City of Portland, Oregon

Intergovernmental Agreement for Remedial Investigation and Source Control Measures

DEQ No. LQVC-NWR-03-10

Source Investigation Update Report City of Portland Outfall Basin 19

City of Portland Outfall Project ECSI No. 2425

June 2010

Prepared By:

City of Portland, Bureau of Environmental Services

Contents

Introduction		1-1
Background.		2-1
2.1 Ba	sin Characteristics and Conveyance System Configuration	2-1
2.2 Co	ontaminants of Interest	2-2
Updated Sun	nmary of Basin Solids Investigations and Upland Site Status	3-1
3.1 Ba	sin 19 Solids Investigations	3-1
3.2 U _]	oland Site Status Updates	3-2
Results		4-1
4.1 LV	VG Sediment Trap	4-1
4.2 W	estern Branch	4-1
4.3 Ea	stern Branch	4-2
	4.3.1 NW Kittridge and NW Yeon	4-2
	4.3.2 NW St. Helens	4-4
Data Evaluat	ion	5-1
5.1 M	[etals	5-1
5.2 P	CBs	5-2
5.3 P€	sticides	5-2
5.4 PA	AHs and Phthalates	5-3
Conclusions	and Next Steps	6-1
References		7-1
<u>Appendices</u>		
Appendix A	Outfall 19 Inline Sediment Investigation Data Report	
Appendix B	Basin 19 Catch Basin Solids Sampling Adjacent to Greenway Recycle	ing
Appendix C	Basin 19 Upland Source Updates	

List of Tables

Table 1	Summary of Basin 19 Inline Solids Sample Analyses
Table 2	Basin 19 ECSI Site Status Update
Table 3	Basin 19 Inline Solids Sample Results: Western Branch
Table 4	Basin 19 Inline Solids Sample Results: Eastern Branch - NW Kittridge and NW Yeon Lines
Table 5	Basin 19 Inline Solids Sample Results: Eastern Branch - Active Lines in NW St. Helens
Table 6	Basin 19 Inline Solids Sample Results: Eastern Branch - Abandoned Lines in NW St. Helens

List of Figures

Figure 1	Outfall 19 Drainage Basin Overview
Figure 2	Timeline of Basin 19 Source Investigation/Control Measures
Figure 3	Basin 19 Inline Solids - Metals (Cu, Pb, Zn)
Figure 4	Basin 19 Inline Solids - Total PCBs
Figure 5	Basin 19 Inline Solids - Total DDx
Figure 6	Basin 19 Inline Solids - Total PAHs
Figure 7	Basin 19 Inline Solids - BEHP

Abbreviations and Acronyms

BEHP bis(2-ethylhexyl)phthalate

BES Bureau of Environmental Services

BMP best management practice

City City of Portland

CSM conceptual site model

DDD dichlorodiphenyldichloroethane
DDE dichlorodiphenyldichloroethylene
DDT dichlorodiphenyltrichloroethane
DDx sum of DDD, DDE and DDT

DEQ Oregon Department of Environmental Quality
ECSI Environmental Cleanup Site Information
EPA U. S. Environmental Protection Agency

IGA intergovernmental agreement
JSCS Joint Source Control Strategy
LWG Lower Willamette Group
mg/Kg milligram(s) per kilogram
mg/Kg microgram(s) per kilogram
MRL method reporting limit
NFA No Further Action

NPDES National Pollutant Discharge Elimination System

PA Preliminary Assessment

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PCOI potential contaminant of interest

PGE Portland General Electric

Phase 1 Report Phase 1 Report for City of Portland Priority 1 Basins (GSI, 2006)

PPA prospective purchaser agreement

RI remedial investigation SCM source control measure SLV screening level value

SVOC semivolatile organic compound
TPH total petroleum hydrocarbon(s)
XPA Expanded Preliminary Assessment

SECTION 1

Introduction

This report presents the City of Portland's (City) evaluation of upland source investigation activities in Outfall Basin 19 since the submittal of the *Phase 1 Report for City of Portland Priority 1 Basins* (Phase 1 Report; GSI, 2006) to the Oregon Department of Environmental Quality (DEQ). This evaluation is provided as part of the City's ongoing remedial investigation (RI)/ source control measures (SCM) work associated with the Portland Harbor City of Portland Outfall Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City.

This source investigation:

- 1. Summarizes and evaluates inline solids data collected from the Basin 19 conveyance system, including data from the City's 2003 to 2008 source investigations, and sediment trap data collected by the Lower Willamette Group (LWG) in 2007.
- 2. Presents an updated status summary and timeline of upland site source investigations and source control measures conducted within the basin.
- 3. Evaluates data spatially to determine if this dataset indicates that all significant sources have been identified.
- 4. Provides supporting information for the City's remedial investigation/source control measures (RI/SCM) Report for Basin 19, required under the IGA.

There has been substantial progress since the Phase 1 Report toward controlling upland sources of contaminants to the Basin 19 stormwater conveyance system and in identifying potentially significant ongoing sources that warrant further source control. The evaluation of inline solids data in this report, together with evaluation of the Basin 19 stormwater data included in the City's *Stormwater Evaluation Report* (BES, 2010) and other basin and upland documents, will support the development of the RI/SCM report for Basin 19, which will summarize how sources have been identified and controlled through the respective authorities of DEQ and the City.

Background

2.1 Basin Characteristics and Conveyance System Configuration

The Basin 19 stormwater conveyance system drains approximately 490 acres; 70% of this acreage is Forest Park and the remaining is zoned industrial. Figure 1 provides an overview of Basin 19. The LWG sediment trap was situated in manhole AAP918, which is the convergence point for all stormwater in the basin (i.e., there are no connections between this manhole and the river). Two main storm lines converge at this manhole, a line from the northwest along NW Front Avenue (western¹ branch) and one from the south along NW Kittridge Avenue (eastern branch). A description of each branch and associated DEQ upland cleanup sites is provided below.

Western Branch. This branch includes a storm line along NW Front Ave., lines connecting the NW Front Ave. line with areas draining towards NW St. Helens Road (i.e., State Highway 30), and a line along NW St. Helens. This branch conveys runoff from Forest Park, State and local roads and industrial properties, including the following Environmental Cleanup Site Information (ECSI) facilities:

- Schnitzer-Kittridge Distribution Center (ECSI #2442);
- Front Avenue LP (Tube Forgings) (ECSI #1239);
- A large portion of the Chevron USA Asphalt Refinery (ECSI #1281);
- BNSF Willbridge Yard (ECSI #3395);
- A portion of the Unocal-Willbridge Terminal (ECSI #1549/177); and
- Anderson Brothers property (ECSI #970).

Most of the storm lines in this branch are not City lines; only the NW Front lines were constructed and are maintained by the City.

Eastern Branch - This branch includes storm lines along NW Kittridge, NW Yeon, NW St. Helens and NW Express. This branch conveys stormwater from Forest Park, State and local roads, and industrial properties. This branch is broken into two areas described below for discussion purposes.

<u>Eastern Branch - Kittridge and Yeon lines</u>. This branch includes all connections to the storm lines along NW Kittridge, NW Yeon and NW Express. ECSI facilities in this portion of the Eastern Branch are (from downstream to upstream; see Figure 1):

- Calbag Metals-Front property (ECSI #2454);
- Mt. Hood Chemical Property (ECSI #1328), Dura Industries (ECSI #111), Mt. Hood Chemical Corporation (ECSI #81), and Chapel Steel (ECSI #4920) these sites

¹ For naming of the branches, the river is assumed to be due north.

discharge to NW Kittridge via two private multiparty lines (designated the "north private line" and the "south private line" for the purposes of this report; and

• Penske Truck Leasing (ECSI #5055).

<u>Eastern Branch – St. Helens lines</u>. Several storm lines along NW St. Helens connect to the NW Kittridge stormwater main at the upstream end of the stormwater main (see Figure 1). These lines conveys runoff the following ECSI sites:

- PGE Forest Park (ECSI #2406);
- Brazil & Company (ECSI #1026); and
- Greenway Recycling (ECSI #4655).

2.2 Contaminants of Interest

Basin 19 was identified as a Priority 1 basin (CH2M Hill, 2004) based on surface sediment data collected by BES near City stormwater outfalls in 2002. The City defines a Priority 1 basin as having considerably elevated concentrations of contaminants in the river surface sediments near the outfall that may be associated with upland sources located within the drainage basin. Priority 1 basins are considered the highest priority for evaluating and, as needed, implementing upland source control measures. The Phase 1 Report identified potential contaminants of interest (PCOIs) for all Priority 1 basins, based on the 2002 inriver sediment data and known upland conditions, to assist in identifying and prioritizing upland source control actions. The following PCOIs were identified for Basin 19: polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), phthalates, and metals (chromium, copper, lead, nickel, zinc) (GSI, 2006).

The U.S. Environmental Protection Agency (EPA) and the LWG have identified an area of potential concern near Willamette River Mile 8.3 in the vicinity of Outfall 19, based on elevated concentrations of PCBs, pesticides, and other analytes causing benthic toxicity (e.g., metals) in river sediment.

SECTION 3

Updated Summary of Basin Solids Investigations and Upland Site Status

This section summarizes the inline solids source investigations conducted in the Basin 19 conveyance system and provides an update to the information presented in the Phase 1 Report for DEQ Cleanup sites within or in the vicinity of Basin 19. A general timeline of source investigations and control measures conducted in the basin from 2003 through 2009 is presented in Figure 2. This information provides context for interpretation of solids data from the various branches and lines of the Basin 19 conveyance system, as discussed in Sections 4 and 5.

3.1 Basin 19 Solids Investigations

Several source investigations have been conducted in the City's conveyance system in Basin 19. These investigations are briefly described below; results are presented in Section 4. Table 1 provides a summary of the chemical analyses conducted for each sample location.

October 2003 — City inline solids investigation. Because the 2002 inriver sediment data indicated the potential presence of upland contaminant sources within Basin 19, the City collected inline solids samples at eight locations in Basin 19 in October 2003. The resulting data were previously provided to DEQ and are presented in a technical memorandum included as Appendix A to this report.

May and November 2006 — City stormwater system investigation, former PGE-Forest Park property. The Portland General Electric (PGE) - Forest Park Property, located at the 4400 block of NW St. Helens Road, consists of approximately 2.3 acres of undeveloped land bordering Forest Park (see Figure 1). PGE remediated the site in 2000 and received a No Further Action (NFA) determination from DEQ in 2001. No stormwater evaluation was conducted as part of the site investigation.

As part of an agreement to purchase this property for the development of public trailhead access to Forest Park, the City conducted an investigation to confirm the configuration of the stormwater collection system adjacent to the site and to evaluate current or historical offsite stormwater migration pathways to the Basin 19 stormwater conveyance system. The investigation included a review of conveyance system construction drawings, collection and analysis of inline solids in the vicinity of this site and the upgradient Brazil property, and camera surveys of the conveyance systems adjacent to the property. The City abandoned several stormwater lines following the system investigation activities and submitted the results of this investigation to DEQ in 2007 (BES, 2007).

June 2007 — *City inline solids sampling, former Calbag Metals site*. Until 2003, Calbag Metals operated a metals recycling facility at 4927 NW Front Avenue (see Figure 1). DEQ identified this site as a potential source of PCBs, metals and phthalates to the Willamette River and subsequently worked with the site under the Voluntary Cleanup Program to

evaluate and control pollutant sources and pathways (DEQ, 2006). In 2005, the site implemented source control measures (including stormwater line cleanout and site repaving) and collected confirmatory stormwater samples; however, the stormwater samples were required to be analyzed only for total suspended solids and select metals. The City deployed sediment traps in the lateral connection from the former Calbag Metals site during spring 2007 to evaluate whether contaminants (including PCBs) were still being discharged to Basin 19 after the implementation of site source control measures. Results of this investigation were submitted to DEQ in 2008 (BES, 2008).

June 2007 — *City catch basin solids sampling, adjacent to Greenway Recycling site.* In early 2007, the City observed overland flow from the Greenway Recycling site (located at 4135 NW St. Helens Road) discharging into catch basins in St. Helens Road. Solids samples were collected in June 2007 from stormwater catch basins in the roadway adjacent to the Greenway site and submitted for laboratory analysis. The results of this investigation are provided in Appendix B.

July 2007 — LWG sediment trap sample collection. During the spring of 2007, the LWG collected stormwater and stormwater solids samples from Basin 19 as part of the LWG's stormwater sampling component of the Remedial Investigation/Feasibility Study for the Portland Harbor. Results of this sampling are included in the LWG's Round 3A and 3B Stormwater Data Report (Anchor and Integral, 2008).

June 2008 — City inline solids sampling, former Calbag Metals site. Between November 2007 and May 2008, the City deployed sediment traps in the lateral connection from the former Calbag Metals site. This investigation was conducted as a follow-up to the City's 2007 inline solids sampling at this location to obtain additional data to determine whether the site is an ongoing source of PCBs to the Basin 19 system. Results of this investigation were submitted to DEQ in 2009 (BES, 2009a).

3.2 Upland Site Status Updates

In the Phase 1 Report, upland ECSI sites that are located within or near Basin 19 were considered during development of the Basin 19 conceptual site model (CSM) to identify potential sources and migration pathways. The Phase 1 Report summarized information from the ECSI database and site-specific reports that were on file at DEQ for these sites at that time. As part of preparing this Source Investigation Update, the City reviewed the current list of upland ECSI sites within or adjacent to Basin 19 and information for these sites that has been developed and/or become available since completion of the Phase 1 Report, including reports and documents on file at DEQ and the City.

Several of the ECSI sites in Basin 19 have conducted, initiated, or agreed to conduct stormwater pathway evaluations under DEQ oversight since the Phase 1 Report was completed, and some of the sites have received final source control decisions and/or NFA determinations from DEQ. Although review of information for these sites indicates that information gaps related to source evaluation or control remain for some sites, the upland source evaluation/control actions completed constitute major progress toward the goal of identifying and controlling upland sources of contaminants to the Basin 19 stormwater conveyance system. Upland sites where stormwater pathway evaluations or follow-up

investigations appear to be warranted to help identify significant ongoing sources of contaminants to the system are discussed in Sections 4 and 5.

Table 2 summarizes key information for the site status updates and Figure 2 depicts the sequence of upland site investigation and source control activities. The upland site status updates are presented in Appendix C.

Results

This section presents the results of the inline and catch basin solids investigations conducted in the Basin 19 stormwater conveyance system, identifies locations where contaminants exceed screening level values (SLVs) established in the Joint Source Control Strategy (JSCS) (DEQ and EPA, 2005), and identifies which sites discharge to these locations to determine if there are significant ongoing sources within the basin.

The discussion is organized geographically, by basin branch, beginning with information collected at the LWG inline sediment trap sampling location just upstream of Outfall 19 and proceeding upstream in each branch. Section 5 presents an evaluation of the data described below. Analytical results for the samples are summarized in Tables 3 through 6, which include SLVs for reference. Results for metals, total PCBs, DDx, total PAHs, and BEHP are shown on Figures 3, 4, 5, 6 and 7, respectively.

4.1 LWG Sediment Trap

The sample from the LWG's spring 2007 sediment trap deployment in the downstream portion of Basin 19 was collected at the location shown on Figure 1; results are provided in Tables 3 and 4. This sample is representative of all discharges from Basin 19.

Three metals (copper, lead and zinc), six PAH compounds, and phthalates (BEHP and dibutyl phthalate) exceeded JSCS Toxicity SLVs; however, concentrations of these analytes were within an order-of-magnitude of the SLVs, except for BEHP. Total PCB congeners and two pesticides (total DDX and chlordane) were detected at concentrations greater than JSCS Bioaccumulation SLVs (but less than Toxicity SLVs where available). All the PAH and phthalate results were either flagged as "estimated" or "rejected" (Anchor and Integral, 2008) and so these values may have more uncertainty associated with them than other results within the basin. All the other inline PAH and phthalate data within the system are much lower, often more than an order-of-magnitude lower, which suggests that these data may not be representative.

4.2 Western Branch

The City's 2003 source investigation included collecting three samples from the western branch of the Basin 19 system. The laboratory method reporting limits for pesticides and PCBs in all 2003 solids samples were elevated. The results are summarized in Table 3 and described below:

• The sample collected just upstream of manhole AAP910 represents discharges from NW Front and the Front Avenue LP site. Zinc was the only analyte detected in this sample at a concentration greater than the JSCS Toxicity SLV and the detected concentration only slightly exceeds the SLV (Figure 3). Cadmium, lead and mercury were detected at concentrations greater than the Bioaccumulation SLVs (but less than Toxicity SLVs). These data indicate the possible presence of minor sources of

metals to this portion of the NW Front stormwater line. Catch basin solids samples were collected in May 2008 at the Front Avenue LP site (see Table 2 and Appendix C). Several metals, including cadmium, lead, mercury and zinc were detected in the Front Avenue LP catch basin samples at concentrations greater than JSCS Toxicity and/or Bioaccumulation SLVs.

- The sample collected just downstream of manhole AAP912 represents discharges from the remainder of the western branch including five ECSI sites [Schnitzer Kittridge Distribution Center (Schnitzer-Kittridge), Chevron USA Asphalt Refinery (Chevron Asphalt), BNSF Willbridge Yard, a portion of the Unocal-Willbridge Terminal and the former Anderson Brothers property], Highway 30 and Forest Park. Arsenic, cadmium, copper, zinc and one PAH compound [indeno(1,2,3-cd)pyrene] were detected at concentrations exceeding the JSCS Toxicity SLVs. Copper, lead and selenium were detected at concentrations greater than the Bioaccumulation SLVs (but less than Toxicity SLVs).
- The sample collected from manhole AAP831 is also representative of discharges at manhole AAP912 with the exception of the Schnitzer-Kittridge and Chevron Asphalt sites. No analytes were detected at concentrations greater than JSCS Toxicity SLVs; arsenic, cadmium and lead were detected at concentrations slightly greater than Bioaccumulation SLVs.

Based on the lower concentrations at upstream manhole AAP831 compared with manhole AAP912, the Chevron Asphalt and/or the Schnitzer-Kittridge sites are potential sources of metals and PAHs to this portion of the western branch, although these elevated concentrations may relate to historical discharges. Metals and PAHs were detected at the Chevron Asphalt site in catch basin and inline samples, but the concentrations were lower than detected concentrations in manhole AAP912 (ARCADIS, 2009). Metals and TPH were also identified as site contaminants at the Schnitzer-Kittridge site. Site remediation and redevelopment was completed in 1996; capping and institutional controls implemented at the site provided source controls since that time, making it less likely that the site is a significant ongoing source to the western branch.

4.3 Eastern Branch

4.3.1 NW Kittridge and NW Yeon

The City collected inline solids samples from the main trunk line for the eastern branch (along NW Kittridge), from three private lines connecting directly into the NW Kittridge stormwater main (the lateral from the former Calbag Metals site and two private multiparty lines), and from NW Yeon. The sampling results are summarized in Table 4 and discussed below.

Eastern Branch Downstream Sample

The City's 2003 inline solids sample from the downstream end of NW Kittridge trunk line (just upstream of manhole AAP918) receives stormwater runoff from all lines discharging to the eastern branch. Five metals (chromium, copper, lead, silver and zinc), PCB Aroclor 1260 and BEHP were detected at concentrations greater than JSCS Toxicity SLVs, with only copper and lead concentrations at an order-of-magnitude greater than the SLVs. Arsenic,

cadmium, mercury, DDT and total PCBs concentrations were greater than Bioaccumulation SLVs (but less than Toxicity SLVs). These data indicate potential sources of metals, PCBs, pesticides and BEHP to the eastern branch.

Lateral from Former Calbag Metals Site

The City deployed sediment traps in the lateral connection from the former Calbag Metals site (see Figure 4) in spring 2007 and spring 2008. This sample location represents discharges solely from the former Calbag Metals site. Because of limited sediment volume, these two samples were tested for PCBs only. Total PCB Aroclors were detected in the 2007 sample at a concentration of 630 μ g/Kg, and total PCB congeners were detected at a concentration of 2360 μ g/Kg in the 2008 sample. The results indicate that the former Calbag Metals site continues to be a significant uncontrolled source of PCBs to the Basin 19 stormwater conveyance system, despite the control measures implemented at this site in 2005 (see Table 2 and Appendix C for summary of site activities and status).

Private Multiparty Lines

The City's 2003 source investigation included sampling at the downstream ends of the north and south private multiparty lines before they connect to manholes AAP931 and AAP932, respectively. In the north line, six metals (arsenic, cadmium, copper, lead, silver and zinc) and BEHP were detected at concentrations greater than JSCS Toxicity SLVs. In the south line, four metals (arsenic, lead, silver and zinc), total chlordane and BEHP were detected at concentrations greater than JSCS Toxicity SLVs. Other than the zinc concentration (22,100 mg/Kg) in the sample from the north line, the concentrations are generally within an order of magnitude of the Toxicity SLVs. Cadmium, mercury, and/or selenium were detected at concentrations greater than JSCS Bioaccumulation SLVs in the samples. Total PCBs were detected in the sample from the south private line at a concentration of 242 μ g/Kg and were not detected in the sample from the north private line (although the detection limits were elevated).

Limited data are available for the industrial sites, including 4 ECSI sites, connected to these private stormwater lines. The 2007 DEQ site discovery sampling at the Chapel Steel site (ECSI #4920) provides the only additional stormwater solids data for either line. The sample collected from the Chapel Steel catch basin (which connects to the north private line) was tested for metals, pesticides, PCB congeners, PAHs, and phthalates. BEHP and three metals (lead, nickel, and zinc) were detected at concentrations greater than JSCS Toxicity and/or Bioaccumulation SLVs, but concentrations were within an order-of-magnitude of the SLVs (DEQ, 2007c). The total PCB concentration in the sample was 53 $\mu g/Kg$. No further stormwater pathway evaluation currently is planned at the Chapel Steel site, although DEQ recommended the site implement stormwater Best Management Practices (BMPs) to reduce contaminant input to the stormwater system (see Appendix C).

In 2000, the City's Illicit Discharge Elimination Program (IDEP) identified an illicit wastewater connection to the onsite stormwater system from a photoprocessor (Color Magic), located at the Mt. Hood Chemical Property (ECSI #1328). It is suspected that this connection was to the south private line, although available records are unclear. The City required the site to reroute the connection to the sanitary sewer in 2000. Silver, a common pollutant associated with photoprocessing, was significantly elevated in the south line (145 μ g/Kg) although it was also elevated in the north line (77 μ g/Kg).

The available data indicate one or more significant uncontrolled sources of zinc to the north private line. Additionally, the data indicate that sources of other metals, chlordane, PCBs and BEHP are discharging to these lines. The only site connected to these lines that has initiated or is planning a stormwater source control evaluation is Mt. Hood Chemical Corporation (see Table 2 and Appendix C). The stormwater source control evaluation at this site is reportedly underway, but data are not currently available to determine whether this site is a source of these constituents to the stormwater conveyance system. The City has requested that DEQ require cleaning of these private lines as part of the upland source control measures.

NW Yeon Line

The City collected an inline solids sample near the downstream end of the stormwater line along NW Yeon (at manhole AMZ077) during its 2003 source investigation. Only BEHP exceeded the JSCS Toxicity SLV, but the concentration was within an order-of-magnitude of the SLV. In addition to BEHP, lead was the only other analyte exceeding JSCS Bioaccumulation SLVs. These results do not indicate the presence of significant uncontrolled sources discharging to this line. The only DEQ Cleanup Site currently discharging to this line is the Penske Truck Leasing site (ECSI #5055). This site was remediated and redeveloped in 2007 in accordance with the City's Stormwater Manual (see Table 2 and Appendix C).

4.3.2 NW St. Helens

The downstream point of connection of stormwater lines along NW St. Helens to the stormwater main along NW Kittridge is at manhole AAT496 (see Figure 3 inset). Between 2003 and 2007, a total of 17 inline solids samples were collected in lines currently or formerly discharging to manhole AAT496. The sampling results are summarized in Tables 5 and 6 and are discussed below.

Downstream Connection/Sampling Point (Manhole AAT496)

One inline solids sample was collected at manhole AAT496 during the City's 2003 source investigation. The sample was collected directly from the manhole and represents discharge from all lines upstream of this point of connection to the NW Kittridge Avenue stormwater main. No analytes were detected at concentrations greater than JSCS Toxicity SLVs (see Table 5). Arsenic and BEHP were detected at concentrations greater than JSCS Bioaccumulation SLVs, but within an order-of-magnitude of the SLVs.

Active Connections to Manhole AAT496 (see Table 5 and Figure 4 inset)

Lateral from Property Adjacent to Forest Park

A lateral connecting a trash rack that conveys overland runoff from a private property adjacent to Forest Park was sampled at manhole AAT427 in May 2006 in conjunction with the stormwater system investigation in the vicinity of the former PGE – Forest Park property (BES, 2007). The sample was analyzed for PCB Aroclors and pesticides only. No analytes were detected at concentrations exceeding JSCS Toxicity SLVs. The total PCB concentration in this sample was 137 μ g/Kg, which exceeded the JSCS Bioaccumulation SLV. This result indicates that the drainage area for the trash rack may include a PCB source(s).

Lateral from NW St. Helens Catch Basins

A lateral connecting to manhole AAT496 from the east discharges stormwater from two catch basins (AMZ147 and ANB320) located in NW St. Helens near the manhole. The City collected samples from both catch basins during the May 2006 stormwater system investigation activities. Because of sample size limitations, the samples were analyzed only for PCB Aroclors and pesticides. Aldrin was detected at a concentration slightly exceeding the JSCS Toxicity SLV. Total PCBs were detected in both samples at concentrations exceeding Bioaccumulation SLVs.

Lines in NW St. Helens

An 18-inch-diameter stormwater line connecting at manhole AAT496 extends to the northwest along NW St. Helens. No samples have been collected directly from this line; no DEQ Cleanup Sites connect to it and only Forest Park, United Rentals, and some highway drains to this line.

The 30-inch-diameter active stormwater line extending southeast along NW St. Helens also discharges at manhole AAT496. Several samples have been collected from locations along this line including (from downstream to upstream):

- Primary and duplicate samples just upstream of manhole AAT496 (May 2006)
- Immediately upstream and downstream of manhole AAT497 (May 2006)
- Immediately upstream and downstream of manhole AAT498 (May 2006)
- Catch basin AMZ188 adjacent to the Brazil & Co. site (May 2006)
- Three catch basins (AMZ192, AND207, and AAT525) adjacent to the Greenway Recycling site (June 2007)

All samples were analyzed for PCB Aroclors. No PCBs were detected at concentrations greater than JSCS Toxicity SLVs. Total PCBs were detected at concentrations greater than Bioaccumulation SLVs in the primary and duplicate samples collected upstream of manhole AAT496, in the catch basin adjacent to the Brazil site and in one of the catch basins adjacent to the Greenway Recycling site.

