	49 - 122	3	32	
Surrogate		MS % Rec	MSD	% Rec	Acce	eptance Limits
Tetrachloro-m-xylene		101	99		49	9 - 123
DCB Decachlorobiphenyl		92	90		40	0 - 158

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: City of Portland BES

Method Blank - Batch: 580-8673

Lab Sample ID:MB 580-8673/1-AClient Matrix:SolidDilution:1.0Date Analyzed:07/10/2006 1434Date Prepared:07/07/2006 1126

Quality Control Results

Job Number: 580-2989-1

Method: 8082 Preparation: 3550B

Instrument ID: SEA034 Lab File ID: PCB1939.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	MDL	RL
PCB-1016	ND		0.0058	0.010
PCB-1221	ND		0.0058	0.010
PCB-1232	ND		0.0058	0.010
PCB-1242	ND		0.0058	0.010
PCB-1248	ND		0.0058	0.010
PCB-1254	ND		0.0015	0.010
PCB-1260	ND		0.0015	0.010
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	106		60 - 123	
DCB Decachlorobiphenyl	97		65 - 126	

Analysis Batch: 580-8967

Prep Batch: 580-8673

Units: mg/Kg

Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 580-8673

Method: 8082 Preparation: 3550B

LCS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 580-8673/2-A Solid 1.0 07/10/2006 1457 07/07/2006 1126	Prep I	sis Batch: 3 Batch: 580 mg/Kg		Lab Initi Fina Inje	trument ID: SEA034 File ID: PCB1940.D al Weight/Volume: 10 g al Weight/Volume: 10 mL ection Volume: umn ID: PRIMARY
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 580-8673/3-A Solid 1.0 07/10/2006 1521 07/07/2006 1126	Prep I	sis Batch: 3 Batch: 580 mg/Kg		Lab Initi Fina Inje	trument ID: SEA034 File ID: PCB1941.D al Weight/Volume: 10 g al Weight/Volume: 10 mL ection Volume: umn ID: PRIMARY
		%	6 Rec.			
Analyte		LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
PCB-1016 PCB-1260		103 99	107 107	57 - 128 65 - 132	4 8	8 8

SUBCONTRACT ORDER

TestAmerica - Portland, OR PPG0024

SENDING LABORATORY:

TestAmerica - Portland, OR 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210 Project Manager: Howard Holmes

RECEIVING LABORATORY:

Severn Trent Laboratories - Tacoma 5755 8th Street East Tacoma, WA 98424 Phone :253-922-2310 Fax: 253-922-5047

Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: PPG0024-01	Soil	Sampled:06/27/06 09:17			
8081A/8082 Pest/PCB 8270C PDX-UIC	07/17/06 23: 07/17/06 23:			C of P LL to STL C of P LL to STL	* Broken Ud
Containers Supplied:	07/17/00 23.	59 07/11/00 09.17		C OIT LE 10 DIE	
4 oz. jar (A)	4 oz. jar (B)			
Sample ID: PPG0024-02	Soil	Sampled:06/27/06 10:39			
8081A/8082 Pest/PCB	07/17/06 23:	59 07/11/06 10:39		C of P LL to STL	
8270C PDX-UIC	07/17/06 23:	59 07/11/06 10:39		C of P LL to STL	
Containers Supplied:					
4 oz. jar (A)	4 oz. jar (B)			
Sample ID: PPG0024-03	Soil	Sampled:06/27/06 12:38			
8081A/8082 Pest/PCB	07/17/06 23:	59 07/11/06 12:38		C of P LL to STL	
8270C PDX-UIC	07/17/06 23:	59 07/11/06 12:38		C of P LL to STL	
Containers Supplied:					
4 oz. jar (<u>A</u>)	4 oz. jar (B)			

