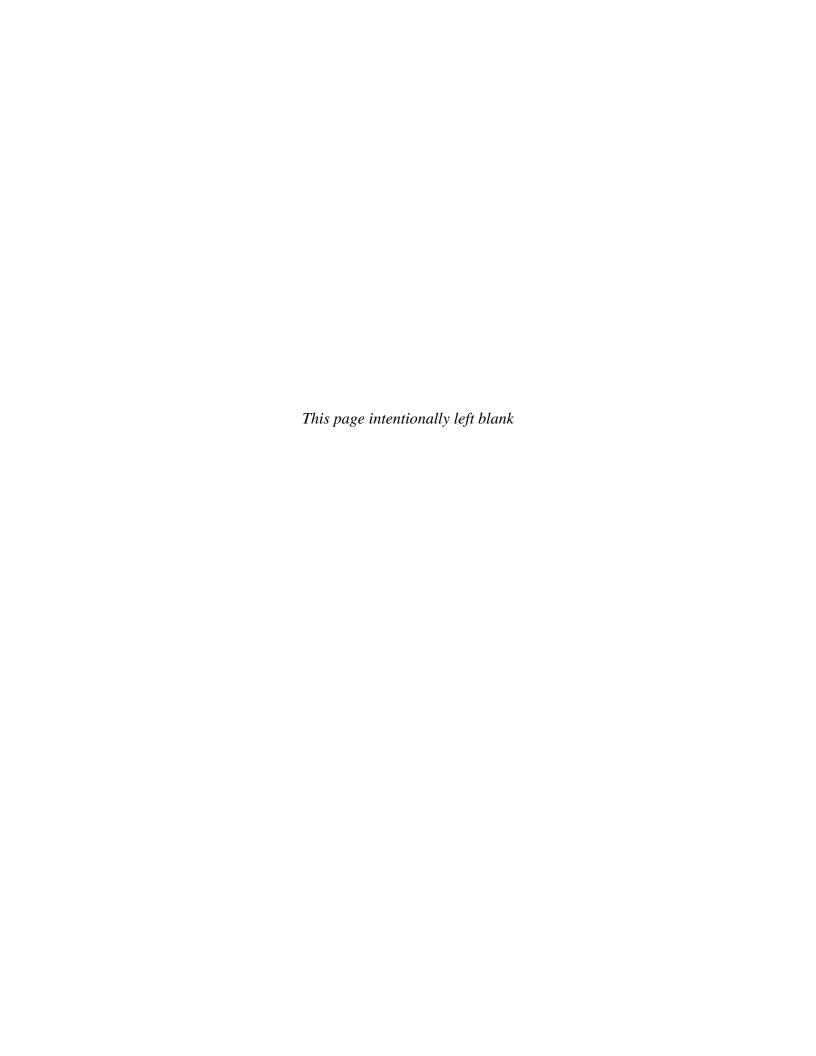
Intergovernmental
Agreement for
Remedial
Investigation and
Source Control
Measures

DEQ No. LQVC-NWR-03-10


Outfall Basin 19 Stormwater Investigation

Technical Memorandum No. OF 19-3 City of Portland Outfall Project ECSI No. 2425

September 2012

PREPARED BY

1120 SW Fifth Avenue, Room 1000, Portland, Oregon 97204 • Dan Saltzman, Commissioner • Dean Marriott, Director

TECHNICAL MEMORANDUM No. OF19-3

Outfall Basin 19 Stormwater Investigation

TO: Alex Liverman, Oregon Department of Environmental Quality (DEQ)

FROM: Linda Scheffler, City of Portland, Bureau of Environmental Services (BES)

COPIES: Richard Muza, U.S. Environmental Protection Agency (EPA)

Julia Fowler, GSI Water Solutions, Inc.

DATE: September 20, 2012

SUBJECT: Portland Harbor Source Investigation

Introduction

This technical memorandum presents the results of the City of Portland (City) stormwater investigation conducted between December 2009 and February 2011 in Outfall Basin 19. Pesticides had been detected at low concentrations in a stormwater sample collected from the Basin 19 monitoring location in February 2009. Previous Basin 19 stormwater monitoring samples were not analyzed for pesticides of the City collected additional pesticides data for Basin 19 stormwater to determine whether major upland sources of pesticides are present in the outfall basin (BES, 2010a). The December 2009 to February 2011 sampling results indicate that pesticides concentrations in Outfall 19 stormwater discharges are low and confirm that further source tracing for pesticides is not warranted.

This investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement between DEQ and the City. Data collected under this investigation support ongoing DEQ and City efforts to identify, characterize and control discharges to the Basin 19 municipal storm system.

Background

Basin Physical System and Setting

Outfall 19 drains approximately 486 acres; 70 percent of this acreage is Forest Park and the remaining is zoned industrial. The Outfall Basin 19 stormwater conveyance system and basin boundary are shown on Figure 1. The system has two main branches, both of which convey runoff from Forest Park, State and local roads, and industrial properties:

¹ The samples were collected as part of the City's routine monitoring of Basin 19 discharges to the Willamette River under a DEQ-issued National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Discharge Permit.

- Western branch includes a storm line along NW Front Avenue, a line along NW St. Helens Road, and connecting lines.
- Eastern branch—includes storm lines along NW Kittridge Avenue, NW Yeon Avenue, NW St. Helens Road and NW Express Avenue.

These two branches converge at the intersection of NW Front and NW Kittridge Avenues (see manhole AAP918 on Figure 1). From this manhole, the storm main runs northeastward to the outfall, which discharges to the west side of the Willamette River at river mile 8.2. There are no connections between the manhole and the river.

The basin includes 17 facilities that are listed in the DEQ Environmental Cleanup Site Information (ECSI) database (see Figure 1).

Previous Investigations

Stormwater Solids

Several stormwater solids source investigations that included pesticides analyses have been conducted in Basin 19:

- 2003: City basin-wide inline solids investigation (BES, 2010b)
- 2006: City targeted inline solids investigation adjacent to former PGE-Forest Park property (ECSI #2406) and Brazil & Co. site (ECSI #1026) (BES, 2007a)
- 2007: Lower Willamette Group (LWG) sediment trap sample collection (Anchor and Integral, 2008)

Results from these investigations are evaluated in the *City of Portland Outfall Basin 19 Source Investigation Update Report* (BES, 2010b). With regard to pesticides, evaluation of the solids data indicated the presence of locally elevated concentrations of pesticides in solids in the upper portion of the eastern branch (primarily in abandoned lines), but no specific sources were identified.

Stormwater

Stormwater discharges from the City's stormwater outfall system are authorized and regulated under MS4 Discharge Permit #101314, issued jointly to the City and the Port of Portland. The City NPDES program began routine stormwater monitoring in Basin 19 in 1995 to generate a long-term effectiveness measure of the City's Industrial Stormwater Program (BES, 2011). The Outfall 19 MS4 stormwater monitoring data are reported to DEQ in the City's Annual Compliance Reports.² Additional data historically collected from this location to meet Portland Harbor source investigation objectives were evaluated in the City's *Stormwater Evaluation Report* (BES, 2010a).

A Basin 19 stormwater sample collected in February 2009 was analyzed for pesticides. Although the detected concentrations of pesticides were low in this sample (see Table 1), the City decided to collect additional pesticides data to confirm that source tracing was not warranted (BES, 2010a).

SEPTEMBER 2012 PAGE 2 OF 6

² Annual Compliance Reports for the City MS4 program can be accessed at: http://www.portlandonline.com/bes/index.cfm?c=50289&.

Stormwater Sample Collection and Analysis

The City MS4 program collected flow-weighted composite stormwater samples during four storm events between December 2009 and February 2011. In addition to the routine suite of analyses conducted for the MS4 permit, the City also analyzed these stormwater samples for pesticides to meet the objectives of this investigation. Field activities and pesticides results for these samples are summarized below.

Field Activities

Sampling Location and Procedures

The Basin 19 stormwater samples were collected at manhole AAP918, in the 42-inch outlet pipe (see Figure 1). Because there are no connections downstream of this manhole, this sampling point is representative of whole-basin discharges from Outfall 19. Automatic sampling equipment was installed at the monitoring location prior to each sampling event and programmed in accordance with the City's Amended Programmatic Sampling and Analysis Plan (BES, 2007b). Field notes recorded during stormwater sampling activities are included in Attachment A.

Storm Events Sampled

To meet the MS4 monitoring objectives, the Basin 19 stormwater sampling targeted storm events meeting specific criteria, which included an antecedent dry period of at least 6 hours, and a minimum predicted rainfall volume of greater than 0.2 inches in a 12-hour period. The storm events are described below based on sampling crew field notes, automated flow monitoring data, and hourly rainfall data from the Yeon rain gage,³ located at 3395 NW. Yeon St., approximately 1.25 miles from the Basin 19 sampling location. Storm event hydrographs are presented in Figures 2 through 5. In accordance with standard practice, all rain gage data are recorded in Pacific Standard Time (PST). Therefore, all sample times in the following descriptions are given in PST.

<u>December 14 - 15, 2009</u>

Less than 0.1 inch of rainfall was recorded at the Yeon rain gage in the 16 days preceding this event. The minimum forecasted rainfall for December 14 was 0.91 inches. Rainfall began between 3:00 p.m. and 4:00 p.m. on December 14 and continued for more than 24 hours. The composite sample represents the time period between 5:23 p.m. on December 14 and 4:54 a.m. on December 15. Approximately 0.89 inches of rain had been recorded by the time the last aliquot was collected. The event hydrograph in Figure 2 presents the timing of the individual sample aliquots relative to flow and precipitation.

February 23 - 24, 2010

Less than 0.1 inch of rainfall was recorded at the Yeon gage during the 7 days preceding this event. The minimum forecasted rainfall for February 23 was 0.37 inches. Rainfall began between 11:00 a.m. and 12:00 p.m. on February 23, became intermittent after 3:00 a.m. on February 24, and ceased between 6:00 and 7:00 a.m. on February 24. The composite sample represents the time

SEPTEMBER 2012 PAGE 3 OF 6

-

³ The Yeon rain gage is Station No. 121 of the City of Portland HYDRA Rainfall Network. Rain gage data obtained from USGS, Oregon Water Science Center (http://or.water.usgs.gov/non-usgs/bes/).

period between 12:41 p.m. on February 23 and 10:35 a.m. on February 24 (see event hydrograph in Figure 3). Approximately 0.51 inches of rain had been recorded by the time the last aliquot was collected.

October 23 - 24, 2010

Less than 0.1 inch of rainfall was recorded at the Yeon rain gage during the 12 days preceding this event. The minimum forecasted rainfall for this event was 1.27 inches. Steady rainfall began between 4:00 and 5:00 p.m. on October 23 and continued until between 2:00 and 3:00 a.m. on October 24, after which rainfall continued intermittently through the evening of October 24, with the heaviest rainfall occurring between approximately 4:00 and 8:00 p.m. on October 24. The composite sample represents the time period between 6:34 p.m. on October 23 and 10:26 p.m. on October 24 (see Figure 4). By the time the last aliquot was collected, a total of approximately 1.90 inches of rainfall had been recorded at the Yeon rain gage for this storm.

February 12, 2011

Less than 0.1 inches of rainfall were recorded at the Yeon rain gage during the 4 days that preceded this event. The minimum forecasted rainfall for this event was 0.58 inches. Rainfall began between 5:00 and 6:00 p.m. and ceased between 9:00 and 10:00 p.m. on February 12. The composite sample represents the time period between 6:04 and 10:34 p.m. on February 12 (see Figure 5). By the time the last aliquot was collected, a total of approximately 0.48 inches of rainfall had been recorded at the Yeon rain gage for this storm.

Based on these sampling conditions, the December 2009 – February 2011 storm events met the targeted storm criteria and the sampling objectives. The associated stormwater samples are considered to be representative of discharges from Outfall 19 during a variety of storm conditions.

Summary of Results

The composite stormwater samples were submitted for laboratory analysis of pesticides and other constituents. One or more pesticides were detected in each sample. Table 1 summarizes the pesticide results for the Basin 19 stormwater samples and includes Portland Harbor Joint Source Control Strategy (JSCS; DEQ/EPA, 2005) screening level values (SLVs) for reference. The laboratory reports and data review memoranda are included in Attachment B.

Data Evaluation

Approximately one-third of the pesticides analyzed were not detected in any of the samples. Of the pesticides detected, the majority of detected values are estimated concentrations, which have a higher level of uncertainty affiliated with the result.⁴ Most detected pesticides were observed in only one or two of the five sampling events and are below or within an order-of-magnitude of the Ecological JSCS SLVs (see Table 1). These findings don't indicate that major current pesticides sources are present in the basin.

To supplement the evaluation of pesticides in basin stormwater, the City also reviewed pesticides results for stormwater solids samples collected in the basin. Historically pesticides were detected

SEPTEMBER 2012 PAGE 4 OF 6

_

⁴ For the five sampling events, 13 of 20 detected concentrations were qualified as estimated concentrations. Results were flagged as estimated if the detected value was less than the Method Reporting Limit but greater or equal to the Method Detection Limit, or if the Relative Percent Difference between results from the primary and verification columns varied by more than 40%.

in solids samples collected from manhole AAP918 (BES, 2010b).⁵ A sediment trap sample collected by the LWG in 2007 and an inline solids sample collected by the City in 2003 (from the incoming N. Kittridge line) had Total DDx concentrations of 6.3 and 36.7 µg/Kg respectively. These low concentrations reflect the presence of minor upland sources of pesticides in the basin. Several DEQ Cleanup sites discharging to Basin 19 detected pesticides at low concentrations during the course of their site stormwater pathway evaluations. These sites include Anderson Brothers (ECSI #970), Chevron USA Asphalt Refinery (ECSI #1281), and Anderson Portland Properties (ECSI #5529) (see Figure 1). DEQ has issued Source Control Decisions for the Anderson Brothers (DEQ, 2009) and Chevron USA Asphalt Refinery (DEQ, 2010) sites; a decision is pending for the remaining site.

Conclusions and Next Steps

The Basin 19 stormwater data do not indicate the presence of major current pesticide sources in the basin. This finding is consistent with previous conclusions based on the evaluation of Basin 19 stormwater solids data, which indicated pesticide concentrations in stormwater solids currently being discharged to the City conveyance system are low (BES, 2010b). In addition, under DEQ Cleanup authority, two identified sources of pesticides have been investigated and controlled, and a source control decision is pending at a remaining site. Based on these findings, the City concludes that source tracing is not warranted for pesticides in Basin 19.

References

- Anchor and Integral. 2008. Portland Harbor RI/FS Round 3A and 3B Stormwater Data Report. Prepared for the Lower Willamette Group by Anchor Environmental, L.L.C. and Integral Consulting Inc. September 2008.
- BES. 2007a. Stormwater System Investigation, PGE Forest Park Property (ECSI No. 2406). Prepared by the City of Portland, Bureau of Environmental Services. May 18, 2007.
- BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2010a. Stormwater Evaluation Report, City of Portland Outfall Project, ECSI No. 2425. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. February 2010.
- BES. 2010b. Source Investigation Update Report, City of Portland Outfall Basin 19, City of Portland Outfall Project, ECSI No. 2425. Prepared by the City of Portland, Bureau of Environmental Services. June 2010.
- BES. 2011. Basin 19 Stormwater Quality Trend Analyses, Effectiveness of City Stormwater Source Control Efforts. Prepared by the City of Portland, Bureau of Environmental Services. February 1, 2011.

SEPTEMBER 2012 PAGE 5 OF 6

_

⁵ A statement made in Section 5.3 of the *Source Investigation Update Report, City of Portland Outfall Basin 19* (June 2010) has been determined to be in error. The report stated that DDx had only been detected in lines that were subsequently abandoned. Total DDx was also detected at a concentration of 36.7 μg/Kg in the 42" Kittridge line discharging to manhole AAP918.

- DEQ. 2009. Former Anderson Brothers Site ECSI#970, Source Control Decision. Prepared by the Oregon Department of Environmental Quality. November 13, 2009.
- DEQ. 2010. Chevron Asphalt Plant Site ECSI #1281, Source Control Decision. Prepared by the Oregon Department of Environmental Quality. July 8, 2010.
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).

Table

Table 1 - Basin 19 Stormwater - Pesticides Results

Figures

- Figure 1 Outfall Basin 19 Drainage Basin Overview
- Figure 2 Basin 19 Stormwater Hydrograph, December 14-15, 2009 Sampling Event
- Figure 3 Basin 19 Stormwater Hydrograph, February 23-24, 2010 Sampling Event
- Figure 4 Basin 19 Stormwater Hydrograph, October 23-24, 2010 Sampling Event
- Figure 5 Basin 19 Stormwater Hydrograph, February 12, 2011 Sampling Event

Attachments

Attachment A - Field Notes

Attachment B – Laboratory Results

SEPTEMBER 2012 PAGE 6 OF 6

Manhole AAP918 Outgoing 42" Line

JSCS Stormwater SLVs⁽¹⁾

			'	Outgoing 42 Line	:		_		
		2/23/2009(2)	12/14/2009	2/23/2010	10/24/2010	2/12/2011	Human Health	Human Health	
Class Analyte	Units	FO095243	FO096364	FO105260	FO106021	W11B114-01	Fish Consumption ⁽³⁾	Ingestion ⁽⁴⁾	Ecological ⁽⁵⁾
Pesticides (EPA 8081A)									
4,4'-DDE	μg/L	0.0091 U	0.0027 U	0.0030 U	0.0028 J	0.0054 U	0.00031	0.28	0.011
4,4'-DDD	μg/L	0.014 J	0.0042 U	0.0099	0.0050 U	0.0049 U	0.00022	0.2	
4,4'-DDT	μg/L	0.023 U	0.084 J	0.070 J	0.012 U	0.015 U	0.00022	0.2	0.001
Estimated Total DDx ⁽⁶⁾	μg/L	0.014 J	0.084 J	0.080 J	0.0028 J	0.015 U		0.2	
Aldrin	μg/L	0.0037 J	0.0027 U	0.0010 U	0.0053 U	0.0010 J	0.00005	0.004	
alpha-BHC (α-BHC)	μg/L	0.0052 U	0.0037	0.0013 J	0.005 U	0.0012 U	0.0049	0.011	2.2
beta-BHC (β-BHC)	μg/L	0.0052 U	0.0027 U	0.0010 U	0.005 U	0.0019 U	0.017	0.037	
delta-BHC (δ-BHC)	μg/L	0.0052 U	0.0027 U	0.0010 U	0.005 U	0.0068 J		0.037	
gamma-BHC (γ-BHC, Lindane)	μg/L	0.0052 U	0.0027 U	0.0010 U	0.005 U	0.0016 U	1.8	0.052	0.08
alpha-Chlordane ⁽⁷⁾	μg/L	0.0077	0.0027 U	0.0010 U	0.005 U	0.0030 U			
beta-Chlordane ⁽⁷⁾	μg/L	0.027 J	0.0027 U	0.0010 U	0.005 U	0.00086 U			
Total Chlordane ⁽⁸⁾	μg/L	0.0347 J	0.0027 U	0.0010 U	0.005 U	0.0030 U	0.00081	0.19	0.0043
Dieldrin	μg/L	0.0052 U	0.032 U	0.0060 U	0.005 U	0.0023 U	0.000054	0.0042	0.056
Endosulfan I	μg/L	0.0052 U	0.0027 U	0.0031 J	0.005 U	0.0011 U	89	220	0.051
Endosulfan II	μg/L	0.0052 U	0.0033 U	0.0013 U	0.005 U	0.0017 U	89	220	0.051
Endosulfan Sulfate	μg/L	0.0097	0.0085 U	0.0010 U	0.005 U	0.0016 U	89		
Endrin	μg/L	0.0052 U	0.0027 U	0.0014 U	0.005 U	0.014 J	0.06	2	0.036
Endrin Aldehyde	μg/L	0.0052 U	0.0031 U	0.0019 U	0.0048 J	0.0055 U	0.3		
Endrin Ketone	μg/L	0.0052 U	0.0027 U	0.0010 U	0.005 U	0.0016 U			
Heptachlor	μg/L	0.0061	0.0038 U	0.0010 U	0.0083	0.0050 J	0.000079	0.015	0.0038
Heptachlor Epoxide	μg/L	0.0052 U	0.0027 U	0.0010 U	0.005 U	0.0033 U	0.000039	0.0074	0.0038
Methoxychlor	μg/L	0.017	0.0027 U	0.0010 U	0.005 U	0.0049 U		40	0.03
Toxaphene	μg/L	0.65 U	0.51 U	0.35 U	0.27 U	0.44 U	0.00028	0.061	0.0002

Notes:

SEPTEMBER 2012 PAGE 1 OF 1

U = The analyte was not detected above the reported sample quantification limit.

J = The result is an estimated concentration. The value is less than the MRL but greater than or equal to the MDL, or, for some organochlorine pesticides, the RPD between results from the primary and verification columns varied by more than 40 percent.

⁻⁻ No JSCS screening level available

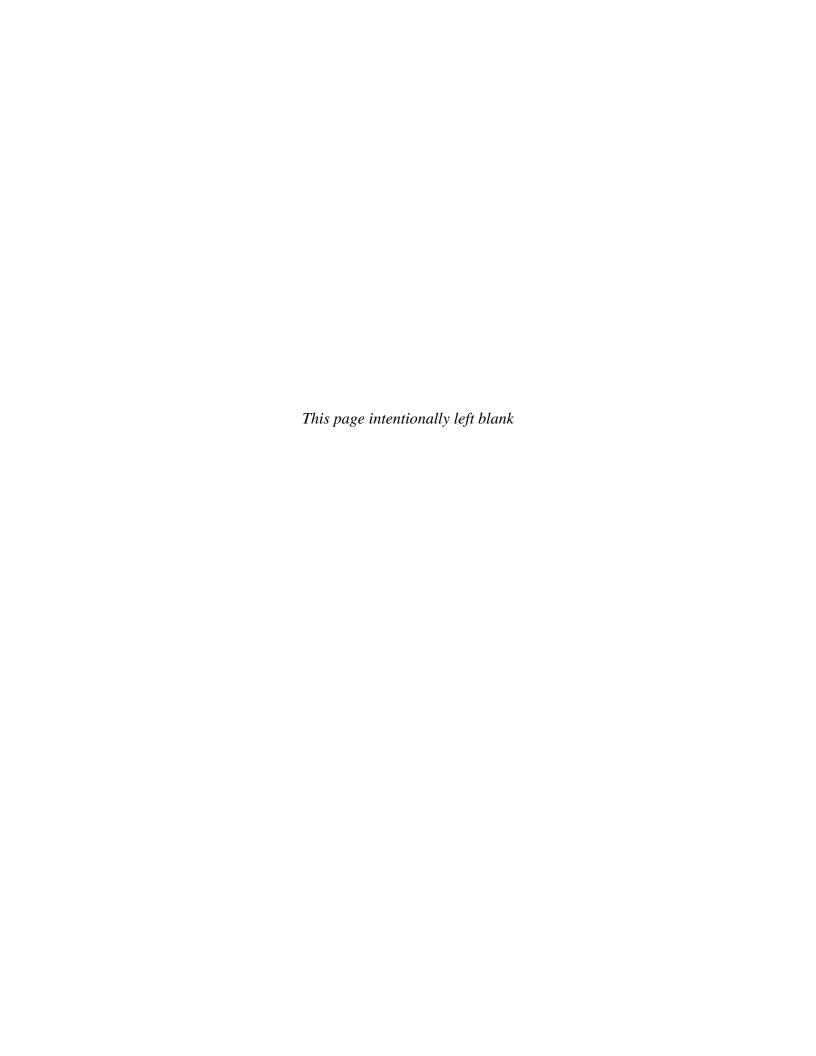
 $[\]mu g/L = micrograms per liter$

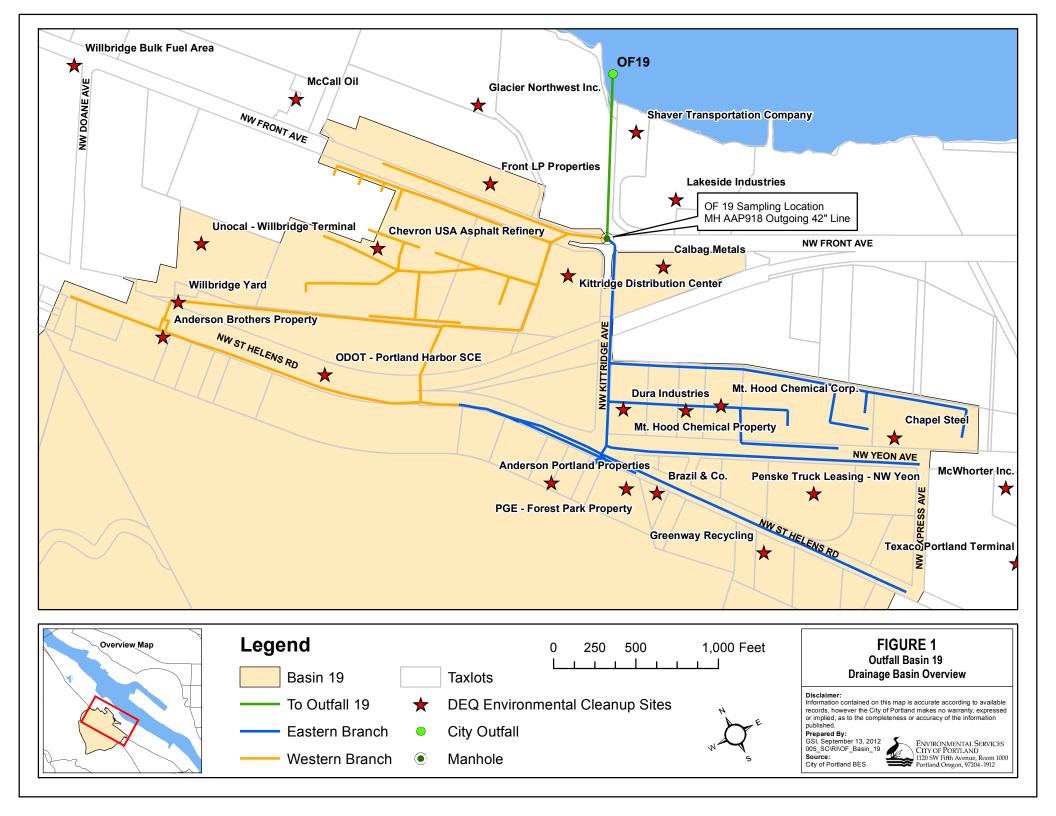
⁽¹⁾ JSCS SLVs = Portland Harbor Joint Source Control Strategy Screening Level Values (DEQ/EPA Final December 2005, Amended July 2007).

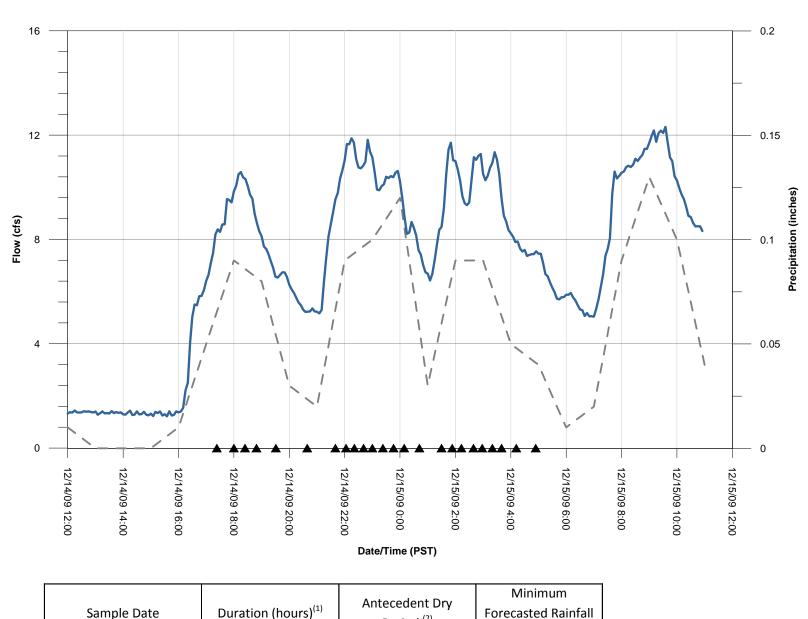
⁽²⁾Data collected during this sampling event were presented and evaluated in the City's, Stormwater Evaluation Report (BES, 2010a)

⁽³⁾ The SLVs for chemicals in water taken up by fish for human consumption represent EPA's NRWQC values. If no NRWQC values are available, then DEQ's AWQC values are listed for the constituent.

⁽⁴⁾ The SLVs for chemicals in water for human ingestion represent the most conservative value between EPA's MCLs and Region 9 PRGs.


⁽⁵⁾ The SLVs for chemicals in water for ecological exposure represent EPA's NRWQC values. If no NRWQC values are available, then DEQ's AWQC values are listed for the constituent. If no AWQC values are available, then Oak Ridge National Laboratory Tier II SCV Technology Benchmark values are listed for the constituent.


⁽⁶⁾ Estimated Total DDx is the sum of DDE, DDD, and DDT.


⁽⁷⁾ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane and gamma-Chlordane.

⁽⁸⁾ Total Chlordane is the sum of alpha- and beta-Chlordane.

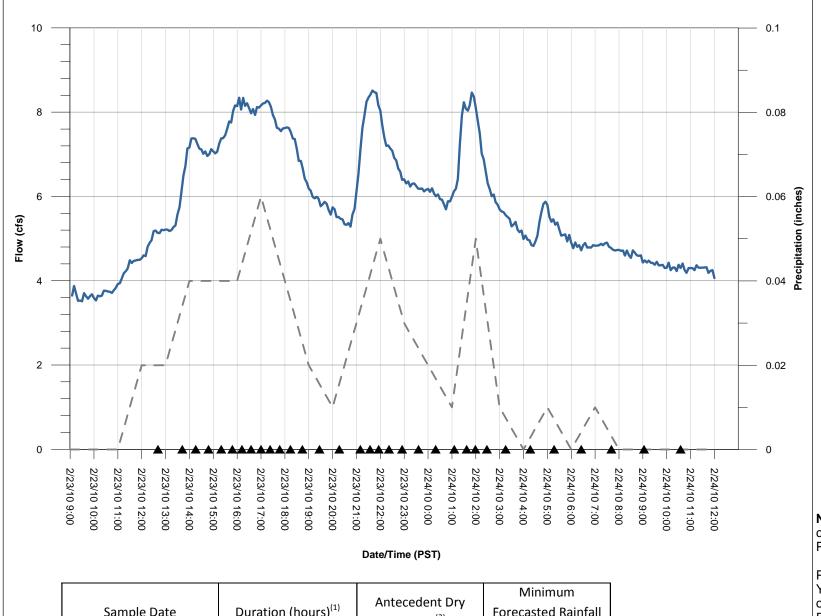
⁼ Shaded values have been selected by DEQ for initial upland source control screening evaluations.

Sample Date	Duration (hours) ⁽¹⁾	Antecedent Dry Period ⁽²⁾	Minimum Forecasted Rainfall Total (inches) ⁽³⁾
12/14 – 12/15/2009	11.5	16 days	0.91

- (1) Duration of composite sampling.(2) Cumulative rainfall during this time less than 0.10 inches.(3) Minimum forecasted rainfall data provided by Extended Range Forecasting, Inc.

Figure 2 Basin 19 Stormwater Hydrograph December 14-15, 2009 Sampling Event

Flow


Composite Aliquot

- Precipitation

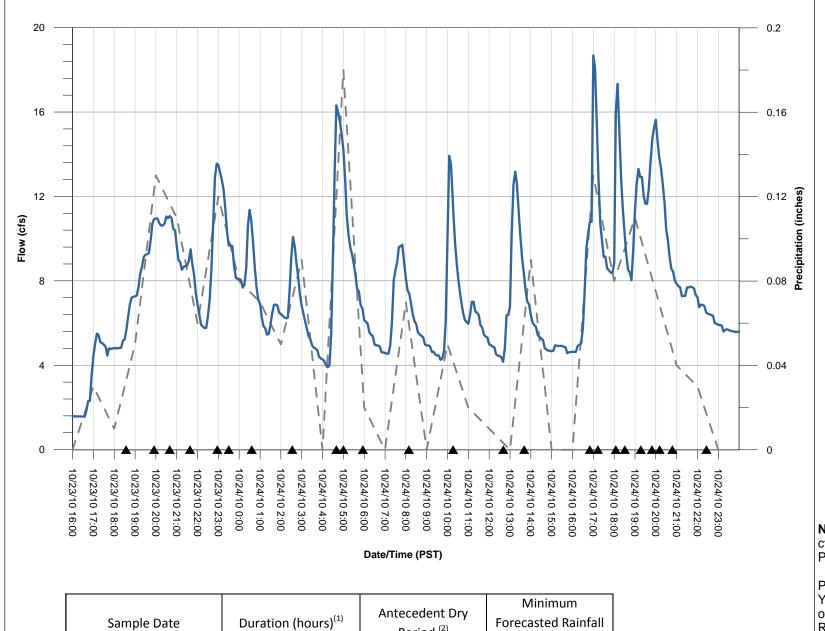
Note:

cfs = cubic feet per second PST = Pacific Standard Time

Precipitation data are for the Yeon rain gage (Station No. 121 of the City of Portland HYDRA Rainfall Network); data obtained from USGS, Oregon Water Science Center (http://or.water.usgs.gov/nonusgs/bes/).

Sample Date	Duration (hours) ⁽¹⁾	Antecedent Dry Period ⁽²⁾	Minimum Forecasted Rainfall Total (inches) ⁽³⁾
2/23 – 2/24/2010	22	7 days	0.37

- (1) Duration of composite sampling.(2) Cumulative rainfall during this time less than 0.10 inches.
- (3) Minimum forecasted rainfall data provided by Extended Range Forecasting, Inc.


Figure 3 Basin 19 Stormwater Hydrograph February 23-24, 2010 Sampling Event

- Flow
- Composite Aliquot
- Precipitation

Note:

cfs = cubic feet per second PST = Pacific Standard Time

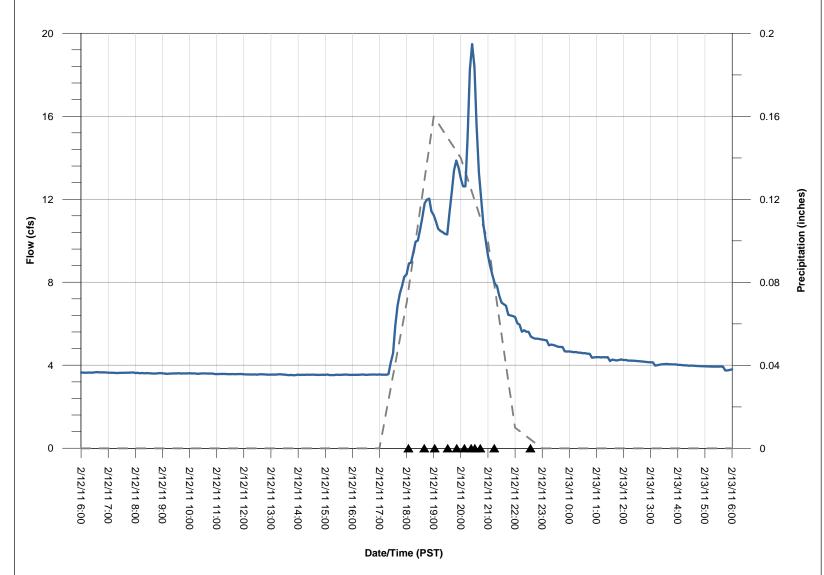
Precipitation data are for the Yeon rain gage (Station No. 121 of the City of Portland HYDRA Rainfall Network); data obtained from USGS, Oregon Water Science Center (http://or.water.usgs.gov/nonusgs/bes/).

Sample Date	Duration (hours) ⁽¹⁾	Antecedent Dry Period ⁽²⁾	Minimum Forecasted Rainfall Total (inches) ⁽³⁾
10/23 – 10/24/2010	28	12 days	1.27

- (1) Duration of composite sampling.
- (2) Cumulative rainfall during this time less than 0.10 inches.
- (3) Minimum forecasted rainfall data provided by Extended Range Forecasting, Inc.

Figure 4
Basin 19 Stormwater
Hydrograph
October 23-24, 2010
Sampling Event

Flow


▲ Composite Aliquot

- - Precipitation

Note:

cfs = cubic feet per second PST = Pacific Standard Time

Precipitation data are for the Yeon rain gage (Station No. 121 of the City of Portland HYDRA Rainfall Network); data obtained from USGS, Oregon Water Science Center (http://or.water.usgs.gov/nonusgs/bes/).

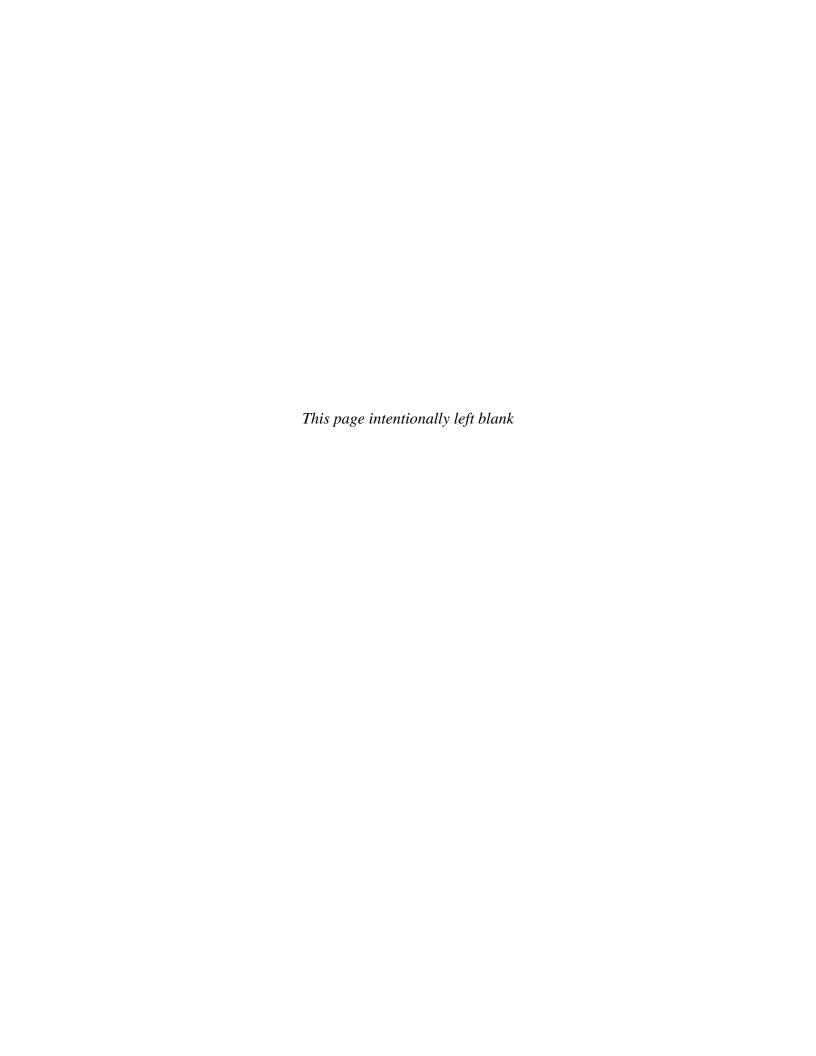
Sample Date	Duration (hours) ⁽¹⁾	Antecedent Dry	Minimum
		Period ⁽²⁾	Forecasted Rainfall
			Total (inches)(3)
2/12/2011	4.5	4 days	0.58

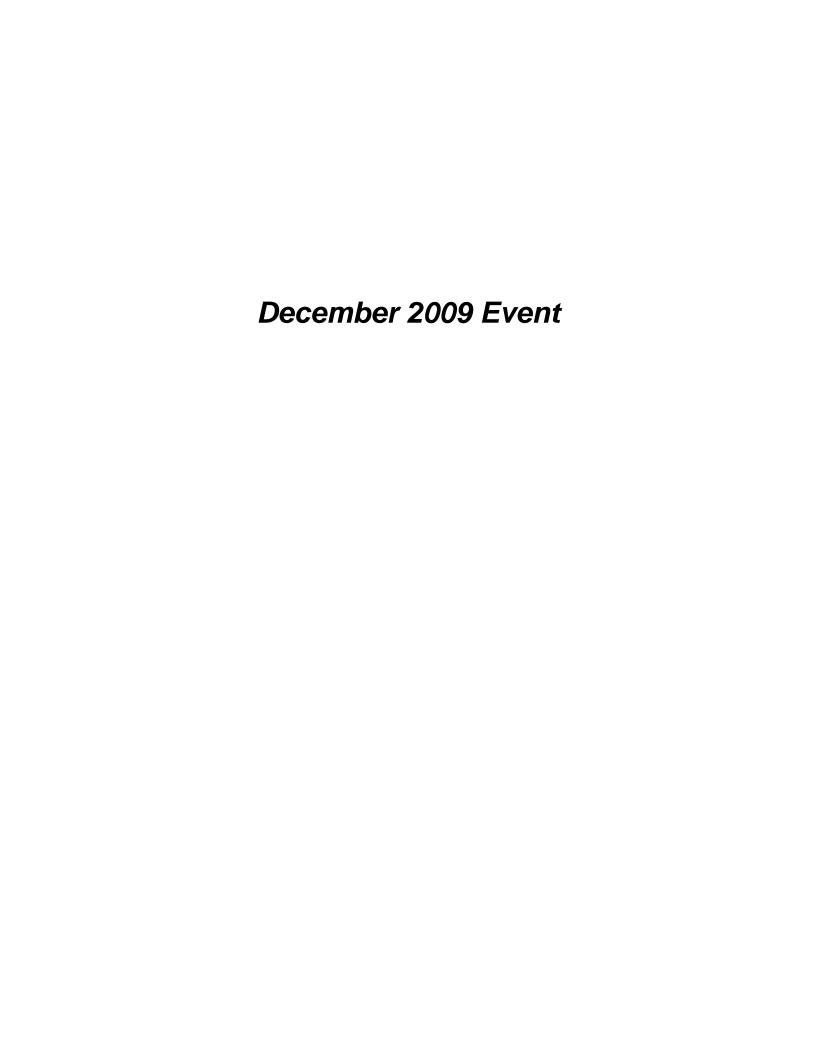
- (1) Duration of composite sampling.
- (2) Cumulative rainfall during this time less than 0.10 inches.
- (3) Minimum forecasted rainfall data provided by Extended Range Forecasting, Inc.

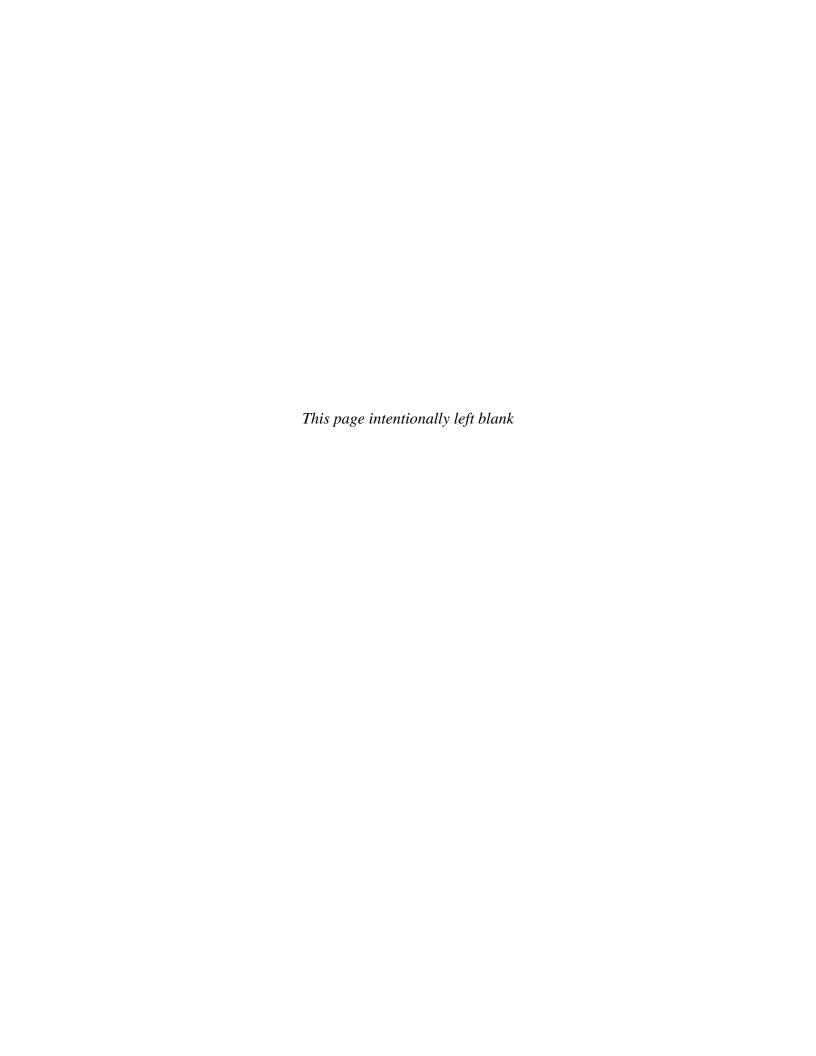
Figure 5
Basin 19 Stormwater
Hydrograph
February 12, 2011
Sampling Event

- Flow

▲ Composite Aliquot


Precipitation


Note:


cfs = cubic feet per second PST = Pacific Standard Time

Precipitation data are for the Yeon rain gage (Station No. 121 of the City of Portland HYDRA Rainfall Network); data obtained from USGS, Oregon Water Science Center (http://or.water.usgs.gov/nonusgs/bes/).

Attachment A Field Notes

COMPOSITE BOTTLE DATA SHEET

Page $\underline{\int}$ of $\underline{\int}$

City of Portland - Environmental Services Field Operations

•			1	, 1		Fiscal Yea	r and E	vent N	o	FY09	-10 Eve	ent 2.		
Proje	ct <u>/</u>	PDE	5 Sturin	HWOLEM	Site _ <i>O</i>	79 - NW	<u> Kittvacla</u>	ge ? i	Front		Project No			
Setup	: Date	-	2/14/09	,	Arrival Tir	me (PST)	<i>j</i> ŏ.	30			_Personnel	JUMI	IXR	
First (Check:	Date	12/1	5/09	Arrival Tir	me (PST)	05	05			_ Personnel	TOM	TXP	
			•	1 . 1		me (PST)			,		_			
						me (PST)								_
		. , –	_				quot Dat							
		Ö					1 1		ó	· I ·		T		
	e No	절						<u>8</u>	ot No					l
Swap	Bottle No	Aliquot No	Date	Time (PST)	Missed?	Codes	Swap	Bottle No.	Aliquot	Date	Time (PST)	Missed?	Codes	
0)	i i	1	12/14/09	1724	······································			5	13		2347	iiiioobu :	Obdes	
		2		1801					14	12/15/09	00/0			
		3		1825					15		0043			
	2	4		1850				6	16	-	0131			
		5		<u>1932</u>		,			17		0154	ļ		
1	3	7		2040 2141	,	·············		7	18 19		0214			
		8		2204			\dashv	,	20		<u>0240</u> 0259			
		9		2222		· · · · · · · · · · · · · · · · · · ·			21		0321		,	:
	4	10	:	7242				8	22		0341			
	,	11		2301					23		0413			
		12		7324					24		0465			
				•		Во	ttle Data	a						
Bottle	No.	Samp	ole chara	cteristics (tu	rbidity, vo	lume., etc.)				Mis	sed aliquot	s, comme	nts	
1			oml	very to	v bicl								: :	
2 11, furbtel 3 11 turbtel														
					1	·								
4 In less turbid 5 In less turbid														
		i	, , , , , , , , , , , , , , , , , , , 	PACS FULL	ı u		***			· · · · ·		···		
7. 11 21														
8	3	i	1	less turbi	d								***	
								,						
Notes		Tue	bidshi	dans	P	bottlel	h. L.	//_ s	>					
140163		101	July .	<u>uecrease</u>	5 trom	Dottle	40 00	11-16-2	<u> </u>					w
							, , ,							
						<u> </u>					5			
						•	•							
													·····	
											·		· · · · · · · · · · · · · · · · · · ·	
				****			1-2-01		, , , , , , , , , , , , , , , , , , ,	1.11	· · · · · · · · · · · · · · · · · · ·	····		
Comp	osite N	votes:	Churn s	splitter used	? 🖭	<u>Decon'd</u>	1etle	on et	ruin	splitle	v .		V	
							<u> </u>			1				_
												***************************************	······	
						······································					···			

DAILY FIELD REPORT

	Pageof
Project NPDES Strmwty WQ FM Location OF 19 - NW Kithridge Front Subject FY 09 - 10 Event 2.1	Project No. 4010,001 Date 12/14/09,12/15/09 By JJM, JXB
1030 Arrive at OF19 to setup for anticipated for later today into tomorrow	10" storm event N.
Initial meler level reading was 1.5" W/ a meler level reading was 1.5" W/ a meler level reading was 1.5" W/ a meler of 1.8" upon annual scrubbed sensor removed sensor from pipe. X-dule ~0.5" once taken out of base flow. Clean	red de posited solids from r reading level high ed X-ducer of re-installs
Performed level adjust. Meter level reading a (0.00"). Meter level reading still ematic. I directlibrated sonsor. Meter Amanual level in agreement. Level reading 1.4-1.5" will be base flow conditions.	performed bucket test vel measurements
1128 - Began decon of sampler tubing (so methanol, OI & UPOI rinses). Equipped sample bottle set (Stormwater composite bottles deconed	er whan 8xglass Waretone & methanol)
1158- Departure level measurement was 1.5". Se at 2.0". Meter & sampler running upon departuper aliquout (cubic feet) set for 8821. Left 1	ot low-level set point
17/15/09 0505 Avvive a OF19 after ~ 0.63" of vain as of Hydra Yeon Ruingage Meter says lust aliquot collected at 0455.	00:00 according to som
bettes will 9-16. Restauted program current 0521 Collected avabs. Attachments 0525 Departed Site.	ed trigger times. Replaced ly valuing

City of Portland Environmental Services

DAILY FIELD REPORT

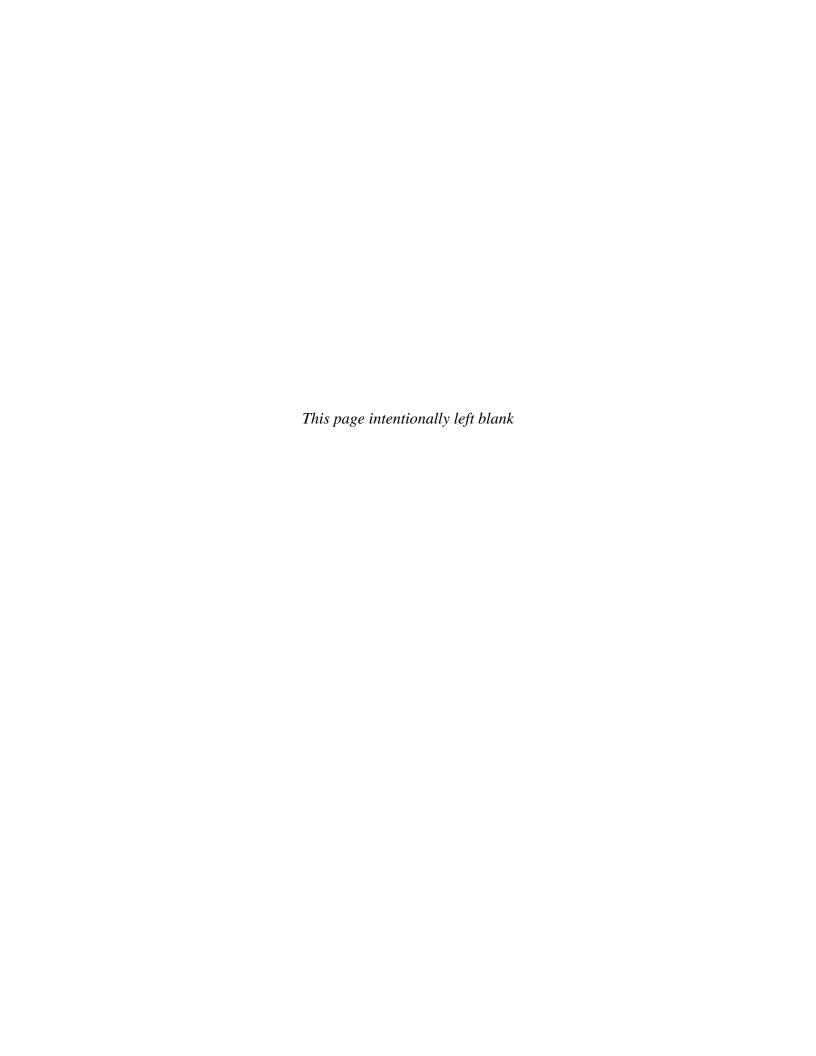
Page 2 of 2

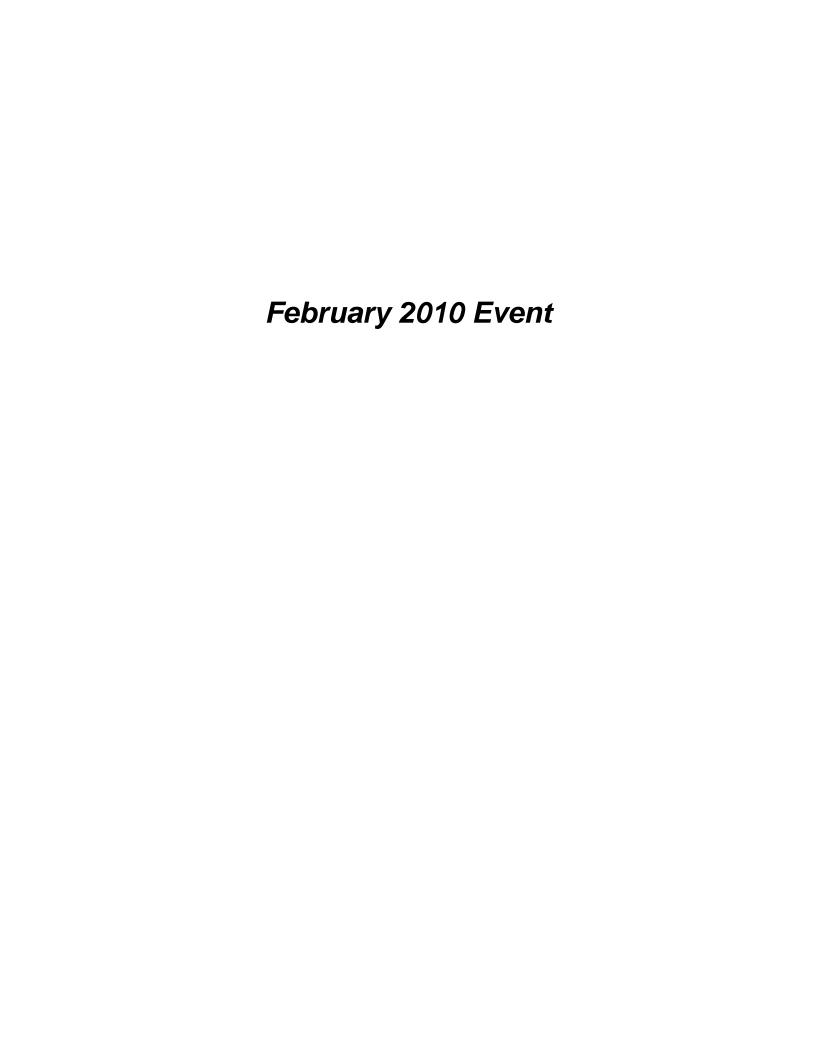
Project NPDES Stringly WQ/FM	Project No. 400.001
Location Ot 9-NW Kill ridge : Front	Date 12/15/09
Subject FY09. 10 Frent 2.1	By JOH JXB
1050 Robbin to OF19. Approximately 12" of volus	Ince selup, 0.24"
Since earlier trade marketing JM 0900 Rain	
Unlinded meter. Hydrograph algumed, valu	i continues.
- Hydrograph show a steep decline in Flow	
piorning Rum gage reported 0.03" of	
Total rainfall from selup on 12/14/09-	taning and programmed and the control of the contro
0.86" which uselded 8 full 1800ml com	병원, 나는 그 사람들은 학교 사용, 나는 그를 바꾸는 그리고 그렇게 살아 다른 바람들이다.
event considered a success and will be	Carrier and the Company of the Compa
17/15/09, Bolles 9-12 descauded.	
1011 Departed site.	
Attachments	

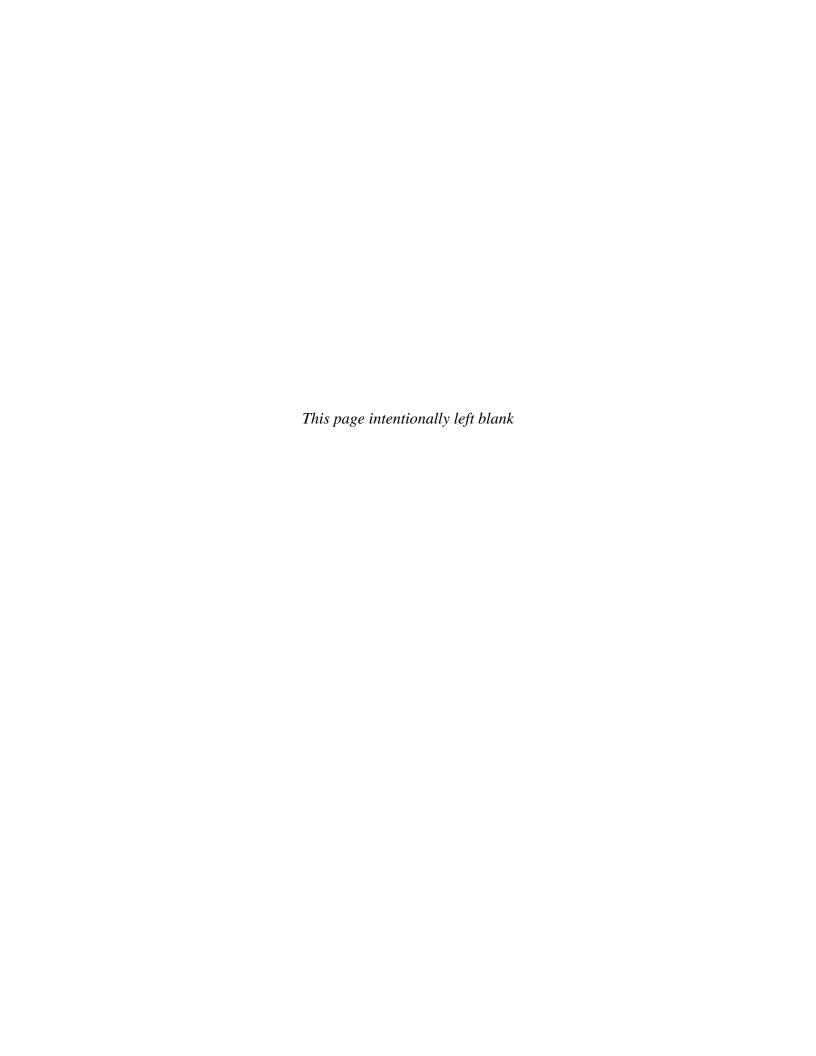
Trigger Volume Calculation Worksheet

(for a basin of known area)

Project Name:	NPDES Stormwater Mon	lon	Project #:	4010.001	Storm Event D: 12/15/2009


	Forecasted	•						Number of		
	Rainfall Amount	Forecasted Rainfall	Basin Size	Basin Size	Basin Rainfall Volume	Estimated Runoff	Anticipated Sample Bottle Runoff Volume in Sampler	Sample Bottles in Sampler	Number of Aliquots per	Trigger Volume per Alfauot
Monitoring Site	(inches)	Amount (feet)	(acres)	(square feet)	(cubic feet)	Coefficient	(cubic feet)	Configuration	Bottle	(cubic feet)
OF-19	0.35	0.0292	486	21170169	617463	0.2	123493	8	°	5146
OF-19	9.0	0.0200	486	21170160	1058508	0.2	211702	8	3	8821




City of Portland Environmental Services FLOW MONITORING DATA SHEET

	Data file transferred to s:\ (J .
	Data imported into Profile (J
Notes tro	insferred to database 👱	_
	Data file review	

Project_NPDESWQ: FM	Site <u> </u>	4 Riturdge, Front,	Project No. 4010.001
Personnel JTM JXB	Time 114	Date <u>12/15/09</u>	· · · · · · · · · · · · · · · · · · ·
Activities 🗆 Installation 🗆	Removal 🗗 Upload 🗆 C	Check of Other <u>Even</u>	12.1
Device MMI Isco	☑ Sigma □ ADS: □ Samp	oler 🗖 .	Other
Serial No. FEY	Entry Made 🗇 no	gyes 🗆 n/a Node N	lo
	INSTALLATION/PI	ROGRAMMING	:
Sensor type(s) and S/N(s)			
Band/sensor location	The state of the s		
Channel dimensions	Channel material _	Monito	ring interval
Channel geometry	Install me	ethod 🗆 band 🗆 bolted 🗆	both 🛘 other
	MAINTENANC	CE/UPLOAD\$	
Uploaded? Desiccant: 0	J Changed (Type) 🗆 O.K. Depart. Batt.: No	Voltage
File name1251057, <i>I</i>			
Arrival Meter Measurements	<i>f</i>		
Meter time	Time (PST)	Meter time	Time (PST)
Level	Level	Level	Level
Velocity			Velocity
Flow		Flow	
Notes: An ste love la	ad moter following	eurossal countela	on of Epst
	vas deternalnet		
<i>A</i>	ng rain ages cons	arm to a	· · · · · · · · · · · · · · · · · · ·
	hidiograph.		
	2 V 23 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V		
Wester appe	ears to have paced	sampler sociessful	W.
77			
	. :	*	
	:		
Next time:			
Data file review notes:			

COMPOSITE BOTTLE DATA SHEET

Page ___ of ____

City of Portland - Environmental Services Field Operations

	7		Fiscal Year	and E	vent N	lo. F	409-	10	•	
Project	NPDE	5	Site <u> </u>					*	o. 4010	,00 (
Setup:	Date	2/23/10	Arrival Time (PST)	00	30			Personnel		
			Arrival Time (PST)			1		Personnel	F	
		2 /	Arrival Time (PST)	•	•			Personnel		, , , , , , , , , , , , , , , , , , , ,
		te	Arrival Time (PST)					Personnel	•	
			The second secon	uot Da	ta			· <u>-</u>		
	Bottle No.				No.	Aliquot No.				
Swap	Bottle Aliquo	Date Time (PST)	Missed? Codes	Swap	Bottle No.	lique	D-4-	Ti (DOT)		
	1	2/23/10 1242	missed: Codes	- O		13	2/23/10	Time (PST)	Missed?	Codes
	2	343			5	14	1	928		
diameter.	3	1417				15	ie i	2018	- 1	
	5	1521	٥		6	16 17		2111		
	5 6	1549	· · · · · · · · · · · · · · · · · · ·	1		18		2135		. 12
	7	1613			7	19		2157 2223		
	3 8	1636		1		20		2256		
-	9 10	1724		4	8	21 22	J.	2337		
1	$-\frac{10}{11}$	1748		-	: <i>O</i>	23	2-24-10	0070		
	12	V- 1815			9	24	4	<u>15010</u> 1344		
	Ž.		Bot	tle Dat	a					
Bottle N	lo Sam	ple characteristics (tu	rbidity, volume., etc.)				Miss	sed aliquots	comme	nts
1		Ny turbid			3 .	aliqu	1075	,	, 55	
3	,					L				
4		\				N				
5	飘	oderately tulb	id		2 01	<u>४)</u> _ र	collected	(3rd al.	asst in	he H/2 6
6		1 /			*2	alice	2075	- 	1 11	<u> </u>
7 8		- 				1				
0		<u> </u>				1	· · · · · · · · · · · · · · · · · · ·			
	•									
Notes	2/2	3/10 2002 Mov	ed Bottle 6 into	Posit	ion l	(
				1			`.			
				4						
					, ,	:	· · · · · · · · · · · · · · · · · · ·			
				n e e		+ 1.		·		
					 	 			<u> </u>	
Compos	ite Notes	Churn splitter used	N ATI	f	. 11	. i #	- 201	· .		
			<u> </u>	lime	colle	cted	- 75+	Magers x	600 w1	= 19.8L
.D.	n 13 To	or much for	14L churn, so	will	PISCE	25 :	~ two	batche	5 tak	ng half
AF 42.										
D) CO	ich resi	-11 = retain 4	volume of	9.71	_ B	cttles	1-62	<u>rctain</u>	<u> 5.4 L</u>	

COMPOSITE BOTTLE DATA SHEET

Page Z of Z

City of Portland - Environmental Services Field Operations

		10 N 9	- 6 x			420 Au .s.	F 10.		lo				
				immiter							Project No	ь. <u>40 г</u>	0.601
	Ch	eck: D	ate		Arrival Ti	ne (PST)				_ Personnel		,
	Ch	eck: D	ate		Arrival Tir	ne (PST	<u> </u>		•		_ Personnel		
											_ Personnel		,
							Aliquot Da				_		A
Swap	Bottle No.	Aliquot No.	Date	Time (PST)	Missed?	Codes	Swap	Bottle No.	Aliquot No.	Date	Time (PST)	Missed?	Codes
	9	25	2-24-10	07250				<u> </u>	37				
-	<u> </u>	26	-	0729					38				
		27		0316					39		,		
	10	28 29		0418					40			<u> </u>	· · ·
1		30		0514					41			*	
	Ħ	31		0742					43				
	· .	32		0904		· · · · · · · · · · · · · · · · · · ·			44				····
[18	33	b	1036					45				
		34							46		,	· · · · · · · · · · · · · · · · · · ·	
		35	,						47				
		36						·	48				
	1	:					Bottle Da	ta				-	
	No.			cteristics (tu		lume., e	tc.)				ssed aliquots	s, comme	nts
	9	į.v.	overat	ely tor	hid		· · · · · · · · · · · · · · · · · · ·		3 alie	160+1			
	0	51	· gh? !!	+uthid			· · · · · · · · · · · · · · · · · · ·		(4)			,	
	2												····
	3					· V	***		1 44.16	ger			
	4									 		· · · · · · · · · · · · · · · · · · ·	
	5										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
.1	6					·					-		. ж. ,
							·						
stac	•												
tes	.	-	·····							<u> </u>			·
tes										·			
otes												· · · · · · · · · · · · · · · · · · ·	
otes		· .									MI.		
otes									- 100 fts si				
otes									- 10 %	-			
otes													
	10-10-11-11-11-11-11-11-11-11-11-11-11-1	Notes:	Churn s	plitter used	? 🗓				- 10 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
	10-10-11-11-11-11-11-11-11-11-11-11-11-1	Notes:	Churn s	plitter used	? 🗆								
	10-10-11-11-11-11-11-11-11-11-11-11-11-1	Notes:	Churn s	plitter used	? 🗆								

DAILY FIELD REPORT

Page ______ of ____

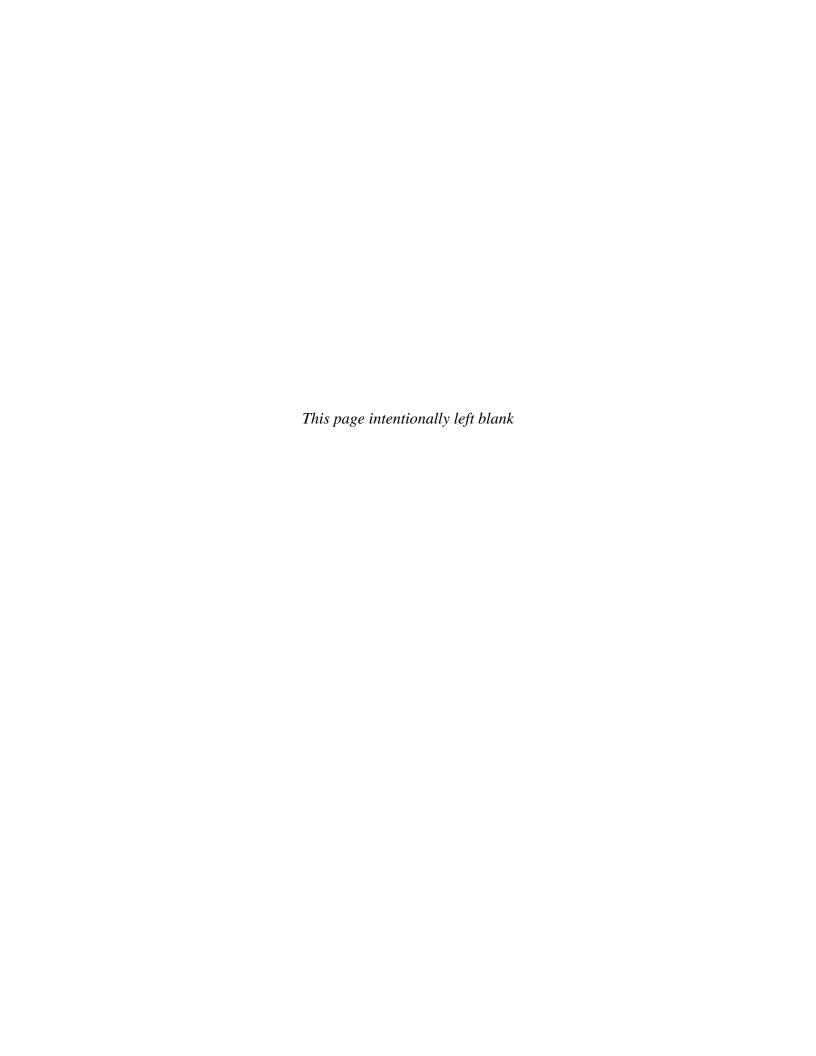
Project NPDES Strmvvtv Wa/FM Project No. 4010.001
Location NW KIHVIdge Front Date 2/23/10
Subject OF 19 daily notes By AJA JJM
고면 보다 되는데 보다는 보고 있는데 한 사람이에 되는데 하는데 되었다. 그는데 이 사람이 되는데 되는데 이 그런데 이 이 점심다. 그리고 있다고 하게 되었다.
0815 Don't war O DE 10 MADES So
0815 Depart WPCL for OF 19 NPDES Storm sanding
Set target for 0.35" rainfall
0830 Acrive at OF19 to Decon sampler tubing and set flow meter and sample
1/pc/ light cain falling
0915 Decon/sampler set up 2 meter programme
Completé Trigger volume = 5146 ft
Low Level set soint = 4.25" Very light
Sprinkling of main still falling.
Sprinkling of rain still falling. Departure level = 3.6" Velocity = 1.5 f/s
는 하는 사람이 되었다. 그는 사람들은 하는 사람들이 하는 사람들이 그 사람들이 가장 하는 사람들이 되었다. 그는 사람들이 모르는 것을 받는 사람들이 모르는 것을 하는 것이다. - 사람들이 가장 하는 사람들이 있는 사람들이 되었다. 사람들이 되었다. 그는 사람들이 모르는 사람들이 되었다. 하는 사람들이 되었다. 그는 사람들이 모르는 것이다.
1957 Arrive OF19 for bottle swap and grab Samples
2002 Collected grab samples and parameters. Priled Bettle
S with only 12 aliquots collected. Moved Bottle 6 into Position
Tand restorted program.
3/24/10 1210 m-5 te a OF -19 12 m-41 ene sandles
collect flow dada and amusto information and
renove equipment. left taken and level/velocity
senson in viale
Attachments

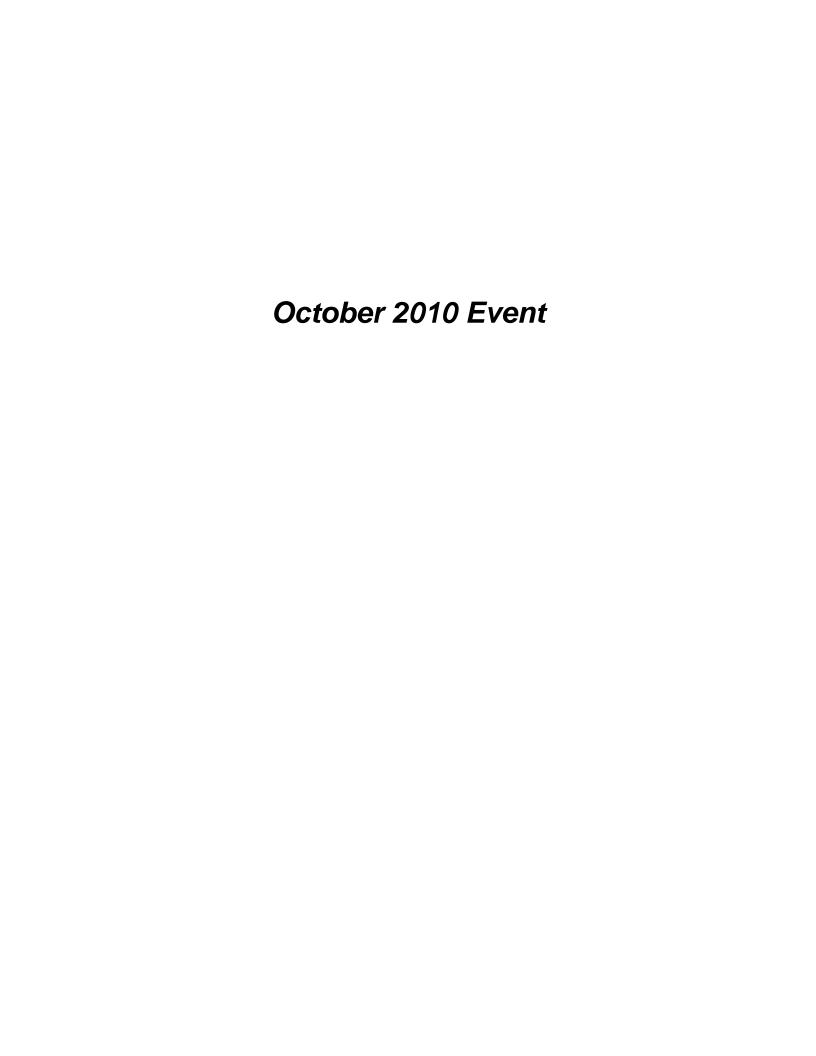
Trigger Volume Calculation Worksheet

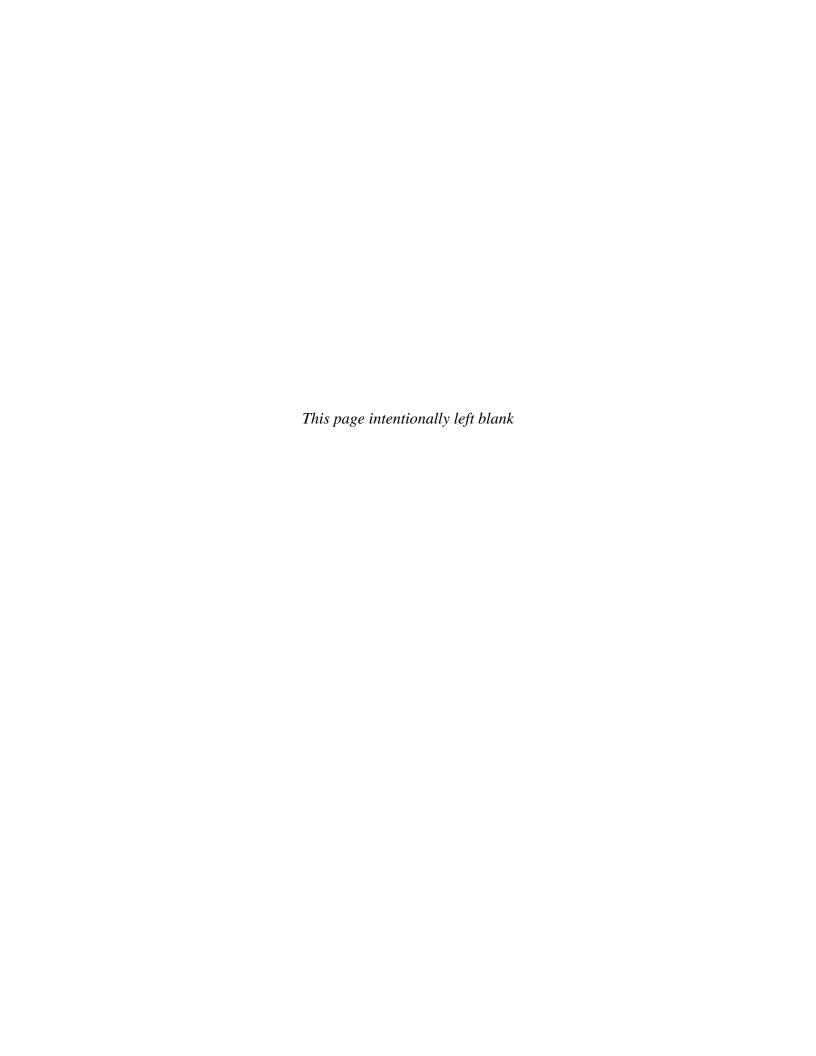
(for a basin of known area)

Storm Event D: 2_23-25_10	
4010.001	
Project #:	
NPDES Stormwater Mon	
Project Name:	

	F.	Forecasted Rainfall	Basin Size	Basin Size	Basin Rainfall Volume		Number of Anticipated Sample Bottle Runoff Volume in Sampler	Number of Anticipated Sample Bottles unoff Volume in Sampler	_	Number of Trigger Volume Aliquots per Per Aliquots
Monitoring Site	(inches)	Amount (feet)	(acres)	(square feet)	(cubic feet)	Coefficient	(cubic feet)	Configuration	Bottle	(capic feet)
OF-19	0.35	0.0292	486	21170160	617463	0.2	123493	8	က	5146




City of Portland Environmental Services FLOW MONITORING DATA SHEET


Data tile transferred to s: \	
Data imported into Profile 🗖	
Data file review	

Data file review	
Notes transferred to database	

Project NPDES	Site KITILS	DOE + Front (OF-19) P	roject No. <u>45/0.5</u> 0/
Personnel MAW M 55	Date _ 7 _ 2 ts	Arrival Clock Time	1204
,		Check Other	
Device 🗆 MMI 🗇 Isco (□ Sigma □ Telog □ S	ampler Other	
Serial No. EY	Entry Made 🗆	I no 🕦 yes 🗆 n/a	
INST	ALLATION/PROGRAMMING	Node N	o
Sensor type(s) and S/N(s)			
Band/sensor location			
Channel dimensions	Channel mate	rial Monitori	ng interval
		all method 🗇 baṇa 🗇 bolted 🗇	•
Meter Time in Agreement	with PST (+/-3min) Ad	justment Made (describe below)	
) 🗆 O.K. Depart. Batt.: No	Voltage
and the second s	1	Liow DTU cell number	
Meter Measurements	Actual	Depart. Meter Measurements	
Meter time (PST) <u>1204</u>	•	Meter time (PST)	
Level <u>4.1</u>	Level	Level	Level
Velocity <u>1.7</u>	Velocity	Velocity	Velocity
Flow		Flow	
Notes:			
on site hor	ullered and or	emoil and coll	est A
Sterm Sa	moles.		
- Care			
· · · · · · · · · · · · · · · · · · ·			
File rellaits	flom activite	4	
	2001		
, ee			
	,		
· · · · · · · · · · · · · · · · · · ·			
Next time:			
Data file review notes:			
			•
	· .		