Pesticides were analyzed in the May 2006 samples and were not detected although the detection limits were somewhat elevated. Metals, PAHs and phthalates were analyzed in the 2007 catch basin samples. Copper, lead, indeno(1,2,3-cd)pyrene and BEHP were detected at concentrations greater than JSCS Toxicity SLVs in these samples, but none was more than an order-of-magnitude greater than Toxicity SLVs. Cadmium, lead and/or mercury were detected at concentrations greater than Bioaccumulation SLVs in the 2007 catch basin samples but no detections were greater than one order-of-magnitude of the Bioaccumulation SLVs.

Based on sampling results, potential PCB sources include the Brazil & Co. (ECSI #1026) and Greenway Recycling (ECSI #4655) sites. The 2007 catch basin samples were collected after site remediation was conducted at the Greenway Recycling site but before onsite stormwater treatment had been installed. No remediation or stormwater pathway evaluation has been conducted at the Brazil & Co. site (see Table 2 and Appendix C).

Abandoned Lines

In conjunction with an offsite migration investigation in the stormwater system adjacent to the PGE–Forest Park property, the City collected four inline solids samples from 6- and 12-inch-diameter lines along NW St. Helens in 2006 (see Figure 4); the lines were abandoned following the sampling. The samples from these lines were analyzed for PCB Aroclors and pesticides (see Table 6). PCBs and pesticides were detected in all four samples at concentrations greater than Toxicity and/or Bioaccumulation SLVs. The results indicate historical sources of PCBs and pesticides to these lines and abandonment of these lines removed legacy contaminants from the system to prevent migration to the river.

Data Evaluation

Inline solids data collected by the LWG in Basin 19 (near the outfall) indicate the presence of metals, PCB, pesticide, BEHP and PAH sources to the City's stormwater conveyance system. This section looks at spatial patterns of these contaminants in relation to sources to evaluate whether this dataset indicates that all significant sources have been identified. The basinwide LWG sediment trap sample was collected in 2007 so it represents more recent conditions, compared to the upstream basin inline data. Most of the data from the major branches were collected in 2003, with the exception of additional inline data collected along St. Helens Road in 2006 and 2007. Data from the Calbag lateral were collected in 2007 and 2008. Upland site source controls have been implemented at some sites since 2007, so conclusions need to take into account these time differentials. The spatial patterns for each analyte group, in the context of source investigations conducted, are evaluated below for the analytes exceeding SLVs in the LWG sample.

5.1 Metals

Three metals (copper, lead and zinc) in the LWG sediment trap sample exceeded the Toxicity SLV but exceedances are low, generally less than 2 times the SLVs (Figure 3). These metals are covered under DEQ's industrial stormwater permits (NPDES), which permit sites to discharge metals in stormwater at concentrations exceeding JSCS SLVs.

In the western branch, one sample location (AAP912) had high arsenic, cadmium, and zinc. Two sites could affect this location: Chevron Asphalt and Schnitzer-Kittridge. The solids that were sampled may reflect historical discharges from these sites, though source control measures implemented at the Schnitzer-Kittridge site in 1996 may have reduced contaminant loading during the period between 1996 and when the sample was collected in 2003. The low volume of solids observed in the manhole (~ 1/8 inch) in 2003 and the fact that the LWG sample did not have high arsenic or cadmium concentrations supports that these legacy solids do not appear to be affecting current discharges.

In the eastern branch, the most significant sources appear to be those connected directly to the Kittridge storm line. The south and north private lines show elevated metals. Most sites connected to these lines have been identified in ECSI but have not conducted stormwater evaluations. It is not clear if the elevated metals are legacy or from current discharges. The high silver concentrations, traced to an illicit connection from a photoprocessor in 2000 and which was rerouted to sanitary in 2000, suggest that at least some of the contaminants in the line are from historic discharges. DEQ is currently working with one of the sites connected to these lines and the City has requested that DEQ facilitate line cleaning as part of this upland investigation.

The other likely source of metals is the Calbag-Front site. The City only had sufficient volume to analyze for PCBs at the site, which showed high concentrations $(630 - 2,360 \,\mu\text{g/Kg})$. Because metals and PCBs were both site contaminants, it is presumed

that elevated metals also continue to discharge to the City system. The City has requested that DEQ reopen this cleanup site to address these ongoing sources.

The elevated metals detected in 2003 just upstream of manhole AAP918 are significantly greater than metals detected in 2007 at manhole AAP918. The City's storm line was cleaned from manhole AAP918 to the Calbag lateral in 2005 as part of the site remediation implementation. Therefore, these 2003 results are not likely representative of current contributions to the City system.

5.2 PCBs

PCBs in the LWG sediment trap were relatively low (214 μ g/Kg) in 2007 (see Figure 4). In the western branch, detection limits were elevated (<106 to <818 μ g/Kg per Aroclor) so conclusions about sources are limited. PCBs were identified at the Schnitzer-Kittridge site in 1990 (Bridgewater, 2006a). Because this site was remediated and redeveloped in 1996, it is less likely to be a current source to Basin 19. Low level PCBs have been detected at other ECSI sites in this branch.

In the eastern branch, again detection limits were elevated (<112 to <1,030 μ g/Kg per Aroclor) for the 2003 dataset so low level sources cannot be discerned. The highest inline concentrations were detected from the Calbag lateral (2,360 μ g/Kg in 2008). Although DEQ issued an NFA determination for the Calbag-Front site in 2005, additional investigation is needed to identify continuing onsite sources of PCBs (and potentially other site contaminants) to the stormwater conveyance system.

PCBs were detected in the vicinity of the PGE-Forest Park and Brazil properties, although at lower concentrations (91 – 771 $\mu g/Kg$). The PGE-Forest Park site has been remediated and additional erosion controls were implemented to eliminate offsite migration. The storm lines immediately adjacent to these properties (where most of the higher concentrations were found) were abandoned to preclude legacy PCBs from discharging to the river. The City has requested that DEQ evaluate Brazil as a potential source. A historical PGE property just north of the PGE-Forest Park site may also be a PCB source, based on recent soil analyses.

Finally, other potential PCB sources may be associated with the two private lines in the eastern branch. The south line solids sample had a total PCBs concentration of 242 μ g/Kg. The detection limits on the north line were high and therefore the presence of PCBs is not known. DEQ is currently working with one of the sites connected to these lines and the City has requested that DEQ facilitate line cleaning as part of this upland investigation.

5.3 Pesticides

Pesticides in the LWG sediment trap were either non-detect or below Toxicity SLVs. Total DDx (6 $\mu g/Kg$) and total chlordane (8 $\mu g/Kg$) were detected at concentrations greater than Bioaccumulation SLVs. Most of the inline samples within the eastern and western branches were non-detect but the detection limits were higher than detected concentrations in the sediment trap. Therefore, it is difficult to evaluate potential sources. The only detected DDx samples were collected in the now abandoned lines in the eastern branch adjacent to the

PGE- Forest Park and Brazil properties (see Figure 5). The source(s) are unknown; pesticides were not analyzed at the PGE-Forest Park site and no data are available for Brazil.

The only detected chlordanes above the Toxicity SLV was in the eastern branch, although most of the detection limits in the non-detected samples were well above detected values. The total chlordanes concentration in the south private line was $38~\mu g/Kg$ (see Table 4). The source is unknown but there were several facilities that historically handled chemicals that may have discharged to this line. There is insufficient information about these facilities to determine what types of materials they historically handled.

Other ECSI sites in the basin have detected low-level pesticides, including DDx and/or chlordane, in stormwater or soils/stormwater solids (see Appendix C).

5.4 PAHs and Phthalates

PAHs and phthalates in the LWG sediment trap exceeded Toxicity SLVs; all these data were flagged either as "estimated" or "rejected" indicating uncertainty related to the sample results. The total PAHs and phthalates, such as BEHP, were significantly higher than any other inline data collected in the system. Total PAHs were 15,490 μ g/Kg at the LWG location in 2007, whereas all inline solids data ranged from 190 – 2,766 μ g/Kg (see Figure 6). BEHP was 20,000 μ g/Kg in the LWG sample, whereas all inline solids data ranged from <98 – 3,800 μ g/Kg (see Figure 7). Therefore, conclusions about current inputs of these analytes are tentative.

Although most sites that have evaluated the stormwater pathway detected PAHs and phthalates, only a few of them had concentrations higher than the concentrations in the LWG sediment trap. The Calbag-Front site had significant concentrations before site remediation (e.g., $60,000~\mu g/Kg$ of BEHP in their system solids). This site did not analyze for PAHs but TPHs were high (e.g., $19,290~\mu g/Kg$ in their system solids) which suggests that PAHs may have been elevated. No post-remedial monitoring was done for PAHs or phthalates at this site to determine if the concentrations were significantly reduced, although it can be presumed since there was a reduction in PCBs as a result of the remedial activities, that other contaminants were likewise reduced. Storm system solids collected at the Anderson site had a maximum BEHP concentration of $29,000~\mu g/Kg$ and solids from the Chevron Asphalt system had total PAHs ranging to $18,366~\mu g/Kg$. Source controls recently implemented at the Anderson and Chevron Asphalt sites under DEQ oversight will help to reduce current discharges of PAHs and phthalates to Basin 19.

In addition to the PAH and phthalate disparity between the LWG sediment trap compared to upstream solids both in-pipe and at upland sites, the stormwater data collected at the end of the outfall also do not appear significantly elevated (BES, 2010). Based on both of these lines of evidence, it appears that the LWG sediment trap data may not be representative of solids discharging to the river.

Conclusions and Next Steps

The results of this source investigation update indicate substantial progress by the City and DEQ since the Phase 1 Report toward controlling upland sources of contaminants to the City's Basin 19 stormwater conveyance system and in identifying potentially significant ongoing sources that warrant further source control. Stormwater evaluations have been completed or are expected to be completed at a number of sites within the basin under DEQ's Cleanup Program. Two sites have been redeveloped under the City's Stormwater Manual, which requires onsite stormwater treatment.

Based on the evaluation of inline solids representative of the whole basin and from other locations within the basin, the following sites or areas need additional source control work:

- Calbag-Front: Investigations by the City in the lateral from this site show that significant concentrations of PCBs continue to discharge to the City's system post-remediation. Based on pre-remediation contaminants, metals, phthalates and PAHs could also be discharging at elevated concentrations. Calbag or the current owner/operator need to conduct additional pathway evaluations under the DEQ Cleanup Program to address this ongoing source (BES 2008; BES 2009a).
- **Brazil**: Storm line data adjacent to this site show elevated PCBs and pesticides. This site needs to investigate potential stormwater sources and pathways under the DEQ Cleanup Program to evaluate whether it is a current source to the river (BES, 2007).
- Private Lines Connected to Kittridge: Inline solids show elevated PCBs, metals, phthalates, PAHs, and pesticides in the north and south private lines. There are four ECSI sites that connect to these lines (Mt. Hood Chemical Property, Dura, Mt. Hood Chemical Corp., and Chapel Steel). Only Mt. Hood Chemical Corp. is currently active in the DEQ Cleanup program but no stormwater evaluation has been conducted to date. Catch basin data collected by DEQ Site Discovery at Chapel Steel showed elevated concentrations of phthalates, with minor exceedances of PCBs and metals. The City is coordinating with DEQ on the Mt. Hood Chemical Corp. upland work and has asked that the stormwater pathway workplan include line cleaning of both private lines to eliminate any legacy contaminants.

Additionally, preliminary data suggest that a former PGE property, located adjacent to the PGE-Forest Park ECSI site has PCBs in soil. The property owner will be working with the DEQ Cleanup Program regarding this site.

The Phase 1 Report identified all upland ECSI sites within or partially within the basin as potential sources. Since completion of the report, several of the sites have conducted or agreed to initiate stormwater pathway evaluations, and remedial activities (including source control measures) have been completed at several sites. These activities have reduced the number of sites that are considered likely to be significant ongoing sources to the Basin 19 stormwater conveyance system.

The City will incorporate the evaluation of stormwater solids data presented in this report, together with the evaluation of Basin 19 stormwater data presented in the City's recent *Stormwater Evaluation Report* (BES, 2010), into the Basin 19 RI/SCM report. The RI/SCM report will also integrate findings from upland site stormwater pathway evaluations conducted under DEQ oversight and other pertinent data to summarize how sources have been identified and controlled through the respective authorities of DEQ and the City. The Basin RI/SCM process will also consider the inriver remedial investigation, risk assessment, and feasibility study being completed by the LWG.

SECTION 7

References

AECOM. 2009. Subject: Counter Proposal for Work Plan Addendum as proposed by DEQ for Willbridge Yard. Memorandum to S. Rapp (DEQ) from M. Peterson (AECOM). July 14, 2009.

Anchor and Integral. 2008. Portland Harbor RI/FS. Round 3A and 3B Stormwater Data Report. Prepared for the Lower Willamette Group, Portland, OR. Anchor Environmental, L.L.C., Seattle, WA. September 2008.

ARCADIS. 2009. Source Control Evaluation Report, Former Chevron Willbridge Asphalt Plant No. 209293, 5501 NW Front Avenue, Portland, Oregon. May 2009.

ARCADIS BBL. 2007. Storm Water Sampling Plan, Former Chevron Willbridge Asphalt Plant No. 209293, DEQ ECSI Site #1281. August 1, 2007.

BBL. 2006a. Storm Water Evaluation Work Plan, Chevron Environmental Management Company, Former Chevron Willbridge Asphalt Plant No. 209/293, Portland, Oregon. September 2006.

BBL. 2006b. Revised Storm Water Evaluation Work Plan, Former Chevron Willbridge Asphalt Plant No. 209-293, 5501 NW Front Avenue, Portland, Oregon. November 22, 2006.

BES. 2007. Technical Memorandum, Stormwater System Investigation, PGE-Forest Park Property (ECSI No. 2406). City of Portland, Bureau of Environmental Services. May 18, 2007.

BES. 2008. City Outfall Basin 19 Inline Solids Sampling at the Former Calbag Metals Site. City of Portland, Bureau of Environmental Services. Technical Memorandum OF19-1. February 4, 2008.

BES. 2009a. City Outfall Basin 19 Inline Solids Sampling at the Former Calbag Metals Site. City of Portland, Bureau of Environmental Services. Technical Memorandum OF19-2. April 6, 2009.

BES. 2009b. Subject: Review of Source Control Evaluation Report, Former Chevron Willbridge Asphalt Plant No. 209293, dated May 2009. Letter to Mark Pugh (DEQ) from Linda Scheffler (BES). August 4, 2009.

BES. 2010. Stormwater Evaluation Report. City of Portland, Bureau of Environmental Services. February 2010.

Bridgewater. 2006a. Site Characterization Summary Report, Kittridge Distribution Center, 4959 NW Front Avenue, Portland, Oregon. May 1, 2006.

Bridgewater. 2006b. Land and Beneficial Water Use Report, 4959 NW Front Avenue, Portland, Oregon. May 1, 2006.

Bridgewater. 2006c. Baseline Human Health Risk Assessment Report, Kittridge Distribution Center, 4959 NW Front Avenue, Portland, Oregon. May 1, 2006.

Bridgewater. 2006d. Level 1 Ecological Risk Assessment Report, Kittridge Distribution Center, 4959 NW Front Avenue, Portland, Oregon. May 1, 2006.

Bridgewater. 2006e. Feasibility Study Report, Kittridge Distribution Center, 4959 NW Front Avenue, Portland, Oregon. May 1, 2006.

CH2M Hill. 2003. Sampling and Analysis Plan, Inline Solids in Basins M-1 and 18, City of Portland, Bureau of Environmental Services, Portland Harbor Source Control Pilot Project. August 2003.

CH2M Hill. 2004. Technical Memorandum. OF 19 Inline Sediment Investigation Data Report. July 30, 2004.

Creekside. 2006. Continued Evaluation of the Storm Water Discharge System. Prepared for Calbag Metals & DEQ. March 2006.

Delta. 2006. Storm Water Pathway Evaluation Work Plan, ConocoPhillips Company Portland Terminal, 5528 NW Doane Avenue, Portland, Oregon. Prepared for ConocoPhillips Company by Delta Consultants. October 20, 2006.

Delta. 2008. RE: Upland Storm Water Source Control Status Report, ConocoPhillips Company – Portland Terminal, 5528 NW Doane Avenue, Portland, Oregon. Letter to M. Romero (DEQ) from B. Pletcher (Delta Consultants). January 25, 2008.

DEQ. 1999. Environmental Cleanup Site Information (ECSI) Database Site Summary Full Report - Details for Site ID 2372, Lakeside Industries. Accessed February 4, 2010. http://www.deq.state.or.us/lq/ECSI/ecsidetailfull.asp?seqnbr=2372

DEQ. 2003. Environmental Cleanup Site Information (ECSI) Database Site Summary Full Report - Details for Site ID 2377, Shaver Transportation Company. Accessed February 4, 2010. http://www.deq.state.or.us/lq/ECSI/ecsidetailfull.asp?seqnbr=2377

DEQ. 2004. Re: Source Control Decision, Kittridge Distribution Center, 4959 NW Front Avenue, Portland, Oregon, ECSI No. 2442. Letter to T. Zelenka (Schnitzer Investment Corporation) from R. Struck (DEQ). June 8, 2004.

DEQ. 2005. Source Control Decision – Final, No Further Action Determination, Calbag Metals, 4927 NW Front Ave., Portland, OR. November 3, 2005.

DEQ. 2006. DEQ Site Summary Full Report – Details for ECSI Site ID 2454, Calbag Metals. DEQ Environmental Cleanup Site Information Database (ECSI), accessed January 2008. http://www.deq.state.or.us/lq/ECSI/ecsidetailfull.asp?seqnbr=2454

DEQ. 2007a. Selected Remedial Action Record of Decision for the Kittridge Distribution Center Site Portland, Oregon (ECSI #2442). January 9, 2007.

DEQ. 2007b. RE: ECSI #970 - Anderson Brothers Property, 5275 - 5315 NW St. Helens Road, Portland; partial No Further Action determination. Letter from Keith Johnson (DEQ) to John Anderson (Anderson Brothers). February 5, 2007.

- DEQ. 2007c. Summary of 6/11/07 site discovery visit and sampling results, Chapel Steel.
- DEQ. 2008a. Re: Catch Basin Sediment Sampling Results and Findings, Chapel Steel, ECSI #4920. Letter to E. Fitzgerald (Chapel Steel) from K Johnson (DEQ). May 14, 2008.
- DEQ. 2008b. Staff Report No Further Action Determination, Penske Truck Leasing, Inc., 4110 NW St. Helens Road, Portland, Oregon, Multnomah County, ECSI #5055. Memorandum to Bruce Gilles (Manager, DEQ NWR Cleanup and Emergency Response) from Chuck Harman, (DEQ NWR Cleanup and Emergency Response). October 10, 2008.
- DEQ. 2008c. Proposed No Further Action, Greenway Recycling, Portland, Oregon. October 27, 2008.
- DEQ. 2008d. No Further Action Determination, Penske Truck Leasing, Inc., Portland, Oregon, Multnomah County, ECSI #5055. December 2, 2008.
- DEQ. 2009a. RE: Conditional No Further Action Determination, Greenway Recycling, 4135 NW Saint Helens Road, Portland, Oregon 97208, ECSI Site ID No. 4655. Letter to T. Garrett (Greenway) from K. Johnson (DEQ). February 23, 2009.
- DEQ. 2009b. Milestone Report for Upland Source Control at the Portland Harbor Superfund Site. April 2009.
- DEQ. 2009c. E-mail to M. Peterson (AECOM) from S. Rapp (DEQ) proposing revisions to the scope of work and analytes in the Willbridge Yard Expanded Preliminary Assessment Work Plan. May 11, 2009.
- DEQ. 2009d. Review of Draft Source Control Decision, Anderson Brothers Inc., 9111 N. Vancouver Avenue, Portland, OR 97217, ECSI # 970. Letter from Karen Tarnow (DEQ) to Kristine Koch, Eric Blischke, and Chip Humphrey (EPA). July 15, 2009.
- DEQ. 2009e. Re: Review of Source Control Decision, Anderson Brothers Inc., 9111 N. Vancouver Avenue, Portland, OR 97217, ECSI #970. Letter to K. Koch (EPA) from K. Tarnow (DEQ). November 24, 2009.
- DEQ. 2009f. RE: No Further Action determination for the Anderson Brothers Property, 5275 5315 NW St. Helens Road, Portland, ECSI #970. Letter to J. Anderson (Anderson Brothers Inc.) from K. Tarnow (DEQ). December 11, 2009.
- DEQ and EPA. 2005 (amended 2007). Portland Harbor Joint Source Control Strategy. Prepared by the Oregon Department of Environmental Quality and the U.S. Environmental Protection Agency. December 2005 (Table 3-1 updated July 2007). Available online at http://www.deq.state.or.us/lq/cu/nwr/PortlandHarbor/jointsource.htm.
- EFI Global Inc. 2008. Site Characterization and Excavation Report, Penske Truck Leasing Facility, 4285 Northwest Yeon Avenue, Portland, Oregon. January 9, 2008.
- EPA. 2009. RE: Review of Source Control Decision, Anderson Brothers Inc., 9111 N. Vancouver Avenue, Portland, OR 97217, ECSI #970. Letter to K. Tarnow (DEQ) from K. Koch (EPA). September 28, 2009.

Evren Northwest. 2007. Independent Cleanup Report, Greenway Recycling Facility, 4135 NW St. Helens Road, Portland, Oregon. Prepared for Greenway Recycling. December 4, 2007.

GSI. 2006. Phase I Report for City of Portland Priority 1 Basins. Prepared by Groundwater Solutions, Inc. August 2006.

LWG, 2007. Portland Harbor RI/FS, Comprehensive Round 2 Report. February 21, 2007.

MFA. 2007. Stormwater Evaluation Work Plan, Front Avenue LP, Portland, Oregon. March 27, 2007.

MFA. 2008a. Updated Stormwater Evaluation Work Plan, Front Avenue LP, Portland, Oregon. April 16, 2008.

MFA. 2008b. RE: Results of Catch Basin Solids Sampling and Analyses, Tube Forgings of America, Inc./Front Avenue LP, 5200 NW Front Avenue, Portland, Oregon (DEQ ECSI No. 1239). Memorandum to Michael Romero (DEQ) from Anna St. John (Maul, Foster, Alongi). October 2, 2008.

MFA. 2009. RE: Results of November 2008 Stormwater Performance Monitoring, Tube Forgings of America, Inc./Front Avenue LP, 5200 NW Front Avenue, Portland, Oregon (DEQ ECSI No. 1239). Memorandum to Michael Romero (DEQ) from Anna St. John (Maul, Foster, Alongi). February 13, 2009.

RETEC Group, Inc. 2006. Preliminary Assessment and Expanded Preliminary Assessment Work Plan for the BNSF Railway Company (BNSF) Willbridge Yard Site (ECSI Site ID No. 3395). August 21, 2006.

Wohlers. 2008. Stormwater Source Control Evaluation Report, Industrial Properties, 5275 & 5315 N.W. St. Helens Road, Portland, Oregon 97210. Prepared for Anderson Brothers, Inc. September 19, 2008.

Table 1. Summary of Basin 19 Inline Solids Sample Analyses.

Location		Sample ID	Sample	Analytical Testing (1)								
Branch / Line	Manhole / Catch Basin ID		Date	Total Solids	тос	Metals	Pesticides	Herbicides	PCB Congeners	PCB Aroclors	PAHs & Phthalates	SVOCs
Whole basin (LWG sample)	AAP918	LW3-STW-S10- CF19	07/03/07	Х	Х	Х	Х	Х	Х		Х	Х
	AAP910	FO031017	10/07/03	Х	Χ	Х	Х			Х	Х	Х
Western	AAP912	FO031018	10/07/03	Х	Х	Х	Х			Х	Х	Х
	AAP831	FO031023	10/08/03	Х	Х	Х	Х			Х	Х	Х
Eastern / NW Kittridge	AAP918	FO031019	10/07/03	Х	Х	Х	Х			Х	Х	Х
Eastern /	Calbag Sampling	FO070810	06/18/07	Х						Х		
Calbag Metals Lateral	Manhole	FO08655	06/02/08	Х	Х				Х			
Eastern / North Private	AAP931	FO031020	10/07/03	Х	Χ	Х	Х			Х	Х	Х
Eastern / South Private	AAP932	FO031021	10/07/03	Х	Χ	Х	Х			Х	Х	Х
Eastern / NW Yeon	AMZ077	FO031024	10/08/03	Х	Χ	Х	Х			Х	Х	Х
	AAT496	FO031022	10/08/03	Х	Χ	Х	Х			Х	Х	Х
	AAT427	FO060544	05/02/06				Х			Х		
	AMZ147	FO060545	05/02/06				Х			Х		
	ANB320	FO060546	05/02/06				Х			Х		
	A A T407	FO060543	05/02/06				Х			Х		
	AAT496	FO060553	05/02/06				Х			Х		
Eastern / Active Lines in	AAT497	FO060547	05/02/06				Х			Х		
NW St. Helens	11111177	FO060548	05/02/06				Х			X		
	AAT498	FO060549	05/02/06				Х			X		
		FO060550	05/02/06				X			X		
	AMZ188	FO060551	05/02/06				X			X		
	AMZ192	FO070815	06/22/07	X	Х	X				X	Χ	X
	AND207	FO070816	06/22/07	X	Χ	X				X	Χ	X
	AAT525	FO070817	06/22/07	Х	Х	X				X	Χ	X
	6IN-1	FO061296	10/11/06				Х			Х		
	6IN-2	FO061297	10/11/06				Х			Х		
Eastern / Abandoned Lines in NW St. Helens	ANB502	FO060552	05/02/06				Х			Х		
Lines in two St. Helelis	6IN-3	FO061298	10/11/06				Х			Х		
	12IN-4	FO061299	10/11/06				Х			Х		

⁽¹⁾ TOC = total organic carbon; PCBs = polychlorinated biphenyls; PAHs = polycyclic aromatic hydrocarbons; SVOCs = semivolatile organic compounds.

June 2010 Page 1 of 1

Table 2. Basin 19 ESCI Site Status Update.