15/04 leased By Received By

LOGIN SAMPLE RECEIPT CHECK LIST

Client: City of Portland BES

Job Number: 580-2989-1

Login Number: 2989

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

98011-8244 425-420-9200 FAX 420-9210	Work Order #: PPGOQU	TURNAROUND REQUEST in Business Days *	Image: Construct Analyses Image: Construct Analyses	S117 Potroleum Hydrocarthon Analyses 5 4 3 2 1 <1	STD. OTHER	* Turnurantud Requests less than standard may incur high Charges.	MATRIX # 0F LOCATION TA (W.S.O) CONT. COMMENTS WOLD	S 3 &	S 3 (A)	S 3 (x)	>		c		FIRME 7-3-06		TIALE TAR
 11720 North Creek Pkwy N Suite 400. Bothell, WA 98011-8244 11922 E. Fitst Ave. Spokane. WA 99206-5302 9405 SW Nimbus Ave. Beaverton. OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage. AK 99502-1119 	и	,+(e			FS										RECEIVED BY: THE GIS	NECENVED BY: A CLA	Send Lew-level Pest/PCBs and Low-level PAH to STL. All all Will W.
	ST	INVOICE TO: Charles Lutle		P.O. NUMBER: 36238 PRESERVATIVE	REOUESTED ANALYSES						· · · ·				DATE 73/06 RECH TIME 0548 FRINT		TIME: 5 and Low-level P. 10 nav for the service connected on this chain of
C D D D D D D D D	CHAIN OF CUST	ty at ParMard To . C. CI . I. C.	NACKEISAN		7-1.7-1.	WIS 808 76	SAMPLING DATE/TIME	6 0917 XXX>	$i_{039} \times \times \times \times$	$X \times X$ 852					itsue City of Borthand		LOW-IEVER PEST/PCBS
Test merical testing corporation		<u>ן</u> ס	ADDRESS: OCONTO O	PROJECT NAME: PROJECT NAME: PROJECT NAME: PROJECT NAME:	PROJECT NUMBER: Zhline Samp.	SAMPLED BY:	CLIENT SAMPLE S/ IDENTIFICATION D/	F0 060767 6/27/06	FO 060768 /	F0 060769 1					RELEASED BY: DI THE HOLES	RELEASED BY:	HEINT INAME: ADDITIONAL REMARKS: A Sprad

Attachment D NW Front Avenue Branch 1200-Z Stormwater Monitoring Data

=

Ξ

.

|--|

-

1200-Z STORMWATER MONITORING DATA

5

5700 NW FRONT AVE BRENNTAG PACIFIC INC

Org ID: 2252

	Dara 1 of /	ring Renart	Stormwater Monitoring Renart	Storm		THIC INC	BRENNTAG PACIFIC INC	BREN	3/2008	Revised: 3/3/2008
		6.4	11		< 0.08	0.05	self	1/10/2000	00-66	
47	55	< 2	30	8 S60	0.004	0.015	self	9/8/2000		00-01
	299	3.9	62		0.03	016	self	6/11/2001		00-01
	6.28	12	33	0.11	0.01	0.004	self	11/20/2001	01-02	
12	5.5 -	۸ 5	9.2	0.085	< 0.2	< 0.05	city	11/28/2001	01-02	
	5.97	~ 2	22	0.24	0.006	0.069	self	5/13/2002	01-02	
	6.25	< 5.88	< 10	0.118	0.0163	0.0397	self	11/12/2002		02-03
-	<u>67</u> 2	< 4.95	24	0.29	0.0403	0124	self	5/16/2003		02-03
	0	119	32	0.309	0.0543	0436	self	11/17/2003	03-04	
50		204	142	0.25	0.0914	0.128	city	1/14/2004	03-04	
	5.98	۸ 5	68	0.179	0.0497	0.124	self	4/19/2004	03-04	
18.8	6.66	۸ 5	< 10	0.152	0.00161	0.0105	self	10/19/2004		04-05
		۸ ص	11	0.574	0.0128	0.056	self	3/23/2005		04-05
	6.29						self	3/30/2005		04-05
	6.8	< 4.72	< 10	0.115	0.0134	0.0276	self	9/30/2005	05-06	
	6.13		< 10	0.099	0.0044	0.017	self	5/26/2006	05-06	
		< 5.21					self	6/21/2006	05-06	
	6.51	< 4.72	< 10	0.0631	0.00203	0.01	self	11/22/2006		06-07
	6.59	< 4.81	< 10	0.428	0.0365	0.0624	self	5/2/2007		06-07
COD	pH	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	t Year	Permit Year
				UNS - A	Description: SUMP @ N PROPEDCE, EDR MNS-	P @ N PROP	on: SUM	Descripti	tion Codes Of	ution C
	5.5 - 9.0	10	130	0.6	0.4	0.1	Benchmark	Ber		
	pH (stu)	0&G	TSS	Zn	Рb	Cu	Parameter (mg/L)	Param		