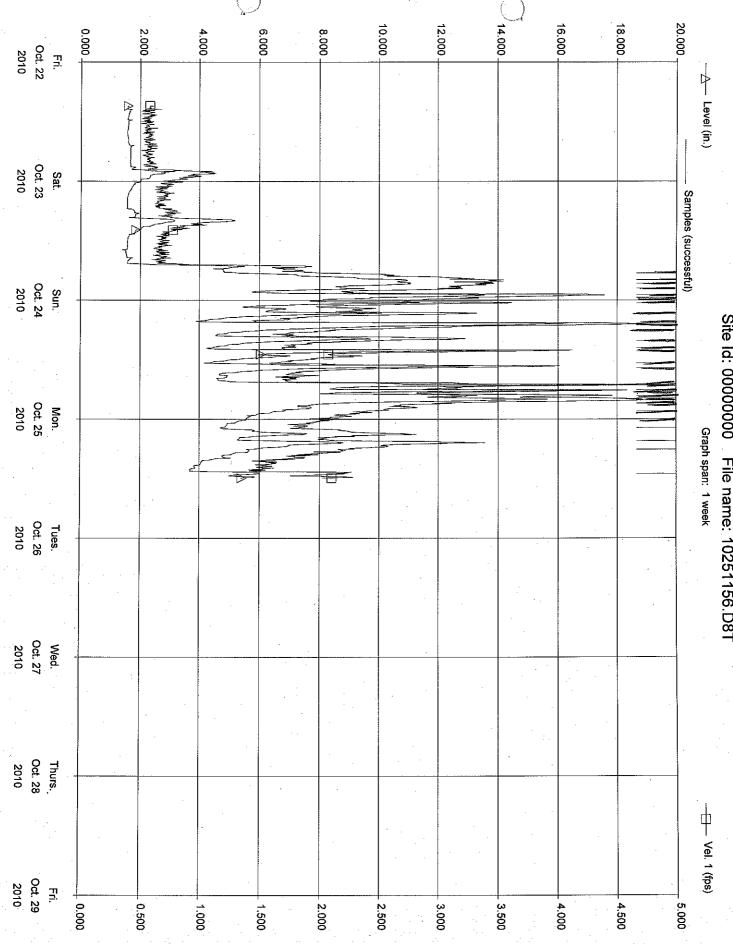
COMPOSITE BOTTLE DATA SHEET

Page \underline{l} of \underline{Z}

City of Portland - Environmental Services Field Operations

				1	Fis	cal Year a	nd Ev	ent N	o. F	Y10-11	Eventl	.[
Proje	ct	1DDE	SSIN	who WQ/FI	Site OF19	1 WU -	Lithu	dqe	4	Just Wi	Project No	o. Acto	0.001
Setup	o: Date	e	10/22/	(U	Arrival Time (I	PST)	134				_ Personnel		
First	Check	: Date	e <u> 0 2</u>	4/10	Arrival Time (I	PST) 🕜	920	0			- Personnel	STG	MILL
Seco	nd Che	eck: [Date <u>io[</u> 2	25/10	Arrival Time (I	PST) /	154				- Personnel	MIX	ÄTA
Third	Check	c: Dat	e		Arrival Time (F	PST)					_ Personnel		
						Aliquo			•				
	ó	- 8					T	<u>.</u>	9			, .	
a b	Bottle No.	Aliquot No				ı	₽	Bottle No.	Aliquot No		• •		
Swap			Date	Time (PST)	Missed? Cod	es	Swap	Bott	Aliq	Date	Time (PST)	Missed?	Codes
	t,	1 2	10 23	1833 1954				5	13	10/24	เบเริ	- :	
		3		2039					· 14		1246 1340		
1	2	4		2137				G	16		1699	<u> </u>	·
	_	5		2256				Ø.	17		1712		
	. 21	6		2329			- 1		18		1804		
	3	7 8	10/24	0035				7	19	*.	1830		
		9		023Z 0439					20 21		1926		
	4	10		0454				8	22		8491		
!		11		0555				· ·	23		<u>2510</u> 2047		
\$		12	·	୦ ୪୦୪					24		2225		
		-											
						Bottle	Data	i .					
Bottle		Samp	le chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	nts
1		Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	nts
1	2	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, comme	nts
1	<u>2</u> }	Samp	ele chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	nts
1 2	2	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	nts
1 2 3	2 2 3 4	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, comme	nts
1 2 3 4 5 6	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
1 2 3 4	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
1 2 3 4 5 6	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
2 3 4 5 6 7	2 3 4 5	Samp	ole chara	cteristics (tu	rbidity, volume		Data			Mis	sed aliquots	s, commer	
3 4 5 6 7 8 Notes	2 3 3 5 3 7						Data			Mis	sed aliquots	s, commer	
3 4 5 6 7 8 Notes	2 3 3 5 3 7			cteristics (tu			Data			Mis	sed aliquots	s, commer	
3 4 5 6 7 8 Notes	2 3 3 5 3 7						Data			Mis	sed aliquots	s, commer	
3 4 5 6 7 8 Notes	2 3 3 5 3 7						Data			Mis	sed aliquots	s, commer	

COMPOSITE BOTTLE DATA SHEET


Page \underline{Z} of \underline{Z}

City of Portland - Environmental Services Field Operations

	'n	·00	ا ہر سر۔	1.1						IL Ev		<u> </u>
Proje	ect_/	UPDE	<u> </u>	MW/WO/H	Site <u>01219</u>	······			······································	Project No	o. <u>4</u>	010.001
2m	<u>а</u> Сһ	eck: [Date	15/10	Arrival Time (PST) _	11.50	1			Personnel	JIM	ATA
	Ch	eck: [Date		Arrival Time (PST)				Y_{+-}	_Personnel	`	
	Ch	eck: [Date		Arrival Time (PST) _					Personnel		
						iquot Da			ŧ			
Swap	Bottle No.	Aliquot No.		T. (DAT)		Swap	Bottle No.	Aliquot No.	•			
Ś	<u>क</u> १	25	Date	Time (PST)	Missed? Codes	<u> </u>	<u> </u>	37	Date	Time (PST)	Missed?	Codes
		• 26	123	0425				38				
		27		<i>୦</i> େ ୬୯				39				
	ιņ	28		(100	Not submitted		i.,	40				
		30				_		41				
		31			<u></u>			42			-	
.		32		· · · · · · · · · · · · · · · · · · ·				44				
		33						45				
		34			44			46				
	•	35 36		·				47				N. C.
		50			·	<u> </u>	· · ·	48		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		-			*	ottle Dat	a					-
Bottle	9 No.	Samp	ole chara	cteristics (tu	rbidity, volume., etc.)				Mis	sed aliquots	s, comme	nts
	0	<u> </u>					·		<u>.</u>		· · · · · · · · · · · · · · · · · · ·	
	1											
	2											
	3											
	<u>4</u> 5	<u> </u>									1	
	6	<u></u>		· · · · · · · · · · · · · · · · · · ·			 .					
					·				i	·		vėri
Motoo												
Notes	•	 -										
												,
						-						
					,							
Comp	osite N	lotes:	Churn s	splitter used?	no hollo	c 4.	- 10	not	Inclu	solve ha	anal	mannollo
			2	, p			iυ	F 12. 1	8 06.0.10	ace IN	11141	CURTIUSITE
			· · · · · · · · · · · · · · · · · · ·	" ,		-						-

1 TO

Site Id: 00000000 File name: 10251156.D8T

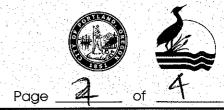
City of Portland Environmental Services Field Operations

Trigger Volume Calculation Worksheet

(for a basin of known area)

1	Monitoring Site			roject Name:
<u>.</u>	Forecasted Rainfall Amount (inches)			NPDES Stormwater Mon
	Forecasted Rainfall Amount (feet)			mwater Mon
	Basin Size (acres)			
	Basin Size (square feet)			Project#:
	Basin Rainfall Volume (cubic feet)			4010.001
	Estimated Runoff Coefficient			001
	Anticipated Sample Bottle Runoff Volume in Sampler (cubic feet) Configuration	Y Y		-
\$.	Anticipated Sample Bottles tunoff Volume in Sampler (cubic feet) Configuration			Storm Event D: 10_23-24_10
			Į.	10_23-24_10
	Number of Trigger Volume Aliquots per per Aliquot Bottle (cubic feet)	·		

DAILY FIELD REPORT



Page _____ of ____

Project <u>WPDES</u>	Project No. 400.01
Location <u>0F19, 545V</u> , M1	Date 10/21/10
Subject Set - Up	By JM, PTB
0930BF: Arrive on-site OF19. Set up 1	
F410-11 Storm Season. This first &	form will be set
for 0.25 in Installed new sensor (oit	ron rom
1217 PST Amive on-site 545U. Set -up for	beginning of
1217 PST frive on-site 645U. Set-up for FY10-11 storm senson. This first storm	will be set for
1 N. 750	그 일반하게 하는 일이 그렇게 된 이 이 이 사람들다.
1235 Cleaned subxducer level velocity sens	ov. Calibrated level,
meter in agreement w/ manual. Che	ckoch sampler volume, ok!
1245 Programmed trigger volume as 247	o er yasea on
1250 Dean taminated of soapy, tap, nitric, DI	andone (10%) DI
(M) methanol.	
1320 Departed Site	
1359 Arrive & MIto install meter: sample	ev for +110-11
NADES sampling Sensor Stillin	
genson- Set for 0.25 in Storn	
는 보면 보통 환경 등 하고 있는 보고 있는 것이라고 하고 있다. 등에는 보고 있는 것이다. 	
Attachments	

DAILY FIELD REPORT

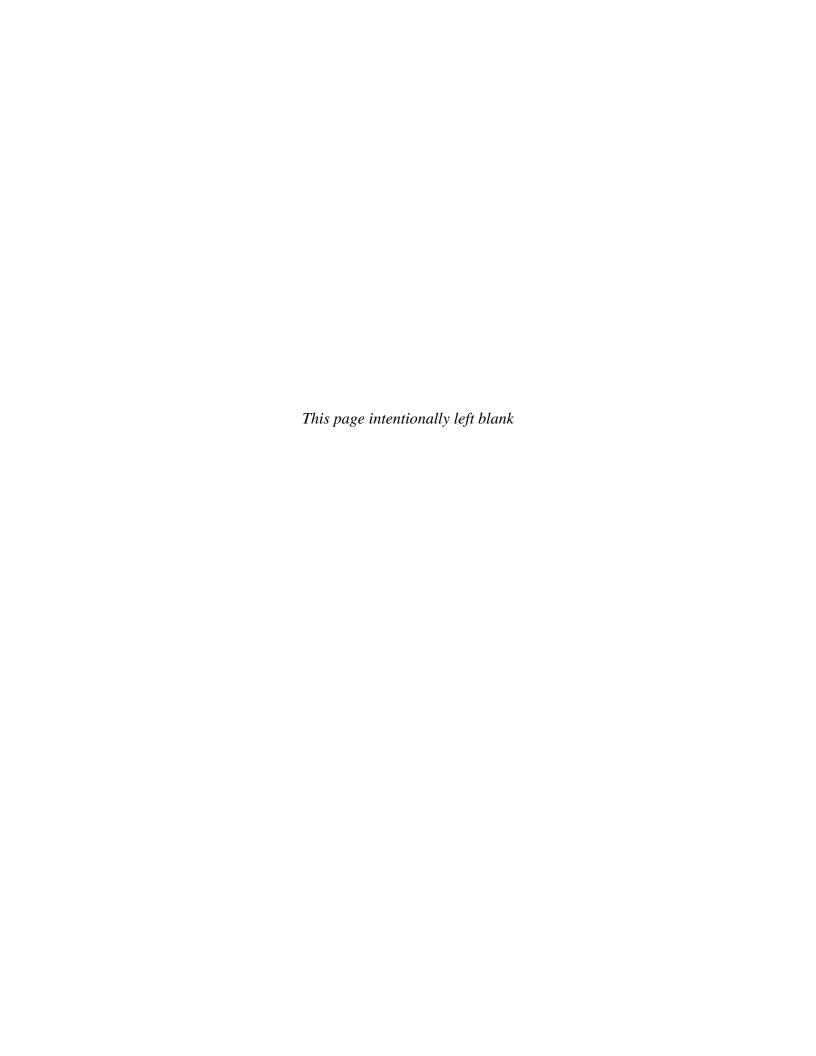
Project_NPDES	Project No. 4010 - O(1
Location OF 19, 5450, M)	Date 1.0/21/10
Subject leset for higger storm	By MJS, PTB
0934 Arrive on-site 0F19+0 check	
re-set for higher storm to come in a	a Sandar Bit volar
re-set for ligger storm to come in o night from we had last night was not	enough to blow day
period or call a storm so we are though	in the trigger volume
for a 1.25 in stormand a delayed stor	+ for 1400/ For sites
avoid any anteredent rain.	
1031 Anive on-site SUSU to change. 1.25 in Storm and delay stort on samp	stigger volume to
1.00 In sparr and general start on saw	
1112 Arrive on-site MI to change-	trisger volume to
1112 Arrive on-site MI to change- 1.25 in Storm and delay stort on	gampler.
는 마음이 한다는 사람이 된다면 이 생각이 있는데 보이다. 이 이 사람들은 그리지 않는데 보이다는 것 같은데 그렇게 하지만 하고 하는데 이 아는 아름이 있는데 하지만 하는데 보는데 하는데 되었다.	
Attachments	无奇色的 医多氏性缺乏性 (1915年1946年1948年1948年1948年1948年1948年1948年1948年1948

DAILY FIELD REPORT

Page _

Project NPDES Stranger W@:FM Project No. 4010.001
Location 545U, 07=19, M1 Date 10/24/10
Subject F110-11 Frent 1.1 By JTM, PTB
OSIS Arrive @ SASU after 11.6" of rates stace yestorday delayed Start (10/23/10 @ 1400).
Meter / sampler performed well. Sampler bottle 6 7 of 3
0828 Collected grabs.
Swapped in bottles & 9-11 glass 17-14 plastic. Uploaded meter. Flow still exerted. Meter paced sampler perfectly.
Uploaded Meter. + low still Alexated. Meter paced sampler
perfectly. 0840 Restarted programs. Departed Site. 6920 Arrive & OF 19 after ~ 1.6" of rain since yesterday delayed start (10/24/0 @ 1400). Sampler collected A complete bottles, currently still vanishing.
6920 Avrive @ OF 19 after ~ 1.6" of rain since vesterday delayed
start (10/23/10 @ 1400).
Sampler collected A complete bottles, currently still
vonding
Collected grab samples Uploaded motor 10248929.08T
Uploaded motor 10246929.081
0940 Departed site.
1024 Arrive & MI. Corrently rulning. Approximately 4.5" of vain since 10/23/10 & 1400! Sampler LCD bottle I complete. Reduced tologer volume in half, from 708/6/63544 cf
chare intratio or incol
Sampler LCP lattle 1 complete
Deduced tylager volume in half, from 7086 ft 3544 cf
as meter appears to be pacing slowly due to trigger volunce
being high. Low level selpoint also reduced from the Dry
10"40 0.5"
Replaced battle w bottle 9. Restauted program
1024 collected grabs
Review of data tile shows negative velocity, possibly due to
leuty, woody debvis impacting sensor.
Attachments


DAILY FIELD REPORT



Page 4 of

Project NPDES Strugget WORFM Project No. (010.00)
Location <u>S450</u> M1 OF19 Date 10/25/2010
Subject FY 10-11 Every !! By JTM, AJA
1504 Horre @ SASU after 17.1" of vain since setup. Sampler
(1) disubled inviered level 3.2 jower man 4.5
ext point enable.
1006 Sampler Gilled additional 4 bottles. Uploaded moter 10251008, FEP.
Recorded firtgger times. This event was a success a SASU
1030 Departed ste
1053 Arrive @ MI after a 71" of rain since setup. Sampler
LCD "disabled." Meter level currently 0.3".
Uploaded meter 10251056.FEV
Replaced bottles of capped plastic, Removed hallevies.
1111 Departed Site.
1154 Harlup @ OF19 offer a 7.1" of value.
Uploaded Meter 1025 1156. DBT
Sampler filled an additional 5-13 bottles since
swap yesterday. Replaced bottles.
Removed bateries
1223 Departed site.
At WPCL. Review of data judicates that evalue velocity
MI at MI corrupted flow data and triggeroug of sampler.
Sonsor to be replaced. The bottles collected here will be
discarded.
0F19 Storm will consist of bottles 1-9 (10/23/10@1833 to
tot 25/10 10/24/10@ 2225)
S454 Storm will consist of all allowers collected, bottles
1-10 (10/23/10-61+ 1917 to 10/25/10 007A8)
Attachments

COMPOSITE BOTTLE DATA SHEET

Page /_ of __

City of Portland - Environmental Services Field Operations

		Fiscal Year	and Ev	ent N	o. <u>/</u>	0/11	Event 2	. 1		
Project <u>NPDES</u>		OF19		_		·/	Project No).		4.1
Setup: Date	<u>H / H</u> Arri	val Time (PST)	1329	132	5		_ Personnel	JUM	+J4 .	
First Check: Date	2/13/11 Arri	val Time (PST)/(_ Personnel	(リメル)	. 6	<u> </u>
Second Cheek Date	= 2/14/u Arri	val Time (PST) <i>jt</i>					_ _Personnel			
Third Check: Date _	Arri	val Time (PST)	:				_ Personnel			
**************************************			uot Dat				-			· · · · ·
Swap Bottle No. Aliquot No.	Date Time (PST) Mis	ssed? Codes	Swap	Bottle No.	Aliquot No.	Date	Time (PST)	Missod2	Codes	
		ne None			13	Date	Tante (F31)	Wilsseu?	Codes	
2	1 1837			į	14					
2 4	1 1900		∦		15	··				
5	1929		-		16 17				· · · · · · · · · · · · · · · · · · ·	
6	2006		1	ŀ	18		·			
3 7	2021				19					
8 9 3	2029				20					
4 10	V 2041 2112 \	}	1	ŀ	21	-			1	··· · · · · · · · · · · · · · · · · ·
11 2/		ne nove	1	. }	23				· · · · · · · · · · · · · · · · · · ·	
12 /					24					
		Bott	le Data	i					,	17.5
	characteristics (turbid					Mis	sed aliquots	, comme	nts	
1 Turkid	full a strong	; petro, odor foil	y shees	1	Non					
2 Turbid	!, full ē !!			· · ·	Nov					
1,50.1.71	2/3 Full & "		- 1		Nov Stor	n Suh	sided 10	พโรรค	d c. lieure	i-C
5	,								911700	
6 7			<u> </u>							
8			···							
					•					
Motos							6.1 6.1		•	
Notes			. ,		·				<u> </u>	
						:				<u>-</u>
			· · · · · · · · · · · · · · · · · · ·		- 4			·		
						· •			· · · · · · · · · · · · · · · · · · ·	
										
			1 8		4 / -			·		
Composite Notes: Ch	nurn splitter used? 🗹	Lampest	teel a	115	bot	Hes in	Teflon	dew	Handner	ted
Churn splitter	and then to	Med analy	te so	4	spect	Ac h	offles div	ectly !	Four d	wre
		- 3.	7		1			/ "		

City of Portland
Environmental Services
Field Operations

Trigger Volume Calculation Worksheet

(for a basin of known area)

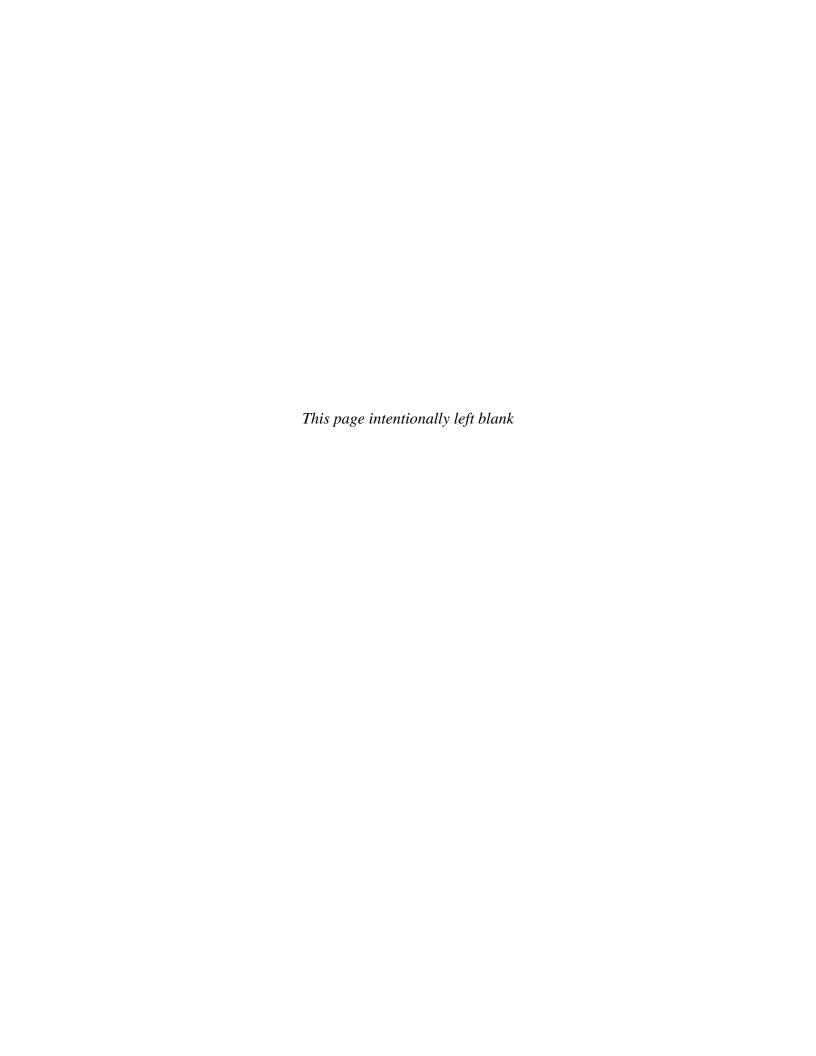
roject Name:	NPDES Stormwater Mon	mwater Mon		Project#:	4010.001	001		Storm Event D: 2_12-13_11	2_12-13_11	
	,					***				
ı			·							
	Forecasted		·					Number of		
	Rainfall	Forecasted		2	Basin Rainfall	Estimated	Anticipated Sample Bottles	Sample Bottles	Number of	Number of Trigger Volume
nonitoring Site	(inches)	Amount (feet)	(acres)	(square feet)	(cubic feet)	Coefficient	(cubic feet) Configuration	Configuration	Bottle	(cubic feet)

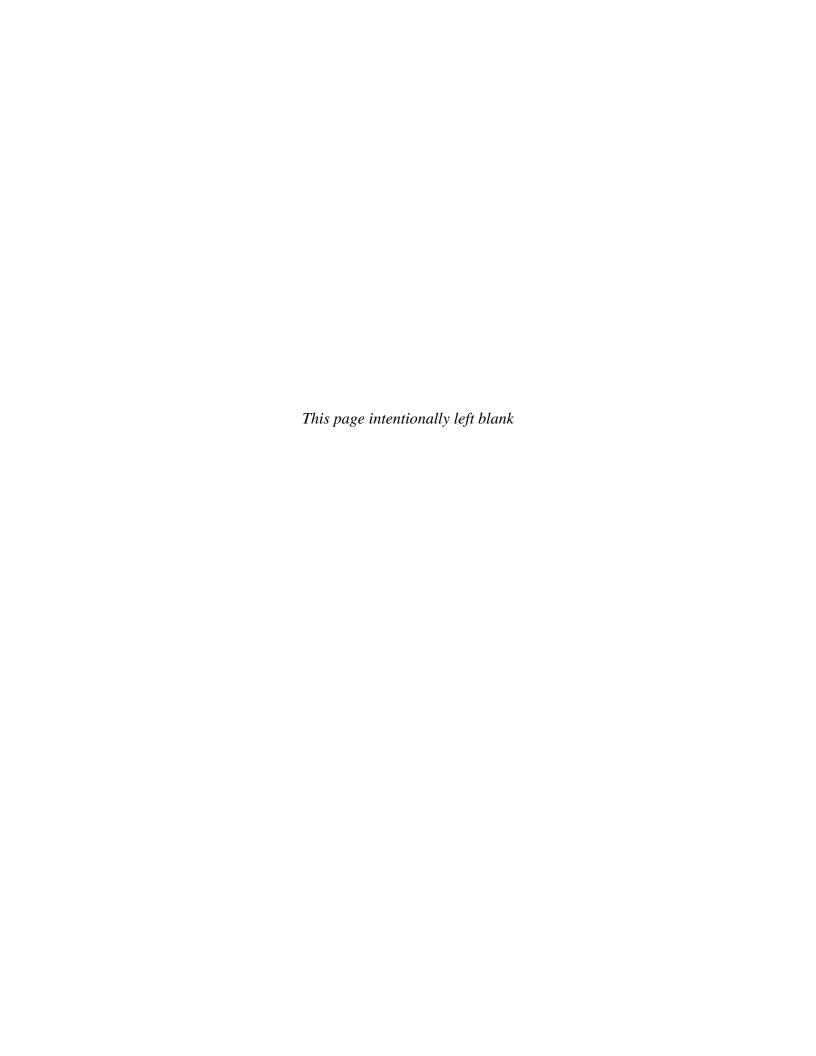
DAILY FIELD REPORT

Page ____ ___ of NPDES Project No. Project_ OF 19 Date 2 Location Subject ___ ensurements &: mane 1407 **Attachments**

DAILY FIELD REPORT

	Page OI
Project NPDES (omp Wiches	Project No.
Location 0F19	Date 2/13/11
Subject OF19 NPDES Storm Check Notes	By JXB/JJM
1014- Arrive on-site at OF19 to check samp	pier pacing after
recent storm event of ~0.50" of rain Cur	rent level upan
arrival was at 3.9" Sampler has taken 3.5	
sample. Jum makes entry to check sample be	
bottle swap for projected starm tanight after	
sample bottles from 2/12 storm event (3 43 bottle	
Program was disabledupon amival of departure	
Tubing was not pinched of sensor was free of Replaced sampler battery. Meter reading accurances meter readings on Departure:	debris & sads upon control
Replaced sampler battens. Meter reading accura	the baseflow conditions
Meter leadings on Departure:	
1036 2/13/11 4.0" 0.72cfs 1.51	ps 12.7 voits
Attachments	


Attachments



Page Project No. _ N/A Project MDES Showed WO FM Location S45U - SE45th ! Unwilla, OF19-NW Date 21/4/2011 Subject Frent 2.1 grab sampling By JJM, CJK 1328 On site to collect and samples field parameters in order to complete FY10-11 sampling activities. Composition samples collected on 21/2/11, submitted this morning. Cleared qual sampling activities for today w! A. Wresing. 1370 Rain has been when the this mounting, yet days to curb MINOCE. Flow meter level 15 3.2" which is not quite elebrated but since rain has been persistent premious 72 hours totaling approducately 1.0", we will collect grades. PH = 6.5 andudoubly = 151.9 m s/cm temp = 11.5°C 1355 Collected OG. 2013 & parameter 1340 Removed balleries, shut down sampler meter. currently not training, been raining today. Downpour in last 30mm Cillected OG, & coli of parameters @ 10014611 19 1450 Removed batteries, shut down sampler/meter 1455 S. bmilled samples to wpcl 1525

Attachment B Laboratory Results and QA/QC Review (on CD only)

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review MS4 Stormwater Data Evaluation City Outfall Basin 19

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: October 24, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) at Outfall Basin 19 on December 14 and 15, 2009. Two stormwater samples (FO096359 and FO096364) were collected and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

BES WPCL

- o E. Coli COLILERT QT
- Total Oil & Grease EPA 1664
- Ammonia Nitrogen EPA 350.1
- o Nitrate Nitrogen EPA 300.0
- o Orthophosphate Phosphorus EPA 365.1
- Total Dissolved Solids (TDS) SM 2540C
- o Total Phosphorus EPA 365.4
- o Total Solids (TS) SM 2540 B
- o Total Suspended Solids (TSS) SM 2540 D
- Total Hardness SM 2340 B CALC
- Metals (Dissolved) EPA 200.8
- o Metals (Total) EPA 200.8

- Columbia Analytical Services (CAS)
 - o Organochlorine Pesticides EPA 8081A
 - o Semi-Volatile Organic Compounds (SVOCs) EPA 8270C
- Pace Analytical Services (Pace)
 - o Polychlorinated Biphenyls (PCB) Congeners EPA 1668A
- Test America (TA)
 - o Polynuclear Aromatic Hydrocarbons (PAHs) & Phthalates EPA 8270M-SIM

The WPCL laboratory report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

For the purpose of this pesticide source control investigation, the following QA/QC review was limited to review of the analytical data generated from analysis of organochlorine pesticides for field sample FO096364. The QA/QC review of the analytical data is based on the available documentation provided by WPCL and CAS, and consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Internal standard recoveries within accuracy control limits
- Surrogate recoveries within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits.

The results of the QA/QC review of the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples were extracted and analyzed within the recommended holding times for the pesticide analysis.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 3

Method Blanks

A method blank was processed during the laboratory analysis of organochlorine pesticides. Detection limits were elevated for 4,4'-DDE, 4,4'-DDD, and Toxaphene. The chromatogram indicated the presence of non-target background components, which were apparently introduced as laboratory artifacts. No analytes were detected in the method blank.

Surrogate Recoveries

Surrogate recoveries were analyzed during the analysis of pesticides. All surrogate recoveries were within laboratory acceptance limits.

Matrix Spike/Matrix Spike Duplicates

An MS sample was processed during the laboratory analysis of organochlorine pesticides. One analyte, beta-BHC, was recovered slightly above laboratory control limits. Additionally, MS recoveries for 4,4'-DDE and 4,4'-DDD are not applicable because the chromatogram indicates non-target matrix components contributed to the reported concentrations. However, beta-BHC, 4,4'-DDE, and 4,4'-DDD were recovered within laboratory control limits in the LC/DLC samples indicating that the pesticide analysis was in control; thus, the data is not qualified further.

Laboratory Control/Duplicate Laboratory Control Samples

LC and DLC samples were processed during the laboratory analysis of pesticides. All analyte recoveries for LC/DLC samples processed during the pesticide analysis are within laboratory control limits; RPDs for toxaphene (pesticide analysis) and 3,3'-dichlorobenzidine (SVOC analysis) are slightly above laboratory control limits.

Other

CAS reports that results from the primary and verification columns varied by more than 40 % for 4,4'-DDT in field sample, FO096364. The higher of the two values was reported because no evidence of matrix interference was observed, and the value is flagged as an estimate ("J" flag). Additionally, CAS reports that the primary evaluation criteria were exceeded for Methoxychlor in the Initial and Continuing Calibration Verification (ICV and CCV). ICV results were reported from the acceptable column and the data quality was not affected. In lieu of the CCV exceedance, the alternative evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standard. The standard met the alternative evaluation criteria.

GSI WATER SOLUTIONS, INC. PAGE 3 OF 3

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 12(15/09

Page: 0 1

Collected By: 77/1/ UXB

OCB 209 Congeners (Pace) (AT) setsisites + Phthalates • SVOCs, low-level (CAS) • Requested Analyses Total Phosphorus • Orthophosphate phosphorus • Nitrate-nitrogen negoriin-sinomm (Ag, As, Cd, Cr, Cu, Pb, Zn) Dissolved Metals (Ag, As, Cd, Ct, Cu, Pb, Zn) Total Metals General Hardness SSJ Sal SI Sample Sample Sample Type ပ Hairots calleted from 12/14/09@1724 to 12/15/09 @ 0455 STORMWTR Time 1724 12/14/09 Date Matrix NPDES STORMWTR MON OF19 Code Point 4900 NW KITTRIDGE AVE 国 Sample Time recorded in current local time Location 4010.001 FO096364 WPCL Sample I.D. Project Name: File Number

s:\eid\4000\4010.001\sampdoc\Current NPDES COC.xls

Time: Date:

Relinquished By:

Relinguished By:

Signature:

Time:

Relinquished By: 2.

Date:

Signature:

Date:

Tirne: Date:

Printed Name: Received By:

Signature:

Time: Date:

Printed Name:
Received By:

Signature:

Time:

Received By:

Received By:

Signature:

Signature: Printed Name:

Time: Date:

Printed Name:

rinted Name:

Date: 12-15-04

rinted Name:

rinted Name

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AN12037

LABORATORY ANALYSIS REPORT

Sample ID: FO096359 Sample Collected: 12/15/2009 05:21 Sample Status: COMPLETE AND

Sample Received: 12/15/09 VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON Report Page: Page 1 of 1

Address/Location: 4900 NW KITTRIDGE AVE (OF19)

MANHOLE GRAB

System ID:

ample Point Code:

OF 19

EID File #:

 Sample Point Code:
 OF19
 EID File # : 4010.001

 Sample Type:
 GRAB
 LocCode: NPDESSTM

 Sample Matrix:
 STORMWTR
 Collected By: JJM/JXB

Comments:

Test Parameter	Result	Units	MRL	Method	Analysis Date
FIELD					
CONDUCTIVITY (FIELD)	63	µmhos/cm	1	SM 2510 B	12/15/09
pH (FIELD)	6.7	pH Units	0.1	SM 4500-H B	12/15/09
TEMPERATURE	5.4	Deg. C	0.1	SM 2550 B	12/15/09
MICROBIOLOGY E. COLI	880	MPN/100 ml	10	COLILERT QT	12/16/09
GENERAL OIL & GREASE, TOTAL	<5	mg/L	5	EPA 1664	12/29/09

End of Report for Sample ID: FO096359

Report Date: 03/17/10 Validated By: Signature on File

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO096364 Sample Collected: 12/14/2009 17:24 Sample Status: COMPLETE AND

Sample Received: 12/15/09 VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON Report Page: Page 1 of 5

Address/Location: 4900 NW KITTRIDGE AVE (OF19)

 MANHOLE COMPOSITE
 System ID:
 AN12041

 Sample Point Code:
 OF19
 EID File #:
 4010.001

Sample Type:COMPOSITELocCode:NPDESSTMSample Matrix:STORMWTRCollected By:JJM

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. For PCB congener analysis, low recoveries for the lightest congener surrogates indicate that results for the mono- and dichlorinated congeners could be low estimates.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
AMMONIA-NITROGEN	0.17	mg/L	0.02	EPA 350.1	12/22/09
NITRATE-NITROGEN	0.50	mg/L	0.10	EPA 300.0	12/16/09
o-PHOSPHATE-PHOSPHORUS, DISS	0.029	mg/L	0.02	EPA 365.1	12/16/09
TOTAL DISSOLVED SOLIDS @180C	36	mg/L	5	SM 2540 C	12/18/09
TOTAL PHOSPHORUS	0.17	mg/L	0.03	EPA 365.4	12/23/09
TOTAL SOLIDS	44	mg/L	2	SM 2540 B	12/17/09
TOTAL SUSPENDED SOLIDS	33	mg/L	2	SM 2540 D	12/17/09
METALS					
HARDNESS, TOTAL	21.5	mg CaCO3/L	0.5	SM 2340 B CALC	12/16/09
METALS BY ICP-MS (DISSOLVED) - 7					
ARSENIC, DISSOLVED	0.68	μg/L	0.1	EPA 200.8	12/16/09
CADMIUM, DISSOLVED	<0.10	μg/L	0.1	EPA 200.8	12/16/09
CHROMIUM, DISSOLVED	< 0.40	μg/L	0.4	EPA 200.8	12/16/09
COPPER, DISSOLVED	3.17	μg/L	0.2	EPA 200.8	12/16/09
LEAD, DISSOLVED	0.39	μg/L	0.1	EPA 200.8	12/16/09
SILVER, DISSOLVED	<0.10	μg/L	0.1	EPA 200.8	12/16/09
ZINC, DISSOLVED	51.6	μg/L	0.5	EPA 200.8	12/16/09
METALS BY ICP-MS (TOTAL) - 7					
ARSENIC	1.57	μg/L	0.1	EPA 200.8	12/17/09
CADMIUM	0.15	μg/L	0.1	EPA 200.8	12/17/09
CHROMIUM	2.31	μg/L	0.4	EPA 200.8	12/17/09
COPPER	11.3	μg/L	0.2	EPA 200.8	12/17/09
LEAD	9.02	μg/L	0.1	EPA 200.8	12/17/09
SILVER	<0.10	μg/L	0.1	EPA 200.8	12/17/09
ZINC	94.0	μg/L	0.5	EPA 200.8	12/17/09
OUTSIDE ANALYSIS					
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	<4.2	ng/L	4.2	EPA 8081	12/20/09
4,4'-DDE	<2.7	ng/L	2.7	EPA 8081	12/20/09
4,4'-DDT	EST 84	ng/L	2.7	EPA 8081	12/20/09
Aldrin	<2.7	ng/L	2.7	EPA 8081	12/20/09
Alpha-BHC	3.7	ng/L	2.7	EPA 8081	12/20/09
Alpha-Chlordane	<2.7	ng/L	2.7	EPA 8081	12/20/09

Report Date: 03/17/10 Validated By: Signature on File

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AN12041

System ID:

12/14/2009 17:24 **COMPLETE AND** Sample Collected: Sample Status: Sample ID: FO096364 **VALIDATED**

12/15/09 Sample Received:

NPDES STORMWTR WQ & FLOW MON Page 2 of 5 Proj./Company Name: Report Page:

4900 NW KITTRIDGE AVE (OF19) Address/Location:

MANHOLE COMPOSITE

EID File #: **OF19** 4010.001 Sample Point Code: COMPOSITE **NPDESSTM** Sample Type: LocCode:

STORMWTR JJM Sample Matrix: Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. For PCB congener analysis, low recoveries for the lightest congener surrogates indicate that results for the mono- and dichlorinated congeners could be low estimates.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Beta-BHC	<2.7	ng/L	2.7	EPA 8081	12/20/09
Delta-BHC	<2.7	ng/L	2.7	EPA 8081	12/20/09
Dieldrin	<32	ng/L	32	EPA 8081	12/20/09
Endosulfan I	<2.7	ng/L	2.7	EPA 8081	12/20/09
Endosulfan II	<3.3	ng/L	3.3	EPA 8081	12/20/09
Endosulfan Sulfate	<8.5	ng/L	8.5	EPA 8081	12/20/09
Endrin	<2.7	ng/L	2.7	EPA 8081	12/20/09
Endrin Aldehyde	<3.1	ng/L	3.1	EPA 8081	12/20/09
Endrin Ketone	<2.7	ng/L	2.7	EPA 8081	12/20/09
Gamma-BHC(Lindane)	<2.7	ng/L	2.7	EPA 8081	12/20/09
Gamma-Chlordane	<2.7	ng/L	2.7	EPA 8081	12/20/09
Heptachlor	<3.8	ng/L	3.8	EPA 8081	12/20/09
Heptachlor Epoxide	<2.7	ng/L	2.7	EPA 8081	12/20/09
Methoxychlor	<2.7	ng/L	2.7	EPA 8081	12/20/09
Toxaphene	<510	ng/L	510	EPA 8081	12/20/09
POLYCHLORINATED BIPHENYL CONGENER	S -PACE				
Refer to Contract Report	Completed	ng/L		EPA 1668 MOD	01/11/10
POLYNUCLEAR AROMATICS & PHTHALATE	S - TA				
Acenaphthene	<0.0211	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Acenaphthylene	<0.0211	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Anthracene	0.0263	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Benzo(a)anthracene	0.0482	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Benzo(a)pyrene	0.0422	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Benzo(b)fluoranthene	0.0494	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Benzo(ghi)perylene	0.0653	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Benzo(k)fluoranthene	0.0349	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Bis(2-ethylhexyl) phthalate	2.79	μg/L	1.05	EPA 8270M-SIM	12/18/09
Butyl benzyl phthalate	1.50	μg/L	1.05	EPA 8270M-SIM	12/18/09
Chrysene	0.0891	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Dibenzo(a,h)anthracene	< 0.0105	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Diethyl phthalate	<1.05	μg/L	1.05	EPA 8270M-SIM	12/18/09
Dimethyl phthalate	<1.05	μg/L	1.05	EPA 8270M-SIM	12/18/09
Di-n-butyl phthalate	<1.05	μg/L	1.05	EPA 8270M-SIM	12/18/09
Di-n-octyl phthalate	<1.05	μg/L	1.05	EPA 8270M-SIM	12/18/09
Fluoranthene	0.146	μg/L	0.0211	EPA 8270M-SIM	12/18/09

Report Date: 03/17/10 Validated By: Signature on File

Sample ID:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

12/15/09

Sample Collected: 12/14/2009 17:24 Sample Status: COMPLETE AND

VALIDATED

AN12041

System ID:

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON Report Page: Page 3 of 5

Sample Received:

Address/Location: 4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

FO096364

Sample Point Code:OF19EID File #:4010.001Sample Type:COMPOSITELocCode:NPDESSTM

Sample Matrix: STORMWTR Collected By: JJM

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. For PCB congener analysis, low recoveries for the lightest congener surrogates indicate that results for the mono- and dichlorinated congeners could be low estimates.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Fluorene	0.0237	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Indeno(1,2,3-cd)pyrene	0.0370	μg/L	0.0105	EPA 8270M-SIM	12/18/09
Naphthalene	0.0379	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Phenanthrene	0.100	μg/L	0.0211	EPA 8270M-SIM	12/18/09
Pyrene	0.161	μg/L	0.0211	EPA 8270M-SIM	12/18/09
SEMI-VOLATILE ORGANICS - CAS					
1,2,4-Trichlorobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
1,2-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
1,3-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
1,4-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
2,4,5-Trichlorophenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
2,4,6-Trichlorophenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
2,4-Dichlorophenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
2,4-Dimethylphenol	<4.0	μg/L	4.0	EPA 8270	12/18/09
2,4-Dinitrophenol	<4.0	μg/L	4.0	EPA 8270	12/18/09
2,4-Dinitrotoluene	<0.20	μg/L	0.20	EPA 8270	12/18/09
2,6-Dinitrotoluene	<0.20	μg/L	0.20	EPA 8270	12/18/09
2-Chloronaphthalene	<0.20	μg/L	0.20	EPA 8270	12/18/09
2-Chlorophenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
2-Methylnaphthalene	<0.20	μg/L	0.20	EPA 8270	12/18/09
2-Methylphenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
2-Nitroaniline	<0.20	μg/L	0.20	EPA 8270	12/18/09
2-Nitrophenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
3,3'-Dichlorobenzidine	<2.0	μg/L	2.0	EPA 8270	12/18/09
3-Nitroaniline	<0.99	μg/L	0.99	EPA 8270	12/18/09
4,6-Dinitro-2-methylphenol	<2.0	μg/L	2.0	EPA 8270	12/18/09
4-Bromophenylphenyl ether	<0.20	μg/L	0.20	EPA 8270	12/18/09
4-Chloro-3-methylphenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
4-Chloroaniline	<0.20	μg/L	0.20	EPA 8270	12/18/09
4-Chlorophenylphenyl ether	<0.20	μg/L	0.20	EPA 8270	12/18/09
4-Methylphenol	<0.50	μg/L	0.50	EPA 8270	12/18/09
4-Nitroaniline	<0.99	μg/L	0.99	EPA 8270	12/18/09
4-Nitrophenol	<2.0	μg/L	2.0	EPA 8270	12/18/09
Acenaphthene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Acenaphthylene	<0.20	μg/L	0.20	EPA 8270	12/18/09

Report Date: 03/17/10 Validated By: Signature on File

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

12/14/2009 17:24 **COMPLETE AND** Sample Collected: Sample Status: Sample ID: FO096364 **VALIDATED**

12/15/09 Sample Received:

> Page 4 of 5 Report Page:

System ID: EID File #:

LocCode:

AN12041

4010.001

NPDESSTM

NPDES STORMWTR WQ & FLOW MON Proj./Company Name: Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

OF19 Sample Point Code: COMPOSITE Sample Type:

STORMWTR JJM Sample Matrix: Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. For PCB congener analysis, low recoveries for the lightest congener surrogates indicate that results for the mono- and dichlorinated congeners could be low estimates.

Fest Parameter	Result	Units	MRL	Method	Analysis Date
Anthracene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzo(a)anthracene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzo(a)pyrene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzo(b)fluoranthene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzo(g,h,i)perylene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzo(k)fluoranthene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Benzoic acid	<5.0	μg/L	5.0	EPA 8270	12/18/09
Benzyl alcohol	1.2	μg/L	5.0	EPA 8270	12/18/09
Bis(2-chloroethoxy) methane	<0.20	μg/L	0.20	EPA 8270	12/18/09
Bis(2-chloroethyl) ether	<0.20	μg/L	0.20	EPA 8270	12/18/09
Bis(2-chloroisopropyl) ether	<0.20	μg/L	0.20	EPA 8270	12/18/09
Bis(2-ethylhexyl) phthalate	1.6	μg/L	0.99	EPA 8270	12/18/09
Butyl benzyl phthalate	0.96	μg/L	0.20	EPA 8270	12/18/09
Chrysene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Dibenzo(a,h)anthracene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Dibenzofuran	<0.20	μg/L	0.20	EPA 8270	12/18/09
Diethyl phthalate	<0.20	μg/L	0.20	EPA 8270	12/18/09
Dimethyl phthalate	0.85	μg/L	0.20	EPA 8270	12/18/09
Di-n-butyl phthalate	0.24	μg/L	0.20	EPA 8270	12/18/09
Di-n-octyl phthalate	<0.20	μg/L	0.20	EPA 8270	12/18/09
Fluoranthene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Fluorene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Hexachlorobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Hexachlorobutadiene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Hexachlorocyclopentadiene	< 0.99	μg/L	0.99	EPA 8270	12/18/09
Hexachloroethane	<0.20	μg/L	0.20	EPA 8270	12/18/09
Indeno(1,2,3-cd)pyrene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Isophorone	<0.20	μg/L	0.20	EPA 8270	12/18/09
Naphthalene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Nitrobenzene	<0.20	μg/L	0.20	EPA 8270	12/18/09
N-Nitrosodi-n-propylamine	<0.20	μg/L	0.20	EPA 8270	12/18/09
N-Nitrosodiphenylamine	<0.20	μg/L	0.20	EPA 8270	12/18/09
Pentachlorophenol	< 0.99	μg/L	0.99	EPA 8270	12/18/09
Phenanthrene	<0.20	μg/L	0.20	EPA 8270	12/18/09
Phenol	0.52	μg/L	0.50	EPA 8270	12/18/09
Pyrene	<0.20	μg/L	0.20	EPA 8270	12/18/09

Report Date: 03/17/10 Validated By: Signature on File

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

12/14/2009 17:24 Sample Collected: **COMPLETE AND** Sample ID: FO096364 Sample Status: **VALIDATED**

Sample Received: 12/15/09

NPDES STORMWTR WQ & FLOW MON Page 5 of 5 Proj./Company Name: Report Page:

4900 NW KITTRIDGE AVE (OF19) Address/Location:

MANHOLE COMPOSITE

OF19 Sample Point Code:

COMPOSITE Sample Type: **STORMWTR** Sample Matrix:

AN12041 System ID: EID File #: 4010.001

NPDESSTM LocCode: JJM Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. For PCB congener analysis, low recoveries for the lightest congener surrogates indicate that results for the mono- and dichlorinated congeners could be low estimates.

Analysis Date **Test Parameter** Units MRL Method Result

End of Report for Sample ID: FO096364

Report Date: 03/17/10 Validated By: Signature on File

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

January 09, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: NPDES

Enclosed are the results of analyses for samples received by the laboratory on 12/16/09 16:00. The following list is a summary of the Work Orders contained in this report, generated on 01/09/10 16:05.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PSL0567	NPDES	36238

TestAmerica Portland

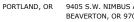
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO096364	PSL0567-01	Water	12/14/09 17:24	12/16/09 16:00
FO096366	PSL0567-02	Water	12/14/09 17:46	12/16/09 16:00

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **NPDES** Project Name:

6543 N. Burlington Ave. Report Created: Project Number: 36238 Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PSL0567-01 (FO096364)			W	ater		Samp	oled: 12/14/	09 17:24		
Bis(2-ethylhexyl)phthalate	EPA 8270m	2.79		1.05	ug/l	1x	9120627	12/18/09 16:15	12/23/09 19:18	
Butyl benzyl phthalate	"	1.50		1.05	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		1.05	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		1.05		"	"	"	"	
Diethyl phthalate	"	ND		1.05	"	"	"	"	"	
Dimethyl phthalate	"	ND		1.05		"	"	"	"	
Acenaphthene	"	ND		0.0211		"	"	"	01/05/10 02:30	
Acenaphthylene	"	ND		0.0211	"	"	"	"	"	
Anthracene	"	0.0263		0.0211	"	"	"	"	"	
Benzo (a) anthracene	"	0.0482		0.0105	"	"	"	"	"	
Benzo (a) pyrene	"	0.0422		0.0105	"	"	"	"	12/23/09 19:34	
Benzo (b) fluoranthene	"	0.0494		0.0105	"	"	"	"	"	
Benzo (ghi) perylene	"	0.0653		0.0211	"	"	"	"	"	
Benzo (k) fluoranthene	"	0.0349		0.0105	"	"	"	"	"	
Chrysene	"	0.0891		0.0105		"	"	"	01/05/10 02:30	
Dibenzo (a,h) anthracene	"	ND		0.0105	"	"	"	"	12/23/09 19:34	
Fluoranthene	"	0.146		0.0211	"	"	"	"	01/05/10 02:30	
Fluorene	"	0.0237		0.0211	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	"	0.0370		0.0105	"	"	"	"	12/23/09 19:34	
Naphthalene	"	0.0379		0.0211	"	"	"	"	01/05/10 02:30	
Phenanthrene	"	0.100		0.0211		"	"	"	"	
Pyrene	"	0.161		0.0211	"	"	"	"	"	
Surrogate(s): Fluorene-d10)			91.9%		25 - 125 %			"	
Pyrene-d10				96.8%		23 - 150 %			"	
Benzo (a) pyr	rene-d12			87.5%		10 - 125 %			12/23/09 1	9:34
PSL0567-02 (FO096366)			W	ater		Samı	oled: 12/14/	09 17:46		
Bis(2-ethylhexyl)phthalate	EPA 8270m	ND		0.952	ug/l	1x	9120627	12/18/09 16:15	12/23/09 16:57	
Butyl benzyl phthalate	"	2.24		0.952	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		0.952	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		0.952	"	"	"	"	"	
Diethyl phthalate	"	ND		0.952	"	"	"	"	"	
Dimethyl phthalate	"	ND		0.952	"	"	"	"	"	
Acenaphthene	"	ND		0.0190		"	"	"	01/05/10 03:04	
Acenaphthylene	"	ND		0.0190		"	"	"	"	
Anthracene	"	ND		0.0190	"	,,	"	,,	"	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Report Created: Project Number: 36238 Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05

NPDES

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica Portland

Analyte	Me	ethod Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PSL0567-02 (FO	0096366)		V							
Benzo (a) anthracene	EPA	8270m 0.0145		0.00952	ug/l	1x	9120627	12/18/09 16:15	01/05/10 03:04	
Benzo (a) pyrene	"	0.0107		0.00952	"	"	"	"	12/24/09 04:13	
Benzo (b) fluoranthene	e "	0.00989		0.00952	"	"	"	"	"	
Benzo (ghi) perylene	"	, ND		0.0190	"	"	"	"	"	
Benzo (k) fluoranthene	"	, ND		0.00952	"	"	"	"	"	
Chrysene	"	0.0267		0.00952	"	"	"	"	01/05/10 03:04	
Dibenzo (a,h) anthracen	ne "	, ND		0.00952	"	"	"	"	12/24/09 04:13	
Fluoranthene	"	0.0418		0.0190	"	"	"	"	01/05/10 03:04	
Fluorene	"	, ND		0.0190	"	"	"	"	"	
Indeno (1,2,3-cd) pyre	ne "	0.00970		0.00952	"	"	"	"	12/24/09 04:13	
Naphthalene	"	0.0529		0.0190	"	"	"	"	01/05/10 03:04	
Phenanthrene	"	0.0668		0.0190	"	"	"	"	"	
Pyrene	"	0.0596		0.0190	"	"	"	"	"	
Surrogate(s): Fi	luorene-d10			90.7%		25 - 125 %				"
Py	yrene-d10			89.9%		23 - 150 %				"
Be	enzo (a) pyrene-d12			78.2%		10 - 125 %			12/2	4/09 04:13

TestAmerica Portland

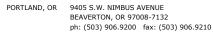
Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results


TestAmerica Portland

QC Batch: 9120627	Water Preparation Method: 3520B Liq-Liq													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (9120627-BLK1)								Extr	acted:	12/18/09 16	:15			
Bis(2-ethylhexyl)phthalate	EPA 8270m	ND		1.00	ug/l	1x							12/23/09 11:18	
Butyl benzyl phthalate	"	ND		1.00	"	"							"	
Di-n-butyl phthalate	"	ND		1.00	"	"							"	
Di-n-octyl phthalate	"	ND		1.00	"	"							"	
Diethyl phthalate	"	ND		1.00	"	"							"	
Dimethyl phthalate	"	ND		1.00	"	"							"	
Acenaphthene	"	ND		0.0200	"	"							12/23/09 17:39	
Acenaphthylene	"	ND		0.0200	"	"							"	
Anthracene	"	ND		0.0200	"	"							"	
Benzo (a) anthracene	"	ND		0.0100	"	"							"	
Benzo (a) pyrene	"	ND		0.0100	"	"							"	
Benzo (b) fluoranthene	"	ND		0.0100	"	"							"	
Benzo (ghi) perylene	"	ND		0.0200	"	"							"	
Benzo (k) fluoranthene	"	ND		0.0100	"	"							"	
Chrysene	"	ND		0.0100	"	"							"	
Dibenzo (a,h) anthracene	"	ND		0.0100	"	"							"	
Fluoranthene	"	ND		0.0200	"	"							"	
Fluorene	"	ND		0.0200	"	"							"	
Indeno (1,2,3-cd) pyrene	"	ND		0.0100	"	"							"	
Naphthalene	"	ND		0.0200	"	"							"	
Phenanthrene	"	ND		0.0200	"	"							"	
Pyrene	"	ND		0.0200	"	"							"	
Surrogate(s): Fluorene-d10		Recovery:	79.5%	Lin	nits: 25-1259	%							12/23/09 17:39	9
Pyrene-d10			88.3%		23-150								"	
Benzo (a) pyrene-d12			84.4%		10-125	%							"	
LCS (9120627-BS1)								Extr	acted:	12/18/09 16	:15			
Bis(2-ethylhexyl)phthalate	EPA 8270m	4.79		1.00	ug/l	1x		4.00	120%	(20-150)			12/23/09 13:34	
Butyl benzyl phthalate	"	4.68		1.00	"	"		"	117%	"			"	
Di-n-butyl phthalate	"	4.54		1.00	"	"		"	113%	"			"	
Di-n-octyl phthalate	"	4.10		1.00	"	"		"	102%	"			"	
Diethyl phthalate	"	4.16		1.00	"	"		,,	104%				"	
Dimethyl phthalate	"	4.01		1.00	"	"		"	100%				"	
Acenaphthene	"	2.41		0.0400	,,	2x		2.50	96.3%	(35-120)			01/04/10 20:33	
Acenaphthylene	"	2.74		0.0400	,,	,,		"	110%	(34-116)			"	
Anthracene	"	2.75		0.0400	"	"		"	110%	(24-119)			"	
								,,						
	"	3 21		0.0200	"	"		"	128%	(36-12X)			"	
Benzo (a) anthracene Benzo (a) pyrene	"	3.21 2.62		0.0200 0.0200	"	"		"	128% 105%	(36-128) (17-128)			12/23/09 20:31	

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

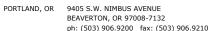
City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave.

Project Number: 36238 Report Created:

Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results


TestAmerica Portland

QC Batch: 9120627	water F	reparatioi	n Method:	SSZUB LIQ-	Liq									
Analyte	Method	Result	MDL ³	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Note
LCS (9120627-BS1)								Ext	racted:	12/18/09 16	5:15			
Benzo (ghi) perylene	EPA 8270m	2.88		0.0400	ug/l	2x		2.50	115%	(26-126)			12/23/09 20:31	
Benzo (k) fluoranthene	"	2.20		0.0200	"	"		"	87.8%	(18-145)			"	
Chrysene	"	2.74		0.0200	"	"		"	109%	(16-137)			01/04/10 20:33	
Dibenzo (a,h) anthracene	"	2.94		0.0200	"	"		"	118%	(20-141)			12/23/09 20:31	
Fluoranthene	"	3.01		0.0400	"	"		"	120%	(31-125)			01/04/10 20:33	
Fluorene	"	2.72		0.0400	"	"		"	109%	(27-124)			"	
Indeno (1,2,3-cd) pyrene	"	2.96		0.0200	"	"		"	118%	(30-135)			12/23/09 20:31	
Naphthalene	"	2.54		0.0400	"	"		"	101%	(30-113)			01/04/10 20:33	
Phenanthrene	"	2.54		0.0400	"	"		"	102%	(34-126)			"	
Pyrene	"	2.73		0.0400	"	"		"	109%	(21-141)			"	
Surrogate(s): Fluorene-d10		Recovery:	98.5%	Lin	nits: 25-125%	6							01/04/10 20:33	
Pyrene-d10			105%		23-150								"	
Benzo (a) pyrene-d12			91.2%		10-125	%							12/23/09 20:31	
Matrix Spike (9120627-MS1)				OC Source	PSL0517-0	1		Ext	racted:	12/18/09 16	·15			
Bis(2-ethylhexyl)phthalate	EPA 8270m	4.78		0.971	ug/l	1x	ND	3.88	123%	(10-150)			12/23/09 14:08	
Butyl benzyl phthalate	"	4.63		0.971	"	,,	ND	"	119%	"			"	
Di-n-butyl phthalate	"	4.53		0.971	,,	,,	ND	,,	117%	,,			"	
Di-n-octyl phthalate	"	4.00		0.971	,,	,,	ND	,,	103%	,,			"	
Diethyl phthalate	"	3.88		0.971	,,	,,	ND	,,	99.8%	,,			"	
Dimethyl phthalate		3.65		0.971	,,	,,	ND	,,	93.9%					
Acenaphthene	"	2.29		0.0388	,,	2x	ND	2.43	94.3%	(35-120)			01/04/10 21:12	
Acenaphthylene		2.66		0.0388	,,	"	ND	"	110%	(34-116)			"	
Anthracene		2.65		0.0388	,,	,,	ND	,,	109%	(24-119)				
Benzo (a) anthracene	"	3.08		0.0194	,,	,,	ND	,,	127%	(22-129)			"	
Benzo (a) pyrene	"	2.54		0.0194	,,	,,	ND	,,	105%	(4-112)			12/23/09 21:00	
Benzo (b) fluoranthene		2.16		0.0194	"	"	ND	,,	89.0%	(0-136)			"	
Benzo (ghi) perylene		2.72		0.0388	"	"	ND	,,	112%	(0-126)				
Benzo (k) fluoranthene		2.14		0.0194	"	"	ND	,,	88.4%	(0-145)				
Chrysene		2.61		0.0194	"	"	ND	,,	108%	(7-137)			01/04/10 21:12	
Dibenzo (a,h) anthracene		2.68		0.0194	,,	,,	ND	,,	110%	(0-141)			12/23/09 21:00	
Fluoranthene	"	2.90		0.0388	,,	,,	ND	,,	120%	(30-125)			01/04/10 21:12	
Fluorene	"	2.62		0.0388	"	"	ND	,,	108%	(27-124)			"	
Indeno (1,2,3-cd) pyrene	"	2.79		0.0194	"	,,	ND	,,	115%	(0-135)			12/23/09 21:00	
Naphthalene	"	2.44		0.0388	,,	,,	0.0387	,,	99.0%	(30-126)			01/04/10 21:12	
Phenanthrene	"	2.47		0.0388	,,	"	0.0535	,,	99.5%	(34-126)			"	
Pyrene	"	2.59		0.0388	,,	"	0.0333 ND	,,	107%	(14-168)			"	
-							ND		10 / /0	(14-100)				
Surrogate(s): Fluorene-d10 Pyrene-d10		Recovery:	96.4% 102%	Lin	nits: 25-1259 23-150								01/04/10 21:12	

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

NPDES City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Project Number: Report Created: 36238 Portland, OR 97203 Project Manager: Jennifer Shackelford 01/09/10 16:05

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica Portland QC Batch: 9120627 Water Preparation Method: 3520B Liq-Liq Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) REC Matrix Spike (9120627-MS1) QC Source: PSL0517-01 Extracted: 12/18/09 16:15 90.5% Limits: 10-125% 12/23/09 21:00 Surrogate(s): Benzo (a) pyrene-d12 Recovery: Matrix Spike Dup (9120627-MSD1) QC Source: PSL0517-01 Extracted: 12/18/09 16:15 EPA 8270m 12/23/09 14:42 Bis(2-ethylhexyl)phthalate 4 74 0.971 1x ND 3.88 122% (10-150)0.679% (50) ug/l Butyl benzyl phthalate 4.80 0.971 ND 124% 3.65% 4.44 0.971 ND 114% 1.94% Di-n-butyl phthalate 4.05 0.971 ND 104% 1.14% Di-n-octvl phthalate 0.0947% " Diethyl phthalate 3.87 0.971 ND 99 7% 0.971 ND 93.3% 0.637% " Dimethyl phthalate 3.62 0.0388 ND 94.7% 0.475% (45) 01/04/10 21:51 Acenaphthene 2.30 2x 2.43 (35-120)Acenaphthylene 2 66 0.0388 ND 110% (34-116)0.0234% " 0.337% " Anthracene 2.66 0.0388 ND 110% (24-119)0.0194 ND Benzo (a) anthracene 3.08 (22-129)0.162% 0.0194 ND 12/23/09 21:29 Benzo (a) pyrene 2.51 104% (4-112)0.957% Benzo (b) fluoranthene 2.04 0.0194 ND 84 0% (0-136)5.80% Benzo (ghi) perylene 2.67 0.0388 ND 110% (0-126)1.87% Benzo (k) fluoranthene 2.00 0.0194 ND 82.3% (0-145)7.07% 0.0966% " Chrysene 2.61 0.0194 ND 108% (7-137)01/04/10 21:51 4.27% " Dibenzo (a,h) anthracene 2.57 0.0194 ND 106% (0-141)12/23/09 21:29 Fluoranthene 2.86 0.0388 ND 118% (30-125)1.57% 01/04/10 21:51 Fluorene 2.63 0.0388 ND 108% (27-124)0.345% 2.50% " Indeno (1,2,3-cd) pyrene 2.72 0.0194 ND 112% (0-135)12/23/09 21:29 Naphthalene 2.47 0.0388 0.0387 100% (30-126) 1.36% " 01/04/10 21:51 0.0388 0.697% " Phenanthrene 2.45 0.0535 98.8% (34-126) 0.0388 0.0831% " 2.59 ND 107% (14-168)Pyrene 01/04/10 21:51 Surrogate(s): Fluorene-d10 Recovery: 96.8% Limits: 25-125%

23-150%

10-125%

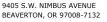
TestAmerica Portland

Howard Holmes, Project Manager

Pvrene-d10

Benzo (a) pyrene-d12

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.


102%

90.4%

12/23/09 21:29

NPDES

ph: (503) 906.9200 fax: (503) 906.9210

Report Created:

01/09/10 16:05

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Project Number: 36238

Portland, OR 97203 Project Manager: Jennifer Shackelford

Notes and Definitions

Project Name:

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

FestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	5	CHAIN OF CUSTODY REPORT	Y REPORT		Work Order #:	Pshosl	/
CLIENT (" L OF POTHERS		INVOICE TO:			TURNAE	TURNAROUND REQUEST	
REPORT TO: Jennifer Shackelfid	elfard	Cher	harks Lytle		r t	in Business Days * Organic & Inorganic Analyses	[3
PHONE		P.O. NUMBER: 36238			STD. Petroleum]	Petroleum Hydrocarbon Analyses	7
THAME: NPDES		PRESERVATIVE	ATIVE		5 4	3 2 1 <1	
PROJECT NUMBER:	A ST	-			SID.		_
	1202	REQUESTED ANALYSES	ANALYSES		* Turnaround Requests less	OTHER Specify: * Turnaround Requests less than standard may incur Rush Charges.	i h Charges.
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	2000 2000 2000 2000 2000 2000 2000 200				MATRIX # OF (W, S, O) CONT.	LOCATION/ COMMENTS	TA WO ID
Forming the 12/14/4 1224	×				W 3		
PH 127 0					N 2	1	
					-		
r v					,		
, v							
7						-	
6							
01				2			111/0
RELEASED BY: Jennifu Shackelford PRINT NAME: Jonn 16 -Cl. Job Brod	FIRM: (" M of Partland	DATE: 12/16/09 TIME: 3'.00.	RECEIVED BY: SOFT	- Callo	FIRM:	7.7 DATE: 13	00/0
	J. C.	14/	RECEIVED BY:	1 Hollwar	THEN: TAT	DATE: 72/	1500;
APPERSY SEND TO PALE					•	TEMP:	OF
				,		No.	TAL-1000(0408)
					•	6.0	

TestAmerica Portland Sample Receiving Checklist

	k Ord nt Na		#: PSLO567 Date/Time Received: 12/16/09 1600 and Project: City of Vontland
mi			
	Zone: OT/EST	Γ	□CDT/CST □MDT/MST ØPDT/PST □AK □OTHER
			Checks: Temperature out of Range:
	oler #(perature	,	Not enough or No Ice 1.5 0 9 0.3 lce Melted
			Digi #2 IR Gun W/in 4 Hrs of collection
		_	☐ Ø (☐Plastic ØGlass)Other:
N/A	Yes	No	Initials
			1. If ESI client, were temp blanks received? If no, document on NOD.
			2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.
			3. Chain of Custody present? If no, document on NOD.
			4. Bottles received intact? If no, document on NOD.
			5. Sample is not multiphasic? If no, document on NOD.
	A CONTRACTOR OF THE PARTY OF TH		6. Proper Container and preservatives used? If no, document on NOD.
			7. pH of all samples checked and meet requirements? If no, document on NOD.
			8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
			9. HF Dilution required?
			10. Sufficient volume provided for all analysis? If no, document on NOD and consult
			PM before proceeding. 11. Did chain of custody agree with samples received? If no, document on NOD.
			12. Is the "Sampled by" section of the COC completed?
			13. Were VOA/Oil Syringe samples without headspace?
			14. Were VOA vials preserved? HCl Sodium Thiosulfate Ascorbic Acid
,			15. Did samples require preservation with sodium thiosulfate?
			16. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
			17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
			18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? If
			no, document on NOD and contact PM before proceeding. 19. Are analyses with short holding times received in hold?
			20. Was Standard Turn Around (TAT) requested?
			21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.