Basin 19 Branch/Line	Site (ECSI #)	Site Investigation / Source Control Activities 2003 – 2009	Status Update						
Upland Sites Lo	Upland Sites Located Within or Partially Within Basin 19								
Western	Front Avenue LP (#1239) – Tube Forgings	Catch basin sampling (2008); stormwater sampling (2008 – 2009)	Stormwater pathway evaluation underway						
	Schnitzer Kittridge Distribution Center (# 2442)	Site characterization summary; land and beneficial water use assessment; human health risk assessment; Level 1 ecological risk assessment; and feasibility study (May 2006)	DEQ issued Conditional NFA determination (January 2007)						
	Chevron USA Asphalt Refinery (#1281)	Catch basin cleanout and solids sampling (September 2006, August 2007); stormwater line cleanout, solids sampling and a video survey of various onsite and offsite stormwater drain lines (February, June 2007); stormwater sampling (October 2007 – March 2008); final Source Control Evaluation Report submitted to DEQ (May 2009).	DEQ Source Control Decision pending						
	Anderson Brothers (#970)	Line cleanout and solids sampling (August 2006); stormwater sampling (December 2006 – December 2007); implementation of source control measures including new asphalt surfacing, catch basin, and shallow "soakage trench" to capture roof drainage before discharge to the stormwater system (2007).	DEQ issued final NFA determination and SCD (December 2009)						
	Unocal - Willbridge Terminal(#1549/#177)	Stormwater pathway evaluation activities, including catch basin solids sampling and stormwater sampling (2007 – 2009).	Stormwater pathway evaluation underway						
	BNSF Willbridge Yard (#3395)	Preliminary Assessment (PA) and Expanded PA (XPA) work plan submitted (September 2006); agreement reached for XPA to include stormwater pathway evaluation.	Stormwater pathway evaluation is underway						

June 2010 Page 1 of 3

Table 2. Basin 19 ESCI Site Status Update.

Basin 19 Branch/Line	Site (ECSI #)	Site Investigation / Source Control Activities 2003 – 2009	Status Update		
Eastern / Main line (NW Kittridge)	Calbag Metals – Front Ave. (#2454)	Site investigation and cleanout of onsite catch basins and stormwater lines and adjacent City stormwater line; site repaving; and stormwater sampling (2005).	DEQ issued final Source Control Decision and NFA (November 2005). City requested DEQ to reevaluate decision based on new data (BES, 2008, 2009a).		
Eastern / Private lines to NW	Chapel Steel (#4920)	DEQ site discovery / sampling of catch basin solids (June 2007)	No changes to site status (a stormwater pathway evaluation has not been initiated at this site).		
Kittridge	Dura Industries (#111)	No changes to site status (a stormwater pathway evaluation has not been initiated at this site).			
	Mt. Hood Chemical Corp. (#81)	Stormwater assessment and source control initiated by agreement with DEQ (2008); initiation of soil and groundwater remediation (2009)	Stormwater pathway work plan is pending.		
	Mt. Hood Chemical Property (#1328)	None	No changes to site status (a stormwater pathway evaluation has not been initiated at this site).		
Eastern / NW Yeon line	Penske Truck Leasing (#5055)	Site remediation activities and redevelopment in accordance with the City's Stormwater Manual (2007)	DEQ issued NFA determination (December 2008)		
Eastern / NW St. Helens lines	PGE-Forest Park (#2406)	Unused stormwater lines at and in the vicinity of the site were abandoned in 2006. Interim source control measures were implemented by City to prevent offsite migration (2007).	No changes to site status (site has been remediated and remains undeveloped)		
	Brazil & Co. (#1026)	None	No changes to site status (a stormwater pathway evaluation has not been initiated at this site).		

June 2010 Page 2 of 3

Table 2. Basin 19 ESCI Site Status Update.

Basin 19 Branch/Line	Site (ECSI #)	Site Investigation / Source Control Activities 2003 - 2009	Status Update
	Greenway Recycling (#4655)	Independent (i.e., not under DEQ oversight) investigation and remedial work, including removal of contaminated soil (2004) and groundwater monitoring (2006 – 2008). Site redevelopment in accordance with City's Stormwater Manual, including stormwater treatment (2007).	DEQ issued a Conditional NFA determination (February 2009).
Nonpoint Source	ces and Pathways Located Near Ou	tfall 19	
N/A (stormwater	Lakeside Industries (#2372)	Two site drywells closed in 2003.	Need for stormwater pathway evaluation under consideration
not conveyed to Basin 19 system)	Shaver Transportation (#2377)	None	DEQ issued NFA determination (June 2003).

Notes:

N/A = not applicable

June 2010 Page 3 of 3

Table 3 Basin 19 Inline Solids Sample Results: Western Branch

		Downstream		> (Jpstream		
		Whole Basin LWG Sample		Western Branch			
	•	Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19 07/03/07	Manhole AAP910 Incoming 24" Line Adj to Tube Forging FO031017	Manhole AAP912 Outgoing 42" Line Adj. to Chevron & Schnitzer FO031018	Manhole AAP831 From manhole Adj to BNSF Yard FO031023		JSCS ⁽¹⁾ ng Level Values
Class Analyte	Units		10/07/03	10/07/03	10/08/03	Toxicity	Bioaccumulation
otal Organic Carbon ⁽²⁾							
TOC	%	5.57	1.03	2.59	0.576		
otal Solids (EPA 160.3M or SM 2540G)							
TS	%	47.1	82.4	21.2	73.7		
Metals (EPA 6010/6020)							
Aluminum	mg/Kg	9220	NA	NA	NA		
Antimony	mg/Kg	2.58 J	NA	NA	NA	64	
Arsenic	mg/Kg	5.6	6.02	465	28.8	33	7
Barium	mg/Kg	NA	NA	2740	NA		
Cadmium	mg/Kg	2.07 J	1.16	18.3	1.12	4.98	1
Chromium	mg/Kg	74.3	52.4	48.7	36.4	111	
Copper	mg/Kg	164	126	222	81.1	149	
Lead	mg/Kg	139 J	107	96.4	70.3	128	17
Mercury ⁽³⁾	mg/Kg	0.213	0.46	0.38	0.05	1.06	0.07
Nickel	mg/Kg	30.4	NA	NA	NA	48.6	
Selenium	mg/Kg	0.4 J	NA	2.22	NA	5	2
Silver	mg/Kg	0.733	NA	0.21	NA	5	
Zinc	mg/Kg	964 J	470	4130	300	459	
Organochlorine Pesticides (EPA 8081A or 8082)							
2,4'-DDD	μg/Kg	3.3 U	NA	NA	NA		
2,4'-DDE	μg/Kg	0.93 U	NA	NA	NA		
2.4'-DDT	μg/Kg	6.6 U	NA	NA	NA		
4,4'-DDD	μg/Kg	4.1 U	203 UJ	81.1 U	23.7 U		
4,4'-DDE	μg/Kg	6.3 NJ	203 UJ	81.1 U	23.7 U		
4,4'-DDT	μg/Kg	25 U	203 UJ	81.1 U	23.7 U		
DDD ⁽⁴⁾	μg/Kg	4.1 U	ND	ND	ND	31.3	0.33
DDE ⁽⁴⁾	μg/Kg	6.3 NJ	ND	ND	ND	28	0.33
DDT ⁽⁴⁾	μg/Kg μg/Kg	25 U	ND	ND	ND	62.9	0.33
Estimated Total DDx ⁽⁵⁾	μg/Kg μg/Kg	6.3 NJ	ND ND	ND ND	ND		0.33
Aldrin	μg/Kg μg/Kg	2.5 U	102 UJ	40.6 U	11.9 U	40	0.55
alpha-Endosulfan	μg/Kg μg/Kg	7.9 U	102 UJ	40.6 U	11.9 U		
alpha-Hexachlorocyclohexane	μg/Kg μg/Kg	4.1 U	102 UJ	40.6 U	11.9 U		
beta-Endosulfan	μg/Kg	12 U	203 UJ	81.1 U	23.7 U		
beta-Hexachlorocyclohexane	μg/Kg	14 U	102 UJ	40.6 U	11.9 U		
alpha-Chlordane ⁽⁶⁾	μg/Kg	0.63 U	102 UJ	40.6 U	11.9 U		
beta-Chlordane ⁽⁶⁾	μg/Kg	8	102 UJ	40.6 U	11.9 U		
Total Chlordane ⁽⁷⁾	μg/Kg	8	ND	ND	ND	17.6	0.37

June 2010 Page 1 of 4

Table 3 Basin 19 Inline Solids Sample Results: Western Branch

		Downstream		> I	Jpstream		
		Whole Basin LWG Sample		Western Branch			
	-	Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19	Manhole AAP910 Incoming 24" Line Adj to Tube Forging	Manhole AAP912 Outgoing 42" Line Adj. to Chevron & Schnitzer	Manhole AAP831 From manhole Adj to BNSF Yard		JSCS ⁽¹⁾ ng Level Values
Class Analyte	Units	07/03/07	FO031017 10/07/03	FO031018 10/07/03	FO031023 10/08/03	Toxicity	Bioaccumulation
cis-Nonachlor	μg/Kg	7.7 U	NA	NA	NA		
delta-Hexachlorocyclohexane	μg/Kg	2.3 U	102 UJ	40.6 U	11.9 U		
Dieldrin	μg/Kg	4.1 U	203 UJ	81.1 U	23.7 U	61.8	0.0081
Endosulfan sulfate	μg/Kg	14 U	203 UJ	81.1 U	23.7 U		
Endrin	μg/Kg	1.5 U	203 UJ	81.1 U	23.7 U	207	
Endrin aldehyde	μg/Kg	4.9 NJ	203 UJ	81.1 U	23.7 U		
Endrin ketone	μg/Kg	0.59 U	203 UJ	81.1 U	23.7 U		
gamma-Hexachlorocyclohexane	μg/Kg	2 U	102 UJ	40.6 U	11.9 U	4.99	
Heptachlor	μg/Kg	4.1 U	102 UJ	40.6 U	11.9 U	10	
Heptachlor epoxide	μg/Kg	4.9 U	102 UJ	40.6 U	11.9 U	16	
Methoxychlor	μg/Kg	7.7 U	1020 UJ	406 U	119 U		
Mirex	μg/Kg	2.5 U	NA	NA	NA		
oxy-Chlordane	μg/Kg	13 U	NA	NA	NA		
Toxaphene	μg/Kg	290 U	10200 UJ	4060 U	1190 U		
trans-Nonachlor	μg/Kg	6.9 J	NA	NA	NA		
Herbicides (EPA 8151A)							
2,4,5-T	μg/Kg	85 U	NA	NA	NA		
2,4-D	μg/Kg	110 U	NA	NA	NA		
2,4-DB	μg/Kg	800 U	NA	NA	NA		
Dalapon	μg/Kg	660 U	NA	NA	NA		
Dicamba	μg/Kg	75 U	NA	NA	NA		
Dichlorprop	μg/Kg	64 U	NA	NA	NA		
Dinoseb	μg/Kg	140 U	NA	NA	NA		
MCPA	μg/Kg	11000 U	NA	NA	NA		
MCPP	μg/Kg	5400 U	NA	NA	NA		
Silvex	μg/Kg	77 U	NA	NA	NA		
Polychlorinated Biphenyl Congeners (EPA 166							
Total PCBs (μg/Kg	214 J	NA	NA	NA	676	0.39
Polychlorinated Biphenyls (PCBs) (EPA 8082))						
Aroclor 1016	μg/Kg	NA	106 U	410 U	116 U	530	
Aroclor 1221	μg/Kg	NA	213 U	819 U	231 U		
Aroclor 1232	μg/Kg	NA	106 U	410 U	116 U		
Aroclor 1242	μg/Kg	NA	106 U	410 U	116 U		
Aroclor 1248	μg/Kg	NA	106 U	410 U	116 U	1500	
Aroclor 1254	μg/Kg	NA	106 U	410 U	116 U	300	
Aroclor 1260	μg/Kg	NA	106 U	410 U	116 U	200	
Aroclor 1262	μg/Kg	NA	NA NA	NA	NA NA		
Aroclor 1268	μg/Kg	NA NA	NA NA	NA NA	NA NA		
Total PCE	βs ⁽⁸⁾ μg/Kg	NA NA	ND ND	ND	ND	676	0.39
TOTAL FCI	-0 μg/ N g	INA	ND	ND	ND	070	0.37

June 2010

Table 3 Basin 19 Inline Solids Sample Results: Western Branch

		Downstream		(Jpstream		
		Whole Basin LWG Sample		Western Branch			
Class Analyte	Units	Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19 07/03/07	Manhole AAP910 Incoming 24" Line Adj to Tube Forging FO031017 10/07/03	Manhole AAP912 Outgoing 42" Line Adj. to Chevron & Schnitzer FO031018 10/07/03	Manhole AAP831 From manhole Adj to BNSF Yard FO031023 10/08/03	Screenin	JSCS ⁽¹⁾ ng Level Values Bioaccumulation
Class Analyte	Units		10/07/03	10/07/03	10/00/03	Toxicity	Bioaccumulation
Polynuclear Aromatic Hydrocarbons (EPA 8270)	C or 8270-SIM)						
2-Methylnaphthalene	μg/Kg	R	76.9 U	24.4 U	76.4 U	200	
Acenaphthene	μg/Kg	160 J	76.9 U	24.4 U	76.4 U	300	
Acenaphthylene	μg/Kg	R	76.9 U	13.8 J	76.4 U	200	
Anthracene	μg/Kg	300 J	76.9 U	13.1	40 J	845	
Benzo(a)anthracene	μg/Kg	1100 J	76.9 U	91.4	76.4 U	1050	
Benzo(a)pyrene	μg/Kg	1100 J	76.9 U	62.1	76.4 U	1450	
Benzo(b)fluoranthene	μg/Kg	1800 J	NA	NA	NA		
Benzo(g,h,i)perylene	μg/Kg	1700 J	76.9 U	188	76.4 U	300	
Benzo(k)fluoranthene	μg/Kg	500 J	NA	NA	NA	13000	
Benzofluoranthenes (10)	μg/Kg	NA	76.9 U	271	539		
Chrysene	μg/Kg	1700 J	76.9 U	66.7	76.4 U	1290	
Dibenzo(a,h)anthracene	μg/Kg	R	76.9 U	24.4 U	76.4 U	1300	
Fluoranthene	μg/Kg	2200 J	85.9	87.6	131	2230	37000
Fluorene	μg/Kg	130 J	76.9 U	24.4 U	76.4 U	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	1100 J	76.9 U	146	76.4 U	100	
Naphthalene	μg/Kg	R	76.9 U	24.4 U	76.4 U	561	
Phenanthrene	μg/Kg	1200 J	63.9 J	27.3	76.4 U	1170	
Pyrene	μg/Kg	2500 J	124	82	125	1520	1900
Total PAHs		15490 J	273.8 J	1049 J	835 J		
Phthalates (EPA 8270C or 8270-SIM)							
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	20000 J	308 U	97.5 U	306 U	800	330
Butylbenzyl phthalate	μg/Kg	2500 J	385 U	122 U	382 U		
Dibutyl phthalate	μg/Kg	850 J	308 U	97.5 U	306 U	100	60
Diethyl phthalate	μg/Kg	R	308 U	97.5 U	306 U	600	
Dimethyl phthalate	μg/Kg	3900 J	308 U	97.5 U	306 U		
Di-n-octyl phthalate	μg/Kg	1400 Ј	308 U	97.5 U	306 U		
Semivolatile Organic Compounds (EPA 8081A o	or 8270SIM) (11)						
Dibenzofuran	ug/Kg	R	308 U	97.5 U	306 U		
Hexachlorobenzene	ug/Kg	1.4 U	308 U	97.5 U	306 U	100	19
Hexachlorobutadiene	ug/Kg	2.9 U	308 U	97.5 U	306 U	600	
Hexachloroethane	ug/Kg	3.3 U	308 U	97.5 U	306 U		

June 2010 Page 3 of 4

Table 3 Basin 19 Inline Solids Sample Results: Western Branch

		Whole Basin LWG Sample		Western Branch			
	_	Manhole AAP918 Outgoing 42" Line	Manhole AAP910 Incoming 24" Line	Manhole AAP912 Outgoing 42" Line	Manhole AAP831 From manhole		JSCS ⁽¹⁾
		LW3-STW-S10-CF19	Adj to Tube Forging	Adj. to Chevron & Schnitzer	Adj to BNSF Yard	Screenin	g Level Values
		07/03/07	FO031017	FO031018	FO031023		
Class Analyte	Units		10/07/03	10/07/03	10/08/03	Toxicity	Bioaccumulation

Downstream ----->

Upstream

Notes:

J = Estimated value

N = Presumptive evidence of a compound

U = The analyte was not detected above the reported sample quantification limit

R = Rejected

NA = Not analyzed

ND = Not detected

-- = No JSCS screening level available.

μg/Kg = Micrograms per kilogram

mg/Kg = Milligrams per kilogram

(1) JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

(2) TOC analyzed using Puget Sound Estuary Program (PSEP), Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound; ASTM D4129-82M; EPA 415.1; or EPA 9060.

= concentration exceeds JSCS Toxicity Screening Level Value.

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

June 2010 Page 4 of 4

⁽³⁾ Mercury analysis by EPA 7471A or WPCL SOP-M-10.01

 $^{^{(4)}}$ The toxicity SLV represents the sum of the 2,4' and 4,4' isomers

⁽⁵⁾ Estimated Total DDx is the sum of DDE, DDD and DDT

⁽⁶⁾ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane.

⁽⁷⁾ Total Chlordane is the sum of alpha-, and beta-isomers.

 $^{^{(8)}}$ Total PCBs and PAHs are calculated by assigning "0" to undetected constituents.

⁽⁹⁾ Refer to Anchor and Integral. 2008. Portland Harbor RI/FS. Round 3A and 3B Stormwater Data Report, for all 209 congener results.

 $^{^{(10)}\,}Benzo fluor an thenes\ include\ benzo(b) fluor an thene\ and\ benzo(k) fluor an thene.$

 $^{^{(11)} \} Additional \ SVOCs \ and \ VOCs \ that \ were \ analyzed \ in \ samples \ collected \ in \ 2003 \ are \ not \ listed; \ all \ results \ were \ ND \ (see \ Appendix \ A).$

Table 4
Basin 19 Inline Solids Sample Results:
Eastern Branch - NW Kittridge and NW Yeon Lines

Eastern Branch - NW Kittridge and NW Yea	III Lines	Downstream						Upstream		
		Whole Basin LWG Sample	NW Kittridge Main Line	Calbag Meta	ls Lateral	North Private Line	South Private Line	NW Yeon		
		Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19	Manhole AAP918 Incoming 48" Line FO031019	Sampling Manhole at Outgoing 2		Manhole AAP931 Incoming 18" Line FO031020	Manhole AAP932 Incoming 18" Line FO031021	Manhole AMZ077 Outgoing 27" Line FO031024	Screen	JSCS ⁽¹⁾ ing Level Values
		07/03/07	10/07/03	FO070810	FO08655	10/07/03	10/07/03	10/08/03		
Class Analyte	Units			06/18/07	06/02/08				Toxicity	Bioaccumulation
Гotal Organic Carbon ⁽²⁾										
TOC	%	5.57	0.393	NA	15.9	3.69	8.27	0.866		
Total Solids (EPA 160.3M or SM 2540G)										
TS	%	47.1	81.2	51.3	46.2	15.6	25	79.8		
-	,,,							.,,,,		
Metals (EPA 6010/6020)										
Aluminum	mg/Kg	9220	NA	NA	NA	NA	NA	NA		
Antimony	mg/Kg	2.58 J 5.6	NA 12.2	NA NA	NA NA	NA	NA	NA 4.36	64 33	
Arsenic Barium	mg/Kg mg/Kg	5.6 NA	12.2 228	NA NA	NA NA	3950	67.3 324	4.36 NA	33	/
Cadmium	mg/Kg	2.07 J	1.23	NA NA	NA NA	94.5	2.55	0.75	4.98	 1
Chromium	mg/Kg	74.3	262	NA NA	NA NA	96.6	72.8	65.9	111	
-	mg/Kg	164	3310	NA NA	NA NA	620	144	72.4	149	
Copper Lead	mg/Kg	139 J	3690	NA NA	NA NA	260	226	81.3	128	17
Mercury ⁽³⁾	mg/Kg	0.213	0.917	NA NA	NA NA	0,347	0.277	0.047	1.06	0.07
Nickel	mg/Kg	30.4	NA	NA NA	NA NA	NA	NA	0.047 NA	48.6	
Selenium	mg/Kg	0.4 J	1 U	NA NA	NA NA	4.36	1.02	NA NA	5	2
Silver	mg/Kg	0.733	34.9	NA	NA	76.9	145	NA NA	5	
Zinc	mg/Kg	964 J	733	NA	NA	22100	850	338	459	
										
Organochlorine Pesticides (EPA 8081A or 8082)										
2,4'-DDD	μg/Kg	3.3 U	NA	NA	NA	NA	NA	NA		
2,4'-DDE	μg/Kg	0.93 U	NA	NA	NA	NA	NA	NA		
2,4'-DDT	μg/Kg	6.6 U	NA	NA	NA	NA	NA	NA		
4,4'-DDD	μg/Kg	4.1 U	22.4 U	NA	NA	153 U	57.6 U	22.7 U		
4,4'-DDE	μg/Kg	6.3 NJ	22.4 U	NA	NA	153 U	57.6 U	22.7 U		
4,4'-DDT	μg/Kg	25 U	36.7	NA	NA	153 U	57.6 U	22.7 U		
DDD ⁽⁴⁾	μg/Kg	4.1 U	ND	NA	NA	ND	ND	ND	31.3	0.33
DDE ⁽⁴⁾	μg/Kg	6.3 NJ	ND	NA	NA	ND	ND	ND	28	0.33
DDT ⁽⁴⁾	μg/Kg	25 U	36.7	NA	NA	ND	ND	ND	62.9	0.33
Estimated Total DDx ⁽⁵⁾	μg/Kg	6.3 NJ	36.7	NA	NA	ND	ND	ND		0.33
Aldrin	μg/Kg	2.5 U	11.2 U	NA	NA	76.6 U	28.8 U	11.4 U	40	
alpha-Endosulfan	μg/Kg	7.9 U	22.4 U	NA	NA	76.6 U	28.8 U	11.4 U		
alpha-Hexachlorocyclohexane	μg/Kg	4.1 U	11.2 U	NA	NA	76.6 U	28.8 U	11.4 U		
beta-Endosulfan	μg/Kg	12 U 14 U	22.4 U 11.2 U	NA NA	NA NA	76.6 U 76.6 U	57.6 U 28.8 U	22.7 U 11.4 U		
beta-Hexachlorocyclohexane alpha-Chlordane ⁽⁶⁾	μg/Kg			NA NA		76.6 U				
beta-Chlordane ⁽⁶⁾	μg/Kg	0.63 U	11.2 U		NA NA		28.8 U	11.4 U		
	μg/Kg	8	11.2 U	NA	NA	76.6 U	38.3	11.4 U	17.6	
Total Chlordane ^(/)	μg/Kg	8	ND	NA	NA	ND	38.3	ND	17.6	0.37
Chlordane (tech)	μg/Kg	NA 7.7 II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
cis-Nonachlor	μg/Kg	7.7 U	NA 11.2 H	NA NA	NA	NA 76 6 H	NA 20.0 H	NA NA		
delta-Hexachlorocyclohexane	μg/Kg	2.3 U	11.2 U	NA NA	NA NA	76.6 U	28.8 U	11.4 U		0.0001
Dieldrin	μg/Kg	4.1 U	22.4 U	NA	NA	153 U	57.6 U	22.7 U	61.8	0.0081

June 2010 Page 1 of 4

Table 4
Basin 19 Inline Solids Sample Results:
Eastern Branch - NW Kittridge and NW Yeon Lines

Eastern Branch - NW Kittridge and NW Ye	on Lines	Downstream						Upstream		
		Whole Basin LWG Sample	NW Kittridge Main Line	Calbag Meta	ls Lateral	North Private Line	South Private Line	NW Yeon		
		Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19 07/03/07	Manhole AAP918 Incoming 48" Line FO031019 10/07/03	Sampling Manhole at Outgoing 2	1" Line FO08655	Manhole AAP931 Incoming 18" Line FO031020 10/07/03	Manhole AAP932 Incoming 18" Line FO031021 10/07/03	Manhole AMZ077 Outgoing 27" Line FO031024 10/08/03	Screen	JSCS ⁽¹⁾ ing Level Values
Class Analyte	Units	07/03/07	10/07/03	06/18/07	06/02/08	10/07/03	10/07/03	10/08/03	Toxicity	Bioaccumulation
Endosulfan sulfate	μg/Kg	14 U	22.4 U	NA	NA	153 U	57.6 U	22.7 U		
Endrin	μg/Kg	1.5 U	22.4 U	NA	NA	153 U	57.6 U	22.7 U	207	
Endrin aldehyde	μg/Kg	4.9 NJ	22.4 U	NA	NA	153 U	57.6 U	22.7 U		
Endrin ketone	μg/Kg	0.59 U	22.4 U	NA	NA	76.6 U	28.8 U	11.4 U		
gamma-Hexachlorocyclohexane	μg/Kg	2 U	11.2 U	NA	NA	76.6 U	28.8 U	11.4 U	4.99	
Heptachlor	μg/Kg	4.1 U	11.2 U	NA	NA	76.6 U	28.8 U	11.4 U	10	
Heptachlor epoxide	μg/Kg	4.9 U	11.2 U	NA	NA	76.6 U	28.8 U	11.4 U	16	
Methoxychlor	μg/Kg	7.7 U	112 U	NA	NA	766 U	288 U	114 U		
Mirex	μg/Kg	2.5 U	NA	NA	NA	NA	NA	NA		
oxy-Chlordane	μg/Kg	13 U	NA	NA	NA	NA	NA	NA		
Toxaphene	μg/Kg	290 U	1120 U	NA	NA	7660 U	2880 U	1140 U		
trans-Nonachlor	μg/Kg	6.9 J	NA	NA	NA	NA	NA	NA		
Herbicides (EPA 8151A)										
2,4,5-T	μg/Kg	85 U	NA	NA	NA	NA	NA	NA		
2,4-D	μg/Kg	110 U	NA	NA	NA	NA	NA	NA		
2,4-DB	μg/Kg	800 U	NA	NA	NA	NA	NA	NA		
Dalapon	μg/Kg	660 U	NA	NA	NA	NA	NA	NA		
Dicamba	μg/Kg	75 U	NA	NA	NA	NA	NA	NA		
Dichlorprop	μg/Kg	64 U	NA	NA	NA	NA	NA	NA		
Dinoseb	μg/Kg	140 U	NA	NA	NA	NA	NA	NA		
MCPA	μg/Kg	11000 U	NA	NA	NA	NA	NA	NA		
MCPP Silvex	μg/Kg μg/Kg	5400 U 77 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
		77.0	IVA	IVA	IVA	IVA	IVA	IVA		
Polychlorinated Biphenyl Congeners (EPA 1668A) Total PCBs (8)(9)	ug/Kg	214 J	NA	NA	2360	NA	NA	NA	676	0.39
	46/116	21.0			2000	1111		1111	0,0	0.55
Polychlorinated Biphenyls (PCBs) (EPA 8082) Aroclor 1016	μg/Kg	NA	110 U	32 U	NA	516 U	329 U	112 U	530	
Aroclor 1221	μg/Kg	NA	220 U	63 U	NA	1030 U	657 U	225 U		
Aroclor 1232	μg/Kg	NA NA	110 U	32 U	NA	516 U	329 U	112 U		
Aroclor 1232 Aroclor 1242	μg/Kg μg/Kg	NA NA	110 U	32 U	NA NA	516 U	329 U	112 U		
Aroclor 1242 Aroclor 1248		NA NA	110 U	190	NA NA	516 U	329 U	112 U	1500	
	μg/Kg									
Aroclor 1254	μg/Kg	NA	110 U	32 U	NA	516 U	329 U	112 U	300	
Aroclor 1260	μg/Kg	NA	231	440	NA	516 U	242 J	112 U	200	
Aroclor 1262	μg/Kg	NA	NA	32 U	NA	NA	NA	NA		
Aroclor 1268	μg/Kg	NA	NA	120 U	NA	NA	NA	NA		
Total PCBs ⁽⁸⁾	μg/Kg	NA	231	630	NA	ND	242 J	ND	676	0.39