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

	6.19	۸ 5	245	0.284	0.0684	0.0402	self	5/16/2003		02-03
	0	^ 5	< 10	0.289	< 0.02	< 0.02	self	11/17/2003	03-04	
	5.7	^ 5	23	0.0654	0.00811	0.0122	city	1/14/2004	03-04	
	6.28	^ 5	27	0.325	0.017	0.0732	self	4/19/2004	03-04	
	6.72	^ 5	< 10	0.0647	0.0013	0.0091	self	10/19/2004		04-05
		^ 5	< 10	0.11	0.00218	0.0152	self	3/23/2005		04-05
	6.63						self	3/30/2005		04-05
	6.83	< 4.72	< 10	0.0837	0.003	0.0117	self	9/30/2005	05-06	
	6.21	< 2	18	0.054	0.0051	0.0096	self	5/26/2006	05-06	
	6.4	< 4.72	< 10	0.0327	0.00153	0.00324	self	11/22/2006		06-07
	6.87	< 4.81	< 10	0.26	0.00133	0.0241	self	5/21/2007		06-07
	pH	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Perm
					IF ACCIUSIUEY	AULTICONSULATION ON ALCO 30 AUTO	ang CB (Deceript	realizer Critics M2	D. F. OLIVE
	5.43		110	0.55	0.037	0.09	self	6/5/1995		94-95
	5.57	8					self	7/6/1995	95-96	
	6.78	თ	66	0.4	0.21	0.49	self	10/17/1995	95-96	
	5.89	< 3	42	1.5	0.23	1.8	self	6/17/1996	95-96	
1							self	12/16/1996		96-97
	5.6	2.4	35	0.19	< 0.06	0.14	self	6/4/1997		96-97
	6.2	2.6	42	0.21	0.11	0.049	self	10/28/1997	97-98	
	6.3	4.9	46	0.27	< 0.08	0.077	self	6/25/1998	97-98	
	5.6	22	110	0.49	0.22	6% 00-51 (mail	self	9/22/1998		98-99
	5.8	2.4	15	0.21	< 0.06	0.048	self	11/20/1998		98-99
	5.5	~ 2	17	< 0.02	< 0.06	< 0.025	self	5/7/1999		98-99
	52	3.3	63	0.52	< 0.06	No Monta	self	10/8/1999	00-66	
	pH	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Perm

-

150

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

Revised: 3/3/2008

						self	12/9/1996		96-97
						self	1/3/1997		96-97
	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Perm
			E_{\pm}	DISCHARG	Description: SOLVENT PANK 6 DISCHARGE	on: SOLI		cation Code: X-I6	ation (
	9.2	40.8	0.106	< 0.02	0.012	city	4/7/1995		94-95
		40	0.19	0.015	0.05	self	6/5/1995		94-95
	<u>6 21 %</u>	59.4	0.138	0.0262	0.0289	city	2/6/1996	95-96	
	12	35	0.083	< 0.02	0.017	city	3/3/1997		96-97
	2.9	47	0.19	< 0.06	0.049	self	6/4/1997		96-97
	4.8	72	0.84	0.28	0.82	self	10/28/1997	97-98	
	14	13	0.295	< 0.1	0.055	city	5/12/1998	97-98	
	2.3	150	0.37	0.096	0.061	self	6/24/1998	97-98	
	< 2	94	0.29	< 0.2	0.065	self	9/22/1998		98-99
	3.2	47	0.17	< 0.06	0.017	self	11/20/1998		66-86
	۸ ت	22	0.25	< 0.1	0.06	city	2/5/1999		66-86
	< 2	78	0.16	0.087	0.035	self	5/7/1999		66-86
	ω	14	0.3	< 0.06	0.017	self	10/8/1999	00-66	
		14		0.08	0.01	self	1/10/2000	00-66	
	< 5	30	0.15	< 0.1	0.03	city	3/27/2000	00-66	
46	2.8	32	12	0.02	0.023	self	9/8/2000	-	00-01
	7.7	212	0.26	0.04	0.11	self	6/11/2001		00-01
	ω	88	0.11	0.01	0.03	self	11/20/2001	01-02	
345 A	۸ 5	2.2	0.057	< 0.2	< 0.05	city	11/28/2001	01-02	
	5.6	40	0.28	0.023	0.053	self	5/13/2002	01-02	
	< 5.71	26	0.107	0.0172	0.02	self	11/12/2002		02-03
	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date		Feru

_

-

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

orgst interine self 96-97 10/22/1996 self DecemineCode:::::::::::::::::::::::::::::::::::	Zinc TSS O/G I
TSS	TSS O/G
	O/G I
O/G	
	7.2 pH 6.5 6.5

=

...