TestAmerica Portland Sample Receiving Checklist

Work Order #: **1510567**

Log	in Ch	ıeck	xs:	Initials:
N/A	Yes	No		7//
			22. Sufficient volume provided for all analysis? If no, docume23. Sufficient volume provided for client requested MS/MSD	ent on NOD & contact PM
			no, document on NOD and contact PM.	•
	نع ک		24. Did the chain of custody include "received by" and "relind dates and times?	quished by" signatures,
			25. Were special log in instructions read and followed?	
,	Z		26. Were tests logged checked against the COC?	
Z			27. Were rush notices printed and delivered?	•
Ø			28. Were short hold notices printed and delivered?	
′□ _			29. Were subcontract COCs printed?	
			30. Was HF dilution logged?	
Labe	eling :	and	Storage Checks:	Initials:
N/A	Yes	No		11
	Z		31. Were the subcontracted samples/containers put in Sx fridge	•?
			32. Were sample bottles and COC double checked for dissolve	
			33. Did the sample ID, Date, and Time from label match what	
			34. Were Foreign sample stickers affixed to each container and	
			foreign fridge?	Tomamors stored m
			35. Were HF stickers affixed to each container, and containers	stored in Sy fridge?
			36. Was an NOD for created for noted discrepancies and place	
Docun form (nent an NOD).	ıy pr	oblems or discrepancies and the actions taken to resolve them or	

FestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	5	CHAIN OF CUSTODY REPORT	Y REPORT		Work Order #:	Pshosl	/
CLIENT (" L OF POTHERS		INVOICE TO:			TURNAE	TURNAROUND REQUEST	
REPORT TO: Jennifer Shackelfid	elfard	Cher	harks Lytle		r t	in Business Days * Organic & Inorganic Analyses	[3
PHONE		P.O. NUMBER: 36238			STD. Petroleum]	Petroleum Hydrocarbon Analyses	7
THAME: NPDES		PRESERVATIVE	ATIVE		5 4	3 2 1 <1	
PROJECT NUMBER:	A ST	-			SID.		_
	1202	REQUESTED ANALYSES	ANALYSES		* Turnaround Requests less	OTHER Specify: * Turnaround Requests less than standard may incur Rush Charges.	i h Charges.
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	2000 2000 2000 2000 2000 2000 2000 200				MATRIX # OF (W, S, O) CONT.	LOCATION/ COMMENTS	TA WO ID
Forming the 12/14/4 1224	×				W 3		
PH 127 0					N 2	1	
					-		
r v					,		
, v							
7							
6							
01				2			111/0
RELEASED BY: Jennifu Shackelford PRINT NAME: Jonn 16 -Cl. Job Brod	FIRM: (" M of Partland	DATE: 12/16/09 TIME: 3'.00.	RECEIVED BY: SOFT	- Callo	FIRM:	7.7 DATE: 13	00/0
	J. C.	14/	RECEIVED BY:	1 Hollwar	THEN: TAT	DATE: 72/	1500;
APPERSY SEND TO PALE					•	TEMP:	OF
				,		No.	TAL-1000(0408)
					•	6.0	

TestAmerica Portland Sample Receiving Checklist

	k Ord nt Na		#: PSLO567 Date/Time Received: 12/16/09 1600 and Project: City of Vontland
mi			
	Zone: OT/EST	Γ	□CDT/CST □MDT/MST ØPDT/PST □AK □OTHER
			Checks: Temperature out of Range:
	oler #(perature	,	Not enough or No Ice 1.5 0 9 0.3 lce Melted
			Digi #2 IR Gun W/in 4 Hrs of collection
		_	☐ Ø (☐Plastic ØGlass)Other:
N/A	Yes	No	Initials
			1. If ESI client, were temp blanks received? If no, document on NOD.
			2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.
			3. Chain of Custody present? If no, document on NOD.
			4. Bottles received intact? If no, document on NOD.
			5. Sample is not multiphasic? If no, document on NOD.
	A CONTRACTOR OF THE PARTY OF TH		6. Proper Container and preservatives used? If no, document on NOD.
			7. pH of all samples checked and meet requirements? If no, document on NOD.
			8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
			9. HF Dilution required?
			10. Sufficient volume provided for all analysis? If no, document on NOD and consult
			PM before proceeding. 11. Did chain of custody agree with samples received? If no, document on NOD.
			12. Is the "Sampled by" section of the COC completed?
			13. Were VOA/Oil Syringe samples without headspace?
			14. Were VOA vials preserved? HCl Sodium Thiosulfate Ascorbic Acid
,			15. Did samples require preservation with sodium thiosulfate?
			16. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
			17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
			18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? If
			no, document on NOD and contact PM before proceeding. 19. Are analyses with short holding times received in hold?
			20. Was Standard Turn Around (TAT) requested?
			21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.

TestAmerica Portland Sample Receiving Checklist

Work Order #: **1510567**

Log	in Ch	ıeck	xs:	Initials:
N/A	Yes	No		7//
			22. Sufficient volume provided for all analysis? If no, docume23. Sufficient volume provided for client requested MS/MSD	ent on NOD & contact PM
			no, document on NOD and contact PM.	•
	نع ک		24. Did the chain of custody include "received by" and "relind dates and times?	quished by" signatures,
			25. Were special log in instructions read and followed?	
,	Z		26. Were tests logged checked against the COC?	
Z			27. Were rush notices printed and delivered?	•
Ø			28. Were short hold notices printed and delivered?	
′□ _			29. Were subcontract COCs printed?	
			30. Was HF dilution logged?	
Labe	eling :	and	Storage Checks:	Initials:
N/A	Yes	No		11
	Z		31. Were the subcontracted samples/containers put in Sx fridge	•?
			32. Were sample bottles and COC double checked for dissolve	
			33. Did the sample ID, Date, and Time from label match what	
			34. Were Foreign sample stickers affixed to each container and	
			foreign fridge?	Tomamors stored m
			35. Were HF stickers affixed to each container, and containers	stored in Sy fridge?
			36. Was an NOD for created for noted discrepancies and place	
Docun form (nent an NOD).	ıy pr	oblems or discrepancies and the actions taken to resolve them or	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Howard Holmes Test America-Portland 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10119171

Sample Receipt Date: 12/18/2009

Client Project #: PSL0567

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

January 28, 2010

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

January 28, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America Portland. The sample was analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 0.25-0.75 parts-per-trillion and were adjusted for the amount of the sample extracted.

The isotopically-labeled PCB internal standards in the sample extract were recovered at 0-104%. The smaller PCB congeners were poorly recovered. Results for congeners 1 and 2 were not determined and results for the remaining mono and di chlorinated congeners should be considered estimated. Since the quantification of the native PCB congeners was based on isotope dilution and internal standard methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interferences affected the determination of PCB congeners. The affected congeners were flagged "I" where the isotope ratios were found to be outside of the target range for this method.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCB congeners at the reporting limits.

Laboratory spike samples were also prepared with the sample batch using clean water that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 78-120%, with relative percent differences (RPDs) generally from 0.0-25.4%. Congener #1 was not recovered in the laboratory spikes. These results indicate generally high levels of accuracy and precision for these samples. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN00064_2000
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 027-053-137 Wyoming

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER **TestAmerica Portland**

PSL0567

$\mathcal{N}_{\mathcal{N}}$
$^{\prime\prime}$
//
10119171

SENDING LABORATORY:	
TestAmerica Portland	
9405 SW Nimbus Ave.	
Beaverton, OR 97008	
Dhono: (503) 906-9200	

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON °C

Receipt Temperature:

Ice:

15 Day TAT Email res MDL report needs Excel EDD	ra volume is submitted. sults to Jennifer & Aaron.	Duo Dotos	Initials:	
Standard TAT is 1	requested unless specific due d	ate is requested. => Due Date:		
Analysis	Units	Expires	Comments	
Sample ID: PSL056	37-01 (FO096364 - Water)	Sampled: 12/14/09 17:24		00/
1668 Coplanar PC	Bs - SUB ug/l	06/12/10 17:24		
Containers Supplie				

Release Port No.....10119171_1666 Ame

Date/TimPage 5 of 26

Received By

SUBCONTRACT ORDER TestAmerica Portland

		PSL0567	
SENDING LABOR	RATORY:	RECEIVING LAB	ORATORY:
TestAmerica Por 9405 SW Nimbu Beaverton, OR 9 Phone: (503) 906 Fax: (503) 906-9 Project Manager:	s Ave. 97008 3-9200 210	1700 Elm Stree Minneapolis, MI Phone :(612) 60 Fax: (612) 607-	N 55414 07-1700 6444 n: OR - OREGON
15 Day TAT Email re MDL report needs Excel EDD	Atra volume is submitted. sults to Jennifer & Aaron.	luo data in vogrented> Duo Datas	1/08/10 Initials: 1/2
Analysis	Units	lue date is requested. => Due Date: Expires	Comments
1668 Coplanar PC Containers Supplie 1L Amber - Unpi	ed: res. (C)	Sampled: 12/14/09 17 06/12/10 17:24 Like the	209 hst
		Than	
	•		

Released By	Date/Time	Received By	Date/Time
Palassed By	Date/Time	Received By	Date/Time

Page 1 of 1

Report No.....10119171_1668A

Pace Analytical*

Client Name:

Sample Condition Upon Receipt

Project # //)//9/7/

Courter: Ted Ex UPS USPS Clien Tracking #: 4170 752487	5	Comn	nercial	Pace Other	(optional Proj∵pualgate/ Proj Namer
Custody Seal on Cooler/Box Present: 📈 yes		no	Seals	intact: 🖾 yes	□ no
Packing Material: Bubble Wrap Bubble	Bage		None	Other	Temp Blank: Yes X No
Thermometer Used 80344042 o 179425	Туре	of Ice	(Wet) Blue None	Samples on ice, cooling process has begun
Cooler Temperature 2.0	Biolo	gical '	Tissue	is Frozen: Yes No	Date and initials of person examining contents:
Temp should be above freezing to 6°C				Comments:	<i>/</i> 0-0
Chain of Custody Present:	YPes	□No	□n/A	1.	
Chain of Custody Filled Out:	YYes	□No	□N⁄A	2.	
Chain of Custody Relinquished:	MYes	□No	□N⁄A	3.	
Sampler Name & Signature on COC:	∐Yes		[]N/A	4.	
Samples Arrived within Hold Time:	Yes	□No	□N⁄A	5.	
Short Hold Time Analysis (<72hr):	☐Yes	KINO	□n/a	6.	
Rush Turn Around Time Requested:	□Yes	MNO	□N⁄A	7.	
Sufficient Volume:	YSYes	□No	□N⁄A	8.	
Correct Containers Used:	Yes	□No	□N⁄A	9.	
-Pace Containers Used:	□Yes	MNO	□N⁄A		
Containers Intact:	MYes	□No	□N⁄A	10.	
Filtered volume received for Dissolved tests	□Yes	□No	DINA	11.	
Sample Labels match COC:	Yes	□No	□N/A	12.	
	ate	1_	<u></u>		
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	₩ N/A	13.	NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	ZÍN/A	Samp #	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	⊠ No		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes	□No	THVA		
Headspace in VOA Vials (>6mm):	□Yes		ANA		
Trip Blank Present:	□Yes	□No	M/N/A	16.	
Trip Blank Custody Seals Present	□Yes	□No ′	AND	·	
Pace Trip Blank Lot # (if purchased):		_/			
Cilent Notification/ Resolution:					Field Data Required? Y / N
Person Contacted:			Date/	īme:	
Comments/ Resolution:					
\					
	 				
		,			
	 				. /
Project Manager Review:		(ill)	·		Date: 12/18/09

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Rhosth Carolina SEIMMES, Inc. F-L213Rev.00, 05Aug2009 1700 Eim Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Client's Sample ID Lab Sample ID Filename Injected By

PSL0567-01:FO09364 10119171001 P100119A_08 **SMT** 959 mL

Total Amount Extracted % Moisture Dry Weight Extracted

NA NA P100119A03

Water Matrix Dilution NA

ICAL ID CCal Filename(s) Method Blank ID

Collected 12/14/2009 17:24 Received 12/18/2009 09:52 P100119A 02 Extracted 01/11/2010 09:00 BLANK-23318 Analyzed 01/19/2010 21:03

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1			2.0	ND	
13C-4-MoCB	3	12.020	2.04	2.0	0.155	9 IR
13C-2,2'-DiCB	3 4	12.415	1.47	2.0	0.122	9 IR 6 R
13C-4,4'-DiCB	15	20.418	1.65	2.0	0.907	45
13C-2,2',6-TrCB	19	16.740	1.10	2.0	0.536	27
13C-3,4,4'-TrCB	37	28.672	1.16	2.0	1.93	96
13C-2,2',6,6'-TeCB	54	20.708	0.82	2.0	0.823	41
13C-3,4,4',5-TeCB	81	35.932	0.83	2.0	1.92	96
13C-3,3',4,4'-TeCB	77	36.519	0.81	2.0	1.86	93
13C-2,2',4,6,6'-PeCB	104	27.263	1.56	2.0	1.14	57
13C-2,3,3',4,4'-PeCB	105	40.107	1.48	2.0	2.01	100
13C-2,3,4,4',5-PeCB	114	39.453	1.52	2.0	2.05	103
13C-2,3',4,4',5-PeCB	118	38.916	1.60	2.0	2.05	102
13C-2,3',4,4',5'-PeCB	123	38.564	1.59	2.0	2.00	100
13C-3,3',4,4',5-PeCB	126	43.276	1.63	2.0	2.09	104
13C-2,2',4,4',6,6'-HxCB	155	33.484	1.24	2.0	1.38	69
13C-HxCB (156/157)	156/157	46.327	1.24	4.0	3.93	98
13C-2,3',4,4',5,5'-HxĆB	167	45.137	1.24	2.0	1.96	98
13C-3,3',4,4',5,5'-HxCB	169	49.614	1.26	2.0	1.97	99
13C-2,2',3,4',5,6,6'-HpCB	188	39.403	1.16	2.0	1.48	74
13C-2,3,3',4,4',5,5'-HpCB	189	52.176	1.04	2.0	1.98	99
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.835	0.81	2.0	1.59	80
13C-2,3,3',4,4',5,5',6-OcCB	205	55.000	0.89	2.0	1.79	90
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.284	0.83	2.0	1.63	81
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.637	0.84	2.0	1.59	80
13CDeCB	209	59.676	0.76	2.0	1.60	80
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.078	1.09	2.0	1.69	84
13C-2,3,3',5,5'-PeCB	111	36.569	1.57	2.0	1.74	87
13C-2,2',3,3',5,5',6-HpCB	178	42.538	0.94	2.0	1.55	77
Recovery Standards						
13C-2,5-DiCB	9	15.242	1.66	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.224	0.89	2.0	ŇA	NA
13C-2,2',4,5,5'-PeCB	101	33.702	1.51	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.069	1.20	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.439	1.00	2.0	ŇA	NA
,- ,- ,- ,- ,- ,- ,- ,- ,-						

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.261
2				ND		0.261
3				ND		0.261
4				ND		0.261
5				ND		0.261
6				ND		0.261
7				ND		0.261
8				ND		0.261
9				ND		0.261
10				ND		0.261
11				ND		1.56
12	12/13			ND		0.521
13	12/13			ND		0.521
14	12/13			ND		0.261
15				ND		0.261
16				ND ND		0.261
17				ND		0.261
18	18/30			ND ND		0.521
19	16/30			ND ND		0.261
20	20/28			ND ND		0.521
21	20/20			ND ND		0.521
	21/33					0.521
22				ND		0.261
23				ND		0.261
24				ND		0.261
25	00/00			ND		0.261
26	26/29			ND		0.521
27	00/00			ND		0.261
28	20/28			ND		0.521
29	26/29			ND		0.521
30	18/30			ND		0.521
31		23.759	1.19	0.280		0.261
32				ND		0.261
33	21/33			ND		0.521
34				ND		0.261
35				ND		0.261
36				ND		0.261
37				ND		0.261
38				ND		0.261
39				ND		0.261
40	40/41/71			ND		1.56
41	40/41/71			ND		1.56
42				ND		0.521
43	43/73			ND		1.04
44	44/47/65			ND		1.56
45	45/51			ND		1.04
46				ND		0.521
47	44/47/65			ND		1.56
48				ND		0.521

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		1.04
50	50/53			ND		1.04
51	45/51			ND		1.04
52		26.258	0.78	0.809		0.521
53	50/53			ND		1.04
54				ND		0.521
55				ND		0.521
56				ND		0.521
57				ND		0.521
58				ND		0.521
59	59/62/75			ND		1.56
60				ND		0.521
61	61/70/74/76			ND		2.09
62	59/62/75			ND		1.56
63	00,02,10			ND		0.521
64				ND		0.521
65	44/47/65			ND		1.56
66				ND		0.521
67				ND		0.521
68				ND		0.521
69	49/69			ND		1.04
70	61/70/74/76			ND		2.09
71	40/41/71			ND		1.56
72	10/ 11// 1			ND		0.521
73	43/73			ND		1.04
74	61/70/74/76			ND		2.09
75	59/62/75			ND		1.56
76	61/70/74/76			ND		2.09
77	0 17 1 07 1 17 1 0			ND		0.521
78				ND		0.521
79				ND		0.521
80				ND		0.521
81				ND		0.521
82				ND		0.521
83				ND		0.521
84				ND		0.521
85	85/116/117			ND		1.56
86	86/87/97/108/119/125			ND		3.13
87	86/87/97/108/119/125			ND		3.13
88	88/91			ND		1.04
89	33/31			ND		0.521
90	90/101/113			ND		1.56
91	88/91			ND		1.04
92	_ 3, 0 .			ND		0.521
93	93/98/100/102			ND		2.09
94	23,00,.00,102			ND		0.521
95		30.600	1.63	0.952		0.521
96				ND		0.521
~ ~				• • •		5.5= .

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.13
98	93/98/100/102			ND		2.09
99				ND		0.521
100	93/98/100/102			ND		2.09
101	90/101/113			ND		1.56
102	93/98/100/102			ND		2.09
103				ND		0.521
104				ND		0.521
105				ND		0.521
106				ND		0.521
107	107/124			ND		1.04
108	86/87/97/108/119/125			ND		3.13
109				ND		0.521
110	110/115	35.815	1.64	1.58		1.04
111				ND		0.521
112				ND		0.521
113	90/101/113			ND		1.56
114				ND		0.521
115	110/115	35.815	1.64	(1.58)		1.04
116	85/116/117			ND		1.56
117	85/116/117			ND		1.56
118	33,113,111	38.933	1.44	1.25		0.521
119	86/87/97/108/119/125			ND		3.13
120	00/01/01/100/110/120			ND		0.521
121				ND		0.521
122				ND		0.521
123				ND		0.521
124	107/124			ND		1.04
125	86/87/97/108/119/125			ND		3.13
126	00/01/01/100/110/120			ND		0.521
127				ND		0.521
128	128/166			ND		1.04
129	129/138/163	42.119	1.41	1.63		1.56
130	120/100/100			ND		0.521
131				ND		0.521
132		39.017	1.15	0.561		0.521
133				ND		0.521
134	134/143			ND		1.04
135	135/151			ND		1.04
136	133/131			ND		0.521
137				ND		0.521
138	129/138/163	42.119	1.41	(1.63)		1.56
139	139/140			(1.03) ND		1.04
140	139/140			ND		1.04
141	100/170			ND ND		0.521
141				ND ND		0.521
143	134/143			ND ND		1.04
144	10-7/170			ND		0.521

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

UPAC Co-elutions RT Ratio ng/L ng/L ng/L ng/L 145					Concentration	EMPC	EML
146	IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
146	145				ND		0.521
147							
148		147/149	37.726	1.43			
149		,					
150		147/149	37.726	1.43			
151		,			ND		
152		135/151					
153		100/101					
154		153/168					
156		100/100		-			
156	155				ND		
157	156	156/157					
158							
159	157	130/137					
160							0.521
161 ND 0.521 162 ND 0.521 163 129/138/163 42.119 1.41 (1.63) 1.56 164 ND 0.521 165 ND 0.521 166 128/166 ND 0.521 167 ND 0.521 168 153/168 40.845 1.10 (1.18) 0.521 169 ND 0.521 ND 0.521 170 ND 0.521 ND 0.521 171 171/173 ND 0.521 ND 0.521 ND							0.521
162							0.521
163 129/138/163 42.119 1.41 (1.63) 1.56 164 ND 0.521 165 ND 0.521 166 128/166 ND 0.521 167 ND 0.521 168 153/168 40.845 1.10 (1.18) 1.04 169 ND 0.521 170 ND 0.521 170 ND 0.521 171 171/173 ND 0.521 173 171/173 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.521</td>							0.521
164 ND 0.521 166 128/166 ND 0.521 167 ND 0.521 168 153/168 40.845 1.10 (1.18) 1.04 169 ND 0.521 170 ND 0.521 170 ND 0.521 171 171/173 ND 0.521 173 171/173 ND 1.04 174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 177 ND 0.521 179		400/400/400					
165 ND 0.521 166 128/166 ND 1.04 167 ND 0.521 168 153/168 40.845 1.10 (1.18) 1.04 169 ND 0.521 170 ND 0.521 170 ND 0.521 171 171/173 ND 0.521 173 171/173 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 179 ND 0.521 180 <t< td=""><td></td><td>129/138/163</td><td></td><td></td><td>(1.63)</td><td></td><td></td></t<>		129/138/163			(1.63)		
166 128/166 ND 1.04 167 ND 0.521 168 153/168 40.845 1.10 (1.18) 1.04 169 ND 0.521 170 ND 0.521 171 171/173 ND 0.521 173 171/173 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 179 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 183 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.521</td></td<>							0.521
167	165	100/100					
168 153/168 40.845 1.10 (1.18) 1.04 169 ND 0.521 170 ND 0.521 171 171/173 ND 1.04 172 ND 0.521 173 171/173 ND 0.521 174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 182 ND 0.521 183 183/185 <td< td=""><td>166</td><td>128/166</td><td></td><td></td><td></td><td></td><td></td></td<>	166	128/166					
169	167	/					
170 ND 0.521 171 171/173 ND 1.04 172 ND 0.521 173 171/173 ND 0.521 174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 <td></td> <td>153/168</td> <td></td> <td></td> <td></td> <td></td> <td>1.04</td>		153/168					1.04
171 171/173 ND 1.04 172 ND 0.521 173 171/173 ND 0.521 174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.521</td>							0.521
172							
173 171/173 ND 1.04 174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND		171/173					
174 ND 0.521 175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 180 180/193 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 184 ND 0.521 185 183/185 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND							
175 ND 0.521 176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 1.04 184 ND 0.521 185 183/185 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND		171/173					
176 ND 0.521 177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521							
177 ND 0.521 178 ND 0.521 179 ND 0.521 180 180/193 ND 0.521 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 184 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521							
178 ND 0.521 179 ND 0.521 180 180/193 ND 1.04 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	176				ND		
179 ND 0.521 180 180/193 ND 1.04 181 ND 0.521 182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521							0.521
180 180/193 ND 1.04 181 ND 0.521 182 ND 0.521 183 183/185 ND 1.04 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	178						0.521
181 ND 0.521 182 ND 0.521 183 183/185 ND 1.04 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521					ND		
182 ND 0.521 183 183/185 ND 0.521 185 183/185 ND 0.521 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521		180/193					
183 183/185 ND 1.04 184 ND 0.521 185 183/185 ND 1.04 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	181				ND		0.521
184 ND 0.521 185 183/185 ND 1.04 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	182						0.521
184 ND 0.521 185 183/185 ND 1.04 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	183	183/185			ND		1.04
185 183/185 ND 1.04 186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	184						
186 ND 0.521 187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521		183/185					
187 ND 0.521 188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521							
188 ND 0.521 189 ND 0.521 190 ND 0.521 191 ND 0.521	187						0.521
189 ND 0.521 190 ND 0.521 191 ND 0.521							0.521
190 ND 0.521 191 ND 0.521	189						
191 ND 0.521	190				ND		0.521
							0.521
	192				ND		0.521

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193			ND		1.04
194				ND		0.782
195				ND		0.782
196				ND		0.782
197	197/200			ND		1.56
198	198/199			ND		1.56
199	198/199			ND		1.56
200	197/200			ND		1.56
201				ND		0.782
202				ND		0.782
203				ND		0.782
204				ND		0.782
205				ND		0.782
206				ND		0.782
207				ND		0.782
208				ND		0.782
209				ND		0.782

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSL0567-01;FO09364 10119171001 P100119A_08

Congener Group	Concentra ng/L	ation
Total Monochloro Bip	henvls ND)
Total Dichloro Biphen	·	
Total Trichloro Bipher	nyls 0.280	
Total Tetrachloro Bipl	henyls 0.809	
Total Pentachloro Bip	ohenyls 3.78	3
Total Hexachloro Bipl	henyls 4.48	3
Total Heptachloro Bip	phenyls ND	
Total Octachloro Biph	nenyls ND	
Total Nonachloro Bip	henyls ND	
Decachloro Biphenyls	s ND	
Total PCBs	9.35	5

ND = Not Detected

Water

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Matrix

Lab Sample ID BLANK-23318
Filename P100119A_07
Injected By SMT

Total Amount Extracted 897 mL Extracted 01/11/2010 09:00 ICAL ID P100119A03 Analyzed 01/19/2010 19:58

CCal Filename(s) P100119A_02 Dilution NA

Coai Filename(s)	FIUUTIBA	_02		Dilution	INA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4,4'-DiCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	8.701 12.032 12.391 20.442 16.764 28.672 20.758 35.949 36.535 27.263 40.123 39.470 38.933 38.598 43.276 33.484 46.294 45.137 49.613 39.419 52.176 44.868 55.042 57.284 51.615 59.590	0.75 1.40 2.36 1.73 1.10 1.05 0.77 0.75 0.78 1.75 1.67 1.70 1.64 1.38 1.25 1.34 1.27 1.02 1.09 0.95 0.93 0.66 0.82 0.71	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0303 0.0866 0.0494 0.668 0.273 1.60 0.574 1.71 1.73 0.901 1.88 1.83 1.79 1.78 1.87 1.24 4.14 2.04 1.98 1.44 1.92 1.64 1.71 1.59 1.58 1.48	3 IR 6 IR 3 IR 33 IR 80 29 86 87 45 94 92 90 89 94 62 103 102 99 72 96 82 85 80 79 74
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.095 36.569 42.538	1.10 1.62 1.07	2.0 2.0 2.0	1.54 1.59 1.81	77 79 90
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.242 26.241 33.719 42.085 54.417	1.67 0.87 1.59 1.30 0.96	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-23318 P100119A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.279
2				ND		0.279
3				ND		0.279
4				ND		0.279
4 5 6 7				ND		0.279
6				ND		0.279
7				ND		0.279
8				ND		0.279
9				ND		0.279
10				ND		0.279
11				ND		1.67
12	12/13			ND		0.557
13	12/13			ND		0.557
14	12/13			ND		0.279
15				ND		0.279
16				ND		0.279
17				ND		0.279
18	18/30			ND ND		0.557
19	10/30			ND ND		0.337
20	20/28			ND ND		0.557
	21/33			ND ND		
21 22	21/33			ND ND		0.557 0.279
22				ND ND		0.279
23				ND ND		0.279
24				ND		0.279
25	00/00			ND		0.279
26	26/29			ND		0.557
27	00/00			ND		0.279
28	20/28			ND		0.557
29	26/29			ND		0.557
30	18/30			ND		0.557
31				ND		0.279
32				ND		0.279
33	21/33			ND		0.557
34 35				ND		0.279
35				ND		0.279
36				ND		0.279
37				ND		0.279
38				ND		0.279
39				ND		0.279
40	40/41/71			ND		1.67
41	40/41/71			ND		1.67
42				ND		0.557
43	43/73			ND		1.11
44	44/47/65			ND		1.67
45	45/51			ND		1.11

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-23318 P100119A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.557
47	44/47/65			ND ND		1.67
48	44/47/05			ND		0.557
49	49/69			ND ND		1.11
50	50/53			ND		1.11
51	45/51			ND		1.11
52	10/01			ND		0.557
53	50/53			ND		1.11
54	00/00			ND		0.557
55				ND		0.557
56				ND		0.557
57				ND		0.557
58				ND		0.557
59	59/62/75			ND		1.67
60	00,02,10			ND		0.557
61	61/70/74/76			ND		2.23
62	59/62/75			ND		1.67
63	00,02,10			ND		0.557
64				ND		0.557
65	44/47/65			ND		1.67
66				ND		0.557
67				ND		0.557
68				ND		0.557
69	49/69			ND		1.11
70	61/70/74/76			ND		2.23
71	40/41/71			ND		1.67
72				ND		0.557
73	43/73			ND		1.11
74	61/70/74/76			ND		2.23
75	59/62/75			ND		1.67
76	61/70/74/76			ND		2.23
77				ND		0.557
78				ND		0.557
79				ND		0.557
80				ND		0.557
81				ND		0.557
82				ND		0.557
83				ND		0.557
84				ND		0.557
85	85/116/117			ND		1.67
86	86/87/97/108/119/125			ND		3.34
87	86/87/97/108/119/125			ND		3.34
88	88/91			ND		1.11
89				ND		0.557
90	90/101/113			ND		1.67

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-23318 P100119A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		1.11
92	00/00/400/400			ND		0.557
93	93/98/100/102			ND		2.23
94				ND		0.557
95				ND		0.557
96	00/07/07/400/440/405			ND		0.557
97	86/87/97/108/119/125			ND		3.34
98	93/98/100/102			ND		2.23
99				ND		0.557
100	93/98/100/102			ND		2.23
101	90/101/113			ND		1.67
102	93/98/100/102			ND		2.23
103				ND		0.557
104				ND		0.557
105				ND		0.557
106				ND		0.557
107	107/124			ND		1.11
108	86/87/97/108/119/125			ND		3.34
109				ND		0.557
110	110/115			ND		1.11
111				ND		0.557
112				ND		0.557
113	90/101/113			ND		1.67
114				ND		0.557
115	110/115			ND		1.11
116	85/116/117			ND		1.67
117	85/116/117			ND		1.67
118				ND		0.557
119	86/87/97/108/119/125			ND		3.34
120	00,01,01,100,110,120			ND		0.557
121				ND		0.557
122				ND		0.557
123				ND		0.557
124	107/124			ND		1.11
125	86/87/97/108/119/125			ND		3.34
126	00/01/01/100/110/120			ND		0.557
127				ND		0.557
128	128/166			ND ND		1.11
129	129/138/163			ND ND		1.67
130	125/100/105			ND ND		0.557
131				ND ND		0.557
132				ND ND		0.557
132				ND ND		0.557
134	134/143			ND ND		0.55 <i>1</i> 1.11
134						
133	135/151			ND		1.11

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-23318 P100119A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.557
137				ND		0.557
138	129/138/163			ND		1.67
139	139/140			ND		1.11
140	139/140			ND		1.11
141	100/110			ND		0.557
142				ND		0.557
143	134/143			ND		1.11
144				ND		0.557
145				ND		0.557
146				ND		0.557
147	147/149			ND		1.11
148	,			ND		0.557
149	147/149			ND		1.11
150	,			ND		0.557
151	135/151			ND		1.11
152				ND		0.557
153	153/168			ND		1.11
154				ND		0.557
155				ND		0.557
156	156/157			ND		1.11
157	156/157			ND		1.11
158				ND		0.557
159				ND		0.557
160				ND		0.557
161				ND		0.557
162				ND		0.557
163	129/138/163			ND		1.67
164				ND		0.557
165				ND		0.557
166	128/166			ND		1.11
167				ND		0.557
168	153/168			ND		1.11
169				ND		0.557
170				ND		0.557
171	171/173			ND		1.11
172				ND		0.557
173	171/173			ND		1.11
174	· -			ND		0.557
175				ND		0.557
176				ND		0.557
177				ND		0.557
178				ND		0.557
179				ND		0.557
180	180/193			ND		1.11

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-23318 P100119A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.557
182				ND		0.557
183	183/185			ND		1.11
184				ND		0.557
185	183/185			ND		1.11
186				ND		0.557
187				ND		0.557
188				ND		0.557
189				ND		0.557
190				ND		0.557
191				ND		0.557
192				ND		0.557
193	180/193			ND		1.11
194				ND		0.836
195				ND		0.836
196				ND		0.836
197	197/200			ND		1.67
198	198/199			ND		1.67
199	198/199			ND		1.67
200	197/200			ND		1.67
201				ND		0.836
202				ND		0.836
203				ND		0.836
204				ND		0.836
205				ND		0.836
206				ND		0.836
207				ND		0.836
208				ND		0.836
209				ND		0.836

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKTL BLANK-23318 P100119A_07

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-23319 P100126A_04 893 mL

P100126A03 P100126A_02 BLANK-23318 Matrix Water Dilution NA

Extracted 01/11/2010 09:00 Analyzed 01/26/2010 11:50

Injected By SMT

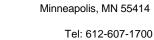
	Native Analytes				Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recover	y	Spiked (ng)	Found (ng)	% Recove	ery
1		NC	NC		2.0	0.000	0	R
3	1.0	0.784	78		2.0	0.0577	4	IR
4	1.0	0.669	89	1	2.0	0.0540	3	R
15	1.0	0.985	99		2.0	0.484	24	R
19	1.0	0.857	86		2.0	0.216	11	R
37	1.0	1.02	102		2.0	1.31	65	
54	1.0	1.03	103		2.0	0.407	20	R
81	1.0	1.02	102		2.0	1.61	81	
77	1.0	1.03	103		2.0	1.62	81	
104	1.0	0.859	95	I	2.0	0.923	46	
105	1.0	0.944	94		2.0	1.87	94	
114	1.0	1.05	105		2.0	1.83	91	
118	1.0	1.07	107		2.0	1.78	89	
123	1.0	1.05	105		2.0	1.77	89	
126	1.0	1.02	102		2.0	1.81	91	
155	1.0	0.975	97		2.0	1.35	68	
156/157	2.0	2.00	100		4.0	3.89	97	
167	1.0	1.01	101		2.0	1.96	98	
169	1.0	1.04	104		2.0	1.81	90	
188	1.0	1.01	101		2.0	1.61	81	
189	1.0	1.04	104		2.0	1.93	96	
202	1.0	0.994	99		2.0	1.79	90	
205	1.0	1.10	110		2.0	1.74	87	
206	1.0	1.03	103		2.0	1.77	89	
208	1.0	0.984	98		2.0	1.81	91	
209	1.0	1.03	103		2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable


NC = Not Calculated

* = See Discussion

ng = Nanograms

I = Interference

Fax: 612-607-6444

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCSD-23320 P100119A_05

865 mL P100119A03 P100119A_02 BLANK-23318 Matrix Water Dilution NA

Extracted 01/11/2010 09:00 Analyzed 01/19/2010 17:48

Injected By SMT

	Native Analytes			Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1		NC	NC	2.0	0.00872	1	IR
3	1.0	0.794	79	2.0	0.0478	3	IR
4	1.0	0.440	86 I	2.0	0.0335	2	IR
15	1.0	1.07	107	2.0	0.502	25	R
19	1.0	1.11	111	2.0	0.180	9	R
37	1.0	0.986	99	2.0	1.46	73	
54	1.0	1.20	120	2.0	0.426	21	R
81	1.0	1.03	103	2.0	1.80	90	
77	1.0	1.10	110	2.0	1.76	88	
104	1.0	1.000	100	2.0	0.841	42	
105	1.0	1.09	109	2.0	1.87	94	
114	1.0	1.04	104	2.0	1.85	93	
118	1.0	1.07	107	2.0	1.85	92	
123	1.0	1.04	104	2.0	1.87	94	
126	1.0	1.03	103	2.0	1.91	96	
155	1.0	0.942	94	2.0	1.29	65	
156/157	2.0	2.08	104	4.0	4.25	106	
167	1.0	1.01	101	2.0	2.16	108	
169	1.0	1.03	103	2.0	2.12	106	
188	1.0	1.13	113	2.0	1.42	71	
189	1.0	1.07	107	2.0	2.09	105	
202	1.0	1.13	113	2.0	1.58	79	
205	1.0	1.08	108	2.0	1.85	93	
206	1.0	1.01	101	2.0	1.66	83	
208	1.0	1.11	111	2.0	1.67	84	
209	1.0	0.954	95	2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America-Portland

 Spike 1 ID
 LCS-23319
 Spike 2 ID
 LCSD-23320

 Spike 1 Filename
 P100126A_04
 Spike 2 Filename
 P100119A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	-1000	0		
4-MoCB	3	78	79	1.3	
2,2'-DiCB	4	89	86	3.4	
4,4'-DiCB	15	99	107	7.8	
2,2',6-TrCB	19	86	111	25.4	
3,4,4'-TrCB	37	102	99	3.0	
2,2',6,6'-TeCB	54	103	120	15.2	
3,3',4,4'-TeCB	77	103	110	6.6	
3,4,4',5-TeCB	81	102	103	1.0	
2,2',4,6,6'-PeCB	104	95	100	5.1	
2,3,3',4,4'-PeCB	105	94	109	14.8	
2,3,4,4',5-PeCB	114	105	104	1.0	
2,3',4,4',5-PeCB	118	107	107	0.0	
2,3',4,4',5'-PeCB	123	105	104	1.0	
3,3',4,4',5-PeCB	126	102	103	1.0	
2,2',4,4',6,6'-HxCB	155	97	94	3.1	
(156/157)	156/157	100	104	3.9	
2,3',4,4',5,5'-HxCB	167	101	101	0.0	
3,3',4,4',5,5'-HxCB	169	104	103	1.0	
2,2',3,4',5,6,6'-HpCB	188	101	113	11.2	
2,3,3',4,4',5,5'-HpCB	189	104	107	2.8	
2,2',3,3',5,5',6,6'-OcCB	202	99	113	13.2	
2,3,3',4,4',5,5',6-OcCB	205	110	108	1.8	
2,2',3,3',4,4',5,5',6-NoCB	206	103	101	2.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	98	111	12.4	
Decachlorobiphenyl	209	103	95	8.1	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

January 5, 2010

Analytical Report for Service Request No: K0912234

Jennifer Shackelford Portland, City of 1120 SW Fifth Avenue # 1000 Portland, OR 97204

RE: NPDES Stormwater MON

Dear Jennifer:

Enclosed are the results of the samples submitted to our laboratory on December 17, 2009. For your reference, these analyses have been assigned our service request number K0912234.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/ln

Page 1 of <u>23</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL or LOQ but greater than or equal to the MDL or LOD. The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition:
- U Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for dilution.
- j The MRL/MDL or LOQ/LOD has been elevated due to a matrix interference.
- X See case narrative.
- See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- I The result is an estimated concentration that is less than the MRL or LOQ but greater than or equal to the MDL or LOD.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
 - The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition:
- U Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for any dilution or
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD has been elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
 - The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOI:-QSM 4.1 definition:
- U Analyte was not detected and is reported as less than the LOD or as defined by the project. The LOD has been adjusted for any dilution or
- i The MRL/MDL or LOQ/LOD has been elevated due to a chromatographic interference.
- X See case narrative
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Project:

Sample Matrix:

NPDES Stormwater MON

Water

Service Request No.:

K0912234 12/17/09

Date Received:

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix Spike (MS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Two water samples were received for analysis at Columbia Analytical Services on 12/17/09. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A - ULL

Second Source Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Initial Calibration Verification (ICV) criteria are met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Methoxychlor in CAL 8946. The ICV results were reported from the acceptable column. The data quality was not affected. No further corrective action was necessary.

Calibration Verification Exceptions:

The primary evaluation criterion was exceeded for Methoxychlor in Continuing Calibration Verification (CCV) 1229F004. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standard. The standard met the alternative evaluation criteria.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for Toxaphene in the replicate Laboratory Control Sample (LCS) analyses (KWG0911902-1 and KWG0911902-2) was outside control criteria. Note that the individual recoveries of the analyte were within control limits. The data was flagged to indicate the problem.

Matrix Spike Recovery Exceptions:

The matrix spike recovery of beta-BHC for Batch QC was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential high bias in this matrix. No further corrective action was appropriate.

The control criteria for the matrix spike recovery of 4,4'-DDE and 4,4'-DDD for Batch QC was not applicable. The chromatogram indicated non-target matrix background components contributed to the reported matrix spike concentrations. Thus, the reported recoveries contained a high bias. Based on the magnitude of background contribution, the interference appeared to be minimal.

	T	01/05/10
Approved by		Date

Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for 4,4'-DDT was exceeded in sample F0096364; Ensosulfan Sulfate and Heptachlor in sample F0096366. The higher of the two values was reported because no evidence of a matrix interference was observed.

Elevated Detection Limits:

The MDL is elevated for a few compounds in Method Blank KWG0911902-9. The chromatogram indicated the presence of non-target background components, which were apparently introduced as laboratory artifacts. The contamination prevented adequate resolution of the target compounds at the MDL levels. Note the level of background was relatively low compared to the MDL, so the affect on the results was minimal. The results are flagged to indicate the problem.

The detection limit was elevated for all analytes in both samples. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. The extract was highly colored, which indicated the need to perform a dilution prior to injection into the instrument. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution. A semiquantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution. The results were flagged to indicate the matrix interference.

The detection limit was further elevated for several analytes in both samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for 3,3'-Dichlorobenzidine in the replicate Laboratory Control Sample (LCS) analyses (KWG0911875-1 and KWG0911875-2) was outside control criteria. All spike recoveries in the LCS/DLCS were within acceptance limits, indicating the analytical batch was in control. The analyte in question was not detected in the associated field sample. The data quality was not significantly affected. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by	De	Date	
approved by		Datt	

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Date Collected: 12/14/2009 **Date Received:** 12/17/2009

Organochlorine Pesticides

Sample Name:

F0096364

Lab Code:

K0912234-001

Extraction Method:

EPA 3535

Units: ng/L Basis: NA

Level: Low

Analysis	Method:	8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	3.7 D	2.7	1.2	5	12/20/09	12/29/09	KWG0911902	
beta-BHC	ND U	2.7	2.2	5	12/20/09	12/29/09	KWG0911902	
gamma-BHC (Lindane)	ND U	2.7	2.5	5	12/20/09	12/29/09	KWG0911902	
delta-BHC	ND Ui	2.7	0.97	5	12/20/09	12/29/09	KWG0911902	
Heptachlor	ND Ui	3.8	3.8	5	12/20/09	12/29/09	KWG0911902	
Aldrin	ND U	2.7	0.58	5	12/20/09	12/29/09	KWG0911902	
Heptachlor Epoxide	ND U	2.7	1.2	5	12/20/09	12/29/09	KWG0911902	
gamma-Chlordane†	ND U	2.7	1.7	5	12/20/09	12/29/09	KWG0911902	
Endosulfan I	ND U	2.7	1.4	5	12/20/09	12/29/09	KWG0911902	
alpha-Chlordane	ND U	2.7	1.5	5	12/20/09	12/29/09	KWG0911902	
Dieldrin	ND Ui	32	32	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDE	ND U	2.7	1.0	5	12/20/09	12/29/09	KWG0911902	
Endrin	ND U	2.7	2.6	5	12/20/09	12/29/09	KWG0911902	
Endosulfan II	ND Ui	3.3	3.3	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDD	ND Ui	4.2	4.2	5	12/20/09	12/29/09	KWG0911902	
Endrin Aldehyde	ND Ui	3.1	3.1	5	12/20/09	12/29/09	KWG0911902	
Endosulfan Sulfate	ND Ui	8.5	8.5	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDT	84 PD	2.7	0.90	5	12/20/09	12/29/09	KWG0911902	
Endrin Ketone	ND U	2.7	1.7	5	12/20/09	12/29/09	KWG0911902	AND
Methoxychlor	ND Ui	2.7	1.8	5	12/20/09	12/29/09	KWG0911902	
Toxaphene	ND Ui	510	510	5	12/20/09	12/29/09	KWG0911902	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	59	20-102	12/29/09	Acceptable	
Decachlorobiphenyl	77	35-128	12/29/09	Acceptable	

· Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Printed: 12/31/2009 14:54:13 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic 7

SuperSet Reference: RR109541 1 of 1

Page

Merged

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Collected:** 12/15/2009

Date Received: 12/17/2009

Organochlorine Pesticides

Sample Name:

F0096366

Lab Code:

K0912234-002

Extraction Method:

EPA 3535

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND Ui	2.5	2.1	5	12/20/09	12/29/09	KWG0911902	
beta-BHC	ND U	2.5	2.1	5	12/20/09	12/29/09	KWG0911902	
gamma-BHC (Lindane)	ND U	2.5	2.4	5	12/20/09	12/29/09	KWG0911902	
delta-BHC	ND U	2.5	0.70	5	12/20/09	12/29/09	KWG0911902	
Heptachlor	4.2 PD	2.5	0.90	5	12/20/09	12/29/09	KWG0911902	
Aldrin	ND Ui	2.5	2.5	5	12/20/09	12/29/09	KWG0911902	
Heptachlor Epoxide	ND Ui	2.5	2.5	5	12/20/09	12/29/09	KWG0911902	
gamma-Chlordane†	ND U	2.5	1.6	5	12/20/09	12/29/09	KWG0911902	
Endosulfan I	ND U	2.5	1.3	5	12/20/09	12/29/09	KWG0911902	
alpha-Chlordane	ND U	2.5	1.4	5	12/20/09	12/29/09	KWG0911902	
Dieldrin	ND Ui	30	30	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDE	ND Ui	5.4	5.4	5	12/20/09	12/29/09	KWG0911902	
Endrin	ND Ui	4.5	4.5	5	12/20/09	12/29/09	KWG0911902	
Endosulfan II	ND Ui	2.5	2.5	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDD	ND Ui	3.1	3.1	5	12/20/09	12/29/09	KWG0911902	
Endrin Aldehyde	ND Ui	5.4	5.4	5	12/20/09	12/29/09	KWG0911902	
Endosulfan Sulfate	23 PD	2.5	1.4	5	12/20/09	12/29/09	KWG0911902	
4,4'-DDT	ND Ui	34	34	5	12/20/09	12/29/09	KWG0911902	
Endrin Ketone	ND U	2.5	1.6	5	12/20/09	12/29/09	KWG0911902	
Methoxychlor	ND Ui	2.5	2.5	5	12/20/09	12/29/09	KWG0911902	
Toxaphene	ND Ui	270	270	5	12/20/09	12/29/09	KWG0911902	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	80	20-102	12/29/09	Acceptable	
Decachlorobiphenyl	68	35-128	12/29/09	Acceptable	

Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/31/2009 14:54:17 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 8

RR109541

Page 1 of 1

SuperSet Reference:

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name: Lab Code:

Method Blank KWG0911902-9

Extraction Method:

EPA 3535

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.50	0.21	1	12/20/09	12/28/09	KWG0911902	
beta-BHC	ND U	0.50	0.41	1	12/20/09	12/28/09	KWG0911902	
gamma-BHC (Lindane)	ND U	0.50	0.47	1	12/20/09	12/28/09	KWG0911902	
delta-BHC	ND U	0.50	0.14	1	12/20/09	12/28/09	KWG0911902	
Heptachlor	ND U	0.50	0.18	1	12/20/09	12/28/09	KWG0911902	
Aldrin	ND U	0.50	0.11	1	12/20/09	12/28/09	KWG0911902	
Heptachlor Epoxide	ND U	0.50	0.21	1	12/20/09	12/28/09	KWG0911902	
gamma-Chlordane†	ND U	0.50	0.31	1	12/20/09	12/28/09	KWG0911902	
Endosulfan I	ND U	0.50	0.25	1	12/20/09	12/28/09	KWG0911902	
alpha-Chlordane	ND U	0.50	0.27	1	12/20/09	12/28/09	KWG0911902	
Dieldrin	ND U	0.50	0.37	1	12/20/09	12/28/09	KWG0911902	
4,4'-DDE	ND Ui	0.50	0.50	1	12/20/09	12/28/09	KWG0911902	
Endrin	ND U	0.50	0.49	1	12/20/09	12/28/09	KWG0911902	
Endosulfan II	ND U	0.50	0.35	1	12/20/09	12/28/09	KWG0911902	
4,4'-DDD	ND Ui	0.50	0.50	1	12/20/09	12/28/09	KWG0911902	
Endrin Aldehyde	ND U	0.50	0.21	1	12/20/09	12/28/09	KWG0911902	
Endosulfan Sulfate	ND U	0.50	0.28	1	12/20/09	12/28/09	KWG0911902	
4,4'-DDT	ND U	0.50	0.17	1	12/20/09	12/28/09	KWG0911902	
Endrin Ketone	ND U	0.50	0.32	1	12/20/09	12/28/09	KWG0911902	
Methoxychlor	ND U	0.50	0.28	1	12/20/09	12/28/09	KWG0911902	
Toxaphene	ND Ui	51	51	1	12/20/09	12/28/09	KWG0911902	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	64	20-102	12/28/09	Acceptable	
Decachlorobiphenyl	78	35-128	12/28/09	Acceptable	

Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/31/2009 14:54:21

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 9

Page RR109541

1 of 1

SuperSet Reference:

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method:

EPA 3535

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
F0096364	K0912234-001	59 D	77 D
F0096366	K0912234-002	80 D	68 D
Method Blank	KWG0911902-9	64	78
Batch QC	K0912227-001	70	83
Batch QCMS	KWG0911902-10	60	78
Lab Control Sample	KWG0911902-1	63	80
Duplicate Lab Control Sample	KWG0911902-2	55	78

Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	20-102
Sur2 =	Decachlorobiphenyl	35-128

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/31/2009 14:54:26 u:\Stealth\Crystal.rpt\Form2.rpt

Page

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Extracted:** 12/20/2009

Date Analyzed: 12/29/2009

Matrix Spike Summary Organochlorine Pesticides

Sample Name:

Batch QC

Lab Code:

K0912227-001

Extraction Method:

EPA 3535

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG0911902

Batch QCMS KWG0911902-10

	Sample	Matrix Spike			%Rec
Analyte Name	Result	Result	Expected	%Rec	Limits
alpha-BHC	ND	9.84	10.0	98	31-123
beta-BHC	ND	13.1	10.0	131 *	31-118
gamma-BHC (Lindane)	ND	9.74	10.0	97	31-123
delta-BHC	ND	10.2	10.0	102	40-129
Heptachlor	ND	9.56	10.0	96	23-124
Aldrin	ND	8.35	10.0	84	18-111
Heptachlor Epoxide	ND	9.01	10.0	90	28-122
gamma-Chlordane	ND	9.51	10.0	95	35-119
Endosulfan I	ND	9.40	10.0	94	17-118
alpha-Chlordane	ND	9.38	10.0	94	34-120
Dieldrin	0.40	9.78	10.0	94	32-121
4,4'-DDE	ND	9.83	10.0	98 #	24-129
Endrin	0.62	10.9	10.0	103	34-133
Endosulfan II	ND	9.24	10.0	92	19-122
4,4'-DDD	ND	10.3	10.0	103 #	29-125
Endrin Aldehyde	0.79	9.39	10.0	86	10-108
Endosulfan Sulfate	ND	9.28	10.0	93	30-120
4,4'-DDT	ND	10.9	10.0	109	28-139
Endrin Ketone	ND	9.16	10.0	92	34-113
Methoxychlor	ND	9.93	10.0	99	30-137

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/31/2009 14:54:30

Form 3A - Organic 11

RR109541

SuperSet Reference:

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Extracted:** 12/20/2009 **Date Analyzed:** 12/28/2009 -

12/29/2009

Lab Control Spike/Duplicate Lab Control Spike Summary **Organochlorine Pesticides**

Extraction Method: EPA 3535

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG0911902

Lab Control Sample KWG0911902-1

Duplicate Lab Control Sample KWG0911902-2

		Lab Control Spike			7G0911902-2 • Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	10.4	10.0	104	9.91	10.0	99	36-122	5	30
beta-BHC	9.40	10.0	94	9.35	10.0	94	42-125	1	30
gamma-BHC (Lindane)	10.2	10.0	102	10.2	10.0	102	44-117	0	30
delta-BHC	10.2	10.0	102	10.2	10.0	102	48-123	0	30
Heptachlor	10.2	10.0	102	9.68	10.0	97	40-115	5	30
Aldrin	9.30	10.0	93	8.51	10.0	85	10-102	9	30
Heptachlor Epoxide	8.98	10.0	90	8.73	10.0	87	49-109	3	30
gamma-Chlordane	9.84	10.0	98	9.46	10.0	95	47-113	4	30
Endosulfan I	8.99	10.0	90	9.20	10.0	92	35-115	2	30
alpha-Chlordane	9.83	10.0	98	9.60	10.0	96	45-115	2	30
Dieldrin	10.1	10.0	101	9.66	10.0	97	50-115	4	30
4,4'-DDE	9.54	10.0	95	9.61	10.0	96	41-116	1	30
Endrin	11.5	10.0	115	11.2	10.0	112	48-126	2	30
Endosulfan II	9.99	10.0	100	9.91	10.0	99	28-128	1	30
4,4'-DDD	10.2	10.0	102	9.87	10.0	99	33-132	3	30
Endrin Aldehyde	9.28	10.0	93	9.30	10.0	93	27-104	0	30
Endosulfan Sulfate	9.64	10.0	96	9.34	10.0	93	38-118	3	30
4,4'-DDT	10.7	10.0	107	10.5	10.0	105	42-143	2	30
Endrin Ketone	9.52	10.0	95	9.31	10.0	93	30-124	2	30
Methoxychlor	10.5	10.0	105	10.4	10.0	104	43-143	1	30
Toxaphene	161	200	81	241	200	121	36-137	40 *	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/31/2009 14:54:33 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Page

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Collected: 12/14/2009 Date Received:** 12/17/2009

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0096364

Lab Code:

K0912234-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND		0.20	0.035		12/18/09	12/28/09	KWG0911875	11010
Phenol	0.52	U	0.20	0.063	1 1	12/18/09	12/28/09	KWG0911875	
2-Chlorophenol	ND	Ħ	0.50	0.003	1	12/18/09	12/28/09	KWG0911875	
1,3-Dichlorobenzene	ND		0.20	0.021	1	12/18/09	12/28/09	KWG0911875	
1,4-Dichlorobenzene	ND ND		0.20	0.021	1	12/18/09	12/28/09	KWG0911875	
1,2-Dichlorobenzene	ND		0.20	0.022	1	12/18/09	12/28/09	KWG0911875	
Benzyl Alcohol	1.2		0.50	0.073	1	12/18/09	12/28/09	KWG0911875	
Bis(2-chloroisopropyl) Ether	ND	U	0.30	0.073	1	12/18/09	12/28/09	KWG0911875	
2-Methylphenol	0.29		0.50	0.020	1	12/18/09	12/28/09	KWG0911875	
Hexachloroethane	ND		0.20	0.024		12/18/09	12/28/09	KWG0911875	
N-Nitrosodi-n-propylamine	ND ND		0.20	0.024	1 1	12/18/09	12/28/09	KWG0911875	
4-Methylphenol†	0.26		0.50	0.037	1	12/18/09	12/28/09	KWG0911875	
Nitrobenzene								KWG0911875	
Isophorone	ND ND		0.20 0.20	0.028 0.016	1	12/18/09 12/18/09	12/28/09 12/28/09	KWG0911875	
2-Nitrophenol	0.073		0.20	0.016	1 1	12/18/09	12/28/09	KWG0911875	
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	ND		4.0	2.2	1	12/18/09	12/28/09	KWG0911875 KWG0911875	
2,4-Dichlorophenol	ND ND		0.20 0.50	0.024 0.047	1	12/18/09 12/18/09	12/28/09 12/28/09	KWG0911875	
					1				
Benzoic Acid	2.1		5.0	1.1	1	12/18/09	12/28/09	KWG0911875	
1,2,4-Trichlorobenzene	ND		0.20	0.016	1	12/18/09	12/28/09	KWG0911875	
Naphthalene	0.041		0.20	0.022	1	12/18/09	12/28/09	KWG0911875	
4-Chloroaniline	ND		0.20	0.025	1	12/18/09	12/28/09	KWG0911875	
Hexachlorobutadiene	ND		0.20	0.027	1	12/18/09	12/28/09	KWG0911875	
4-Chloro-3-methylphenol	ND		0.50	0.037	1	12/18/09	12/28/09	KWG0911875	
2-Methylnaphthalene	ND		0.20	0.026	1	12/18/09	12/28/09	KWG0911875	
Hexachlorocyclopentadiene	ND		0.99	0.19	1	12/18/09	12/28/09	KWG0911875	
2,4,6-Trichlorophenol	ND		0.50	0.058	1	12/18/09	12/28/09	KWG0911875	
2,4,5-Trichlorophenol	ND		0.50	0.031	1	12/18/09	12/28/09	KWG0911875	
2-Chloronaphthalene	ND		0.20	0.041	1	12/18/09	12/28/09	KWG0911875	
2-Nitroaniline	ND	U	0.20	0.024	1	12/18/09	12/28/09	KWG0911875	
Acenaphthylene	0.043	J	0.20	0.015	1	12/18/09	12/28/09	KWG0911875	
Dimethyl Phthalate	0.85		0.20	0.021	1	12/18/09	12/28/09	KWG0911875	
2,6-Dinitrotoluene	ND	U	0.20	0.033	1	12/18/09	12/28/09	KWG0911875	

Comments:

Printed: 01/05/2010 11:44:19

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

Form 1A - Organic 13

SuperSet Reference:

Page 1 of 3

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Collected: 12/14/2009**

Date Received: 12/17/2009

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0096364

Lab Code:

K0912234-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	ND		0.20	0.026	1	12/18/09	12/28/09	KWG0911875	11000
3-Nitroaniline	ND		0.20	0.029	1	12/18/09	12/28/09	KWG0911875	
2,4-Dinitrophenol	ND		4.0	0.17	1	12/18/09	12/28/09	KWG0911875	
Dibenzofuran	ND	U	0.20	0.018	1	12/18/09	12/28/09	KWG0911875	
4-Nitrophenol	0.77		2.0	0.28	1	12/18/09	12/28/09	KWG0911875	
2,4-Dinitrotoluene	ND	U	0.20	0.018	1	12/18/09	12/28/09	KWG0911875	
Fluorene	ND	U	0.20	0.027	1	12/18/09	12/28/09	KWG0911875	
4-Chlorophenyl Phenyl Ether	ND	U	0.20	0.027	1	12/18/09	12/28/09	KWG0911875	
Diethyl Phthalate	0.19	J	0.20	0.012	1	12/18/09	12/28/09	KWG0911875	
4-Nitroaniline	ND	U	0.99	0.019	1	12/18/09	12/28/09	KWG0911875	
2-Methyl-4,6-dinitrophenol	ND	U	2.0	0.025	1	12/18/09	12/28/09	KWG0911875	
N-Nitrosodiphenylamine	ND	U	0.20	0.048	1	12/18/09	12/28/09	KWG0911875	
4-Bromophenyl Phenyl Ether	ND	U	0.20	0.026	1	12/18/09	12/28/09	KWG0911875	
Hexachlorobenzene	ND	U	0.20	0.022	1	12/18/09	12/28/09	KWG0911875	
Pentachlorophenol	ND	U	0.99	0.34	1	12/18/09	12/28/09	KWG0911875	
Phenanthrene	0.083	J	0.20	0.022	1	12/18/09	12/28/09	KWG0911875	
Anthracene	ND	U	0.20	0.024	1	12/18/09	12/28/09	KWG0911875	
Di-n-butyl Phthalate	0.24		0.20	0.023	1	12/18/09	12/28/09	KWG0911875	
Fluoranthene	0.14	J	0.20	0.020	1	12/18/09	12/28/09	KWG0911875	
Pyrene	0.14	J	0.20	0.019	1	12/18/09	12/28/09	KWG0911875	
Butyl Benzyl Phthalate	0.96		0.20	0.018	1	12/18/09	12/28/09	KWG0911875	
3,3'-Dichlorobenzidine	ND	U	2.0	0.43	1	12/18/09	12/28/09	KWG0911875	
Benz(a)anthracene	0.055	J	0.20	0.018	1	12/18/09	12/28/09	KWG0911875	
Chrysene	0.094	J	0.20	0.028	1	12/18/09	12/28/09	KWG0911875	
Bis(2-ethylhexyl) Phthalate	1.6		0.99	0.13	1	12/18/09	12/28/09	KWG0911875	
Di-n-octyl Phthalate	ND		0.20	0.018	1	12/18/09	12/28/09	KWG0911875	
Benzo(b)fluoranthene	0.083	J	0.20	0.017	1	12/18/09	12/28/09	KWG0911875	
Benzo(k)fluoranthene	0.027	J	0.20	0.024	1	12/18/09	12/28/09	KWG0911875	
Benzo(a)pyrene	0.078	J	0.20	0.031	1	12/18/09	12/28/09	KWG0911875	
Indeno(1,2,3-cd)pyrene	0.064	J	0.20	0.021	1	12/18/09	12/28/09	KWG0911875	
Dibenz(a,h)anthracene	ND	U	0.20	0.017	1	12/18/09	12/28/09	KWG0911875	
Benzo(g,h,i)perylene	0.074	J	0.20	0.019	1	12/18/09	12/28/09	KWG0911875	

Comments:

Printed: 01/05/2010 11:44:19

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

Form 1A - Organic

SuperSet Reference:

Page

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Collected: 12/14/2009**

Date Received: 12/17/2009

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0096364

Lab Code:

K0912234-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	63	12-109	12/28/09	Acceptable	
Phenol-d6	66	23-106	12/28/09	Acceptable	
Nitrobenzene-d5	65	26-110	12/28/09	Acceptable	
2-Fluorobiphenyl	51	31-94	12/28/09	Acceptable	
2,4,6-Tribromophenol	80	23-127	12/28/09	Acceptable	
Terphenyl-d14	74	40-127	12/28/09	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 01/05/2010 11:44:19

Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference:

RR109647

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0911875-3

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND		0.19	0.035	1	12/18/09	12/28/09	KWG0911875	
Phenol	ND		0.48	0.063	1	12/18/09	12/28/09	KWG0911875	
2-Chlorophenol	ND	U	0.48	0.054	1	12/18/09	12/28/09	KWG0911875	
1,3-Dichlorobenzene	ND	U	0.19	0.021	1	12/18/09	12/28/09	KWG0911875	
1,4-Dichlorobenzene	ND	U	0.19	0.029	1	12/18/09	12/28/09	KWG0911875	
1,2-Dichlorobenzene	ND	U	0.19	0.022	1	12/18/09	12/28/09	KWG0911875	
Benzyl Alcohol	ND	U	0.48	0.073	1	12/18/09	12/28/09	KWG0911875	
Bis(2-chloroisopropyl) Ether	ND		0.19	0.026	- 1	12/18/09	12/28/09	KWG0911875	
2-Methylphenol	ND	U	0.48	0.11	1	12/18/09	12/28/09	KWG0911875	
Hexachloroethane	ND	U	0.19	0.024	1	12/18/09	12/28/09	KWG0911875	
N-Nitrosodi-n-propylamine		U	0.19	0.037	1	12/18/09	12/28/09	KWG0911875	
4-Methylphenol†	ND	U	0.48	0.12	1	12/18/09	12/28/09	KWG0911875	
Nitrobenzene	ND	U	0.19	0.028	1	12/18/09	12/28/09	KWG0911875	
Isophorone	ND	U	0.19	0.016	1	12/18/09	12/28/09	KWG0911875	
2-Nitrophenol	ND	U	0.48	0.063	1	12/18/09	12/28/09	KWG0911875	
2,4-Dimethylphenol	ND		3.8	2.2	1	12/18/09	12/28/09	KWG0911875	
Bis(2-chloroethoxy)methane	ND		0.19	0.024	1	12/18/09	12/28/09	KWG0911875	
2,4-Dichlorophenol	ND	U	0.48	0.047	1	12/18/09	12/28/09	KWG0911875	
Benzoic Acid	ND		4.8	1.1	1	12/18/09	12/28/09	KWG0911875	
1,2,4-Trichlorobenzene	ND		0.19	0.016	1	12/18/09	12/28/09	KWG0911875	
Naphthalene	ND	U	0.19	0.022	1	12/18/09	12/28/09	KWG0911875	
4-Chloroaniline		U	0.19	0.025	1	12/18/09	12/28/09	KWG0911875	
Hexachlorobutadiene		U	0.19	0.027	1	12/18/09	12/28/09	KWG0911875	
4-Chloro-3-methylphenol	ND	U	0.48	0.037	1	12/18/09	12/28/09	KWG0911875	
2-Methylnaphthalene	ND		0.19	0.026	1	12/18/09	12/28/09	KWG0911875	
Hexachlorocyclopentadiene	ND		0.95	0.19	1	12/18/09	12/28/09	KWG0911875	
2,4,6-Trichlorophenol	ND	U	0.48	0.058	1	12/18/09	12/28/09	KWG0911875	
2,4,5-Trichlorophenol	ND		0.48	0.031	1	12/18/09	12/28/09	KWG0911875	
2-Chloronaphthalene	ND		0.19	0.041	1	12/18/09	12/28/09	KWG0911875	
2-Nitroaniline	ND	U	0.19	0.024	1	12/18/09	12/28/09	KWG0911875	
Acenaphthylene	ND		0.19	0.015	1	12/18/09	12/28/09	KWG0911875	
Dimethyl Phthalate		U	0.19	0.021	1	12/18/09	12/28/09	KWG0911875	
2,6-Dinitrotoluene	ND	U	0.19	0.033	1	12/18/09	12/28/09	KWG0911875	

Comments:

Printed: 01/05/2010 11:44:22 u:\Stealth\Crystal.rpt\Form1mNew.rpt

.. .

Form 1A - Organic

SuperSet Reference: RR109647

Analytical Results

Client: Portland, City of

Project: NPDES Stormwater MON

Sample Matrix: Water

Service Request: K0912234

Units: ug/L

Basis: NA

Level: Low

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Method Blank Lab Code: KWG0911875-3

Extraction Method: EPA 3520C

Analysis Method: 8270C

Analyta Nama	Dogwl4	0	MRL	MDL	Dilution Factor	Date	Date	Extraction Lot	Note
Analyte Name	Result					Extracted	Analyzed	KWG0911875	Note
Acenaphthene 3-Nitroaniline	ND ND		0.19	0.026	1	12/18/09	12/28/09	KWG0911875	
2,4-Dinitrophenol	ND ND		0.95 3.8	0.029 0.17	1 1	12/18/09 12/18/09	12/28/09 12/28/09	KWG0911875	
Dibenzofuran	ND		0.19	0.018	1	12/18/09	12/28/09	KWG0911875	
4-Nitrophenol	ND		1.9	0.28	1	12/18/09	12/28/09	KWG0911875	
2,4-Dinitrotoluene	ND		0.19	0.018	1	12/18/09	12/28/09	KWG0911875	
Fluorene	ND		0.19	0.027	1	12/18/09	12/28/09	KWG0911875	
4-Chlorophenyl Phenyl Ether	ND		0.19	0.027	1	12/18/09	12/28/09	KWG0911875	
Diethyl Phthalate	0.019	J	0.19	0.012	1	12/18/09	12/28/09	KWG0911875	
4-Nitroaniline	ND	U	0.95	0.019	1	12/18/09	12/28/09	KWG0911875	
2-Methyl-4,6-dinitrophenol	ND	U	1.9	0.025	1	12/18/09	12/28/09	KWG0911875	
N-Nitrosodiphenylamine	ND	U	0.19	0.048	1	12/18/09	12/28/09	KWG0911875	
4-Bromophenyl Phenyl Ether	ND	U	0.19	0.026	1	12/18/09	12/28/09	KWG0911875	
Hexachlorobenzene	ND	U	0.19	0.022	1	12/18/09	12/28/09	KWG0911875	
Pentachlorophenol	ND	U	0.95	0.34	1	12/18/09	12/28/09	KWG0911875	
Phenanthrene	ND	U	0.19	0.022	1	12/18/09	12/28/09	KWG0911875	
Anthracene	ND	U	0.19	0.024	1	12/18/09	12/28/09	KWG0911875	
Di-n-butyl Phthalate	0.043	J	0.19	0.023	1	12/18/09	12/28/09	KWG0911875	
Fluoranthene	ND	U	0.19	0.020	1	12/18/09	12/28/09	KWG0911875	
Pyrene	ND	U	0.19	0.019	1	12/18/09	12/28/09	KWG0911875	
Butyl Benzyl Phthalate	ND	U	0.19	0.018	1	12/18/09	12/28/09	KWG0911875	
3,3'-Dichlorobenzidine	ND	U	1.9	0.43	1	12/18/09	12/28/09	KWG0911875	
Benz(a)anthracene	ND	U	0.19	0.018	1	12/18/09	12/28/09	KWG0911875	
Chrysene	ND	U	0.19	0.028	1	12/18/09	12/28/09	KWG0911875	
Bis(2-ethylhexyl) Phthalate	ND	U	0.95	0.13	1	12/18/09	12/28/09	KWG0911875	
Di-n-octyl Phthalate	ND	U	0.19	0.018	1	12/18/09	12/28/09	KWG0911875	
Benzo(b)fluoranthene	ND	U	0.19	0.017	1	12/18/09	12/28/09	KWG0911875	
Benzo(k)fluoranthene	ND	U	0.19	0.024	1	12/18/09	12/28/09	KWG0911875	
Benzo(a)pyrene	ND	U	0.19	0.031	1	12/18/09	12/28/09	KWG0911875	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.021	1	12/18/09	12/28/09	KWG0911875	
Dibenz(a,h)anthracene	ND	U	0.19	0.017	1	12/18/09	12/28/09	KWG0911875	
Benzo(g,h,i)perylene	ND	U	0.19	0.019	1	12/18/09	12/28/09	KWG0911875	

Comments:

Printed: 01/05/2010 11:44:22 u:\Stealth\Crystal.rpt\Form1mNew.rpt

.....