June 2010 Page 2 of 4

Table 4
Basin 19 Inline Solids Sample Results:
Eastern Branch - NW Kittridge and NW Yeon Lines

<u> </u>		Downstream								
		Whole Basin LWG Sample	NW Kittridge Main Line	Calbag Meta	als Lateral	North Private Line	South Private Line	NW Yeon		
		Manhole AAP918 Outgoing 42" Line LW3-STW-S10-CF19		Sampling Manhole at Outgoing 2		Manhole AAP931 Incoming 18" Line FO031020	Manhole AAP932 Incoming 18" Line FO031021	Manhole AMZ077 Outgoing 27" Line FO031024	Screen	JSCS ⁽¹⁾ ing Level Values
Class Analyte	Units	07/03/07	10/07/03	06/18/07	06/02/08	10/07/03	10/07/03	10/08/03	Toxicity	Bioaccumulation
Polynuclear Aromatic Hydrocarbons (EPA 8:		M)								
2-Methylnaphthalene	μg/Kg	R	24.4 UJ	NA	NA	34.3 U	208 U	73.2 U	200	
Acenaphthene	μg/Kg	160 J	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	300	
Acenaphthylene	μg/Kg	R	95.8 J	NA	NA	34.3 U	208 U	73.2 U	200	
Anthracene	μg/Kg	300 J	73.6 J	NA	NA	34.3 U	208 U	73.2 U	845	
Benzo(a)anthracene	μg/Kg	1100 J	280 J	NA	NA	17.6 J	208 U	73.2 U	1050	
Benzo(a)pyrene	μg/Kg	1100 J	75.4 UJ	NA	NA	34.3 U	893	73.2 U	1450	
Benzo(b)fluoranthene	μg/Kg	1800 J	NA	NA	NA	NA NA	NA	NA		
Benzo(g,h,i)perylene	μg/Kg	1700 J	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	300	
Benzo(k)fluoranthene	μg/Kg	500 J	NA	NA	NA	NA NA	NA	NA	13000	
Benzofluoranthenes (10)	μg/Kg	NA	350 J	NA	NA	73.8	790	553		
Chrysene	μg/Kg	1700 J	292 J	NA	NA	34.3 U	208 U	73.2 U	1290	
Dibenzo(a,h)anthracene	μg/Kg	R	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	1300	
Fluoranthene	μg/Kg	2200 J	372 J	NA	NA	48.1	412	234	2230	37000
Fluorene	μg/Kg	130 J	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	1100 J	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	100	
Naphthalene	μg/Kg	R	75.4 UJ	NA	NA	34.3 U	208 U	73.2 U	561	
Phenanthrene	μg/Kg	1200 J	135 J	NA	NA	26.7 J	139 J	110	1170	
Pyrene	μg/Kg	2500 J	552 J	NA NA	NA NA	52	532	649	1520	1900
Total PA			2150 J	NA NA	NA NA	218.2 J	2766 J	1546		
Phthalates (EPA 8270C or 8270-SIM)										
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	20000 J	1050 J	NA	NA	941	2200	1470	800	330
Butylbenzyl phthalate	μg/Kg	2500 J	377 UJ	NA	NA	1040 U	172 U	366 U		
Dibutyl phthalate	μg/Kg	850 J	302 UJ	NA	NA	831 U	137 U	293 U	100	60
Diethyl phthalate	μg/Kg	R	302 UJ	NA	NA	831 U	137 U	293 U	600	
Dimethyl phthalate	μg/Kg	3900 J	302 UJ	NA	NA	831 U	137 U	293 U		
Di-n-octyl phthalate	μg/Kg	1400 J	302 UJ	NA	NA	831 U	137 U	293 U		
Semivolatile Organic Compounds (EPA 808)	A or 8270-SIM									
Dibenzofuran	μg/Kg	R	302 UJ	NA	NA	137 U	831 U	293 U		
Hexachlorobenzene	μg/Kg	1.4 U	302 UJ	NA	NA	137 U	831 U	293 U	100	19
Hexachlorobutadiene	μg/Kg	2.9 U	302 UJ	NA	NA	137 U	831 U	293 U	600	
Hexachloroethane	μg/Kg	3.3 U	302 UJ	NA	NA	137 U	831 U	293 U		

Notes:

J = Estimated value

N = Presumptive evidence of a compound

U = The analyte was not detected above the reported sample quantification limit

R = Rejected

NA = Not analyzed

ND = Not detected

-- = No JSCS screening level available.

 $\mu g/Kg = Micrograms \ per \ kilogram$

mg/Kg = Milligrams per kilogram

June 2010 Page 3 of 4

Table 4
Basin 19 Inline Solids Sample Results:
Eastern Branch - NW Kittridge and NW Yeon Lines

Ü	Downstream						Upstream		
	Whole Basin LWG Sample	NW Kittridge Main Line	Calbag Metals	Lateral	North Private Line	South Private Line	NW Yeon		
	Manhole AAP918 Outgoing 42" Line	Manhole AAP918 Incoming 48" Line	Sampling Manhole at Fo Outgoing 21		Manhole AAP931 Incoming 18" Line	Manhole AAP932 Incoming 18" Line	Manhole AMZ077 Outgoing 27" Line		JSCS ⁽¹⁾ ng Level Values
Class Analyte U	LW3-STW-S10-CF19 07/03/07 J nits	FO031019 10/07/03	FO070810 06/18/07	FO08655 06/02/08	FO031020 10/07/03	FO031021 10/07/03	FO031024 10/08/03	Toxicity	Bioaccumulation

⁽¹⁾ JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

June 2010 Page 4 of 4

⁽²⁾ TOC analyzed using Puget Sound Estuary Program (PSEP), Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound; ASTM D4129-82M; EPA 415.1; or EPA 9060.

⁽³⁾ Mercury analysis by EPA 7471A or WPCL SOP-M-10.01

⁽⁴⁾ The toxicity SLV represents the sum of the 2,4' and 4,4' isomers

⁽⁵⁾ Estimated Total DDx is the sum of DDE, DDD and DDT

⁽⁶⁾ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane is also known as trans-Chlordane.

⁽⁷⁾ Total Chlordane is the sum of alpha-, and beta-isomers.

⁽⁸⁾ Total PCBs and PAHs are calculated by assigning "0" to undetected constituents.

⁽⁹⁾ Refer to Anchor and Integral, 2008, Portland Harbor RI/FS, Round 3A and 3B Stormwater Data Report, for individual congener results in the LWG sample. Refer to BES, 2009a, City Outfall Basin 19 Inline Solids Sampling at the Former Calbag Metals Site, for individual congener results in the City sample.

⁽¹⁰⁾ Benzofluoranthenes include benzo(b)fluoranthene and benzo(k)fluoranthene.

⁽¹¹⁾ Additional SVOCs and VOCs that were analyzed in samples collected in 2003 are not listed; all results were ND.

⁼ concentration exceeds JSCS Toxicity Screening Level Value.

Table 5
Basin 19 Inline Solids Sample Results:

		Downstream								Manhala	AAT498				>	Upstream		
		Manhole AAT496	Manhole AAT427		e AAT496	Catch Basin AMZ147			AAT497		AAT497)	Catch Basin ANB502	Catch Basin AMZ188	3 Catch Basin AMZ192	Catch Basin ANF207	Catch Basin AAT525		JSCS (1)
		From Manhole	From Manhole	Incoming 30" L	ine from St Helens	NW of PGE-FP	NW of PGE-FP	(Drains to	AAT496)	(Diams to	,	Adj. to PGE- FP	Adj. to Brazil	Adj. to Greenway	Adj. to Greenway	SE of Greenway		ing Level Values
		FO031022	(Drains to AAT496) FO060544	FO060543	FO060553	(Drains to AAT496) FO060545	FO060546	Outgoing 30" Line	Incoming 30" Line	Outgoing 30" Line	Incoming 30" Line	(Drains to AAT498) FO060552	FO060551	FO070815	FO070816	FO070817	Screen	ing Level values
		10/8/03	05/02/06	05/02/06	(duplicate sample)	05/02/06	05/02/06	FO060547	FO060548	FO060549	FO060550	05/02/06	05/02/06	06/22/07	06/22/07	06/22/07		
Class Analyte	Units		03/02/00	03/02/00	05/02/06	03/02/00	03/02/00	05/02/06	05/02/06	05/02/06	05/02/06	03/02/00					Toxicity	Bioaccumulation
Total Organic Carbon ⁽²⁾																		
TOC	%	0.667	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.64	6.4	5.42		
Total Solids (EPA 160.3M or SM 2540G)																		
TS	%	76	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49 (43.2)	68.8 (68.4)	34.6 (40.1)		
Martin (FDA (010/0020)																		
Metals (EPA 6010/6020) Aluminum	m o/V o	NA	NA	NT A	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA	NA		
Antimony	mg/Kg mg/Kg	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	56.7	3.84	3.68	64	
Arsenic	mg/Kg	8.08	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	3.92	5.44	3.95	33	7
Barium	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Cadmium	mg/Kg	0.77	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.57	0.47	0.72	4.98	1
Chromium	mg/Kg	63.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	52.1	60.8	71.6	111	
Copper	mg/Kg	64.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	60.9	114	158	149	
Lead	mg/Kg	27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111	128	140	128	17
Mercury ⁽³⁾	mg/Kg	0.033	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.156	0.085	0.169	1.06	0.07
Nickel	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	25.1	31.8	31.9	48.6	
Selenium	mg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	5	2
Silver	mg/Kg	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	0.22	1.79	0.8	5	
Zinc	mg/Kg	208	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	438	307	458	459	
Organochlorine Pesticides (EPA 8081A or 808	82)																	
2,4'-DDD	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2,4'-DDE	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2,4'-DDT	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
4,4'-DDD	ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
4,4'-DDE	ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
4,4'-DDT	ug/Kg	22.6 U	89.3 U	426 U	418 U	463 U	457 U	500 U	89.8 U	85.4 U	80.9 U	718 U	336 U	NA	NA	NA		
DDD ⁽⁴⁾	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	31.3	0.33
DDE ⁽⁴⁾	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	28	0.33
DDT ⁽⁴⁾	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	62.9	0.33
Estimated Total DD		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA		0.33
Aldrin	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	70.2	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA	40	
alpha-Endosulfan	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
alpha-Hexachlorocyclohexane	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
beta-Endosulfan	ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
beta-Hexachlorocyclohexane	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA		
alpha-Chlordane ⁽⁶⁾	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA NA	NA	NA		
beta-Chlordane ⁽⁶⁾	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA NA	NA NA	NA	15.6	
Total Chlordan		ND	ND 2000 H	ND 1010 H	ND 1070 H	ND	ND 2050 H	ND 2210 H	ND 2010 H	ND 1010 H	ND	ND 2210 H	ND 1500 H	NA NA	NA	NA	17.6	0.37
Chlordane (tech) cis-Nonachlor	ug/Kg	U NA	2000 U	1910 U NA	1870 U NA	2070 U NA	2050 U NA	3210 U NA	2010 U NA	1910 U NA	1810 U NA	3210 U NA	1500 U NA	NA NA	NA NA	NA NA		
delta-Hexachlorocyclohexane	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA NA	NA NA	NA NA		
Dieldrin	ug/Kg ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA NA	NA NA	NA NA	61.8	0.0081
Endosulfan sulfate	ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA NA	NA NA		
Endrin	ug/Kg	22.6 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA	207	
Endrin aldehyde	ug/Kg	22.6 U	89.3 U	426 U	418 U	426 U	457 U	500 U	89.8 U	85.4 U	80.9 U	718 U	336 U	NA	NA	NA		
Endrin ketone	ug/Kg	22.6 U	89.3 U	426 U	418 U	426 U	457 U	500 U	89.8 U	85.4 U	80.9 U	718 U	336 U	NA	NA	NA		
gamma-Hexachlorocyclohexane	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA	4.99	
Heptachlor	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA	NA	NA	10	
Heptachlor epoxide	ug/Kg	11.3 U	89.3 U	85.3 U	83.7 U	92.6 U	91.3 U	100 U	89.8 U	85.4 U	80.9 U	144 U	67.2 U	NA NA	NA NA	NA NA	16	
Methoxychlor	ug/Kg	113 U NA	89.3 U NA	426 U NA	418 U	463 U NA	457 U NA	500 U NA	89.8 U NA	85.4 U	80.9 U	718 U	336 U NA	NA NA	NA NA	NA NA		
oxy-Chlordane	ug/Kg ug/Kg	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Toxaphene	ug/Kg	1130 U	2670 U	2550 U	2500 U	2760 U	2730 U	2990 U	2680 U	2550 U	2410 U	4280 U	2000 U	NA	NA NA	NA NA		
trans-Nonachlor	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Polychlorinated Biphenyls (PCBs) (EPA 8082																		
Aroclor 1016	ug/Kg	117 U	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U	530	
Aroclor 1221	ug/Kg	234 U	100 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	30 U		
Aroclor 1232	ug/Kg	117 U	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U		
Aroclor 1242	ug/Kg	117 U	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	21	15 U		
Aroclor 1248	ug/Kg	117 U	50 U	10 U	10 U	47	22	10 U	10 U	10 U	10 U	20	24	10 U	10 U	15 U	1500	
Aroclor 1254	ug/Kg	117 U	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U	300	
Aroclor 1260	ug/Kg	117 U	137	15	11	40	25	10 U	10 U	10 U	10 U	29	67	10 U	11	15 U	200	
Aroclor 1262	ug/Kg	NA	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U		
Aroclor 1268	ug/Kg	NA	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U		

June 2010 Page 1 of 2

Table 5
Basin 19 Inline Solids Sample Results:
Eastern Branch - Active Lines in NW St. Helens

Eastern Branch - Active Lines in NW St. F	ieiens	Downstream													>	Upstream		
		Manhole AAT496 From Manhole	Manhole AAT427 From Manhole	Manhole Incoming 30" Lin		NW of PGE-FP	7 Catch Basin ANB320 NW of PGE-FP		AAT497 AAT496)		e AAT498 o AAT497)	Catch Basin ANB502 Adj. to PGE- FP	Catch Basın AMZ188	Catch Basin AMZ192 Adj. to Greenway	2 Catch Basin ANF207 Adj. to Greenway	Catch Basin AAT525 SE of Greenway		JSCS (1) ing Level Values
Class Analyte			(Drains to AAT496) FO060544 05/02/06	FO060543 05/02/06	FO060553 (duplicate sample) 05/02/06	FO060545 05/02/06	(Drains to AAT496) FO060546 05/02/06	Outgoing 30" Line FO060547 05/02/06	Incoming 30" Line FO060548 05/02/06	Outgoing 30" Line FO060549 05/02/06	Incoming 30" Line FO060550 05/02/06	(Drains to AAT498) FO060552 05/02/06	FO060551 05/02/06	FO070815 06/22/07	FO070816 06/22/07	FO070817 06/22/07	Toxicity	
Polynuclear Aromatic Hydrocarbons (EPA 8270C	or 8270-SIN	√D.																
2-Methylnaphthalene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80	12	9.9	200	
Acenaphthene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12	15	9.1	300	
Acenaphthylene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.8	10	4.4	200	
Anthracene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	29	46	30	845	
Benzo(a)anthracene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	100	180	91	1050	
Benzo(a)pyrene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	95	180	92	1450	
Benzo(b)fluoranthene	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	130	250	130		
Benzo(g,h,i)perylene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	110	190	110	300	
Benzo(k)fluoranthene	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39	93	37	13000	
Benzofluoranthenes (9)	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Chrysene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	130	280	130	1290	
Dibenzo(a,h)anthracene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22	36	24	1300	
Fluoranthene	ug/Kg	78.5 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	290	500	320	2230	37000
Fluorene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12	17	12	536	
Indeno(1,2,3-cd)pyrene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	98	200	100	100	
Naphthalene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	87	24	17	561	
Phenanthrene	ug/Kg	79.8 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	160	240	160	1170	
Pyrene	ug/Kg	111	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	280	390	230	1520	1900
Total PAHs ⁽⁸⁾	ug/Kg	189.5 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1680	2663	1506		
Phthalates (EPA 8270C or 8270-SIM)																		
Bis(2-ethylhexyl) phthalate (BEHP)	ug/Kg	549	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2500	2100	3800	800	330
Butylbenzyl phthalate	ug/Kg	399 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	3900	1100	4600		
Dibutyl phthalate	ug/Kg	319 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U	100	60
Diethyl phthalate	ug/Kg	319 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U	600	
Dimethyl phthalate	ug/Kg	319 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	250 J	200 U	410		
Di-n-octyl phthalate	ug/Kg	319 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U		
Semivolatile Organic Compounds (EPA 8081A or	8270-SIM)																	
Dibenzofuran (EPA 8270 SIM)	ug/Kg	319 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	22	36	8.2		
Hexachlorobenzene	ug/Kg	120 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U	100	19
Hexachlorobutadiene	ug/Kg	120 U	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U	600	
Hexachloroethane	ug/Kg	120 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120 U	100 U	130 U		

Notes:

- J = Estimated value
- U = The analyte was not detected above the reported sample quantification limit
- $NA = Not \ analyzed$
- ND = Not detected
- -- = No JSCS screening level available.
- ug/Kg = Micrograms per kilogram
- mg/Kg = Milligrams per kilogram
- (1) JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)
- (2) TOC analyzed using Puget Sound Estuary Program (PSEP), Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound; ASTM D4129-82M; EPA 415.1; or EPA 9060.
- (3) Mercury analysis by EPA 7471A or WPCL SOP-M-10.01
- (4) The toxicity SLV represents the sum of the 2,4' and 4,4' isomers
- (5) Estimated Total DDx is the sum of DDE, DDD and DDT
- $^{(6)}$ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane.
- (7) Total Chlordane is the sum of alpha-, and beta-isomers.
- (8) Total PCBs and PAHs are calculated by assigning "0" to undetected constituents.
- (9) Benzofluoranthenes include benzo(b)fluoranthene and benzo(k)fluoranthene.
- (10) Additional SVOCs and VOCs that were analyzed in samples collected in 2003 are not listed; all results were ND.
- = concentration exceeds JSCS Toxicity Screening Level Value.
- bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

June 2010 Page 2 of 2

Table 6 Basin 19 Inline Solids Sample Results: Eastern Branch - Abandoned Lines in NW St. Helens

		Downstream			Upstream		
		From abandoned 6" line IL-19-6IN-1006-1 FO061296	From abandoned 6" line IL-19-6IN-1006-2 FO061297	From abandoned 6" line IL-19-6IN-1006-3 FO061298	From abandoned 12" line IL-19-12IN-1006-4 FO061299		JSCS ⁽¹⁾ ng Level Values
Class Analyte	Units	10/11/06	10/11/06	10/11/06	10/11/06	Toxicity	Bioaccumulation
Organochlorine Pesticides (EPA 8081A)							
2,4'-DDD	μg/Kg	NA	NA	NA	NA		
2,4'-DDE	μg/Kg	NA	NA	NA	NA		
2,4'-DDT	μg/Kg	NA	NA	NA	NA		
4,4'-DDD	μg/Kg	21	2.6 U	3.7	2.1 U		
4,4'-DDE	μg/Kg	49	5.2	8.4	2.1 U		
4,4'-DDT	μg/Kg	290	34	62	41		
DDD ⁽²⁾	μg/Kg	21	ND	3.7	ND	31.3	0.33
DDE ⁽²⁾	μg/Kg	49	5.2	8.4	ND	28	0.33
DDT ⁽²⁾	μg/Kg	290	34	62	41	62.9	0.33
Estimated Total DDx ⁽³⁾	μg/Kg	360	39,2	74.1	41		0.33
Aldrin	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U	40	
alpha-Endosulfan	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U		
alpha-Hexachlorocyclohexane	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U		
beta-Endosulfan	μg/Kg	12 U	2.6 U	2.8 U	2.1 U		
beta-Hexachlorocyclohexane	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U		
alpha-Chlordane ⁽⁴⁾	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U		
beta-Chlordane ⁽⁴⁾	μg/Kg	5.8 U	1.3 U	1.4 U	2.8		
Total Chlordane ⁽⁵⁾	μg/Kg	ND	ND	ND	2.8	17.6	0.37
Chlordane (tech)	μg/Kg	NA	NA	NA	NA		
cis-Nonachlor	μg/Kg	NA	NA	NA	NA		
delta-Hexachlorocyclohexane	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U		
Dieldrin	μg/Kg	12 U	2.6 U	9.2	12	61.8	0.0081
Endosulfan sulfate	μg/Kg	12 U	2.6 U	2.8 U	1.1 U		-
Endrin	μg/Kg	12 U	2.6 U	2.8 U	2.1 U	207	
Endrin aldehyde	μg/Kg	28 U	2.6 U	2.8 U	9.6		
Endrin ketone	μg/Kg	48 U	2.6 U	2.8 U	27		
gamma-Hexachlorocyclohexans	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U	4.99	
Heptachlor	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U	10	
Heptachlor epoxide	μg/Kg	5.8 U	1.3 U	1.4 U	1.1 U	16	
Methoxychlor	μg/Kg	58 U	13 U	14 U	11 U		
Mirex oxy-Chlordane	μg/Kg	NA NA	NA NA	NA NA	NA NA		
Toxaphene	μg/Kg μg/Kg	580 U	130 U	140 U	110 U		
trans-Nonachlor	μg/Kg μg/Kg	NA	NA	NA	NA		
olychlorinated Biphenyls (PCBs) (EPA 8082)							
Aroclor 1016	μg/Kg	50 U	10 U	50 U	50 U	530	
Aroclor 1221	μg/Kg	100 U	20 U	100 U	100 U		
Aroclor 1232	μg/Kg	50 U	10 U	50 U	50 U		
Aroclor 1242	μg/Kg	50 U	10 U	50 U	50 U		
Aroclor 1248	μg/Kg	50 U	10 U	50 U	50 U	1500	
Aroclor 1254	μg/Kg	50 U	10 U	50 U	50 U	300	
Aroclor 1260	μg/Kg	515	187	771	679	200	
Aroclor 1262	μg/Kg	50 U	10 U	50 U	50 U		
Aroclor 1268	μg/Kg	50 U	10 U	50 U	50 U		
Total PCBs ⁽⁶⁾	μg/Kg	515	187	771	679	676	0.39

June 2010 Page 1 of 2

Table 6 Basin 19 Inline Solids Sample Results: Eastern Branch - Abandoned Lines in NW St. Helens

		20111011111111			Сропсии		
		From abandoned 6" line IL-19-6IN-1006-1 FO061296	From abandoned 6" line IL-19-6IN-1006-2 FO061297	From abandoned 6" line IL-19-6IN-1006-3 FO061298	From abandoned 12" line IL-19-12IN-1006-4 FO061299		JSCS ⁽¹⁾ ng Level Values
Class Analyte	Units	10/11/06	10/11/06	10/11/06	10/11/06	Toxicity	Bioaccumulation
Notes:							

U = The analyte was not detected above the reported sample quantification limit

NA = Not analyzed

ND = Not detected

-- = No JSCS screening level available.

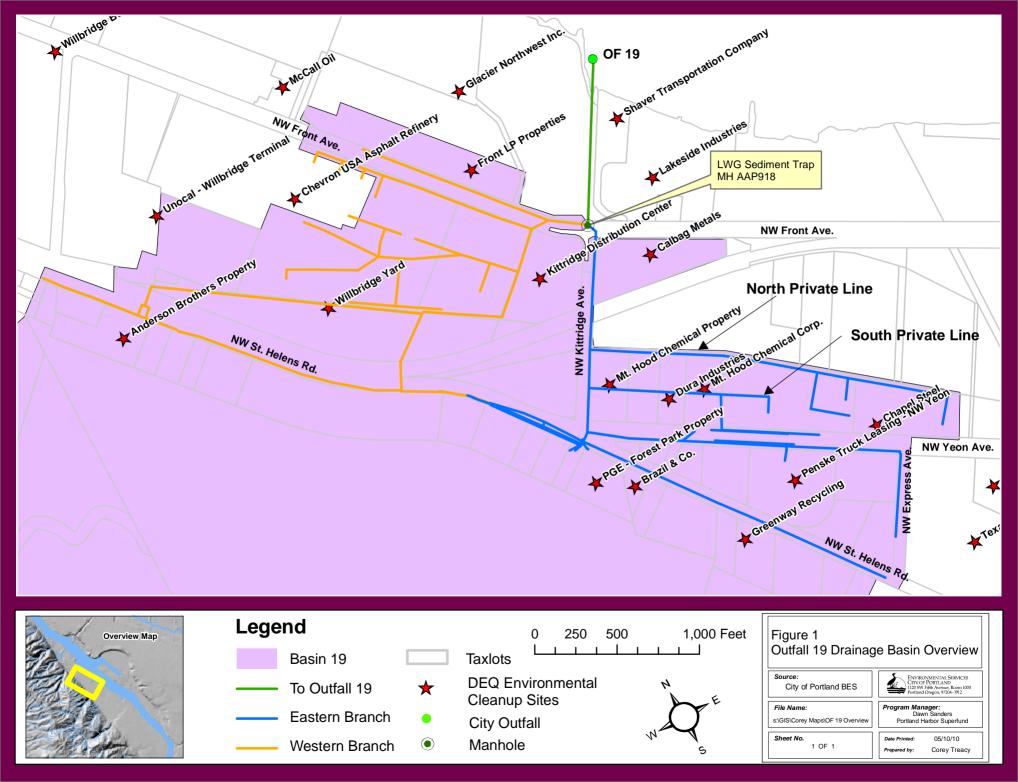
μg/Kg = Micrograms per kilogram

(1) JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

(2) The toxicity SLV represents the sum of the 2,4' and 4,4' isomers

(3) Estimated Total DDx is the sum of DDE, DDD and DDT

(4) Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane is also known as trans-Chlordane.


(5) Total Chlordane is the sum of alpha-, and beta-isomers.

 $^{(6)}$ Total PCBs are calculated by assigning "0" to undetected constituents.

= concentration exceeds JSCS Toxicity Screening Level Value.