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

Stormwater Monitoring Report

Revised: 3/3/2008

BRENNTAG PACIFIC INC

Page 4 of 4

1200-Z STORMWATER MONITORING DATA

5

5501 NW FRONT AVE PARAMOUNT PETROLEUM CORPORATION

Org ID: 2576

V/C μ <4.766.789.97.113.46.963.26.893.26.893.26.893.33.94.45.873.46.223.46.224.45.76.576.245.76.245.85.84.25.74.25.85.85.84.25.75.95.7	Page 1 of 4		oring Report	Stormwater Monitoring Report	Storm	PARAMOUNT PETROLEUM CORPORATION	TROLEUM	MOUNT PE	PARA	3/2008	Revised: 3/3/2008
$\begin{array}{c} \mathbf{V} \mathbf{V} \\ \mathbf{v}$	ω	5.9	7.4	15	0.073	< 0.1	< 0.03	city	12/9/1999	00-66	
Overpm < 4.76 6.78 9.9 7.11 3.4 6.96 3.2 6.89 3.2 6.89 4.4 5.7 3.9 6.22 4.4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 5.7 6.24 5.7 6.24 5.7 5.7 4.2 5.8	< 10	5.7	1.9	12		< 0.08	< 0.01	self	2/28/2000	00-66	
Over pm < 4.76 6.78 9.9 7.11 3.4 6.96 3.2 6.89 3.2 6.89 3.2 6.89 3.2 6.89 3.2 6.89 3.2 6.89 4.4 5.87 3.4 6.22 3.4 6.18 4 6.18 4 6.18 4 6.18 5.7 6.24 5.7 6.5 5.8 5.7 5.7 6.5 5.8 5.8	17	5.8	4.2	26	0.13	< 0.09	< 0.01	self	5/3/2000	99-00	
Overpm < 4.76 6.78 9.9 7.11 3.4 6.96 3.2 6.89 3.2 6.89 3.3 5.9 3.4 5.87 3.4 6.22 3.4 6.22 4.4 6.18 4 6.18 4 6.18 5.7 6.24 5.7 6.24 5.7 5.7 5.7 5.8	44	6.6	σ	21	0.15	0.007	0.014	self	12/15/2000		00-01
V/V <4.76 9.9 7.11 3.4 6.96 3.2 6.89 3.9 5.9 4.4 5.87 3.4 6.22 3.4 6.22 3.4 6.22 3.4 6.22 3.4 6.22 5.7 6.24 5.7 5.7 	37	5.8	۸ 5	20	0.149	< 0.2	< 0.05	city	3/15/2001		00-01
OVY 4.76 9.9 7.11 3.4 6.96 3.2 6.89 4.4 5.9 4.4 5.87 3.9 4.4 5.87 5.9 6.22 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.24 6.5	100	5.7		10	0.51	< 0.001	0.027	self	3/15/2001		00-01
Over pm < 4.76 6.78 9.9 7.11 3.4 6.96 3.2 6.89 3.2 6.89 3.2 5.9 4.4 5.87 3.4 6.22 3.4 6.22 4.4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18 4 6.18	16	6.5	6.5	29	0.08	< 0.001	< 0.001	self	10/22/2001	01-02	
OVG pr <4.76 9.9 7.11 3.4 6.96 3.2 6.89 5.9 4.4 5.87 3.9 5.87 4.4 5.87 3.9 6.22 3.4 6.22 4.4 6.18 5.9 <li< td=""><th>< 10</th><td>6.24</td><td>5.7</td><td>18</td><td>0 95</td><td>0.026</td><td>0.024</td><td>self</td><td>6/30/2002</td><td>01-02</td><td></td></li<>	< 10	6.24	5.7	18	0 95	0.026	0.024	self	6/30/2002	01-02	
4. 76 6. 78 9.9 7.11 3.4 6.96 3.2 6.89 4.4 5.87 3.9 3.4 5.87 3.9 4.4 5.87 6.22 3.4 6.22	< 10		< 2		0.068	< 0.001	0.017	self	11/12/2002		02-03
4.76 9.9 3.4 6.96 3.2 6.89 5.9 4.4 5.87 3.9 4.4 5.87 4.4 5.87 3.9 4.4 5.87 5.9 6.22	ለ ርገ	53		3.5	0.0418	0.00121	0.00321	city	3/7/2003		02-03
Cry pr < 4.76 9.9 7.11 3.4 5.9 4.4 5.87 3.9 5.87 4.4 5.87 6.82 6.22	29	6.18	4	91	0.13	< 0.001	0.018	self	4/7/2003		02-03
Cryc 4.76 9.9 7.11 3.4 6.96 3.2 6.89 5.9 4.4 5.87 3.9	740	6.22	3.4	22	0.02	0.022	0.009	self	11/19/2003	03-04	
4.76 9.9 3.4 5.9 4.4 5.87	18		3.9	4	0.027	< 0.001	0.007	self	3/25/2004	03-04	
C/C 4.76 9.9 7.11 3.4 6.96 3.2 6.89 5.9		5.87	4.4	7	0.035	< 0.005	0.018	self	1/7/2005		04-05
4.76 9.9 3.4 5.8 6.96 6.89		5.9	3024	12	0.023	< 0.005	< 0.005	self	3/23/2005		04-05
9 .9 7.11 3.4 6.96		6.89	3.2	4	0.07	< 0.005	< 0.005	self	11/1/2005	05-06	
9.9 7.11		6.96	3.4	19	0.11	0.006	0.011	self	4/14/2006	05-06	
4.76 6.78		7.11	9.9	44	0.2	0.017	0.013	self	10/16/2006		06-07
D/G pa		6.78	< 4.76	< 10	0.0775	0.0026	0.0024	self	3/2/2007		06-07
	COD	рH	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Permi
						PRONT STURIE	\overline{R} 33 \overline{NE} (R)	1711 300	Description	U. Espe	Q Querrout
130 10 5.5 - 9.0		5.5 - 9.0	10	130	0.6	0.4	0.1	Benchmark	Ber		
TSS O&G pH (stu)		pH (stu)	0&G	TSS	Zn	Pb	Cu	Parameter (mg/L)	Param		