Form 1A - Organic 17 Page SuperSet Reference: RR109647

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Date Collected: NA **Date Received:** NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: Method Blank

KWG0911875-3

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	77	12-109	12/28/09	Acceptable
Phenol-d6	90	23-106	12/28/09	Acceptable
Nitrobenzene-d5	86	26-110	12/28/09	Acceptable
2-Fluorobiphenyl	66	31-94	12/28/09	Acceptable
2,4,6-Tribromophenol	86	23-127	12/28/09	Acceptable
Terphenyl-d14	115	40-127	12/28/09	Acceptable

† Analyte Comments

Comments:	

Printed: 01/05/2010 11:44:22 u:\Stealth\Crystal.rpt\Form1mNew.rpt

18

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Surrogate Recovery Summary

Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C **Analysis Method:**

Duplicate Lab Control Sample

8270C

74

82

Units: PERCENT Level: Low

Sample Name Sur6 Lab Code Sur1 Sur2 Sur3 Sur4 Sur5 80 74 F0096364 K0912234-001 63 66 65 51 90 115 Method Blank KWG0911875-3 77 86 66 86 76 79 69 70 86 100 Lab Control Sample KWG0911875-1 76 65 91

KWG0911875-2

74

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	12-109	Sur5 = 2,4,6-Tribromophenol	23-127
Sur2 = Phenol-d6	23-106	Sur6 = Terphenyl-d14	40-127
Sur3 = Nitrobenzene-d5	26-110	•	
Sur4 = 2-Fluorobiphenyl	31-94		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 01/05/2010 11:44:27

Form 2A - Organic

19

Page SuperSet Reference: RR109647

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234

Date Extracted: 12/18/2009 **Date Analyzed:** 12/28/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA Level: Low

Extraction Lot: KWG0911875

Lab	Cor	itrol	Sar	nple
KV	WG(911	875	5-1

Duplicate Lab Control Sample KWG0911875-2

		Control Spik			Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Bis(2-chloroethyl) Ether	3.77	5.00	75	3,42	5.00	68	37-109	10	30
Phenol	3.89	5.00	78	3.71	5.00	74	35-114	5	30
2-Chlorophenol	3.97	5.00	79	3.67	5.00	73	37-110	8	30
1,3-Dichlorobenzene	2.44	5.00	49	1.80	5.00	36	14-68	30	30
1,4-Dichlorobenzene	2.41	5.00	48	1.85	5.00	37	15-71	27	30
1,2-Dichlorobenzene	2.59	5.00	52	2.10	5.00	42	17-76	21	30
Benzyl Alcohol	3.46	5.00	69	3.55	5.00	71	32-115	2	30
Bis(2-chloroisopropyl) Ether	3.47	5.00	69	3.21	5.00	64	29-110	8	30
2-Methylphenol	3.85	5.00	77	3.61	5.00	72	21-109	7	30
Hexachloroethane	2.18	5.00	44	1.73	5.00	35	10-59	23	30
N-Nitrosodi-n-propylamine	3.43	5.00	69	3.43	5.00	69	32-112	0	30
4-Methylphenol	3.70	5.00	74	3.70	5.00	74	19-114	0	30
Nitrobenzene	3.69	5.00	74	3.70	5.00	74	36-110	0	30
Isophorone	3.86	5.00	77	3.51	5.00	70	38-106	10	30
2-Nitrophenol	4.25	5.00	85	3.68	5.00	74	41-112	14	30
2,4-Dimethylphenol	4.34	5.00	87	3.78	5.00	76	10-106	14	30
Bis(2-chloroethoxy)methane	4.12	5.00	82	3.76	5.00	75	39-109	9	30
2,4-Dichlorophenol	4.27	5.00	85	3.98	5.00	80	37-111	7	30
Benzoic Acid	5.26	15.0	35	5.05	15.0	34	10-83	4	30
1,2,4-Trichlorobenzene	2.77	5.00	55	2.27	5.00	45	18-76	20	30
Naphthalene	3.23	5.00	65	2.89	5.00	58	31-94	11	30
4-Chloroaniline	3.53	5.00	71	3.50	5.00	70	14-108	1	30
Hexachlorobutadiene	2.40	5.00	48	1.85	5.00	37	10-59	26	30
4-Chloro-3-methylphenol	3.70	5.00	74	3.89	5.00	78	33-115	5	30
2-Methylnaphthalene	2.81	5.00	56	2.64	5.00	53	29-92	6	30
Hexachlorocyclopentadiene	1.80	5.00	36	1.35	5.00	27	10-37	28	30
2,4,6-Trichlorophenol	4.26	5.00	85	4.05	5.00	81	36-113	5	30
2,4,5-Trichlorophenol	4.56	5.00	91	4.09	5.00	82	41-112	11	30
2-Chloronaphthalene	3.34	5.00	67	3.03	5.00	61	31-95	10	30
2-Nitroaniline	4.22	5.00	84	4.03	5.00	81	40-118	5	30
Acenaphthylene	4.12	5.00	82	3.90	5.00	78	36-107	5	30
Dimethyl Phthalate	4.56	5.00	91	4.27	5.00	85	46-111	7	30
2,6-Dinitrotoluene	4.47	5.00	89	4.09	5.00	82	44-116	9	30
Acenaphthene	3.92	5.00	78	3.52	5.00	70	36-101	11	30
3-Nitroaniline	4.42	5.00	88	4.22	5.00	84	34-118	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/05/2010 11:44:30

Form 3C - Organic 20

Page SuperSet Reference: RR109647

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater MON

Sample Matrix:

Water

Service Request: K0912234 **Date Extracted:** 12/18/2009

Date Analyzed: 12/28/2009

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low Extraction Lot: KWG0911875

Lab Control Sample KWG0911875-1

Duplicate Lab Control Sample KWG0911875-2

		VG0911875-1 Control Spik			VG0911875-2 e Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4-Dinitrophenol	3.01	5.00	60	2.68	5.00	54	10-116	12	30
Dibenzofuran	4.09	5.00	82	3.73	5.00	75	37-103	9	30
4-Nitrophenol	4.19	5.00	84	3.61	5.00	72	38-125	15	30
2,4-Dinitrotoluene	4.60	5.00	92	4.46	5.00	89	47-119	3	30
Fluorene	4.51	5.00	90	4.07	5.00	81	39-106	10	30
4-Chlorophenyl Phenyl Ether	4.44	5.00	89	4.07	5.00	81	37-103	9	30
Diethyl Phthalate	4.89	5.00	98	4.42	5.00	88	47-113	10	30
4-Nitroaniline	5.30	5.00	106	4.80	5.00	96	38-119	10	30
2-Methyl-4,6-dinitrophenol	4.32	5.00	86	3.77	5.00	75	10-125	14	30
N-Nitrosodiphenylamine	4.49	5.00	90	4.09	5.00	82	36-111	9	30
4-Bromophenyl Phenyl Ether	4.10	5.00	82	3.70	5.00	74	42-105	10	30
Hexachlorobenzene	4.26	5.00	85	4.07	5.00	81	42-102	5	30
Pentachlorophenol	4.11	5.00	82	3.40	5.00	68	10-119	19	30
Phenanthrene	4.28	5.00	86	3.88	5.00	78	45-104	10	30
Anthracene	4.23	5.00	85	3.94	5.00	79	41-103	7	30
Di-n-butyl Phthalate	4.36	5.00	87	4.03	5.00	81	44-126	8	30
Fluoranthene	4.58	5.00	92	4.23	5.00	85	46-109	8	30
Pyrene	4.83	5.00	97	4.25	5.00	85	46-108	13	30
Butyl Benzyl Phthalate	4.29	5.00	86	3.88	5.00	78	48-115	10	30
3,3'-Dichlorobenzidine	3.61	5.00	72	2.41	5.00	48	13-108	40 *	30
Benz(a)anthracene	4.12	5.00	82	3.84	5.00	77	47-105	7	30
Chrysene	4.36	5.00	87	3.97	5.00	79	49-105	9	30
Bis(2-ethylhexyl) Phthalate	3.80	5.00	76	3.39	5.00	68	45-122	11	30
Di-n-octyl Phthalate	3.74	5.00	75	3.72	5.00	74	48-119	0	30
Benzo(b)fluoranthene	4.03	5.00	81	4.04	5.00	81	48-108	0	30
Benzo(k)fluoranthene	4.15	5.00	83	4.11	5.00	82	49-107	1	30
Benzo(a)pyrene	3,66	5.00	73	3.45	5.00	69	42-109	6	30
Indeno(1,2,3-cd)pyrene	4.81	5.00	96	4.51	5.00	90	47-111	6	30
Dibenz(a,h)anthracene	4.78	5.00	96	4.56	5.00	91	47-110	5	30
Benzo(g,h,i)perylene	4.81	5.00	96	4.68	5.00	94	47-109	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/05/2010 11:44:30

Form 3C - Organic

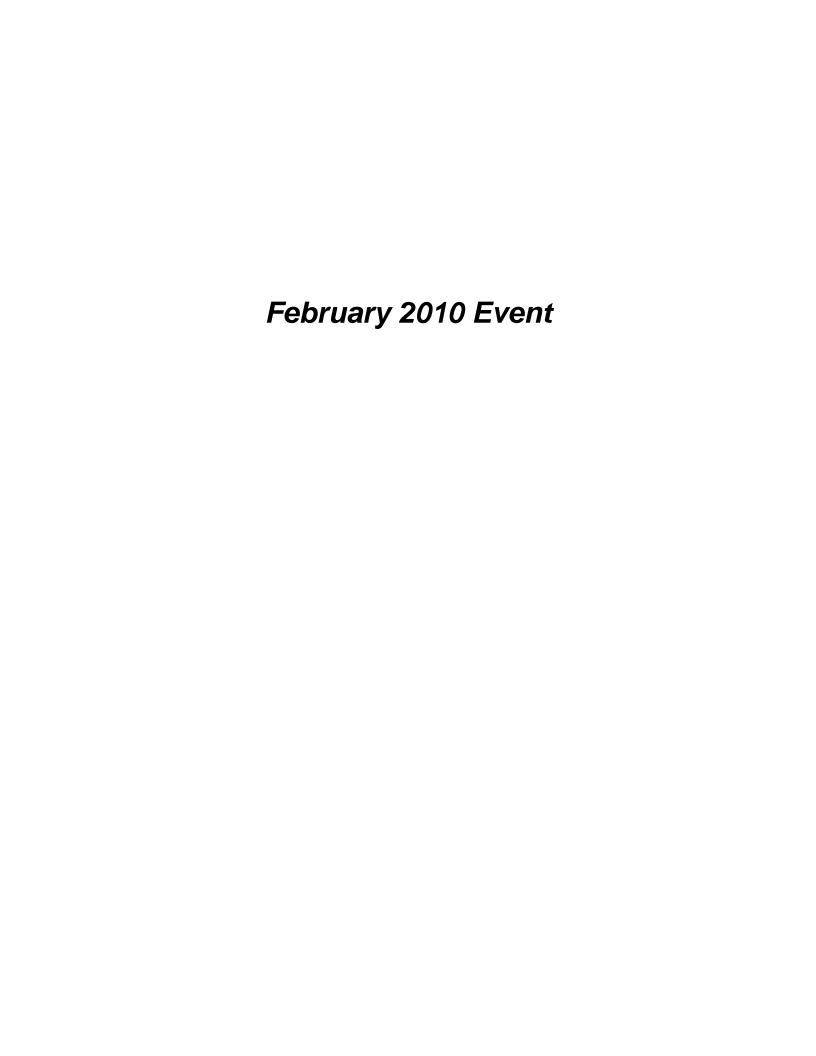
21

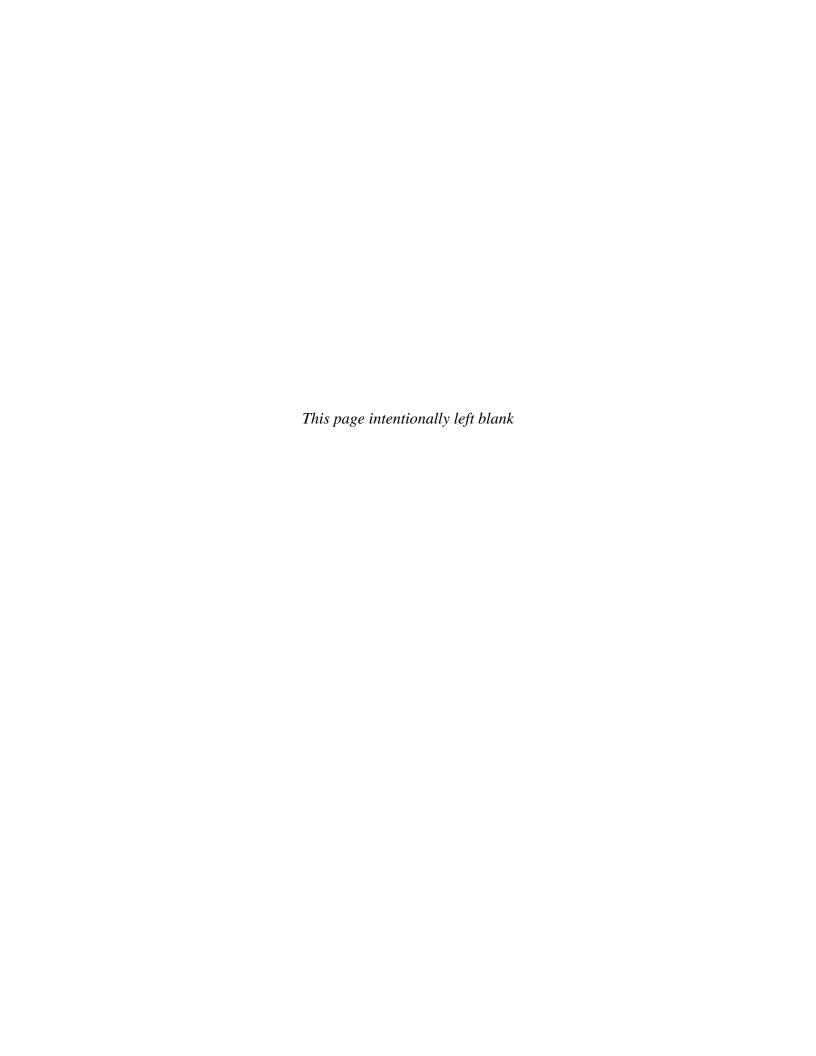
Page

CHAIN OF CUSTODY

SR#:710919394 coc#___ 9

PAGE
FAX (360) 636-1068
FAX
6 • (360) 577-7222 • (800) 695-7222x07 • FA
(360) 577-7222 * (
Kelso, WA 98626
· Kelso,
South 13th Ave.
1317 South 13th


	Sh Sh	31EX	110 510 A1318	290g '20C' 'SON	
bottand	OPT NO OP	S 199	P6	SA, F. I.	
	4 səlu 9 səlu		PAIOSS!	Sat 2004 4 6 8 9 1 X (\
	026 e640	iesel (*scelesel (*scelese) (*scelesel (*scelese) (*scelesel (*scelese) (*scelesel (*scelese) (*sce	(M) (M)	SST SST SON (E)	
FAX#	9 18 8 0 010	TKSON THIS BISEON B	10/9 10/9 10/9 10/9 10/9	020000000000000000000000000000000000000	_
And the second	PIJE SSE ONIUI	OIOIDE SIOIO SIBIS SIB SIB	tals, e list anide	206 X 206 X 1. N-E	\
TIME LAB I.D. MATRIX	050 050 050	100/8 /22/88	1 M (S) (D) / DE	/ / J / S /	/ REMARKS
W M	\checkmark				
THE W		X			
					MENTAL DESCRIPTION OF THE PROPERTY OF THE PROP
			The second secon		
					AND THE PROPERTY OF THE PROPER
INVOICE INFORMATION	Circle which metals are to be	be analyzed:	concentration from the property for the content of	anne en encretagnet e constanta francosserando desantesseran francosserantes de la constanta de la constanta d	AND THE PROPERTY OF THE PROPER
Bill To:	Total Metals: Al As	Sb Ba Be B Ca Cd (Co Cr Cu Fe Pb Mg Mn	Mo Ni K Ag Na Se Sr	r Tl Sn V Zn Hg
The state of the s	Dissolved Metals: Al As	Sb Ba Be B Ca Cd (Co Cr Cu Fe Pb Mg Mn	n Mo Ni K Ag Na Se Sr	r TI Sn V Zn Hg
	- *INDICATE STATE HY	STATE HYDROCARBON PROCEDUR	E: AK CA WI	NORTHWEST OTHER:	(CIRCLE ONE)
TURNAROUND REQUIREMENTS 24 hr. 48 hr.	SPECIAL INSTRUCTIONS/COMMENTS	ONS/COMMENTS:			
5 Day	******				
Standard (10-15 working days) Provide FAX Results	ys)				
Requested Report Date	-				
	RECEIVED BY:	H	RELINGUISHED BY:	RECEIVED BY	50 BY: 1230
Sydneture		Signature		Stonature	Time Time
Printed Name	Film	Printe Stylenie	Sim Sim	Printed Name	Frm S
	anglais sur novoment comment transmission and comment electric sciences in comment electric sciences and comment electric scie			STREET HAND ON THE WORK OF THE TRANSPORT	RCOC #1 06/03


Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC PD

Cli	lient / Project: City of Portland Service Request K09 /2234			
Re	eceived: 12 117/04 Opened: 12/17/09 By: 6704			
1. 2. 3.	Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Courie. Samples were received in: (circle) Cooler Box Envelope Other Were custody seals on coolers? NA Y N If yes, how many and where?	<i>▶</i> E	Hand De	livered
٥.			3.7	
4.	If present, were custody seals intact? Y N If present, were they signed and dated? Is shipper's air-bill filed? If not, record air-bill number:	QA	Y Y	N N
5.	Temperature of cooler(s) upon receipt (°C): Temperature Blank (°C): Thermometer ID:			
6. 7.	If applicable, list Chain of Custody Numbers:		·	********
7. 8.	Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Offier A Were custody papers properly filled out (ink, signed, etc.)?		7.7	
9.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA NA	Y (Ý)	Q
10.		NA NA	Ø	N N
11.		NA	Ø	N
12.		NA	(Y)	N
13.		WA	Y	N
14.		(NA	Y	N
15.		ΑÑΑ	Y	N
16.	Was C12/Res negative?	(N)A	Y	N
	Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sam	ple ID c	n COC	
		······		
				at.,,,
Bessess				
	Bottle Count Out of Head-Sample ID Bottle Type Temp space Broke pH Reagent added Numbe		Initials	Time
*Doe	es not include all pH preserved sample aliquots received. See sample receiving SOP (SMO-GEN).			
Add	ditional Notes, Discrepancies, & Resolutions: 1 Ovent did not sign off	00	coc	

1

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review MS4 Stormwater Data Evaluation City Outfall Basin 19

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: October 26, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) at Outfall Basin 19 on February 23, 2010. Two stormwater samples (FO105259 and FO105260) were collected and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

BES WPCL

- o E. Coli COLILERT QT
- Total Oil & Grease EPA 1664
- Ammonia Nitrogen EPA 350.1
- o Nitrate –Nitrogen EPA 300.0
- Orthophosphate Phosphorus EPA 365.1
- Total Dissolved Solids (TDS) SM 2540C
- o Total Phosphorus EPA 365.4
- o Total Solids (TS) SM 2540 B
- o Total Suspended Solids (TSS) SM 2540 D
- o Total Hardness SM 2340 B CALC
- Metals (Dissolved) EPA 200.8
- o Metals (Total) EPA 200.8

- Columbia Analytical Services (CAS)
 - o Organochlorine Pesticides EPA 8081A
 - o Semi-Volatile Organic Compounds (SVOCs) EPA 8270C
- Pace Analytical Services (Pace)
 - o Polychlorinated Biphenyls (PCB) Congeners EPA 1668A
- Test America (TA)
 - o Polynuclear Aromatic Hydrocarbons (PAHs) & Phthalates EPA 8270M-SIM

The WPCL laboratory report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

For the purpose of this pesticide source control investigation, the following QA/QC review was limited to review of the analytical data generated from the analysis of organochlorine pesticides for field sample FO105260. The QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratories, and consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Internal standard recoveries within accuracy control limits
- Surrogate recoveries within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits.

The results of the QA/QC review of the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples were extracted and analyzed within recommended holding times for the pesticide analysis.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 3

Method Blanks

A method blanks was processed during the laboratory analysis of organochlorine pesticides. No analytes were detected in the method blank.

Surrogate Recoveries

Surrogate recoveries were analyzed during the analysis of organochlorine pesticides. All surrogate recoveries were within laboratory acceptance limits.

Laboratory Control/Duplicate Laboratory Control Samples

LC and DLC samples were processed during the laboratory analysis of pesticides. LC/DLC sample recoveries and RPDs were all within laboratory acceptance limits.

Other

CAS reports that results from the primary and verification columns varied by more than 40 percent for some analytes. The higher of the two values was reported when no evidence of matrix interference was observed, and the value is flagged as an estimate ("J" flag). The primary evaluation criteria were exceeded for Methoxychlor in the Initial Calibration Verification (ICV) on the confirmation column. ICV results were reported from the acceptable column and the data quality was not affected. Additionally, CAS reports that the detection limit was elevated for several analytes due to the presence of non-target background components. The results are flagged in the subcontracted report to indicate the matrix interference.

GSI WATER SOLUTIONS, INC. PAGE 3 OF 3

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Chain-of-Custody Bureau of Environmental Services

Date: 2/24/10

Collected By: MJ5 Page:

Droject Name.	MIDDEC CTODAMA)			•			٠.				I
r I Oject Ivallie.	NPDES STORINIVATE MON	N S				-																	
rile inumber:	4010.001		Matrix:	STORMWIR	VTR						8	Requested Analyses	ste	ďβ	naly	ses	٠						
							Gen	General		M	Metais		2	Nutrients	nts Sign	H	þ	Outside		١	l	l	Г
Sample Time recorded in current local time Sample 12mc; 3/33/10 1242-2/24/10 1036	in current local time 33/10 1243 ー カ/	10//2	036			· · · · · · · · · · · · · · · · · · ·			,	als d, Cr, Cu, Pb, Zn)		d, Cr, Cu, Pb, Zn)	nitrogen trogen	suroriqeond stand	ebyotas	10 7 07 1110 1110	Ow-level (CAS) (AT) setsishth	Ongeners (Pace)	(CAS fow-IVI)			· ·	
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample Time	Sample Type	ST SQT	SST	Hardness		Total Met Ag, As, C	oeviossiC		vitrate-ni			*30/18				 	····		
FO105260	4900 NW KITTRIDGE AVE (OF19)	OF19	2/23/10	1243	ပ	╄		1 •			•									-	 	+	1.
	ात्र स्टेस्स्ट										<u> </u>		ļ				-					<u> </u>	T
	2223			·				'				<u>.</u>						-			-	1	I
												-	ļ .			1	ļ .	ļ			-		
											ļ						<u> </u>		ļ.	+		-	1
																·	· .		,.				T
														7				Ĺ			,	<u> </u>	<u>. </u>
						-							<u> </u>							 	\vdash	 	
													<u> </u>			 	 	 		 	 	+	
				,															-		-	ľ	· T-
Relinquished By: 1,		Relinquished By:	ed By; 2.					Relinguished By:	hed By:	က် 					۳	Relinquished By	Shed	8V: 4					1
Signature: Met Bullin	1,05/	Signature:		•	Time:		o,	Signature:					Time:		<u>io</u>	Signature:				=	Time:		
Printed Name: Nett Sullivan		Printed Name:			Date:		2	Printed Name:	ij.				Date:		4	Printed Name:	ņe:				Date:		· · · · ·
Signature:		Received By: Signature:	<u>v:</u>		Тіле:		LLI_O	Received By: Signature:	BA:	er.			Time:		∞i ਲ	Received By Signature:	<u>A</u>	4		 =	Тіте:		
Printed Name Color)	Printed Name:			Date:	-	<u>0.</u>	Printed Name:	ا				Date:		<u>F</u>	Printed Name:	ا نو			ة	Date:		
s:\eid\4000\4010.001\sa	s:\eid\4000\4010.001\sampdoc\Current NPDES COC.xls	S)					1				l												٦

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AO01548

4010.001

JJM/PTB

NPDESSTM

System ID:

EID File #:

LocCode:

Collected By:

LABORATORY ANALYSIS REPORT

2/10/2010 15:20 **COMPLETE AND** Sample ID: Sample Collected: Sample Status: FO105236 **VALIDATED**

02/10/10 Sample Received:

NPDES STORMWTR WQ & FLOW MON Page 1 of 1 Report Page: Proj./Company Name:

4900 NW KITTRIDGE AVE (OF19) Address/Location:

MANHOLE GRAB

OF19 Sample Point Code: **GRAB** Sample Type: **STORMWTR** Sample Matrix:

Comments:

114	µmhos/cm	1	SM 2510 B	02/10/10
6.1	pH Units	0.1	SM 4500-H B	02/10/10
8.8	Deg. C	0.1	SM 2550 B	02/10/10
3100	MPN/100 ml	10	COLILERT QT	02/09/10
<5	mg/L	5	EPA 1664	02/25/10
	6.1 8.8 3100	6.1 pH Units 8.8 Deg. C	6.1 pH Units 0.1 8.8 Deg. C 0.1 3100 MPN/100 ml 10	6.1 pH Units 0.1 SM 4500-H B 8.8 Deg. C 0.1 SM 2550 B 3100 MPN/100 ml 10 COLILERT QT

End of Report for Sample ID: FO105236

Report Date: 04/12/10 Validated By: Signature on File

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

VALIDATED

AO01928

LABORATORY ANALYSIS REPORT

2/23/2010 20:02 **COMPLETE AND** Sample Collected: Sample Status: Sample ID: FO105259

02/24/10 Sample Received:

> Page 1 of 1 Report Page:

System ID:

NPDES STORMWTR WQ & FLOW MON Proj./Company Name: Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE GRAB

OF19 4010.001 Sample Point Code: EID File #: **GRAB NPDESSTM** LocCode: Sample Type: JJM/PTB Collected By:

STORMWTR Sample Matrix:

Comments:

LAB: Because the result for Total Oil & Grease was <5 mg/L, Non-Polar Oil & Grease is also < 5mg/L.

Test Parameter	Result	Units	MRL	Method	Analysis Date
FIELD					
CONDUCTIVITY (FIELD)	112	µmhos/cm	1	SM 2510 B	02/23/10
pH (FIELD)	6.9	pH Units	0.1	SM 4500-H B	02/23/10
TEMPERATURE	8.7	Deg. C	0.1	SM 2550 B	02/23/10
MICROBIOLOGY E. COLI	430	MPN/100 ml	10	COLILERT QT	02/24/10
GENERAL OIL & GREASE, TOTAL	<5	mg/L	5	EPA 1664	03/11/10

End of Report for Sample ID: FO105259

Validated By: Signature on File Report Date: 04/12/10

Sample ID:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Collected: 2/23/2010 12:42 Sample Status: COMPLETE AND

Sample Received: 02/24/10

Report Page: Page 1 of 5

VALIDATED

 $\label{eq:proj.} \textbf{Proj./Company Name:} \qquad \text{NPDES STORMWTR WQ \& FLOW MON}$

Address/Location: 4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

Sample Point Code: OF19

Sample Type: COMPOSITE Sample Matrix: STORMWTR

FO105260

 System ID:
 A001996

 EID File # :
 4010.001

 LocCode:
 NPDESSTM

Collected By: MJS

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

To at Danish to a	D 14	11-14-	MDI	Na di - d	Analysis Date
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
AMMONIA-NITROGEN	0.19	mg/L	0.02	EPA 350.1	03/09/10
NITRATE-NITROGEN	1.2	mg/L	0.10	EPA 300.0	02/25/10
o-PHOSPHATE-PHOSPHORUS, DISS	0.035	mg/L	0.02	EPA 365.1	02/25/10
TOTAL DISSOLVED SOLIDS @180C	89	mg/L	5	SM 2540 C	02/25/10
TOTAL PHOSPHORUS	0.13	mg/L	0.03	EPA 365.4	03/04/10
TOTAL SOLIDS	110	mg/L	2	SM 2540 B	02/25/10
TOTAL SUSPENDED SOLIDS	19	mg/L	2	SM 2540 D	02/25/10
METALS					
HARDNESS, TOTAL	42.6	mg CaCO3/L	0.5	SM 2340 B CALC	02/26/10
METALS BY ICP-MS (DISSOLVED) - 7					
ARSENIC, DISSOLVED	0.74	μg/L	0.045	EPA 200.8	03/05/10
CADMIUM, DISSOLVED	0.10	μg/L	0.1	EPA 200.8	03/05/10
CHROMIUM, DISSOLVED	<0.40	μg/L	0.4	EPA 200.8	03/05/10
COPPER, DISSOLVED	4.58	μg/L	0.2	EPA 200.8	03/05/10
LEAD, DISSOLVED	0.59	μg/L	0.1	EPA 200.8	03/05/10
SILVER, DISSOLVED	<0.10	μg/L	0.1	EPA 200.8	03/05/10
ZINC, DISSOLVED	67.2	μg/L	0.5	EPA 200.8	03/05/10
METALS BY ICP-MS (TOTAL) - 7					
ARSENIC	1.29	μg/L	0.1	EPA 200.8	03/03/10
CADMIUM	0.21	μg/L	0.1	EPA 200.8	03/03/10
CHROMIUM	2.34	μg/L	0.4	EPA 200.8	03/03/10
COPPER	12.6	μg/L	0.2	EPA 200.8	03/03/10
LEAD	7.58	μg/L	0.1	EPA 200.8	03/03/10
SILVER	<0.10	μg/L	0.1	EPA 200.8	03/03/10
ZINC	101	μg/L	0.5	EPA 200.8	03/03/10
OUTSIDE ANALYSIS					
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	9.9	ng/L	1.00	EPA 8081	03/02/10
4,4'-DDE	<3.0	ng/L	3.0	EPA 8081	03/02/10
4,4'-DDT	EST 70	ng/L	5.0	EPA 8081	03/02/10
Aldrin	<1.00	ng/L	1.00	EPA 8081	03/02/10
Alpha-BHC	EST 1.3	ng/L	1.00	EPA 8081	03/02/10
Alpha-Chlordane	<1.00	ng/L	1.00	EPA 8081	03/02/10

Report Date: 04/12/10 Validated By: Signature on File

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

2/23/2010 12:42

AO01996

System ID:

COMPLETE AND Sample Collected: Sample Status: Sample ID: FO105260 02/24/10 **VALIDATED**

Sample Received:

NPDES STORMWTR WQ & FLOW MON Page 2 of 5 Proj./Company Name: Report Page:

4900 NW KITTRIDGE AVE (OF19) Address/Location:

MANHOLE COMPOSITE

OF19 Sample Point Code: EID File #: 4010.001 COMPOSITE **NPDESSTM** LocCode: Sample Type:

STORMWTR MJS Sample Matrix: Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Beta-BHC	<1.00	ng/L	1.00	EPA 8081	03/02/10
Delta-BHC	<1.00	ng/L	1.00	EPA 8081	03/02/10
Dieldrin	<6.0	ng/L	6.0	EPA 8081	03/02/10
Endosulfan I	EST 3.1	ng/L	1.00	EPA 8081	03/02/10
Endosulfan II	<1.3	ng/L	1.3	EPA 8081	03/02/10
Endosulfan Sulfate	<1.00	ng/L	1.00	EPA 8081	03/02/10
Endrin	<1.4	ng/L	1.4	EPA 8081	03/02/10
Endrin Aldehyde	<1.9	ng/L	1.9	EPA 8081	03/02/10
Endrin Ketone	<1.00	ng/L	1.00	EPA 8081	03/02/10
Gamma-BHC(Lindane)	<1.00	ng/L	1.00	EPA 8081	03/02/10
Gamma-Chlordane	<1.00	ng/L	1.00	EPA 8081	03/02/10
Heptachlor	<1.00	ng/L	1.00	EPA 8081	03/02/10
Heptachlor Epoxide	<1.00	ng/L	1.00	EPA 8081	03/02/10
Methoxychlor	<1.00	ng/L	1.00	EPA 8081	03/02/10
Toxaphene	<350	ng/L	350	EPA 8081	03/02/10
POLYCHLORINATED BIPHENYL CONGENERS -PAC	E				
Refer to Contract Report	Completed	ng/L		EPA 1668 MOD	03/18/10
POLYNUCLEAR AROMATICS & PHTHALATES - TA					
Acenaphthene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Acenaphthylene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Anthracene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Benzo(a)anthracene	0.0203	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Benzo(a)pyrene	0.0144	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Benzo(b)fluoranthene	0.0178	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Benzo(ghi)perylene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Benzo(k)fluoranthene	0.012	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Bis(2-ethylhexyl) phthalate	< 0.971	μg/L	0.971	EPA 8270M-SIM	03/01/10
Butyl benzyl phthalate	< 0.971	μg/L	0.971	EPA 8270M-SIM	03/01/10
Chrysene	0.0392	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Dibenzo(a,h)anthracene	<0.00971	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Diethyl phthalate	< 0.971	μg/L	0.971	EPA 8270M-SIM	03/01/10
Dimethyl phthalate	2.56	μg/L	0.971	EPA 8270M-SIM	03/01/10
Di-n-butyl phthalate	< 0.971	μg/L	0.971	EPA 8270M-SIM	03/01/10
Di-n-octyl phthalate	< 0.971	μg/L	0.971	EPA 8270M-SIM	03/01/10
Fluoranthene	0.0685	μg/L	0.0194	EPA 8270M-SIM	03/01/10

Report Date: 04/12/10 Validated By: Signature on File

Sample ID:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

2/23/2010 12:42 **COMPLETE AND** Sample Collected: Sample Status:

02/24/10 Sample Received:

> Page 3 of 5 Report Page:

System ID:

EID File #:

LocCode:

VALIDATED

AO01996

4010.001

NPDESSTM

NPDES STORMWTR WQ & FLOW MON Proj./Company Name: 4900 NW KITTRIDGE AVE (OF19)

Address/Location:

MANHOLE COMPOSITE

OF19 Sample Point Code:

COMPOSITE Sample Type:

FO105260

STORMWTR MJS Sample Matrix: Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Fluorene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Indeno(1,2,3-cd)pyrene	0.0101	μg/L	0.00971	EPA 8270M-SIM	03/01/10
Naphthalene	<0.0194	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Phenanthrene	0.0465	μg/L	0.0194	EPA 8270M-SIM	03/01/10
Pyrene	0.104	μg/L	0.0194	EPA 8270M-SIM	03/01/10
SEMI-VOLATILE ORGANICS - CAS					
1,2,4-Trichlorobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
1,2-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
1,3-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
1,4-Dichlorobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
2,4,5-Trichlorophenol	< 0.49	μg/L	0.49	EPA 8270	03/01/10
2,4,6-Trichlorophenol	< 0.49	μg/L	0.49	EPA 8270	03/01/10
2,4-Dichlorophenol	< 0.49	μg/L	0.49	EPA 8270	03/01/10
2,4-Dimethylphenol	<3.9	μg/L	3.9	EPA 8270	03/01/10
2,4-Dinitrophenol	<3.9	μg/L	3.9	EPA 8270	03/01/10
2,4-Dinitrotoluene	<0.20	μg/L	0.20	EPA 8270	03/01/10
2,6-Dinitrotoluene	<0.20	μg/L	0.20	EPA 8270	03/01/10
2-Chloronaphthalene	<0.20	μg/L	0.20	EPA 8270	03/01/10
2-Chlorophenol	< 0.49	μg/L	0.49	EPA 8270	03/01/10
2-Methylnaphthalene	<0.20	μg/L	0.20	EPA 8270	03/01/10
2-Methylphenol	< 0.49	μg/L	0.49	EPA 8270	03/01/10
2-Nitroaniline	<0.20	μg/L	0.20	EPA 8270	03/01/10
2-Nitrophenol	<0.49	μg/L	0.49	EPA 8270	03/01/10
3,3'-Dichlorobenzidine	<2.0	μg/L	2.0	EPA 8270	03/01/10
3-Nitroaniline	<0.98	μg/L	0.98	EPA 8270	03/01/10
4,6-Dinitro-2-methylphenol	<2.0	μg/L	2.0	EPA 8270	03/01/10
4-Bromophenylphenyl ether	<0.20	μg/L	0.20	EPA 8270	03/01/10
4-Chloro-3-methylphenol	<0.49	μg/L	0.49	EPA 8270	03/01/10
4-Chloroaniline	<0.20	μg/L	0.20	EPA 8270	03/01/10
4-Chlorophenylphenyl ether	<0.20	μg/L	0.20	EPA 8270	03/01/10
4-Methylphenol	<0.49	μg/L	0.49	EPA 8270	03/01/10
4-Nitroaniline	<0.98	μg/L	0.98	EPA 8270	03/01/10
4-Nitrophenol	<2.0	μg/L	2.0	EPA 8270	03/01/10
Acenaphthene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Acenaphthylene	<0.20	μg/L	0.20	EPA 8270	03/01/10

Report Date: 04/12/10 Validated By: Signature on File

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

VALIDATED

AO01996

4010.001

NPDESSTM

LABORATORY ANALYSIS REPORT

Sample ID: FO105260 Sample Collected: 2/23/2010 12:42 Sample Status: COMPLETE AND

Sample Received: 02/24/10

Report Page: Page 4 of 5

System ID:

EID File #:

LocCode:

 $\label{eq:proj.} \textbf{Proj./Company Name:} \qquad \text{NPDES STORMWTR WQ \& FLOW MON}$

Address/Location: 4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

Sample Point Code: OF19

Sample Type: COMPOSITE Sample Matrix: STORMWTR

TR Collected By: MJS

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Took Downwoodon	Dec. 14	Haita	MDI	B# adla a al	Analysis Date
Test Parameter	Result	Units	MRL	Method	
Anthracene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzo(a)anthracene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzo(a)pyrene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzo(b)fluoranthene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzo(ghi)perylene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzo(k)fluoranthene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Benzoic acid	<4.9	μg/L	4.9	EPA 8270	03/01/10
Benzyl alcohol	<0.49	μg/L	0.49	EPA 8270	03/01/10
Bis(2-chloroethoxy) methane	<0.20	μg/L	0.20	EPA 8270	03/01/10
Bis(2-chloroethyl) ether	<0.20	μg/L	0.20	EPA 8270	03/01/10
Bis(2-chloroisopropyl) ether	<0.20	μg/L	0.20	EPA 8270	03/01/10
Bis(2-ethylhexyl) phthalate	1.2	μg/L	0.98	EPA 8270	03/01/10
Butyl benzyl phthalate	0.47	μg/L	0.20	EPA 8270	03/01/10
Chrysene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Dibenzo(a,h)anthracene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Dibenzofuran	<0.20	μg/L	0.20	EPA 8270	03/01/10
Diethyl phthalate	<0.20	μg/L	0.20	EPA 8270	03/01/10
Dimethyl phthalate	3.4	μg/L	0.20	EPA 8270	03/01/10
Di-n-butyl phthalate	<0.20	μg/L	0.20	EPA 8270	03/01/10
Di-n-octyl phthalate	<0.20	μg/L	0.20	EPA 8270	03/01/10
Fluoranthene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Fluorene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Hexachlorobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Hexachlorobutadiene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Hexachlorocyclopentadiene	<0.98	μg/L	0.98	EPA 8270	03/01/10
Hexachloroethane	<0.20	μg/L	0.20	EPA 8270	03/01/10
Indeno(1,2,3-cd)pyrene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Isophorone	<0.20	μg/L	0.20	EPA 8270	03/01/10
Naphthalene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Nitrobenzene	<0.20	μg/L	0.20	EPA 8270	03/01/10
N-Nitrosodi-n-propylamine	<0.20	μg/L	0.20	EPA 8270	03/01/10
N-Nitrosodiphenylamine	<0.20	μg/L	0.20	EPA 8270	03/01/10
Pentachlorophenol	<0.98	μg/L	0.98	EPA 8270	03/01/10
Phenanthrene	<0.20	μg/L	0.20	EPA 8270	03/01/10
Phenol	<0.49	μg/L	0.49	EPA 8270	03/01/10
Pyrene	<0.20	μg/L	0.20	EPA 8270	03/01/10

Report Date: 04/12/10 Validated By: Signature on File

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AO01996

System ID:

2/23/2010 12:42 **COMPLETE AND** Sample Collected: Sample Status: Sample ID: FO105260 **VALIDATED**

02/24/10 Sample Received:

NPDES STORMWTR WQ & FLOW MON Page 5 of 5 Proj./Company Name: Report Page:

4900 NW KITTRIDGE AVE (OF19) Address/Location:

MANHOLE COMPOSITE

OF19 Sample Point Code:

EID File #: 4010.001 COMPOSITE **NPDESSTM** LocCode: Sample Type:

STORMWTR MJS Sample Matrix: Collected By:

Comments:

QA/QC: For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Analysis Date **Test Parameter** Result Units MRL Method

End of Report for Sample ID: FO105260

Report Date: 04/12/10 Validated By: Signature on File

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Howard Holmes Test America-Portland 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY **ANALYSIS FOR PCBs**

Report Information:

Pace Project #: 10123473

Sample Receipt Date: 03/03/2010

Client Project #: PTB0814

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

March 30, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

March 29, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America Portland. The sample was analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 0.25-0.75 parts-per-trillion and were adjusted for the amount of the sample extracted.

The recoveries of the isotopically-labeled PCB internal standards in the sample extracts ranged from 47-109%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1668A. Since the quantification of the native congeners was based on isotope dilution and internal standard methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected PCB congeners. The sample contained similar levels of congeners #2 and #3 and was flagged "B" on the results table. In general, levels less than ten times the background are not considered statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using clean water that had been fortified with native standards. The results show that the spiked native compounds were recovered at 79-116%, with relative percent differences of 0.0-11.1%. These results indicate high degrees of accuracy and precision for these determinations. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN00064_2000
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 909 Wisconsin 9090 Wisconsin

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTB0814

D123477

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature:

Ice:

Y / N

needs Excel EDD

Standard TAT is requested unless specific due date is requested. => Due Date: 4ukds Initials: HZ

Analysis

Units

Expires

Comments

Sample ID: PTB0814-01 (FO105260 - Water)

Sampled: 02/23/10 12:42

001

1668 Coplanar PCBs - SUB ug/l

08/22/10 12:42

Containers Supplied:

1L Amber - Unpres. (C)

Please run 209 Congener list please

A / Pace 3/

Received By

Date/Time age 5 of 25

Sample Condition Upon Receipt Client Name: Courier: Fed Ex UPS USPS Client Commercial Pace Other Custody Seal on Cooler/Box Present: yes no ☐ ves ☐ no Seals intact: Packing Material: Bubble Wrap Bubble Bage None Other Temp Blank: Yes Type of Ice: Wet (Blue Samples on ice, cooling process has begun None 80344042 or 179425 Thermometer Used Date and initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents:__ Comments: Temp should be above freezing to 6°C ZYes DNo DNA 1. Chain of Custody Present: ØYes □No □NA Chain of Custody Filled Out: ZYes DNo DNA 3. Chain of Custody Relinquished: ∐Yes ⊠No **IIN/A** Sampler Name & Signature on COC: PIYAR DNO UNA 5 Samples Arrived within Hold Time: ☐Yes ☐No □N/A Short Hold Time Analysis (<72hr): TYME ZING TINA Rush Turn Around Time Requested: ©Yes □No □N⁄A Sufficient Volume: EYes DNo □NA 9. Correct Containers Used: □Yes ☑No □N/A -Pace Containers Used: ☑Yes □No Containers intact: □Yes □No □NA Filtered volume received for Dissolved tests 11. ZIYes DNo DNA Sample Labels match COC: -includes date/time/ID/Analysis H2SO4 EONH [] All containers needing acid/base preservation have been ☐Yes ☐No **□N/A** 13 checked. Noncompliance are noted in 13. Samp# All containers needing preservation are found to be in □Yes □No □NA compliance with EPA recommendation. Lot # of added Initial when Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water DYes DNo completed preservative

Client Notification/ Resolution:

Person Contacted:

Comments/ Resolution:

Project Manager Review:

Field Data Required?

Y / N

Date:

Date:

14.

□Yes □No □NA

TYPE THE THE

□Yes □No □N/A

□Yes □No □N/A

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Reach Coahdinal Stimbles**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Samples checked for dechlorination:

Headepace in VOA Vials (>6mm):

Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased):_

Trip Blank Present:

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Client's Sample ID PTB0814-01 (FO105260-Water) Lab Sample ID 10123473001

Filename P100324A_10
Injected By CVS

Total Amount Extracted 995 mL Matrix Water % Moisture NA Dilution NA Occupant Extracted NA Collected 03/23/

Dry Weight Extracted NA Collected 02/23/2010 12:42 **ICAL ID** P100324A03 Received 03/03/2010 10:04 CCal Filename(s) P100324A 02 Extracted 03/18/2010 19:00 Method Blank ID BLANK-24353 Analyzed 03/24/2010 18:30

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	7.995	2.98	2.0	0.935	47
13C-4-MoCB	3	11.254	2.92	2.0	1.14	57
13C-2,2'-DiCB	4	11.589	1.61	2.0	1.46	73
13C-4,4'-DiCB	15	19.570	1.55	2.0	1.23	62
13C-2,2',6-TrCB	19	15.939	1.01	2.0	1.78	89
13C-3,4,4'-TrCB	37	27.811	1.04	2.0	1.10	55
13C-2,2',6,6'-TeCB	54	19.895	0.79	2.0	1.30	65
13C-3,4,4',5-TeCB	81	35.056	0.76	2.0	1.29	64
13C-3,3',4,4'-TeCB	77	35.643	0.80	2.0	1.37	68
13C-2,2',4,6,6'-PeCB	104	26.419	1.61	2.0	1.40	70
13C-2,3,3',4,4'-PeCB	105	39.233	1.54	2.0	1.19	59
13C-2,3,4,4',5-PeCB	114	38.562	1.59	2.0	1.13	57
13C-2,3',4,4',5-PeCB	118	38.042	1.57	2.0	1.09	54
13C-2,3',4,4',5'-PeCB	123	37.706	1.54	2.0	1.11	56
13C-3,3',4,4',5-PeCB	126	42.386	1.61	2.0	1.25	63
13C-2,2',4,4',6,6'-HxCB	155	32.625	1.28	2.0	1.56	78
13C-HxCB (156/157)	156/157	45.421	1.26	4.0	2.32	58
13C-2,3',4,4 ['] ,5,5'-HxĆB	167	44.264	1.26	2.0	1.14	57
13C-3,3',4,4',5,5'-HxCB	169	48.709	1.22	2.0	1.20	60
13C-2,2',3,4',5,6,6'-HpCB	188	38.562	1.05	2.0	2.05	103
13C-2,3,3',4,4',5,5'-HpCB	189	51.279	1.06	2.0	1.34	67
13C-2,2',3,3',5,5',6,6'-OcCB	202	43.996	0.92	2.0	2.19	109
13C-2,3,3',4,4',5,5',6-OcCB	205	53.974	0.87	2.0	1.69	84
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.065	0.79	2.0	1.94	97
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	50.762	0.77	2.0	2.03	102
13CDeCB	209	58.307	0.72	2.0	1.61	81
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.250	1.03	2.0	1.13	56
13C-2,3,3',5,5'-PeCB	111	35.694	1.55	2.0	1.68	84
13C-2,2 ['] ,3,3 ['] ,5,5 ['] ,6-HpCB	178	41.681	1.04	2.0	1.89	94
Recovery Standards						
13C-2,5-DiCB	9	14.429	1.53	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.379	0.76	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	32.876	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.212	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	53.435	0.88	2.0	NA	NA
, ,-,-, , ,-,-	-		-	-		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.251
2		11.026	2.67	0.698 B		0.251
3		11.266	3.07	0.278 B		0.251
4				ND		0.251
5				ND		0.251
6				ND		0.251
7				ND		0.251
8				ND		0.251
9				ND		0.251
10				ND ND		0.251
11				ND ND		1.51
12	10/10					0.502
12	12/13			ND		
13	12/13			ND		0.502
14				ND		0.251
15				ND		0.251
16				ND		0.251
17				ND		0.251
18	18/30			ND		0.502
19				ND		0.251
20	20/28			ND		0.502
21	21/33			ND		0.502
22				ND		0.251
23				ND		0.251
24				ND		0.251
25				ND		0.251
26	26/29			ND		0.502
27				ND		0.251
28	20/28			ND		0.502
29	26/29			ND		0.502
30	18/30			ND		0.502
31	10/30	22.931	0.95	0.318		0.251
32		22.931	0.95	ND		0.251
33	21/33			ND ND		0.502
33 34	21/33			ND ND		0.502
34						0.251
35				ND		0.251
36				ND		0.251
37				ND		0.251
38				ND		0.251
39				ND		0.251
40	40/41/71			ND		1.51
41	40/41/71			ND		1.51
42				ND		0.502
43	43/73			ND		1.00
44	44/47/65			ND		1.51
45	45/51			ND		1.00
46	-			ND		0.502
47	44/47/65			ND		1.51
48	, , , , ,			ND		0.502
.0				140		0.002

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
IOFAC	CO-elutions	IX I	Natio	iig/L	iig/L	iig/L
49	49/69			ND		1.00
50	50/53			ND		1.00
51	45/51			ND		1.00
52		25.396	0.76	0.779		0.502
53	50/53			ND		1.00
54				ND		0.502
55				ND		0.502
56				ND		0.502
57				ND		0.502
58				ND		0.502
59	59/62/75			ND		1.51
60				ND		0.502
61	61/70/74/76			ND		2.01
62	59/62/75			ND		1.51
63				ND		0.502
64				ND		0.502
65	44/47/65			ND		1.51
66				ND		0.502
67				ND		0.502
68				ND		0.502
69	49/69			ND		1.00
70	61/70/74/76			ND		2.01
71	40/41/71			ND		1.51
72	10/11//1			ND		0.502
73	43/73			ND		1.00
74	61/70/74/76			ND		2.01
7 5	59/62/75			ND		1.51
76	61/70/74/76			ND		2.01
77	01/10/1-//10			ND		0.502
78				ND		0.502
79				ND		0.502
80				ND ND		0.502
81				ND		0.502
82				ND		0.502
83				ND ND		0.502
84				ND ND		0.502
85	85/116/117			ND ND		1.51
86	86/87/97/108/119/125			ND ND		3.01
87	86/87/97/108/119/125			ND ND		3.01
88	88/91			ND ND		1.00
89	00/91			ND ND		0.502
90	90/101/113			ND ND		1.51
90 91	88/91			ND ND		1.00
	00/91					1.00
92	03/08/400/403			ND ND		0.502
93	93/98/100/102			ND		2.01
94			4.00	ND 0.054		0.502
95		29.723	1.62	0.851		0.502
96				ND		0.502

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference ng's = Nanograms

Page 11 of 25

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.01
98	93/98/100/102			ND		2.01
99	00/00/100/102			ND		0.502
100	93/98/100/102			ND		2.01
101	90/101/113			ND		1.51
102	93/98/100/102			ND		2.01
103	00/00/100/102			ND		0.502
104				ND		0.502
105				ND		0.502
106				ND		0.502
107	107/124			ND		1.00
108	86/87/97/108/119/125			ND		3.01
109	00/07/07/100/110/120			ND		0.502
110	110/115	34.956	1.58	1.24		1.00
111	110/110			ND		0.502
112				ND		0.502
113	90/101/113			ND		1.51
114	00/101/110			ND		0.502
115	110/115	34.956	1.58	(1.24)		1.00
116	85/116/117			ND		1.51
117	85/116/117			ND		1.51
118	33/113/11/	38.075	1.51	1.02		0.502
119	86/87/97/108/119/125			ND		3.01
120	00/07/07/100/110/120			ND		0.502
121				ND		0.502
122				ND		0.502
123				ND		0.502
124	107/124			ND		1.00
125	86/87/97/108/119/125			ND		3.01
126	00/07/07/100/110/120			ND		0.502
127				ND		0.502
128	128/166			ND		1.00
129	129/138/163			ND		1.51
130	. = 0, . 0 0, . 0 0			ND		0.502
131				ND		0.502
132				ND		0.502
133				ND		0.502
134	134/143			ND		1.00
135	135/151			ND		1.00
136				ND		0.502
137				ND		0.502
138	129/138/163			ND		1.51
139	139/140			ND		1.00
140	139/140			ND		1.00
141	-			ND		0.502
142				ND		0.502
143	134/143			ND		1.00
144				ND		0.502

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.502
146				ND		0.502
147	147/149			ND		1.00
148	147/145			ND		0.502
149	147/149			ND		1.00
150	147/149			ND ND		0.502
	405/454			ND ND		1.00
151	135/151					
152	450/400			ND		0.502
153	153/168			ND		1.00
154				ND		0.502
155				ND		0.502
156	156/157			ND		1.00
157	156/157			ND		1.00
158				ND		0.502
159				ND		0.502
160				ND		0.502
161				ND		0.502
162				ND		0.502
163	129/138/163			ND		1.51
164	120/100/100			ND		0.502
165				ND		0.502
166	128/166			ND		1.00
160	120/100			ND ND		0.500
167	450/400			ND		0.502
168	153/168			ND		1.00
169				ND		0.502
170				ND		0.502
171	171/173			ND		1.00
172				ND		0.502
173	171/173			ND		1.00
174				ND		0.502
175				ND		0.502
176				ND		0.502
177				ND		0.502
178				ND		0.502
179				ND		0.502
180	180/193			ND		1.00
181	100/100			ND		0.502
182				ND		0.502
183	183/185			ND		1.00
184	103/103			ND ND		0.502
	102/10E			ND ND		0.502
185	183/185					1.00
186				ND		0.502
187				ND		0.502
188				ND		0.502
189				ND		0.502
190				ND		0.502
191				ND		0.502
192				ND		0.502

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193			ND		1.00
194				ND		0.754
195				ND		0.754
196				ND		0.754
197	197/200			ND		1.51
198	198/199			ND		1.51
199	198/199			ND		1.51
200	197/200			ND		1.51
201				ND		0.754
202				ND		0.754
203				ND		0.754
204				ND		0.754
205				ND		0.754
206				ND		0.754
207				ND		0.754
208				ND		0.754
209				ND		0.754

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTB0814-01 (FO105260-Water) 10123473001 P100324A_10

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	0.976	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	0.318	
Total Tetrachloro Biphenyls	0.779	
Total Pentachloro Biphenyls	3.11	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	5.18	

ND = Not Detected

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-24353
Filename P100324A_05
Injected By CVS

Injected By CVS Matrix Water
Total Amount Extracted 923 mL Extracted 03/18/2010 19:00

ICAL ID P100324A03 Analyzed 03/24/2010 13:08

CCal Filename(s) P100324A_02 Dilution NA

	1 10002-17					
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.019	3.45	2.0	0.794	40
13C-4-MoCB	3	11.266	2.93	2.0	0.958	48
13C-2,2'-DiCB	3 4	11.601	1.70	2.0	1.16	58
13C-4,4'-DiCB	15	19.582	1.53	2.0	1.12	56
13C-2,2',6-TrCB	19	15.951	1.05	2.0	1.39	69
13C-3,4,4'-TrCB	37	27.811	1.03	2.0	0.918	46
13C-2,2',6,6'-TeCB	54	19.912	0.78	2.0	1.04	52
13C-3,4,4',5-TeCB	81	35.055	0.77	2.0	1.23	61
13C-3,3',4,4'-TeCB	77	35.626	0.77	2.0	1.29	64
13C-2,2',4,6,6'-PeCB	104	26.419	1.61	2.0	1.22	61
13C-2,3,3',4,4'-PeCB	105	39.231	1.55	2.0	1.15	57
13C-2,3,4,4',5-PeCB	114	38.561	1.56	2.0	1.11	55
13C-2,3',4,4',5-PeCB	118	38.041	1.57	2.0	1.09	55
13C-2,3',4,4',5'-PeCB	123	37.705	1.57	2.0	1.10	55
13C-3,3',4,4',5-PeCB	126	42.384	1.57	2.0	1.21	60
13C-2,2',4,4',6,6'-HxCB	155	32.624	1.31	2.0	1.57	79
13C-HxCB (156/157)	156/157	45.437	1.25	4.0	2.36	59
13C-2,3',4,4',5,5'-HxCB	167	44.263	1.24	2.0	1.16	58
13C-3,3',4,4',5,5'-HxCB	169	48.707	1.23	2.0	1.23	61
13C-2,2',3,4',5,6,6'-HpCB	188	38.561	1.06	2.0	2.04	102
13C-2,3,3',4,4',5,5'-HpCB	189	51.272	1.04	2.0	1.35	67
13C-2,2',3,3',5,5',6,6'-OcCB	202	43.994	0.92	2.0	2.21	111
13C-2,3,3',4,4',5,5',6-OcCB	205	53.967	0.89	2.0	1.69	84
13C-2,2',3,3',4,4',5,5',6-NoCB		56.057	0.78	2.0	2.00	100
13C-2,2',3,3',4,5,5',6,6'-NoCB		50.733	0.80	2.0	2.03	102
13CDeCB	209	58.278	0.68	2.0	1.66	83
	203	30.270	0.00	2.0	1.00	05
Cleanup Standards			4.00			40
13C-2,4,4'-TrCB	28	23.266	1.03	2.0	0.927	46
13C-2,3,3',5,5'-PeCB	111	35.709	1.59	2.0	1.63	81
13C-2,2',3,3',5,5',6-HpCB	178	41.663	1.05	2.0	1.81	91
Recovery Standards						
13C-2,5-DiCB	9	14.453	1.53	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.379	0.78	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	32.875	1.58	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.210	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	53.449	0.92	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-24353 P100324A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.271
2		11.038	2.71	0.757		0.271
3		11.302	2.94	0.305		0.271
4				ND		0.271
4 5 6 7				ND		0.271
6				ND		0.271
7				ND		0.271
8				ND		0.271
9				ND		0.271
10				ND		0.271
11				ND		1.63
12	12/13			ND		0.542
13	12/13			ND		0.542
14	12/10			ND		0.271
15				ND		0.271
16				ND		0.271
17				ND		0.271
18	18/30			ND		0.542
19	10/00			ND		0.271
20	20/28			ND		0.542
21	21/33			ND		0.542
22	21/00			ND		0.271
23				ND		0.271
24				ND		0.271
25				ND		0.271
26	26/29			ND		0.542
27	_0/_0			ND		0.271
28	20/28			ND		0.542
29	26/29			ND		0.542
30	18/30			ND		0.542
31	. 3, 33			ND		0.271
32				ND		0.271
33	21/33			ND		0.542
34	_,,,,,			ND		0.271
35				ND		0.271
36				ND		0.271
37				ND		0.271
38				ND		0.271
39				ND		0.271
40	40/41/71			ND		1.63
41	40/41/71			ND		1.63
42				ND		0.542
43	43/73			ND		1.08
44	44/47/65			ND		1.63
45	45/51			ND		1.08

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-24353 P100324A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.542
47	44/47/65			ND ND		1.63
48	44/47/05			ND		0.542
49	49/69			ND ND		1.08
50	50/53			ND ND		1.08
50 51	45/51			ND ND		1.08
52	45/51			ND ND		0.542
53	50/53			ND ND		1.08
54	30/33			ND		0.542
55				ND ND		0.542
56				ND		0.542
57				ND		0.542
58				ND ND		0.542
59	59/62/75			ND ND		1.63
60	33/02/13			ND ND		0.542
61	61/70/74/76			ND ND		2.17
62	59/62/75			ND ND		1.63
63	39/02/13			ND		0.542
64				ND ND		0.542
65	44/47/65			ND ND		1.63
66	44/47/03			ND ND		0.542
67				ND ND		0.542
68				ND ND		0.542
69	49/69			ND ND		1.08
70	61/70/74/76			ND		2.17
70 71	40/41/71			ND ND		1.63
72	40/41/71			ND ND		0.542
73	43/73			ND ND		1.08
73 74	61/70/74/76			ND ND		2.17
74 75	59/62/75			ND ND		1.63
75 76	61/70/74/76			ND ND		2.17
70 77	01/10/14/10			ND ND		0.542
77 78				ND ND		0.542
78 79				ND ND		0.542
80				ND ND		0.542
80 81				ND ND		0.542
82				ND ND		0.542
83				ND ND		0.542
84				ND ND		0.542
85	85/116/117			ND ND		1.63
86	86/87/97/108/119/125			ND ND		3.25
87	86/87/97/108/119/125			ND ND		3.25 3.25
87 88	88/91			ND ND		3.25 1.08
88 89	00/3 I			ND ND		0.542
90	00/101/112					
90	90/101/113			ND		1.63

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-24353 P100324A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		1.08
92				ND		0.542
93	93/98/100/102			ND		2.17
94	33,33,133,132			ND		0.542
95				ND		0.542
96				ND		0.542
97	86/87/97/108/119/125			ND		3.25
98	93/98/100/102			ND		2.17
99	33,33,133,132			ND		0.542
100	93/98/100/102			ND		2.17
101	90/101/113			ND		1.63
102	93/98/100/102			ND		2.17
103	00/00/100/102			ND		0.542
104				ND		0.542
105				ND		0.542
106				ND		0.542
107	107/124			ND		1.08
108	86/87/97/108/119/125			ND		3.25
109	00/01/31/100/113/123			ND		0.542
110	110/115			ND		1.08
111	110/119			ND ND		0.542
112				ND ND		0.542
113	90/101/113			ND		1.63
114	30/101/119			ND		0.542
115	110/115			ND ND		1.08
116	85/116/117			ND ND		1.63
117	85/116/117			ND ND		1.63
118	03/110/117			ND ND		0.542
119	86/87/97/108/119/125			ND ND		3.25
120	00/07/97/100/119/123			ND ND		0.542
121				ND ND		0.542
122				ND ND		0.542
123				ND ND		0.542
123	107/124			ND ND		1.08
125	86/87/97/108/119/125			ND ND		3.25
126	00/07/97/100/119/123			ND ND		0.542
127				ND ND		0.542
128	128/166			ND ND		1.08
129	129/138/163			ND ND		1.63
130	123/100/103			ND ND		0.542
131				ND ND		0.542
132				ND ND		0.542
132				ND ND		0.542 0.542
134	134/143			ND ND		1.08
134	135/151			ND ND		1.08
133	133/131			ואט		1.00

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-24353 P100324A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.542
137				ND		0.542
138	129/138/163			ND		1.63
139	139/140			ND		1.08
140	139/140			ND		1.08
141	100/110			ND		0.542
142				ND		0.542
143	134/143			ND		1.08
144				ND		0.542
145				ND		0.542
146				ND		0.542
147	147/149			ND		1.08
148	,			ND		0.542
149	147/149			ND		1.08
150	,			ND		0.542
151	135/151			ND		1.08
152				ND		0.542
153	153/168			ND		1.08
154				ND		0.542
155				ND		0.542
156	156/157			ND		1.08
157	156/157			ND		1.08
158				ND		0.542
159				ND		0.542
160				ND		0.542
161				ND		0.542
162				ND		0.542
163	129/138/163			ND		1.63
164	1_0, 100, 100			ND		0.542
165				ND		0.542
166	128/166			ND		1.08
167				ND		0.542
168	153/168			ND		1.08
169				ND		0.542
170				ND		0.542
171	171/173			ND		1.08
172				ND		0.542
173	171/173			ND		1.08
174	· ·· · · · ·			ND		0.542
175				ND		0.542
176				ND		0.542
177				ND		0.542
178				ND		0.542
179				ND		0.542
180	180/193			ND		1.08

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-24353 P100324A 05

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.542
182				ND		0.542
183	183/185			ND		1.08
184				ND		0.542
185	183/185			ND		1.08
186				ND		0.542
187				ND		0.542
188				ND		0.542
189				ND		0.542
190				ND		0.542
191				ND		0.542
192				ND		0.542
193	180/193			ND		1.08
194				ND		0.813
195				ND		0.813
196				ND		0.813
197	197/200			ND		1.63
198	198/199			ND		1.63
199	198/199			ND		1.63
200	197/200			ND		1.63
201				ND		0.813
202				ND		0.813
203				ND		0.813
204				ND		0.813
205				ND		0.813
206				ND		0.813
207				ND		0.813
208				ND		0.813
209				ND		0.813

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKHM BLANK-24353 P100324A_05

 Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	1.06	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	1.06	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)
Method Blank ID

LCS-24354 P100324A_13 912 mL

P100324A03 P100324A_02 BLANK-24353 Matrix Water Dilution NA

Extracted 03/18/2010 19:00 Analyzed 03/24/2010 21:45

Injected By CVS

	l l	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	0.835	83	2.0	0.755	38	
3	1.0	1.14	114	2.0	0.862	43	
4	1.0	1.06	106	2.0	1.14	57	
15	1.0	0.869	87	2.0	0.930	47	
19	1.0	0.935	94	2.0	1.34	67	
37	1.0	0.868	87	2.0	0.895	45	
54	1.0	0.837	84	2.0	0.992	50	
81	1.0	0.845	84	2.0	1.12	56	
77	1.0	0.793	79	2.0	1.22	61	
104	1.0	1.03	103	2.0	1.25	63	
105	1.0	0.926	93	2.0	1.13	56	
114	1.0	0.925	93	2.0	1.06	53	
118	1.0	0.948	95	2.0	1.02	51	
123	1.0	0.904	90	2.0	1.05	52	
126	1.0	0.849	85	2.0	1.19	60	
155	1.0	1.03	103	2.0	1.52	76	
156/157	2.0	1.92	96	4.0	2.16	54	
167	1.0	0.955	96	2.0	1.06	53	
169	1.0	0.858	86	2.0	1.12	56	
188	1.0	1.04	104	2.0	2.05	102	
189	1.0	0.963	96	2.0	1.34	67	
202	1.0	0.964	96	2.0	2.40	120	
205	1.0	0.918	92	2.0	1.76	88	
206	1.0	0.960	96	2.0	1.96	98	
208	1.0	0.958	96	2.0	2.13	107	
209	1.0	1.16	116	2.0	1.65	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID
Filename
Total Amount Extracts

Total Amount Extracted ICAL ID

CCal Filename(s)
Method Blank ID

LCSD-24355 P100325A_05 935 mL

P100325A01 P100325A_02 BLANK-24353 Matrix Water Dilution NA

Extracted 03/18/2010 19:00 Analyzed 03/25/2010 05:19

Injected By CVS

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	0.859	86	2.0	0.926	46	
3	1.0	1.02	102	2.0	1.07	54	
4	1.0	1.04	104	2.0	1.43	71	
15	1.0	0.789	79	2.0	1.14	57	
19	1.0	0.863	86	2.0	1.70	85	
37	1.0	0.880	88	2.0	0.897	45	
54	1.0	0.850	85	2.0	1.10	55	
81	1.0	0.859	86	2.0	1.11	56	
77	1.0	0.813	81	2.0	1.17	58	
104	1.0	1.01	101	2.0	1.25	63	
105	1.0	0.893	89	2.0	1.08	54	
114	1.0	0.921	92	2.0	0.997	50	
118	1.0	0.954	95	2.0	0.997	50	
123	1.0	0.906	91	2.0	1.01	50	
126	1.0	0.830	83	2.0	1.09	54	
155	1.0	1.02	102	2.0	1.49	75	
156/157	2.0	1.84	92	4.0	2.08	52	
167	1.0	0.939	94	2.0	1.00	50	
169	1.0	0.882	88	2.0	1.04	52	
188	1.0	1.03	103	2.0	2.08	104	
189	1.0	0.923	92	2.0	1.29	65	
202	1.0	0.947	95	2.0	2.39	120	
205	1.0	0.892	89	2.0	1.74	87	
206	1.0	0.902	90	2.0	2.10	105	
208	1.0	0.936	94	2.0	2.12	106	
209	1.0	1.15	115	2.0	1.67	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America-Portland

 Spike 1 ID
 LCS-24354
 Spike 2 ID
 LCSD-24355

 Spike 1 Filename
 P100324A_13
 Spike 2 Filename
 P100325A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	83	86	3.6	
4-MoCB	3	114	102	11.1	
2,2'-DiCB	4	106	104	1.9	
4,4'-DiCB	15	87	79	9.6	
2,2',6-TrCB	19	94	86	8.9	
3,4,4'-TrCB	37	87	88	1.1	
2,2',6,6'-TeCB	54	84	85	1.2	
3,3',4,4'-TeCB	77	79	81	2.5	
3,4,4',5-TeCB	81	84	86	2.4	
2,2',4,6,6'-PeCB	104	103	101	2.0	
2,3,3',4,4'-PeCB	105	93	89	4.4	
2,3,4,4',5-PeCB	114	93	92	1.1	
2,3',4,4',5-PeCB	118	95	95	0.0	
2,3',4,4',5'-PeCB	123	90	91	1.1	
3,3',4,4',5-PeCB	126	85	83	2.4	
2,2',4,4',6,6'-HxCB	155	103	102	1.0	
(156/157)	156/157	96	92	4.3	
2,3',4,4',5,5'-HxCB	167	96	94	2.1	
3,3',4,4',5,5'-HxCB	169	86	88	2.3	
2,2',3,4',5,6,6'-HpCB	188	104	103	1.0	
2,3,3',4,4',5,5'-HpCB	189	96	92	4.3	
2,2',3,3',5,5',6,6'-OcCB	202	96	95	1.0	
2,3,3',4,4',5,5',6-OcCB	205	92	89	3.3	
2,2',3,3',4,4',5,5',6-NoCB	206	96	90	6.5	
2,2',3,3',4,5,5',6,6'-NoCB	208	96	94	2.1	
Decachlorobiphenyl	209	116	115	0.9	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

March 22, 2010

Analytical Report for Service Request No: K1001691

Jennifer Shackelford Portland, City of 1120 SW Fifth Avenue # 1000 Portland, OR 97204

RE: NPDES Stormwater Mon.

Dear Jennifer:

Enclosed are the results of the samples submitted to our laboratory on February 25, 2010. For your reference, these analyses have been assigned our service request number K1001691.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/afs

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Service Request No.:

K1001691

Project:

NPDES Stormwater Mon.

Date Received:

02/25/10

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Two field samples were received for analysis at Columbia Analytical Services on 02/25/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Second Source Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Initial Calibration Verification (ICV) criteria are met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Methoxychlor in ICAL 8946. The ICV results were reported from the acceptable column. The data quality was not affected. No further corrective action was necessary.

Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for one or more analytes was exceeded in both samples. The higher of the two values was reported when no evidence of matrix interference was observed

Elevated Detection Limits:

The detection limit was elevated for several analytes in both samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The samples were diluted in order to achieve optimal resolution of the internal standard. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for Benzyl Alcohol in Initial Calibration (ICAL) ID CAL9295. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 9.0%. The calibration met the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

110

Approved by	W	Date 03 2211
* * * * * * * * * * * * * * * * * * *		

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for 2,4-Dimethylphenol in the replicate Laboratory Control Samples (LCS/DLCS) KWG1001811-1 and KWG1001811-2 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

	De	03/22/10
Approved by	Date	

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon.

Sample Matrix:

Water

Service Request: K1001691 **Date Collected:** 02/23/2010

Date Received: 02/25/2010

Organochlorine Pesticides

Sample Name:

FO105260

Lab Code:

K1001691-001

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	1.3 PD	1.0	0.42	2	03/02/10	03/08/10	KWG1001818	
beta-BHC	ND U	1.0	0.82	2	03/02/10	03/08/10	KWG1001818	
gamma-BHC (Lindane)	ND U	1.0	0.94	2	03/02/10	03/08/10	KWG1001818	
delta-BHC	ND U	1.0	0.28	2	03/02/10	03/08/10	KWG1001818	
Heptachlor	ND Ui	1.0	1.0	2	03/02/10	03/08/10	KWG1001818	
Aldrin	ND Ui	1.0	1.0	2	03/02/10	03/08/10	KWG1001818	
Heptachlor Epoxide	ND Ui	1.0	0.63	2	03/02/10	03/08/10	KWG1001818	
gamma-Chlordane†	ND U	1.0	0.62	2	03/02/10	03/08/10	KWG1001818	
Endosulfan I	3.1 PD	1.0	0.50	2	03/02/10	03/08/10	KWG1001818	
alpha-Chlordane	ND U	1.0	0.54	2	03/02/10	03/08/10	KWG1001818	
Dieldrin	ND Ui	6.0	6.0	2	03/02/10	03/08/10	KWG1001818	
4,4'-DDE	ND Ui	3.0	3.0	2	03/02/10	03/08/10	KWG1001818	
Endrin	ND Ui	1.4	1.4	2	03/02/10	03/08/10	KWG1001818	
Endosulfan II	ND Ui	1.3	1.3	2	03/02/10	03/08/10	KWG1001818	
4,4'-DDD	9.9 D	1.0	0.42	2	03/02/10	03/08/10	KWG1001818	
Endrin Aldehyde	ND Ui	1.9	1.9	2	03/02/10	03/08/10	KWG1001818	,,,,,
Endosulfan Sulfate	ND U	1.0	0.56	2	03/02/10	03/08/10	KWG1001818	
4,4'-DDT	70 PD	5.0	1.7	10	03/02/10	03/12/10	KWG1001818	
Endrin Ketone	ND U	1.0	0.64	2	03/02/10	03/08/10	KWG1001818	
Methoxychlor	ND U	1.0	0.56	2	03/02/10	03/08/10	KWG1001818	
Toxaphene	ND Ui	350	350	2	03/02/10	03/08/10	KWG1001818	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	33	20-102	03/08/10	Acceptable	
Decachlorobiphenyl	103	35-128	03/08/10	Acceptable	

· Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 03/17/2010 11:34:08 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic

7

SuperSet Reference:

Page

1 of 1

RR111824

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon.