 $bold = concentration \ exceeds \ JSCS \ Bioaccumulation \ Screening \ Level \ Value.$

June 2010 Page 2 of 2

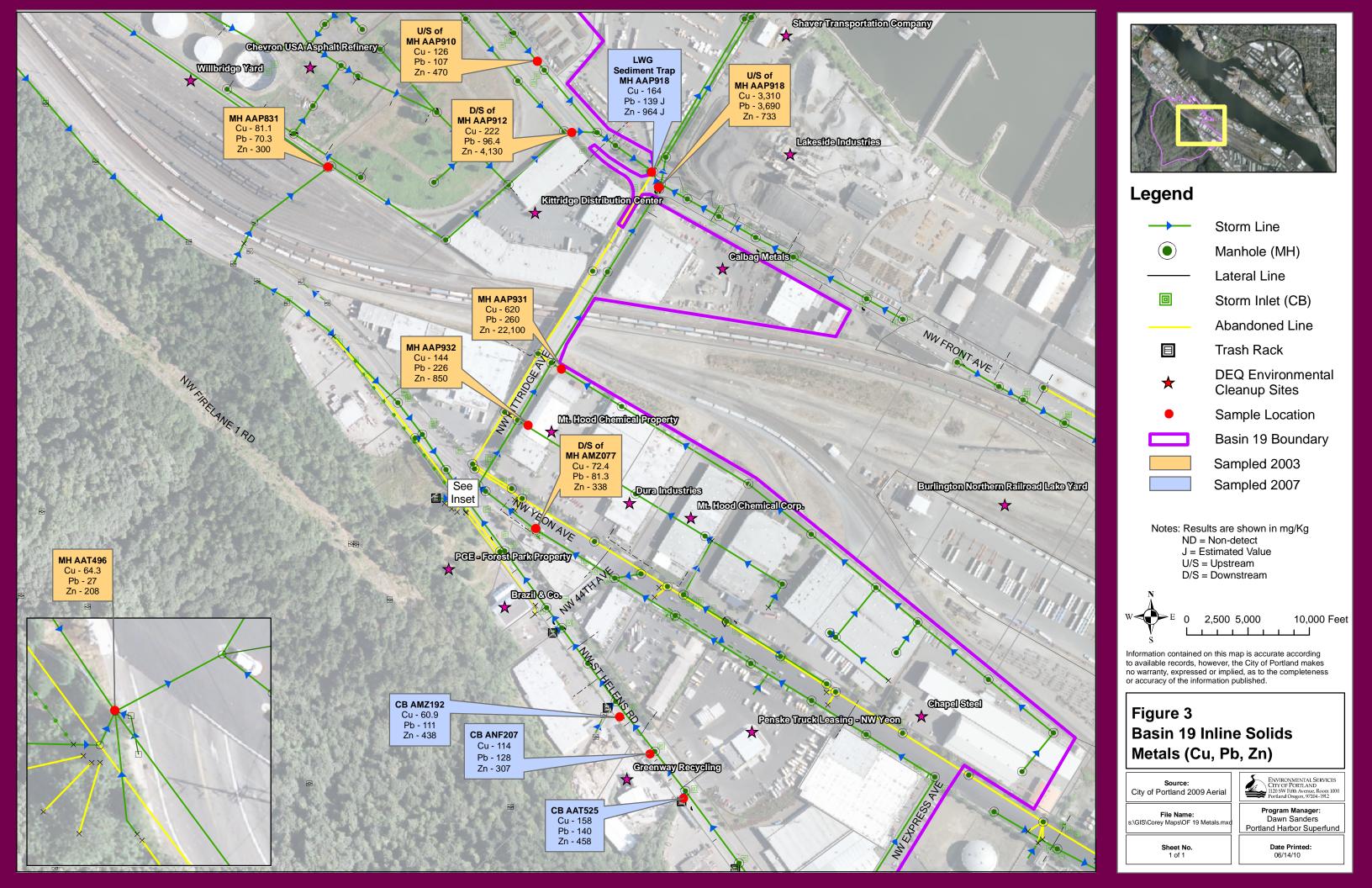
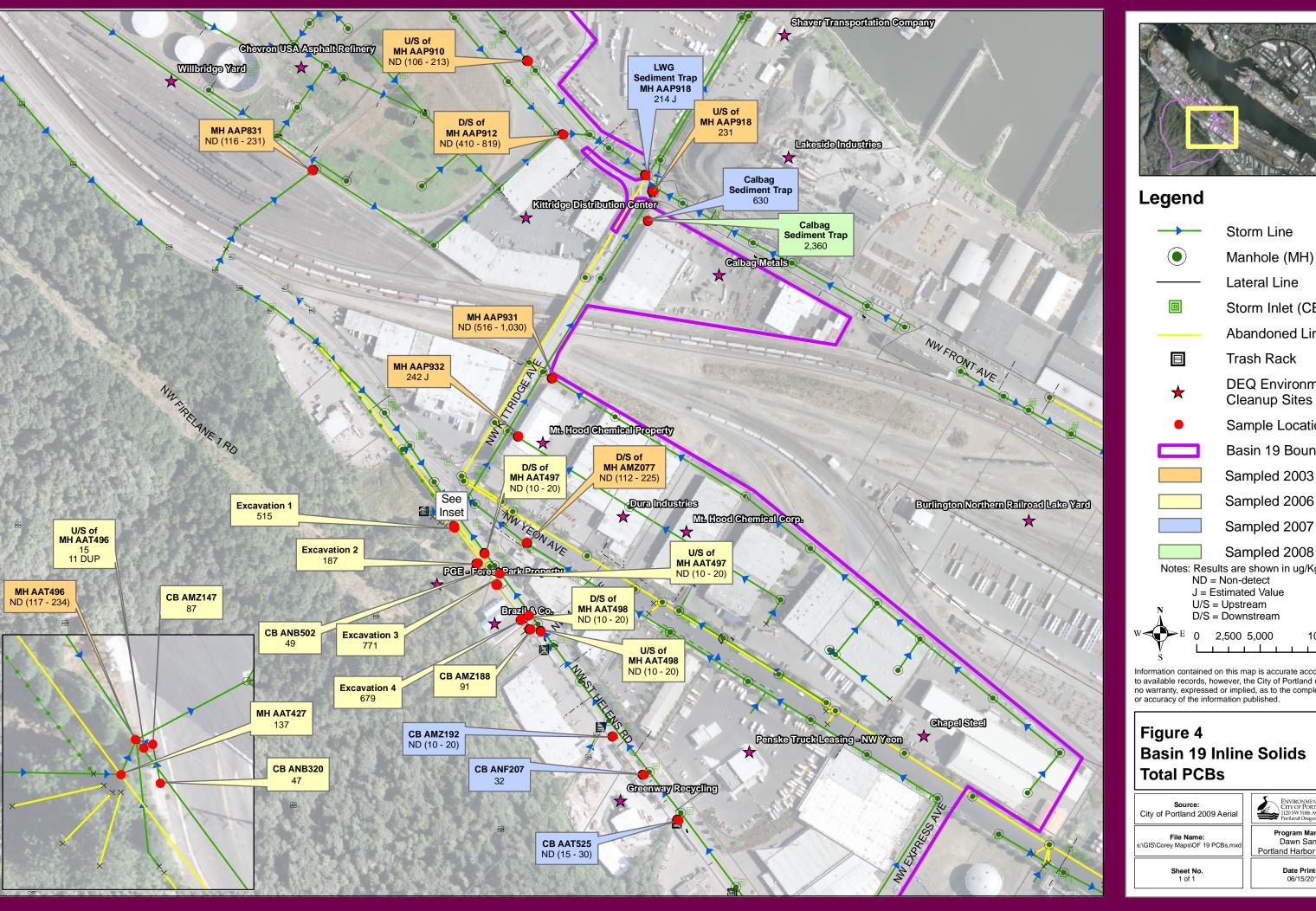




Figure 2. Timeline of Basin 19 Source Investigation/Control Measures

Storm Line

Manhole (MH)

Lateral Line

Storm Inlet (CB)

Abandoned Line

Trash Rack

DEQ Environmental Cleanup Sites

Sample Location

Basin 19 Boundary

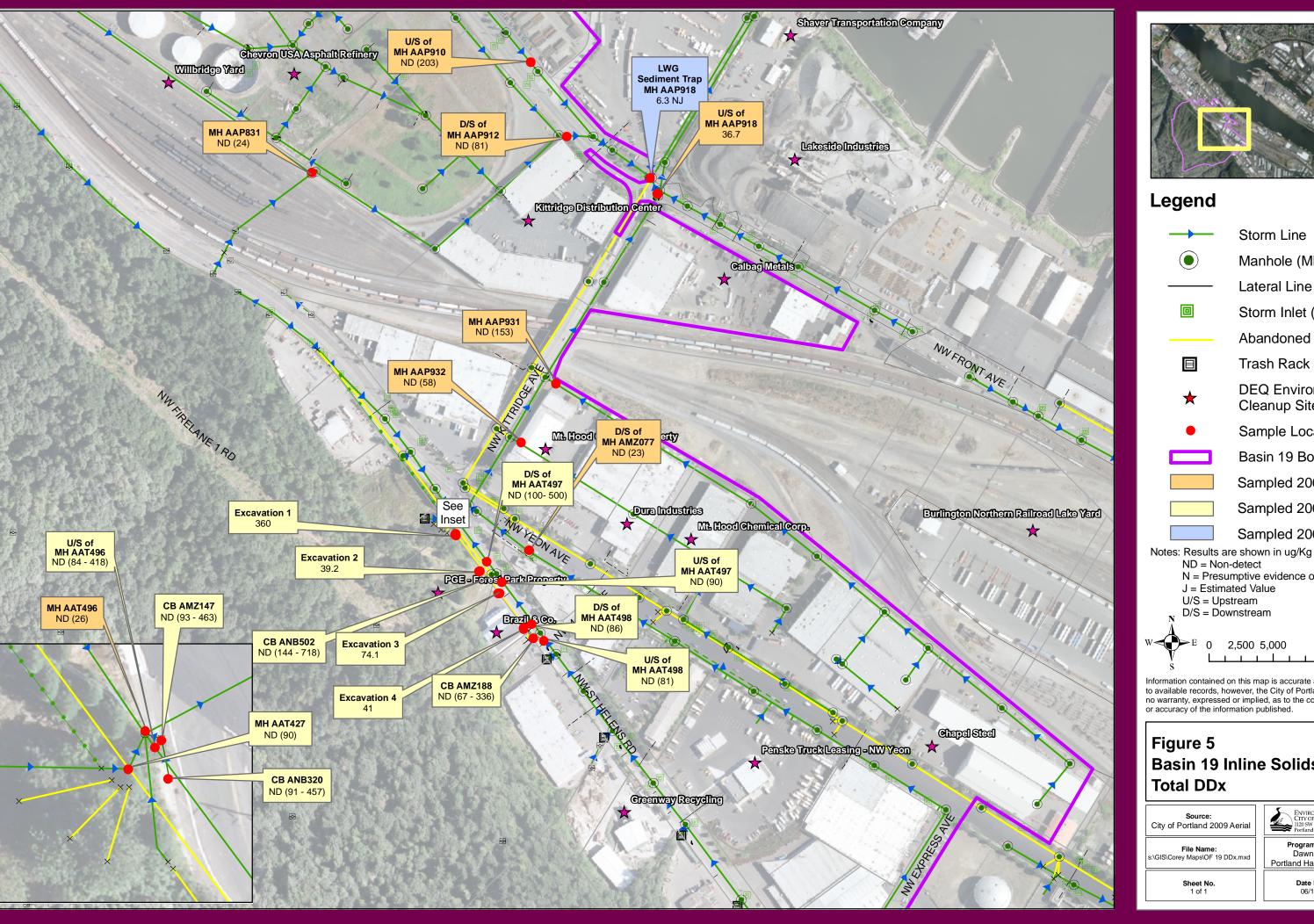
Sampled 2003

Sampled 2008

Notes: Results are shown in ug/Kg ND = Non-detect

> J = Estimated Value U/S = Upstream

10,000 Feet


Information contained on this map is accurate according to available records, however, the City of Portland makes no warranty, expressed or implied, as to the completeness

Basin 19 Inline Solids

ENVIRONMENTAL SERVICES CITY OF PORTLAND 1120 SW Fifth Avenue, Room 1000 Portland Oregon, 97204-1912

Program Manager: Dawn Sanders Portland Harbor Superfund

Date Printed:

Legend

Storm Line

Manhole (MH)

Lateral Line

Storm Inlet (CB)

Abandoned Line

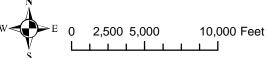
Trash Rack

DEQ Environmental Cleanup Sites

Sample Location

Basin 19 Boundary

Sampled 2003


Sampled 2006

Sampled 2007

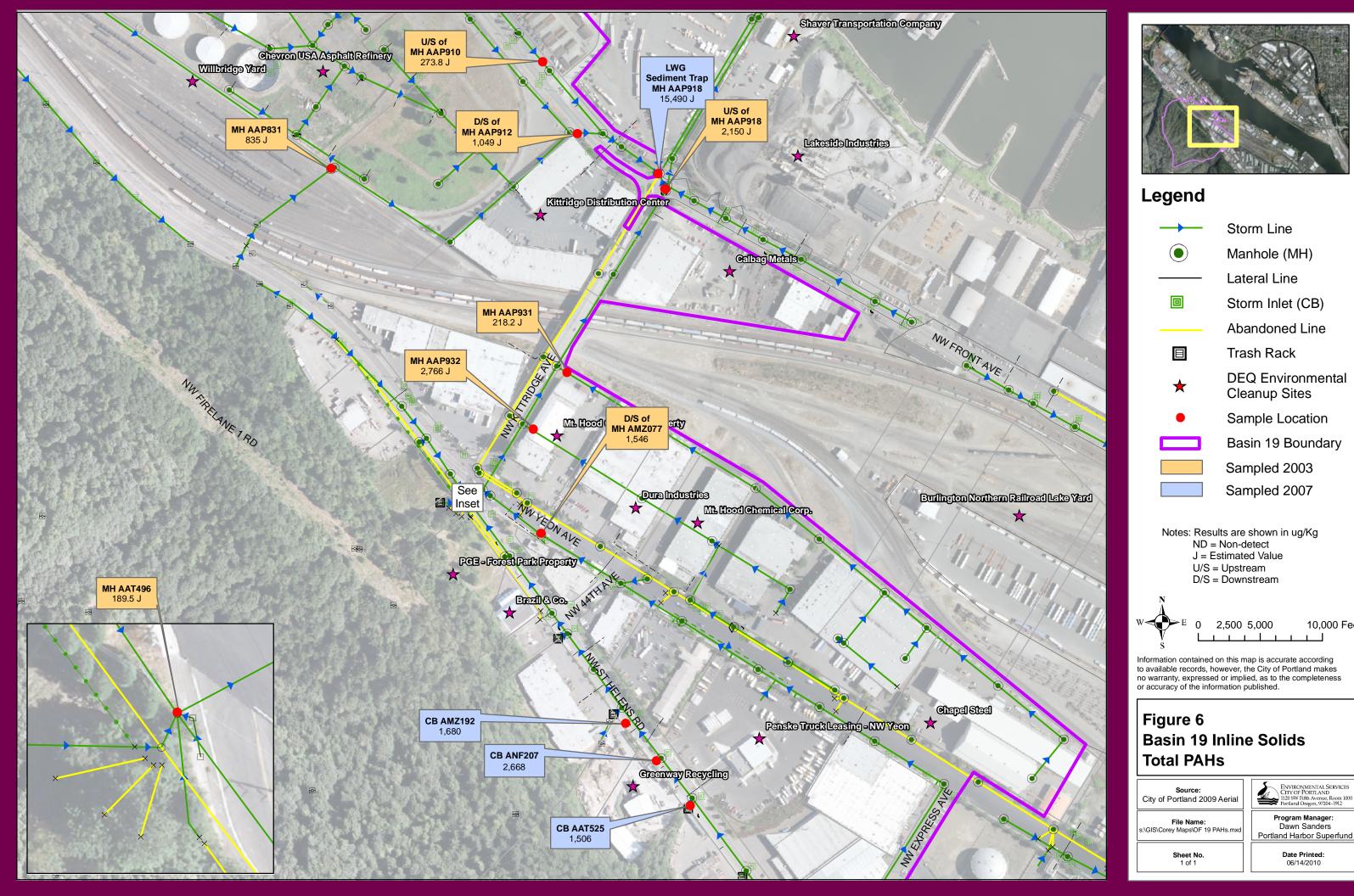
ND = Non-detect N = Presumptive evidence of a compound

J = Estimated Value

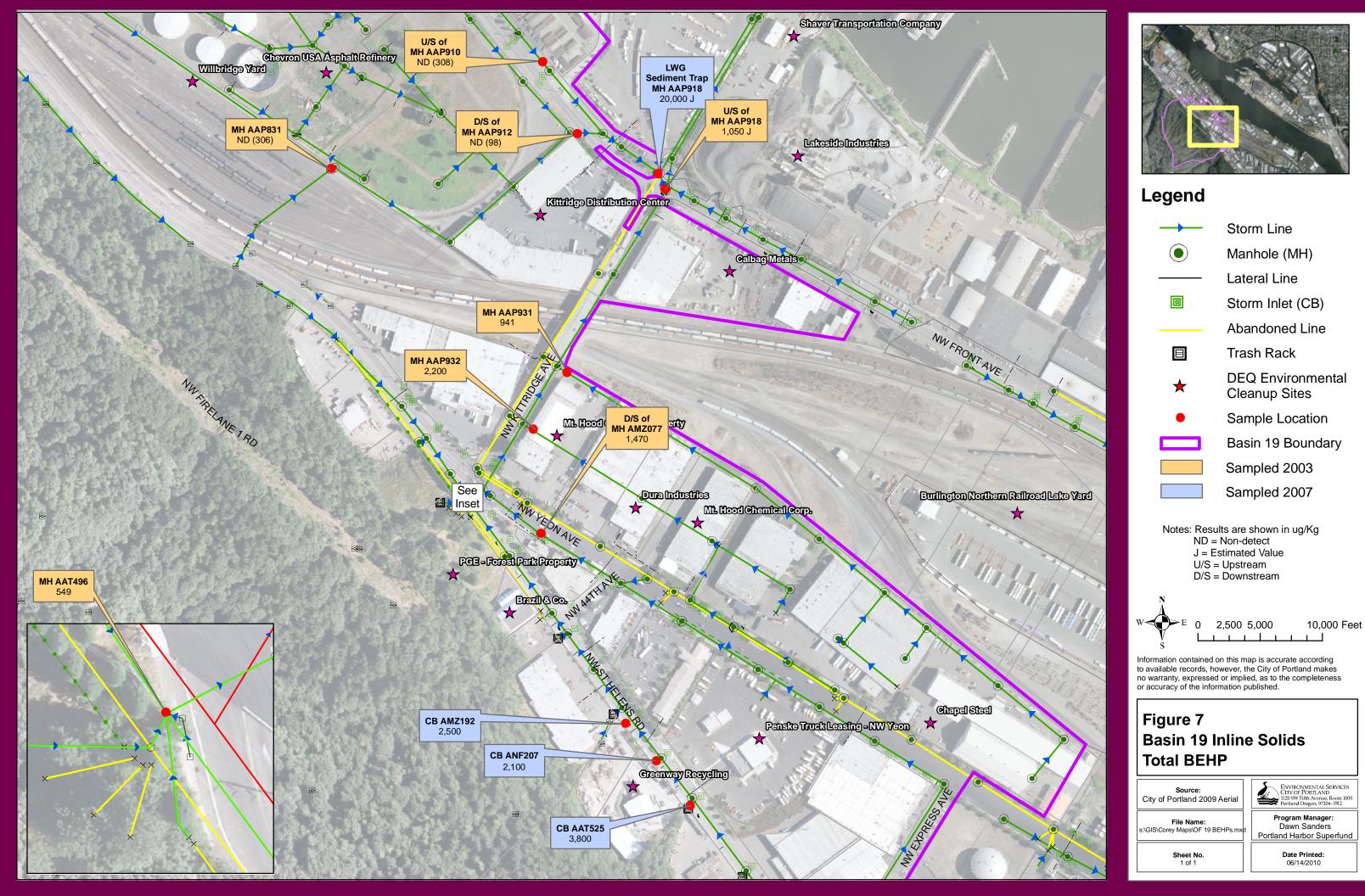
U/S = Upstream D/S = Downstream

Information contained on this map is accurate according to available records, however, the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.

Figure 5 **Basin 19 Inline Solids Total DDx**


City of Portland 2009 Aerial

ENVIRONMENTAL SERVICES CITY OF PORTLAND 1120 SW Fifth Avenue, Room 1000 Portland Oregon, 97204-1912


Program Manager: File Name: Dawn Sanders s:\GIS\Corey Maps\OF 19 DDx.mxd Portland Harbor Superfund

Sheet No.

Date Printed:

10,000 Feet

Outfall 19 Inline Sediment Investigation Data Report

Outfall 19 Inline Sediment Investigation Data Report

PREPARED FOR: Dawn Sanders/City of Portland

PREPARED BY: CH2M HILL

DATE: July 30, 2004

1.0 Introduction

This memo presents a summary of field activities, field observations, and analytical data associated with the October 2003 inline solids investigation conducted by the City of Portland (City) Bureau of Environmental Services (BES) in stormwater drainage basin 19. Pursuant to the September 18, 2003, verbal approval given by the Oregon Department of Environmental Quality (DEQ) (personal communication between Rod Struck of DEQ and Dawn Sanders of BES, October 6, 2003), the City collected inline solids samples in Basin 19 between October 7 and October 9, 2003.

The inline solids investigation in Basin 19 was intended to evaluate the nature and extent of environmental contamination that may enter or has entered the City's stormwater conveyance system, and thus potentially affect sediment quality in the Willamette River. The purpose of the investigation was to identify subbasins with substantially higher concentrations of chemicals that indicate further investigation of upland sources is warranted within that subbasin.

Sampling was conducted in accordance with the *Sampling and Analysis Plan – Inline Solids in Basins M-1 and 18* (SAP) (CH2M HILL, August 2003). Sampling locations were selected to characterize subbasins that may require additional source investigation. Figure A-1 shows the locations that were chosen. Inline solids samples were collected during no-flow or low-flow conditions, and sampling was not conducted in areas where standing river water (resulting from high river stages) had backed up the stormwater line. Samples were collected from eight locations and analyzed for total metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc), polynuclear aromatic hydrocarbons (PAHs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPHs), pesticides, and total organic carbon (TOC). The City of Portland Water Pollution Control Laboratory analyzed samples for metals, PAHs, and TPHs and contracted all other analyses to Severn Trent Laboratories (STL). Laboratory methods and target detection limits were presented in the SAP.

2.0 Inline Solids Investigation

This section presents field observations noted during inline solids sampling and data results of inline solids samples collected by the City in Basin 19 between October 7, 2003, and October 9, 2003.

PDX/042100007.DOC

2.1 Field Observations

Field observations for Basin 19 are presented in Table A-1. The table includes the sample identification (ID) number and entrance node (manhole) location, upstream subbasin, solids description, and comments. Observations for each sample were recorded by a representative of CH2M HILL in a field notebook (Attachment A) and by a representative of the City on field data sheets (Attachment B). Photographs of sample locations are shown in Attachment C.

2.2 Data Results

Data results are summarized in Table A-2 of this memorandum. Corresponding laboratory data sheets and a data validation report are presented in Attachments D and E, respectively. Samples were analyzed according to the SAP with the following exceptions:

- Results were reported for more metals than originally requested in four of the samples
 collected because the City metals analyst noticed detections of barium, selenium, and
 silver in the samples.
- Targeted detection limits were not achieved for PAHs, pesticides, PCBs, SVOCs, and TPH. Laboratory narratives indicate detection limits were not achieved because of matrix interferences and/or nonhomogeneity. Some pesticide samples required dilutions of 100 times.

TABLE A-1
Basin 19 Inline Solids Sampling Observations

Basin 19 Inline Solids Sampling Observations										
Sample ID/ Location	Upstream Subbasin	Solids Description	Comments							
IL-19-AAP910-1003	1	WELL-GRADED SAND WITH	Sample collected 0 to 2 feet upstream of AAP910.							
5200 NW Front Avenue		GRAVEL, dark gray, little or no silt, 10 percent rounded gravel up to	No standing or flowing water at sample location.							
		10 percent rounded gravel up to 1/2 inch in diameter	Light sheen observed on sample.							
			Minor (<< 1 percent) anthropomorphic debris observed (green and white paint chips).							
IL-19-AAP0912-1003	2	SILT, brown, cohesive-silt formed	Sample collected 0 to 14 feet downstream of node.							
2100 NW Front Avenue		1/8-inch balls when scraped from stormwater line	Groundwater observed entering stormwater inline 15 feet downstream of node. Black slime observed around line juncture where groundwater was entering the line. The sample was collected upstream of where the groundwater was entering.							
IL-19-AAP831-1003	2B	WELL-GRADED SAND AND	Sample collected at node. The node is a 5-foot-by-5-foot-square catch basin.							
Chevron Asphalt		GRAVEL, brown, 50 percent angular gravel up to 2 inches in diameter, < 5	Minor (<< 1 percent) amount of anthropomorphic debris (metal screw, metal flakes, glass pieces).							
		percent silt	Minor (< 1 percent) amount of organic debris (leaves, twigs, small pieces of wood).							
			No sheen or odor observed.							
IL-19-AAP918-1003	3	GRAVEL WITH SAND, brown, 1/8- to	Sample collected 20 to 22 feet upstream of AAP918.							
NW Kittridge and Front		2-inch_diameter, angular, 50 percent sand, no silt	Water flowing in channels between sediment. A flow rate could not be determined.							
Avenue			Minor (<< 1 percent) anthropomorphic debris observed (metal shavings up to ½ inch long, small glass pieces).							
			Minor (< 1 percent) organic debris observed (twigs).							
IL-19-AAP931-1003	3A	Groundwater precipitate, orange-	Sample collected in an 18-inch-diameter private line that enters node AAP931 from the south.							
4488 NW Yeon Avenue		brown	Solids approximately 1/8 inch thick at sample location.							
			Small volume recovered (approximately 8 ounces). Two full jars and one half-full jar submitted to laboratory for analysis for metals, semivolatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs).							
			No debris or sheen observed in sample.							
IL-19-AAP932-1003	3B	80 percent root matter, 20 percent silt	Sample collected in an 18-inch-diameter private line that enters node AAP932 from the south.							
4488 NW Yeon Avenue			A thick mat of living roots approximately 2 inches thick covered the bottom of the 18-inch-diameter line and trapped silt in the line.							
			No odor or sheen observed.							
			Removed larger root debris from sample.							
			½ inch of standing water at sample location.							
IL-19-AAZ077-1003	3C	WELL-GRADED SAND, gray with	Sample collected 0 to 2 feet downstream of node.							
4465 NW Yeon Avenue		white grains, medium grain	No odor or debris observed.							
			Light sheen observed on sample.							
IL-19-AAT496-1003	3D	SAND WITH GRAVEL, brown,	Sample collected 0 to 2 feet upstream of node in 36-inch-diameter line.							
NW St. Helens Road and Yeon Avenue		50 percent gravel up to 1 inch in diameter, < 5 percent silt	No odor, debris, or sheen observed.							