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

_

< 10	6.73	< 2	46	0.027	0.005	0.02	self	4/21/2004	03-04	
	6.3	< 2	43	0.041	< 0.005	0.041	self	1/7/2005		04-05
	6.51	6.11	34	0.22	< 0.005	< 0.005	self	3/23/2005		04-05
	6.85	ω	73	0.12	0.028	0.009	self	11/1/2005	05-06	
	7.02	< 2	42	0.051	0.013	0.012	self	4/14/2006	05-06	
	6.68	9.3	10	0.054	< 0.005	0.007	self	10/16/2006		06-07
	6.9	< 5	< 10	0.027	0.00278	0.00286	self	3/2/2007		06-07
COD	pĦ	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Permi
				<u>irin</u> i	CORNER IN CHURNE	VE 39 (D) SVE (C	on: VAL)	Description: VAL	000 - 102	hom Code
		σ	18	0.07			self	3/28/1995		94-95
20	5.5	9.1	35	0.132	0.02	0.01	city	5/1/1995		94-95
48	6.7						self	6/12/1995		94-95
		< 5					self	10/30/1995	95-96	
32	6.4	< 5	45	0.21	0.03	0.04	self	11/6/1995	95-96	
23	7.8		50	0.072	< 0.02	0.013	city	11/22/1995	95-96	
52	6.9	8	19	0.15	< 0.03	< 0.02	self	3/14/1996	95-96	
8	7.3	7.8	12	0.075	0.02	0.007	city	12/10/1996	ſ	96-97
	6.1	6.2	141	0.299	< 0.3	0.025	city	8/28/1997	97-98	
	6.3	2.2	21	0.11	< 0.06	0.023	self	11/25/1997	97-98	
36.2	2.1	4	60	0.27	0.16	0.047	self	3/3/1998	97-98	
	5.9		11				self	3/10/1998	97-98	
19	5.8	2.6	16	0.073	< 0.062	0.021	self	11/6/1998		98-99
8	6.4	8.9	13	0.068	< 0.1	< 0.03	city	12/7/1998		66-86
	7.2	< 2	55	0.12	< 0.13	0.034	self	2/9/1999		98-99
12	6.1	2.1	4.5	0.31	< 0.04	0.012	self	11/8/1999	00-66	
COD	pĦ	0/G	TSS	Zinc	Lead	Copper	Tester	Sample Date	Permit Year	Permi