Sample Matrix:

Water

Service Request: K1001691

Date Collected: NA
Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG1001818-3

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.50	0.21	1	03/02/10	03/05/10	KWG1001818	
beta-BHC	ND U	0.50	0.41	1	03/02/10	03/05/10	KWG1001818	
gamma-BHC (Lindane)	ND U	0.50	0.47	1	03/02/10	03/05/10	KWG1001818	
delta-BHC	ND U	0.50	0.14	1	03/02/10	03/05/10	KWG1001818	
Heptachlor	ND U	0.50	0.18	1	03/02/10	03/05/10	KWG1001818	
Aldrin	ND U	0.50	0.11	1	03/02/10	03/05/10	KWG1001818	
Heptachlor Epoxide	ND U	0.50	0.21	1	03/02/10	03/05/10	KWG1001818	
gamma-Chlordane†	ND U	0.50	0.31	1	03/02/10	03/05/10	KWG1001818	
Endosulfan I	ND U	0.50	0.25	1	03/02/10	03/05/10	KWG1001818	
alpha-Chlordane	ND U	0.50	0.27	1	03/02/10	03/05/10	KWG1001818	
Dieldrin	ND U	0.50	0.37	1	03/02/10	03/05/10	KWG1001818	
4,4'-DDE	ND U	0.50	0.19	1	03/02/10	03/05/10	KWG1001818	
Endrin	ND U	0.50	0.49	1	03/02/10	03/05/10	KWG1001818	
Endosulfan II	ND Ui	0.50	0.50	1	03/02/10	03/05/10	KWG1001818	
4,4'-DDD	ND U	0.50	0.21	1	03/02/10	03/05/10	KWG1001818	
Endrin Aldehyde	ND U	0.50	0.21	1	03/02/10	03/05/10	KWG1001818	
Endosulfan Sulfate	ND U	0.50	0.28	-1	03/02/10	03/05/10	KWG1001818	
4,4'-DDT	ND U	0.50	0.17	1	03/02/10	03/05/10	KWG1001818	
Endrin Ketone	ND U	0.50	0.32	1	03/02/10	03/05/10	KWG1001818	
Methoxychlor	ND U	0.50	0.28	1	03/02/10	03/05/10	KWG1001818	
Toxaphene	ND Ui	61	61	1	03/02/10	03/05/10	KWG1001818	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	47	20-102	03/05/10	Acceptable	
Decachlorobiphenyl	70	35-128	03/05/10	Acceptable	

Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 03/17/2010 11:34:17

Form 1A - Organic 9

Sun

Page

1 of 1

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon.

Sample Matrix:

Water

Service Request: K1001691

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method: EPA 3535A

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
FO105260	K1001691-001	33 D	103 D
FO105261	K1001691-002	38 D	77 D
Method Blank	KWG1001818-3	47	70
Lab Control Sample	KWG1001818-1	41	60
Duplicate Lab Control Sample	KWG1001818-2	43	57

Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	20-102
Sur2 =	Decachlorobiphenyl	35-128

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/17/2010 11:34:22

Form 2A - Organic

SuperSet Reference:

10

RR111824

Page

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon.

Sample Matrix:

Water

Service Request: K1001691 **Date Extracted:** 03/02/2010

Date Analyzed: 03/05/2010

Lab Control Spike/Duplicate Lab Control Spike Summary **Organochlorine Pesticides**

Extraction Method: EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG1001818

Lab Control Sample KWG1001818-1

Duplicate Lab Control Sample KWG1001818-2

		Control Spike	e		Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	7.80	10.0	78	8.02	10.0	80	36-122	3	30
beta-BHC	8.17	10.0	82	8.55	10.0	85	42-125	5	30
gamma-BHC (Lindane)	8.00	10.0	80	8.04	10.0	80	44-117	1	30
delta-BHC	8.21	10.0	82	8.19	10.0	82	48-123	0	30
Heptachlor	7.55	10.0	76	8.05	10.0	80	40-115	6	30
Aldrin	6.72	10.0	67	6.91	10.0	69	10-102	3	30
Heptachlor Epoxide	7.09	10.0	71	7.39	10.0	74	49-109	4	30
gamma-Chlordane	7.75	10.0	78	8.06	10.0	81	47-113	4	30
Endosulfan I	6.85	10.0	69	7.40	10.0	74	35-115	8	30
alpha-Chlordane	7.81	10.0	78	7.89	10.0	79	45-115	1	30
Dieldrin	7.93	10.0	79	8.22	10.0	82	50-115	4	30
4,4'-DDE	7.48	10.0	75	7.47	10.0	75	41-116	0	30
Endrin	8.98	10.0	90	9.21	10.0	92	48-126	3	30
Endosulfan II	7.90	10.0	79	8.27	10.0	83	28-128	5	30
4,4'-DDD	8.11	10.0	81	8.25	10.0	83	33-132	2	30
Endrin Aldehyde	7.04	10.0	70	7.65	10.0	77	27-104	8	30
Endosulfan Sulfate	7.65	10.0	76	8.02	10.0	80	38-118	5	30
4,4'-DDT	7.99	10.0	80	7.95	10.0	80	42-143	0	30
Endrin Ketone	7.38	10.0	74	7.85	10.0	79	30-124	6	30
Methoxychlor	8.46	10.0	85	8.65	10.0	87	43-143	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page

1 of 1

Columbia Analytical Services

CHAIN OF CUSTODY

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FAX (360) 636-1068

П

PAGE

REMARKS βĨ Z Zh CIRCLE ONE > Š S RECEIVED BY: = F Š Š Se Se Š ë 70591 XOV OTHER Ag Ag DOC (CITC(E) NO2+NO3 ¥ X Z Ž NORTHWEST Cond. Cl. SO. PO. Sond Cl. SO. PO. Sond Cl. SO. PO. Sond Cl. SO. PO. Sond Cl. Sond C No Hex-Chrom Mn Mn Νg Delosi Dissolved Ž \leq 9 9 S Œ. Œ RELINGUISHED BY dod C A13/19/ S AK ŏ Ö *INDICATE STATE HYDROCARBON PROCEDURE: ္ပ ၀ O O 198 4991 Q a B Ca SPECIAL INSTRUCTIONS/COMMENTS മ Be Circle which metals are to be analyzed Hydrocarbons (*See below) Ba Ва Sb S As As Juorsa Dorsa Delinelovinias Juorsa Dorsa D Dissolved Metals: Al Total Metals: Al Date/Ing RECEIVED BY: NUMBER OF CONTAINERS TURNAROUND REQUIREMENTS Standard (10-15 working days) INVOICE INFORMATION MATRIX Requested Report Date See. 2 Provide FAX Results LAB I.D. でなっとう人 stormustic 24 hr. 5 Day 99 Bill To: 747 TIME P.O. # 3 Williams Date/Time 2 2 Report Dup., MS, MSD as DATE RELINQUISHED BY I. Routine Report: Method IV. CLP Deliverable Report REPORT REQUIREMENTS Data Validation Report (includes all raw data) Blank, Surrogate, as CNA. FLY 4 College College SAMPLE I.D. required 1000L required SAMPLER'S SIGNATURE ije ije V. EDD E-MAIL ADDRESS PROJECT NAME CITY/STATE/ZIP PHONE #

RCOC #1 06/03

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Service Request K10 0/691	PC								
Received: 115 10 Opened: 125 10 By: 1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered 2. Samples were received in: (circle) Cooler Box Envelope Other 3. Were custody seals on coolers? NA Y N If yes, how many and where?		NA							
If present, were custody seals intact? Cooler Temp Thermometer Cooler/COC Temp °C Blank °C ID ID NA Tracking Number S.H 9.4 248	W	Y N							
Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA Y N Did all sample labels complete (i.e analysis, preservation, etc.)? NA Y N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y N Were appropriate bottles/containers and volumes received for the tests indicated? NA Y N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below WA Y N Were VOA vials received without headspace? Indicate in the table below. Sample ID on Bottle Sample ID on COC Identified by:									
Sample ID Bottle Count Bottle Type Temp Space Broke B	Initials	s Time							
Notes, Discrepancies, & Resolutions: Sel pk3 Haw + wavm									

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302

	١	V	
		ackslash	
425-420-9200 FAX 420-9210	FAX 924-9290	FAX 906-9210	FAX 563-9210
425-420-9200	509-924-9200	503-906-9200	907-563-9200

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

															(0, 6)		
BO814	D REQUEST 5 Days *	c Analyses 3 2 1 <1]	2 1 <1		ndard may incur Rush Charges.	LOCATION/ TA COMMENTS WO ID									DATE 14; 4	DATE: 2/65/16 TIME: 16:20	TEMP:	
Work Order #: PTBOS14	TURNAROUND REQUEST in Business Days *	Organic & Inorganic Analyses	TD: Petroleum Hydrocarbon Analyses	5 4 3	OTHER Specific	79	MATRIX # OF LC (W, S; O) CONT.	N 3	7							FIRM: J. A.P.	FIRM: TAP	E 7)	
X				_		1.	20									0	3 Johnson	111/	
PORT	satle			-												RECEIVED BY: WALL GA	RECEIVED BY: PRINT NAME:		
CHAIN OF CUSTODY REPORT	Charles (Intle		36298	PRESERVATIVE	PEOTIESTED ANALYSES						-				1,00	PRINT PRINT	RECEI	-	
CHAIN OF	INVOICE TO:		P.O. NUMBER:	-											<i>i</i>	Nord TIME: 14	DATE: TIME:		
	-	ce/teral			SYIM	31	9444 1946 1946 1946 1946	××	<u>×</u>							-FIRM C, the & J Chrothand		्री	
	yend	lennifor Shackelteral		PROJECT NAME: NPDFS Stormwater Mon.	•		SAMPLING DATE/TIME	1742 of	110 1328							Zirk FIRM: C	FIRM:	of Place sond to PACE	
	In of total	Jennif	FAX:	NPDES Stor)		MPLE	160 1/23/10	Mei 1/13/10				· · · · ·		74.0	ach tarrie		of Place	,
	CLIENT: C.	ADDRESS:	PHONE	PROJECT NAME:	PROJECT NUMBER:	SAMPLED BY:	CLIENT SAMPLE IDENTIFICATION	, F0105260	, MOIO 524	, ,	r v	ין ע	∞	6	10	RELEASED BY: W	RELEASED BY: PRINT NAME:	ADDITIONAL REMARKS:	

TestAmerica Portland Sample Receiving Checklist

		der #: PTBO814 Date/Time Received: me and Project: City of Cortland-	2/25/10 1620 NPDES							
Time ED	Zone: T/EST		☐AK ☐OTHER							
Coo	oler #(: erature		Temperature out of Range: Not enough or No IceIce MeltedW/in 4 Hrs of collectionOther:							
N/A	Yes	No	Initials:							
abla		1. If ESI client, were temp blanks received? If no, do	ocument on NOD.							
X		☐ 2. Cooler Seals intact? (N/A if hand delivered) if no,	document on NOD.							
	abla'	☐ 3. Chain of Custody present? If no, document on NO	OD.							
	Ø [™]	4. Bottles received intact? If no, document on NOD	•							
	X	5. Sample is not multiphasic? If no, document on N	OD.							
	M	☐ 6. Proper Container and preservatives used? If no, d	locument on NOD.							
K	7. pH of all samples checked and meet requirements? If no, document on NOD.									
Do		8. Cyanide samples checked for sulfides and meet re	equirements? If no, notify PM.							
W.	☐ ☐ 9. HF Dilution required?									
	N N	 10. Sufficient volume provided for all analysis? If n PM before proceeding. 11. Did chain of custody agree with samples receive 								
		12. Is the "Sampled by" section of the COC complete	ed?							
X		☐ 13. Were VOA/Oil Syringe samples without headsp	ace?							
囡		☐ 14. Were VOA vials preserved? ☐HCl ☐Sodium	Thiosulfate Ascorbic Acid							
^		15. Did samples require preservation with sodium th	iosulfate?							
		☐ 16. If yes to #15, was the residual chlorine test nega	tive? If no, document on NOD.							
XX,		☐ 17. Are dissolved/field filtered metals bottles sedim	ent-free? If no, document on NOD.							
		 18. Is sufficient volume provided for client requeste no, document on NOD and contact PM before proce 19. Are analyses with short holding times received in the contact PM before processes. 	eding.							
	Ø.	20. Was Standard Turn Around (TAT) requested?								
	X	21. Receipt date(s) < 48 hours past the collection date	te(s)? If no, notify PM.							

TestAmerica Portland

Sample Receiving Checklist

Work Order #: Login Checks: Initials N/A Yes 22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM. 23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If no, document on NOD and contact PM. 24. Did the chain of custody include "received by" and "relinquished by" signatures. dates and times? 25. Were special log in instructions read and followed? 26. Were tests logged checked against the COC? 27. Were rush notices printed and delivered? 28. Were short hold notices printed and delivered? 29. Were subcontract COCs printed? ☐ 30. Was HF dilution logged? Labeling and Storage Checks: Initials No Yes 31. Were the subcontracted samples/containers put in Sx fridge? 32. Were sample bottles and COC double checked for dissolved/filtered metals? 33. Did the sample ID, Date, and Time from label match what was logged? 34. Were Foreign sample stickers affixed to each container and containers stored in foreign fridge? 35. Were HF stickers affixed to each container, and containers stored in Sx fridge? 36. Was an NOD for created for noted discrepancies and placed in folder?

Document any problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

form (NOD).

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

March 19, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: NPDES

Enclosed are the results of analyses for samples received by the laboratory on 02/25/10 16:20. The following list is a summary of the Work Orders contained in this report, generated on 03/19/10 17:32.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTB0814	NPDES	36238

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford03/19/10 17:32

	ANALYTICAL REPO	ORT FOR SAMI	PLES	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO105260	PTB0814-01	Water	02/23/10 12:42	02/25/10 16:20
FO105261	PTB0814-02	Water	02/23/10 13:28	02/25/10 16:20

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory **NPDES** Project Name:

6543 N. Burlington Ave. Report Created: Project Number: 36238 Portland, OR 97203 Project Manager: Jennifer Shackelford 03/19/10 17:32

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTB0814-01 (FO105260)			W	ater		Samp	led: 02/23/	10 12:42		
Bis(2-ethylhexyl)phthalate	EPA 8270m	ND		0.971	ug/l	1x	10C0004	03/01/10 11:00	03/09/10 19:23	
Butyl benzyl phthalate	"	ND		0.971	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		0.971	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		0.971	"	"	"	"	"	
Diethyl phthalate	"	ND		0.971	"	"	"	"	"	
Dimethyl phthalate	"	2.56		0.971	"	"	"	"	"	
Acenaphthene	"	ND		0.0194	"	"	"	"	03/08/10 18:19	
Acenaphthylene	"	ND		0.0194	"	"	"	"	"	
Anthracene	"	ND		0.0194	"	"	"	"	"	
Benzo (a) anthracene	"	0.0203		0.00971	"	"	"	"	"	
Benzo (a) pyrene	"	0.0144		0.00971	"	"	"	"	"	
Benzo (b) fluoranthene	"	0.0178		0.00971	"	"	"	"	"	
Benzo (ghi) perylene	"	ND		0.0194	"	"	"	"	"	
Benzo (k) fluoranthene	"	0.0120		0.00971	"	"	"	"	"	
Chrysene	"	0.0392		0.00971		"	"	"	"	
Dibenzo (a,h) anthracene	"	ND		0.00971	"	"	"	"	"	
Fluoranthene	"	0.0685		0.0194	"	"	"	"	"	
Fluorene	"	ND		0.0194	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	"	0.0101		0.00971	"	"	"	"	"	
Naphthalene	"	ND		0.0194	"	"	"	"	"	
Phenanthrene	"	0.0465		0.0194	"	"	"	"	"	
Pyrene	"	0.104		0.0194	"	"	"	"	"	
Surrogate(s): Fluorene-d10				77.4%		25 - 125 %				"
Pyrene-d10				92.6%		23 - 150 %				"
Benzo (a) pyre	ene-d12			80.2%		10 - 125 %				"
PTB0814-02 (FO105261)			W	ater		Samp	led: 02/23/	10 13:28		
Bis(2-ethylhexyl)phthalate	EPA 8270m	1.02		0.971	ug/l	1x	10C0004	03/01/10 11:00	03/13/10 01:13	
Butyl benzyl phthalate	"	3.22		0.971	"	"	"	"	"	
Di-n-butyl phthalate	"	ND		0.971	"	"	"	"	"	
Di-n-octyl phthalate	"	ND		0.971	"	"	"	"	"	
Diethyl phthalate	"	ND		0.971	"	"	"	"	"	
Dimethyl phthalate	"	ND		0.971	"	"	"	"	"	
Acenaphthene	"	ND		0.0194	"	"	"	"	03/08/10 23:24	
Acenaphthylene	"	ND		0.0194	"	"	"	"	"	
Anthracene	,,	ND		0.0194			"	,,	,,	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

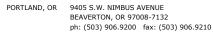
9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Report Created: Project Number: 36238 Portland, OR 97203 Project Manager: Jennifer Shackelford 03/19/10 17:32

NPDES

Polynuclear Aromatic Compounds per EPA 8270M-SIM


TestAmerica Portland

Analyte	N	1ethod Res	ult	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTB0814-02 (FO105261)			W	ater		Samp	led: 02/23/	10 13:28		
Benzo (a) anthracen	e EF	PA 8270m	ND		0.00971	ug/l	1x	10C0004	03/01/10 11:00	03/08/10 23:24	
Benzo (a) pyrene		" 0.01	27		0.00971	"	"	"	"	"	
Benzo (b) fluoranth	ene	" 0.01	56		0.00971	"	"	"	"	"	
Benzo (ghi) perylen	e	" 0.03	52		0.0194	"	"	"	"	"	
Benzo (k) fluoranthe	ene	"	ND		0.00971	"	"	"	"	"	
Chrysene		" 0.04	34		0.00971	"	"	"	"	"	
Dibenzo (a,h) anthra	cene	"	ND		0.00971	"	"	"	"	"	
Fluoranthene		" 0.04	25		0.0194	"	"	"	"	"	
Fluorene		"	ND		0.0194	"	"	"	"	"	
Indeno (1,2,3-cd) p	vrene	" 0.01	28		0.00971	"	"	"	"	"	
Naphthalene		" 0.03	18		0.0194	"	"	"	"	"	
Phenanthrene		" 0.04	22		0.0194	"	"	"	"	"	
Pyrene		" 0.05	71		0.0194	"	"	"	"	"	
Surrogate(s):	Fluorene-d10				89.8%		25 - 125 %				"
	Pyrene-d10				70.8%		23 - 150 %				"
	Benzo (a) pyrene-d12				87.6%		10 - 125 %				"

TestAmerica Portland

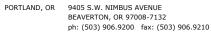
Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 03/19/10 17:32

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results


TestAmerica Portland

QC Batch: 10C0004	Water P	Preparation 1	Method: 35	20B Liq-	Liq									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10C0004-BLK1)						_		Exti	acted:	03/01/10 11	:00			
Bis(2-ethylhexyl)phthalate	EPA 8270m	ND		1.00	ug/l	1x						(03/09/10 15:30	
Butyl benzyl phthalate	"	ND		1.00	"	"							"	
Di-n-butyl phthalate	"	ND		1.00	"	"							"	
Di-n-octyl phthalate	"	ND		1.00	"	"							"	
Diethyl phthalate	"	ND		1.00	"	"							"	
Dimethyl phthalate	"	ND		1.00	"								"	
Acenaphthene	"	ND		0.0200	"	"						(03/08/10 17:18	
Acenaphthylene	"	ND		0.0200	"	"							"	
Anthracene	"	ND		0.0200	"	"							"	
Benzo (a) anthracene	"	ND		0.0100	"	,,							"	
Benzo (a) pyrene	"	ND		0.0100	"	,,							"	
Benzo (b) fluoranthene	"	ND		0.0100	"	"							"	
Benzo (ghi) perylene	,,	ND		0.0200	,,	"							"	
Benzo (k) fluoranthene	,,	ND		0.0100	"								"	
Chrysene	,,	ND		0.0100	"								"	
Dibenzo (a,h) anthracene	"	ND		0.0100	,,		_					_	"	
Fluoranthene	"	ND		0.0200	,,	,,	_			_		_	"	
Fluorene	,,	ND		0.0200	,,	,							"	
Indeno (1,2,3-cd) pyrene	,,	ND		0.0200	,,	,							"	
· · · · · · · · · · · · · · · · · · ·	,,	ND ND		0.0200	,,			-	-		-		,,	
Naphthalene											-			
Phenanthrene		ND		0.0200	,,									
Pyrene		ND		0.0200										
Surrogate(s): Fluorene-d10			80.4%	Lin	nits: 25-1259								03/08/10 17:18	!
Pyrene-d10			104%		23-150								"	
Benzo (a) pyrene-d12			74.3%		10-125	%								
LCS (10C0004-BS1)								Exti	acted:	03/01/10 11	:00			
Bis(2-ethylhexyl)phthalate	EPA 8270m	3.24		1.00	ug/l	1x		4.00	80.9%	(20-150)		(03/09/10 16:03	
Butyl benzyl phthalate	"	3.17		1.00	"	"		"	79.3%	"			"	
Di-n-butyl phthalate	"	2.97		1.00	"			"	74.3%	"			"	
Di-n-octyl phthalate	"	3.26		1.00	"			"	81.5%				"	
Diethyl phthalate	,,	2.68		1.00	"	,,		"	66.9%	,,			"	
Dimethyl phthalate		2.58		1.00	"			,,	64.5%	,,			"	
Acenaphthene	"	1.18		0.0200	,,	,,		1.25	94.3%	(35-120)			03/08/10 14:46	
Acenaphthylene	"	1.18		0.0200	,,			"	98.7%	(34-116)			"	
* *	"	1.23		0.0200	,,	,,		,,	99.5%	(24-119)			"	
Anthracene Roma (a) anthracene	,				,,	,		,,		` ′			,,	
Benzo (a) anthracene		1.47		0.0100				,	117%	(36-128)			,,	
Benzo (a) pyrene		1.20		0.0100	"				95.9%	(17-128)			"	
Benzo (b) fluoranthene	"	1.07		0.0100	"	"		"	85.4%	(37-131)		-	"	

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

NPDES City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Project Number: Report Created: 36238 Portland, OR 97203 Project Manager: 03/19/10 17:32 Jennifer Shackelford

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits)) Analyzed	Note
LCS (10C0004-BS1)								Ext	racted:	03/01/10 11	:00			
Benzo (ghi) perylene	EPA 8270m	1.22		0.0200	ug/l	1x		1.25	97.4%	(26-126)			03/08/10 14:46	
Benzo (k) fluoranthene	"	1.04		0.0100	"	"		"	82.9%	(18-145)			"	
Chrysene	"	1.36		0.0100	"	"		"	109%	(16-137)			"	
Dibenzo (a,h) anthracene	"	1.34		0.0100	"	"		"	107%	(20-141)			"	
Fluoranthene	"	1.31		0.0200	"	"		"	105%	(31-125)			"	
Fluorene	"	1.25		0.0200	"	"		"	100%	(27-124)			"	
indeno (1,2,3-cd) pyrene	"	1.30		0.0100	"	"		"	104%	(30-135)			"	
Naphthalene	"	1.19		0.0200	"	"		"	95.5%	(30-113)			"	
Phenanthrene	"	1.17		0.0200	"	"		"	93.6%	(34-126)			"	
Pyrene	"	1.62		0.0200	"	"		"	129%	(21-141)			"	
Surrogate(s): Fluorene-d10		Recovery:	83.2%	Lin	its: 25-1259	6							03/08/10 14:46	
Pyrene-d10		,	105%		23-150	%							"	
Benzo (a) pyrene	-d12		83.9%		10-125	%							"	
LCS Dup (10C0004-BSD1)								Ext	racted:	03/01/10 11	•00			
Bis(2-ethylhexyl)phthalate	EPA 8270m	3.22		1.00	ug/l	1x		4.00	80.5%	(20-150)	0.485%	(50)	03/09/10 16:37	
Butyl benzyl phthalate	"	3.16		1.00	"	,,		,,	79.1%	"	0.313%		"	
Di-n-butyl phthalate	"	2.96		1.00	,,		_	"	74.1%		0.291%		"	
Di-n-octyl phthalate	"	3.23		1.00	"			"	80.8%		0.852%		"	
Diethyl phthalate	"	2.73		1.00	,,			"	68.3%		2.00%		"	
Dimethyl phthalate	"	2.64		1.00	"			"	66.0%		2.22%		"	
Acenaphthene	"	1.18		0.0200	,,			1.25	94.4%	(35-120)	0.176%		03/08/10 15:16	
Acenaphthylene	"	1.24		0.0200	,,			"	99.3%	(34-116)	0.611%	` ′	"	
Anthracene	"	1.25		0.0200	,,			,,	99.6%	(24-119)	0.128%		"	
Benzo (a) anthracene	,,	1.46		0.0100	,,			,,	117%	(36-128)	0.470%		,,	
	,,	1.40		0.0100	,,			,,	99.2%	(17-128)	3.34%		,,	
Benzo (a) pyrene Benzo (b) fluoranthene	,,	1.24		0.0100	,,	.,		,,	97.2%	(37-131)	12.9%		,,	
` '	,,				,,	.,		,,					,,	
Benzo (ghi) perylene	,,	1.23		0.0200 0.0100	,,	.,		,,	98.8%	(26-126)	1.44%		,,	
Benzo (k) fluoranthene	,,	1.11			,,			,	88.7%	(18-145)	6.73%		,	
Chrysene		1.37		0.0100				,,	109%	(16-137)	0.385%			
Dibenzo (a,h) anthracene		1.35		0.0100				,,	108%	(20-141)	1.06%			
Fluoranthene		1.29		0.0200				"	103%	(31-125)	2.00%			
Fluorene		1.27		0.0200					101%	(27-124)	1.24%			
Indeno (1,2,3-cd) pyrene		1.31		0.0100					105%	(30-135)	1.11%			
				0.0200	"	"		"	92.7%	(30-113)	2.95%			
Naphthalene Phenanthrene		1.16 1.17		0.0200		_		,,	94.0%	(34-126)	0.458%		,	

TestAmerica Portland

Howard Holmes, Project Manager

Pyrene-d10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

23-150%

101%

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: NPDES

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford03/19/10 17:32

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 10C0004 Water Preparation Method: 3520B Liq-Liq

Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Analyzed Notes Result Amt REC

LCS Dup (10C0004-BSD1) Extracted: 03/01/10 11:00

Surrogate(s): Benzo (a) pyrene-d12 Recovery: 88.6% Limits: 10-125% 03/08/10 15:16

TestAmerica Portland

Howard Holmes, Project Manage

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory

NPDES Project Name:

Notes and Definitions

Report Created: Project Number: 36238 Project Manager: Jennifer Shackelford 03/19/10 17:32

6543 N. Burlington Ave. Portland, OR 97203

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

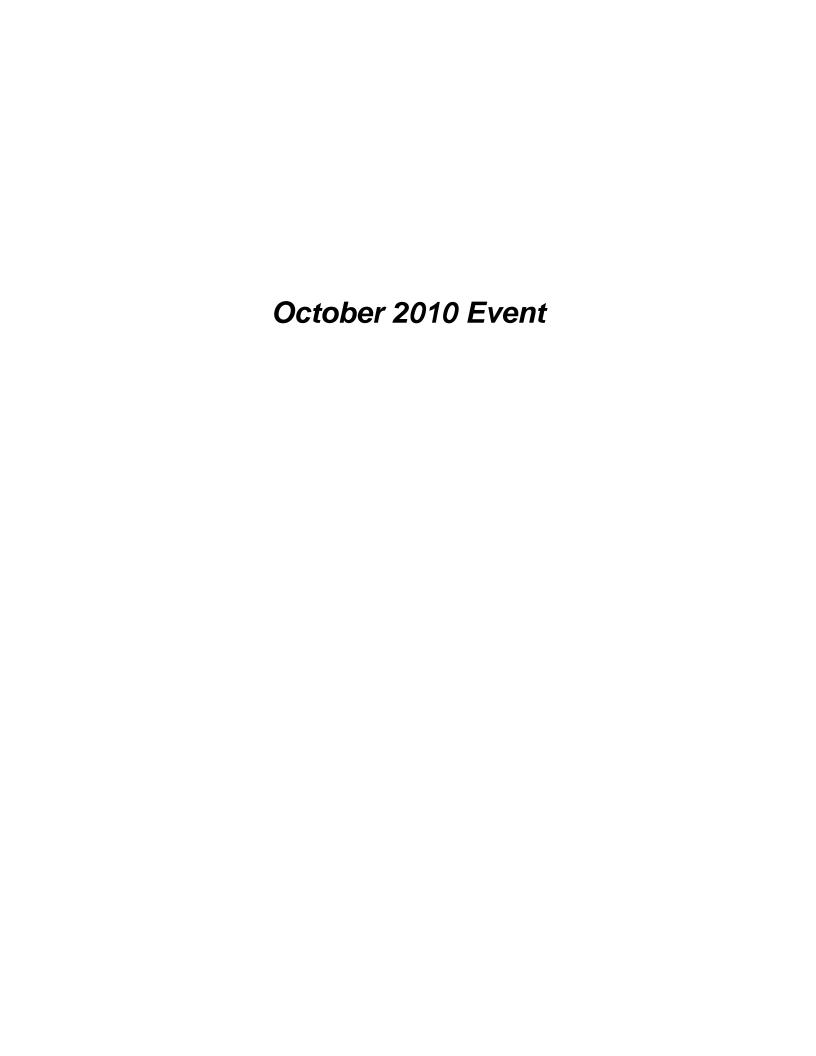
425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

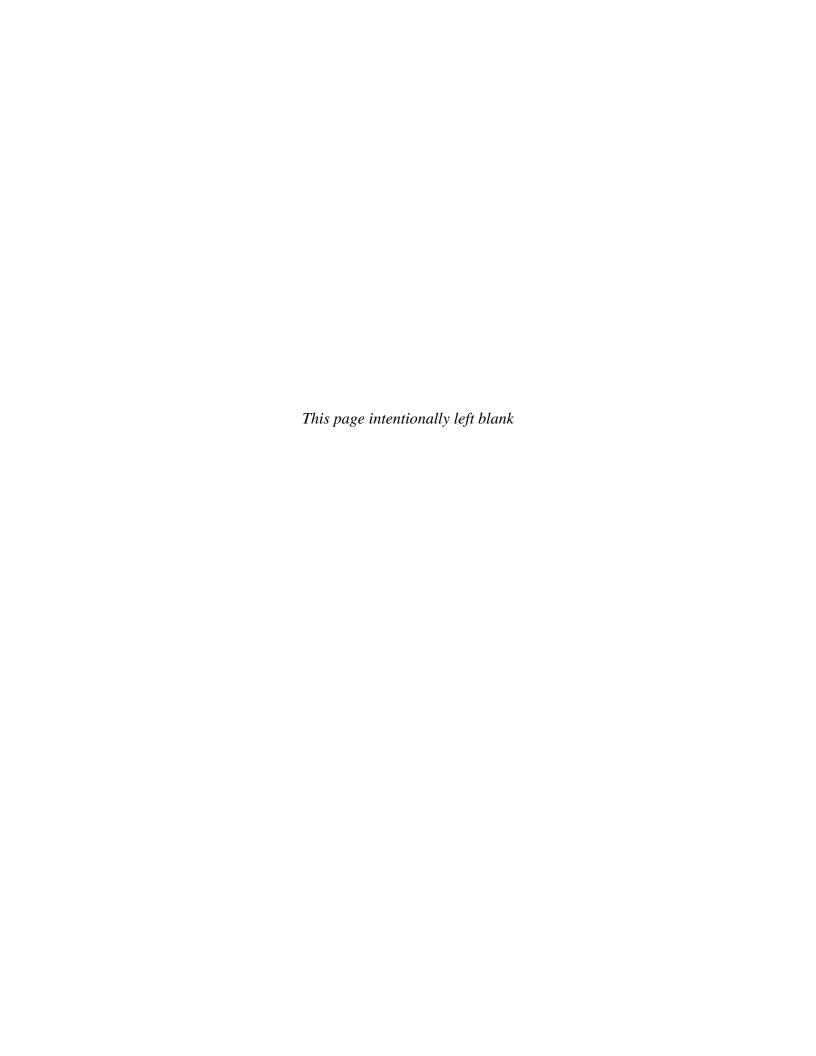
9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11922 E. First Ave, Spokane, WA 99206-5302

				S)	HAIN	OF CUST	CHAIN OF CUSTODY REPORT	ORT			Work Order #: PTBOSH	7 #	3081	<u>a</u>
CLIENT: C, H of	Port and				INVOICE TO:						TUR	NAROUND	TURNAROUND REQUEST	
REPORT TO:	Charles O. C. C.	AYU	7	5		3	Martes Cytle	aytle			Organ	in Business Days * Organic & Inorganic Analyses	Jays * Analyses	
)	nn/fer Jr	2 / C 2/2 / C	2	7			,	\ \				5 4 3	2 1	<1
PHONE:	FAX:				P.O. NUMB	NUMBER: 36 238	38				Petro.	Petroleum Hydrocarbon Analyses	on Analyses]
PROJECT NAME: NOTE CHARMING IN MEN.	Cherminato	MEn.				PR	PRESERVATIVE				5	4 3 2	1 <1	
PROJECT NUMBER:			sy								STD.	 [-
			187 187	5/7		REQUE	REQUESTED ANALYSES				* Transcound Demonstration and the Character	Specify:	and man thouse Deep	2000001
SAMPLED BY:			ر ا ا (rv.							" Iurnarouna Keque:	is tess than stand	iara may incur kus	ı Cnarges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME		1440 1440 1460	Perogramment							MATRIX # OF (W, S; O) CONT.		LOCATION/ COMMENTS	TA WO ID
, F0105260	2/23/10	1742	X	メ		·					N 3			
, 1010 5261	1/13/10	1328	X		-	,					2	_ \		
			<u> </u>											-
,														
4							-							
0														
9														
0 0														
10 // 0					7	1				7				
RELEASED BY: Mack 1471'	2.4	FIRM: C)	7 %	-FIRM CITY & Graffind TIME	DATE:	05151 115717	RECEIVED BY:	ED BY: WWW	12 40 T		FIRM: /	40	DATEZ (25//CS 4 ; 40
RELEASED BY:		EID W.		-	DATE:		RECEIVED BY:	ED BY:	#	Me	, HRW.	Q.₹	DATE: 2/65/	5/10
REMARK	* Place send to PACE	PACE						3				TEMP	10) E
													TAL	TAL-1000(0408)

TestAmerica Portland Sample Receiving Checklist

		der #: PTBO814 Date/Time Received: ame and Project: City of Cortland -	NPDES
Time ED	Zone: T/EST		AKOTHER
Coo	oler #(: erature		Temperature out of Range: Not enough or No IceIce MeltedW/in 4 Hrs of collectionOther:
N/A	Yes	No	Initials:
abla		1. If ESI client, were temp blanks received? If no, do	cument on NOD.
X		☐ 2. Cooler Seals intact? (N/A if hand delivered) if no,	document on NOD.
	abla'	☐ 3. Chain of Custody present? If no, document on NO	DD.
	Ø [™]	4. Bottles received intact? If no, document on NOD.	
	X	5. Sample is not multiphasic? If no, document on No	OD.
	M	6. Proper Container and preservatives used? If no, d	ocument on NOD.
K		7. pH of all samples checked and meet requirements	? If no, document on NOD.
Do		8. Cyanide samples checked for sulfides and meet re	quirements? If no, notify PM.
W.		9. HF Dilution required?	
	N N	 10. Sufficient volume provided for all analysis? If n PM before proceeding. 11. Did chain of custody agree with samples receive 	
		12. Is the "Sampled by" section of the COC complete	ed?
X		☐ 13. Were VOA/Oil Syringe samples without headsp	ace?
囡		☐ 14. Were VOA vials preserved? ☐HCl ☐Sodium?	Thiosulfate Ascorbic Acid
^		15. Did samples require preservation with sodium th	iosulfate?
		☐ 16. If yes to #15, was the residual chlorine test nega	tive? If no, document on NOD.
XX,		☐ 17. Are dissolved/field filtered metals bottles sedimentals	ent-free? If no, document on NOD.
		 18. Is sufficient volume provided for client requeste no, document on NOD and contact PM before proceed 19. Are analyses with short holding times received in 	eding.
	Ø.	20. Was Standard Turn Around (TAT) requested?	
	X	21. Receipt date(s) < 48 hours past the collection date	te(s)? If no, notify PM.


TestAmerica Portland


Sample Receiving Checklist

Work Order #: Login Checks: Initials N/A Yes 22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM. 23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If no, document on NOD and contact PM. 24. Did the chain of custody include "received by" and "relinquished by" signatures. dates and times? 25. Were special log in instructions read and followed? 26. Were tests logged checked against the COC? 27. Were rush notices printed and delivered? 28. Were short hold notices printed and delivered? 29. Were subcontract COCs printed? ☐ 30. Was HF dilution logged? Labeling and Storage Checks: Initials No Yes 31. Were the subcontracted samples/containers put in Sx fridge? 32. Were sample bottles and COC double checked for dissolved/filtered metals? 33. Did the sample ID, Date, and Time from label match what was logged? 34. Were Foreign sample stickers affixed to each container and containers stored in foreign fridge? 35. Were HF stickers affixed to each container, and containers stored in Sx fridge? 36. Was an NOD for created for noted discrepancies and placed in folder?

Document any problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

form (NOD).

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review MS4 Stormwater Data Evaluation City Outfall Basin 19

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: October 26, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) at Outfall Basin 19 on October 24, 2010. Two stormwater samples (FO10612 and FO106021) were collected and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

BES WPCL

- o E. Coli COLILERT QT
- o Total Oil & Grease EPA 1664
- o Ammonia Nitrogen EPA 350.1
- BOD5 SM 5210B/H10360
- o Nitrate –Nitrogen EPA 300.0
- Orthophosphate Phosphorus EPA 365.1
- Total Dissolved Solids (TDS) SM 2540C
- Total Kjeldahl Nitrogen (TKN) PAI-DK03
- o Total Phosphorus EPA 365.4
- o Total Solids (TS) SM 2540 B
- o Total Suspended Solids (TSS) SM 2540 D
- Total Hardness SM 2340 B CALC

- o Metals (Dissolved) EPA 200.8
- o Metals (Total) EPA 200.8 310-2952
- o Polynuclear Aromatic Hydrocarbons (PAHs) & Phthalates EPA 8270M-SIM
- Columbia Analytical Services (CAS)
 - o Organochlorine Pesticides EPA 8081A
 - o Semi-Volatile Organic Compounds (SVOCs) EPA 8270C
- Pace Analytical Services (Pace)
 - o Polychlorinated Biphenyls (PCB) Congeners EPA 1668A

The WPCL laboratory report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

For the purpose of this pesticide source control investigation, the following QA/QC review was limited to review of the analytical data generated from the analysis of organochlorine pesticides for field sample FO106021. The QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratories, and consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Internal standard recoveries within accuracy control limits
- Surrogate recoveries within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits.

The results of the QA/QC review of the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples were extracted and analyzed within the recommended holding times for the pesticide analysis.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 3

Method Blanks

No analytes were detected in the method blank processed during the analysis of organochlorine pesticides. CAS report that the method detection limit (MDL) for Toxaphene in the method blank was elevated due to the presence of non-target background components which were apparently introduced as laboratory artifacts. However, the background level was low compared to the MDL so the effect on the results was minimal.

Surrogate Recoveries

Surrogate recoveries were analyzed during the analysis of pesticides. All surrogate recoveries were within laboratory acceptance limits.

Laboratory Control/Duplicate Laboratory Control Samples

LC and DLC samples were processed during the laboratory analysis of pesticides. All LC/DLC sample recoveries and RPDs are within laboratory acceptance limits.

Other

CAS reports that insufficient sample volume was received to perform MS/MSD samples for the analysis of organochlorine pesticides. LC/DLC samples were analyzed in lieu of the MS/MSD samples. CAS also reports that detection limits were elevated for all analytes in the organochlorine pesticide analysis due to the presence of non-target background components. Accordingly, the sample was diluted to achieve optimal resolution of the target analytes and internal standard.

GSI WATER SOLUTIONS, INC. PAGE 3 OF 3

6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696 Water Pollution Control Laboratory

Collected By: JOM FIB

Bureau of Environmental Services

Signature: rinted Name; Received By rinted Name: Sample Time recorded in current local time Project Name: File Number: Composite includes allquots from 10/2410 e 1833 to 10/24/10@ 2225 WPCL Sample I.D. FO106021 4010.001 4900 NW KITTRIDGE AVE NPDES STORMWTR MON Location _Time: 1547 (OF19) Signature: Received By: rinted Name: Relinquished By: OF19 10/24/10 2225 Point Sample Sample Sample Code Date Time Type Matrix: STORMWTR Time C Date me: Date: Time: TS • • TDS • TSS General rinted Name: Signature: Received By: Signature: Relinquished By: rinted Name: Hardness BOD COD **Total Metals** Metals (Ag, As, Cd, Cr, Cu, Pb, Zn) **Dissolved Metals** Requested Analyses (Ag, As, Cd, Cr, Cu, Pb, Zn) Ammonia-nitrogen Time Time: Date: Date: Nitrate-nitrogen Nutrients Orthophosphate phosphorus **Total Phosphorus** Received By: Signature: Relinquished By: Printed Name: rinted Name TKN PAHs + Phthalates MOTOLI • SVOCs, low-level (CAS) PCB 209 Congeners (Pace) Pesticides (CAS low-lvl) o Date Time: Date: Time:

s:\eid\4000\4010.001\sampdoc\Current NPDES COC.xls

6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696 Water Pollution Control Laboratory

Collected By: JOM FIB

Bureau of Environmental Services

Signature: rinted Name; Received By rinted Name: Sample Time recorded in current local time Project Name: File Number: Composite includes allquots from 10/2410 e 1833 to 10/24/10@ 2225 WPCL Sample I.D. FO106021 4010.001 4900 NW KITTRIDGE AVE NPDES STORMWTR MON Location _Time: 1547 (OF19) Signature: Received By: rinted Name: Relinquished By: OF19 10/24/10 2225 Point Sample Sample Sample Code Date Time Type Matrix: STORMWTR Time C Date me: Date: Time: TS • • TDS • TSS General rinted Name: Signature: Received By: Signature: Relinquished By: rinted Name: Hardness BOD COD **Total Metals** Metals (Ag, As, Cd, Cr, Cu, Pb, Zn) **Dissolved Metals** Requested Analyses (Ag, As, Cd, Cr, Cu, Pb, Zn) Ammonia-nitrogen Time Time: Date: Date: Nitrate-nitrogen Nutrients Orthophosphate phosphorus **Total Phosphorus** Received By: Signature: Relinquished By: Printed Name: rinted Name TKN PAHs + Phthalates MOTOLI • SVOCs, low-level (CAS) PCB 209 Congeners (Pace) Pesticides (CAS low-lvl) o Date Time: Date: Time:

s:\eid\4000\4010.001\sampdoc\Current NPDES COC.xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO106021

Sample Collected: 10/24/10 Sample Received: 10/25/10

22:25

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON

Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

System ID:

Page 1 of 5

Sample Point Code:

OF19

EID File #:

AO09439 4010.001

Sample Type:

COMPOSITE

LocCode:

NPDESSTM

Sample Matrix:

STORMWTR

Collected By: JJM/PTB/AJA

Report Page:

Comments:

LAB: Phthalate results flagged as estimates are greater than the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
	1100011				
GENERAL AMMONIA-NITROGEN	0.070	mg/L	0.02	EPA 350.1	10/26/10
BOD5	5	mg/L	2	SM 5210B /H10360	10/26/10
COD	28	mg/L	5	SM 5210D 7110000 SM 5220 D	10/26/10
NITRATE-NITROGEN	0.57	mg/L	0.10	EPA 300.0	10/26/10
o-PHOSPHATE-PHOSPHORUS, DISS	0.024	mg/L	0.02	EPA 365.1	10/25/10
TOTAL DISSOLVED SOLIDS @180C	50	mg/L	5	SM 2540 C	10/26/10
TOTAL KJELDAHL NITROGEN (TKN)	0.66	mg/L	0.20	PAI-DK03	10/29/10
TOTAL PHOSPHORUS	0.16	mg/L	0.03	EPA 365.4	11/03/10
TOTAL SOLIDS	86	mg/L	2	SM 2540 B	10/26/10
TOTAL SUSPENDED SOLIDS	45	mg/L	2	SM 2540 D	10/26/10
METALS		_			
HARDNESS, TOTAL	26.4	mg CaCO3/L	0.5	SM 2340 B CALC	10/28/10
METALS BY ICP-MS (DISSOLVED) - 7					
ARSENIC, DISSOLVÈD	0.44	μg/L	0.1	EPA 200.8	10/26/10
CADMIUM, DISSOLVED	0.15	μg/L	0.1	EPA 200.8	10/26/10
CHROMIUM, DISSOLVED	<0.40	μg/L	0.4	EPA 200.8	10/26/10
COPPER, DISSOLVED	3.34	μg/L	0.2	EPA 200.8	10/26/10
LEAD, DISSOLVED	0.45	μg/L	0.1	EPA 200.8	10/26/10
SILVER, DISSOLVED	<0.10	μg/L	0.1	EPA 200.8	10/26/10
ZINC, DISSOLVED	62.5	μg/L	0.5	EPA 200.8	10/26/10
METALS BY ICP-MS (TOTAL) - 7		* .		*	
ARSENIC	1.06	μg/L	0.1	EPA 200.8	10/26/10
CADMIUM	0.34	μg/L	0.1	EPA 200.8	10/26/10
CHROMIUM	3.28	μg/L	0.4	EPA 200.8	10/26/10
COPPER	441	μg/L	0.2	EPA 200.8	10/26/10
LEAD	16.9	μg/L	0.1	EPA 200.8	10/26/10
SILVER	<0.10	μg/L	0.1	EPA 200.8	10/26/10
ZINC	135	μg/L	0.5	EPA 200.8	10/26/10
GCMS ANALYSIS					
POLYNUCLEAR AROMATICS & PHTHALATES					
Acenaphthene	<0.020	μg/L	0.020	EPA 8270M-SIM	10/26/10
Acenaphthylene	<0.020	μg/L	0.020	EPA 8270M-SIM	10/26/10
Anthracene	<0.020	μg/L	0.020	EPA 8270M-SIM	10/26/10

Report Date: 12/09/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO106021

Sample Collected: 10/24/10 Sample Received: 10/25/10

22:25

Sample Status: COMPLETE AND

Report Page: Page 2 of 5

VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON

Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

Sample Point Code:

OF19

Sample Type: Sample Matrix: COMPOSITE

STORMWTR

System ID:

AO09439

EID File #:

4010.001

LocCode: Collected By: JJM/PTB/AJA

NPDESSTM

Comments:

LAB: Phthalate results flagged as estimates are greater than the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Benzo(a)anthracene	0.018	μg/L	0.010	EPA 8270M-SIM	10/26/1
Benzo(a)pyrene	0.022	μg/L	0.010	EPA 8270M-SIM	10/26/1
Benzo(b)fluoranthene	0.036	μg/L	0.010	EPA 8270M-SIM	10/26/1
Benzo(ghi)perylene	0.037	μg/L	0.010	EPA 8270M-SIM	10/26/1
Benzo(k)fluoranthene	0.010	µg/∟	0.010	EPA 8270M-SIM	10/26/1
Bis(2-ethylhexyl) phthalate	EST 0.96	µg/L	1.00	EPA 8270M-SIM	10/26/
Butyl benzyl phthalate	<1.00	µg/∟	1.00	EPA 8270M-SIM	10/26/
Chrysene	0.032	µg/∟	0.010	EPA 8270M-SIM	10/26/
Dibenzo(a,h)anthracene	<0.010	μg/L	0.010	EPA 8270M-SIM	10/26/
Diethyl phthalate	<1.00	µg/L	1.00	EPA 8270M-SIM	10/26/
Dimethyl phthalate	EST 0.64	µg/L	1.00	EPA 8270M-SIM	10/26/
Di-n-butyl phthalate	<1.00	μg/L	1.00	EPA 8270M-SIM	10/26/
Di-n-octyl phthalate	<1.00	μg/L	1.00	EPA 8270M-SIM	10/26/
Fluoranthene	0.049	μg/L	0.010	EPA 8270M-SIM	10/26/
Fluorene	<0.020	μg/L	0.020	EPA 8270M-SIM	10/26/
Indeno(1,2,3-cd)pyrene	0.018	μg/L	0.010	EPA 8270M-SIM	10/26/
Naphthalene	<0.040	μg/L	0.040	EPA 8270M-SIM	10/26/
Phenanthrene	0.031	μg/L	0.020	EPA 8270M-SIM	10/26/
Pyrene	0.058	μg/L	0.010	EPA 8270M-SIM	10/26/
OUTSIDE ANALYSIS			*		
PESTICIDES BY EPA 8081 - CAS	•	•			
4,4'-DDD	<5.0	ng/L	5.00	EPA 8081	10/29/
4,4'-DDE	<5.0	ng/L	5.00	EPA 8081	10/29/
4,4'-DDT	<12	ng/L	12	EPA 8081	10/29/
Aldrin	<5.3	ng/L	5.3	EPA 8081	10/29/
Alpha-BHC	<5.0	ng/L	5.00	EPA 8081	10/29/
Alpha-Chlordane	<5.0	ng/L	5.00	EPA 8081	10/29/
Beta-BHC	<5.0	ng/L	5.00	EPA 8081	10/29/
Delta-BHC	. <5.0	ng/L	5.00	EPA 8081	10/29/
Dieldrin	<5.0	ng/L	5.00	EPA 8081	10/29/
Endosulfan I	<5.0	ng/L	5.00	EPA 8081	10/29/
Endosulfan II	<5.0	ng/L	5.00	EPA 8081	10/29/
Endosulfan Sulfate	<5.0	ng/L	5.00	EPA 8081	10/29/
Endrin	<5.0	ng/L	5.00	EPA 8081	10/29/
Endrin Aldehyde	<5.0	ng/L	5.00	EPA 8081	10/29/

Report Date: 12/09/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

22:25

Sample ID: **FO106021**

Sample Collected: 10/24/10

Sample Received: 10/25/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON

Address/Location:

.4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

Sample Point Code:

OF19

Sample Type: Sample Matrix: COMPOSITE **STORMWTR**

System ID:

AO09439

Report Page: Page 3 of 5

EID File #:

4010.001

LocCode:

NPDESSTM

Collected By: JJM/PTB/AJA

Comments:

LAB: Phthalate results flagged as estimates are greater than the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endrin Ketone	<5.0	ng/L	5.00	EPA 8081	10/29/10
Gamma-BHC(Lindane)	<5.0	ng/L	5.00	EPA 8081	10/29/10
Gamma-Chlordane	<5.0	ng/L	5.00	EPA 8081	10/29/10
Heptachlor	8.3	ng/L	5.00	EPA 8081	10/29/10
Heptachlor Epoxide	<5.0	ng/L	5.00	EPA 8081	10/29/10
Methoxychlor	<5.0	ng/L	5.00	EPA 8081	10/29/10
Toxaphene	<270	ng/L	270	EPA 8081	10/29/10
POLYCHLORINATED BIPHENYL CONG	SENERS -PACE				
Refer to Contract Report	Completed	ng/L	ř	EPA 1668 MOD	10/29/10
SEMI-VOLATILE ORGANICS - CAS			a.		
1,2,4-Trichlorobenzene	<0.21	μg/L	0.21	EPA 8270	10/28/10
1,2-Dichlorobenzene	<0.21	μg/L	0.21	EPA 8270	10/28/10
1,3-Dichlorobenzene	<0.21	μg/L	0.21	EPA 8270	10/28/10
1,4-Dichlorobenzene	<0.21	μg/L	0.21	EPA 8270	10/28/10
2,4,5-Trichlorophenol	< 0.52	μg/L	0.52	EPA 8270	10/28/10
2,4,6-Trichlorophenol	<0.52	μg/L	0.52	EPA 8270	10/28/10
2,4-Dichlorophenol	< 0.52	μg/L	0.52	EPA 8270	10/28/10
2,4-Dimethylphenol	<4.1	μg/L	4.1	EPA 8270	10/28/10
2,4-Dinitrophenol	<4.1	μg/L	4.1	EPA 8270	10/28/10
2,4-Dinitrotoluene	<0.21	μg/L	0.21	EPA 8270	10/28/10
2,6-Dinitrotoluene	<0.21	μg/L	0.21	EPA 8270	10/28/10
2-Chloronaphthalene	<0.21	μg/L	0.21	EPA 8270	10/28/10
2-Chlorophenol	<0.52	μg/L	0.52	EPA 8270	10/28/10
2-Methylnaphthalene	<0.21	μg/L	0.21	EPA 8270	10/28/10
2-Methylphenol	<0.52	μg/L	0.52	EPA 8270	10/28/10
2-Nitroaniline	<0.21	μg/L	0.21	EPA 8270	10/28/10
2-Nitrophenol	<0.52	μg/L	0.52	EPA 8270	10/28/10
3,3'-Dichlorobenzidine	<2.1	μg/L	2.1	EPA 8270	10/28/10
3-Nitroaniline	<1.1	μg/L	1.1	EPA 8270	10/28/10
4,6-Dinitro-2-methylphenol	<2.1	μg/L	2.1	EPA 8270	10/28/10
4-Bromophenylphenyl ether	<0.21	µg/L	0.21	EPA 8270	10/28/10
4-Chloro-3-methylphenol	<0.52	µg/L	0.52	EPA 8270	10/28/10
4-Chloroaniline	<0.21	µg/L	0.21	EPA 8270	10/28/10
4-Chlorophenylphenyl ether	<0.21	μg/L	0.21	EPA 8270	10/28/10
4-Methylphenol	<0.52	µg/L	0.52	EPA 8270	10/28/10

Report Date: 12/09/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO106021

Sample Collected: 10/24/10 Sample Received: 10/25/10 22:25

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON

Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

System ID:

Page 4 of 5

Sample Point Code:

OF19

EID File #:

Report Page:

AO09439

Sample Type:

COMPOSITE

LocCode:

4010.001 **NPDESSTM**

Sample Matrix:

STORMWTR

Collected By: JJM/PTB/AJA

Comments:

LAB: Phthalate results flagged as estimates are greater than the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
4-Nitroaniline	<1.1	μg/L	1.1	EPA 8270	10/28/10
4-Nitrophenol	<2.1	μg/L	2.1	EPA 8270	10/28/10
Acenaphthene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Acenaphthylene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Anthracene	<0.21	µg/L	0.21	EPA 8270	10/28/10
Benzo(a)anthracene	<0.21	µg/L	0.21	EPA 8270	10/28/10
Benzo(a)pyrene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Benzo(b)fluoranthene	<0.21	µg/L	0.21	EPA 8270	10/28/10
Benzo(ghi)perylene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Benzo(k)fluoranthene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Benzoic acid	<5.2	μg/L	5.2	EPA 8270	10/28/10
Benzyl alcohol	< 0.52	μg/L	0.52	EPA 8270	10/28/10
Bis(2-chloroethoxy) methane	<0.21	μg/L	0.21	EPA 8270	10/28/10
Bis(2-chloroethyl) ether	<0.21	μg/L	0.21	EPA 8270	10/28/10
Bis(2-chloroisopropyl) ether	<0.21	μg/L	0.21	EPA 8270	10/28/10
Bis(2-ethylhexyl) phthalate	1.9	μg/L	1,1	EPA 8270	10/28/10
Butyl benzyl phthalate	0.39	μg/L	0.21	EPA 8270	10/28/10
Chrysene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Dibenzo(a,h)anthracene	<0.21	µg/L	0.21	EPA 8270	10/28/10
Dibenzofuran	<0.21	µg/L	0.21	EPA 8270	10/28/10
Diethyl phthalate	0.27	μg/L	0.21	EPA 8270	10/28/10
Dimethyl phthalate	1.6	µg/L	0.21	EPA 8270	10/28/10
Di-n-butyl phthalate	<0.21	μg/L	0.21	EPA 8270	10/28/10
Di-n-octyl phthalate	<0.21	μg/L	0.21	EPA 8270	10/28/10
Fluoranthene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Fluorene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Hexachlorobenzene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Hexachlorobutadiene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Hexachlorocyclopentadiene	<1.1	μg/L	1.1	EPA 8270	10/28/1
Hexachloroethane	<0.21	μg/L	0.21	EPA 8270	10/28/10
Indeno(1,2,3-cd)pyrene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Isophorone	<0.21	μg/L	0.21	EPA 8270	10/28/10
Naphthalene	<0.21	µg/L	0.21	EPA 8270	10/28/10
Nitrobenzene	<0.21	µg/L	0.21	EPA 8270	10/28/10
N-Nitrosodi-n-propylamine	<0.21	μg/L	0.21	EPA 8270	10/28/10
N-Nitrosodiphenylamine	<0.21	μg/L	0.21	EPA 8270	10/28/10

Report Date: 12/09/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO106021

Sample Collected: 10/24/10 Sample Received: 10/25/10 22:25

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: NPDES STORMWTR WQ & FLOW MON

Address/Location:

4900 NW KITTRIDGE AVE (OF19)

MANHOLE COMPOSITE

Sample Point Code:

OF19

Sample Type: Sample Matrix: COMPOSITE **STORMWTR** System ID:

Report Page:

AO09439

EID File #:

4010.001

Page 5 of 5

LocCode: Collected By: JJM/PTB/AJA

NPDESSTM

Comments:

LAB: Phthalate results flagged as estimates are greater than the MDL but less than the MRL.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Pentachlorophenol	<1.1	μg/L	1.1	EPA 8270	10/28/10
Phenanthrene	<0.21	μg/L	0.21	EPA 8270	10/28/10
Phenol	<0.52	μg/L	0.52	EPA 8270	10/28/10
Pyrene	<0.21	μg/L	0.21	EPA 8270	10/28/10

End of Report for Sample ID: FO106021

Report Date: 12/09/10

December 6, 2010

Analytical Report for Service Request No: K1011981

Jennifer Shackelford City of Portland 6543 N. Burlington Ave Portland, OR 97203

RE: NPDES Stormwater Mon

Dear Jennifer:

Enclosed are the results of the sample submitted to our laboratory on October 26, 2010. For your reference, these analyses have been assigned our service request number K1011981.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Project Chemist

HH/dlm

Page 1 of 20

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range,
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case parrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the clution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

City of Portland

Service Request No.:

K1011981

Project:

NPDES Stormwater Mon

Date Received:

11/12/10

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 11/12/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Elevated Detection Limits:

The MDL is elevated for Toxaphene in sample Method Blank KWG1012211-3. The chromatogram indicated the presence of non-target background components, which were apparently introduced as laboratory artifacts. The contamination prevented adequate resolution of the target compounds at the MDL. Note the level of background was relatively low compared to the MDL, so the affect on the results was minimal. The results are flagged to indicate the problem.

The detection limit was elevated for all analytes in sample F0106021. The chromatogram indicated the presence of non-target background components. The sample was diluted in order to achieve optimal resolution of the target analytes and internal standard. The results were flagged to indicate the matrix interference.

The detection limit was further elevated for a few analytes in sample F0106021. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by

__Date_

Lab Control Sample Exceptions:

The advisory criterion was exceeded for Hexachlorocyclopentadiene in Duplicate Laboratory Control Sample (DLCS) KWG1011883-2. As per the CAS/Kelso Standard Operating Procedure (SOP) for this method, these compounds are not included in the subset of analytes used to control the analysis. The recovery information reported for these analytes is for advisory purposes only (i.e. to provide additional detail related to the performance of each individual compound). No further corrective action was required.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for 2,4-Dimethylphenol, Hexachlorocyclopentadiene, and 3,3'-Dichlorobenzidine in the replicate Laboratory Control Samples (LCS/DLCS) KWG1011883-1 and KWG1011883-2 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Approved by Journa 14 Common Date 12 -6 Co

Ŷ COC #

PAGE

SAMPLER'S SIGNATURE REPORT REQUIREMENTS SAMPLE IV. CLP Deliverable Report III. Data Validation Report II. Report Dup., MS, MSD as Routine Report: Method required Blank, Surrogate, as required (includes all raw data) Z 20 Ö 1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FAX (360) 636-1068 22.25 TURNAROUND REQUIREMENTS Bill To: P.O. # INVOICE INFORMATION 5 Day 24 hr. Provide FAX Results Standard (10-15 working days) Requested Report Date Æ 48 hr. NUMBER OF CONTAINERS RECEIVED BY: SPECIAL INSTRUCTIONS/COMMENTS Dissolved Metals: Circle which metals are to be analyzed INDICATE STATE HYDROCARBON PROCEDURE: Total Metals: Al Semiyolatile Organics by GC/NS 625 () 8270 () 8270 () 8270 () Volatile Organics 624 3 8260 5 ≥ Hydrocarbons ('see below)

Gas Diesel Doll As As S Зb Fuel Fingerprint (FIQ)
NW-HCID Screen **B**a ₿a Oil & Grease/TRPH Ве Ве В Signature Printed Name PCB's
Aroclors
Congenere
6081A
814
814 W Ca Ca 8 S RELINQUISHED BY: Chlorophenglics 8151M
Tetra D PCP ဝ င္ပ Ö Ö T m 5 Date/Time 5 8310 SIM Metals, Total or Dissolved TI O TI (P g В C_{yanide} Μġ PH, Cond., Cl., SO4, PO4, F, NO2, NO3, BOD, TSS, TDS 4, F, NO2, DOC (circle) NO2+NO3, TKN, TOC, Νg S <u>⊼</u> <u>₹</u> Ζο TOX 9020 [] AOX 1650 [] Z Z $^{\times}$ ス ð ð 506_[] Z a Na Se Se ξ ά \exists _ REMARKS < < Ŋ Zn Ηg Ë

RCOC #1 07/09

Client / Project: CM o		mbia Ana · Receipt a	•		Form	0	1981	PC_ftt	
Received: 10 (20 10	Opened:(<u>ru/10</u>	B _y	y: 527		į.			
Samples were received via?	Mail Fed Ex	UPS	DHL	PDX	Courier	Han	d Delivered		
Samples were received in: (circ	le) <u>Cooler</u>	Box	Envelo	ope O	her	The second secon		(NA)
Were <u>custody seals</u> on coolers?	(NA)	Y N	_	es, how man	-				***************************************
If present, were custody seals in	ntact?	Y N]	If present, w	ere they si	gned and	l dated?	Y	N
Cooler Temp Temp °C Blank °C	Thermometer ID	Cooler/C ID	DOC NA	<u> </u>		Tracking	Number	NA)	Filed
		COMMON AND THE REPORT OF THE PROPERTY OF THE P							
7. Packing material used. <i>Insert</i>	ts Baggies Bu	bble Wrap	Gel Paci	ks Wet Ic	e Sleeve:	s Other	. N	10	
3. Were custody papers properly f		_					1	NA (Ý) N
Did all bottles arrive in good co	ndition (unbroken)? Indicate	in the tab	ble below.				NA 🏂	N
0. Were all sample labels complete	e (i.e analysis, pre	eservation, et	c.)?					NA Y	N
1. Did all sample labels and tags a	agree with custody	papers? Inc	licate ma	jor discrepa	ncies in th	e table o	n page 2.	NA (Y	N
2. Were appropriate bottles/conta								NA (Y	N
3. Were the pH-preserved bottles	"				Indicate :	in the tab	le below (NA) Y	N
4. Were VOA vials received with	out headspace? In	idicate in the	table be	low.			\ \	NA) Y	N
5. Was C12/Res negative?							_	NA Y	N
Sample ID on Bottle		Sample ID o	n COC				dentified by:		
			·····						
	Bottle Count	Out of Head-				Volume	Reagent Lot		
Sample ID	Bottle Type	Temp space	Broke	pH Re	agent	added	Number	Initials	Time
· · · · · · · · · · · · · · · · · · ·									

Notes, Discrepancies, & Resolut	tions:								
						<u></u>			
,						· — — — — — — — — — — — — — — — — — — —			

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: 10/24/2010 **Date Received:** 10/26/2010

Organochlorine Pesticides

Sample Name:

F0106021

Lab Code:

K1011981-001

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

A La Name	TD 14 0	MDI	KADI	Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	5.0	2.1	10	10/29/10	11/30/10	KWG1012211	
beta-BHC	ND U	5.0	4.1	10	10/29/10	11/30/10	KWG1012211	
gamma-BHC (Lindane)	ND U	5.0	4.7	10	10/29/10	11/30/10	KWG1012211	
delta-BHC	ND Ui	5.0	3.2	10	10/29/10	11/30/10	KWG1012211	
Heptachlor	8,3 D	5.0	1.8	10	10/29/10	11/30/10	KWG1012211	
Aldrin	ND Ui	5.3	5,3	10	10/29/10	11/30/10	KWG1012211	
Heptachlor Epoxide	ND U	5.0	2.1	10	10/29/10	11/30/10	KWG1012211	
gamma-Chlordane†	ND U	5.0	3.1	10	10/29/10	11/30/10	KWG1012211	
Endosulfan I	ND U	5.0	2.5	10	10/29/10	11/30/10	KWG1012211	
alpha-Chlordane	ND U	5.0	2.7	10	10/29/10	11/30/10	KWG1012211	
Dieldrin	ND U	5.0	3.7	10	10/29/10	11/30/10	KWG1012211	
4,4'-DDE	2.8 JPD	5.0	1.9	10	10/29/10	11/30/10	KWG1012211	
Endrin	ND U	5.0	4.9	10	10/29/10	11/30/10	KWG1012211	
Endosulfan II	ND U	5.0	3.5	10	10/29/10	11/30/10	KWG1012211	
4,4'-DDD	ND U	5.0	2.1	10	10/29/10	11/30/10	KWG1012211	
Endrin Aldehyde	4.8 JD	5.0	2.1	10	10/29/10	11/30/10	KWG1012211	
Endosulfan Sulfate	ND U	5.0	2.8	10	10/29/10	11/30/10	KWG1012211	
4,4'-DDT	ND Ui	12	12	10	10/29/10	11/30/10	KWG1012211	
Endrin Ketone	ND U	5.0	3.2	10	10/29/10	11/30/10	KWG1012211	
Methoxychlor	ND U	5.0	4.4	10	10/29/10	11/30/10	KWG1012211	
Toxaphene	ND Ui	270	270	10	10/29/10	11/30/10	KWG1012211	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	91	20-102	11/30/10	Acceptable	,
Decachlorobiphenyl	97	35-128	11/30/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/03/2010 15:50:28

Form 1A - Organic 8

Page 1 of 1

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG1012211-3

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	0.50	0.21	1	10/29/10	11/30/10	KWG1012211	Hote
beta-BHC	ND U	0.50	0.41	1	10/29/10	11/30/10	KWG1012211	
gamma-BHC (Lindane)	ND U	0.50	0.47	1	10/29/10	11/30/10	KWG1012211	
delta-BHC	ND U	0.50	0.14	1	10/29/10	11/30/10	KWG1012211	
Heptachlor	ND U	0.50	0.18	1	10/29/10	11/30/10	KWG1012211	
Aldrin	ND U	0.50	0.33	1	10/29/10	11/30/10	KWG1012211	
Heptachlor Epoxide	ND U	0,50	0.21	1	10/29/10	11/30/10	KWG1012211	
gamma-Chlordane†	ND U	0.50	0.31	1	10/29/10	11/30/10	KWG1012211	
Endosulfan I	ND U	0.50	0.25	1	10/29/10	11/30/10	KWG1012211	
alpha-Chlordane	ND U	0.50	0.27	1	10/29/10	11/30/10	KWG1012211	
Dieldrin	ND U	0.50	0.37	1	10/29/10	11/30/10	KWG1012211	
4,4'-DDE	ND U	0.50	0.19	1	10/29/10	11/30/10	KWG1012211	
Endrin	ND U	0.50	0.49	1	10/29/10	11/30/10	KWG1012211	· · · ·
Endosulfan II	ND U	0.50	0.35	1	10/29/10	11/30/10	KWG1012211	
4,4'-DDD	ND U	0.50	0.21	1	10/29/10	11/30/10	KWG1012211	
Endrin Aldehyde	ND U	0.50	0.21	1	10/29/10	11/30/10	KWG1012211	
Endosulfan Sulfate	ND U	0.50	0.28	1	10/29/10	11/30/10	KWG1012211	
4,4'-DDT	ND U	0.50	0.17	1	10/29/10	11/30/10	KWG1012211	
Endrin Ketone	ND U	0.50	0.32	1	10/29/10	11/30/10	KWG1012211	
Methoxychlor	ND U	0.50	0.44	1	10/29/10	11/30/10	KWG1012211	
Toxaphene	ND Ui	32	32	1	10/29/10	11/30/10	KWG1012211	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	79	20-102	11/30/10	Acceptable
Decachlorobiphenyl	97	35-128	11/30/10	Acceptable

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 12/03/2010 15:50:31 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic 9

Page 1 of 1

Merged

SuperSet Reference:

RR122852

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method: EPA 3535A

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
F0106021	K1011981-001	91 D	97 D
Method Blank	KWG1012211-3	79	97
Lab Control Sample	KWG1012211-1	76	88
Duplicate Lab Control Sample	KWG1012211-2	74	90

Surrogate Recovery Control Limits (%)

Sur1 =	Tetrachloro-m-xylene	20-102
Sur2 =	Decachlorobiphenyl	35-128

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/03/2010 15:50:35

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

10

SuperSet Reference: RR122852

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981 **Date Extracted:** 10/29/2010

Date Analyzed: 11/30/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Organochlorine Pesticides

Extraction Method: EPA 3535A Analysis Method:

8081A

Units: ng/L

Basis: NA Level: Low

Extraction Lot: KWG1012211

Lab Control Sample KWG1012211-1

Duplicate Lab Control Sample KWG1012211-2

		Lab Control Spike			NWG1012211-2 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
alpha-BHC	10.6	10.0	106	10.5	10.0	105	36-122	1	30
beta-BHC	10.3	10.0	103	10.1	10.0	101	42-125	2	30
gamma-BHC (Lindane)	10.6	10.0	106	10.6	10.0	106	44-117	0	30
delta-BHC	11.3	10.0	113	11.3	10.0	113	48-123	0	30
Heptachlor	11.1	10.0	111	11.2	10.0	112	40-115	0	30
Aldrin	9.58	10.0	96	9.47	10.0	95	10-102	1	30
Heptachlor Epoxide	10.1	10.0	101	10.1	10.0	101	49-109	1	30
gamma-Chlordane	9.84	10.0	98	9.87	10.0	99	47-113	0	30
Endosulfan I	10.5	10.0	105	10.4	10.0	104	35-115	0	30
alpha-Chlordane	10.2	10.0	102	10.2	10.0	102	45-115	0	30
Dieldrin	10.3	10.0	103	10.4	10.0	104	50-115	1	30
4,4'-DDE	10.8	10.0	108	10.7	10.0	107	41-116	1	30
Endrin	10.1	10.0	101	10.3	10.0	103	48-126	2	30
Endosulfan II	9.91	10.0	99	9.97	10.0	100	28-128	1	30
4,4'-DDD	10.9	10.0	109	10.7	10.0	107	33-132	2	30
Endrin Aldehyde	7.79	10.0	78	8.16	10.0	82	27-104	5	30
Endosulfan Sulfate	9.31	10.0	93	9.51	10.0	95	38-118	2	30
4,4'-DDT	11.0	10.0	110	11.0	10.0	110	42-143	0	30
Endrin Ketone	10.6	10.0	106	10.7	10.0	107	30-124	1	30
Methoxychlor	10.3	10.0	103	9.84	10.0	98	43-143	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/03/2010 15:50:38

u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

SuperSet Reference: RR122852

Page

1 of 1

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: 10/24/2010

Date Received: 10/26/2010

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0106021

Lab Code:

K1011981-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND		0.21	0.036	1	10/28/10	11/18/10	KWG1011883	
Phenol	0.081		0.52	0.065	1	10/28/10	11/18/10	KWG1011883	
2-Chlorophenol	ND		0.52	0.056	1	10/28/10	11/18/10	KWG1011883	
1,3-Dichlorobenzene	ND	U	0.21	0.022	1	10/28/10	11/18/10	KWG1011883	
1,4-Dichlorobenzene	ND	U	0.21	0.030	1	10/28/10	11/18/10	KWG1011883	
1,2-Dichlorobenzene	ND	U	0.21	0.023	1	10/28/10	11/18/10	KWG1011883	
Benzyl Alcohol	ND	U	0.52	0.075	1	10/28/10	11/18/10	KWG1011883	
Bis(2-chloroisopropyl) Ether	ND	U	0.21	0.027	1	10/28/10	11/18/10	KWG1011883	
2-Methylphenol	ND	U	0.52	0.12	1	10/28/10	11/18/10	KWG1011883	
Hexachloroethane	ND	U	0.21	0.025	1	10/28/10	11/18/10	KWG1011883	
N-Nitrosodi-n-propylamine	ND	U	0.21	0.038	1	10/28/10	11/18/10	KWG1011883	
4-Methylphenol†	ND	U	0.52	0.13	1	10/28/10	11/18/10	KWG1011883	
Nitrobenzene	ND	U	0.21	0.029	1	10/28/10	11/18/10	KWG1011883	
Isophorone	0.042	J	0.21	0.017	1	10/28/10	11/18/10	KWG1011883	
2-Nitrophenol	ND	U	0.52	0.065	1	10/28/10	11/18/10	KWG1011883	
2,4-Dimethylphenol	ND	U	4.1	2.3	1	10/28/10	11/18/10	KWG1011883	
Bis(2-chloroethoxy)methane	ND	U	0.21	0.025	1	10/28/10	11/18/10	KWG1011883	
2,4-Dichlorophenol	ND	U	0.52	0.048	1	10/28/10	11/18/10	KWG1011883	
Benzoic Acid	1.4		5.2	1.2	1	10/28/10	11/18/10	KWG1011883	
1,2,4-Trichlorobenzene	ND		0.21	0.017	1	10/28/10	11/18/10	KWG1011883	
Naphthalene	0.045	J	0.21	0.023	1	10/28/10	11/18/10	KWG1011883	
4-Chloroaniline	ND	U	0.21	0.026	1	10/28/10	11/18/10	KWG1011883	
Hexachlorobutadiene	ND		0.21	0.028	1	10/28/10	11/18/10	KWG1011883	
4-Chloro-3-methylphenol	ND	U	0.52	0.038	1	10/28/10	11/18/10	KWG1011883	
2-Methylnaphthalene	ND	U	0.21	0.027	I	10/28/10	11/18/10	KWG1011883	
Hexachlorocyclopentadiene	ND	U	1.1	0.20	1	10/28/10	11/18/10	KWG1011883	
2,4,6-Trichlorophenol	ND	U	0.52	0.060	1	10/28/10	11/18/10	KWG1011883	
2,4,5-Trichlorophenol	ND	U	0.52	0.032	1	10/28/10	11/18/10	KWG1011883	
2-Chloronaphthalene	ND		0.21	0.042	1	10/28/10	11/18/10	KWG1011883	
2-Nitroaniline	ND	U	0.21	0.025	1	10/28/10	11/18/10	KWG1011883	
Acenaphthylene	ND	U	0.21	0.016	1	10/28/10	11/18/10	KWG1011883	
Dimethyl Phthalate	1.6		0.21	0.022	1	10/28/10	11/18/10	KWG1011883	
2,6-Dinitrotoluene	ND	U	0.21	0.034	1	10/28/10	11/18/10	KWG1011883	

Comments:

Printed: 11/24/2010 13:32:11 u:\Stealth\Crystal.rpt\Form\ImNew.rpt

Form 1A - Organic

SuperSet Reference:

Page 1 of 3 RR122448

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: 10/24/2010 **Date Received:** 10/26/2010

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0106021

Lab Code:

K1011981-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	***
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND U	0.21	0.027	1	10/28/10	11/18/10	KWG1011883	
3-Nitroaniline	ND U	1.1	0.030	1	10/28/10	11/18/10	KWG1011883	
2,4-Dinitrophenol	ND U	4.1	0.18	1	10/28/10	11/18/10	KWG1011883	
Dibenzofuran	ND U	0.21	0.019	1	10/28/10	11/18/10	KWG1011883	
4-Nitrophenol	ND U	2.1	0.29	1	10/28/10	11/18/10	KWG1011883	
2,4-Dinitrotoluene	ND U	0.21	0.019	1	10/28/10	11/18/10	KWG1011883	
Fluorene	ND U	0.21	0.028	1	10/28/10	11/18/10	KWG1011883	
4-Chlorophenyl Phenyl Ether	ND U	0.21	0.028	1	10/28/10	11/18/10	KWG1011883	
Diethyl Phthalate	0.27	0.21	0.013	1	10/28/10	11/18/10	KWG1011883	
4-Nitroaniline	ND U	1.1	0.020	1	10/28/10	11/18/10	KWG1011883	
2-Methyl-4,6-dinitrophenol	ND U	2.1	0.026	1	10/28/10	11/18/10	KWG1011883	
N-Nitrosodiphenylamine	ND U	0.21	0.049	1	10/28/10	11/18/10	KWG1011883	
4-Bromophenyl Phenyl Ether	ND U	0.21	0.027	1	10/28/10	11/18/10	KWG1011883	
Hexachlorobenzene	ND U	0.21	0.023	1	10/28/10	11/18/10	KWG1011883	
Pentachlorophenol	ND U	1.1	0.35	1	10/28/10	11/18/10	KWG1011883	
Phenanthrene	0.11 J	0.21	0.023	1	10/28/10	11/18/10	KWG1011883	
Anthracene	0.055 J	0.21	0.025	1	10/28/10	11/18/10	KWG1011883	
Di-n-butyl Phthalate	0.15 J	0.21	0.024	1	10/28/10	11/18/10	KWG1011883	
Fluoranthene	0.18 J	0.21	0.021	ī	10/28/10	11/18/10	KWG1011883	
Pyrene	0.19 J	0.21	0.020	1	10/28/10	11/18/10	KWG1011883	
Butyl Benzyl Phthalate	0.39	0.21	0.019	1	10/28/10	11/18/10	KWG1011883	
3,3'-Dichlorobenzidine	ND U	2.1	0.44	1	10/28/10	11/18/10	KWG1011883	
Benz(a)anthracene	0.074 J	0.21	0.019	1	10/28/10	11/18/10	KWG1011883	
Chrysene	0.13 J	0.21	0.029	1	10/28/10	11/18/10	KWG1011883	
Bis(2-ethylhexyl) Phthalate	1.9	1.1	0.14	1	10/28/10	11/18/10	KWG1011883	1
Di-n-octyl Phthalate	0.11 J	0.21	0.019	1	10/28/10	11/18/10	KWG1011883	
Benzo(b)fluoranthene	0.13 J	0.21	0.018	1	10/28/10	11/18/10	KWG1011883	
Benzo(k)fluoranthene	0.028 J	0,21	0.025	1	10/28/10	11/18/10	KWG1011883	
Benzo(a)pyrene	0.096 J	0.21	0.032	1	10/28/10	11/18/10	KWG1011883	
Indeno(1,2,3-cd)pyrene	0.063 J	0.21	0.022	1	10/28/10	11/18/10	KWG1011883	<u> </u>
Dibenz(a,h)anthracene	ND U	0.21	0.018	1	10/28/10	11/18/10	KWG1011883	
Benzo(g,h,i)perylene	0.093 J	0.21	0.020	1	10/28/10	11/18/10	KWG1011883	

Comments:
COMMENSATION

SuperSet Reference:

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: 10/24/2010 **Date Received:** 10/26/2010

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

F0106021

Lab Code: K1011981-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	79	12-109	11/18/10	Acceptable
Phenol-d6	87	23-106	11/18/10	Acceptable
Nitrobenzene-d5	83	26-110	11/18/10	Acceptable
2-Fluorobiphenyl	82	31-94	11/18/10	Acceptable
2,4,6-Tribromophenol	103	23-127	11/18/10	Acceptable
Terphenyl-d14	100	40-127	11/18/10	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 11/24/2010 13:32:11

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Merged

Form 1A - Organic 14

SuperSet Reference:

Page 3 of 3

ence: RR122448

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

Extraction Method:

KWG1011883-3

Analysis Method:

EPA 3520C

8270C

Units: ug/L Basis: NA

Level: Low

		^	Mana	MDY	Dilution	Date	Date Analyzed	Extraction Lot	Note
Analyte Name	Result		MRL	MDL	Factor	Extracted		KWG1011883	Note
Bis(2-chloroethyl) Ether	ND		0.20	0.035	1	10/28/10	11/18/10 11/18/10	KWG1011883	
Phenol	0.17		0.48	0.063	1	10/28/10		KWG1011883	
2-Chlorophenol	ND		0.48	0.054	1	10/28/10	11/18/10		
1,3-Dichlorobenzene	ND		0.20	0.021	1	10/28/10	11/18/10	KWG1011883	
1,4-Dichlorobenzene	ND		0.20	0.029	1	10/28/10	11/18/10	KWG1011883	
1,2-Dichlorobenzene	ND	U	0.20	0.022	1	10/28/10	11/18/10	KWG1011883	
Benzyl Alcohol	ND	U	0.48	0.073	1	10/28/10	11/18/10	KWG1011883	
Bis(2-chloroisopropyl) Ether	ND	U	0.20	0.026	1	10/28/10	11/18/10	KWG1011883	
2-Methylphenol	ND	U	0.48	0.11	1	10/28/10	11/18/10	KWG1011883	
Hexachloroethane	ND	U	0.20	0.024	1	10/28/10	11/18/10	KWG1011883	
N-Nitrosodi-n-propylamine	ND	U	0.20	0.037	1	10/28/10	11/18/10	KWG1011883	
4-Methylphenol†	ND	U	0.48	0.12	1	10/28/10	11/18/10	KWG1011883	
Nitrobenzene	ND	Ū	0.20	0.028	1	10/28/10	11/18/10	KWG1011883	
Isophorone	ND		0.20	0.016	1	10/28/10	11/18/10	KWG1011883	
2-Nitrophenol	ND		0.48	0.063	1	10/28/10	11/18/10	KWG1011883	
2,4-Dimethylphenol	ND	U	3.9	2.2	1	10/28/10	11/18/10	KWG1011883	
Bis(2-chloroethoxy)methane	ND	U	0.20	0.024	1	10/28/10	11/18/10	KWG1011883	
2,4-Dichlorophenol	ND	U	0.48	0.047	1	10/28/10	11/18/10	KWG1011883	
Benzoic Acid	ND	U	4.8	1.1	1	10/28/10	11/18/10	KWG1011883	
1,2,4-Trichlorobenzene	ND		0.20	0.016	1	10/28/10	11/18/10	KWG1011883	
Naphthalene	ND	U	0.20	0.022	1	10/28/10	11/18/10	KWG1011883	
4-Chloroaniline	ND	U	0.20	0.025	1	10/28/10	11/18/10	KWG1011883	
Hexachlorobutadiene	ND	U	0.20	0.027	1	10/28/10	11/18/10	KWG1011883	
4-Chloro-3-methylphenol	ND	U	0.48	0.037	1	10/28/10	11/18/10	KWG1011883	
2-Methylnaphthalene	ND	U	0.20	0.026	1	10/28/10	11/18/10	KWG1011883	
Hexachlorocyclopentadiene	ND	U	0.96	0.19	1	10/28/10	11/18/10	KWG1011883	
2,4,6-Trichlorophenol	ND	U	0.48	0.058	1	10/28/10	11/18/10	KWG1011883	
2,4,5-Trichlorophenol	ND	U	0.48	0.031	l	10/28/10	11/18/10	KWG1011883	
2-Chloronaphthalene	ND		0.20	0.041	1	10/28/10	11/18/10	KWG1011883	
2-Nitroaniline	ND	U	0.20	0.024	1	10/28/10	11/18/10	KWG1011883	
Acenaphthylene	ND	U	0.20	0.015	1	10/28/10	11/18/10	KWG1011883	
Dimethyl Phthalate	ND	U	0.20	0.021	1	10/28/10	11/18/10	KWG1011883	
2,6-Dinitrotoluene	ND	U	0.20	0.033	1	10/28/10	11/18/10	KWG1011883	

Comments:

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG1011883-3

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND U	0.20	0.026	1	10/28/10	11/18/10	KWG1011883	
3-Nitroaniline	ND U	0.96	0.029	1	10/28/10	11/18/10	KWG1011883	
2,4-Dinitrophenol	ND U	3.9	0.17	1	10/28/10	11/18/10	KWG1011883	
Dibenzofuran	ND U	0.20	0.018	1	10/28/10	11/18/10	KWG1011883	
4-Nitrophenol	ND U	2.0	0.28	1	10/28/10	11/18/10	KWG1011883	
2,4-Dinitrotoluene	ND U	0.20	0.018	1	10/28/10	11/18/10	KWG1011883	
Fluorene	ND U	0.20	0.027	1	10/28/10	11/18/10	KWG1011883	
4-Chlorophenyl Phenyl Ether	ND U	0.20	0.027	1	10/28/10	11/18/10	KWG1011883	
Diethyl Phthalate	0.028 J	0.20	0.012	1	10/28/10	11/18/10	KWG1011883	
4-Nitroaniline	ND U	0.96	0.019	1	10/28/10	11/18/10	KWG1011883	
2-Methyl-4,6-dinitrophenol	ND U	2.0	0.025	1	10/28/10	11/18/10	KWG1011883	
N-Nitrosodiphenylamine	ND U	0.20	0.048	1	10/28/10	11/18/10	KWG1011883	
4-Bromophenyl Phenyl Ether	ND U	0.20	0.026	1	10/28/10	11/18/10	KWG1011883	
Hexachlorobenzene	ND U	0.20	0.022	1	10/28/10	11/18/10	KWG1011883	
Pentachlorophenol	ND U	0.96	0.34	1	10/28/10	11/18/10	KWG1011883	
Phenanthrene	ND U	0.20	0.022	1	10/28/10	11/18/10	KWG1011883	
Anthracene	ND U	0.20	0.024	1	10/28/10	11/18/10	KWG1011883	
Di-n-butyl Phthalate	0.028 Ј	0.20	0.023	1	10/28/10	11/18/10	KWG1011883	
Fluoranthene	ND U	0.20	0.020	1	10/28/10	11/18/10	KWG1011883	
Pyrene	ND U	0.20	0.019	1	10/28/10	11/18/10	KWG1011883	
Butyl Benzyl Phthalate	ND U	0.20	0.018	1	10/28/10	11/18/10	KWG1011883	
3,3'-Dichlorobenzidine	ND U	2.0	0.43	1	10/28/10	11/18/10	KWG1011883	
Benz(a)anthracene	ND U	0.20	0.018	1	10/28/10	11/18/10	KWG1011883	
Chrysene	ND U	0.20	0.028	1	10/28/10	11/18/10	KWG1011883	
Bis(2-ethylhexyl) Phthalate	ND U	0.96	0.13	1	10/28/10	11/18/10	KWG1011883	
Di-n-octyl Phthalate	ND U	0.20	0.018	1	10/28/10	11/18/10	KWG1011883	
Benzo(b)fluoranthene	ND U	0.20	0.017	1	10/28/10	11/18/10	KWG1011883	
Benzo(k)fluoranthene	ND U	0.20	0.024	1	10/28/10	11/18/10	KWG1011883	
Benzo(a)pyrene	ND U	0.20	0.031	1	10/28/10	11/18/10	KWG1011883	
Indeno(1,2,3-cd)pyrene	ND U	0.20	0.021	1	10/28/10	11/18/10	KWG1011883	
Dibenz(a,h)anthracene	ND U	0.20	0.017	1	10/28/10	11/18/10	KWG1011883	
Benzo(g,h,i)perylene	ND U	0.20	0.019	1	10/28/10	11/18/10	KWG1011883	

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG1011883-3

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	89	12-109	11/18/10	Acceptable
Phenol-d6	88	23-106	11/18/10	Acceptable
Nitrobenzene-d5	90	26-110	11/18/10	Acceptable
2-Fluorobiphenyl	82	31-94	11/18/10	Acceptable
2,4,6-Tribromophenol	86	23-127	11/18/10	Acceptable
Terphenyl-d14	110	40-127	11/18/10	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 11/24/2010 13:32:14

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 3 of 3

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3	Sur4	<u>Sur5</u>	<u>Sur6</u>
F0106021	K1011981-001	79	87	83	82	103	100
Method Blank	KWG1011883-3	89	88	90	82	86	110
Lab Control Sample	KWG1011883-1	80	81	84	73	87	97
Duplicate Lab Control Sample	KWG1011883-2	85	86	86	76	89	97

Surrogate Recovery Control Limits (%)

	 		
Sur1 = 2-Fluorophenol	12-109	Sur5 = 2,4,6-Tribromophenol	23-127
Sur2 = Phenol-d6	23-106	Sur6 = Terphenyl-d14	40-127
Sur3 = Nitrobenzene-d5	26-110		
Sur4 = 2-Fluorobiphenyl	31-94		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/24/2010 13:32:19 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981

Date Extracted: 10/28/2010 **Date Analyzed:** 11/18/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C **Analysis Method:**

8270C

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1011883

							Extraction	Lot: KV	VG1011883
	Lab Control Sample KWG1011883-1 Lab Control Spike			KW	Lab Control (/G1011883-2 e Lab Control	_	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Bis(2-chloroethyl) Ether	4.23	5,00	85	4.41	5.00	88	37-109	4	30
Phenol	4.19	5.00	84	4.45	5.00	89	35-114	6	30
2-Chlorophenol	4.37	5.00	87	4.50	5.00	90	37-110	3	30
1,3-Dichlorobenzene	2.86	5.00	57	2.72	5.00	54	14-68	5	30
1,4-Dichlorobenzene	2.94	5.00	59	2.89	5.00	58	15-71	2	30
1,2-Dichlorobenzene	3.08	5.00	62	3.16	5.00	63	17-76	2	30
Benzyl Alcohol	4.71	5.00	94	4.89	5.00	98	32-115	4	30
Bis(2-chloroisopropyl) Ether	4.26	5.00	85	4.37	5.00	87	29-110	3	30
2-Methylphenol	3.47	5.00	69	4.10	5.00	82	21-109	17	30
Hexachloroethane	2.58	5.00	52	2.38	5.00	48	10-59	8	30
N-Nitrosodi-n-propylamine	4.55	5.00	91	4.53	5.00	91	32-112	0	30
4-Methylphenol	3.70	5.00	74	4.17	5.00	83	19-114	12	30
Nitrobenzene	4.34	5.00	87	4.37	5.00	87	36-110	1	30
Isophorone	4.24	5.00	85	4.09	5.00	82	38-106	4	30
2-Nitrophenol	4,59	5.00	92	4.56	5.00	91	41-112	1	30
2.4-Dimethylphenol	1.74	5.00	35	3.01	5.00	60	10-106	54 *	30
Bis(2-chloroethoxy)methane	4.47	5.00	89	4.47	5.00	89	39-109	0	30
2,4-Dichlorophenol	4.60	5.00	92	4.45	5.00	89	37-111	3	30
Benzoic Acid	4.89	15.0	33	4.30	15.0	29	10-83	13	30
1,2,4-Trichlorobenzene	3.20	5.00	64	3.03	5.00	61	18-76	5	30
Naphthalene	3.87	5.00	77	3.85	5.00	77	31-94	1	30
4-Chloroaniline	3.34	5.00	67	3.57	5.00	71	14-108	7	30
Hexachlorobutadiene	2.41	5.00	48	2.02	5.00	40	10-59	18	30
4-Chloro-3-methylphenol	4.39	5.00	88	4.56	5.00	91	33-115	4	30
2-Methylnaphthalene	3.92	5.00	78	3.82	5.00	76	29-92	3	30
Hexachlorocyclopentadiene	0.653	5.00	13	0.417	5.00	8 *	10-37	44 *	30
2,4,6-Trichlorophenol	4.36	5.00	87	4.54	5.00	91	36-113	4	30
2,4,5-Trichlorophenol	4.38	5.00	88	4.58	5.00	92	41-112	4	30
2-Chloronaphthalene	3.94	5.00	79	3.96	5.00	79	31-95	1	30
2-Nitroaniline	4.70	5.00	94	4.61	5.00	92	40-118	2	30
Acenaphthylene	4.36	5.00	87	4.36	5.00	87	36-107	0	30
Dimethyl Phthalate	4.40	5.00	88	4.40	5.00	88	46-111	0	30
2,6-Dinitrotoluene	4,66	5.00	93	4.64	5.00	93	44-116	0	30
Acenaphthene	4.16	5.00	83	4.14	5.00	83	36-101	0	30
3-Nitroaniline	4.44	5.00	89	4.53	5.00	91	34-118	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/24/2010 13:32:22 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic 19

RR122448

SuperSet Reference:

Page

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater Mon

Sample Matrix:

Water

Service Request: K1011981 Date Extracted: 10/28/2010

Date Analyzed: 11/18/2010

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA Level: Low

Extraction Lot: KWG1011883

Lab Control Sample

Duplicate Lab Control Sample

	KWG1011883-1 Lab Control Spike			KWG1011883-2 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4-Dinitrophenol	2.71	5.00	54	2,83	5,00	57	10-116	4	30
Dibenzofuran	4.27	5.00	85	4.18	5.00	84	37-103	2	30
4-Nitrophenol	4.11	5.00	82	4.12	5.00	82	38-125	0	30
2,4-Dinitrotoluene	4.59	5.00	92	4.58	5.00	92	47-119	0	30
Fluorene	4.40	5.00	88	4.30	5.00	86	39-106	2	30
4-Chlorophenyl Phenyl Ether	4.22	5.00	84	4.18	5.00	84	37-103	1	30
Diethyl Phthalate	4.38	5.00	88	4.33	5.00	87	47-113	1	30
4-Nitroaniline	4.40	5.00	88	4.41	5.00	88	38-119	0	30
2-Methyl-4,6-dinitrophenol	3.84	5.00	77	3.72	5.00	74	10-125	3	30
N-Nitrosodiphenylamine	4.36	5.00	87	4.27	5,00	85	36-111	2	30
4-Bromophenyl Phenyl Ether	4,52	5.00	90	4.45	5.00	89	42-105	1	30
Hexachlorobenzene	4.60	5.00	92	4.45	5.00	89	42-102	3	30
Pentachlorophenol	3.85	5.00	77	3.94	5.00	79	10-119	2	30
Phenanthrene	4.51	5.00	90	4.43	5.00	89	45-104	2	30
Anthracene	4.42	5.00	88	4.39	5.00	88	41-103	1	30
Di-n-butyl Phthalate	4.48	5.00	90	4.51	5.00	90	44-126	1	30
Fluoranthene	4.68	5.00	94	4.58	5.00	92	46-109	2	30
Pyrene	4.69	5.00	94	4.62	5.00	92	46-108	2	30
Butyl Benzyl Phthalate	4.58	5.00	92	4.51	5.00	90	48-115	1	30
3,3'-Dichlorobenzidine	1.79	5.00	36	3.15	5.00	63	13-108	55 *	30
Benz(a)anthracene	4.60	5.00	92	4.52	5.00	90	47-105	2	30
Chrysene	4.63	5.00	93	4.61	5.00	92	49-105	0	30
Bis(2-ethylhexyl) Phthalate	4.58	5.00	92	4.53	5.00	91	45-122	1	30
Di-n-octyl Phthalate	4.65	5.00	93	4.57	5.00	91	48-119	2	30
Benzo(b)fluoranthene	4.52	5.00	90	4.51	5.00	90	48-108	0	30
Benzo(k)fluoranthene	4.67	5.00	93	4.56	5.00	91	49-107	2	30
Benzo(a)pyrene	4.38	5.00	88	4.39	5.00	88	42-109	0	30
Indeno(1,2,3-cd)pyrene	4.62	5.00	92	4.53	5.00	91	47-111	2	30
Dibenz(a,h)anthracene	4.67	5.00	93	4.60	5.00	92	47-110	1	30
Benzo(g,h,i)perylene	4.55	5.00	91	4.52	5.00	90	47-109	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10141785

Sample Receipt Date: 10/28/2010

Client Project #: PTJ0860

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 15, 2010

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 15, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America - Portland. The sample was analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to 0.25-0.75 parts per trillion and were adjusted for sample volume.

The isotopically-labeled PCB internal standards in the sample extract were recovered at 66-96%. All of the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCB congeners at the reporting limits. This indicates that the sample preparation steps did not significantly impact the measurement of the native congeners in the field sample.

Laboratory spike samples were also prepared with the sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 92-116% with relative percent differences of 0-5.3%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTJ0860 1127

10141785

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature:

°C

Ice: Y / N

ieeds	Excel	FDD

Standard TAT is regue:	ested unless specific d	lue date is requested.	=> Due Date:	Initials:	
------------------------	-------------------------	------------------------	--------------	-----------	--

Analysis...

Units

Expires

Comments

Sample ID: PTJ0860-01 (F0106021 - Water)

Sampled: **10/24/10 22:25** 04/22/11 22:25

col

1668 PCB 209 Congeners - ug/l

SUB

Containers Supplied:

1L Amber - Unpres. (A)

721.1

10/11/10 1505 Mushan Dete/Time

Mont Van (Pace M)
Received By

Date/Time

Date/TimePage 5 of 25 of 1

Released Report No....10141785_968AP

Received By

Sample Condition Upon Receipt ace Analyticai" Client Name: (est America Project # 10/4/1785 Courier: Deed Ex UPS USPS Client Commercial Pace Other Tracking #: 41707526 4466 Proj. Due Date Proj Name Custody Seal on Cooler/Box Present: yes no ☐ yes ☐ no Seals intact: Bubble Bags None Other Packing Material: Bubble Wrap Temp Blank: Yes No Samples on ice, cooling process has begun 80344042 or 179425 Type of Ice: Wet Blue None Thermometer Used Date and initials of person examining contents: W/28/10 MSD Biological Tissue is Frozen: Yes **Cooler Temperature** Temp should be above freezing to 6°C Comments: PYes □No DN/A 1. Chain of Custody Present: No. □N⁄A Chain of Custody Filled Out: MYes DNo □N/A Chain of Custody Relinquished: LYes DINO LINA Sampler Name & Signature on COC: Wes DNo/ DNA Samples Arrived within Hold Time: □Yes No /UN/A Short Hold Time Analysis (<72hr): TYES THO TINA Rush Turn Around Time Requested: s ⊟No □N/A Sufficient Volume: ☑Yes □No/ □N/A Correct Containers Used: -Pace Containers Used: Yes /LJKo DNA Gres DNo **□N/A** Containers Intact: □Yes □No DINA Filtered volume received for Dissolved tests 11. MYes DNo DNA Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been □Yes □No DIM/A 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Lot # of added Initial when Exceptions: VOA,Coliform, TOC, Oli and Grease, WI-DRO (water: Tyes Tuko completed preservative ☐Yes ☐No DIN/A Samples checked for dechlorination: 14. □Yes □No CHIVA 15. Headepace in VOA Vials (>6mm): DINA □Yes □No Trip Blank Present: 16. Trip Blank Custody Seals Present ☐Yes ☐No **⊠**N/A Pace Trip Blank Lot # (if purchased): Field Data Required? Y / N Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Read Abalytical SEIMNES**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Date:

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTJ0860-01:F0106021
Lab Sample ID 10141785001
Filename P101106A_06

Injected By BAL

Total Amount Extracted 988 mL Matrix Water % Moisture NA Dilution 3

Dry Weight Extracted NA Collected 10/24/2010 22:25 **ICAL ID** P101106A04 Received 10/28/2010 09:47 CCal Filename(s) P101106A 01 Extracted 10/29/2010 13:45 Method Blank ID BLANK-26844 Analyzed 11/06/2010 09:11

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	7.791	3.24	2.0	1.36	68
13C-4-MoCB	3 4	10.978	3.08	2.0	1.53	76
13C-2,2'-DiCB	4	11.314	1.56	2.0	1.52	76
13C-4,4'-DiCB	15	19.211	1.53	2.0	1.41	71
13C-2,2',6-TrCB	19	15.604	1.08	2.0	1.56	78
13C-3,4,4'-TrCB	37	27.419	1.09	2.0	1.49	75
13C-2,2 ['] ,6,6'-TeCB	54	19.537	0.79	2.0	1.65	83
13C-3,4,4',5-TeCB	81	34.631	0.80	2.0	1.41	71
13C-3,3',4,4'-TeCB	77	35.218	0.82	2.0	1.42	71
13C-2,2',4,6,6'-PeCB	104	26.011	1.61	2.0	1.73	86
13C-2,3,3',4,4'-PeCB	105	38.808	1.59	2.0	1.36	68
13C-2,3,4,4',5-PeCB	114	38.153	1.62	2.0	1.36	68
13C-2,3',4,4',5-PeCB	118	37.617	1.64	2.0	1.33	66
13C-2,3',4,4',5'-PeCB	123	37.281	1.58	2.0	1.36	68
13C-3,3',4,4',5-PeCB	126	41.961	1.58	2.0	1.35	68
13C-2,2',4,4',6,6'-HxCB	155	32.199	1.27	2.0	1.94	97
13C-HxCB (156/157)	156/157	44.980	1.26	4.0	2.95	74
13C-2,3',4,4',5,5'-HxCB	167	43.822	1.25	2.0	1.44	72
13C-3,3',4,4',5,5'-HxCB	169	48.267	1.28	2.0	1.46	73
13C-2,2',3,4',5,6,6'-HpCB	188	38.120	1.05	2.0	1.91	95
13C-2,3,3',4,4',5,5'-HpCB	189	50.794	1.05	2.0	1.54	77
13C-2,2',3,3',5,5',6,6'-OcCB	202	43.554	0.91	2.0	1.95	98
13C-2,3,3',4,4',5,5',6-OcCB	205	53.467	0.89	2.0	1.81	91
13C-2,2',3,3',4,4',5,5',6-NoCB	206	55.472	0.75	2.0	1.89	95
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	50.277	0.79	2.0	1.92	96
13CDeCB	209	57.606	0.73	2.0	1.73	86
	_00	0000	00		0	
Cleanup Standards						
13C-2,4,4'-TrCB	28	22.874	1.08	2.0	1.50	75
13C-2,3,3',5,5'-PeCB	111	35.285	1.61	2.0	1.57	78
13C-2,2',3,3',5,5',6-HpCB	178	41.223	1.05	2.0	1.80	90
Recovery Standards						
13C-2,5-DiCB	9	14.118	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	24.971	0.79	2.0	NA	NA NA
13C-2,2',4,5,5'-PeCB	101	32.451	1.62	2.0	NA NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	40.770	1.30	2.0	NA NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	52.928	0.89	2.0	NA NA	NA NA
100-2,2,0,0,4,4,0,0-0000	134	32.320	0.03	2.0	INA	I N/A

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.253
2				ND		0.253
3				ND ND		0.253
4				ND		0.253
5				ND ND		0.253
5 6				ND ND		0.253
7				ND ND		0.253
						0.253
8				ND		0.253
9				ND		0.253
10				ND		0.253
11				ND		1.52
12	12/13			ND		0.506
13	12/13			ND		0.506
14				ND		0.253
15				ND		0.253
16				ND		0.253
17				ND		0.253
18	18/30			ND		0.506
19				ND		0.253
20	20/28			ND		0.506
21	21/33			ND		0.506
22				ND		0.253
23				ND		0.253
24				ND		0.253
25				ND		0.253
26	26/29			ND		0.506
27	20/23			ND		0.253
28	20/28			ND		0.506
29	26/29			ND		0.506
30	18/30			ND ND		0.506
31	16/30	22.556		0.283		0.253
32			0.99	0.263 ND		0.255
32	04/00					0.253
33	21/33			ND		0.506
34				ND		0.253
35				ND		0.253
36				ND		0.253
37				ND		0.253
38				ND		0.253
39				ND		0.253
40	40/41/71			ND		1.52
41	40/41/71			ND		1.52
42				ND		0.506
43	43/73			ND		1.01
44	44/47/65			ND		1.52
45	45/51			ND		1.01
46				ND		0.506
47	44/47/65			ND		1.52
48				ND		0.506
						0.000

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		1.01
50	50/53			ND		1.01
51	45/51			ND		1.01
52	10,01			ND		0.506
53	50/53			ND		1.01
54	33,33			ND		0.506
55				ND		0.506
56				ND		0.506
57				ND		0.506
58				ND		0.506
59	59/62/75			ND		1.52
60	00,02,.0			ND		0.506
61	61/70/74/76			ND		2.02
62	59/62/75			ND		1.52
63	00,02,.0			ND		0.506
64				ND		0.506
65	44/47/65			ND		1.52
66				ND		0.506
67				ND		0.506
68				ND		0.506
69	49/69			ND		1.01
70	61/70/74/76			ND		2.02
71	40/41/71			ND		1.52
72				ND		0.506
73	43/73			ND		1.01
74	61/70/74/76			ND		2.02
75	59/62/75			ND		1.52
76	61/70/74/76			ND		2.02
77				ND		0.506
78				ND		0.506
79				ND		0.506
80				ND		0.506
81				ND		0.506
82				ND		0.506
83				ND		0.506
84				ND		0.506
85	85/116/117			ND		1.52
86	86/87/97/108/119/125			ND		3.04
87	86/87/97/108/119/125			ND		3.04
88	88/91			ND		1.01
89				ND		0.506
90	90/101/113			ND		1.52
91	88/91			ND		1.01
92				ND		0.506
93	93/98/100/102			ND		2.02
94				ND		0.506
95		29.315	1.58	0.581		0.506
96				ND		0.506

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable

NC = Not Applicable

* = See Discussion
X = Outside QC Limits

X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.04
98	93/98/100/102			ND		2.02
99				ND		0.506
100	93/98/100/102			ND		2.02
101	90/101/113			ND		1.52
102	93/98/100/102			ND		2.02
103				ND		0.506
104				ND		0.506
105				ND		0.506
106				ND		0.506
107	107/124			ND		1.01
108	86/87/97/108/119/125			ND		3.04
109				ND		0.506
110	110/115			ND		1.01
111				ND		0.506
112				ND		0.506
113	90/101/113			ND		1.52
114				ND		0.506
115	110/115			ND		1.01
116	85/116/117			ND		1.52
117	85/116/117			ND		1.52
118		37.650	1.49	0.798		0.506
119	86/87/97/108/119/125			ND		3.04
120				ND		0.506
121				ND		0.506
122				ND		0.506
123				ND		0.506
124	107/124			ND		1.01
125	86/87/97/108/119/125			ND		3.04
126				ND		0.506
127				ND		0.506
128	128/166			ND		1.01
129	129/138/163	40.803	1.23	1.58		1.52
130				ND		0.506
131				ND		0.506
132				ND		0.506
133				ND		0.506
134	134/143			ND		1.01
135	135/151			ND		1.01
136				ND		0.506
137				ND		0.506
138	129/138/163	40.803	1.23	(1.58)		1.52
139	139/140			` NĎ		1.01
140	139/140			ND		1.01
141				ND		0.506
142				ND		0.506
143	134/143			ND		1.01
144				ND		0.506

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML
IUPAC	Co-elulions	K I	Kalio	ng/L	ng/L	ng/L
145				ND		0.506
146				ND		0.506
147	147/149			ND		1.01
148				ND		0.506
149	147/149			ND		1.01
150				ND		0.506
151	135/151			ND		1.01
152				ND		0.506
153	153/168	39.546	1.23	1.24		1.01
154				ND		0.506
155				ND		0.506
156	156/157			ND		1.01
157	156/157			ND		1.01
158				ND		0.506
159				ND		0.506
160				ND		0.506
161				ND		0.506
162	400/400/400			ND		0.506
163	129/138/163	40.803	1.23	(1.58)		1.52
164				NĎ		0.506
165	400/400			ND		0.506
166	128/166			ND		1.01
167	153/168	39.546	4.00	ND (4.24)		0.506
168 169	153/168		1.23	(1.24) ND		1.01 0.506
				ND ND		
170 171	171/173			ND ND		0.506 1.01
171	171/173			ND ND		0.506
172	171/173			ND ND		1.01
173	17 1/173			ND		0.506
175				ND		0.506
176				ND		0.506
177				ND		0.506
178				ND		0.506
179				ND		0.506
180	180/193	46.388	1.05	1.09		1.01
181	100/100			ND		0.506
182				ND		0.506
183	183/185			ND		1.01
184	100/100			ND		0.506
185	183/185			ND		1.01
186				ND		0.506
187		42.162	1.06	0.693		0.506
188				ND		0.506
189				ND		0.506
190				ND		0.506
191				ND		0.506
192				ND		0.506

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193	46.388	1.05	(1.09)		1.01
194				ND		0.759
195				ND		0.759
196				ND		0.759
197	197/200			ND		1.52
198	198/199			ND		1.52
199	198/199			ND		1.52
200	197/200			ND		1.52
201				ND		0.759
202				ND		0.759
203				ND		0.759
204				ND		0.759
205				ND		0.759
206				ND		0.759
207				ND		0.759
208				ND		0.759
209				ND		0.759

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTJ0860-01:F0106021 10141785001 P101106A_06

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	0.283	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	1.38	
Total Hexachloro Biphenyls	2.82	
Total Heptachloro Biphenyls	1.78	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	6.26	

ND = Not Detected

Water

Matrix

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26844
Filename P101105A_10
Injected By SMT

Total Amount Extracted 1020 mL Extracted 10/29/2010 13:45 ICAL ID P101105A02 Analyzed 11/05/2010 11:41

CCal Filename(s) P101105A_01 Dilution 3

CCai Fileriairie(S)	FIUTIUSA	_01		Dilution	3	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	7.887	3.09	2.0	0.888	44
13C-4-MoCB	3	11.085	2.85	2.0	0.975	49
13C-2,2'-DiCB	4	11.433	1.56	2.0	1.02	51
13C-4,4'-DiCB	15	19.352	1.56	2.0	1.15	58
13C-2,2',6-TrCB	19	15.734	1.04	2.0	1.16	58
13C-3,4,4'-TrCB	37	27.554	1.05	2.0	1.41	71
13C-2,2',6,6'-TeCB	54	19.673	0.78	2.0	1.22	61
13C-3,4,4',5-TeCB	81	34.781	0.78	2.0	1.34	67
13C-3,3',4,4'-TeCB	77	35.385	0.83	2.0	1.39	70
13C-2,2',4,6,6'-PeCB	104	26.145	1.54	2.0	1.58	79
13C-2,3,3',4,4'-PeCB	105	38.940	1.61	2.0	1.36	68
13C-2,3,4,4',5-PeCB	114	38.303	1.64	2.0	1.31	66
13C-2,3',4,4',5-PeCB	118	37.766	1.54	2.0	1.27	63
13C-2,3',4,4',5'-PeCB	123	37.431	1.56	2.0	1.33	66
13C-3,3',4,4',5-PeCB	126	42.109	1.55	2.0	1.35	68
13C-2,2',4,4',6,6'-HxCB	155	32.350	1.28	2.0	1.88	94
13C-HxCB (156/157)	156/157	45.111	1.25	4.0	3.23	81
13C-2,3',4,4',5,5'-HxCB	167	43.987	1.23	2.0	1.62	81
13C-3,3',4,4',5,5'-HxCB	169	48.414	1.26	2.0	1.61	80
13C-2,2',3,4',5,6,6'-HpCB	188	38.269	1.08	2.0	1.76	88
13C-2,3,3',4,4',5,5'-HpCB	189	50.963	1.08	2.0	1.66	83
13C-2,2',3,3',5,5',6,6'-OcCB	202	43.685	0.95	2.0	1.06	53
13C-2,3,3',4,4',5,5',6-OcCB	205	53.614	0.87	2.0	1.84	92
13C-2,2',3,3',4,4',5,5',6-NoCB	206	55.640	0.79	2.0	1.99	100
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	50.424	0.81	2.0	1.76	88
13CDeCB	209	57.816	0.72	2.0	1.83	92
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.010	1.11	2.0	1.30	65
13C-2,3,3',5,5'-PeCB	111	35.418	1.56	2.0	1.61	81
13C-2,2',3,3',5,5',6-HpCB	178	41.371	1.08	2.0	1.91	95
Recovery Standards						
13C-2,5-DiCB	9	14.236	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.123	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	32.601	1.55	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	40.919	1.28	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	53.096	0.91	2.0	NA	NA
,-,-,-,-,-			••••			

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26844 P101105A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.245
2				ND		0.245
3				ND		0.245
4				ND		0.245
5				ND		0.245
4 5 6 7				ND		0.245
7				ND		0.245
8				ND		0.245
9				ND		0.245
10				ND		0.245
11				ND		1.47
12	12/13			ND		0.490
13	12/13			ND		0.490
14	12/13			ND ND		0.490
15				ND		0.245
16				ND		0.245
17				ND ND		0.245
18	18/30			ND ND		0.490
19	10/30			ND ND		0.490
20	20/28			ND ND		0.490
21 22	21/33			ND ND		0.490 0.245
23				ND ND		0.245 0.245
23				ND ND		0.245
24						0.245
25	00/00			ND ND		0.245 0.490
26 27	26/29			ND ND		0.490
	00/00			ND		0.245
28	20/28			ND		0.490
29	26/29			ND		0.490
30	18/30			ND ND		0.490
31				ND		0.245
32	04/00			ND		0.245
33	21/33			ND		0.490
34 35				ND		0.245
35				ND		0.245
36				ND		0.245
37				ND		0.245
38				ND		0.245
39	40/44/=4			ND		0.245
40	40/41/71			ND		1.47
41	40/41/71			ND		1.47
42				ND		0.490
43	43/73			ND		0.980
44	44/47/65			ND		1.47
45	45/51			ND		0.980

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26844 P101105A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.490
47	44/47/65			ND		1.47
48				ND		0.490
49	49/69			ND		0.980
50	50/53			ND		0.980
51	45/51			ND		0.980
52				ND		0.490
53	50/53			ND		0.980
54				ND		0.490
55				ND		0.490
56				ND		0.490
57				ND		0.490
58				ND		0.490
59	59/62/75			ND		1.47
60				ND		0.490
61	61/70/74/76			ND		1.96
62	59/62/75			ND		1.47
63				ND		0.490
64				ND		0.490
65	44/47/65			ND		1.47
66				ND		0.490
67				ND		0.490
68				ND		0.490
69	49/69			ND		0.980
70	61/70/74/76			ND		1.96
71	40/41/71			ND		1.47
72				ND		0.490
73	43/73			ND		0.980
74	61/70/74/76			ND		1.96
75	59/62/75			ND		1.47
76	61/70/74/76			ND		1.96
77				ND		0.490
78				ND		0.490
79				ND		0.490
80				ND		0.490
81				ND		0.490
82				ND		0.490
83				ND		0.490
84				ND		0.490
85	85/116/117			ND		1.47
86	86/87/97/108/119/125			ND		2.94
87	86/87/97/108/119/125			ND		2.94
88	88/91			ND		0.980
89	- -			ND		0.490
90	90/101/113			ND		1.47

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID Filename

BLANK-26844 P101105A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		0.980
92				ND		0.490
93	93/98/100/102			ND		1.96
94	33, 33, 133, 132			ND		0.490
95				ND		0.490
96				ND		0.490
97	86/87/97/108/119/125			ND		2.94
98	93/98/100/102			ND		1.96
99				ND		0.490
100	93/98/100/102			ND		1.96
101	90/101/113			ND		1.47
102	93/98/100/102			ND		1.96
103				ND		0.490
104				ND		0.490
105				ND		0.490
106				ND		0.490
107	107/124			ND		0.980
108	86/87/97/108/119/125			ND		2.94
109				ND		0.490
110	110/115			ND		0.980
111				ND		0.490
112				ND		0.490
113	90/101/113			ND		1.47
114				ND		0.490
115	110/115			ND		0.980
116	85/116/117			ND		1.47
117	85/116/117			ND		1.47
118				ND		0.490
119	86/87/97/108/119/125			ND		2.94
120				ND		0.490
121				ND		0.490
122				ND		0.490
123				ND		0.490
124	107/124			ND		0.980
125	86/87/97/108/119/125			ND		2.94
126				ND		0.490
127				ND		0.490
128	128/166			ND		0.980
129	129/138/163			ND		1.47
130				ND		0.490
131				ND		0.490
132				ND		0.490
133				ND		0.490
134	134/143			ND		0.980
135	135/151			ND		0.980

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated * = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26844 P101105A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.490
137				ND		0.490
138	129/138/163			ND		1.47
139	139/140			ND		0.980
140	139/140			ND		0.980
141	100, 1.10			ND		0.490
142				ND		0.490
143	134/143			ND		0.980
144				ND		0.490
145				ND		0.490
146				ND		0.490
147	147/149			ND		0.980
148	,			ND		0.490
149	147/149			ND		0.980
150	,			ND		0.490
151	135/151			ND		0.980
152				ND		0.490
153	153/168			ND		0.980
154	.00, .00			ND		0.490
155				ND		0.490
156	156/157			ND		0.980
157	156/157			ND		0.980
158				ND		0.490
159				ND		0.490
160				ND		0.490
161				ND		0.490
162				ND		0.490
163	129/138/163			ND		1.47
164				ND		0.490
165				ND		0.490
166	128/166			ND		0.980
167				ND		0.490
168	153/168			ND		0.980
169				ND		0.490
170				ND		0.490
171	171/173			ND		0.980
172				ND		0.490
173	171/173			ND		0.980
174				ND		0.490
175				ND		0.490
176				ND		0.490
177				ND		0.490
178				ND		0.490
179				ND		0.490
180	180/193			ND		0.980

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26844 P101105A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.490
182				ND		0.490
183	183/185			ND		0.980
184				ND		0.490
185	183/185			ND		0.980
186				ND		0.490
187				ND		0.490
188				ND		0.490
189				ND		0.490
190				ND		0.490
191				ND		0.490
192				ND		0.490
193	180/193			ND		0.980
194				ND		0.735
195				ND		0.735
196				ND		0.735
197	197/200			ND		1.47
198	198/199			ND		1.47
199	198/199			ND		1.47
200	197/200			ND		1.47
201				ND		0.735
202				ND		0.735
203				ND		0.735
204				ND		0.735
205				ND		0.735
206				ND		0.735
207				ND		0.735
208				ND		0.735
209				ND		0.735

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename

BLANK-26844 P101105A_10

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26845 P101105A_06

1040 mL P101105A02 P101105A_01

BLANK-26844

Matrix Dilution Water NA

Extracted 10/29/2010 13:45 Analyzed 11/05/2010 07:23

Injected By SMT

Native Analytes		Labeled Analyt	
Found	0/_	Sniked	Found

PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	0.969	97	2.0	0.935	47
3	1.0	0.964	96	2.0	0.961	48
4	1.0	0.940	94	2.0	1.07	53
15	1.0	1.01	101	2.0	1.07	54
19	1.0	0.921	92	2.0	1.12	56
37	1.0	0.963	96	2.0	1.35	67
54	1.0	0.995	99	2.0	1.09	55
81	1.0	1.03	103	2.0	1.29	64
77	1.0	1.01	101	2.0	1.31	66
104	1.0	0.987	99	2.0	1.43	72
105	1.0	1.12	112	2.0	1.28	64
114	1.0	1.06	106	2.0	1.25	63
118	1.0	1.11	111	2.0	1.24	62
123	1.0	1.05	105	2.0	1.22	61
126	1.0	1.00	100	2.0	1.30	65
155	1.0	0.953	95	2.0	1.68	84
156/157	2.0	2.05	102	4.0	2.97	74
167	1.0	1.02	102	2.0	1.43	71
169	1.0	1.00	100	2.0	1.46	73
188	1.0	0.989	99	2.0	1.81	91
189	1.0	0.993	99	2.0	1.70	85
202	1.0	0.953	95	2.0	0.982	49
205	1.0	0.987	99	2.0	1.82	91
206	1.0	0.915	92	2.0	1.89	94
208	1.0	0.955	95	2.0	1.83	92
209	1.0	1.15	115	2.0	1.77	89

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID
CCal Filename(s)

Method Blank ID

LCSD-26846 P101105A_07 1020 mL

P101105A02 P101105A_01 BLANK-26844 Matrix Water Dilution NA

Extracted 10/29/2010 13:45 Analyzed 11/05/2010 08:27

Injected By SMT

	Native Analytes			Labeled Analytes		
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	0.965	96	2.0	0.676	34
3	1.0	0.930	93	2.0	0.735	37
4	1.0	0.993	99	2.0	0.813	41
15	1.0	1.02	102	2.0	0.842	42
19	1.0	0.971	97	2.0	0.870	43
37	1.0	0.925	93	2.0	1.17	59
54	1.0	0.982	98	2.0	0.853	43
81	1.0	1.01	101	2.0	1.26	63
77	1.0	0.994	99	2.0	1.29	64
104	1.0	0.980	98	2.0	1.26	63
105	1.0	1.08	108	2.0	1.23	62
114	1.0	1.04	104	2.0	1.21	60
118	1.0	1.08	108	2.0	1.22	61
123	1.0	1.05	105	2.0	1.26	63
126	1.0	1.00	100	2.0	1.24	62
155	1.0	0.918	92	2.0	1.77	88
156/157	2.0	2.02	101	4.0	3.03	76
167	1.0	1.01	101	2.0	1.56	78
169	1.0	0.965	96	2.0	1.58	79
188	1.0	0.961	96	2.0	1.87	94
189	1.0	0.983	98	2.0	1.77	89
202	1.0	0.957	96	2.0	1.08	54
205	1.0	0.960	96	2.0	1.89	95
206	1.0	0.960	96	2.0	2.02	101
208	1.0	0.957	96	2.0	1.90	95
209	1.0	1.16	116	2.0	1.82	91

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

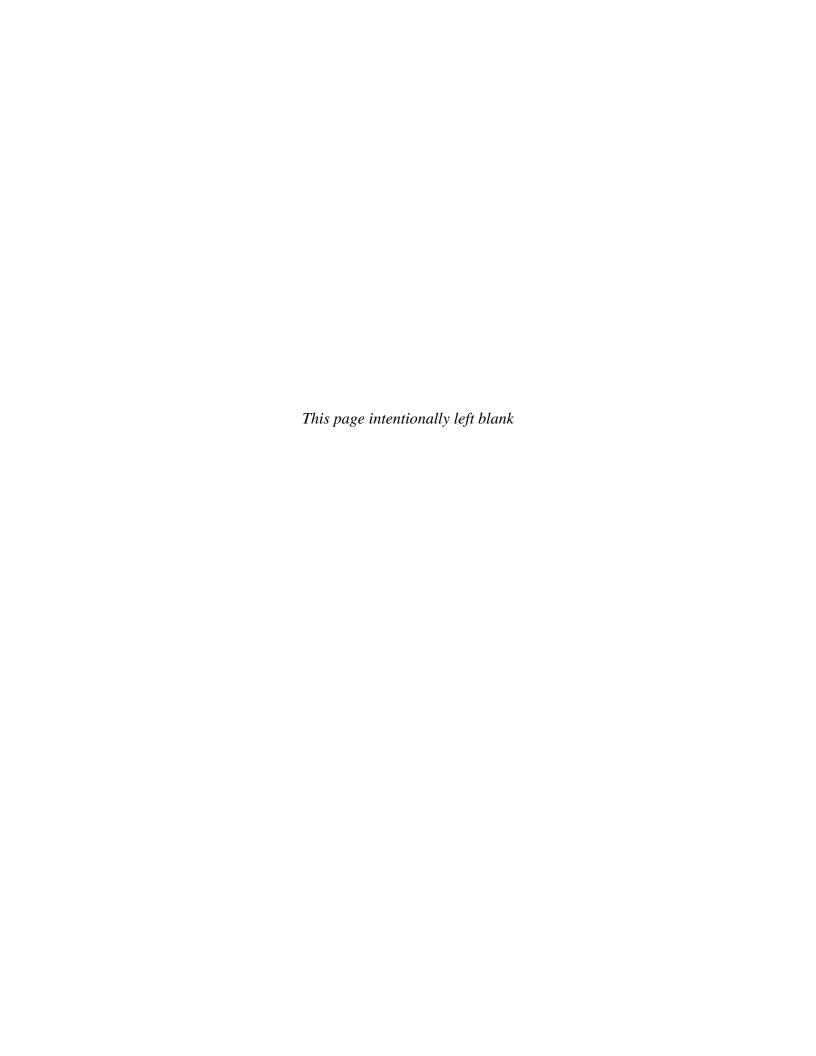
* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26845
 Spike 2 ID
 LCSD-26846


 Spike 1 Filename
 P101105A_06
 Spike 2 Filename
 P101105A_07

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	97	96	1.0	
4-MoCB	3	96	93	3.2	
2,2'-DiCB	4	94	99	5.2	
4,4'-DiCB	15	101	102	1.0	
2,2',6-TrCB	19	92	97	5.3	
3,4,4'-TrCB	37	96	93	3.2	
2,2',6,6'-TeCB	54	99	98	1.0	
3,3',4,4'-TeCB	77	101	99	2.0	
3,4,4',5-TeCB	81	103	101	2.0	
2,2',4,6,6'-PeCB	104	99	98	1.0	
2,3,3',4,4'-PeCB	105	112	108	3.6	
2,3,4,4',5-PeCB	114	106	104	1.9	
2,3',4,4',5-PeCB	118	111	108	2.7	
2,3',4,4',5'-PeCB	123	105	105	0.0	
3,3',4,4',5-PeCB	126	100	100	0.0	
2,2',4,4',6,6'-HxCB	155	95	92	3.2	
(156/157)	156/157	102	101	1.0	
2,3',4,4',5,5'-HxCB	167	102	101	1.0	
3,3',4,4',5,5'-HxCB	169	100	96	4.1	
2,2',3,4',5,6,6'-HpCB	188	99	96	3.1	
2,3,3',4,4',5,5'-HpCB	189	99	98	1.0	
2,2',3,3',5,5',6,6'-OcCB	202	95	96	1.0	
2,3,3',4,4',5,5',6-OcCB	205	99	96	3.1	
2,2',3,3',4,4',5,5',6-NoCB	206	92	96	4.3	
2,2',3,3',4,5,5',6,6'-NoCB	208	.95	96	1.0	
Decachlorobiphenyl	209	115	116	0.9	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.qsiwatersolutions.com

Laboratory Data QA/QC Review MS4 Data Evaluation City Outfall Basin 19

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: October 28, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) at Outfall Basin 19 on February 12, 2011. A field sample (W11B114-01) was collected and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

BES WPCL

- o Biological Oxygen Demand (BOD) SM 5210B/H10360
- o Chemical Oxygen Demand (COD) SM 5220D
- o Total Dissolved Solids (TDS) SM 2540C
- o Total Solids (TS) SM 2540B
- o Total Suspended Solids (TSS) SM 2540D
- Ammonia Nitrogen EPA 350.1
- o Nitrate –Nitrogen EPA 300.0
- Orthophosphate Phosphorus EPA 365.1
- o Total Kjeldahl nitrogen (TKN) PAI-DK03
- Total Phosphorus EPA 365.4
- Hardness SM 2340B
- o Calcium EPA 200.7

- o Magnesium EPA 200.7
- o Metals (Total) EPA 200.8
- o Metals (Dissolved) EPA 200.8
- o Polynuclear Aromatic Hydrocarbons (PAHs) & Phthalates EPA 8270M-SIM
- Columbia Analytical Services (CAS)
 - Organochlorine Pesticides EPA 8081B
 - o Semi-Volatile Organic Compounds (SVOCs) EPA 8270C
- Pace Analytical Services (Pace)
 - o Polychlorinated Biphenyls (PCB) Congeners EPA 1668A

The WPCL laboratory report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

For the purpose of this pesticide source control investigation, the following QA/QC review was limited to review of the analytical data generated from the analysis of organochlorine pesticides. The QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratories, and consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Internal standard recoveries within accuracy control limits
- Surrogate recoveries within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits.

The results of the QA/QC review of the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 3

Analysis Holding Times

Samples were extracted and analyzed within the recommended holding times for the organochlorine pesticide analysis.

Method Blanks

A method blank was processed during the laboratory analysis of organochlorine pesticides. No analytes were detected in the method blank.

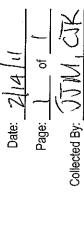
Surrogate Recoveries

Surrogates were analyzed during the pesticide analysis. Surrogate recoveries were within laboratory acceptance limits with one exception; the control criteria were exceeded for the surrogate, decachlorobiphenyl, due to matrix interference that prevented adequate resolution of the target compounds. However, the other surrogate, tetrachloro-m-xylene, was well within control limits, indicating the integrity of the extraction was intact. Accordingly, CAS reports that no corrective action was necessary.

Laboratory Control/Duplicate Laboratory Control Samples

LC/DLC samples were processed during the laboratory analysis of pesticides. LC/DLC sample recoveries and RPDs were within laboratory acceptance limits

Other


CAS reports that the primary evaluation criteria were not met on the confirmation column for 4,4'-DDT and Methoxychlor during the organochlorine pesticide analysis. The results were reported from the column with an acceptable continuing calibration verification (CCV), and the data quality is not affected. Additionally, for some analytes, the relative percent difference between analytical results from the two columns is greater than 40 percent. These values are flagged as estimates ("J" flag). CAS also reports that detection limits were elevated for a few analytes due to matrix interference from non-target background components. Affected analytes are flagged in the subcontracted report to indicate the matrix interference.

GSI WATER SOLUTIONS, INC. PAGE 3 OF 3

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Project Name:	NPDES STORMWTR MON	TR MON																		ļ				1
File Number:	4010.001		Matrix:	STORMWTR	l r						i.e.	Requested Analyses	lest	ed	√nal	lyse		あ にあに4	Ξ	え	+			
							General	rai	П	M	Metals			Nutrients	ents		Ď.	-	P	Outside				Г
☑∕Sample Time recorded in current local time	in current local time				<u> </u>					(n∑,dq,u		(n.S.,dq ,u		эплоярногия			setes	10 4 0 / 1 - 1	(SAS) lav	rs (Pace)				1
Samplescollec	Samples collected on 2/12/11 from 1807 to 2232	18 mon	07 20	22.52		-											Phthal					· · ·		
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample S Time	Sample Type	ST SQT	SST	BOD Hardnes	сор	Total Me (Ag. As. C	Oissolve		inommA	Nitrate-n Orthonho	dq IstoT	TKN	+ sHA9	-50/13		esticide				
10	4900 NW KITTRIDGE AVE (OF19)	OF19	2/12/11	2232	U	•	. •	•	•	•							•	+	1					T
						_							<u> </u>							ļ			<u> </u>	
												 	<u> </u>	-	ļ					<u> </u>		 	-	-
	ì						-		***************************************				-				-		-	<u> </u>			<u> </u>	T
														ļ								-		
														ļ					-					
														<u> </u>				ļ. 	ļ <u> </u>					· · ·
											<u> </u>		<u> </u>						<u> </u>	<u> </u>		 		
						,					ļ							-	-					ı
											ļ						<u> </u>		 			<u> </u>		1
Relinquished By: 1.	J Times	Relinguished By:	ed By: 2.		ŀ		Re	Relinquished By:	ed By:	က်			,			Relind	Relinquished By	3 By:	4.		1			I
Jahr-111k	1037	aigiliatus e.					iĝe	olgnature:					IIII 6:	 		Signature:	i.				_	тіте:		
o TardanMclann	211 Date / 14/11	Printed Name:			Date:		Prin	Printed Name:					Date:	ei.	Ť	Printed Name:	Vame:				_	Date:		
ge 14	1	Received By: Signature:	;; '		Тіме:		Sign	Received By: Signature:	;;	က်			Time;	ä		Receiver Signature:	Received By: Signature:		4.			Time;		
of 6		Printed Name:			Date:		. F	Printed Name:					Date:	ä		Printed Name:	Vame:					Date:		_
1_	s:\eid\4000\4010.001\sampdoc\Current NPDE\$ COC.xls	(ls					-								1									7

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: NPDES Stormwater

Work Order: W11B120

Received: 2/14/11 15:28 Submitted By: Field Operations Client: MS4

Project Mgr: Frank Wildensee

WQDB #: Janus31

							-	ection Date	
Sample	Laboratory			<u>Type</u>		<u>Sta</u>	_	<u>End</u>	Qualifie
OF19	W11B120-0			Grab		02/14/11		02/14/11 14:50	
S45U	W11B120-0	02 Stormwater		Grab		02/14/11	13:35	02/14/11 13:35	
Analyte	Result	Units	MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
Field Parameters									
Field conductivity									
OF19: W11B120-01									
Conductivity	138	umhos/cm	0	1	B11B205	02/14/11	02/14/11	Field conductivity	
S45U: W11B120-02									
Conductivity	152	umhos/cm	0	1	B11B205	02/14/11	02/14/11	Field conductivity	
Field pH									
OF19: W11B120-01									
рН	7.0	pH Units	0.1	1	B11B205	02/14/11	02/14/11	Field pH	
S45U: W11B120-02									
рН	6.5	pH Units	0.1	1	B11B205	02/14/11	02/14/11	Field pH	
Field temperature									
OF19: W11B120-01									
Temperature	9.9	°C	0.0	1	B11B205	02/14/11	02/14/11	Field temperature	
S45U: W11B120-02									
Temperature	11.5	°C	0.0	1	B11B205	02/14/11	02/14/11	Field temperature	
Microbiology									
E. coli by Colilert Quantitray									
OF19: W11B120-01									
E. coli	320	MPN/100 mL	10	1	B11B213	02/15/11	02/16/11	Colilert QT	
S45U: W11B120-02									
E. coli	20000	MPN/100 mL	10	1	B11B213	02/15/11	02/16/11	Colilert QT	

Reported: 03/03/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B120 Project Mgr: Frank Wildensee

Analyte	Result	Units	MRL	Dilution Batch	Prepared	Analyzed	Method	Qualifier
General Chemistry								
Total Oil & Grease								
OF19: W11B120-01								
Oil & grease, total	ND	mg/L	5.0	B11C026	03/01/11	03/01/11	EPA 1664	
S45U : W11B120-02								
Oil & grease, total	ND	mg/L	5.0	B11C026	03/01/11	03/01/11	EPA 1664	

Reported: 03/03/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B120 Project Mgr: Frank Wildensee

Quality Control Report

Microbiology - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
E. coli by Colilert Quantitray - B	atch B11B21	3							
Duplicate (B11B213-DUP1)			Source: W11B120-01						
E. coli	460 M	1PN/100 mL	10		320		36 (100)	02/15/11 :02/16/11	

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Oil & Grease - Batch B1	1C026								
Blank (B11C026-BLK1)									
Oil & grease, total	ND	mg/L	5.0					03/01/11 :03/01/11	
LCS (B11C026-BS1)									
Oil & grease, total	14.0	mg/L	5.0	20.0		70 (70-110)		03/01/11 :03/01/11	
LCS (B11C026-BS2)									
Oil & grease, total	188	mg/L	5.0	200		94 (70-110)		03/01/11 :03/01/11	

Definitions

DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 03/03/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Water Pollution Control Laboratory 6543 N. Burlington Ave.
Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services

Page: / of /

Collected By: UTM,

Date: 2/14/11

Project Name:	NPDES STORMWTR MON	TR MON			f ·	12 ° '						١ ,		
File Number:	4010.001		Matrix:	STORMWTR	도				Requested Analyses	ınalyses ₩	آ [2]	70		
						General	Micro		Comments		_	FIE) Id	
Sample Time recorded in current local time	in current local time					"əse			·		() Seese (c)	nmhos/cm)	Z# ^Q	
* Run Non-Polar Oil & Grease if detect	sse if detect	į			•	:මාට & 					1 <i>007 :</i> 9p) ə.inş	tivity (i	(stin	
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample S Time	Sample Type	liO lajoT	ilos .∃			.*	Tempera Meter No.	Conduct Meter No.:	DH (pH U Meter No.:	
	4900 NW KITTRIDGE AVE (OF19)	KITTRIDG 2/14/11	2/14/11	(450	Ð	•	•				66	38	7.0	
8 0 1	SE 45th AVE & UMATILLA ST (STORM SEWER)	S45U	2/14/11	1335	9	•	•				= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	152	6.5	
			-						صا.	-				
	,								1					
•														
					<u>i</u>			-	Land Control					
9	·													
6											. 4			
											,			
Relinquished By: 7.		Relinguished By:	d By: 2.				Relinguished By	ed By: 3.		Relinquished By:	4.			
Signature: (hush - Me	L. Time: 158	Signature:			Time:		Signature;		Пле:	Signature:		F	Time:	
me: / Jordan	McLann Date: 2/14/11	Printed Name:			Date:		Printed Name:		Date:	Printed Name:		٥	Date:	
Page 4	Time: 518	Received By: Signature:	<u>7.</u> 2.		Time:		Received By: Signature:	y: 3.	Тіпе:	Received By: 4 Signature:	4.	E	Time:	
Pring of me: Machenry	10/2 Date: 2/14/11	Printed Name:			Date:		Printed Name:		Date:	Printed Name:		ď	Date:	
		٠]

s:\eid\4000\4010.001\sampdoc\Current NPDES COC.xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: NPDES Stormwater

Work Order: **W11B114**Received: 2/14/11 10:37
Submitted By: Field Operations

Client: MS4

Project Mgr: Frank Wildensee

WQDB #: Janus31

							San	ple Colle	ction Date	
<u>Sample</u>	Laboratory ID	<u>Matrix</u>			Гуре		<u>Sta</u>	<u>rt</u>	<u>End</u>	Qualifier
OF19	W11B114-01	Stormwa	ater	(Compo	site	02/12/11	18:02	02/12/11 22:32	
Analyte	Result	Units	MDL	MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
OF19 : W11B114-01										
General Chemistry										
BOD	6	mg/L		2		B11B202	02/14/11	02/19/11	SM 5210B/ H10360	
COD	61	mg/L		5		B11B300	02/22/11	02/22/11	SM 5220D	
Total dissolved solids	83	mg/L		5		B11B201	02/14/11	02/15/11	SM 2540C	
Total solids	195	mg/L		2		B11B204	02/14/11	02/15/11	SM 2540B	
Total suspended solids	148	mg/L		2		B11B203	02/14/11	02/14/11	SM 2540D	
Nutrients										
Ammonia-nitrogen	0.114	mg/L		0.020	1	B11B294	02/22/11	02/22/11	EPA 350.1	
Nitrate-nitrogen	0.52	mg/L		0.10	1	B11B186	02/14/11	02/14/11	EPA 300.0	
o-phosphate-Phosphorus	0.109	mg/L		0.020	1	B11B199	02/14/11	02/14/11	EPA 365.1	
Total Kjeldahl nitrogen (TKN)	0.94	mg/L		0.20	1	B11B218	02/15/11	02/17/11	PAI-DK03	
Total phosphorus	0.403	mg/L		0.030	1	B11B218	02/15/11	02/16/11	EPA 365.4	
Total Metals										
Hardness by calculation										
Hardness	50.7 n	ng CaCO3/L		0.456	1	[CALC]	02/16/11	02/16/11	SM 2340B	
Calcium	16.6	mg/L		0.100	1	B11B228	02/16/11	02/16/11	EPA 200.7	
Magnesium	2.23	mg/L		0.050	1	B11B228	02/16/11	02/16/11	EPA 200.7	
Total Metals by ICPMS										
Arsenic	1.31	ug/L		0.100	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Cadmium	0.290	ug/L		0.100	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Chromium	5.26	ug/L		0.400	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Copper	80.7	ug/L		0.200	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Lead	42.6	ug/L		0.100	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Silver	ND	ug/L		0.100	1	B11B249	02/16/11	02/17/11	EPA 200.8	
Zinc	143	ug/L		0.500	1	B11B249	02/16/11	02/17/11	EPA 200.8	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Analyte	Result	Units	MDL	MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifie
Dissolved Metals										
Dissolved Metals by ICPMS										
Arsenic, dissolved	0.478	ug/L		0.100	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Cadmium, dissolved	0.104	ug/L		0.100	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Chromium, dissolved	ND	ug/L		0.400	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Copper, dissolved	5.82	ug/L		0.200	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Lead, dissolved	0.815	ug/L		0.100	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Silver, dissolved	ND	ug/L		0.100	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Zinc, dissolved	56.4	ug/L		0.500	1	B11B241	02/16/11	02/16/11	EPA 200.8	
Semivolatile Organics - SIN	1									
Polynuclear Aromatics & Phtha		-SIM								
Acenaphthene	ND	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Acenaphthylene	0.028	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Anthracene	0.063	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Benzo(a)anthracene	0.085	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Benzo(a)pyrene	0.10	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Benzo(b)fluoranthene	0.15	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Benzo(g,h,i)perylene	0.17	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Benzo(k)fluoranthene	0.042	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Chrysene	0.13	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Dibenzo(a,h)anthracene	0.029	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Fluoranthene	0.24	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Fluorene	0.034	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Indeno(1,2,3-cd)pyrene	0.084	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
1-Methylnaphthalene	0.065	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
2-Methylnaphthalene	0.073	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Naphthalene	0.063	ug/L	0.040	0.040	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Phenanthrene	0.14	ug/L	0.020	0.020	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Pyrene	0.33	ug/L	0.010	0.010	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Butyl benzyl phthalate	1.0	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Di-n-butyl phthalate	0.65	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Diethyl phthalate	ND	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Dimethyl phthalate	2.1	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Di-n-octyl phthalate	ND	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Bis(2-ethylhexyl) phthalate	4.0	ug/L	0.50	1.0	1	B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Surrogate	Result	~g, _	Expected	%Rec	Limits(%			·		
2-Methylnaphthalene-d10	0.17		0.216		20-110	, B11B235	02/16/11	02/24/11	EPA 8270-SIM	
Fluoranthene-d10	0.17		0.216		35-130	B11B235	02/16/11	02/24/11	EPA 8270-SIM	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Quality Control Report

General Chemistry - QC

Anglista	Daniell	l le:t-	MDL N		Spike	Source	%Rec	RPD (Limit)	Prepared: Analyzed	Qualifie
Analyte	Result	Units	MDL N	/IRL	Levei	Result	(Limits)	(Enrity	7 Waly 200	
Biochemical Oxygen Demand -	Batch B11B2	202								
Blank (B11B202-BLK1)										
BOD	ND	mg/L		2					02/14/11 :02/19/11	
Blank (B11B202-BLK2)										
BOD	ND	mg/L		2					02/14/11 :02/19/11	
LCS (B11B202-BS1)										
BOD	200	mg/L			198		101 (90.4-114)		02/14/11 :02/19/11	
Duplicate (B11B202-DUP1)			Source: W11B113-0	1						
BOD	6	mg/L		2		6		0 (20)	02/14/11 :02/19/11	
Chemical Oxygen Demand - Ba	atch B11B300)								
Blank (B11B300-BLK1)										
COD	ND	mg/L		5					02/22/11 :02/22/11	
LCS (B11B300-BS1)										
COD	104	mg/L		5	100		104 (90-110)		02/22/11 :02/22/11	
Duplicate (B11B300-DUP1)			Source: W11B114-0	1						
COD	58	mg/L		5		61		5 (20)	02/22/11 :02/22/11	
Matrix Spike (B11B300-MS1)			Source: W11B114-0	1						
COD	115	mg/L		5	50.5	61	107 (80-120)		02/22/11 :02/22/11	
Total Dissolved Solids - Batch I	311B201									
Blank (B11B201-BLK1)										
Total dissolved solids	ND	mg/L		5					02/14/11 :02/15/11	
LCS (B11B201-BS1)										
Total dissolved solids	97	mg/L			100		97 (90-110)		02/14/11 :02/15/11	
Duplicate (B11B201-DUP1)			Source: W11B095-0	1						
Total dissolved solids	315	mg/L		5		331		5 (20)	02/14/11 :02/15/11	
Total Solids - Batch B11B204										
LCS (B11B204-BS1)										
Total solids	90	mg/L			100		90 (90-110)		02/14/11 :02/15/11	
Duplicate (B11B204-DUP1)		-	Source: W11B114-0	1			. ,			
Total solids	199	mg/L		2		195		2 (20)	02/14/11 :02/15/11	
Total Suspended Solids - Batch	B11B203							. ,		
Duplicate (B11B203-DUP1)	. 5 1 1 5 5 0 0		Source: W11B112-0	1						
Total suspended solids	205	mg/L		2		180		13 (20)	02/14/11 :02/14/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Nutrients - QC