PDX/042100007.DOC 3

Silver mg/kg 0.21 35 77 145 270 270 270 270 270 270 270 270 270 270 270 270	TABLE A-2 Analytical Results from Outfall 19 Inline Solids Samples Taken October 8, 2003										
Total Organic Carbon mg/kg 5,760 10,300 25,900 3,930 38,900 82,700 6,670 8,660 Total Metals: mg/kg 29 6.0 465 12 137 67 8.1 4.4 Barlum mg/kg 2,740 228 3,950 324	Class/Analyte	Units							IL-19-AAT496-1003	IL-19-AMZ077-1003	
Total Metals:	•	_									
Arsenic	Total Organic Carbon	mg/kg	5,760	10,300	25,900	3,930	36,900	82,700	6,670	8,660	
Barium	otal Metals:										
Cadmium	Arsenic	mg/kg	29	6.0	465	12	137	67	8.1	4.4	
Chromium											
Copper											
Lead mg/kg 70											
Mercury											
Selenium mg/kg 2.2 1.0 U 4.4 1.0 Silver mg/kg 0.21 35 77 145 -											
Silver											
Zinc mg/kg 300 470 4,130 733 22,100 850 208 338 PCBs:			+								
PCBs: Arcolor-1016											
Aroclor-1016	Zinc	mg/kg	300	470	4,130	733	22,100	850	208	338	
Arcolor-1221 μg/kg 231 U 213 U 819 U 220 U 1,030 U 657 U 234 U 225 Arcolor-1232 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Arcolor-1242 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Arcolor-1248 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Arcolor-1254 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Arcolor-1254 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Arcolor-1260 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Estimated Total PCBs ^{1,5} μg/kg 116 U 106 U 410 U 231 516 U 242 J 117 U 112 Pesticides: 4,4'-DDD μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDT μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDT μg/kg 24 U 203 UJ 81 U 37 153 U 58 U 23 U 23 Estimated Total DDTs ^{1,5} μg/kg 119 U 1,020 UJ 406 U 112 U 766 U 288 U 113 U 114 Aldrin μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11 U 11	CBs:										
Aroclor-1232 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1242 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1248 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1254 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1260 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Estimated Total PCBs¹.5 μg/kg											
Aroclor-1242 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1248 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1254 μg/kg 116 U 106 U 410 U 516 U 329 U 117 U 112 Aroclor-1260 μg/kg 116 U 106 U 410 U 231 516 U 329 U 117 U 112 Estimated Total PCBs ^{1,5} μg/kg 116 U 106 U 410 U 231 516 U 242 J 117 U 112 Estimated Total PCBs ^{1,5} μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDE μg/kg							,				
Aroclor-1248 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1254 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1260 μg/kg 116 U 106 U 410 U 231 516 U 329 U 117 U 112 Estimated Total PCBs¹.5 μg/kg											
Aroclor-1254 μg/kg 116 U 106 U 410 U 110 U 516 U 329 U 117 U 112 Aroclor-1260 μg/kg 116 U 106 U 410 U 231 516 U 242 J 117 U 112 Estimated Total PCBs¹.5 μg/kg 242											
Aroclor-1260 μg/kg 116 U 106 U 410 U 231 516 U 242 J 117 U 112 Estimated Total PCBs¹.5 μg/kg 231 242											
Estimated Total PCBs ^{1,5}											
Pesticides: μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDE μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDT μg/kg 24 U 203 UJ 81 U 37 153 U 58 U 23 U 23 Estimated Total DDTs ^{1,6} μg/kg μg/kg 37 <									+		
4,4'-DDD μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDE μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDT μg/kg 24 U 203 UJ 81 U 37 153 U 58 U 23 U 23 Estimated Total DDTs ^{1,6} μg/kg μg/kg 37 </td <td>Estimated Total PCBs^{1,9}</td> <td>μg/kg</td> <td></td> <td></td> <td></td> <td>231</td> <td></td> <td>242</td> <td></td> <td></td>	Estimated Total PCBs ^{1,9}	μg/kg				231		242			
4,4'-DDE μg/kg 24 U 203 UJ 81 U 22 U 153 U 58 U 23 U 23 4,4'-DDT μg/kg 24 U 203 UJ 81 U 37 153 U 58 U 23 U 23 Estimated Total DDTs ^{1,6} μg/kg 37	esticides:										
4,4'-DDT μg/kg 24 U 203 UJ 81 U 37 153 U 58 U 23 U 23 Estimated Total DDTs ^{1,6} μg/kg 37 -	*	μg/kg									
Estimated Total DDTs ^{1,6} μg/kg 37											
4,4'-Methoxychlor μg/kg 119 U 1,020 UJ 406 U 112 U 766 U 288 U 113 U 114 Aldrin μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11 Alpha-BHC μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11											
Aldrin μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11 Alpha-BHC μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11											
Alpha-BHC μg/kg 12 U 102 UJ 41 U 11 U 77 U 29 U 11 U 11	*			· ·							
и перавли. — 1 ножо и 12 н и 112 ни и 41 н и 1 11 н // н и 20 н и 1 11 н и					• • •						
		μg/kg									
100											
10 0											
	·										
	•										
							7,660 U			1,140 U	

PDX/042100014.XLS 5

TABLE A-2										
Analytical Results from Outfall 19 Inline Solids Samples Taken October 8, 2003										
Class/Analyte	Units	IL-19-AAP831-1003	IL-19-AAP910-1003	IL-19-AAP912-1003	IL-19-AAP918-1003	IL-19-AAP931-1003	IL-19-AAP932-1003	IL-19-AAT496-1003	IL-19-AMZ077-1003	
Semivolatile Organic Compounds:										
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	hg/kg hg/kg hg/kg hg/kg hg/kg	306 U 306 U 306 U 306 U 306 U 306 U 306 U	308 U 308 U 308 U 308 U 308 U 308 U 308 U	98 U 98 U 98 U 98 U 98 U 98 U 98 U	302 UJ 302 UJ 302 UJ 302 UJ 302 UJ 302 UJ 302 UJ	137 U 137 U 137 U 137 U 137 U 137 U 137 U	831 U 831 U 831 U 831 U 831 U 831 U 831 U	319 U 319 U 319 U 319 U 319 U 319 U 319 U	293 U 293 U 293 U 293 U 293 U 293 U 293 U 293 U	
2,4-Dichloropheriol	μg/kg μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	µg/kg µg/kg µg/kg	1,530 U 306 U 306 U	1,540 U 308 U 308 U	488 U 98 U 98 U	1,510 UJ 302 UJ 302 UJ	686 U 137 U 137 U	4,150 U 831 U 831 U	1,600 U 319 U 319 U	1,460 U 293 U 293 U	
2-Chloronaphthalene	μg/kg	76 U 306 U	77 U 308 U	24 U	75 UJ 302 UJ	34 U 137 U	208 U	80 U 319 U	73 U 293 U	
2-Chlorophenol 2-Methylphenol	μg/kg μg/kg	306 U 306 U	308 U 308 U	98 U 98 U	302 UJ 302 UJ	137 U	831 U 831 U	319 U 319 U	293 U 293 U	
2-Nitroaniline	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
2-Nitrophenol	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
3&4-Methylphenol	μg/kg	612 U	615 U	195 U	603 UJ	274 U	1,660 U	638 U	585 U	
3,3'-Dichlorobenzidine	μg/kg	612 U	615 U	195 U	603 UJ	274 U	1,660 U	638 U	585 U	
3-Nitroaniline 4,6-Dinitro-2-Methylphenol	μg/kg μg/kg	306 U 1,530 U	308 U 1,540 U	98 U 488 U	302 UJ 1,510 UJ	137 U 686 U	831 U 4,150 U	319 U 1,600 U	293 U 1,460 U	
4-Bromophenyl Phenyl Ether	μg/kg μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
4-Chloro-3-Methylphenol	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
4-Chloroaniline	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
4-Chlorophenyl Phenyl Ether	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
4-Nitroaniline	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
4-Nitrophenol Benzoic Acid	μg/kg μg/kg	764 U 1,530 U	769 U 1,540 U	244 U 488 U	754 UJ 1,510 UJ	343 U 686 U	2,080 U 4,150 U	798 U 1,600 U	732 U 1,460 U	
Benzyl Alcohol	μg/kg μg/kg	382 U	385 U	122 U	377 UJ	172 U	1,040 U	399 U	366 U	
Bis(2-Chloroethoxy) Methane	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Bis(2-Chloroethyl) Ether	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Bis(2-Chloroisopropyl) Ether	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Bis(2-Ethylhexyl) Phthalate	μg/kg	306 U	308 U	98 U	1,050 J	941	2,200	549	1,470	
Butyl Benzyl Phthalate Di-n-Butyl Phthalate	μg/kg μg/kg	382 U 306 U	385 U 308 U	122 U 98 U	377 UJ 302 UJ	172 U 137 U	1,040 U 831 U	399 U 319 U	366 U 293 U	
Di-n-Octyl Phthalate	μg/kg μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Dibenzofuran	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Diethyl Phthalate	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Dimethyl Phthalate	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Hexachlorobenzene	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Hexachlorobutadiene Hexachlorocyclopentadiene	μg/kg μg/kg	306 U 306 U	308 U 308 U	98 U 98 U	302 UJ 302 UJ	137 U 137 U	831 U 831 U	319 U 319 U	293 U 293 U	
Hexachloroethane	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Isophorone	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
n-Nitrosodi-n-Propylamine	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
n-Nitrosodiphenylamine	μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	
Nitrobenzene Pentachlorophenol	μg/kg	306 U 306 U	308 U 308 U	98 U 98 U	302 UJ 302 UJ	137 U 137 U	831 U 831 U	319 U 319 U	293 U 293 U	
Pentachiorophenoi Phenol	μg/kg μg/kg	306 U	308 U	98 U	302 UJ	137 U	831 U	319 U	293 U	

PDX/042100014.XLS 6

TABLE A-2 Analytical Results from Outfall 19 Inline Solids Samples Taken October 8, 2003																	
Class/Analyte	Units	IL-19-AAP831-1003		IL-19-AAP910-1003		IL-19-AAP912-1003		IL-19-AAP918-1003		IL-19-AAP931-1003		IL-19-AAP932-1003		IL-19-AAT496-1003		IL-19-AMZ077-1003	
LPAHs: 2-Methylnaphthalene	μg/kg	76	U	77	U	24	U	75	UJ	34	U	208	U	80	U	73	U
Acenaphthene	μg/kg	76	U	77	U	24	U	75	UJ	34	U	208	U	80	U	73	Ū
Acenaphthylene	μg/kg	76	U	77	U	14	J	96	J	34	U	208	U	80	U	73	U
Anthracene	μg/kg	40	J	77	U	13	J	74	UJ	34	U	208	U	80	U	73	Ū
Fluorene	μg/kg	76	U	77	U	24	U	75	UJ	34	U	208	U	80	U	73	U
Naphthalene	μg/kg	76	U	77	U	24	U	75	UJ	34	U	208	U	80	U	73	U
Phenanthrene	μg/kg	76	U	64	J	27		135	J	27	J	139	J	80	U	110	
HPAHs:																	
Benzo (a) anthracene	μg/kg	76	U	77	U	91		280	J	18	J	208	U	80	U	73	U
Benzo (a) pyrene	μg/kg	76	U	77	U	62		75	UJ	34	U	893		80	U	73	U
Benzo (g,h,i) perylene	μg/kg	76	U	77	U	188		75	UJ	34	U	208	U	80	U	73	U
Benzofluoranthenes	μg/kg	539		77	U	271		350	J	74		790		80	U	553	
Chrysene	μg/kg	76	U	77	U	67		292	J	34	U	208	U	80	U	73	U
Dibenzo (a,h) anthracene	μg/kg	76	U	77	U	24	U	75	UJ	34	U	208	U	80	U	73	U
Fluoranthene	μg/kg	131		86		88		372	J	48		412		79	J	234	
Indeno (1,2,3-cd) pyrene	μg/kg	76	U	77	U	146		75	UJ	34	U	208	U	80	U	73	U
Pyrene	μg/kg	125		124		82		552	UJ	52		532		111		649	
Estimated Total LPAHs ^{1,2}	μg/kg	40		64		54		304		27		139				110	
Estimated Total HPAHs ^{1,3}	μg/kg	795		210		995		1846		192		2627		190		1436	
Estimated Total PAHs ^{1,4}	μg/kg	835		274		1049		2150		218		2766		190		1546	
TPH - Dx:																	
Diesel by Dx	mg/kg	25	U	250	U	125	U	25	U	150	U	100	U	25	U	50	U
Fuel Oil, #6	mg/kg	50	U	500	U	250	U	50	U	300	U	396		231		100	U
Kerosene	mg/kg	25	U	250	U	125	U	25	U	150	U	100	U	25	U	50	U
Motor Oil	mg/kg	207		1,260		608		641		1,560		1,930		980		1,010	

Notes:

Abbreviations/Definitions:

-- Not available or applicable
HPAH high molecular weight polycyclic aromatic hydrocarbons
LPAH low molecular weight polycyclic aromatic hydrocarbons
µg/kg micrograms per kilogram
mg/kg milligrams per kilogram
NA Not analyzed
PAH polycyclic aromatic hydrocarbon

PAH polycyclic aromatic hydrocarbon
PCB polychlorinated biphenyl
TPH total petroleum hydrocarbon

Qualifiers:

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

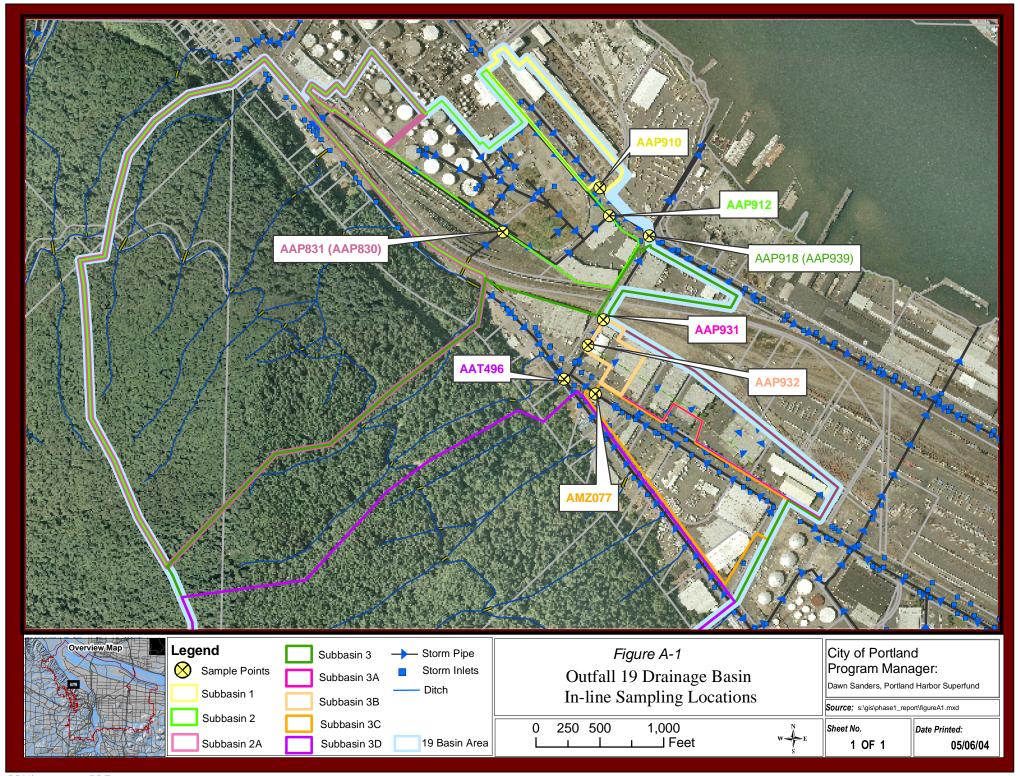
U The analyte was analyzed for, but the analyte was not detected above the reported sample quantitation limit.

UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation

The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

PDX/042100014.XLS 7

¹ Total parameters (LPAHs, HPAHs, PAHs, PCBs, and DDTs) were calculated based on detections only. Qualifiers are not included on total parameters as it is implied that these are estimated quantities.


² Total LPAHs: Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and 2-methylnaphthalene.

³ Total HPAHs: Includes fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, and benzo[ghi]perylene.

⁴ Total PAHs: Represents the sum of Total LPAHs and HPAHs.

⁵ Total PCBs: Includes all aroclors.

⁶ Total DDTs: Sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT.

ATTACHMENT A Field Notes

ALL-WEATHER WRITING PAPER

LEVEL

All-Weather Maxi-Spiral No. 313-MX

Portland BES - Source Control	
Portland DR	
MAN HILL (503) 235-5000	
August 12,2003-	

10-7-2003
BES Source Control In line Solids Sampling Basin 19
9:00 ON S.Le: D. LACOY/CHEM Michael Hauser/BES Cring/BES
Weather: Sunny 60°F.
Note: Heavy rain on 10-6-03 P.M.
Objective: Collect inline solids samples from BASIN 19.
Fording at AAP 912
910 Mobilize to AAP 917
Franka 1. 5043
Tube forings Glacier Northboat
NW Front Ave.
18" 1 42" 5043 Now Pront
Re 1142"
N S
AAP 912 Nocle Observations.
· Twe lives owter 18" from NW
42" from 5th SW
· ONE line Exits 42" to the West East
· 5" Standing water at sooled at the Node Solid at Node
· 5" Standing water at pooled at the Node , Solid at Node . 18" solid in 42" downstream line. 12" deep water, Slowing
At 114/sec = 5 } gpm. Solids extend at least 60 feet. Minus solid in Sw live
· Minor Iron Oriole staining in lines.
Gop Collect Sample IL-19-AAP912-1003
· Sample collected o to 15-4 from mode
No show on oclar, we debri
· Sitt, Brown, Kl. SAND, 50% water, Silt cohesive, small 18 balls.
Photographs 1, 2 from down stream 42" line.
Node: Groundwater entrates line 15-led down stream of Node.
Node: Groundwater entertry line 15. Let downstream of Node. SAmple collected apstrom of groundwater introsion. A black stime
was observed around the groundwater introsion. At a proper seem

PDX/042100008.PDF

H

iž.li

(1)

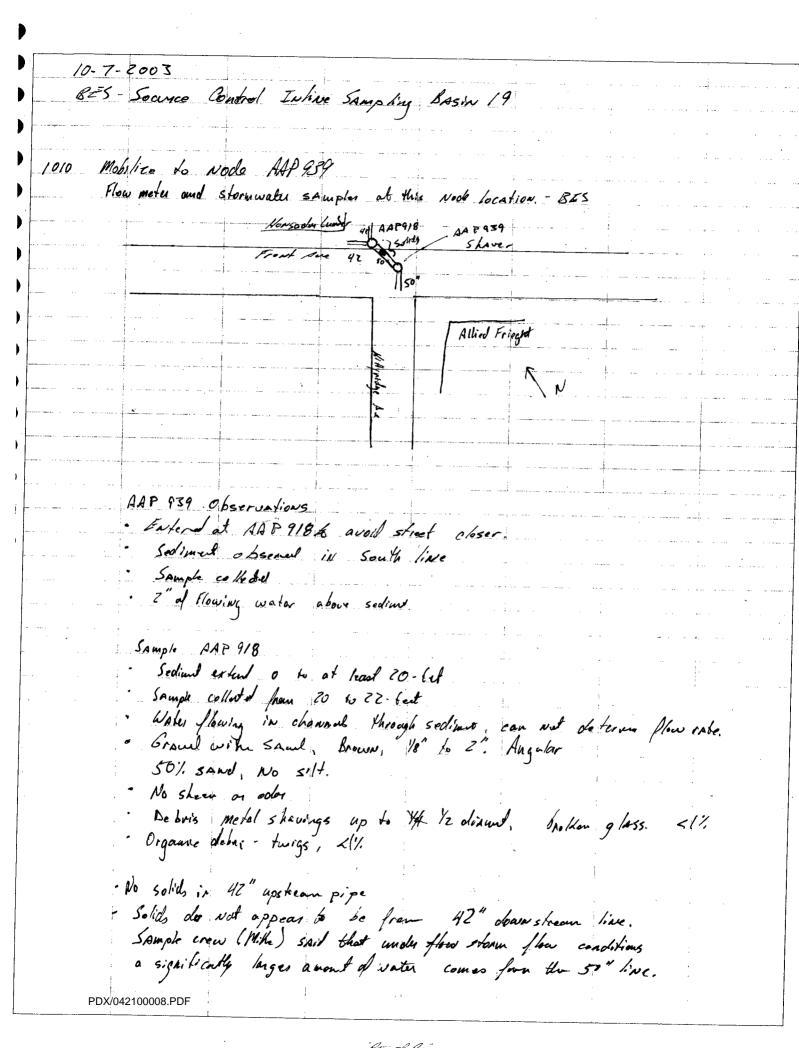
11)

(ii)

31

T.

3


ā

All and the second

M

S1

(9)

1105 Investigate line layout and solid at Node NAP 959.

· One 50" line enteres from the southwest Ten inche of standing water at node and southwest line. The solids extent approximally 60 - feet for AAF 918. Water is damed behind the solids. At the stant of the solids are fines i.e. more sand. A sample could not be collected because of the depth other then stain her steel scoop avolish.

Mobilize to AAT 418 AAP 910

AAP 910 Node Observations

one line enters from the Northwest - 25"

one line exist to the southeast - 25"

No flow at Node. Beton of line moist, no or iver out staining

2nd line enter fan the warter east 15th

Bond of solids in 25" upstream true. No solids in down stream on 15" lines.

Solids- soud, gral 3/4" dep' 0 to 5- fet upstream

Sample 12-19-AAP910-1003

- & Well Gradul SAND with Gravel, little on No S.H. Grand 10% up to 1/2" dismeter Roundet

· No standing water

· Sample collet 0 to 2-ft up stream

· No iron exido strintuq.

PDX/042100008.PDF light sheek. Miner amount of paint chips <<11., green and white

BES - Source Control Inline Solids Lampling BASIL 19 1305 Mobilize to AAP 931 - Hilly Ridge the Overpass AAP 931 Node Observations . Two line enter one form the south and one four the Southwest. · Approximately 5 gpm flow from south line. Water clear. line stained orange. Solidis in 18" line. Orange brown color 1/2" flower, water SAMPLE 16-19-AAP931- 1003 · Orange Brown py precipitate on below of line 18" thick. Scraped pipe only small amount of solids in live Sample volume adiparte for metals, svocs, PCBs only Sample collected from 0 to Z-ft upstra of woods in 18" live. Mobilize to AAP 952 1350 See about AAP932 Node Observations Two lives enter one from the south and one from the southwest No solids in main line I gpm from southwest line Ho 1/2 standing water in south line Root matter and solide in south line. Sample 14-19-AA Pf37-1003 Sample collect 6-5 0 to Z-ft apstruam in 18" line 90% Root mattend 10% Silt. Removal large root matter from sample. Sample 80% Root water 20% silt. Collect & stor sample

PDX/042100008.PDF

10-7-03

Alle . A. A.

10-8-2005	2 stool Tulies Solicle SA	moter Basin 19	
	D. LACEY CHEM WILL ,		
350 Onsile Weather	: 60°F, Rain, 10 mph	South wind	
Objective.	Collect inlind solids	SAmples from basin	19.
	CAAP850, AMZ077,	and AAT 496)	
910 Mobilize to	AAP 830		
		• • • • • • • • • • • • • • • • • • •	
to generate the second			
	MAP 85/	•	
	447830		
· AAP 8	30 Node Observati	'ons	
· No	. /	•	
· Mobil	lize to AAPB31		
. 2 4	solice in vode. "	parte in vole.	
10 90	m of fro flow form.	spanduly miam silt	
• 1/2" 5	ietils in southwest.	live, No solith in NW	line
SAMPL IC	2-19-AAP831		
· Sand with	Grad, Brown, 50% 9.	rand 10" to 2" diameter	, Anguley
<5% 5	H. Dengraded		
No shee	in a ordy, 22/1	meh debris screw, glo	is precesso
· well	Mere; " Organic on	atter (leaves, Luigs, small	/ /
. 200-G			
1135 Mobilie	· 10 AMTO77		
1		and the same and t	
**************************************	27" 27"		
	- A 21		
	(4465 1 Aban	don Fire hour.	
AMZO	77 Node Observation		

Flow / gpm 1/2" SANds in upst, ean line.

PDX/042100008.PDF

10-8-03 BES- Source Contral Inline Solids BASIN 19 AMZOTT Observations continued to board of sand in downstream line intouche o to 5-ft Sample 12-19-AMZ077-1003 Well Graded Sand, Gray with white graines. Median grain. No oder or do onis Light sheen Mobilize to AAT 496 AAT 496 Node Observations Three lives enter at this wode · A 36" from the South east from Sto Helen which 14" of flow and 42" solids A 32" from the Northwest Solids extend from the manhob to >10-feet 18" line for soon does not appear to be abardon. bottom of live moist AAT Sample AAT 496 11-19-AAT 496-1003 Sand with broad, Brown, 50% brawl up to 1" A5% 51/4 No sheen or order. No debris.

City of Portland Environmental Services:

DAILY FIELD REPORT

Page 1	of selections
PRINCE BY SAME PROJECTION	
	Vapin (CS)
	VENTER THE SHOP OF THE SHOP
SUBJECT SEEDS SAIME TO THE BY WITH	線構成の対象の 2002年度を100000円である。 開発に対象の1000円では100円である。
900 MET DAVE LINEM OF ELLOWALL CMONTON	
910 Proceso to APPARA - PRIST ANDE SIMPLAR	WESTIGN
SYCESS. SOMERTS IN THE LINES	to Private servings
094 SAMBLE COLLECTED	
1007 APP 912 CIDISUDO	
1010 PROJECT TO ALPINSO, JAPPAIS	
SOURT SLINES 20 UP FROM NAPPIZA	
1103 ESH PROCEEDS UP PIPE FROM ALPHIS TO LAP 939	
11 153 67 Provided To Ate 910	
1157 COT COURSELS SUMPLE FROM APP 913.	
BIO FAT PAP 931 TO CHEET SIMPLE	30-20-7
BACKY ENOVOY SUMPTE	
10 per 130	
LOTS OF ROOTS. GOOD SAMPLE	
1500 RXXX TO UPZE	
THEY CHAMP TO ENGINE !	עודע
Topology per an on COC:	
	and a filter to be a
	Mary and the state of the state
Attachments	
	30.45 a 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 ()

Page Project LOWER HARROR OF SED SAMP Project No. 1020.001 Location RASIN OF 19 Date ___ | 0 & 63 Subject SFD SAMP - DAY 2 By DJH 91 H 40900- DJH MKS DAC MEET DAVE LACEY CHAM HILL FOR SECOND OF SEDIMENT SAMPLING. WEATHER - LIGHT RAW NOW. 0.33" PREDICTED FROM 100-1500, COULD HAMPUR FIELDWISER CHEVRON ASPHALT * ARQINE 10 0920 TO MEET 1 HRISTOPHER WAVE POR ACCESS APTER A HUGE SIGN-IN WE ARE ALLOWED ACCESS 1 MH ARP836 NO SEDIMENT 12 AAP870 (4' x4' VAULT) SOUTRE A CHAMBUR AT AAP831 SEDIMENT SFG FOR COMPLETE DEALLS 1120-LEAVE SIDE AMZOTT LYYGS AWYEN ARRIVE @ both up lamstrm 27" pipe something though. Sediment dennstru Attachments ' PDX/042100009.PDF 5 leave site.