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports. EIRULEUM CURPURATIUM

Stormwater Montoring Report

rage 2 of 4

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports.

Page 3 of 4

Stormwater Monitoring Report

PARAMOUNT PETROLEUM CORPORATION

Revised: 3/3/2008

94-95	94-95	94-95				96-97				66-86	98-99	98-99				00-01	00-01	00-01			02-03	02-03	02-03		Permi
			95-96	95-96	95-96	ľ	97-98	97-98	97-98				99-00	00-66	00-66				01-02	01-02				03-04	Permit Year
3/28/1995	5/1/1995	6/12/1995	10/30/1995	11/6/1995	3/14/1996	12/10/1996	8/28/1997	11/25/1997	3/3/1998	11/6/1998	12/7/1998	2/9/1999	11/8/1999	12/9/1999	2/28/2000	12/15/2000	3/15/2001	3/16/2001	12/13/2001	6/30/2002	11/12/2002	3/7/2003	4/7/2003	11/19/2003	Sample Date Tester
self	city	self	self	self	self	city	city	self	self	self	city	self	self	city	self	self	city	self	self	self	self	city	self	self	Tester
0.03	0.011			0.04	0.02	0.008	0.02	0.023	0.012	0.02	< 0.03	0.032	0.012	0.031	< 0.01	0.009	< 0.05	0.02	0.01	0.012	0.02	0.00358	0.013	0.009	Copper
0.02	< 0.02			0.03	< 0.03	< 0.02	0.3	< 0.06	0.13	< 0.062	< 0.1	< 0.13	< 0.04	< 0.1	< 0.08	< 0.001	< 0.2	< 0.01	0.002	0.009	< 0.001	0.0109	0.007	0.015	Lead
0.13	0.086			0.22	0.23	0.437	0.057	0.07	0.031	0.069	< 0.05	0.094	0.048	0.079	0.07	0.06	0.158	0.01	0.14	0.034	0.032	0.0428	0.052		Zinc
9.8	21			17	20	171	21	3.5	5.7	8.5	2.6	14	13	9	7	3.5	176	54	22	12		10	12	18	TSS
сл	11		0.5	۸ IJ	11	14	20	< 2	3.1	~ 2	۸ ن	N	~ 2	6.4	2.4	< 2	6.5	< 2	< 2	45.5	< 2	۸ ت	2	ω	0/G
	5.8	6.7		6.4	6.9	6.6	6.4	6.2	6.4	6.5	6.5	6.7	6.4	o	6.1	6.1	6.4	6.3	6.37	6.59		5.5	6.31	5.96	рH
	10	6.5		25	41	10			< 10	14	з	< 10	18	< 2	< 10	17	22	< 10	26	< 10	11	^ 5	< 10	760	COD

Revised: 3/3/2008	95-96	Permit Year		Permit Year	boeatton: Code: XV
PARA	5/8/1996	Sample Date	OGEL (CIAL	Sample Date	47 Descript
MOUNT	self	Tester	sen	Tester	ioux HRAD
PARAMOUNT PETROLEUM CORPORATION		Copper		Copper	Descaption HYDROSHAPIC PE
ORPORATION	< 0.025	Lead	NITHON RAUK	Lead	VESTREDO BATICE
		Zinc		Zinc	H
Stormwater Monitoring Report		TSS		TSS	
ng Report	< 0.5	0/G		0/G	
	6.8	pH	7.2	pН	
Page 4 of 4		COD		COD	

This report is intended for internal use. The City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published. For compliance or reporting purposes, the user should refer to the acutal laboratory reports. **Stormwater Monitoring Report**