			Nutrients						
				Spike	Source	%Rec	RPD	Prepared:	Qualific
Analyte	Result	Units	MDL MRL	Level	Result	(Limits)	(Limit)	Analyzed	Qualifi
<u> Ammonia-Nitrogen - Batch B11I</u>	B294								
Blank (B11B294-BLK1)									
Ammonia-nitrogen	ND	mg/L	0.020					02/22/11 :02/22/11	
LCS (B11B294-BS1)									
Ammonia-nitrogen	1.02	mg/L	0.020	1.00		102 (90-110)		02/22/11 :02/22/11	
Duplicate (B11B294-DUP1)			Source: W11B113-01						
Ammonia-nitrogen	0.209	mg/L	0.020		0.210		0.7 (20)	02/22/11 :02/22/11	
Matrix Spike (B11B294-MS1)			Source: W11B113-01						
Ammonia-nitrogen	1.20	mg/L	0.020	1.00	0.210	99 (80-120)		02/22/11 :02/22/11	
ortho-Phosphate-P - Batch B11	B199								
Blank (B11B199-BLK1)									
o-phosphate-Phosphorus	ND	mg/L	0.020					02/14/11 :02/14/11	
LCS (B11B199-BS1)									
o-phosphate-Phosphorus	0.099	mg/L	0.020	0.100		99 (90-110)		02/14/11 :02/14/11	
Duplicate (B11B199-DUP1)			Source: W11B112-01						
o-phosphate-Phosphorus	ND	mg/L	0.020		ND		(20)	02/14/11 :02/14/11	
Matrix Spike (B11B199-MS1)			Source: W11B112-01						
o-phosphate-Phosphorus	0.098	mg/L	0.020	0.100	ND	98 (80-120)		02/14/11 :02/14/11	
Total Kjeldahl Nitrogen - Batch I	B11B218								
Blank (B11B218-BLK1)									
Total Kjeldahl nitrogen (TKN)	ND	mg/L	0.20					02/15/11 :02/17/11	
LCS (B11B218-BS1)									
Total Kjeldahl nitrogen (TKN)	1.98	mg/L	0.20	2.00		99 (90-110)		02/15/11 :02/17/11	
Duplicate (B11B218-DUP1)			Source: W11B114-01						
Total Kjeldahl nitrogen (TKN)	0.94	mg/L	0.20		0.94		0.1 (20)	02/15/11 :02/17/11	
Matrix Spike (B11B218-MS1)			Source: W11B114-01						
Total Kjeldahl nitrogen (TKN)	2.99	mg/L	0.20	2.00	0.94	102 (80-120)		02/15/11 :02/17/11	
Total Phosphorus - Batch B11B	218								
Blank (B11B218-BLK1)									
Total phosphorus	ND	mg/L	0.030					02/15/11 :02/16/11	
LCS (B11B218-BS1)									
Total phosphorus	0.203	mg/L	0.030	0.200		102 (90-110)		02/15/11 :02/16/11	
Duplicate (B11B218-DUP1)			Source: W11B114-01			· · · · · ·			
Total phosphorus	0.408	mg/L	0.030		0.403		1 (20)	02/15/11 :02/16/11	
Matrix Spike (B11B218-MS1)			Source: W11B114-01				. ,		
Total phosphorus	0.618	mg/L		0.200	0.403	107 (80-120)		02/15/11 :02/16/11	
Nitrate by IC - Batch B11B186						/			
Blank (B11B186-BLK1)									
Nitrate-nitrogen	ND	mg/L	0.10					02/14/11 :02/14/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Nutrients - QC

Analyte	Result	Units	MDL MR	Sp L Le		Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Nitrate by IC - Batch B11B186							(=			
LCS (B11B186-BS1)										
Nitrate-nitrogen	2.98	mg/L	0.1	0 3.0	00		99 (90-110)		02/14/11 :02/14/11	
Duplicate (B11B186-DUP1)			Source: W11B102-02							
Nitrate-nitrogen	ND	mg/L	0.1	0		ND		(20)	02/14/11 :02/14/11	
Duplicate (B11B186-DUP2)			Source: W11B118-02							
Nitrate-nitrogen	0.493	mg/L	0.1	0		0.497		0.8 (20)	02/14/11 :02/14/11	
Matrix Spike (B11B186-MS1)			Source: W11B102-02							
Nitrate-nitrogen	3.06	mg/L	0.1	0 3.0	06	ND	100 (80-120)		02/14/11 :02/14/11	
Matrix Spike (B11B186-MS2)			Source: W11B118-02							
Nitrate-nitrogen	3.64	mg/L	0.1	0 3.0	06	0.497	103 (80-120)		02/14/11 :02/14/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Total Metals - QC

			Total Metals						
Analyte	Result	Units	MDL MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Total Metals by ICP - Batch B11	IR228 for Ha	ırdness							
Blank (B11B228-BLK1)	10220 101 110	ii di i coo							
Calcium	ND	mg/L	0.100					02/16/11 :02/16/11	
Magnesium	ND	mg/L	0.050					02/16/11 :02/16/11	
LCS (B11B228-BS1)									
Calcium	5.13	mg/L	0.100	5.00		103 (85-115)		02/16/11 :02/16/11	
Magnesium	2.10	mg/L	0.050	2.00		105 (85-115)		02/16/11 :02/16/11	
Duplicate (B11B228-DUP1)			Source: W11B132-01						
Calcium	23.3	mg/L	0.100		23.5		0.9 (20)	02/16/11 :02/16/11	
Magnesium	0.689	mg/L	0.050		0.688		0.1 (20)	02/16/11 :02/16/11	
Matrix Spike (B11B228-MS1)			Source: W11B132-01						
Calcium	28.1	mg/L	0.100	5.00	23.5	91 (70-130)		02/16/11 :02/16/11	
Magnesium	2.74	mg/L	0.050	2.00	0.688	103 (70-130)		02/16/11 :02/16/11	
Total Metals by ICPMS - Batch	R11R249					, ,			
Blank (B11B249-BLK1)	D11D2 1 3								
Arsenic	ND	ug/L	0.045					02/16/11 :02/17/11	
Cadmium	ND	ug/L	0.100					02/16/11 :02/17/11	
Chromium	ND	ug/L	0.400					02/16/11 :02/17/11	
Copper	ND	ug/L	0.200					02/16/11 :02/17/11	
Lead	ND	ug/L	0.100					02/16/11 :02/17/11	
Silver	ND	ug/L	0.100					02/16/11 :02/17/11	
Zinc	ND	ug/L	0.500					02/16/11 :02/17/11	
LCS (B11B249-BS1)									
Arsenic	10.2	ug/L	0.045	10.0		102 (85-115)		02/16/11 :02/17/11	
Cadmium	9.84	ug/L	0.100	10.0		98 (85-115)		02/16/11 :02/17/11	
Chromium	9.76	ug/L	0.400	10.0		98 (85-115)		02/16/11 :02/17/11	
Copper	10.1	ug/L	0.200	10.0		101 (85-115)		02/16/11 :02/17/11	
Lead	9.98	ug/L	0.100	10.0		100 (85-115)		02/16/11 :02/17/11	
Silver	9.72	ug/L	0.100	10.0		97 (85-115)		02/16/11 :02/17/11	
Zinc	49.1	ug/L	0.500	50.0		98 (85-115)		02/16/11 :02/17/11	
Duplicate (B11B249-DUP1)			Source: W11B117-01						
Arsenic	0.186	ug/L	0.045		0.167		11 (20)	02/16/11 :02/17/11	
Cadmium	ND	ug/L	0.100		ND		(20)	02/16/11 :02/17/11	
Chromium	0.492	ug/L	0.400		0.512		4 (20)	02/16/11 :02/17/11	
Соррег	3.90	ug/L	0.200		4.09		5 (20)	02/16/11 :02/17/11	
Lead	1.09	ug/L	0.100		1.11		2 (20)	02/16/11 :02/17/11	
Silver	ND	ug/L	0.100		ND		(20)	02/16/11 :02/17/11	
Zinc	18.4	ug/L	0.500		18.4		0.2 (20)	02/16/11 :02/17/11	
Duplicate (B11B249-DUP2)			Source: W11B130-03						
Arsenic	0.088	ug/L	0.045		0.095		7 (20)	02/16/11 :02/17/11	
Cadmium	ND	ug/L	0.100		ND		(20)	02/16/11 :02/17/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Total Metals - QC

Analyte	Result	Units	MDL MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Total Metals by ICPMS - Batch	B11B249								
Duplicate (B11B249-DUP2)			Source: W11B130-03						
Chromium	ND	ug/L	0.400		ND		(20)	02/16/11 :02/17/11	
Copper	1.11	ug/L	0.200		1.08		3 (20)	02/16/11 :02/17/11	
Lead	0.662	ug/L	0.100		0.643		3 (20)	02/16/11 :02/17/11	
Silver	ND	ug/L	0.100		ND		(20)	02/16/11 :02/17/11	
Zinc	6.80	ug/L	0.500		6.58		3 (20)	02/16/11 :02/17/11	
Duplicate (B11B249-DUP3)			Source: W11B139-04						
Arsenic	0.777	ug/L	0.045		0.728		6 (20)	02/16/11 :02/17/11	
Cadmium	ND	ug/L	0.100		ND		(20)	02/16/11 :02/17/11	
Chromium	1.75	ug/L	0.400		1.73		1 (20)	02/16/11 :02/17/11	
Copper	5.39	ug/L	0.200		5.14		5 (20)	02/16/11 :02/17/11	
Lead	1.04	ug/L	0.100		1.02		2 (20)	02/16/11 :02/17/11	
Silver	0.191	ug/L	0.100		0.178		7 (20)	02/16/11 :02/17/11	
Zinc	38.2	ug/L	0.500		37.9		0.6 (20)	02/16/11 :02/17/11	
Matrix Spike (B11B249-MS1)			Source: W11B117-01						
Arsenic	10.6	ug/L	0.045	10.0	0.167	104 (70-130)		02/16/11 :02/17/11	
Cadmium	9.85	ug/L	0.100	10.0	ND	99 (70-130)		02/16/11 :02/17/11	
Chromium	10.3	ug/L	0.400	10.0	0.512	98 (70-130)		02/16/11 :02/17/11	
Copper	14.3	ug/L	0.200	10.0	4.09	102 (70-130)		02/16/11 :02/17/11	
Lead	11.2	ug/L	0.100	10.0	1.11	101 (70-130)		02/16/11 :02/17/11	
Silver	9.95	ug/L	0.100	10.0	ND	100 (70-130)		02/16/11 :02/17/11	
Zinc	67.0	ug/L	0.500	50.0	18.4	97 (70-130)		02/16/11 :02/17/11	
Matrix Spike (B11B249-MS2)			Source: W11B130-03						
Arsenic	10.5	ug/L	0.045	10.0	0.095	104 (70-130)		02/16/11 :02/17/11	
Cadmium	9.73	ug/L	0.100	10.0	ND	97 (70-130)		02/16/11 :02/17/11	
Chromium	10.1	ug/L	0.400	10.0	ND	101 (70-130)		02/16/11 :02/17/11	
Copper	11.5	ug/L	0.200	10.0	1.08	104 (70-130)		02/16/11 :02/17/11	
Lead	10.7	ug/L	0.100	10.0	0.643	101 (70-130)		02/16/11 :02/17/11	
Silver	9.93	ug/L	0.100	10.0	ND	99 (70-130)		02/16/11 :02/17/11	
Zinc	55.1	ug/L	0.500	50.0	6.58	97 (70-130)		02/16/11 :02/17/11	
Matrix Spike (B11B249-MS3)			Source: W11B139-04						
Arsenic	19.0	ug/L	0.045	20.0	0.728	92 (70-130)		02/16/11 :02/17/11	
Cadmium	17.6	ug/L	0.100	20.0	ND	88 (70-130)		02/16/11 :02/17/11	
Chromium	21.5	ug/L	0.400	20.0	1.73	99 (70-130)		02/16/11 :02/17/11	
Copper	25.4	ug/L	0.200	20.0	5.14	101 (70-130)		02/16/11 :02/17/11	
Lead	22.3	ug/L	0.100	20.0	1.02	106 (70-130)		02/16/11 :02/17/11	
Silver	19.3	ug/L	0.100	20.0	0.178	95 (70-130)		02/16/11 :02/17/11	
Zinc	115	ug/L	0.500	100	37.9	77 (70-130)		02/16/11 :02/17/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Dissolved Metals - QC

Analyte	Result	Units	MDL MRI	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Dissolved Metals by ICPMS - B			mot mixe		rtocart	(Lilling)		<u> </u>	
Blank (B11B241-BLK1)	alch bi ibz i	· I							
Arsenic, dissolved	ND	ug/L	0.100)				02/16/11 :02/16/11	
Cadmium, dissolved	ND	ug/L	0.100					02/16/11 :02/16/11	
Chromium, dissolved	ND	ug/L	0.400)				02/16/11 :02/16/11	
Copper, dissolved	ND	ug/L	0.200					02/16/11 :02/16/11	
Lead, dissolved	ND	ug/L	0.100					02/16/11 :02/16/11	
Silver, dissolved	ND	ug/L	0.100					02/16/11 :02/16/11	
Zinc, dissolved	ND	ug/L	0.500					02/16/11 :02/16/11	
LCS (B11B241-BS1)									
Arsenic, dissolved	5.00	ug/L	0.100	5.00		100 (85-115)		02/16/11 :02/16/11	
Cadmium, dissolved	5.05	ug/L	0.100	5.00		101 (85-115)		02/16/11 :02/16/11	
Chromium, dissolved	4.98	ug/L	0.400	5.00		100 (85-115)		02/16/11 :02/16/11	
Copper, dissolved	5.03	ug/L	0.200	5.00		101 (85-115)		02/16/11 :02/16/11	
Lead, dissolved	5.01	ug/L	0.100	5.00		100 (85-115)		02/16/11 :02/16/11	
Silver, dissolved	5.01	ug/L	0.100	5.00		100 (85-115)		02/16/11 :02/16/11	
Zinc, dissolved	25.5	ug/L	0.500	25.0		102 (85-115)		02/16/11 :02/16/11	
Duplicate (B11B241-DUP1)			Source: W11B103-02						
Arsenic, dissolved	0.329	ug/L	0.100	1	0.329		0 (20)	02/16/11 :02/16/11	
Cadmium, dissolved	ND	ug/L	0.100)	ND		(20)	02/16/11 :02/16/11	
Chromium, dissolved	ND	ug/L	0.400)	ND		(20)	02/16/11 :02/16/11	
Copper, dissolved	2.56	ug/L	0.200)	2.58		0.8 (20)	02/16/11 :02/16/11	
Lead, dissolved	ND	ug/L	0.100)	ND		(20)	02/16/11 :02/16/11	
Silver, dissolved	ND	ug/L	0.100	1	ND		(20)	02/16/11 :02/16/11	
Zinc, dissolved	12.6	ug/L	0.500		12.4		2 (20)	02/16/11 :02/16/11	
Duplicate (B11B241-DUP2)			Source: W11B117-01						
Arsenic, dissolved	0.138	ug/L	0.100)	0.148		6 (20)	02/16/11 :02/16/11	
Cadmium, dissolved	ND	ug/L	0.100)	ND		(20)	02/16/11 :02/16/11	
Chromium, dissolved	ND	ug/L	0.400)	ND		(20)	02/16/11 :02/16/11	
Copper, dissolved	2.33	ug/L	0.200	1	2.29		2 (20)	02/16/11 :02/16/11	
Lead, dissolved	ND	ug/L	0.100		ND		(20)	02/16/11 :02/16/11	
Silver, dissolved	ND	ug/L	0.100		ND		(20)	02/16/11 :02/16/11	
Zinc, dissolved	13.1	ug/L	0.500)	12.9		1 (20)	02/16/11 :02/16/11	
Duplicate (B11B241-DUP3)			Source: W11B130-04						
Arsenic, dissolved	ND	ug/L	0.100)	0.079	<u> </u>	(20)	02/16/11 :02/16/11	
Cadmium, dissolved	ND	ug/L	0.100	l	ND		(20)	02/16/11 :02/16/11	
Chromium, dissolved	ND	ug/L	0.400		ND		(20)	02/16/11 :02/16/11	
Copper, dissolved	1.83	ug/L	0.200		1.80		2 (20)	02/16/11 :02/16/11	
Lead, dissolved	0.133	ug/L	0.100)	0.134		1 (20)	02/16/11 :02/16/11	
Silver, dissolved	ND	ug/L	0.100		ND		(20)	02/16/11 :02/16/11	
Zinc, dissolved	20.6	ug/L	0.500)	20.1		2 (20)	02/16/11 :02/16/11	
Matrix Spike (B11B241-MS1)			Source: W11B103-02						

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Dissolved Metals - QC

					Spike	Source	%Rec	RPD	Prepared:	
Analyte	Result	Units	MDL	MRL	Level	Result	(Limits)	(Limit)	Analyzed	Qualifie
Dissolved Metals by ICPMS - E	Batch B11B24	1								
Matrix Spike (B11B241-MS1)			Source: W11B10	03-02						
Arsenic, dissolved	5.72	ug/L		0.100	5.22	0.329	103 (70-130)		02/16/11 :02/16/11	
Cadmium, dissolved	5.34	ug/L		0.100	5.22	ND	102 (70-130)		02/16/11 :02/16/11	
Chromium, dissolved	5.66	ug/L		0.400	5.22	ND	108 (70-130)		02/16/11 :02/16/11	
Copper, dissolved	8.16	ug/L		0.200	5.22	2.58	107 (70-130)		02/16/11 :02/16/11	
Lead, dissolved	5.51	ug/L		0.100	5.22	ND	106 (70-130)		02/16/11 :02/16/11	
Silver, dissolved	5.16	ug/L		0.100	5.22	ND	99 (70-130)		02/16/11 :02/16/11	
Zinc, dissolved	39.7	ug/L		0.500	26.1	12.4	104 (70-130)		02/16/11 :02/16/11	
Matrix Spike (B11B241-MS2)			Source: W11B1	17-01						
Arsenic, dissolved	5.54	ug/L		0.100	5.22	0.148	103 (70-130)		02/16/11 :02/16/11	
Cadmium, dissolved	5.42	ug/L		0.100	5.22	ND	104 (70-130)		02/16/11 :02/16/11	
Chromium, dissolved	5.33	ug/L		0.400	5.22	ND	102 (70-130)		02/16/11 :02/16/11	
Copper, dissolved	7.76	ug/L		0.200	5.22	2.29	105 (70-130)		02/16/11 :02/16/11	
Lead, dissolved	5.65	ug/L		0.100	5.22	ND	108 (70-130)		02/16/11 :02/16/11	
Silver, dissolved	5.19	ug/L		0.100	5.22	ND	99 (70-130)		02/16/11 :02/16/11	
Zinc, dissolved	40.4	ug/L		0.500	26.1	12.9	105 (70-130)		02/16/11 :02/16/11	
Matrix Spike (B11B241-MS3)			Source: W11B13	30-04						
Arsenic, dissolved	5.57	ug/L		0.100	5.22	0.079	105 (70-130)		02/16/11 :02/16/11	
Cadmium, dissolved	5.37	ug/L		0.100	5.22	ND	103 (70-130)		02/16/11 :02/16/11	
Chromium, dissolved	5.33	ug/L		0.400	5.22	ND	102 (70-130)		02/16/11 :02/16/11	
Copper, dissolved	7.16	ug/L		0.200	5.22	1.80	103 (70-130)		02/16/11 :02/16/11	
Lead, dissolved	5.68	ug/L		0.100	5.22	0.134	106 (70-130)		02/16/11 :02/16/11	
Silver, dissolved	5.22	ug/L		0.100	5.22	ND	100 (70-130)		02/16/11 :02/16/11	
Zinc, dissolved	46.2	ug/L		0.500	26.1	20.1	100 (70-130)		02/16/11 :02/16/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Semivolatile Organics - SIM - QC

Analyte	Result	Units	MDL	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Polynuclear Aromatics & Pht							(=6)			
Blank (B11B235-BLK1)	illalates by GCIV	IS-SIIVI	- Balcii B i iB233							
· · · · · · · · · · · · · · · · · · ·	ND	/!	0.020	0.020					02/16/11 :02/23/11	
Acenaphthene Acenaphthylene	ND ND	ug/L ug/L	0.020	0.020					02/16/11 :02/23/11	
Anthracene	ND		0.020	0.020					02/16/11 :02/23/11	
		ug/L		0.020						
Benzo(a)anthracene	ND ND	ug/L	0.010	0.010					02/16/11 :02/23/11	
Benzo(a)pyrene Benzo(b)fluoranthene	ND	ug/L ug/L	0.010	0.010					02/16/11 :02/23/11	
Benzo(g,h,i)perylene	ND	ug/L ug/L	0.010	0.010					02/16/11 :02/23/11	
Benzo(k)fluoranthene	ND	ug/L ug/L	0.010	0.010					02/16/11 :02/23/11	
	ND		0.010	0.010					02/16/11 :02/23/11	
Chrysene Dibonzo(a b)anthracona	ND ND	ug/L ug/L	0.010	0.010					02/16/11 :02/23/11	
Dibenzo(a,h)anthracene Fluoranthene	ND ND	ug/L ug/L	0.010	0.010					02/16/11 :02/23/11	
Fluorene	ND	ug/L ug/L	0.020	0.010					02/16/11 :02/23/11	
	ND ND	ug/L ug/L	0.020	0.020					02/16/11 :02/23/11	
Indeno(1,2,3-cd)pyrene										
1-Methylnaphthalene	ND	ug/L	0.020	0.020					02/16/11 :02/23/11	
2-Methylnaphthalene	ND	ug/L	0.020	0.020					02/16/11 :02/23/11	
Naphthalene	ND	ug/L	0.040	0.040					02/16/11 :02/23/11	
Phenanthrene	ND	ug/L	0.020	0.020					02/16/11 :02/23/11	
Pyrene	ND	ug/L	0.010	0.010					02/16/11 :02/23/11	
Butyl benzyl phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Di-n-butyl phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Diethyl phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Dimethyl phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Di-n-octyl phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Bis(2-ethylhexyl) phthalate	ND	ug/L	0.50	1.0					02/16/11 :02/23/11	
Surrogate										
2-Methylnaphthalene-d10	0.18			ug/L	0.216		83		02/16/11 :02/23/11	
Fluoranthene-d10	0.21			ug/L	0.216		97		02/16/11 :02/23/11	
LCS (B11B235-BS1)										
Acenaphthene	0.0795	ug/L	0.020	0.020	0.108		74 (27-123)		02/16/11 :02/23/11	
Acenaphthylene	0.0881	ug/L	0.020	0.020	0.108		82 (34-116)		02/16/11 :02/23/11	
Anthracene	0.0935	ug/L	0.020	0.020	0.108		86 (42-123)		02/16/11 :02/23/11	
Benzo(a)anthracene	0.0935	ug/L	0.010	0.010	0.108		86 (63-143)		02/16/11 :02/23/11	
Benzo(a)pyrene	0.0827	ug/L	0.010	0.010	0.108		76 (41-144)		02/16/11 :02/23/11	
Benzo(b)fluoranthene	0.0881	ug/L	0.010	0.010	0.108		82 (57-139)		02/16/11 :02/23/11	
Benzo(g,h,i)perylene	0.0951	ug/L	0.010	0.010	0.108		88 (23-155)		02/16/11 :02/23/11	
Benzo(k)fluoranthene	0.0822	ug/L	0.010	0.010	0.108		76 (54-137)		02/16/11 :02/23/11	
Chrysene	0.0903	ug/L	0.010	0.010	0.108		84 (64-142)		02/16/11 :02/23/11	
Dibenzo(a,h)anthracene	0.101	ug/L	0.010	0.010	0.108		93 (27-159)		02/16/11 :02/23/11	
Fluoranthene	0.102	ug/L	0.010	0.010	0.108		94 (68-128)		02/16/11 :02/23/11	
Fluorene	0.0886	ug/L	0.020	0.020	0.108		82 (48-122)		02/16/11 :02/23/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Semivolatile Organics - SIM - QC

					Spike	Source	%Rec	RPD	Prepared:	Qualific
Analyte	Result	Units	MDL	MRL	Level	Result	(Limits)	(Limit)	Analyzed	Qualiii
olynuclear Aromatics & Phth	alates by GCN	<u> 1S-SIM - I</u>	Batch B11B23	5						
LCS (B11B235-BS1)										
Indeno(1,2,3-cd)pyrene	0.0978	ug/L	0.010	0.010	0.108		90 (29-156)		02/16/11 :02/23/11	
1-Methylnaphthalene	0.0746	ug/L	0.020	0.020	0.108		69 (50-150)		02/16/11 :02/23/11	
2-Methylnaphthalene	0.0735	ug/L	0.020	0.020	0.108		68 (50-150)		02/16/11 :02/23/11	
Naphthalene	0.0827	ug/L	0.040	0.040	0.108		76 (45-135)		02/16/11 :02/23/11	
Phenanthrene	0.0957	ug/L	0.020	0.020	0.108		88 (49-129)		02/16/11 :02/23/11	
Pyrene	0.0968	ug/L	0.010	0.010	0.108		90 (67-132)		02/16/11 :02/23/11	
Butyl benzyl phthalate	1.33	ug/L	0.50	1.0	1.08		123 (50-150)		02/16/11 :02/23/11	
Di-n-butyl phthalate	1.29	ug/L	0.50	1.0	1.08		119 (50-150)		02/16/11 :02/23/11	
Diethyl phthalate	1.31	ug/L	0.50	1.0	1.08		121 (50-150)		02/16/11 :02/23/11	
Dimethyl phthalate	1.21	ug/L	0.50	1.0	1.08		112 (50-150)		02/16/11 :02/23/11	
Di-n-octyl phthalate	1.27	ug/L	0.50	1.0	1.08		118 (50-150)		02/16/11 :02/23/11	
Bis(2-ethylhexyl) phthalate	1.56	ug/L	0.50	1.0	1.08		144 (50-150)		02/16/11 :02/23/11	
Surrogate										
2-Methylnaphthalene-d10	0.16			ug/L	0.216		73 (20-110)		02/16/11 :02/23/11	
Fluoranthene-d10	0.21			ug/L	0.216		96 (35-130)		02/16/11 :02/23/11	
Matrix Spike (B11B235-MS1)			Source: W11B1	06-01						:
Acenaphthene	0.323	ug/L	0.020	0.020	0.270	0.155	62 (14-123)		02/16/11 :02/24/11	
Acenaphthylene	0.309	ug/L	0.020	0.020	0.270	0.0503	96 (17-116)		02/16/11 :02/24/11	
Anthracene	0.435	ug/L	0.020	0.020	0.270	0.336	37 (22-123)		02/16/11 :02/24/11	
Benzo(a)anthracene	0.779	ug/L	0.010	0.010	0.270	0.829	-19 (32-143)		02/16/11 :02/24/11	
Benzo(a)pyrene	0.769	ug/L	0.010	0.010	0.270	0.768	0.4 (21-144)		02/16/11 :02/24/11	
Benzo(b)fluoranthene	0.894	ug/L	0.010	0.010	0.270	0.931	-14 (29-139)		02/16/11 :02/24/11	
Benzo(g,h,i)perylene	0.646	ug/L	0.010	0.010	0.270	0.515	49 (12-155)		02/16/11 :02/24/11	
Benzo(k)fluoranthene	0.497	ug/L	0.010	0.010	0.270	0.355	52 (27-137)		02/16/11 :02/24/11	
Chrysene	0.914	ug/L	0.010	0.010	0.270	0.931	-6 (32-142)		02/16/11 :02/24/11	
Dibenzo(a,h)anthracene	0.405	ug/L	0.010	0.010	0.270	0.165	89 (14-159)		02/16/11 :02/24/11	
Fluoranthene	1.35	ug/L	0.010	0.010	0.270	1.86	-191 (34-128)		02/16/11 :02/24/11	
Fluorene	0.330	ug/L	0.020	0.020	0.270	0.115	80 (24-122)		02/16/11 :02/24/11	
Indeno(1,2,3-cd)pyrene	0.618	ug/L	0.010	0.010	0.270	0.468	56 (15-156)		02/16/11 :02/24/11	
1-Methylnaphthalene	0.308	ug/L	0.020	0.020	0.270	0.0422	98 (50-150)		02/16/11 :02/24/11	
2-Methylnaphthalene	0.315	ug/L	0.020	0.020	0.270	0.0578	95 (50-150)		02/16/11 :02/24/11	
Naphthalene	0.291	ug/L	0.040	0.040	0.270	0.0665	83 (23-135)		02/16/11 :02/24/11	
Phenanthrene	0.836	ug/L	0.020	0.020	0.270	1.33	-185 (25-129)		02/16/11 :02/24/11	
Pyrene	1.35	ug/L	0.010	0.010	0.270	1.80	-165 (34-132)		02/16/11 :02/24/11	
Butyl benzyl phthalate	3.36	ug/L	0.50	1.0	2.70	ND	124 (25-150)		02/16/11 :02/24/11	
Di-n-butyl phthalate	3.19	ug/L	0.50	1.0	2.70	ND	118 (25-150)		02/16/11 :02/24/11	
Diethyl phthalate	3.26	ug/L	0.50	1.0	2.70	ND	121 (25-150)		02/16/11 :02/24/11	
Dimethyl phthalate	3.26	ug/L	0.50	1.0	2.70	ND	121 (25-150)		02/16/11 :02/24/11	
Di-n-octyl phthalate	3.56	ug/L	0.50	1.0	2.70	ND	132 (25-150)		02/16/11 :02/24/11	
Bis(2-ethylhexyl) phthalate	5.29	ug/L	0.50	1.0	2.70	2.27	112 (25-150)		02/16/11 :02/24/11	
Surrogate							, , , , ,			

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Semivolatile Organics - SIM - QC

Analyte	Result	Units	MDL	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Polynuclear Aromatics & Phthalate	s by GCN	IS-SIM	- Batch B11B235							
Matrix Spike (B11B235-MS1)			Source: W11B106	-01						ZO
Surrogate										
2-Methylnaphthalene-d10	0.16			ug/L	0.216		73 (20-110)		02/16/11 :02/24/11	
Fluoranthene-d10	0.18			ug/L	0.216		85 (35-130)		02/16/11 :02/24/11	
Matrix Spike Dup (B11B235-MSD1)			Source: W11B106	-01						Z0
Acenaphthene	0.328	ug/L	0.020	0.020	0.270	0.155	64 (14-123)	1 (50)	02/16/11 :02/24/11	
Acenaphthylene	0.298	ug/L	0.020	0.020	0.270	0.0503	92 (17-116)	4 (50)	02/16/11 :02/24/11	
Anthracene	0.414	ug/L	0.020	0.020	0.270	0.336	29 (22-123)	5 (50)	02/16/11 :02/24/11	
Benzo(a)anthracene	0.758	ug/L	0.010	0.010	0.270	0.829	-26 (32-143)	3 (50)	02/16/11 :02/24/11	
Benzo(a)pyrene	0.745	ug/L	0.010	0.010	0.270	0.768	-8 (21-144)	3 (50)	02/16/11 :02/24/11	
Benzo(b)fluoranthene	0.828	ug/L	0.010	0.010	0.270	0.931	-38 (29-139)	8 (50)	02/16/11 :02/24/11	
Benzo(g,h,i)perylene	0.619	ug/L	0.010	0.010	0.270	0.515	39 (12-155)	4 (50)	02/16/11 :02/24/11	
Benzo(k)fluoranthene	0.526	ug/L	0.010	0.010	0.270	0.355	63 (27-137)	6 (50)	02/16/11 :02/24/11	
Chrysene	0.866	ug/L	0.010	0.010	0.270	0.931	-24 (32-142)	5 (50)	02/16/11 :02/24/11	
Dibenzo(a,h)anthracene	0.388	ug/L	0.010	0.010	0.270	0.165	82 (14-159)	4 (50)	02/16/11 :02/24/11	
Fluoranthene	1.33	ug/L	0.010	0.010	0.270	1.86	-197 (34-128)	1 (50)	02/16/11 :02/24/11	
Fluorene	0.320	ug/L	0.020	0.020	0.270	0.115	76 (24-122)	3 (50)	02/16/11 :02/24/11	
Indeno(1,2,3-cd)pyrene	0.593	ug/L	0.010	0.010	0.270	0.468	46 (15-156)	4 (50)	02/16/11 :02/24/11	
1-Methylnaphthalene	0.289	ug/L	0.020	0.020	0.270	0.0422	91 (50-150)	6 (50)	02/16/11 :02/24/11	
2-Methylnaphthalene	0.292	ug/L	0.020	0.020	0.270	0.0578	87 (50-150)	7 (50)	02/16/11 :02/24/11	
Naphthalene	0.278	ug/L	0.040	0.040	0.270	0.0665	78 (23-135)	5 (50)	02/16/11 :02/24/11	
Phenanthrene	0.844	ug/L	0.020	0.020	0.270	1.33	-181 (25-129)	1 (50)	02/16/11 :02/24/11	
Pyrene	1.33	ug/L	0.010	0.010	0.270	1.80	-170 (34-132)	1 (50)	02/16/11 :02/24/11	
Butyl benzyl phthalate	3.24	ug/L	0.50	1.0	2.70	ND	120 (25-150)	4 (50)	02/16/11 :02/24/11	
Di-n-butyl phthalate	3.04	ug/L	0.50	1.0	2.70	ND	113 (25-150)	5 (50)	02/16/11 :02/24/11	
Diethyl phthalate	3.14	ug/L	0.50	1.0	2.70	ND	116 (25-150)	4 (50)	02/16/11 :02/24/11	
Dimethyl phthalate	3.15	ug/L	0.50	1.0	2.70	ND	117 (25-150)	4 (50)	02/16/11 :02/24/11	
Di-n-octyl phthalate	3.51	ug/L	0.50	1.0	2.70	ND	130 (25-150)	1 (50)	02/16/11 :02/24/11	
Bis(2-ethylhexyl) phthalate	5.11	ug/L	0.50	1.0	2.70	2.27	105 (25-150)	3 (50)	02/16/11 :02/24/11	
Surrogate										
2-Methylnaphthalene-d10	0.16			ug/L	0.216		75 (20-110)		02/16/11 :02/24/11	
Fluoranthene-d10	0.17			ug/L	0.216		80 (35-130)		02/16/11 :02/24/11	

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: NPDES Stormwater Client: MS4

Work Order: W11B114 Project Mgr: Frank Wildensee

Qualifiers

J Analyte was detected but at a concentration below the reporting limit; the result is an estimate.

Z0 Low Matrix Spike and Matrix Spike Duplicate recoveries are attributable to non-homogeneous matrix and, for some compounds, the high concentration of target analyte in the sample compared to a low spiking level.

Definitions

DET Analyte Detected ND Analyte Not Detected at or above the reporting limit

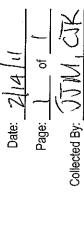
MRL Method Reporting Limit MDL Method Detection Limit

NR Not Reportable dry Sample results reported on a dry weight basis

% Rec. Percent Recovery RPD Relative Percent Difference

Reported: 03/29/11 08:45

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.


Renee Chauvin, Laboratory Coordinator QA/QC

Page 13 of 60

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Project Name:	NPDES STORMWTR MON	TR MON																		ļ				1
File Number:	4010.001		Matrix:	STORMWTR	l r						i.e.	Requested Analyses	lest	ed	√nal	lyse		あ 下 の に 4	Ξ	え	+			
							General	rai	П	M	Metals			Nutrients	ents		Ď.	-	P	Outside				Г
☑∕Sample Time recorded in current local time	in current local time				<u> </u>					(n∑,dq,u		(n.S.,dq ,u		эплоярногия			setes	10 4 0 / 1 - 1	(SAS) lav	rs (Pace)				1
Samplescollec	Samples collected on 2/12/11 from 1807 to 2232	18 mon	07 20	22.52		-											Phthal					· · ·		
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample S Time	Sample Type	ST SQT	SST	BOD Hardnes	сор	Total Me (Ag. As. C	Oissolve		inommA	Nitrate-n Orthonho	dq IstoT	TKN	+ sHA9	-50/13		esticide				
10	4900 NW KITTRIDGE AVE (OF19)	OF19	2/12/11	2232	U	•	. •	•	•	•							•	+	1					T
						_							<u> </u>							ļ			<u> </u>	
												 	<u> </u>	-	ļ					<u> </u>		 	-	-
	ì						-		***************************************				-				-		-	<u> </u>			<u> </u>	T
														ļ								-		
														ļ					-					
														<u> </u>				ļ. 	ļ <u> </u>					· · ·
											<u> </u>		<u> </u>						<u> </u>	<u> </u>		 		
						,					ļ							-	-					ı
											ļ						<u> </u>		 			<u> </u>		1
Relinquished By: 1.	J Times	Relinguished By:	ed By: 2.		ŀ		Re	Relinquished By:	ed By:	က်			,			Relind	Relinquished By	3 By:	4.		1			I
Jahr-111k	1037	aigiliatus e.					iĝe.	olgnature:					IIII 6:	 		Signature:	i.				_	тіте:		
o TardanMclann	211 Date / 14/11	Printed Name:			Date:		Prin	Printed Name:					Date:	ei.	Ť	Printed Name:	Vame:				_	Date:		
ge 14	1	Received By: Signature:	;; '		Тіме:		Sign	Received By: Signature:	;;	က်			Time;	ä		Receiver Signature:	Received By: Signature:		4.			Time;		
of 6		Printed Name:			Date:		. F	Printed Name:					Date:	ä		Printed Name:	Vame:					Date:		_
1_	s:\eid\4000\4010.001\sampdoc\Current NPDE\$ COC.xls	(ls					-								1									7

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10149758

Sample Receipt Date: 02/16/2011

Client Project #: PUB0415

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

March 07, 2011

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

March 7, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America - Portland. The sample was analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extract were recovered at 53-99%. All of the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain low levels of two PCB congeners. These congeners were present in the sample extract at similar levels and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using clean water that had been fortified with native standards. The results show that the spiked native compounds were recovered at 83-119%, with relative percent differences of 0.0-15.4%. These results indicate high degrees of accuracy and precision for these determinations. Matrix spikes were not prepared with the sample batch.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Subcontract Order - TestAmerica Portland (PUB0415)

431

1049750

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

°C

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700 Fax: (612) 607-6444

Project Location: Oregon

Receipt Temperature:

Ice: Y / N

Analysis Units	Expires	V
	Expires	Comments
Sample ID: PUB0415-01 (W11B114-01 (O	F19) - Stormwater Sampled: 02/12/11 2	2:32
1668 PCB 209 Congeners - ug/l SUB	08/11/11 22:32	209 cong. to PACE
Containers Supplied:		

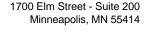
Received

Date/Time

21611 Date/Time

Page 19 of 60 4=0.45

Release Report No....10149758_1668Ame


Sample Condition Upon Receipt

Face Analytical Client Na	me: frytampico	Project # 10149758
Courier: Fed Ex UPS USPS USPS Tracking #: 417075269497 Custody Seal on Cooler/Box Present:	2 Dett	yes no
Packing Material: Bubble Wrap	ubble Bage	her Temp Blank: Yes No
Thermometer Used _89344042 or 179425	Type of Ice: Wet Blue	
Cooler Temperature Temp should be above freezing to 6°C	Biological Tissue is Froz Comm	contents:
Chain of Custody Present:	Dres DNo DNA 1.	
Chain of Custody Filled Out:	ØYes □No □N/A 2.	
Chain of Custody Relinquished:	Yes ONO ONA 3.	
Sampler Name & Signature on COC:	□Yes ÆNo □N/A 4.	
Samples Arrived within Hold Time:	Elyes Ono Ona 5.	
Short Hold Time Analysis (<72hr):	□Yes (2No □N/A 6.	
Rush Turn Around Time Requested:	□Yes □No □NA 7.	
Sufficient Volume:	ZYes □No □N/A 8.	
Correct Containers Used:	ØYes □No □N/A 9.	
-Pace Containers Used:	□Yes ØNo □N/A	
Containers Intact:	ØYes □No □N/A 10.	
Filtered volume received for Dissolved tests	□Yes □No ☑N/A 11.	
Sample Labels match COC:	DV69 DN0 DN/A 12.	
-Includes date/time/ID/Analysis Matrix:_		
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	LIYes LINO ZINA 13.	HNO3 H2SO4 NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	OYes ONO ON/A Samp#	
Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO ((water: DYes DNo Initial who complete	
Samples checked for dechlorination:	☐Yes ☐No ☐M/A 14.	
leadspace in VOA Vials (>6mm):	□Yes □No □NØA 15.	
rip Blank Present:	□Yes □No ØN/A 16.	
rip Blank Custody Seals Present	□Yes □No ,□N/A	į
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution: Person Contacted:	Date/Time:	Field Data Required? Y / N
Comments/ Resolution:		
Project Manager Review:	@	Date: 02/17/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Routh Carolina SEINNIES, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapoli 1700 Elm Street SE, Suite 200, Minneapoli Page 20 of 60

Tel: 612-607-1700 Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PUB0415-01:W11B114-01(OF-19)
Lab Sample ID 10149758001

Filename P110304A_10
Injected By BAL

Injected By
Total Amount Extracted
953 mL
Matrix
Water
NA
Dilution
NA

Dry Weight Extracted NA Collected 02/12/2011 22:32 **ICAL ID** P110304A02 Received 02/16/2011 09:57 CCal Filename(s) P110304A 01 Extracted 03/01/2011 13:00 Method Blank ID BLANK-28022 Analyzed 03/04/2011 12:51

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	6.635	3.33	2.0	1.19	59
13C-4-MoCB	3	9.510	3.40	2.0	1.20	60
13C-2,2'-DiCB	4	9.846	1.68	2.0	1.07	53
13C-4,4'-DiCB	15	17.573	1.59	2.0	1.21	60
13C-2,2',6-TrCB	19	14.003	1.16	2.0	1.15	57
13C-3,4,4'-TrCB	37	25.699	1.06	2.0	1.31	66
13C-2,2',6,6'-TeCB	54	17.885	0.81	2.0	1.25	62
13C-3,4,4',5-TeCB	<u>81</u>	32.893	0.79	2.0	1.53	<u>76</u>
13C-3,3',4,4'-TeCB	77	33.463	0.79	2.0	1.55	77
13C-2,2',4,6,6'-PeCB	104	24.324	1.57	2.0	1.39	70
13C-2,3,3',4,4'-PeCB	105	37.051	1.58	2.0	1.52	76 77
13C-2,3,4,4,5-PeCB	114 118	36.414 35.878	1.60 1.58	2.0 2.0	1.54 1.56	77 78
13C-2,3',4,4',5-PeCB	123	35.542	1.56	2.0 2.0	1.54	76 77
13C-2,3',4,4',5'-PeCB 13C-3,3',4,4',5-PeCB	126	40.204	1.55	2.0	1.45	73
13C-2,2',4,4',6,6'-HxCB	155	30.495	1.32	2.0	1.69	73 85
13C-HxCB (156/157)	156/157	43.223	1.33	4.0	3.10	77
13C-2,3',4,4',5,5'-HxCB	167	42.082	1.28	2.0	1.58	79
13C-3,3',4,4',5,5'-HxCB	169	46.459	1.33	2.0	1.52	76
13C-2,2',3,4',5,6,6'-HpCB	188	36.398	1.05	2.0	1.97	99
13C-2,3,3',4,4',5,5'-HpCB	189	48.986	1.05	2.0	1.79	89
13C-2,2',3,3',5,5',6,6'-OcCB	202	41.797	0.89	2.0	1.74	87
13C-2,3,3',4,4',5,5',6-OcCB	205	51.594	0.90	2.0	1.86	93
13C-2,2',3,3',4,4',5,5',6-NoCB	206	53.361	0.78	2.0	1.85	92
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	48.469	0.78	2.0	1.72	86
13CDeCB	209	55.215	0.73	2.0	1.86	93
Cleanup Standards						
13C-2,4,4'-TrCB	28	21.205	1.04	2.0	1.40	70
13C-2,3,3',5,5'-PeCB	111	33.563	1.57	2.0	1.60	80
13C-2,2 ¹ ,3,3 ¹ ,5,5 ¹ ,6-HpCB	178	39.500	1.06	2.0	1.67	83
Recovery Standards						
13C-2,5-DiCB	9	12.565	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	23.318	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	30.746	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	39.030	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	51.098	0.93	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.262
2		9.283	2.92	0.265 B		0.262
3		9.534	2.86	0.337 B		0.262
4				ND		0.262
5				ND		0.262
6				ND		0.262
7				ND		0.262
8		13.691	1.34	0.351		0.262
9		10.001		ND		0.262
10				ND		0.262
11				ND		1.57
12	12/13			ND ND		0.524
	12/13			ND ND		
13	12/13					0.524
14		47.507		ND		0.262
15		17.597	1.44	0.322		0.262
16		17.525	1.16	0.378		0.262
17		16.962	1.06	0.441		0.262
18	18/30	16.459	1.06	0.902		0.524
19				ND		0.262
20	20/28	21.222	0.97	1.45		0.524
21	21/33	21.490	1.06	0.590		0.524
22		21.943	1.04	0.454		0.262
23				ND		0.262
24				ND		0.262
25				ND		0.262
26	26/29			ND		0.524
27				ND		0.262
28	20/28	21.222	0.97	(1.45)		0.524
29	26/29			` NĎ		0.524
30	18/30	16.459	1.06	(0.902)		0.524
31	. 5, 5 5	20.903	0.99	1.28		0.262
32		18.170	0.96	0.318		0.262
33	21/33	21.490	1.06	(0.590)		0.524
34	21/00			ND		0.262
35				ND		0.262
36				ND		0.262
37		25.733	0.96	0.461		0.262
3 <i>1</i> 38		23.733	0.96			
30				ND		0.262
39	40/44/74			ND		0.262
40	40/41/71			ND		1.57
41	40/41/71			ND		1.57
42	40/70			ND		0.524
43	43/73			ND		1.05
44	44/47/65	24.408	0.79	1.58		1.57
45	45/51			ND		1.05
46				ND		0.524
47	44/47/65	24.408	0.79	(1.58)		1.57
48				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
IUFAC	Co-elutions	N I	Natio	iig/L	IIg/L	iig/L
49	49/69			ND		1.05
50	50/53			ND		1.05
51	45/51			ND		1.05
52		23.334	0.79	2.14		0.524
53	50/53			ND		1.05
54				ND		0.524
55				ND		0.524
56		29.606	0.77	0.572		0.524
57				ND		0.524
58				ND		0.524
59	59/62/75			ND		1.57
60				ND		0.524
61	61/70/74/76	28.566	0.75	2.48		2.10
62	59/62/75			ND		1.57
63				ND		0.524
64		25.783	0.76	0.591		0.524
65	44/47/65	24.408	0.79	(1.58)		1.57
66		28.902	0.76	1.26		0.524
67				ND		0.524
68				ND		0.524
69	49/69			ND		1.05
70	61/70/74/76	28.566	0.75	(2.48)		2.10
71	40/41/71			ND		1.57
72				ND		0.524
73	43/73			ND		1.05
74	61/70/74/76	28.566	0.75	(2.48)		2.10
75	59/62/75			ND		1.57
76	61/70/74/76	28.566	0.75	(2.48)		2.10
77				ND		0.524
78				ND		0.524
79				ND		0.524
80				ND		0.524
81				ND		0.524
82				ND		0.524
83				ND		0.524
84		28.717	1.65	0.616		0.524
85	85/116/117			ND		1.57
86	86/87/97/108/119/125			ND		3.15
87	86/87/97/108/119/125			ND		3.15
88	88/91			ND		1.05
89	00/404/440			ND		0.524
90	90/101/113	30.780	1.55	2.34		1.57
91	88/91			ND		1.05
92	00/00/400/400			ND		0.524
93	93/98/100/102			ND		2.10
94			4.50	ND		0.524
95		27.611	1.53	1.77		0.524
96				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.15
98	93/98/100/102			ND		2.10
99	33/30/100/102	31.384	1.51	0.916		0.524
100	93/98/100/102			ND		2.10
101	90/101/113	30.780	1.55	(2.34)		1.57
101	93/98/100/102		1.55	(2.34) ND		2.10
102	93/96/100/102			ND ND		0.524
103				ND ND		0.524
104		37.068	1.47	1.03		0.524
105				ND		0.524
106	407/404					
107	107/124			ND		1.05
108	86/87/97/108/119/125			ND		3.15
109	440/445			ND		0.524
110	110/115	32.792	1.60	2.73		1.05
111				ND		0.524
112				ND		0.524
113	90/101/113	30.780	1.55	(2.34)		1.57
114				NĎ		0.524
115	110/115	32.792	1.60	(2.73)		1.05
116	85/116/117			ND		1.57
117	85/116/117			ND		1.57
118		35.911	1.54	2.25		0.524
119	86/87/97/108/119/125			ND		3.15
120				ND		0.524
121				ND		0.524
122				ND		0.524
123				ND		0.524
124	107/124			ND		1.05
125	86/87/97/108/119/125			ND		3.15
126				ND		0.524
127				ND		0.524
128	128/166			ND		1.05
129	129/138/163	39.047	1.27	4.02		1.57
130	. 20, . 30, . 30			ND		0.524
131				ND		0.524
132		35.962	1.28	1.07		0.524
133				ND		0.524
134	134/143			ND		1.05
135	135/151			ND		1.05
136	100/101			ND		0.524
137				ND		0.524
138	129/138/163	39.047	1.27	(4.02)		1.57
139	139/140	39.047	1.27	(4.02) ND		1.05
140	139/140			ND ND		1.05
140	103/140	37.991	1.34	0.645		0.524
141			_	0.645 ND		0.524
	124/142					
143	134/143			ND		1.05
144				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.524
146				ND		0.524
147	147/149	34.721	1.21	2.27		1.05
148				ND		0.524
149	147/149	34.721	1.21	(2.27)		1.05
150				` NĎ		0.524
151	135/151			ND		1.05
152				ND		0.524
153	153/168	37.823	1.19	2.45		1.05
154				ND		0.524
155				ND		0.524
156	156/157			ND		1.05
157	156/157			ND		1.05
158				ND		0.524
159				ND		0.524
160				ND		0.524
161				ND		0.524
162				ND		0.524
163	129/138/163	39.047	1.27	(4.02)		1.57
164				` NĎ		0.524
165				ND		0.524
166	128/166			ND		1.05
167				ND		0.524
168	153/168	37.823	1.19	(2.45)		1.05
169				ND		0.524
170		45.855	1.04	0.783		0.524
171	171/173			ND		1.05
172				ND		0.524
173	171/173			ND		1.05
174		41.261	0.99	0.767		0.524
175				ND		0.524
176				ND		0.524
177				ND		0.524
178				ND		0.524
179				ND		0.524
180	180/193	44.631	1.06	1.63		1.05
181				ND		0.524
182				ND		0.524
183	183/185			ND		1.05
184				ND		0.524
185	183/185			ND		1.05
186				ND		0.524
187		40.439	1.05	0.822		0.524
188				ND		0.524
189				ND		0.524
190				ND		0.524
191				ND		0.524
192				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193	44.631	1.06	(1.63)		1.05
194				` NĎ		0.787
195				ND		0.787
196				ND		0.787
197	197/200			ND		1.57
198	198/199			ND		1.57
199	198/199			ND		1.57
200	197/200			ND		1.57
201				ND		0.787
202				ND		0.787
203				ND		0.787
204				ND		0.787
205				ND		0.787
206				ND		0.787
207				ND		0.787
208				ND		0.787
209				ND		0.787

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

 Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	0.602	
Total Dichloro Biphenyls	0.672	
Total Trichloro Biphenyls	6.27	
Total Tetrachloro Biphenyls	8.62	
Total Pentachloro Biphenyls	11.6	
Total Hexachloro Biphenyls	10.5	
Total Heptachloro Biphenyls	4.00	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	42.3	

ND = Not Detected

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-28022 Filename P110304A 07

Injected By Water BAL Matrix

03/01/2011 13:00 **Total Amount Extracted** 1010 mL Extracted **ICAL ID** P110304A02 Analyzed 03/04/2011 09:44

CCal Filename(s) P110304A 01 Dilution NA

CCai Filename(s)	P110304A	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	6.683	2.77	2.0	1.37	68
13C-4-MoCB	3	9.546	3.19	2.0	1.39	70
13C-2,2'-DiCB	4	9.858	1.53	2.0	1.23	61
13C-4,4'-DiCB	15	17.585	1.58	2.0	1.41	71
13C-2,2',6-TrCB	19	14.027	1.11	2.0	1.37	68
13C-3,4,4'-TrCB	37	25.699	1.08	2.0	1.47	73
13C-2,2',6,6'-TeCB	54	17.902	0.80	2.0	1.47	73
13C-3,4,4',5-TeCB	81	32.893	0.77	2.0	1.56	78
13C-3,3',4,4'-TeCB	77	33.463	0.78	2.0	1.50	75
13C-2,2',4,6,6'-PeCB	104	24.307	1.63	2.0	1.59	79 74
13C-2,3,3',4,4'-PeCB	105	37.052	1.57	2.0	1.48	74 74
13C-2,3,4,4',5-PeCB	114	36.398	1.57	2.0	1.47	74 75
13C-2,3',4,4',5-PeCB	118	35.878	1.54	2.0	1.50	75 74
13C-2,3',4,4',5'-PeCB	123 126	35.542	1.56	2.0 2.0	1.49 1.34	74 67
13C-3,3',4,4',5-PeCB	155	40.188 30.495	1.55 1.21	2.0	1.3 4 1.85	67 93
13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157)	156/157	43.189	1.21	4.0	2.81	93 70
13C-2,3',4,4',5,5'-HxCB	167	42.066	1.25	2.0	1.46	70 73
13C-3,3',4,4',5,5'-HxCB	169	46.443	1.24	2.0	1.43	73 72
13C-2,2',3,4',5,6,6'-HpCB	188	36.398	1.04	2.0	2.07	104
13C-2,3,3',4,4',5,5'-HpCB	189	48.965	1.07	2.0	1.63	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	41.781	0.87	2.0	1.91	96
13C-2,3,3',4,4',5,5',6-OcCB	205	51.551	0.89	2.0	1.93	97
13C-2,2',3,3',4,4',5,5',6-NoCB	206	53.340	0.78	2.0	1.99	99
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	48.448	0.80	2.0	1.92	96
13CDeCB	209	55.194	0.69	2.0	2.20	110
Cleanup Standards						
13C-2,4,4'-TrCB	28	21.205	1.07	2.0	1.81	90
13C-2,3,3',5,5'-PeCB	111	33.564	1.56	2.0	1.73	87
13C-2,2',3,3',5,5',6-HpCB	178	39.483	1.01	2.0	2.02	101
Recovery Standards						
13C-2,5-DiCB	9	12.589	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	23.301	0.83	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	30.730	1.54	2.0	NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	39.014	1.27	2.0	NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	51.077	0.90	2.0	NA	NA
		J	5.55			

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.249
2		9.319	3.07	0.272		0.249
2 3		9.570	3.17	0.332		0.249
4				ND		0.249
5				ND		0.249
5 6 7				ND		0.249
7				ND		0.249
8				ND		0.249
9				ND		0.249
10				ND		0.249
11				ND		1.49
12	12/13			ND		0.497
13	12/13			ND		0.497
14	12/10			ND		0.249
15				ND		0.249
16				ND		0.249
17				ND		0.249
18	18/30			ND		0.497
19	10/30			ND ND		0.249
20	20/28			ND ND		0.497
21	21/33			ND ND		0.497
22	21/33			ND ND		0.497
23				ND ND		0.249
23 24				ND ND		0.249
24 25				ND ND		0.249
25	00/00					
26	26/29			ND		0.497
27	00/00			ND		0.249
28	20/28			ND		0.497
29	26/29			ND		0.497
30	18/30			ND		0.497
31				ND		0.249
32	04/00			ND		0.249
33	21/33			ND		0.497
34				ND		0.249
35				ND		0.249
36				ND		0.249
37				ND		0.249
38				ND		0.249
39				ND		0.249
40	40/41/71			ND		1.49
41	40/41/71			ND		1.49
42				ND		0.497
43	43/73			ND		0.995
44	44/47/65			ND		1.49
45	45/51			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.497
40 47	44/47/65			ND ND		1.49
48	44/47/03			ND ND		0.497
49	49/69			ND ND		0.497
50	50/53			ND ND		0.995
50 51	45/51			ND ND		0.995
52	45/51			ND ND		0.497
53	50/53			ND ND		0.995
54	30/33			ND		0.497
55				ND		0.497
56				ND		0.497
57				ND		0.497
58				ND		0.497
59	59/62/75			ND		1.49
60	33/02/13			ND		0.497
61	61/70/74/76			ND		1.99
62	59/62/75			ND		1.49
63	33/02/13			ND		0.497
64				ND		0.497
65	44/47/65			ND ND		1.49
66	44/47/05			ND ND		0.497
67				ND ND		0.497
68				ND		0.497
69	49/69			ND		0.995
70	61/70/74/76			ND		1.99
71	40/41/71			ND		1.49
72	40/41/71			ND		0.497
73	43/73			ND		0.995
74	61/70/74/76			ND		1.99
75	59/62/75			ND		1.49
76	61/70/74/76			ND		1.99
77	01/10/14/10			ND		0.497
78				ND		0.497
79				ND		0.497
80				ND		0.497
81				ND		0.497
82				ND		0.497
83				ND ND		0.497
84				ND		0.497
85	85/116/117			ND		1.49
86	86/87/97/108/119/125			ND ND		2.98
87	86/87/97/108/119/125			ND ND		2.98
88	88/91			ND ND		0.995
89	00/01			ND ND		0.497
90	90/101/113			ND ND		1.49
30	30/101/113			ND		1.73

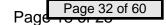
Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level


R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

* = See DiscussionX = Outside QC LimitsRT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		0.995
92				ND		0.497
93	93/98/100/102			ND		1.99
94	00,00,100,102			ND		0.497
95				ND		0.497
96				ND		0.497
97	86/87/97/108/119/125			ND		2.98
98	93/98/100/102			ND		1.99
99	00,00,100,100			ND		0.497
100	93/98/100/102			ND		1.99
101	90/101/113			ND		1.49
102	93/98/100/102			ND		1.99
103	00,00,100,100			ND		0.497
104				ND		0.497
105				ND		0.497
106				ND		0.497
107	107/124			ND		0.995
108	86/87/97/108/119/125			ND		2.98
109	00/01/01/100/110/120			ND		0.497
110	110/115			ND		0.995
111	116/116			ND		0.497
112				ND		0.497
113	90/101/113			ND		1.49
114	00/101/110			ND		0.497
115	110/115			ND		0.995
116	85/116/117			ND		1.49
117	85/116/117			ND		1.49
118	33, 1.13, 1.1.			ND		0.497
119	86/87/97/108/119/125			ND		2.98
120	00,01,01,100,110,120			ND		0.497
121				ND		0.497
122				ND		0.497
123				ND		0.497
124	107/124			ND		0.995
125	86/87/97/108/119/125			ND		2.98
126	00,01,01,100,110,120			ND		0.497
127				ND		0.497
128	128/166			ND		0.995
129	129/138/163			ND		1.49
130				ND		0.497
131				ND		0.497
132				ND		0.497
133				ND		0.497
134	134/143			ND		0.995
135	135/151			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.497
137				ND		0.497
138	129/138/163			ND		1.49
139	139/140			ND		0.995
140	139/140			ND		0.995
141	100/110			ND		0.497
142				ND		0.497
143	134/143			ND		0.995
144				ND		0.497
145				ND		0.497
146				ND		0.497
147	147/149			ND		0.995
148	,			ND		0.497
149	147/149			ND		0.995
150	,			ND		0.497
151	135/151			ND		0.995
152				ND		0.497
153	153/168			ND		0.995
154				ND		0.497
155				ND		0.497
156	156/157			ND		0.995
157	156/157			ND		0.995
158				ND		0.497
159				ND		0.497
160				ND		0.497
161				ND		0.497
162				ND		0.497
163	129/138/163			ND		1.49
164				ND		0.497
165				ND		0.497
166	128/166			ND		0.995
167				ND		0.497
168	153/168			ND		0.995
169				ND		0.497
170				ND		0.497
171	171/173			ND		0.995
172				ND		0.497
173	171/173			ND		0.995
174				ND		0.497
175				ND		0.497
176				ND		0.497
177				ND		0.497
178				ND		0.497
179				ND		0.497
180	180/193			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.497
182				ND		0.497
183	183/185			ND		0.995
184				ND		0.497
185	183/185			ND		0.995
186				ND		0.497
187				ND		0.497
188				ND		0.497
189				ND		0.497
190				ND		0.497
191				ND		0.497
192				ND		0.497
193	180/193			ND		0.995
194				ND		0.746
195				ND		0.746
196				ND		0.746
197	197/200			ND		1.49
198	198/199			ND		1.49
199	198/199			ND		1.49
200	197/200			ND		1.49
201				ND		0.746
202				ND		0.746
203				ND		0.746
204				ND		0.746
205				ND		0.746
206				ND		0.746
207				ND		0.746
208				ND		0.746
209				ND		0.746

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKCW BLANK-28022 P110304A_07

 Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	0.604	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	0.604	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-28023 P110304B_03 1010 mL P110304B02 P110304B 01

BLANK-28022

Matrix Water Dilution NA

Extracted 03/01/2011 13:00 Analyzed 03/04/2011 18:36

Injected By CVS

	1	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	0.963	96	2.0	1.85	92
3	1.0	1.02	102	2.0	1.59	79
4	1.0	0.905	91	2.0	1.82	91
15	1.0	0.980	98	2.0	1.20	60
19	1.0	0.888	89	2.0	1.65	83
37	1.0	0.929	93	2.0	1.14	57
54	1.0	0.941	94	2.0	1.28	64
81	1.0	0.886	89	2.0	1.22	61
77	1.0	0.888	89	2.0	1.20	60
104	1.0	0.912	91	2.0	1.84	92
105	1.0	0.950	95	2.0	1.25	63
114	1.0	0.910	91	2.0	1.18	59
118	1.0	0.909	91	2.0	1.24	62
123	1.0	0.924	92	2.0	1.25	62
126	1.0	0.908	91	2.0	1.14	57
155	1.0	0.923	92	2.0	2.31	115
156/157	2.0	1.86	93	4.0	3.04	76
167	1.0	0.925	92	2.0	1.59	80
169	1.0	0.929	93	2.0	1.58	79
188	1.0	0.889	89	2.0	1.96	98
189	1.0	0.940	94	2.0	1.52	76
202	1.0	0.943	94	2.0	2.00	100
205	1.0	0.959	96	2.0	1.83	92
206	1.0	0.962	96	2.0	2.10	105
208	1.0	0.921	92	2.0	1.89	95
209	1.0	0.928	93	2.0	2.53	127

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID

LCSD-28024 P110304B_04

1030 mL P110304B02 P110304B 01 BLANK-28022 Matrix Water Dilution NA

Extracted 03/01/2011 13:00 03/04/2011 19:38 Analyzed

Injected By **CVS**

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.01	101	2.0	1.56	78	
3	1.0	1.19	119	2.0	1.34	67	
4	1.0	0.928	93	2.0	1.65	83	
15	1.0	0.984	98	2.0	1.14	57	
19	1.0	0.832	83	2.0	1.62	81	
37	1.0	0.965	97	2.0	1.08	54	
54	1.0	1.02	102	2.0	1.15	57	
81	1.0	0.878	88	2.0	1.13	56	
77	1.0	0.873	87	2.0	1.11	56	
104	1.0	0.905	91	2.0	1.86	93	
105	1.0	0.952	95	2.0	1.20	60	
114	1.0	0.926	93	2.0	1.14	57	
118	1.0	0.909	91	2.0	1.20	60	
123	1.0	0.893	89	2.0	1.22	61	
126	1.0	0.879	88	2.0	1.09	54	
155	1.0	0.925	92	2.0	2.38	119	
156/157	2.0	1.85	93	4.0	2.93	73	
167	1.0	0.914	91	2.0	1.51	75	
169	1.0	0.944	94	2.0	1.42	71	
188	1.0	0.916	92	2.0	2.04	102	
189	1.0	0.925	92	2.0	1.55	77	
202	1.0	0.989	99	2.0	1.97	98	
205	1.0	0.927	93	2.0	1.93	96	
206	1.0	0.925	93	2.0	2.18	109	
208	1.0	0.920	92	2.0	1.90	95	
209	1.0	0.923	92	2.0	2.51	126	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-28023
 Spike 2 ID
 LCSD-28024

 Spike 1 Filename
 P110304B_03
 Spike 2 Filename
 P110304B_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	96	101	5.1	
4-MoCB	3	102	119	15.4	
2,2'-DiCB	4	91	93	2.2	
4,4'-DiCB	15	98	98	0.0	
2,2',6-TrCB	19	89	83	7.0	
3,4,4'-TrCB	37	93	97	4.2	
2,2',6,6'-TeCB	54	94	102	8.2	
3,3',4,4'-TeCB	77	89	87	2.3	
3,4,4',5-TeCB	81	89	88	1.1	
2,2',4,6,6'-PeCB	104	91	91	0.0	
2,3,3',4,4'-PeCB	105	95	95	0.0	
2,3,4,4',5-PeCB	114	91	93	2.2	
2,3',4,4',5-PeCB	118	91	91	0.0	
2,3',4,4',5'-PeCB	123	92	89	3.3	
3,3',4,4',5-PeCB	126	91	88	3.4	
2,2',4,4',6,6'-HxCB	155	92	92	0.0	
(156/157)	156/157	93	93	0.0	
2,3',4,4',5,5'-HxCB	167	92	91	1.1	
3,3',4,4',5,5'-HxCB	169	93	94	1.1	
2,2',3,4',5,6,6'-HpCB	188	89	92	3.3	
2,3,3',4,4',5,5'-HpCB	189	94	92	2.2	
2,2',3,3',5,5',6,6'-OcCB	202	94	99	5.2	
2,3,3',4,4',5,5',6-OcCB	205	96	93	3.2	
2,2',3,3',4,4',5,5',6-NoCB	206	96	93	3.2	
2,2',3,3',4,5,5',6,6'-NoCB	208	92	92	0.0	
Decachlorobiphenyl	209	93	92	1.1	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

March 25, 2011

Analytical Report for Service Request No: K1101263

Jennifer Shackelford City of Portland 6543 N. Burlington Ave Portland, OR 97203

RE: NPDES Stormwater/W11B114

Dear Jennifer:

Enclosed are the results of the sample submitted to our laboratory on February 15, 2011. For your reference, these analyses have been assigned our service request number K1101263.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Howard Holmes

Project Chemist

HH/dlm

Page 1 of 21

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit

MPN Most Probable Number

MDL Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H In accordance with the 2007 EPA Methods Update Rule published in the Federal Register, the holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.1 definition*: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Agency	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DEQ	WA100010
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Service Request No.: Date Received:

K1101263 2/15/11

Project: Sample Matrix: NPDES Stormwater Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 2/15/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Second Source Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Initial Calibration Verification (ICV) criteria are met for both columns, the lower of the two sample results is generally reported. The data quality was not affected. No further corrective action was necessary.

Calibration Verification Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the lower of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for 4,4'-DDT and Methoxychlor in CCV 03180055. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Surrogate Exceptions:

The control criteria were exceeded for Decachlorobiphenyl in sample W11B114-01 due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. The other surrogate, Tetrachloro-m-xylene, was well within control limits, indicating the integrity of the extraction was intact. No further corrective action was appropriate.