DAILY FIELD REPORT

	rage or
Project Lower Harlar OF Sed Samp	Project No.
Location BASIN OF 19	
Location DVCS/VC OF 1-1	Date
Subject Sed Samp-Day 2	By MES
1230 More to node AAT	496.
The 18" line coming off of	the West
(as from this morning's vain)-	ad from recently
(as from this morning's vam)-	> not abandoned
a stranged the older day t	- Opling -
in 30" like upstream of	MH, commes
m 30" line upstream of down Stitle Cens Rd.	
1240 Sampled sediment	
l de la companya de	
1255 Leave Site.	
•	
	<i></i>
Attachments	

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020,001 FIELD DATA SHEET

Date: 10-7-03	Time: 1)3 ←		Current W	eather conditions:	OVERCAST	
Sampling Team Pres	sent: MIKE	House	cerio	DON BULLIER		
Basin: 19		Node	^ ^	910	Subbasin:	*****
Address: ナッ	be forcivis	P-LUT	- Front	AVE		

SECTION 1 - PRES	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	NO
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO.
Are sediments observed in the line?	YES
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	FROM MODE EXTENDING 51 UP. NONE DOWNSTREAM
SITE DIAGRAM: Include street intersections/late	erals/MH's/driveways cuts and extent of solids accumulation
	GNOW THOM
	AAA 910 SAMAA
N C	SAMPLE COLLECTION
"J GHE	BULDINC

SEC	CTION 2	Sample col	LECTION REPORT	Node: ARP 910
Sampling Equipment:	55 5	SPOON BOWL		of the factors of the constitution and 1284 and 55 this.
Equipment Decontamination process:		50P 7,01a		
Sample date: 10-7-03	Samp	Sample time: 1153		
Sample Identification: (IL-XX-NNNNNN-	mmyy)	11-19-	201 - 019999)3
Sample location: (number of feet from node of entry)	3	UP FROM	NODE	
Sample collection technique:	35: 5×R	SOON USON TO SURANCE, ST	conposito	W BROUGHT TO
Color of sample:	34	7511		
Texture/Particle size:	54	or cravel		
Visual or olfactory evidence of contamination:	VES	SHEW C	DESMUND ON WATE	γ.
Depth of solids in area where sample collected:	3/4	1)		
Amount and type of debris:	2m	on cruel		
Compositing notes:				
·	<u> </u>	Sample Jars Collect	ed	
If not enough sample to fill all of the jars, t	hen fill	Metals	One 4oz glass jar	
jars in this order:		PAHs/SVOCs	One 4oz glass jar	
		PCBs	One 4oz glass jar	
		TPH (two jars)	Two 4oz glass jars	
		тос	One 4oz glass jar	
Duplicate sample collected?				
Duplicate sample fictitious identification #	on COC:			
Samples placed in chilled cooler? Y/N				
Samples delivered to lab? Y/N	<u> </u>		FO 031017	
Describe any deviations from standard pro	cedures:			

	SECTION 3 - PH	OTOGRAPH LOG	
Photograph Log	In-Pipe sample location		
	Homogenized sample		

PDX/042100009.PDF

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Page 1 of 2

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET

Date: 10-7-03	Time: 092)	Current Weather conditions:		PARTLY 40.207
Sampling Team Pres	ent: MINE HOUSEN	GRAIG HEIMBUCHE	R	
Basin: J9	Node	= RAP 912	Subbas	in:
Address: \$100) NW FROM A	VE	· · · · · · · · · · · · · · · · · · ·	

Sections par	
Describe any flowing or standing water observed in the line?	SAMPLING VISUAL OBSERVATION REPORT STANIOL WATER IN MU. S'' DOOP RUNS OF OF 42" LINE 4" DLEEP
Does river appear to back up to this location? Describe rate/color/odor of flow:	
Are sediments observed in the line?	YES 1/8" DEEP
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	APPROX 30'SEET
SITE DIAGRAM: Include street intersections/late	erals/MH's/driveways cuts and extent of solids accumulation
Sho	NT AVE
CANUL AREA	18" when also also also also also also also also

SEC	CTION 2	- SAMPLE COI	LECTION REPORT	Node: AAP GIZ
Sampling Equipment:	STDIN	STOINIESS STEEL SPOON + STANNER STEEL ROW)		
Equipment Decontamination process:	S	BP 7.014		
Sample date: 10 - 7 - 03	Samp	le time: 09	4-1	
Sample Identification: (IL-XX-NNNNNN-	mmyy)	12-19-AAF	1912-1003	,
Sample location: (number of feet from node of entry)	मा	NODE TO 15	DOWN	
Sample collection technique:	SAMPI SS 180	SAMPLE COLLECTED FROM 42" DOWNSTHORM LINE 100TO SSBOWL, SAMPLE BRUIGHT TO SURFACE, COMPOSITED + PUT 100TO SAMPLE TARS		
Color of sample:		K BRONN		
Texture/Particle size:	SIZIY CAPIZ MIX,			
Visual or olfactory evidence of contamination:	NO	•		
Depth of solids in area where sample collected:	SIETY SAUD,			
Amount and type of debris:	SILTY	SAND,		
Compositing notes:				
		Sample Jars Collec	cted	
If not enough sample to fill all of the jars, t	hen fill	Metals	One 4oz glass jar	7
jars in this order:	ilen illi	PAHs/SVOCs	One 4oz glass jar	7
		PCBs	One 4oz glass jar	7
		TPH (two jars)	Two 4oz glass jars	79
		TOC	One 4oz glass jar	7
Duplicate sample collected?		NO		
Duplicate sample fictitious identification #	on COC:			
Samples placed in chilled cooler? (*Y)N		1/35		
Samples delivered to lab?Y/N		Lab ID Number:	_FO 031018	
Describe any deviations from standard pro	cedures:	NOVE		

	SECTION 3 - PHOTOGRAPH LOG
Photograph Log	In-Pipe sample location
	Homogenized sample

PDX/042100009.PDF

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Page 1 of 2

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET

Date: 10 - つ - つ :	3 Time: 1034	Current Weather conditions: בירואוני לנששץ	<u>salitiintii</u>
Sampling Team	Present: Mike HAW	ser belie he	
Basin: 19		Node: PAP 434 BAP 918 Subbasin:	
Address:	VW KITMIDGE	+ PRONT,	

SECTION 1 - PRE-S	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	DA OC FRANK SULLMARY DO LE
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO
Are sediments observed in the line?	YES
Are sample-able quantities of sediments present in the line?	VES
Describe lateral extent of sample-able sediments present in the line:	PL LLAST 20) OF FROM AMP9'8
SITE DIAGRAM: Include street intersections/late	SAMPLE.

Sampling Equipment:	STANLETS STEEL SPOON TROW					
Equipment Decontamination process:	S	op 7.01a				
Sample date: 10-7-03	Sample time: 1049					
Sample Identification: (IL-XX-NNNNNN-r	nmyy)	12-19-APF	°918 - 1003			
Sample location: (number of feet from node of entry)	20'	UP FROM	81P 91A			
Sample collection technique:	SAMP	THE BROWLET TO	ss Bond Usinic Spoon, The suapped, Homooin 25	icus Aus P	्राष्ट्रं वि	
Color of sample:	BLACK					
Texture/Particle size:	POURLY SORTED A CYCNE					
Visual or olfactory evidence of contamination:	N					
Depth of solids in area where sample collected:	6"	- 8"			· · · · · · · · · · · · · · · · · · ·	
Amount and type of debris:	GRA	vas + sinds				
Compositing notes:						
		Sample Jars Collec	ted			
f not enough sample to fill all of the jars, the	nen fill	Metals	One 4oz glass jar	4,	Γ	
ars in this order:	.511 (111	PAHs/SVOCs	One 4oz glass jar	7		
		PCBs	One 4oz glass jar	7		
		TPH (two jars)	Two 4oz glass jars	30		
		тос	One 4oz glass jar	7		
Duplicate sample collected?	No					
Ouplicate sample fictitious identification # o	on COC:	_				
Samples placed in chilled cooler? 'Y/N		YES				
Samples delivered to lab? Y/N		Lab ID Number: F	O 031019	 , ,		
Describe any deviations from standard pro						

	SECTION 3 - PH	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET

Date: [0-7-0]	Time: 13 22		Current V	Veather conditions:	Tens stano	<u> </u>
Sampling Team Pres	sent: אווצנ י)vansbr	SIASIO	1757 W B WIGH		
Basin:		Node	AA :	P9J)	Subbasin:	
Address:						

Describe any flowing or standing water observed in the line?	12, OT ETANNE MASE
Does river appear to back up to this location? Describe rate/color/odor of flow:	N 0
Are sediments observed in the line?	1113
Are sample-able quantities of sediments present in the line?	MYBE (SEE OVER) -7
Describe lateral extent of sample-able sediments present in the line:	15-20801

Collected 36

	SECI	ION 2	- SAMPL	E COLLE	CTION REPORT	Node: 1AP 93)
Sampling Equipment:		55 St	2004 + 800	~	and the state of t	hard Allinia e and a market content of the action of the second of the s
Equipment Decontamination process:			sor -	7.01a		
Sample date: 10-7	-03	Samp	le time:	B 40	· · · · · ·	
Sample Identification: (IL-)	XX-NNNNNN-mı	myy)	11-1	9- AAP	931-1003	
Sample location: (number of feet from node	of entry)	૦૩	' UP !	18" LINE	MON NODE	
'			_		BUSINEL BUSINE	77
Color of sample:		D	r Braw	<i>y</i>		
Texture/Particle size:		Si E	TY			
Visual or olfactory evidence of contamination:)		٠	
Depth of solids in area where sample collected:			,			
Amount and type of debris:						
Compositing notes:						PER SAP
			Sample Ja	rs Collected		1
If not enough sample to fill all of the jars, then fill jars in this order:			Metals PAHs/SVC PCBs TPH (two j		One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	7 3/4 (WILL) 3/4 (WILL) 3/4 (WILL)
Duplicate sample collected?	•		NO			
Duplicate sample fictitious id	dentification # or	COC:	_	FO 0310	020	
Samples placed in chilled cooler? Y/N			YE	5		
Samples delivered to lab? Y/N			Lab ID Nur	mber:		
Describe any deviations fror	· ' U '	ENOUS		lune cox Au		
EDWAINERS, DESPITE PER SAP_	BUST LEG	PORTS.	हामक	CONTINO	es with Part,	i nomves
	SEC	OIT	l 3 - PH(OTOGRA	PH LOG	
Photograph Log	In-Pipe sample	locatio	n			and the communication for
	Homogenized	sample				

CITY OF PORTLAND ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET

Date:)o -			141		- 1		nt Weathe		_	OVERCAST	And the state of t
Sampling ⁻	Team Pres	ent:	M))Æ	vati	ς _Σ ν	r)	GRAIG	/1 }	า์M ซ v	といとり	
Basin:	19			No	e:	A	NP 9	39		Subbasin:	
Address:	5 v57	Enst.	00	5 600	c	ہے	KTTR	D LE	Ber	DGE	

Describe any flowing or standing water observed in the line? Does river appear to back up to this location? Describe rate/color/odor of flow:	NO NO
Describe rate/color/odor of flow:	
Are codimente absented in the line O	W 1 - N
Are sediments observed in the line?	125- ROUTS + SOMMIT
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	AI WAST 10' UP
SITE DIAGRAM: Include street intersections/late	erals/MH's/driveways cuts and extent of solids accumulation
PDX/042100009.PDF 36"	BUILD MG SAMPLE COLLECTIVE PURE Page 1 of 2

SECT	ION 2	- SAMPLE CO	LECTION REPORT	Node: AAr 93D			
Sampling Equipment:	ک کک	poont bucket	oony bucket .				
Equipment Decontamination process:	Sc	OP 7.01a					
Sample date: 10-7-03	Sample time: 1420						
Sample Identification: (IL-XX-NNNNNN-mi	myy)	1L-19- PA	932 - 1003				
Sample location: (number of feet from node of entry)),	UP FRUM NODE W 14" LINE					
Sample collection technique:	maz maz	PUE COMPOSITION	SUCHEL ALM AND F	Brousit to Survice.			
Color of sample:	Br	samn					
Texture/Particle size:	R	ROUTS + Silt					
Visual or olfactory evidence of contamination:	Mag 1	c report celor					
Depth of solids in area where sample collected:	*	& ROOTS					
Amount and type of debris:	400	T3					
Compositing notes:							
		Sample Jars Colle	cted				
If not enough sample to fill all of the jars, the	on fill	Metals	One 4oz glass jar	7			
jars in this order:	511 1111	PAHs/SVOCs	One 4oz glass jar	7			
		PCBs	One 4oz glass jar	7			
		TPH (two jars)	Two 4oz glass jars	77			
	TOC	One 4oz glass jar	7				
Duplicate sample collected?		NO					
Duplicate sample fictitious identification # or	COC:						
Samples placed in chilled cooler? Y/N		125					
Samples delivered to lab?		Lab ID Number: FO 031021					
Describe any deviations from standard proc	edures:						

	SECTION 3 - PHOTOGRAPH LOG
Photograph Log	In-Pipe sample location
	Homogenized sample

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave... Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET

Date: 10 8 03 Time: 1235 Current Weather conditions: Partly Clander	60°F
Sampling Team Present: MUS/DTH/IAC	
Basin: AC 19 Node: AAT 496 Subbasin: —	
Address: NW St. Helens Rd & Year	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	0.8" forme nater
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	yes lots, downs ups frm in zoi ene
Describe lateral extent of sample-able sediments present in the line:	

SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation Sidewalk No from of NW St. Helens

an all the local colour of the	ON 2 - SAMPLE COLLECTION REPORT Node AT 456				
Sampling Equipment:	5.5. Spoon à Band				
Equipment Decontamination process:	SOP 7.01a				
Sample date: 0/8/03	Sample time: 12-40				
Sample Identification: (IL-XX-NNNNNN-mm	1L-19-AAPL196-1003				
Sample location: (number of feet from node of entry)	0-2 ft. upstream from MHT in 30" line coming dam Heles				
Sample collection technique:	5.5. Spoon uto boul				
Color of sample:	Bran				
Texture/Particle size:	Sandy gravel up works up to 2"				
Visual or olfactory evidence of contamination:	Sandy gravel up nocks up to 2" Nothing noticeable				
Depth of solids in area where sample collected:	4"				
Amount and type of debris:	no····				
Compositing notes:	Tired to exclude larger vorles from				
	Sample Jars Collected				
If not enough sample to fill all of the jars, ther jars in this order:	Metals PAHs/SVOCs One 4oz glass jar PCBs One 4oz glass jar PCH (two jars) TOC One 4oz glass jar Two 4oz glass jars Toc				
Duplicate sample collected?	No				
Duplicate sample fictitious identification # on	COC:				
Samples placed in chilled cooler2 YN					
Samples delivered to lab?	Lab ID Number: FO 031022				
Describe any deviations from standard proce	dures:				

	SECTION 3 - F	PHOTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001

Date: 10863 Time: 1020 Current Weather conditions: SHOWERS & SSOF								
Sampling Team Present: DAC MKS DIH								
Basin: OF 19 Node: AAP 831 Subbasin: —								
Address: CHEVRON ASPHALT								
TO SEDIMENT IN AAP830!								
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT								
Describe any flowing or standing water observed in the line? July July July Flow NW July July July Flow NW July July July Flow NW July July								
Does river appear to back up to this location? NO SEE KBOVE FOR FLOW INFO								
Are sediments observed in the line? IN 4'x 9' VAUCT BY AND 6' UP 195" LWE FROM S.W.								
Are sample-able quantities of sediments present in the line?								
Describe lateral extent of sample-able IN VAULT, UP TO 1/4" MOSTLY IN CORNERS sediments present in the line:								
SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation 3" STEP 13" SUPPLY CONTROL SUPPLY SUPP								

SEC	TION 2	- SAMPLE CO	LLECTION REPORT	Node: APS3(
Sampling Equipment:	SS	S. Bohk	4 SPOQL							
Equipment Decontamination process:		SOP 7.01A								
Sample date: 10 1 13	Sampl	e time: 1035								
Sample Identification: (IL-XX-NNNNNN-m	imyy)	IL-19	AAP831-100	3						
Sample location: (number of feet from node of entry)	ENT		SQUARE VAULT	AT NOSE						
Sample collection technique:	SS	Spoces	INTO BOWL							
Color of sample:	BROW	77								
Texture/Particle size:	Skyap	y GRAVEL		·						
Visual or olfactory evidence of contamination:	No	NE								
Depth of solids in area where sample collected:	UP SAM	to 1/4"	IN CORNERS OF	T VALLET GOLY						
Amount and type of debris:	MOST	npie to l	ECTUDE A" AL	D LARGOR						
Compositing notes:	AMEM	rad to Exc	LUDE GRAVE > 1" O	S						
		Sample Jars Colle	ected							
If not enough sample to fill all of the jars, th	en fill	Metals	One 4oz glass jar							
jars in this order:		PAHs/SVOCs	One 4oz glass jar	/						
		PCBs	One 4oz glass jar							
		TPH (two jars)	Two 4oz glass jars	V						
		тос	One 4oz glass jar	V						
Duplicate sample collected?		24								
Duplicate sample fictitious identification # o	n COC:	NA								
Samples placed in chilled cooler? W N										
Samples delivered to lab?		Lab iD Number:	FO 031023							
Describe any deviations from standard prod	cedures:	NONE								

	SECTION 3 - I	PHOTOGRAPH LOG
Photograph Log	In-Pipe sample location	Feom Down & up
	Homogenized sample	465

ENVIRONMENTAL SERVICES

Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001

Date: 0 8 03	Time: 1135	Current Weather conditions:	Partly clindy	~60°F
Sampling Team Pre	sent: MVS / DTH	IDAC		
Basin: 01	9 Node	= AMZØ77	Subbasin:	
Address: UU65	NWYKON			
A				
	SECTION 1 - DDE	SAMBLING VICTAL OR	SERWATIANI BERART	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	0.5" Floring nake (from to me north)
Does river appear to back up to this location? Describe rate/color/odor of flow:	Na
Are sediments observed in the line?	Yes. Trace upstream, More donnstream.
Are sample-able quantities of sediments present in the line?	Yes. ***
Describe lateral extent of sample-able sediments present in the line:	Trace of sediment upstream. more sed. downstream > 3'-10' downstre
SITE DIAGRAM: Include street intersections/late	terals/MH's/driveways cuts and extent of solids accumulation
Nost, Helm [3] Nost, Helm [3] Nost, Helm [3] Nost, Helm [3] Amzo77 Vasin lane (12" line) (12" line)	eastern catch basin also goes hato Amzor 77 (12" eine)

SEC	TION 2	- SAMPLE COL	LECTION REPORT	Node: Am 7	77				
Sampling Equipment:	5	, S, Bowl &	Span		,				
Equipment Decontamination process:		5.5. Bowl & Span							
Sample date: [0/8/03	Sample time: 1150								
Sample Identification: (IL-XX-NNNNNN-r					-				
11-	9-	Amz07	7-1003						
Sample location: (number of feet from node of entry)	3	- 10 ft	downstrm o de => sampled o	f an sed.	ment				
Sample collection technique:		S. Spoon							
Color of sample:	Dark bronn								
Texture/Particle size:	Mee	Medium-grained Sand of fines intespersed							
Visual or olfactory evidence of contamination:	Medium-granned Sand of fines intespersed No not unless sample mixed of ly sheen								
Depth of solids in area where sample collected:	Up	, to 0.3	3"						
Amount and type of debris:	So	me woody	debn's, paint	frecks	5 -				
Compositing notes:									
		Sample Jars Collec	ted						
If not enough sample to fill all of the jars, to jars in this order:	hen fill	Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	\frac{1}{1}					
Duplicate sample collected?		No							
Duplicate sample fictitious identification #	on COC:	NIA							
Samples placed in chilled cooler?		- 1							
Samples delivered to lab?		Lab ID Number:	FO 031024						
Describe any deviations from standard pro	cedures	Non							

	SECTION 3 - F	HOTOGRAPH LOG	
Photograph Log	In-Pipe sample location	From dann & up	
	Homogenized sample	Yes	

Photo 1 – Basin 19: Sample IL-19-AA910-1003

Photo 2 – Basin 19: Sample IL-19-AA910-1003

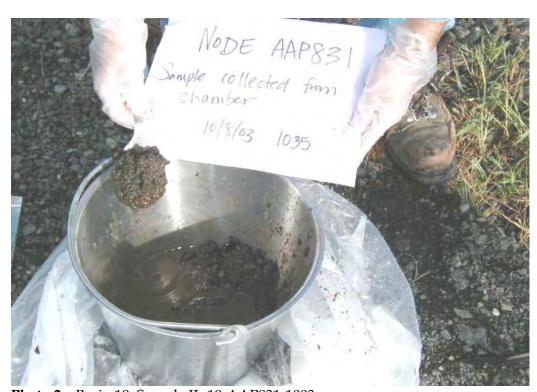

Photo 1 – Basin 19: Sample IL-19-AAP0912-1003

Photo 2—Basin 19: Sample IL-19-AAP0912-1003

Photo 1 – Basin 19: Sample IL-19-AAP831-1003

Photo 2—Basin 19: Sample IL-19-AAP831-1003

Photo 1 – Basin 19: Sample IL-19-AAP918-1003

Photo 2 – Basin 19: Sample IL-19-AAP918-1003

Photo 1 – Basin 19: Sample IL-19-AP931-1003

Photo 2—Basin 19: Sample IL-19-AAP931-1003

Photo 1 – Basin 19: Sample IL-19-AAP932-1002

Photo 2 – Basin 19: Sample IL-19-AAP932-1002

Photo 1 – Basin 19: Sample IL-19-AAZ077-1003

Photo 2 – Basin 19: Sample IL-19-AAZ077-1003

Photo 1 – Basin 19: Sample IL-19-AAT496-1003

Photo 2—Basin 19: Sample IL-19-AAT496-1003

Part I: City of Portland Water Pollution Control Laboratory Data Analysis Report

Water Pollution Control Laboratory

6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Requested Analyses	General Metals Field Comments	EPA 6020 F, Hg, Pb, Zn)	xO-	TPH-	WW 520T	•	•	•	MCCOPPIE TO SCHOOL S. A.P.	•			•		Relinquished By: 4.		Printed Name: Date: Printed Name: Date:	
	el-wol (;			ticide oV-ir	res neS DOT	•	•	•	PCBs •	•		•	•		Relinguis	Time: Signature:	Date: Printed Nam	Received By
		*PCB/Pesticide, Semi-volatiles, and TOC analyses will be perforemd by Severn Trent Laboratory, routed through Northcreek. DUE TO SMALL VOLUME FOR SANCE 19 4	TO S.A.P.	Point Sample Sample Sample	Code Date Time Type	19_1 19_1 19_1153 c	19_2 694 1 C	19_3 CHY C	19_4 1346 C	19_5 😾 14as C	2 04/21/8/01 c	19_7 10 35 c	19_8 V 1150 C		Relinguished By: 2.	Signature:	Printed Name:	Received By: 2.
		les, and TOC analyses will the Northcreek.	TTES ACCORDING		Location	IL-19-AAP910-1003 5200 NW FRONT AVE	IL-19-AAP912-1003 5100 NW FRONT AVE	IL-19-AAP918-1003 NW KITTRIDGE & FRONT	IL-19-AAP931-1003 4488 NW YEON	IL-19-AAP932-1003 4488 NW YEON	IL-19-AAT496-1003 NW ST HELENS & YEON	IL-19-AAP831-1003 CHEVRON ASPHALT	IL-19-AMZ077-1003 4465 NW YEON AVE			Timity	Date: ()	
File Number: 1020.001		*PCB/Pesticide, Semi-volatiles, and TOC analyses will be perforemd by Severn Taboratory, routed through Northcreek. DUE TO SMALL VOLUME FOR SANNE 19 4	PRIDRITIZE ANAL		WPCL Sample I.D.	FO 031017	FO 031018	FO 031019	FO 031020	FO 031021	FO 031022	FO 031023	FO 031024		Relinquished By: 1.	Monature: 0 Applied	Printed Name O	

s:\eid\1000\1020.001\Sampdoc\Lower Harbor Sed COC:xls

Sample Date/Time 10/7/2003 11:53 System ID AH08395 Sample ID FO031017

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP910-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

5200 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_1 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 10 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. Surrogates were not recoverable for Pesticide analysis due to required dilution (100x).

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	82.4	% W/W	0.01	SM 2540 G
METALS				
COPPER	126	mg/Kg dry wt	0.25	EPA 6020
ZINC	470	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	6.02	mg/Kg dry wt	0.50	EPA 6020
CADMIUM	1.16	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	52.4	mg/Kg dry wt	0.50	EPA 6020
LEAD	107	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.046	mg/Kg dry wt	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<500	mg/Kg dry wt	500	NWTPH-Dx
DIESEL	<250	mg/Kg dry wt	250	NWTPH-Dx
KEROSENE	<250	mg/Kg dry wt	250	NWTPH-Dx
MOTOR OIL	1260	mg/Kg dry wt	500	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	10300	mg/Kg dry wt	39.5	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<203	μg/Kg dry wt	203	EPA 8081
4,4'-DDE	<203	μg/Kg dry wt	203	EPA 8081
4,4'-DDT	<203	μg/Kg dry wt	203	EPA 8081
Aldrin	<102	μg/Kg dry wt	102	EPA 8081
Alpha-BHC	<102	μg/Kg dry wt	102	EPA 8081
Alpha-Chlordane	<102	μg/Kg dry wt	102	EPA 8081
Beta-BHC	<102	μg/Kg dry wt	102	EPA 8081
Delta-BHC	<102	μg/Kg dry wt	102	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 11:53 System ID AH08395 Sample ID FO031017

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP910-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

5200 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_1 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 10 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. Surrogates were not recoverable for Pesticide analysis due to required dilution (100x).