Elevated Detection Limits:

The detection limit was elevated for a few analytes in sample W11B114-01. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Approved by

Page 44 of 60

Semivolatile Organic Compounds by EPA Method 8270C

Lab Control Sample Exceptions:

The lower advisory criterion was exceeded by 1% for 3,3'-Dichlorobenzidine in the duplicate Laboratory Control Samples (LCS/DLCS) KWG1101467-1 and KWG1101467-2. As per the CAS/Kelso Standard Operating Procedure (SOP) for this method, these compounds are not included in the subset of analytes used to control the analysis. The recovery information reported for these analytes is for advisory purposes only (i.e. to provide additional detail related to the performance of each individual compound). No further corrective action was required.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for 3,3'-Dichlorobenzidine in the duplicate Laboratory Control Samples (LCS/DLCS) KWG1101467-1 and KWG1101467-2 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Elevated Detection Limits:

The detection limits were elevated in sample W11B114-01. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution. A semi-quantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Approved by Howard Holms Date 3-25-11

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11B114

SENDING LABORATORY:		RECEIVING LAB	RECEIVING LABORATORY:						
City of Portland Water Pollution 6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 Fax: 503-823-5656 Invoice To: Charles Lytle	on Control Lab	1317 S. 13th Av Kelso, WA 9862 Phone (360) 57	Columbia Analytical Services 1317 S. 13th Avenue Kelso, WA 98626 Phone: (360) 577-7222 Fax: (360) 636-1068						
WPCL Project Name NPDES Stormwater		X Standar							
Analysis	Due	Expires	Laboratory ID Comments						
Sample ID: W11B114-01	Water	Sampled:02/12/11 22:32	·						
Out-Semivol 8270 LL (CAS)	03/01/11 17:00	02/19/11 22:32							
Out-Pesticides Chlor LL (CAS)	03/01/11 17:00	02/19/11 22:32							
Containers Supplied:									
G amber 1L (D)	G amber 1L (E)								

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC H·H

Client / Proje	ct: City o	F Portland				Ser	vice Request <i>I</i>	X11	1263		
Received:	2/15/11	Opened: 2/	15/11		By:	U	(Unload	ed:	2/15/11	By:	<i>u</i>
1. Samples w	vere received via?	Mail Fed Ex	c L	PS	DH	TL.	PDX Court	er H	and Delivered		· C.
_	vere received in: (ci		Bo		Enve		Other			NA	·
3. Were custo	ody seals on coolers	s? NA	Υ (\widehat{N}		•	ow many and w				
If present,	were custody seals	intact?	Y	N		If pre	esent, were they	signed a	nd dated?	. Y	N
Cooler	Temp	Thermometer	Co	ooler/C		_				12	
Temp ℃ /6. (Blank °C	293	<i>(</i> .) <i>(</i>	<u> </u>	N. 14	4		Trackir	ng Number	(NA)	Filed
70.1			- 00 1	101	<u>' </u>				+ 		
7. Packing m	aterial used. Inse	erts Baggies Bi	ıbble W	rap	Gel Pa	icks	Wet Ice Sleev	es Oth	er None)	
•		filled out (ink, sign		-						NA (Y	N (
		condition (unbroker		-	in the t	able be	elow.			NA (Y	N
10. Were all s	sample labels compl	lete (i.e analysis, pr	eservati	on, etc	c.)?					na (Ý) N
11. Did all sar	mple labels and tag	s agree with custody	y papers	? Ind	licate n	iajor d	liscrepancies in	the table	on page 2.	na (Ŷ	') и
12. Were appr	ropriate bottles/con	tainers and volumes	receive	d for	the test	ts indic	cated?			NA (Y	N
13. Were the p	pH-preserved bottle	es (see SMO GEN SO	P) recei	ved at	the ap	propria	ate pH? Indicate	e in the to	able below (ÑĀ) Y	N
14. Were VO	A vials received with	thout headspace? In	ndicate	in the	table b	elow.			(NA Y	N
15. Was C12/	Res negative?									NA (Ŷ	N (
Sam	ple ID on Bottle		Samp	le ID o	n GOC				Identified by:		
Sa	ımple ID	Bottle Count Bottle Type	Out of Temp		Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time
							One of the latest decision of the latest deci				

Notes, Discre	pancies, & Resoli	utions:					*	•			

										- si	
											WAS ASSESSED TO SERVICE OF THE SERVI

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: 02/12/2011

Date Received: 02/15/2011

Organochlorine Pesticides

Sample Name: Lab Code: W11B114-01 K1101263-001

Extraction Method:

EPA 3535A

Analysis Method:

8081B

Units: ng/L Basis: NA

Dusis. 1423

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	Ui	1.2	1.2	1	02/18/11	03/19/11	KWG1101816	
beta-BHC	ND	Ui	1.9	1.9	1	02/18/11	03/19/11	KWG1101816	
gamma-BHC (Lindane)	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
delta-BHC	6.8	P	0.50	0.14	1	02/18/11	03/19/11	KWG1101816	
Heptachlor	5.0	P	0.50	0.18	1	02/18/11	03/19/11	KWG1101816	
Aldrin	1.0	P	0.50	0.33	1	02/18/11	03/19/11	KWG1101816	
Heptachlor Epoxide	ND	Ui	3.3	3.3	1	02/18/11	03/19/11	KWG1101816	
gamma-Chlordane†	ND	Ui	0.86	0.86	1	02/18/11	03/19/11	KWG1101816	
Endosulfan I	ND	Ui	1.1	1.1	1	02/18/11	03/19/11	KWG1101816	
alpha-Chlordane	ND	Ui	3.0	3.0	1	02/18/11	03/19/11	KWG1101816	
Dieldrin	ND	Ui	2.3	2.3	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDE	ND	Ui	5.4	5.4	1	02/18/11	03/19/11	KWG1101816	
Endrin	14		0.50	0.49	1	02/18/11	03/19/11	KWG1101816	
Endosulfan II	ND	Ui	1.7	1.7	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDD	ND	Ui	4.9	4.9	1	02/18/11	03/19/11	KWG1101816	
Endrin Aldehyde	ND	Ui	5.5	5.5	1	02/18/11	03/19/11	KWG1101816	
Endosulfan Sulfate	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDT	ND	Ui	15	15	1	02/18/11	03/19/11	KWG1101816	
Endrin Ketone	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
Methoxychlor	ND	Ui	4.9	4.9	1	02/18/11	03/19/11	KWG1101816	
Toxaphene	ND	Ui	440	440	1	02/18/11	03/19/11	KWG1101816	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	97	20-102	03/19/11	Acceptable Outside Control Limits
Decachlorobiphenyl	185	35-128	03/19/11	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 03/24/2011 15:49:41

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

Form 1A - Organic 9

SuperSet Reference:

Page 1 of 1

RR1268 Page 48 of 60

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name: Lab Code:

Method Blank

Extraction Method:

KWG1101816-11

EPA 3535A

Units: ng/L Basis: NA

Level: Low

Analysis Method: 8081B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note .
alpha-BHC	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
beta-BHC	ND U	0.50	0.41	1	02/18/11	03/19/11	KWG1101816	
gamma-BHC (Lindane)	ND. U	0.50	0.47	1	02/18/11	03/19/11	KWG1101816	
delta-BHC	ND U	0.50	0.14	1	02/18/11	03/19/11	KWG1101816	
Heptachlor	ND U	0.50	0.18	1	02/18/11	03/19/11	KWG1101816	
Aldrin	ND U	0.50	0.33	1	02/18/11	03/19/11	KWG1101816	
Heptachlor Epoxide	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
gamma-Chlordane†	ND U	0.50	0.31	1	02/18/11	03/19/11	KWG1101816	
Endosulfan I	ND U	0.50	0.25	1	02/18/11	03/19/11	KWG1101816	
alpha-Chlordane	ND U	0.50	0.27	1	02/18/11	03/19/11	KWG1101816	LAN-
Dieldrin	ND U	0.50	0.37	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDE	ND U	0.50	0.19	1	02/18/11	03/19/11	KWG1101816	
Endrin	ND U	0.50	0.49	1	02/18/11	03/19/11	KWG1101816	
Endosulfan II	ND U	0.50	0.35	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDD	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
Endrin Aldehyde	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
Endosulfan Sulfate	ND U	0.50	0.28	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDT	ND U	0.50	0.17	1	02/18/11	03/19/11	KWG1101816	
Endrin Ketone	ND U	0.50	0.32	1	02/18/11	03/19/11	KWG1101816	
Methoxychlor	ND U	1.0	0.44	1	02/18/11	03/19/11	KWG1101816	
Toxaphene	ND U	25	17	1	02/18/11	03/19/11	KWG1101816	***************************************

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	50 97	20-102 35-128	03/19/11 03/19/11	Acceptable	
Decachlorobiphenyl	97	33-128	03/19/11	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 03/24/2011 15:49:46

Merged

Form 1A - Organic

SuperSet Reference:

RR126 Page 49 of 60

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method:

EPA 3535A

Analysis Method:

8081B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	
W11B114-01	K1101263-001	97	185	*
Method Blank	KWG1101816-11	50	97	
Lab Control Sample	KWG1101816-3	46	93	
Duplicate Lab Control Sample	KWG1101816-4	45	89	

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 20-102 Sur2 = Decachlorobiphenyl 35-128

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/24/2011 15:49:53

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference:

Page 1 of 1

RR1268 Page 50 of 60

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Extracted: 02/18/2011

Date Analyzed: 02/18/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Organochlorine Pesticides

Extraction Method:

EPA 3535A

Analysis Method:

Methoxychlor

8081B

Organochiorine Pesticides

Units: ng/L

Basis: NA Level: Low

Extraction Lot: KWG1101816

Lab Control Sample KWG1101816-3

Duplicate Lab Control Sample KWG1101816-4

		Control Spik		Duplicate Lab Control Spike %Rec					RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	6.32	10.0	63	5.81	10.0	58	36-122	8	30
beta-BHC	6.87	10.0	69	6.50	10.0	65	42-125	6	30
gamma-BHC (Lindane)	6.56	10.0	66	6.14	10.0	61	44-117	7	30
delta-BHC	6.87	10.0	69	6.53	10.0	65	48-123	5	30
Heptachlor	6.18	10.0	62	5.73	10.0	57	40-115	8	30
Aldrin	5.21	10.0	52	4.70	10.0	47	10-102	10	30
Heptachlor Epoxide	6.10	10.0	61	5.93	10.0	59	49-109	3	30
gamma-Chlordane	6.05	10.0	61	5.74	10.0	57	47-113	5	30
Endosulfan I	5.99	10.0	60	5.82	10.0	58	35-115	3	30
alpha-Chlordane	6.11	10.0	61	5.67	10.0	57	45-115	7	30
Dieldrin	6.27	10.0	63	5.53	10.0	55	50-115	13	30
4,4'-DDE	10.4	10.0	104	10.2	10.0	102	41-116	2	30
Endrin	5.48	10.0	55	5.98	10.0	60	48-126	9	30
Endosulfan II	6.54	10.0	65	6.63	10.0	66	28-128	1	30
4,4'-DDD	6.93	10.0	69	7.25	10.0	72	33-132	4	30
Endrin Aldehyde	5.11	10.0	51	5.39	10.0	54	27-104	5	30
Endosulfan Sulfate	6.14	10.0	61	5.92	10.0	59	38-118	4	30
4,4'-DDT	6.75	10.0	68	7.00	10.0	70	42-143	4	30
Endrin Ketone	6.95	10.0	70	7.03	10.0	70	30-124	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

7.56

10.0

76

9.08

10.0

91

43-143

18

30

Printed: 03/24/2011 15:49:58

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: 02/12/2011 **Date Received:** 02/15/2011

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

W11B114-01

Lab Code:

K1101263-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND	U	1.1	0.19	5	02/16/11	02/22/11	KWG1101467	
Phenol	ND	U	2.7	0.33	5	02/16/11	02/22/11	KWG1101467	
2-Chlorophenol	ND	U	2.7	0.29	5	02/16/11	02/22/11	KWG1101467	
1,3-Dichlorobenzene	ND	U	1.1	0.11	5	02/16/11	02/22/11	KWG1101467	
1,4-Dichlorobenzene	ND	U	1.1	0.16	5	02/16/11	02/22/11	KWG1101467	
1,2-Dichlorobenzene	ND	U	1.1	0.12	5	02/16/11	02/22/11	KWG1101467	
Benzyl Alcohol	ND	U	2.7	0.39	5	02/16/11	02/22/11	KWG1101467	-
Bis(2-chloroisopropyl) Ether	ND		1.1	0.14	5	02/16/11	02/22/11	KWG1101467	
2-Methylphenol	ND	U	2.7	0.58	5	02/16/11	02/22/11	KWG1101467	
Hexachloroethane	ND	-	1.1	0.13	5	02/16/11	02/22/11	KWG1101467	
N-Nitrosodi-n-propylamine	ND	U	1.1	0.20	5	02/16/11	02/22/11	KWG1101467	
4-Methylphenol†	ND	U	2.7	0.63	5	02/16/11	02/22/11	KWG1101467	
Nitrobenzene	ND		1.1	0.15	5	02/16/11	02/22/11	KWG1101467	
Isophorone	ND		1.1	0.084	5	02/16/11	02/22/11	KWG1101467	
2-Nitrophenol	ND	U	2.7	0.33	5	02/16/11	02/22/11	KWG1101467	
2,4-Dimethylphenol	ND		21	12	5	02/16/11	02/22/11	KWG1101467	
Bis(2-chloroethoxy)methane	ND		1.1	0.13	5	02/16/11	02/22/11	KWG1101467	
2,4-Dichlorophenol	ND	U	2.7	0.25	5	02/16/11	02/22/11	KWG1101467	
Benzoic Acid	ND		27	5.8	5	02/16/11	02/22/11	KWG1101467	
1,2,4-Trichlorobenzene	ND	U	1.1	0.084	5	02/16/11	02/22/11	KWG1101467	
Naphthalene	ND	U	1.1	0.12	5	02/16/11	02/22/11	KWG1101467	
4-Chloroaniline	ND		1.1	0.14	5	02/16/11	02/22/11	KWG1101467	
Hexachlorobutadiene	ND	U	1.1	0.15	5	02/16/11	02/22/11	KWG1101467	
4-Chloro-3-methylphenol	ND	U	2.7	0.20	5	02/16/11	02/22/11	KWG1101467	
2-Methylnaphthalene	ND		1.1	0.14	5	02/16/11	02/22/11	KWG1101467	
Hexachlorocyclopentadiene	ND		5.3	0.99	- 5	02/16/11	02/22/11	KWG1101467	
2,4,6-Trichlorophenol	ND	U	2.7	0.31	5	02/16/11	02/22/11	KWG1101467	
2,4,5-Trichlorophenol	ND		2.7	0.17	5	02/16/11	02/22/11	KWG1101467	
2-Chloronaphthalene	ND		1.1	0.22	. 5	02/16/11	02/22/11	KWG1101467	
2-Nitroaniline	ND	U	1.1	0.13	5	02/16/11	02/22/11	KWG1101467	
Acenaphthylene	ND		1.1	0.079	5	02/16/11	02/22/11	KWG1101467	
Dimethyl Phthalate	2.2		1.1	0.11	5	02/16/11	02/22/11	KWG1101467	
2,6-Dinitrotoluene	ND	U	1.1	0.18	5	02/16/11	02/22/11	KWG1101467	

Comments:	
	707000000000000000000000000000000000000

Merged

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263 **Date Collected:** 02/12/2011

Date Received: 02/15/2011

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

W11B114-01

Lab Code:

K1101263-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Extraction **Analyte Name** Result O MRL MDL Factor Extracted Analyzed Lot Note Acenaphthene KWG1101467 ND U 1.1 0.14 5 02/16/11 02/22/11 3-Nitroaniline 5 ND U 5.3 0.16 02/16/11 02/22/11 KWG1101467 2.4-Dinitrophenol ND U 21 0.89 5 02/16/11 02/22/11 KWG1101467 Dibenzofuran 5 ND U 1.1 0.094 02/16/11 02/22/11 KWG1101467 4-Nitrophenol ND U 5 11 1.5 02/16/11 02/22/11 KWG1101467 2,4-Dinitrotoluene ND U 1.1 0.094 5 02/16/11 02/22/11 KWG1101467 Fluorene 5 ND U 1.1 0.15 KWG1101467 02/16/11 02/22/11 4-Chlorophenyl Phenyl Ether ND U 1.1 0.15 5 02/16/11 02/22/11 KWG1101467 Diethyl Phthalate 0.24 JD 1.1 5 0.063 02/16/11 02/22/11 KWG1101467 4-Nitroaniline ND U 5 5.3 0.099 02/16/11 02/22/11 KWG1101467 2-Methyl-4,6-dinitrophenol ND U 11 0.14 5 02/16/11 02/22/11 KWG1101467 N-Nitrosodiphenylamine ND U 1.1 0.25 5 KWG1101467 02/16/11 02/22/11 4-Bromophenyl Phenyl Ether ND U 5 1.1 0.14 02/16/11 02/22/11 KWG1101467 Hexachlorobenzene ND U 1.1 0.12 5 02/16/11 02/22/11 KWG1101467 Pentachlorophenol ND U 5.3 1.8 5 02/16/11 02/22/11 KWG1101467 Phenanthrene 0.19 JD 1.1 0.12 5 02/16/11 02/22/11 KWG1101467 Anthracene ND U 1.1 5 0.13 02/16/11 02/22/11 KWG1101467 Di-n-butyl Phthalate 0.44 JD 1.1 0.12 5 02/16/11 02/22/11 KWG1101467 Fluoranthene 0.23 JD 1.1 0.11 5 02/16/11 02/22/11 KWG1101467 Pyrene 0.33 JD 1.1 0.099 5 02/16/11 02/22/11 KWG1101467 Butyl Benzyl Phthalate 0.58 JD 1.1 0.094 5 KWG1101467 02/16/11 02/22/11 3.3'-Dichlorobenzidine ND U 11 5 2.3 02/16/11 02/22/11 KWG1101467 Benz(a)anthracene 0.15 JD 0.094 5 1.1 02/16/11 02/22/11 KWG1101467 Chrysene 0.23 JD 5 1.1 0.15 02/16/11 02/22/11 KWG1101467 Bis(2-ethylhexyl) Phthalate 5 2.0 JD 5.3 0.68 KWG1101467 02/16/11 02/22/11 Di-n-octyl Phthalate ND U 1.1 0.094 5 KWG1101467 02/16/11 02/22/11 Benzo(b)fluoranthene 5 ND U 1.1 0.089 02/16/11 02/22/11 KWG1101467 Benzo(k)fluoranthene ND U 1.1 0.13 5 KWG1101467 02/16/11 02/22/11 Benzo(a)pyrene 5 ND U 1.1 0.17 KWG1101467 02/16/11 02/22/11 Indeno(1,2,3-cd)pyrene ND U 1.1 0.11 5 02/16/11 KWG1101467 02/22/11 Dibenz(a,h)anthracene ND U 1.1 5 KWG1101467 0.089 02/16/11 02/22/11 Benzo(g,h,i)perylene ND U 1.1 0.099 5 02/16/11 KWG1101467 02/22/11

Comments:

Printed: 02/28/2011 12:56:38

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 14

SuperSet Reference:

Page RR1258 Page 53 of 60

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263 **Date Collected:** 02/12/2011

Date Received: 02/15/2011

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

W11B114-01

K1101263-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	68	12-109	02/22/11	Acceptable	
Phenol-d6	71	23-106	02/22/11	Acceptable	
Nitrobenzene-d5	73	26-110	02/22/11	Acceptable	
2-Fluorobiphenyl	64	31-94	02/22/11	Acceptable	
2,4,6-Tribromophenol	78	23-127	02/22/11	Acceptable	
Terphenyl-d14	60	40-127	02/22/11	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 02/28/2011 12:56:38

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Merged

Form 1A - Organic 15

SuperSet Reference:

Page RR1258 Page 54 of 60

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: Method Blank

Extraction Method:

KWG1101467-3 EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND U	0.20	0.035	1	02/16/11	02/22/11	KWG1101467	
Phenol	ND U	0.50	0.063	1	02/16/11	02/22/11	KWG1101467	
2-Chlorophenol	ND U	0.50	0.054	1	02/16/11	02/22/11	KWG1101467	
1,3-Dichlorobenzene	ND U	0.20	0.021	1	02/16/11	02/22/11	KWG1101467	Andrew Services
1,4-Dichlorobenzene	ND U	0.20	0.029	1	02/16/11	02/22/11	KWG1101467	
1,2-Dichlorobenzene	ND U	0.20	0.022	1	02/16/11	02/22/11	KWG1101467	
Benzyl Alcohol	ND U	0.50	0.073	1	02/16/11	02/22/11	KWG1101467	
Bis(2-chloroisopropyl) Ether	ND U	0.20	0.026	1	02/16/11	02/22/11	KWG1101467	
2-Methylphenol	ND U	0.50	0.11	1	02/16/11	02/22/11	KWG1101467	
Hexachloroethane	ND U	0.20	0.024	1	02/16/11	02/22/11	KWG1101467	
N-Nitrosodi-n-propylamine	ND U	0.20	0.037	1	02/16/11	02/22/11	KWG1101467	
4-Methylphenol†	ND U	0.50	0.12	1	02/16/11	02/22/11	KWG1101467	
Nitrobenzene	ND U	0.20	0.028	1	02/16/11	02/22/11	KWG1101467	
Isophorone	ND U	0.20	0.016	1	02/16/11	02/22/11	KWG1101467	
2-Nitrophenol	ND U	0.50	0.063	1	02/16/11	02/22/11	KWG1101467	
2,4-Dimethylphenol	ND U	4.0	2.2	1	02/16/11	02/22/11	KWG1101467	
Bis(2-chloroethoxy)methane	ND U	0.20	0.024	1	02/16/11	02/22/11	KWG1101467	
2,4-Dichlorophenol	ND U	0.50	0.047	1	02/16/11	02/22/11	KWG1101467	
Benzoic Acid	ND U	5.0	1.1	1	02/16/11	02/22/11	KWG1101467	
1,2,4-Trichlorobenzene	ND U	0.20	0.016	1	02/16/11	02/22/11	KWG1101467	
Naphthalene	ND U	0.20	0.022	1	02/16/11	02/22/11	KWG1101467	
4-Chloroaniline	ND U	0.20	0.025	1	02/16/11	02/22/11	KWG1101467	
Hexachlorobutadiene	ND U	0.20	0.027	1	02/16/11	02/22/11	KWG1101467	
4-Chloro-3-methylphenol	ND U	0.50	0.037	1	02/16/11	02/22/11	KWG1101467	
2-Methylnaphthalene	ND U	0.20	0.026	1	02/16/11	02/22/11	KWG1101467	***************************************
Hexachlorocyclopentadiene	ND U	0.99	0.19	1	02/16/11	02/22/11	KWG1101467	
2,4,6-Trichlorophenol	ND U	0.50	0.058	1	02/16/11	02/22/11	KWG1101467	
2,4,5-Trichlorophenol	ND U	0.50	0.031	1	02/16/11	02/22/11	KWG1101467	
2-Chloronaphthalene	ND U	0.20	0.041	1	02/16/11	02/22/11	KWG1101467	
2-Nitroaniline	ND U	0.20	0.024	1	02/16/11	02/22/11	KWG1101467	
Acenaphthylene	ND U	0.20	0.015	1	02/16/11	02/22/11	KWG1101467	
Dimethyl Phthalate	ND U	0.20	0.021	1	02/16/11	02/22/11	KWG1101467	
2,6-Dinitrotoluene	ND U	0.20	0.033	1	02/16/11	02/22/11	KWG1101467	

Comments:	

Printed: 02/28/2011 12:56:42 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 16

SuperSet Reference:

Page 1 of 3
RR1258 Page 55 of 60

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG1101467-3

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Dagaali	^	MDI	MODE	Dilution	Date	Date	Extraction	3.
	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND		0.20	0.026	1	02/16/11	02/22/11	KWG1101467	
3-Nitroaniline	ND		0.99	0.029	1	02/16/11	02/22/11	KWG1101467	
2,4-Dinitrophenol	ND		4.0	0.17	1	02/16/11	02/22/11	KWG1101467	
Dibenzofuran	ND		0.20	0.018	1	02/16/11	02/22/11	KWG1101467	
4-Nitrophenol	ND		2.0	0.28	1	02/16/11	02/22/11	KWG1101467	
2,4-Dinitrotoluene	ND	U	0.20	0.018	1	02/16/11	02/22/11	KWG1101467	
Fluorene	ND	U	0.20	0.027	1	02/16/11	02/22/11	KWG1101467	
4-Chlorophenyl Phenyl Ether			0.20	0.027	1	02/16/11	02/22/11	KWG1101467	
Diethyl Phthalate	0.023	J	0.20	0.012	1	02/16/11	02/22/11	KWG1101467	
4-Nitroaniline	ND	U	0.99	0.019	1	02/16/11	02/22/11	KWG1101467	
2-Methyl-4,6-dinitrophenol	ND	U	2.0	0.025	1	02/16/11	02/22/11	KWG1101467	
N-Nitrosodiphenylamine	ND	U	0.20	0.048	1	02/16/11	02/22/11	KWG1101467	
4-Bromophenyl Phenyl Ether	ND	U	0.20	0.026	1	02/16/11	02/22/11	KWG1101467	
Hexachlorobenzene	ND	U	0.20	0.022	1	02/16/11	02/22/11	KWG1101467	
Pentachlorophenol	ND	U	0.99	0.34	1	02/16/11	02/22/11	KWG1101467	
Phenanthrene	ND	U	0.20	0.022	1	02/16/11	02/22/11	KWG1101467	
Anthracene	ND	U	0.20	0.024	1	02/16/11	02/22/11	KWG1101467	
Di-n-butyl Phthalate	0.037	J	0.20	0.023	1	02/16/11	02/22/11	KWG1101467	
Fluoranthene	ND	U	0.20	0.020	1	02/16/11	02/22/11	KWG1101467	Princettown
Pyrene	ND	U	0.20	0.019	1	02/16/11	02/22/11	KWG1101467	
Butyl Benzyl Phthalate	0.037	J	0.20	0.018	1	02/16/11	02/22/11	KWG1101467	
3,3'-Dichlorobenzidine	ND	U	2.0	0.43	1	02/16/11	02/22/11	KWG1101467	
Benz(a)anthracene	ND	U	0.20	0.018	1	02/16/11	02/22/11	KWG1101467	
Chrysene	ND	U	0.20	0.028	1	02/16/11	02/22/11	KWG1101467	
Bis(2-ethylhexyl) Phthalate	ND	U	0.99	0.13	1	02/16/11	02/22/11	KWG1101467	-
Di-n-octyl Phthalate	ND	U	0.20	0.018	1	02/16/11	02/22/11	KWG1101467	
Benzo(b)fluoranthene	ND	U	0.20	0.017	1	02/16/11	02/22/11	KWG1101467	
Benzo(k)fluoranthene	ND	U	0.20	0.024	1	02/16/11	02/22/11	KWG1101467	
Benzo(a)pyrene	ND	U	0.20	0.031	1	02/16/11	02/22/11	KWG1101467	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.021	1	02/16/11	02/22/11	KWG1101467	
Dibenz(a,h)anthracene	ND	U	0.20	0.017	1	02/16/11	02/22/11	KWG1101467	
Benzo(g,h,i)perylene	ND	U	0.20	0.019	1	02/16/11	02/22/11	KWG1101467	

Comments:

Printed: 02/28/2011 12:56:42

Merged

Form 1A - Organic

SuperSet Reference:

Page 2 of 3
RR1258 Page 56 of 60

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG1101467-3

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	72	12-109	02/22/11	Acceptable	
Phenol-d6	7 6	23-106	02/22/11	Acceptable	
Nitrobenzene-d5	77	26-110	02/22/11	Acceptable	
2-Fluorobiphenyl	68	31-94	02/22/11	Acceptable	
2,4,6-Tribromophenol	75	23-127	02/22/11	Acceptable	
Terphenyl-d14	100	40-127	02/22/11	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 02/28/2011 12:56:42 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

Form 1A - Organic 18

Page

RR125

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	<u>Sur5</u>	<u>Sur6</u>
W11B114-01	K1101263-001	68 D	71 D	73 D	64 D	78 D	60 D
Method Blank	KWG1101467-3	72	76	77	68	75	100
Lab Control Sample	KWG1101467-1	74	75	74	61	77	89
Duplicate Lab Control Sample	KWG1101467-2	84	86	85	71	85	99

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	12-109	Sur5 = 2,4,6-Tribromophenol	23-127
Sur2 = Phenol-d6	23-106	Sur6 = Terphenyl-d14	40-127
Sur3 = Nitrobenzene-d5	26-110	• •	
Sur4 = 2-Fluorobiphenyl	31-94		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/28/2011 12:56:46

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

SuperSet Reference:

Page RR125 Page 58 of 60

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263 **Date Extracted:** 02/16/2011

Date Analyzed: 02/22/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C **Analysis Method:**

8270C

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1101467

Lab Control Sample	
KWG1101467-1	
Lab Control Spile	

Duplicate Lab Control Sample KWG1101467-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Bis(2-chloroethyl) Ether	3.73	5.00	75	4.06	5.00	81	37-109	8	30
Phenol	3.82	5.00	76	4.12	5.00	82	35-114	8	30
2-Chlorophenol	4.02	5.00	80	4.25	5.00	85	37-110	5	30
1,3-Dichlorobenzene	1.90	5.00	38	2.21	5.00	44	14-68	15	30
1,4-Dichlorobenzene	1.94	5.00	39	2.33	5.00	47	15-71	18	30
1,2-Dichlorobenzene	2.23	5.00	45	2.56	5.00	51	17-76	14	30
Benzyl Alcohol	3.88	5.00	78	4.21	5.00	84	32-115	8	30
Bis(2-chloroisopropyl) Ether	3.43	5.00	69	3.70	5.00	74	29-110	8	30
2-Methylphenol	3.49	5.00	70	3.62	5.00	72	21-109	3	30
Hexachloroethane	1.39	5.00	28	1.49	5.00	30	10-59	7	30
N-Nitrosodi-n-propylamine	3.61	5.00	72	3.90	5.00	78	32-112	8	30
4-Methylphenol	3.57	5.00	71	3.66	5.00	73	19-114	2	30
Nitrobenzene	3.65	5.00	73	3.87	5.00	77	36-110	6	30
Isophorone	3.49	5.00	70	3.65	5.00	73	38-106	4	30
2-Nitrophenol	3.89	5.00	78	4.31	5.00	86	41-112	10	30
2,4-Dimethylphenol	2.11	5.00	42	1.79	5.00	36	10-106	16	30
Bis(2-chloroethoxy)methane	3.71	5.00	74	3.99	5.00	80	39-109	7	30
2,4-Dichlorophenol	3.80	5.00	76	4.24	5.00	85	37-111	11	30
Benzoic Acid	3.36	15.0	22	2.52	15.0	17	10-83	29	30
1,2,4-Trichlorobenzene	2.06	5.00	41	2.47	5.00	49	18-76	18	30
Naphthalene	2.88	5.00	58	3.37	5.00	67	31-94	16	30
4-Chloroaniline	2.95	5.00	59	2.88	5.00	58	14-108	2	30
Hexachlorobutadiene	1.29	5.00	26	1.29	5.00	26	10-59	0	30
4-Chloro-3-methylphenol	3.78	5.00	76	3.91	5.00	78	33-115	3	30
2-Methylnaphthalene	2.83	5.00	57	3.29	5.00	66	29-92	15	30
Hexachlorocyclopentadiene	0.543	5.00	11	0.618	5.00	12	10-37	13	30
2,4,6-Trichlorophenol	3.77	5.00	75	3.88	5.00	78	36-113	- 3	30
2,4,5-Trichlorophenol	3.88	5.00	78	4.03	5.00	81	41-112	4	30
2-Chloronaphthalene	2.69	5.00	54	3.20	5.00	64	31-95	17	30
2-Nitroaniline	3.57	5.00	71	3.65	5.00	73	40-118	2	30
Acenaphthylene	3.50	5.00	70	3.83	5.00	77	36-107	9	30
Dimethyl Phthalate	3.84	5.00	77	3.98	5.00	80	46-111	4	30
2,6-Dinitrotoluene	4.00	5.00	80	4.31	5.00	86	44-116	8	30
Acenaphthene	3.12	5.00	62	3.51	5.00	70	36-101	12	30
3-Nitroaniline	3.80	5.00	76	3.85	5.00	77	34-118	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/28/2011 12:56:50

Form 3C - Organic

SuperSet Reference:

Page RR125 Page 59 of 60

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Extracted: 02/16/2011 **Date Analyzed:** 02/22/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1101467

Lab Control Sample KWG1101467-1

Duplicate Lab Control Sample KWG1101467-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2,4-Dinitrophenol	3.04	5.00	61	2.82	5.00	56	10-116	7	30
Dibenzofuran	3.28	5.00	66	3.62	5.00	72	37-103	10	30
4-Nitrophenol	3.33	5.00	67	3.50	5.00	70	38-125	5	30
2,4-Dinitrotoluene	3.90	5.00	78	4.08	5.00	82	47-119	4	30
Fluorene	3.39	5.00	68	3.70	5.00	74	39-106	9	30
4-Chlorophenyl Phenyl Ether	3.22	5.00	64	3.56	5.00	71	37-103	10	30
Diethyl Phthalate	3.85	5.00	77	3.95	5.00	79	47-113	3	30
4-Nitroaniline	3.78	5.00	76	3.91	5.00	78	38-119	3	30
2-Methyl-4,6-dinitrophenol	3.57	5.00	71	3.65	5.00	73	10-125	2	30
N-Nitrosodiphenylamine	3.53	5.00	71	3.67	5.00	73	36-111	4	30
4-Bromophenyl Phenyl Ether	3.48	5.00	70	3.71	5.00	74	42-105	6	30
Hexachlorobenzene	3.45	5.00	69	3.68	5.00	74	42-102	7	30
Pentachlorophenol	3.65	5.00	73	3.72	5.00	74	10-119	2	30
Phenanthrene	3.62	5.00	72	3.86	5.00	77	45-104	7	30
Anthracene	3.58	5.00	72	3.86	5.00	77	41-103	8	30
Di-n-butyl Phthalate	3.87	5.00	77	4.05	5.00	81	44-126	5	30
Fluoranthene	3.79	5.00	76	3.84	5.00	77	46-109	1	30
Pyrene	3.95	5.00	79	4.03	5.00	81	46-108	2	30
Butyl Benzyl Phthalate	4.00	5.00	80	4.17	5.00	83	48-115	4	30
3,3'-Dichlorobenzidine	3.24	5.00	65	0.604	5.00	12 *	13-108	137 *	30
Benz(a)anthracene	3.81	5.00	76	3.88	5.00	78	47-105	2	30
Chrysene	3.90	5.00	78	4.05	5.00	81	49-105	4	30
Bis(2-ethylhexyl) Phthalate	3.99	5.00	80	4.04	5.00	81	45-122	1	30
Di-n-octyl Phthalate	3.75	5.00	75	3.86	5.00	77	48-119	3	30
Benzo(b)fluoranthene	3.97	5.00	79	4.05	5.00	81	48-108	2	30
Benzo(k)fluoranthene	3.97	5.00	79	4.08	5.00	82	49-107	3	30
Benzo(a)pyrene	3.96	5.00	79	4.02	5.00	80	42-109	2	30
Indeno(1,2,3-cd)pyrene	4.10	5.00	82	4.19	5.00	84	47-111	2	30
Dibenz(a,h)anthracene	4.03	5.00	81	4.11	5.00	82	47-110	2	30
Benzo(g,h,i)perylene	4.00	5.00	80	4.06	5.00	81	47-109	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/28/2011 12:56:50 u:\Stealth\Crystal.rpt\Form3DLC.rpt

March 25, 2011

Analytical Report for Service Request No: K1101263

Jennifer Shackelford City of Portland 6543 N. Burlington Ave Portland, OR 97203

RE: NPDES Stormwater/W11B114

Dear Jennifer:

Enclosed are the results of the sample submitted to our laboratory on February 15, 2011. For your reference, these analyses have been assigned our service request number K1101263.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Howard Holmes

Project Chemist

HH/dlm

Page 1 of 21

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H In accordance with the 2007 EPA Methods Update Rule published in the Federal Register, the holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.1 definition:* Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 - DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Agency	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DEQ	WA100010
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client: Project: City of Portland

NPDES Stormwater

Water

Service Request No.: Date Received:

K1101263 2/15/11

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 2/15/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4° C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Second Source Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Initial Calibration Verification (ICV) criteria are met for both columns, the lower of the two sample results is generally reported. The data quality was not affected. No further corrective action was necessary.

Calibration Verification Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the lower of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for 4,4'-DDT and Methoxychlor in CCV 03180055. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Surrogate Exceptions:

The control criteria were exceeded for Decachlorobiphenyl in sample W11B114-01 due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. The other surrogate, Tetrachloro-m-xylene, was well within control limits, indicating the integrity of the extraction was intact. No further corrective action was appropriate.

Elevated Detection Limits:

The detection limit was elevated for a few analytes in sample W11B114-01. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Approved by House Holmo Date 3-25-11

Semivolatile Organic Compounds by EPA Method 8270C

Lab Control Sample Exceptions:

The lower advisory criterion was exceeded by 1% for 3,3'-Dichlorobenzidine in the duplicate Laboratory Control Samples (LCS/DLCS) KWG1101467-1 and KWG1101467-2. As per the CAS/Kelso Standard Operating Procedure (SOP) for this method, these compounds are not included in the subset of analytes used to control the analysis. The recovery information reported for these analytes is for advisory purposes only (i.e. to provide additional detail related to the performance of each individual compound). No further corrective action was required.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for 3,3'-Dichlorobenzidine in the duplicate Laboratory Control Samples (LCS/DLCS) KWG1101467-1 and KWG1101467-2 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Elevated Detection Limits:

The detection limits were elevated in sample W11B114-01. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution. A semi-quantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Approved by Howard Holms Date 3-25-11

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11B114

SENDING LABORATORY:		RECEIVING LAB	RECEIVING LABORATORY:							
City of Portland Water Pollut 6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 Fax: 503-823-5656 Invoice To: Charles Lytle	ion Control Lab	Columbia Analy 1317 S. 13th Av Kelso, WA 9862 Phone :(360) 57 Fax: (360) 636-	venue 26 77-7222	·						
WPCL Project Name NPDES Stormwater		X Standa		D REQUEST						
Analysis	Due	Expires	Laboratory ID	Comments						
Sample ID: W11B114-01	Water	Sampled:02/12/11 22:32			·					
Out-Semivol 8270 LL (CAS)	03/01/11 17:00	02/19/11 22:32								
Out-Pesticides Chlor LL (CAS)	03/01/11 17:00	02/19/11 22:32								
Containers Supplied:			-							
	G amber 1L (E)									

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC H·H

Client / Proje	ect: <u>City</u>	, F Portla	nd			Ser	vice Requ	iest <i>K</i>	11	26	2		
Received:	2/15/11	Opened:	2/15/1	<u></u>	By:	W	(U	nloade	d:	2/15/11	By	": <i>O</i> {	4
Samples v	were received via?	Mail F	ed Ex	UPS	DH	TL	PDX (Courie	r He	and Delivere	d		
2. Samples v	were received in: (c	ircle) Co	oler) 1	Box	Enve	lope	Othe	r				. NA	•
3. Were cust	ody seals on cooler	rs? N	A Y	(N)	If	yes, h	ow many	and wł	ere?				
If present.	were custody seals	s intact?	Y	N		If pro	esent, were	e they s	igned aı	nd dated?		, Y	N
Cooler Temp °C	Temp Blank °C	Thermomete	ir i	Cooler/C	COC N	Λ			Tenalsin	g Number		(ÑA)	
16.1		293	W	1181		•			Hackin	ig irumei			Filed
		- war and the control of the control											
7. Packing n	naterial used. Ins	erts Baggies	Bubble	Wrap	Gel Pa	cks	Wet Ice	Sleeve	s Oth	er No	ne		1
•	ody papers properly			-							N/	$A \qquad \widehat{Y}$) N
9. Did all bo	ttles arrive in good	condition (unb	oroken)? Ir	dicate	in the t	able be	elow.				NA	$A \qquad \stackrel{\smile}{(Y)}$) N
10. Were all	sample labels comp	lete (i.e analys	sis, preserva	tion, et	c.)?						NA	$A \qquad (\widehat{Y})$) N
11. Did all sa	mple labels and tag	gs agree with c	ustody pape	rs? Ina	licate n	ajor a	liscrepanc	ies in t	he table	on page 2.	NA	$\Delta \qquad \widecheck{\widehat{\mathrm{Y}}}$) N
12. Were app	ropriate bottles/con	itainers and vo	lumes recei	ved for	the tes	s indic	cated?				NA	A Y) N
13. Were the	pH-preserved bottl	es (see SMO Gl	EN SOP) rec	eived at	t the ap	propri	ate pH? In	idicate	in the to	able below	NA	9 Y	· N
14. Were VO	A vials received wi	thout headspa	ce? Indicat	e in the	table b	elow.					NA	Y	N
15. Was C12	Res negative?										NA	A (Ý	И
San	nple ID on Bottle		Sam	ple ID o	n COC					Identified by	<i>r</i> :		
c	ample ID	Bottle Co		Head-					Volume	Reagent I		9. 241.4	
•	antple ID	Bottle Ty	pe remp	space	Вгоке	рН	Reage	nt	added	Numbe		Initials	Time
		1						1			İ		
				 	 		 			<u></u>			
Notes, Discre	epancies, & Resol	lutions:											
Notes, Discre	epancies, & Resoi	lutions:											
Notes, Discre	epancies, & Resoi	lutions:											
Notes, Discre	epancies, & Resol	lutions:											

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: 02/12/2011

Date Received: 02/15/2011

Organochlorine Pesticides

Sample Name: Lab Code: W11B114-01 K1101263-001

Extraction Method:

EPA 3535A

Units: ng/L Basis: NA

Level: Low

Analysis Method:

8081B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC			1.2	1.2	1	02/18/11	03/19/11	KWG1101816	
beta-BHC	ND		1.9	1.9	1	02/18/11	03/19/11	KWG1101816	
gamma-BHC (Lindane)	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
delta-BHC	6.8	P	0.50	0.14	1 .	02/18/11	03/19/11	KWG1101816	
Heptachlor	5.0	P	0.50	0.18	1	02/18/11	03/19/11	KWG1101816	
Aldrin	1.0	P	0.50	0.33	1	02/18/11	03/19/11	KWG1101816	
Heptachlor Epoxide	ND	Ui	3.3	3.3	1	02/18/11	03/19/11	KWG1101816	
gamma-Chlordane†	ND	Ui	0.86	0.86	1	02/18/11	03/19/11	KWG1101816	
Endosulfan I	ND	Ui	1.1	1.1	1	02/18/11	03/19/11	KWG1101816	
alpha-Chlordane	ND	Ui	3.0	3.0	1	02/18/11	03/19/11	KWG1101816	,
Dieldrin	ND	Ui	2.3	2.3	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDE	ND	Ui	5.4	5.4	1	02/18/11	03/19/11	KWG1101816	
Endrin	14		0.50	0.49	1	02/18/11	03/19/11	KWG1101816	
Endosulfan II	ND	Ui	1.7	1.7	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDD	ND	Ui	4.9	4.9	1	02/18/11	03/19/11	KWG1101816	
Endrin Aldehyde	ND	Ui	5,5	5.5	1	02/18/11	03/19/11	KWG1101816	
Endosulfan Sulfate	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDT	ND	Ui	15	15	1	02/18/11	03/19/11	KWG1101816	
Endrin Ketone	ND	Ui	1.6	1.6	1	02/18/11	03/19/11	KWG1101816	
Methoxychlor	ND	Ui	4.9	4.9	1	02/18/11	03/19/11	KWG1101816	
Toxaphene	ND	Ui	440	440	1	02/18/11	03/19/11	KWG1101816	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	97	20-102	03/19/11	Acceptable Outside Control Limits
Decachlorobiphenyl	185	35-128	03/19/11	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

 $\begin{array}{lll} Printed: & 03/24/2011 & 15:49:41 \\ u:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$

Merged

Form 1A - Organic

Page SuperSet Reference: RR126821

1 of 1

9

Analytical Results

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name: Lab Code:

Method Blank KWG1101816-11

Extraction Method:

EPA 3535A

Analysis Method:

8081B

Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note .
alpha-BHC	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
beta-BHC	ND U	0.50	0.41	1	02/18/11	03/19/11	KWG1101816	
gamma-BHC (Lindane)	ND. U	0.50	0.47	1	02/18/11	03/19/11	KWG1101816	
delta-BHC	ND U	0.50	0.14	1	02/18/11	03/19/11	KWG1101816	
Heptachlor	ND U	0.50	0.18	1	02/18/11	03/19/11	KWG1101816	
Aldrin	ND U	0.50	0.33	1	02/18/11	03/19/11	KWG1101816	
Heptachlor Epoxide	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
gamma-Chlordane†	ND U	0.50	0.31	1	02/18/11	03/19/11	KWG1101816	
Endosulfan I	ND U	0.50	0.25	1	02/18/11	03/19/11	KWG1101816	
alpha-Chlordane	ND U	0.50	0.27	1	02/18/11	03/19/11	KWG1101816	LAN-
Dieldrin	ND U	0.50	0.37	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDE	ND U	0.50	0.19	1	02/18/11	03/19/11	KWG1101816	
Endrin	ND U	0.50	0.49	1	02/18/11	03/19/11	KWG1101816	
Endosulfan II	ND U	0.50	0.35	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDD	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
Endrin Aldehyde	ND U	0.50	0.21	1	02/18/11	03/19/11	KWG1101816	
Endosulfan Sulfate	ND U	0.50	0.28	1	02/18/11	03/19/11	KWG1101816	
4,4'-DDT	ND U	0.50	0.17	1	02/18/11	03/19/11	KWG1101816	
Endrin Ketone	ND U	0.50	0.32	1	02/18/11	03/19/11	KWG1101816	
Methoxychlor	ND U	1.0	0.44	1	02/18/11	03/19/11	KWG1101816	
Toxaphene	ND U	25	17	1	02/18/11	03/19/11	KWG1101816	***************************************

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	50 97	20-102 35-128	03/19/11 03/19/11	Acceptable Acceptable	
Decacinoroorphenyr	97	33-126	03/19/11	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 03/24/2011 15:49:46

Merged

Form 1A - Organic

10

SuperSet Reference:

Page

1 of 1

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method:

EPA 3535A

Analysis Method:

8081B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	
W11B114-01	K1101263-001	97	185	*
Method Blank	KWG1101816-11	50	97	
Lab Control Sample	KWG1101816-3	46	93	
Duplicate Lab Control Sample	KWG1101816-4	45	89	

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 20-102 Sur2 = Decachlorobiphenyl 35-128

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/24/2011 15:49:53

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR126821

QA/QC Report

Client:

Portland, City of

Project:

NPDES Stormwater/W11B114

Sample Matrix:

Water

Service Request: K1101263 **Date Extracted:** 02/18/2011

Date Analyzed: 03/19/2011

Lab Control Spike/Duplicate Lab Control Spike Summary **Organochlorine Pesticides**

Extraction Method:

EPA 3535A

Analysis Method:

8081B

Units: ng/L

Basis: NA

Level: Low

Extraction Lot: KWG1101816

Lab Control Sample KWG1101816-3

Duplicate Lab Control Sample KWG1101816-4

	Lab	Lab Control Spike			Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	6.32	10.0	63	5.81	10.0	58	36-122	8	30
beta-BHC	6.87	10.0	69	6.50	10.0	65	42-125	6	30
gamma-BHC (Lindane)	6.56	10.0	66	6.14	10.0	61	44-117	7	30
delta-BHC	6.87	10.0	69	6.53	10.0	65	48-123	5	30
Heptachlor	6.18	10.0	62	5.73	10.0	57	40-115	8	30
Aldrin	5.21	10.0	52	4.70	10.0	47	10-102	10	30
Heptachlor Epoxide	6.10	10.0	61	5.93	10.0	59	49-109	3	30
gamma-Chlordane	6.05	10.0	61	5.74	10.0	57	47-113	5	30
Endosulfan I	5.99	10.0	60	5.82	10.0	58	35-115	3	30
alpha-Chlordane	6.11	10.0	61	5.67	10.0	57	45-115	7	30
Dieldrin	6.27	10.0	63	5.53	10.0	55	50-115	13	30
4,4'-DDE	10.4	10.0	104	10.2	10.0	102	41-116	2	30
Endrin	5.48	10.0	55	5.98	10.0	60	48-126	9	30
Endosulfan II	6.54	10.0	65	6.63	10.0	66	28-128	1	30
4,4' - DDD	6.93	10.0	69	7.25	10.0	72	33-132	4	30
Endrin Aldehyde	5.11	10.0	51	5.39	10.0	54	27-104	5	30
Endosulfan Sulfate	6.14	10.0	61	5.92	10.0	59	38-118	4	30
4,4'-DDT	6.75	10.0	68	7.00	10.0	70	42-143	4	30
Endrin Ketone	6.95	10.0	70	7.03	10.0	70	30-124	1	30
Methoxychlor	7.56	10.0	76	9.08	10.0	91	43-143	18	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/24/2011 15:49:58 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

SuperSet Reference:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil **Test America** 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY **ANALYSIS FOR PCBs**

Report Information:

Pace Project #: 10149758

Sample Receipt Date: 02/16/2011

Client Project #: PUB0415

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

March 07, 2011

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

March 7, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America - Portland. The sample was analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extract were recovered at 53-99%. All of the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain low levels of two PCB congeners. These congeners were present in the sample extract at similar levels and may be, at least partially, attributed to the background. In general, levels less than ten times the background are not considered statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using clean water that had been fortified with native standards. The results show that the spiked native compounds were recovered at 83-119%, with relative percent differences of 0.0-15.4%. These results indicate high degrees of accuracy and precision for these determinations. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

642010A
64
001-005
001-005
63
3
001
)4192-08
970
Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Subcontract Order - TestAmerica Portland (PUB0415)

431

10149750

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444 Project Location: Oregon

Receipt Temperature: $^{\circ}C$

Y / N Ice:

V11B114 Autolog	from WP	CL 02/14	/11 16	3:08

Standard TAT is requested unless specific due date is requested. => Due Date:

malysis

Units

Expires

Comments

Sample ID: PUB0415-01 (W11B114-01 (OF19) - Stormwater

Sampled: 02/12/11 22:32 08/11/11 22:32

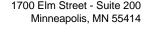
209 cong. to PACE

1668 PCB 209 Congeners - ug/l SUB

Containers Supplied:

1L Amber - Unpres. (A)

Released Report No.....10149758_1668Ame


Received

Date/Time

Sai	npie	Con	iditio	n Upon Receip		
Face Analytical Client Name	-	fres	,+90	nesteq	Project #_	10149758
Courier: Fed Ex UPS USPS Clie Tracking #: 417075269497 Custody Seal on Cooler/Box Present: yes Packing Material: Bubble Wrap Bubble	X	216t no	1	s intact:	Pio	onalis Dua:Data Name: "*
Thermometer Used 80344042 or 179425	-		: We	t Blue None	· ·	cooling process has begun
Cooler Temperature Temp should be above freezing to 6°C				e is Frozen: Yes No Comments:	Date and Int	tials of person examining
Chain of Custody Present:	ŪV es	□No	□N/A	1.		
Chain of Custody Filled Out:	[Z]Yes	□No	□N⁄A	2.	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Relinquished:	Yes	□N ₀	□N/A	3.	······································	
Sampler Name & Signature on COC:	☐Yes	No	□N/A	4.		
Samples Arrived within Hold Time:	XYes	□No	□N⁄A	5.		
Short Hold Time Analysis (<72hr):	□Yes	IZINO	□n/A	6.		
Rush Turn Around Time Requested:	□Yes	No	□N⁄A	7.		
Sufficient Volume:	Yes	□No	□N⁄A	8.		
Correct Containers Used:	Yes	□No	, □N⁄A	9.		
-Pace Containers Used:	□Yes	ZNo	□N⁄A			
Containers Intact:	ÆYes	□No	□N⁄A	10.		
Filtered volume received for Dissolved tests	□Yes	□No	ENVA	11.		
Sample Labels match COC:	□ ¥63	□No	□N⁄A	12.		
-Includes date/time/ID/Analysis Matrix:	حمرا	7				
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	E IN/A	13.	NO3 H2SO4	□ NaOH □ HCI
All containers needing preservation are found to be in compilance with EPA recommendation.	□Yes	□No	□N/A	Samp #		
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	DK6		Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes	□No	DATA	14.	·	
Headspace in VOA Vials (>6mm):	☐Yes	□No/	CHOA	15.		
Trip Blank Present:	□Yes	□No	EINA	16.		i
Trip Blank Custody Seals Present	□Yes	□No.	.DIN/A			
Pace Trip Blank Lot # (if purchased):	·					
Client Notification/ Resolution:					Field Data Require	ed? Y / N
Person Contacted:			Date/1	ime:		
Comments/ Resolution:			•			

Date: 02/17/11 **Project Manager Review:** Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Rooth Carolina SEMBLES, Inc. F-L213Rev.00, 05Aug2009 1700 Eim Street SE, Suite 200, Minneapolis, MN 55414

Report No.....10149758_1668A Page 6 of 25

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PUB0415-01:W11B114-01(OF-19)
Lab Sample ID 10149758001
Filename P110304A_10

Injected By BAL
Total Amount Extracted 953

Total Amount Extracted 953 mL Matrix Water
% Moisture NA Dilution NA
Dry Weight Extracted NA Collected 02/12/2011 22:32

ICAL ID P110304A02 Received 02/16/2011 09:57
CCal Filename(s) P110304A_01 Extracted 03/01/2011 13:00
Method Blank ID BLANK-28022 Analyzed 03/04/2011 12:51

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	6.635	3.33	2.0	1.19	59
13C-4-MoCB	3	9.510	3.40	2.0	1.20	60
13C-2,2'-DiCB	4	9.846	1.68	2.0	1.07	53
13C-4,4'-DiCB	15	17.573	1.59	2.0	1.21	60
13C-2,2',6-TrCB	19	14.003	1.16	2.0	1.15	57
13C-3,4,4'-TrCB	37	25.699	1.06	2.0	1.31	66
13C-2,2',6,6'-TeCB	54	17.885	0.81	2.0	1.25	62
13C-3,4,4',5-TeCB	81	32.893	0.79	2.0	1.53	76
13C-3,3',4,4'-TeCB	77	33.463	0.79	2.0	1.55	77
13C-2,2',4,6,6'-PeCB	104	24.324	1.57	2.0	1.39	70
13C-2.3.3'.4.4'-PeCB	105	37.051	1.58	2.0	1.52	76
13C-2,3,4,4',5-PeCB	114	36.414	1.60	2.0	1.54	77
13C-2,3',4,4',5-PeCB	118	35.878	1.58	2.0	1.56	78
13C-2,3',4,4',5'-PeCB	123	35.542	1.55	2.0	1.54	77
13C-3,3',4,4',5-PeCB	126	40.204	1.57	2.0	1.45	73
13C-2,2',4,4',6,6'-HxCB	155	30.495	1.32	2.0	1.69	85
13C-HxCB (156/157)	156/157	43.223	1.33	4.0	3.10	77
13C-2,3',4,4 ['] ,5,5'-HxCB	167	42.082	1.28	2.0	1.58	79
13C-3,3',4,4',5,5'-HxCB	169	46.459	1.33	2.0	1.52	76
13C-2,2',3,4',5,6,6'-HpCB	188	36.398	1.05	2.0	1.97	99
13C-2,3,3',4,4',5,5'-HpCB	189	48.986	1.05	2.0	1.79	89
13C-2,2',3,3',5,5',6,6'-OcCB	202	41.797	0.89	2.0	1.74	87
13C-2,3,3',4,4',5,5',6-OcCB	205	51.594	0.90	2.0	1.86	93
13C-2,2',3,3',4,4',5,5',6-NoCB	206	53.361	0.78	2.0	1.85	92
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	48.469	0.78	2.0	1.72	86
13CDeCB	209	55.215	0.73	2.0	1.86	93
Cleanup Standards						
13C-2,4,4'-TrCB	28	21.205	1.04	2.0	1.40	70
13C-2,3,3',5,5'-PeCB	111	33.563	1.57	2.0	1.60	80
13C-2,2',3,3',5,5',6-HpCB	178	39.500	1.06	2.0	1.67	83
Recovery Standards						
13C-2,5-DiCB	9	12.565	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	23.318	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	30.746	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	39.030	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	51.098	0.93	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L		
1				ND		0.262		
2		9.283	2.92	0.265 B		0.262		
3		9.534	2.86	0.337 B		0.262		
4				ND		0.262		
5				ND		0.262		
6				ND		0.262		
7				ND		0.262		
8		13.691	1.34	0.351		0.262		
9				ND		0.262		
10				ND		0.262		
11				ND		1.57		
12	12/13			ND		0.524		
13	12/13			ND		0.524		
14	12/13			ND		0.262		
15		17.597	1.44	0.322		0.262		
16		17.525	1.44	0.322		0.262		
17		16.962	1.06	0.376		0.262		
17	10/20	16.962	1.00	0.441		0.202		
18	18/30	16.459	1.06	0.902		0.524		
19	00/00			ND		0.262		
20	20/28	21.222	0.97	1.45		0.524		
21	21/33	21.490	1.06	0.590		0.524		
22		21.943	1.04	0.454		0.262		
23				ND		0.262		
24				ND		0.262		
25				ND		0.262		
26	26/29			ND		0.524		
27				ND		0.262		
28	20/28	21.222	0.97	(1.45)		0.524		
29	26/29			ND		0.524		
30	18/30	16.459	1.06	(0.902)		0.524		
31		20.903	0.99	1.28		0.262		
32		18.170	0.96	0.318		0.262		
33	21/33	21.490	1.06	(0.590)		0.524		
34				ND		0.262		
35				ND		0.262		
36				ND		0.262		
37		25.733	0.96	0.461		0.262		
38				ND		0.262		
39				ND		0.262		
40	40/41/71			ND		1.57		
41	40/41/71			ND		1.57		
42				ND		0.524		
43	43/73			ND		1.05		
44	44/47/65	24.408	0.79	1.58		1.57		
45	45/51			ND		1.05		
46	-: -			ND		0.524		
47	44/47/65	24.408	0.79	(1.58)		1.57		
48				ND		0.524		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		1.05
50	50/53			ND		1.05
51	45/51			ND		1.05
52		23.334	0.79	2.14		0.524
53	50/53			ND		1.05
54				ND		0.524
55				ND		0.524
56		29.606	0.77	0.572		0.524
57				ND		0.524
58				ND		0.524
59	59/62/75			ND		1.57
60	00,02,10			ND		0.524
61	61/70/74/76	28.566	0.75	2.48		2.10
62	59/62/75			ND		1.57
63	00/02/10			ND		0.524
64		25.783	0.76	0.591		0.524
65	44/47/65	24.408	0.79	(1.58)		1.57
66	44/47/00	28.902	0.76	1.26		0.524
67				ND		0.524
68				ND		0.524
69	49/69			ND		1.05
70	61/70/74/76	28.566	0.75	(2.48)		2.10
71	40/41/71	20.300	0.75	(2.40) ND		1.57
72	40/41/71			ND ND		0.524
73	43/73			ND ND		1.05
73 74	61/70/74/76	28.566	0.75	(2.48)		2.10
7 4 75	59/62/75	20.500	0.75	(2.46) ND		1.57
75 76	61/70/74/76	28.566	0.75	(2.48)		2.10
70 77	01/70/74/70	20.300	0.75	(2.46) ND		0.524
7 <i>1</i> 78				ND ND		0.524
76 79				ND ND		0.524
80				ND ND		0.524
81				ND ND		0.524
82				ND ND		
						0.524
83 84		 28.717		ND 0.616		0.524 0.524
	05/440/447		1.65			
85	85/116/117			ND		1.57
86	86/87/97/108/119/125			ND		3.15
87	86/87/97/108/119/125			ND		3.15
88	88/91			ND		1.05
89	00/404/442		 4 55	ND		0.524
90	90/101/113	30.780	1.55	2.34		1.57
91	88/91			ND		1.05
92	00/00/400/400			ND		0.524
93	93/98/100/102			ND		2.10
94			4.50	ND		0.524
95		27.611	1.53	1.77		0.524
96				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.15
98	93/98/100/102			ND		2.10
99		31.384	1.51	0.916		0.524
100	93/98/100/102			ND		2.10
101	90/101/113	30.780	1.55	(2.34)		1.57
102	93/98/100/102			` NĎ		2.10
103				ND		0.524
104				ND		0.524
105		37.068	1.47	1.03		0.524
106				ND		0.524
107	107/124			ND		1.05
108	86/87/97/108/119/125			ND		3.15
109	00/01/01/100/110/120			ND		0.524
110	110/115	32.792	1.60	2.73		1.05
111	110/110			ND		0.524
112				ND		0.524
113	90/101/113	30.780	1.55	(2.34)		1.57
114	90/101/113			ND		0.524
115	110/115	32.792	1.60	(2.73)		1.05
116	85/116/117	JZ.1 JZ 	1.00	(2.73) ND		1.57
117	85/116/117			ND ND		1.57
117	65/116/117	35.911	1.54	2.25		0.524
119	86/87/97/108/119/125	33.911	1.54	ND		3.15
	00/07/97/100/119/125					
120				ND		0.524
121				ND		0.524
122				ND		0.524
123	407/404			ND		0.524
124	107/124			ND		1.05
125	86/87/97/108/119/125			ND		3.15
126				ND		0.524
127	100/100			ND		0.524
128	128/166			ND		1.05
129	129/138/163	39.047	1.27	4.02		1.57
130				ND		0.524
131				ND		0.524
132		35.962	1.28	1.07		0.524
133				ND		0.524
134	134/143			ND		1.05
135	135/151			ND		1.05
136				ND		0.524
137				ND		0.524
138	129/138/163	39.047	1.27	(4.02)		1.57
139	139/140			ND		1.05
140	139/140			ND		1.05
141		37.991	1.34	0.645		0.524
142				ND		0.524
143	134/143			ND		1.05
144				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.524
146				ND		0.524
147	147/149	34.721	1.21	2.27		1.05
148				ND		0.524
149	147/149	34.721	1.21	(2.27)		1.05
150				` NĎ		0.524
151	135/151			ND		1.05
152				ND		0.524
153	153/168	37.823	1.19	2.45		1.05
154				ND		0.524
155				ND		0.524
156	156/157			ND		1.05
157	156/157			ND		1.05
158				ND		0.524
159				ND		0.524
160				ND		0.524
161				ND		0.524
162				ND		0.524
163	129/138/163	39.047	1.27	(4.02)		1.57
164				` NĎ		0.524
165				ND		0.524
166	128/166			ND		1.05
167				ND		0.524
168	153/168	37.823	1.19	(2.45)		1.05
169				` NĎ		0.524
170		45.855	1.04	0.783		0.524
171	171/173			ND		1.05
172				ND		0.524
173	171/173			ND		1.05
174		41.261	0.99	0.767		0.524
175				ND		0.524
176				ND		0.524
177				ND		0.524
178				ND		0.524
179				ND		0.524
180	180/193	44.631	1.06	1.63		1.05
181				ND		0.524
182				ND		0.524
183	183/185			ND		1.05
184				ND		0.524
185	183/185			ND		1.05
186				ND		0.524
187		40.439	1.05	0.822		0.524
188				ND		0.524
189				ND		0.524
190				ND		0.524
191				ND		0.524
192				ND		0.524

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193	44.631	1.06	(1.63)		1.05
194				` NĎ		0.787
195				ND		0.787
196				ND		0.787
197	197/200			ND		1.57
198	198/199			ND		1.57
199	198/199			ND		1.57
200	197/200			ND		1.57
201				ND		0.787
202				ND		0.787
203				ND		0.787
204				ND		0.787
205				ND		0.787
206				ND		0.787
207				ND		0.787
208				ND		0.787
209				ND		0.787

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PUB0415-01:W11B114-01(OF-19) 10149758001 P110304A_10

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	0.602	
Total Dichloro Biphenyls	0.672	
Total Trichloro Biphenyls	6.27	
Total Tetrachloro Biphenyls	8.62	
Total Pentachloro Biphenyls	11.6	
Total Hexachloro Biphenyls	10.5	
Total Heptachloro Biphenyls	4.00	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	42.3	

ND = Not Detected

Water

Matrix

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-28022
Filename P110304A_07
Injected By BAL

Total Amount Extracted 1010 mL Extracted 03/01/2011 13:00 ICAL ID P110304A02 Analyzed 03/04/2011 09:44

CCal Filename(s) P110304A 01 Dilution NA

CCai Filename(s)	P110304A	_01		Dilution	INA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	6.683	2.77	2.0	1.37	68
13C-4-MoCB	3	9.546	3.19	2.0	1.39	70
13C-2,2'-DiCB	4	9.858	1.53	2.0	1.23	61
13C-4,4'-DiCB	15	17.585	1.58	2.0	1.41	71
13C-2,2',6-TrCB	19	14.027	1.11	2.0	1.37	68
13C-3,4,4'-TrCB	37	25.699	1.08	2.0	1.47	73
13C-2,2',6,6'-TeCB	54	17.902	0.80	2.0	1.47	73
13C-3,4,4',5-TeCB	81	32.893	0.77	2.0	1.56	78
13C-3,3',4,4'-TeCB	77	33.463	0.78	2.0	1.50	75
13C-2,2',4,6,6'-PeCB	104	24.307	1.63	2.0	1.59	79
13C-2,3,3',4,4'-PeCB	105	37.052	1.57	2.0	1.48	74
13C-2,3,4,4',5-PeCB	114	36.398	1.57	2.0	1.47	74
13C-2,3',4,4',5-PeCB	118	35.878	1.54	2.0	1.50	<u>7</u> 5
13C-2,3',4,4',5'-PeCB	123	35.542	1.56	2.0	1.49	74
13C-3,3',4,4',5-PeCB	126	40.188	1.55	2.0	1.34	67
13C-2,2',4,4',6,6'-HxCB	155	30.495	1.21	2.0	1.85	93
13C-HxCB (156/157)	156/157	43.189	1.27	4.0	2.81	70 70
13C-2,3',4,4',5,5'-HxĆB	167	42.066	1.25	2.0	1.46	73
13C-3,3',4,4',5,5'-HxCB	169	46.443	1.24 1.04	2.0 2.0	1.43 2.07	72 104
13C-2,2',3,4',5,6,6'-HpCB	188 189	36.398 48.965	1.04	2.0 2.0	2.07 1.63	81
13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB	202	40.903	0.87	2.0	1.03	96
13C-2,3,3',4,4',5,5',6-OcCB	205	51.551	0.89	2.0	1.93	90 97
13C-2,2',3,3',4,4',5,5',6-NoCB	206	53.340	0.78	2.0	1.99	99
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	48.448	0.80	2.0	1.92	96
13CDeCB	209	55.194	0.69	2.0	2.20	110
	203	33.134	0.03	2.0	2.20	110
Cleanup Standards						
13C-2,4,4'-TrCB	28	21.205	1.07	2.0	1.81	90
13C-2,3,3',5,5'-PeCB	111	33.564	1.56	2.0	1.73	87
13C-2,2',3,3',5,5',6-HpCB	178	39.483	1.01	2.0	2.02	101
Recovery Standards						
13C-2,5-DiCB	9	12.589	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	23.301	0.83	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	30.730	1.54	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	39.014	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	51.077	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.249
2		9.319	3.07	0.272		0.249
3		9.570	3.17	0.332		0.249
4				ND		0.249
4 5 6 7				ND		0.249
6				ND		0.249
7				ND		0.249
8				ND		0.249
9				ND		0.249
10				ND		0.249
11				ND		1.49
12	12/13			ND		0.497
13	12/13			ND		0.497
14	12/10			ND		0.249
15				ND		0.249
16				ND		0.249
17				ND		0.249
18	18/30			ND		0.497
19	10/00			ND		0.249
20	20/28			ND		0.497
21	21/33			ND		0.497
22	21/00			ND		0.249
23				ND		0.249
24				ND		0.249
25				ND		0.249
26	26/29			ND		0.497
27	20/20			ND		0.249
28	20/28			ND		0.497
29	26/29			ND		0.497
30	18/30			ND		0.497
31	10/00			ND		0.249
32				ND		0.249
33	21/33			ND		0.497
34	, 00			ND		0.249
34 35				ND		0.249
36				ND		0.249
37				ND		0.249
38				ND		0.249
39				ND		0.249
40	40/41/71			ND		1.49
41	40/41/71			ND		1.49
42				ND		0.497
43	43/73			ND		0.995
44	44/47/65			ND		1.49
45	45/51			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.497
47	44/47/65			ND		1.49
48				ND		0.497
49	49/69			ND		0.995
50	50/53			ND		0.995
51	45/51			ND		0.995
52	16/61			ND		0.497
53	50/53			ND		0.995
54	33/33			ND		0.497
55				ND		0.497
56				ND		0.497
57				ND		0.497
58				ND		0.497
59	59/62/75			ND		1.49
60	33/32/13			ND		0.497
61	61/70/74/76			ND		1.99
62	59/62/75			ND		1.49
63				ND		0.497
64				ND		0.497
65	44/47/65			ND		1.49
66				ND		0.497
67				ND		0.497
68				ND		0.497
69	49/69			ND		0.995
70	61/70/74/76			ND		1.99
71	40/41/71			ND		1.49
72				ND		0.497
73	43/73			ND		0.995
74	61/70/74/76			ND		1.99
75	59/62/75			ND		1.49
76	61/70/74/76			ND		1.99
77				ND		0.497
78				ND		0.497
79				ND		0.497
80				ND		0.497
81				ND		0.497
82				ND		0.497
83				ND		0.497
84				ND		0.497
85	85/116/117			ND		1.49
86	86/87/97/108/119/125			ND		2.98
87	86/87/97/108/119/125			ND		2.98
88	88/91			ND		0.995
89				ND		0.497
90	90/101/113			ND		1.49

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
91	88/91			ND		0.995
92				ND		0.497
93	93/98/100/102			ND		1.99
94	00/00/100/102			ND		0.497
95				ND		0.497
96				ND		0.497
97	86/87/97/108/119/125			ND		2.98
98	93/98/100/102			ND		1.99
99	00/00/100/102			ND		0.497
100	93/98/100/102			ND		1.99
101	90/101/113			ND		1.49
102	93/98/100/102			ND		1.99
102	93/96/100/102			ND ND		0.497
103				ND ND		0.497
105				ND ND		0.497
105				ND ND		0.497
100	107/124			ND ND		0.497
108	86/87/97/108/119/125			ND		2.98
109	440/445			ND		0.497
110	110/115			ND		0.995
111				ND		0.497
112	00/404/440			ND		0.497
113	90/101/113			ND		1.49
114				ND		0.497
115	110/115			ND		0.995
116	85/116/117			ND		1.49
117	85/116/117			ND		1.49
118				ND		0.497
119	86/87/97/108/119/125			ND		2.98
120				ND		0.497
121				ND		0.497
122				ND		0.497
123				ND		0.497
124	107/124			ND		0.995
125	86/87/97/108/119/125			ND		2.98
126				ND		0.497
127				ND		0.497
128	128/166			ND		0.995
129	129/138/163			ND		1.49
130				ND		0.497
131				ND		0.497
132				ND		0.497
133				ND		0.497
134	134/143			ND		0.995
135	135/151			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.497
137				ND		0.497
138	129/138/163			ND		1.49
139	139/140			ND		0.995
140	139/140			ND		0.995
141	100/110			ND		0.497
142				ND		0.497
143	134/143			ND		0.995
144				ND		0.497
145				ND		0.497
146				ND		0.497
147	147/149			ND		0.995
148	,			ND		0.497
149	147/149			ND		0.995
150	,			ND		0.497
151	135/151			ND		0.995
152				ND		0.497
153	153/168			ND		0.995
154				ND		0.497
155				ND		0.497
156	156/157			ND		0.995
157	156/157			ND		0.995
158				ND		0.497
159				ND		0.497
160				ND		0.497
161				ND		0.497
162				ND		0.497
163	129/138/163			ND		1.49
164				ND		0.497
165				ND		0.497
166	128/166			ND		0.995
167				ND		0.497
168	153/168			ND		0.995
169				ND		0.497
170				ND		0.497
171	171/173			ND		0.995
172				ND		0.497
173	171/173			ND		0.995
174				ND		0.497
175				ND		0.497
176				ND		0.497
177				ND		0.497
178				ND		0.497
179				ND		0.497
180	180/193			ND		0.995

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-28022 P110304A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
181				ND		0.497
182				ND		0.497
183	183/185			ND		0.995
184				ND		0.497
185	183/185			ND		0.995
186				ND		0.497
187				ND		0.497
188				ND		0.497
189				ND		0.497
190				ND		0.497
191				ND		0.497
192				ND		0.497
193	180/193			ND		0.995
194				ND		0.746
195				ND		0.746
196				ND		0.746
197	197/200			ND		1.49
198	198/199			ND		1.49
199	198/199			ND		1.49
200	197/200			ND		1.49
201				ND		0.746
202				ND		0.746
203				ND		0.746
204				ND		0.746
205				ND		0.746
206				ND		0.746
207				ND		0.746
208				ND		0.746
209				ND		0.746

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKCW BLANK-28022 P110304A_07

 Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	0.604	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	0.604	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-28023 P110304B_03 1010 mL

P110304B02 P110304B_01 BLANK-28022 Matrix Water Dilution NA

Extracted 03/01/2011 13:00 Analyzed 03/04/2011 18:36

Injected By CVS

	Native Analytes			Labeled Analytes		
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	0.963	96	2.0	1.85	92
3	1.0	1.02	102	2.0	1.59	79
4	1.0	0.905	91	2.0	1.82	91
15	1.0	0.980	98	2.0	1.20	60
19	1.0	0.888	89	2.0	1.65	83
37	1.0	0.929	93	2.0	1.14	57
54	1.0	0.941	94	2.0	1.28	64
81	1.0	0.886	89	2.0	1.22	61
77	1.0	0.888	89	2.0	1.20	60
104	1.0	0.912	91	2.0	1.84	92
105	1.0	0.950	95	2.0	1.25	63
114	1.0	0.910	91	2.0	1.18	59
118	1.0	0.909	91	2.0	1.24	62
123	1.0	0.924	92	2.0	1.25	62
126	1.0	0.908	91	2.0	1.14	57
155	1.0	0.923	92	2.0	2.31	115
156/157	2.0	1.86	93	4.0	3.04	76
167	1.0	0.925	92	2.0	1.59	80
169	1.0	0.929	93	2.0	1.58	79
188	1.0	0.889	89	2.0	1.96	98
189	1.0	0.940	94	2.0	1.52	76
202	1.0	0.943	94	2.0	2.00	100
205	1.0	0.959	96	2.0	1.83	92
206	1.0	0.962	96	2.0	2.10	105
208	1.0	0.921	92	2.0	1.89	95
209	1.0	0.928	93	2.0	2.53	127

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCSD-28024 P110304B_04

1030 mL P110304B02 P110304B_01 BLANK-28022 Matrix Dilution

Water NA

Extracted 03/01/2011 13:00 03/04/2011 19:38 Analyzed

Injected By **CVS**

	Native Analytes			Labeled Analytes		
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.01	101	2.0	1.56	78
3	1.0	1.19	119	2.0	1.34	67
4	1.0	0.928	93	2.0	1.65	83
15	1.0	0.984	98	2.0	1.14	57
19	1.0	0.832	83	2.0	1.62	81
37	1.0	0.965	97	2.0	1.08	54
54	1.0	1.02	102	2.0	1.15	57
81	1.0	0.878	88	2.0	1.13	56
77	1.0	0.873	87	2.0	1.11	56
104	1.0	0.905	91	2.0	1.86	93
105	1.0	0.952	95	2.0	1.20	60
114	1.0	0.926	93	2.0	1.14	57
118	1.0	0.909	91	2.0	1.20	60
123	1.0	0.893	89	2.0	1.22	61
126	1.0	0.879	88	2.0	1.09	54
155	1.0	0.925	92	2.0	2.38	119
156/157	2.0	1.85	93	4.0	2.93	73
167	1.0	0.914	91	2.0	1.51	75
169	1.0	0.944	94	2.0	1.42	71
188	1.0	0.916	92	2.0	2.04	102
189	1.0	0.925	92	2.0	1.55	77
202	1.0	0.989	99	2.0	1.97	98
205	1.0	0.927	93	2.0	1.93	96
206	1.0	0.925	93	2.0	2.18	109
208	1.0	0.920	92	2.0	1.90	95
209	1.0	0.923	92	2.0	2.51	126

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-28023
 Spike 2 ID
 LCSD-28024

 Spike 1 Filename
 P110304B_03
 Spike 2 Filename
 P110304B_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	96	101	5.1	
4-MoCB	3	102	119	15.4	
2,2'-DiCB	4	91	93	2.2	
4,4'-DiCB	15	98	98	0.0	
2,2',6-TrCB	19	89	83	7.0	
3,4,4'-TrCB	37	93	97	4.2	
2,2',6,6'-TeCB	54	94	102	8.2	
3,3',4,4'-TeCB	77	89	87	2.3	
3,4,4',5-TeCB	81	89	88	1.1	
2,2',4,6,6'-PeCB	104	91	91	0.0	
2,3,3',4,4'-PeCB	105	95	95	0.0	
2,3,4,4',5-PeCB	114	91	93	2.2	
2,3',4,4',5-PeCB	118	91	91	0.0	
2,3',4,4',5'-PeCB	123	92	89	3.3	
3,3',4,4',5-PeCB	126	91	88	3.4	
2,2',4,4',6,6'-HxCB	155	92	92	0.0	
(156/157)	156/157	93	93	0.0	
2,3',4,4',5,5'-HxCB	167	92	91	1.1	
3,3',4,4',5,5'-HxCB	169	93	94	1.1	
2,2',3,4',5,6,6'-HpCB	188	89	92	3.3	
2,3,3',4,4',5,5'-HpCB	189	94	92	2.2	
2,2',3,3',5,5',6,6'-OcCB	202	94	99	5.2	
2,3,3',4,4',5,5',6-OcCB	205	96	93	3.2	
2,2',3,3',4,4',5,5',6-NoCB	206	96	93	3.2	
2,2',3,3',4,5,5',6,6'-NoCB	208	92	92	0.0	
Decachlorobiphenyl	209	93	92	1.1	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value