Test Parameter	Result	Units	MRL	Method
Dieldrin	<203	μg/Kg dry wt	203	EPA 8081
Endosulfan I	<102	μg/Kg dry wt	102	EPA 8081
Endosulfan II	<203	μg/Kg dry wt	203	EPA 8081
Endosulfan Sulfate	<203	μg/Kg dry wt	203	EPA 8081
Endrin	<203	μg/Kg dry wt	203	EPA 8081
Endrin Aldehyde	<203	μg/Kg dry wt	203	EPA 8081
Endrin Ketone	<203	μg/Kg dry wt	203	EPA 8081
Gamma-BHC(Lindane)	<102	μg/Kg dry wt	102	EPA 8081
Gamma-Chlordane	<102	μg/Kg dry wt	102	EPA 8081
Heptachlor	<102	μg/Kg dry wt	102	EPA 8081
Heptachlor Epoxide	<102	μg/Kg dry wt	102	EPA 8081
Methoxychlor	<1020	μg/Kg dry wt	1020	EPA 8081
PCB 1016	<106	μg/Kg dry wt	106	EPA 8081
PCB 1221	<213	μg/Kg dry wt	213	EPA 8081
PCB 1232	<106	μg/Kg dry wt	106	EPA 8081
PCB 1242	<106	μg/Kg dry wt	106	EPA 8081
PCB 1248	<106	μg/Kg dry wt	106	EPA 8081
PCB 1254	<106	μg/Kg dry wt	106	EPA 8081
PCB 1260	<106	μg/Kg dry wt	106	EPA 8081
Toxaphene	<10200	μg/Kg dry wt	10200	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
1,2-Dichlorobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
1,3-Dichlorobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
1,4-Dichlorobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
2,4,5-Trichlorophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
2,4,6-Trichlorophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
2,4-Dichlorophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
2,4-Dimethylphenol	<308	μg/Kg dry wt	308	EPA 8270 - S
·				

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 11:53 System ID AH08395 Sample ID FO031017

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP910-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND VALIDATED

5200 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_1 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 10 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. Surrogates were not recoverable for Pesticide analysis due to required dilution (100x).

Test Parameter	Result	Units	MRL	Method
2,4-Dinitrophenol	<1540	μg/Kg dry wt	1540	EPA 8270 - S
2,4-Dinitrotoluene	<308	μg/Kg dry wt	308	EPA 8270 - S
2,6-Dinitrotoluene	<308	μg/Kg dry wt	308	EPA 8270 - S
2-Chloronaphthalene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
2-Chlorophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
2-Methylnaphthalene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
2-Methylphenol	<308	μg/Kg dry wt	308	EPA 8270 - S
2-Nitroaniline	<308	μg/Kg dry wt	308	EPA 8270 - S
2-Nitrophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
3,3'-Dichlorobenzidine	<615	μg/Kg dry wt	615	EPA 8270 - S
3- & 4-Methylphenol	<615	μg/Kg dry wt	615	EPA 8270 - S
3-Nitroaniline	<308	μg/Kg dry wt	308	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1540	μg/Kg dry wt	1540	EPA 8270 - S
4-Bromophenylphenyl ether	<308	μg/Kg dry wt	308	EPA 8270 - S
4-Chloro-3-methylphenol	<308	μg/Kg dry wt	308	EPA 8270 - S
4-Chloroaniline	<308	μg/Kg dry wt	308	EPA 8270 - S
4-Chlorophenylphenyl ether	<308	μg/Kg dry wt	308	EPA 8270 - S
4-Nitroaniline	<308	μg/Kg dry wt	308	EPA 8270 - S
4-Nitrophenol	<769	μg/Kg dry wt	769	EPA 8270 - S
Acenaphthene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Acenaphthylene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Anthracene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Benzo(a)anthracene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Benzo(a)pyrene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Benzo(g,h,i)perylene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Benzofluoranthenes	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Benzoic acid	<1540	μg/Kg dry wt	1540	EPA 8270 - S
Benzyl alcohol	<385	μg/Kg dry wt	385	EPA 8270 - S
Benzyl butyl phthalate	<385	μg/Kg dry wt	385	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 11:53 System ID AH08395 Sample ID FO031017

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP910-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

5200 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_1 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 10 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. Surrogates were not recoverable for Pesticide analysis due to required dilution (100x).

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroethoxy) methane	<308	μg/Kg dry wt	308	EPA 8270 - S
Bis(2-chloroethyl) ether	<308	μg/Kg dry wt	308	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<308	μg/Kg dry wt	308	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<308	μg/Kg dry wt	308	EPA 8270 - S
Chrysene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Di-n-butyl phthalate	<308	μg/Kg dry wt	308	EPA 8270 - S
Di-n-octyl phthalate	<308	μg/Kg dry wt	308	EPA 8270 - S
Dibenzo(a,h)anthracene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Dibenzofuran	<308	μg/Kg dry wt	308	EPA 8270 - S
Diethyl phthalate	<308	μg/Kg dry wt	308	EPA 8270 - S
Dimethyl phthalate	<308	μg/Kg dry wt	308	EPA 8270 - S
Fluoranthene	85.9	μg/Kg dry wt	76.9	EPA 8270 - S
Fluorene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Hexachlorobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
Hexachlorobutadiene	<308	μg/Kg dry wt	308	EPA 8270 - S
Hexachlorocyclopentadiene	<308	μg/Kg dry wt	308	EPA 8270 - S
Hexachloroethane	<308	μg/Kg dry wt	308	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Isophorone	<308	μg/Kg dry wt	308	EPA 8270 - S
N-Nitrosodi-n-propylamine	<308	μg/Kg dry wt	308	EPA 8270 - S
N-Nitrosodiphenylamine	<308	μg/Kg dry wt	308	EPA 8270 - S
Naphthalene	<76.9	μg/Kg dry wt	76.9	EPA 8270 - S
Nitrobenzene	<308	μg/Kg dry wt	308	EPA 8270 - S
Pentachlorophenol	<308	μg/Kg dry wt	308	EPA 8270 - S
Phenanthrene	EST 63.9	μg/Kg dry wt	76.9	EPA 8270 - S
Phenol	<308	μg/Kg dry wt	308	EPA 8270 - S
Pyrene	124	μg/Kg dry wt	76.9	EPA 8270 - S

End of Report for Sample ID: FO031017

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 9:41 System ID AH08396 Sample ID FO031018

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP912-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

5100 NW FRONT AVE

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_2 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	21.2	% W/W	0.01	SM 2540 G
METALS				
COPPER	222	mg/Kg dry wt	0.25	EPA 6020
ZINC	4130	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (8) BY EPA 6020				
ARSENIC	465	mg/Kg dry wt	0.50	EPA 6020
BARIUM	2740	mg/Kg dry wt	0.10	EPA 6020
CADMIUM	18.3	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	48.7	mg/Kg dry wt	0.50	EPA 6020
LEAD	96.4	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.380	mg/Kg dry wt	0.010	EPA 6020
SELENIUM	2.22	mg/Kg dry wt	1.00	EPA 6020
SILVER	0.21	mg/Kg dry wt	0.10	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<250	mg/Kg dry wt	250	NWTPH-Dx
DIESEL	<125	mg/Kg dry wt	125	NWTPH-Dx
KEROSENE	<125	mg/Kg dry wt	125	NWTPH-Dx
MOTOR OIL	608	mg/Kg dry wt	250	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	25900	mg/Kg dry wt	226	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<81.1	μg/Kg dry wt	81.1	EPA 8081
4,4'-DDE	<81.1	μg/Kg dry wt	81.1	EPA 8081
4,4'-DDT	<81.1	μg/Kg dry wt	81.1	EPA 8081
Aldrin	<40.6	μg/Kg dry wt	40.6	EPA 8081
Alpha-BHC	<40.6	μg/Kg dry wt	40.6	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 9:41 System ID AH08396 Sample ID FO031018

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP912-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

5100 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_2 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Alpha-Chlordane	<40.6	μg/Kg dry wt	40.6	EPA 8081
Beta-BHC	<40.6	μg/Kg dry wt	40.6	EPA 8081
Delta-BHC	<40.6	μg/Kg dry wt	40.6	EPA 8081
Dieldrin	<81.1	μg/Kg dry wt	81.1	EPA 8081
Endosulfan I	<40.6	μg/Kg dry wt	40.6	EPA 8081
Endosulfan II	<81.1	μg/Kg dry wt	81.1	EPA 8081
Endosulfan Sulfate	<81.1	μg/Kg dry wt	81.1	EPA 8081
Endrin	<81.1	μg/Kg dry wt	81.1	EPA 8081
Endrin Aldehyde	<81.1	μg/Kg dry wt	81.1	EPA 8081
Endrin Ketone	<81.1	μg/Kg dry wt	81.1	EPA 8081
Gamma-BHC(Lindane)	<40.6	μg/Kg dry wt	40.6	EPA 8081
Gamma-Chlordane	<40.6	μg/Kg dry wt	40.6	EPA 8081
Heptachlor	<40.6	μg/Kg dry wt	40.6	EPA 8081
Heptachlor Epoxide	<40.6	μg/Kg dry wt	40.6	EPA 8081
Methoxychlor	<406	μg/Kg dry wt	406	EPA 8081
PCB 1016	<410	μg/Kg dry wt	410	EPA 8081
PCB 1221	<819	μg/Kg dry wt	819	EPA 8081
PCB 1232	<410	μg/Kg dry wt	410	EPA 8081
PCB 1242	<410	μg/Kg dry wt	410	EPA 8081
PCB 1248	<410	μg/Kg dry wt	410	EPA 8081
PCB 1254	<410	μg/Kg dry wt	410	EPA 8081
PCB 1260	<410	μg/Kg dry wt	410	EPA 8081
Toxaphene	<4060	μg/Kg dry wt	4060	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
1,2-Dichlorobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
1,3-Dichlorobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
1,4-Dichlorobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2,4,5-Trichlorophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 9:41 System ID AH08396 Sample ID FO031018

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP912-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

5100 NW FRONT AVE

Proj Subcategory: REGULATORY PLAN & EVAL Sample Point Code:

19_2 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

IMS File/Invoice #:

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
2,4,6-Trichlorophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2,4-Dichlorophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2,4-Dimethylphenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2,4-Dinitrophenol	<488	μg/Kg dry wt	488	EPA 8270 - S
2,4-Dinitrotoluene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2,6-Dinitrotoluene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2-Chloronaphthalene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
2-Chlorophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2-Methylnaphthalene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
2-Methylphenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2-Nitroaniline	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
2-Nitrophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
3,3'-Dichlorobenzidine	<195	μg/Kg dry wt	195	EPA 8270 - S
3- & 4-Methylphenol	<195	μg/Kg dry wt	195	EPA 8270 - S
3-Nitroaniline	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<488	μg/Kg dry wt	488	EPA 8270 - S
4-Bromophenylphenyl ether	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4-Chloro-3-methylphenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4-Chloroaniline	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4-Chlorophenylphenyl ether	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4-Nitroaniline	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
4-Nitrophenol	<244	μg/Kg dry wt	244	EPA 8270 - S
Acenaphthene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
Acenaphthylene	EST 13.8	μg/Kg dry wt	24.4	EPA 8270 - S
Anthracene	EST 13.1	μg/Kg dry wt	24.4	EPA 8270 - S
Benzo(a)anthracene	91.4	μg/Kg dry wt	24.4	EPA 8270 - S
Benzo(a)pyrene	62.1	μg/Kg dry wt	24.4	EPA 8270 - S
Benzo(g,h,i)perylene	188	μg/Kg dry wt	24.4	EPA 8270 - S
Benzofluoranthenes	271	μg/Kg dry wt	24.4	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 10/7/2003 9:41 System ID AH08396 Sample ID FO031018

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP912-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

5100 NW FRONT AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_2 IMS File/Invoice #: 1020.001 Sample Type: COMPOSITE Sample Matrix: **SEDIMENT** Collected By: MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Benzoic acid	<488	μg/Kg dry wt	488	EPA 8270 - S
Benzyl alcohol	<122	μg/Kg dry wt	122	EPA 8270 - S
Benzyl butyl phthalate	<122	μg/Kg dry wt	122	EPA 8270 - S
Bis(2-chloroethoxy) methane	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Bis(2-chloroethyl) ether	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Chrysene	66.7	μg/Kg dry wt	24.4	EPA 8270 - S
Di-n-butyl phthalate	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Di-n-octyl phthalate	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Dibenzo(a,h)anthracene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
Dibenzofuran	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Diethyl phthalate	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Dimethyl phthalate	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Fluoranthene	87.6	μg/Kg dry wt	24.4	EPA 8270 - S
Fluorene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
Hexachlorobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Hexachlorobutadiene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Hexachlorocyclopentadiene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Hexachloroethane	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	146	μg/Kg dry wt	24.4	EPA 8270 - S
Isophorone	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
N-Nitrosodi-n-propylamine	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
N-Nitrosodiphenylamine	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Naphthalene	<24.4	μg/Kg dry wt	24.4	EPA 8270 - S
Nitrobenzene	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Pentachlorophenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S
Phenanthrene	27.3	μg/Kg dry wt	24.4	EPA 8270 - S
Phenol	<97.5	μg/Kg dry wt	97.5	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 9:41 System ID AH08396 Sample ID FO031018

> 5 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP912-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

5100 NW FRONT AVE

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_2 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter Result MRL Units Method Pyrene 82 µg/Kg dry wt 24.4 EPA 8270 - S

End of Report for Sample ID: FO031018

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 10:44 System ID AH08397 Sample ID **FO031019**

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP918-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW KITTRIDGE AND FRONT

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_3 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL. For Method 8270, 1 of 6 surrogate recoveries was low, and 5 of 22 MS/MSD recoveries were low or high due to matrix interference and/or non-homogeneity.

Test Parameter	Result	Units	MRL	Method
GENERAL		5 1 . 5		
TOTAL SOLIDS - NOT REPORTED	81.2	% W/W	0.01	SM 2540 G
METALS	• · · <u>-</u>	,,,,,,,	0.0.	5 20 10 0
COPPER	3310	mg/Kg dry wt	0.25	EPA 6020
ZINC	733	mg/Kg dry wt	0.23	EPA 6020
	733	ilig/itg diy wt	0.50	LI A 0020
RCRA METALS (8) BY EPA 6020				
ARSENIC	12.2	mg/Kg dry wt	0.50	EPA 6020
BARIUM	228	mg/Kg dry wt	0.10	EPA 6020
CADMIUM	1.23	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	262	mg/Kg dry wt	0.50	EPA 6020
LEAD	3690	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.917	mg/Kg dry wt	0.010	EPA 6020
SELENIUM	<1.00	mg/Kg dry wt	1.00	EPA 6020
SILVER	34.9	mg/Kg dry wt	0.10	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<50	mg/Kg dry wt	50	NWTPH-Dx
DIESEL	<25	mg/Kg dry wt	25	NWTPH-Dx
KEROSENE	<25	mg/Kg dry wt	25	NWTPH-Dx
MOTOR OIL	641	mg/Kg dry wt	50	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	3930	mg/Kg dry wt	40.5	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<22.4	μg/Kg dry wt	22.4	EPA 8081
4,4'-DDE	<22.4	μg/Kg dry wt	22.4	EPA 8081
4,4'-DDT	36.7	μg/Kg dry wt	22.4	EPA 8081
Aldrin	<11.2	μg/Kg dry wt	11.2	EPA 8081
Alpha-BHC	<11.2	μg/Kg dry wt	11.2	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 10:44 System ID AH08397 Sample ID **FO031019**

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP918-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW KITTRIDGE AND FRONT

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_3 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL. For Method 8270, 1 of 6 surrogate recoveries was low, and 5 of 22 MS/MSD recoveries were low or high due to matrix interference and/or non-homogeneity.

Test Parameter	Result	Units	MRL	Method
Alpha-Chlordane	<11.2	μg/Kg dry wt	11.2	EPA 8081
Beta-BHC	<11.2	μg/Kg dry wt	11.2	EPA 8081
Delta-BHC	<11.2	μg/Kg dry wt	11.2	EPA 8081
Dieldrin	<22.4	μg/Kg dry wt	22.4	EPA 8081
Endosulfan I	<11.2	μg/Kg dry wt	11.2	EPA 8081
Endosulfan II	<22.4	μg/Kg dry wt	22.4	EPA 8081
Endosulfan Sulfate	<22.4	μg/Kg dry wt	22.4	EPA 8081
Endrin	<22.4	μg/Kg dry wt	22.4	EPA 8081
Endrin Aldehyde	<22.4	μg/Kg dry wt	22.4	EPA 8081
Endrin Ketone	<22.4	μg/Kg dry wt	22.4	EPA 8081
Gamma-BHC(Lindane)	<11.2	μg/Kg dry wt	11.2	EPA 8081
Gamma-Chlordane	<11.2	μg/Kg dry wt	11.2	EPA 8081
Heptachlor	<11.2	μg/Kg dry wt	11.2	EPA 8081
Heptachlor Epoxide	<11.2	μg/Kg dry wt	11.2	EPA 8081
Methoxychlor	<112	μg/Kg dry wt	112	EPA 8081
PCB 1016	<110	μg/Kg dry wt	110	EPA 8081
PCB 1221	<220	μg/Kg dry wt	220	EPA 8081
PCB 1232	<110	μg/Kg dry wt	110	EPA 8081
PCB 1242	<110	μg/Kg dry wt	110	EPA 8081
PCB 1248	<110	μg/Kg dry wt	110	EPA 8081
PCB 1254	<110	μg/Kg dry wt	110	EPA 8081
PCB 1260	231	μg/Kg dry wt	110	EPA 8081
Toxaphene	<1120	μg/Kg dry wt	1120	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
1,2-Dichlorobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
1,3-Dichlorobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
1,4-Dichlorobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
2,4,5-Trichlorophenol	<302	μg/Kg dry wt	302	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 10:44 System ID AH08397 Sample ID **FO031019**

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP918-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW KITTRIDGE AND FRONT

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_3 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL. For Method 8270, 1 of 6 surrogate recoveries was low, and 5 of 22 MS/MSD recoveries were low or high due to matrix interference and/or non-homogeneity.

Test Parameter	Result	Units	MRL	Method
2,4,6-Trichlorophenol	<302	μg/Kg dry wt	302	EPA 8270 - S
2,4-Dichlorophenol	<302	μg/Kg dry wt	302	EPA 8270 - S
2,4-Dimethylphenol	<302	μg/Kg dry wt	302	EPA 8270 - S
2,4-Dinitrophenol	<1510	μg/Kg dry wt	1510	EPA 8270 - S
2,4-Dinitrotoluene	<302	μg/Kg dry wt	302	EPA 8270 - S
2,6-Dinitrotoluene	<302	μg/Kg dry wt	302	EPA 8270 - S
2-Chloronaphthalene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
2-Chlorophenol	<302	μg/Kg dry wt	302	EPA 8270 - S
2-Methylnaphthalene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
2-Methylphenol	<302	μg/Kg dry wt	302	EPA 8270 - S
2-Nitroaniline	<302	μg/Kg dry wt	302	EPA 8270 - S
2-Nitrophenol	<302	μg/Kg dry wt	302	EPA 8270 - S
3,3'-Dichlorobenzidine	<603	μg/Kg dry wt	603	EPA 8270 - S
3- & 4-Methylphenol	<603	μg/Kg dry wt	603	EPA 8270 - S
3-Nitroaniline	<302	μg/Kg dry wt	302	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1510	μg/Kg dry wt	1510	EPA 8270 - S
4-Bromophenylphenyl ether	<302	μg/Kg dry wt	302	EPA 8270 - S
4-Chloro-3-methylphenol	<302	μg/Kg dry wt	302	EPA 8270 - S
4-Chloroaniline	<302	μg/Kg dry wt	302	EPA 8270 - S
4-Chlorophenylphenyl ether	<302	μg/Kg dry wt	302	EPA 8270 - S
4-Nitroaniline	<302	μg/Kg dry wt	302	EPA 8270 - S
4-Nitrophenol	<754	μg/Kg dry wt	754	EPA 8270 - S
Acenaphthene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Acenaphthylene	95.8	μg/Kg dry wt	75.4	EPA 8270 - S
Anthracene	EST 73.6	μg/Kg dry wt	75.4	EPA 8270 - S
Benzo(a)anthracene	280	μg/Kg dry wt	75.4	EPA 8270 - S
Benzo(a)pyrene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Benzo(g,h,i)perylene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Benzofluoranthenes	350	μg/Kg dry wt	75.4	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 10:44 System ID AH08397 Sample ID **FO031019**

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP918-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW KITTRIDGE AND FRONT

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_3 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL. For Method 8270, 1 of 6 surrogate recoveries was low, and 5 of 22 MS/MSD recoveries were low or high due to matrix interference and/or non-homogeneity.

Test Parameter	Result	Units	MRL	Method
Benzoic acid	<1510	μg/Kg dry wt	1510	EPA 8270 - S
Benzyl alcohol	<377	μg/Kg dry wt	377	EPA 8270 - S
Benzyl butyl phthalate	<377	μg/Kg dry wt	377	EPA 8270 - S
Bis(2-chloroethoxy) methane	<302	μg/Kg dry wt	302	EPA 8270 - S
Bis(2-chloroethyl) ether	<302	μg/Kg dry wt	302	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<302	μg/Kg dry wt	302	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1050	μg/Kg dry wt	302	EPA 8270 - S
Chrysene	292	μg/Kg dry wt	75.4	EPA 8270 - S
Di-n-butyl phthalate	<302	μg/Kg dry wt	302	EPA 8270 - S
Di-n-octyl phthalate	<302	μg/Kg dry wt	302	EPA 8270 - S
Dibenzo(a,h)anthracene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Dibenzofuran	<302	μg/Kg dry wt	302	EPA 8270 - S
Diethyl phthalate	<302	μg/Kg dry wt	302	EPA 8270 - S
Dimethyl phthalate	<302	μg/Kg dry wt	302	EPA 8270 - S
Fluoranthene	372	μg/Kg dry wt	75.4	EPA 8270 - S
Fluorene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Hexachlorobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
Hexachlorobutadiene	<302	μg/Kg dry wt	302	EPA 8270 - S
Hexachlorocyclopentadiene	<302	μg/Kg dry wt	302	EPA 8270 - S
Hexachloroethane	<302	μg/Kg dry wt	302	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Isophorone	<302	μg/Kg dry wt	302	EPA 8270 - S
N-Nitrosodi-n-propylamine	<302	μg/Kg dry wt	302	EPA 8270 - S
N-Nitrosodiphenylamine	<302	μg/Kg dry wt	302	EPA 8270 - S
Naphthalene	<75.4	μg/Kg dry wt	75.4	EPA 8270 - S
Nitrobenzene	<302	μg/Kg dry wt	302	EPA 8270 - S
Pentachlorophenol	<302	μg/Kg dry wt	302	EPA 8270 - S
Phenanthrene	135	μg/Kg dry wt	75.4	EPA 8270 - S
Phenol	<302	μg/Kg dry wt	302	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 10:44 System ID AH08397 Sample ID **FO031019**

> 5 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP918-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

NW KITTRIDGE AND FRONT

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_3 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL. For Method 8270, 1 of 6 surrogate recoveries was low, and 5 of 22 MS/MSD recoveries were low or high due to matrix interference and/or non-homogeneity.

Test Parameter Result MRL Units Method Pvrene 552 µg/Kg dry wt 75.4 EPA 8270 - S

End of Report for Sample ID: FO031019

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 13:40 System ID AH08398 Sample ID **FO031020**

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP931-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_4 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	15.6	% W/W	0.01	SM 2540 G
METALS				
COPPER	620	mg/Kg dry wt	0.25	EPA 6020
ZINC	22100	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (8) BY EPA 6020				
ARSENIC	137	mg/Kg dry wt	0.50	EPA 6020
BARIUM	3950	mg/Kg dry wt	0.10	EPA 6020
CADMIUM	94.5	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	96.6	mg/Kg dry wt	0.50	EPA 6020
LEAD	260	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.347	mg/Kg dry wt	0.010	EPA 6020
SELENIUM	4.36	mg/Kg dry wt	1.00	EPA 6020
SILVER	76.9	mg/Kg dry wt	0.10	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<300	mg/Kg dry wt	300	NWTPH-Dx
DIESEL	<150	mg/Kg dry wt	150	NWTPH-Dx
KEROSENE	<150	mg/Kg dry wt	150	NWTPH-Dx
MOTOR OIL	1560	mg/Kg dry wt	300	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	36900	mg/Kg dry wt	472	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<153	μg/Kg dry wt	153	EPA 8081
4,4'-DDE	<153	μg/Kg dry wt	153	EPA 8081
4,4'-DDT	<153	μg/Kg dry wt	153	EPA 8081
Aldrin	<76.6	μg/Kg dry wt	76.6	EPA 8081
Alpha-BHC	<76.6	μg/Kg dry wt	76.6	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 13:40 System ID AH08398 Sample ID **FO031020**

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP931-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_4 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Alpha-Chlordane	<76.6	μg/Kg dry wt	76.6	EPA 8081
Beta-BHC	<76.6	μg/Kg dry wt	76.6	EPA 8081
Delta-BHC	<76.6	μg/Kg dry wt	76.6	EPA 8081
Dieldrin	<153	μg/Kg dry wt	153	EPA 8081
Endosulfan I	<76.6	μg/Kg dry wt	76.6	EPA 8081
Endosulfan II	<153	μg/Kg dry wt	153	EPA 8081
Endosulfan Sulfate	<153	μg/Kg dry wt	153	EPA 8081
Endrin	<153	μg/Kg dry wt	153	EPA 8081
Endrin Aldehyde	<153	μg/Kg dry wt	153	EPA 8081
Endrin Ketone	<153	μg/Kg dry wt	153	EPA 8081
Gamma-BHC(Lindane)	<76.6	μg/Kg dry wt	76.6	EPA 8081
Gamma-Chlordane	<76.6	μg/Kg dry wt	76.6	EPA 8081
Heptachlor	<76.6	μg/Kg dry wt	76.6	EPA 8081
Heptachlor Epoxide	<76.6	μg/Kg dry wt	76.6	EPA 8081
Methoxychlor	<766	μg/Kg dry wt	766	EPA 8081
PCB 1016	<516	μg/Kg dry wt	516	EPA 8081
PCB 1221	<1030	μg/Kg dry wt	1030	EPA 8081
PCB 1232	<516	μg/Kg dry wt	516	EPA 8081
PCB 1242	<516	μg/Kg dry wt	516	EPA 8081
PCB 1248	<516	μg/Kg dry wt	516	EPA 8081
PCB 1254	<516	μg/Kg dry wt	516	EPA 8081
PCB 1260	<516	μg/Kg dry wt	516	EPA 8081
Toxaphene	<7660	μg/Kg dry wt	7660	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
1,2-Dichlorobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
1,3-Dichlorobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
1,4-Dichlorobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
2,4,5-Trichlorophenol	<137	μg/Kg dry wt	137	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 13:40 System ID AH08398 Sample ID **FO031020**

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP931-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_4 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
2,4,6-Trichlorophenol	<137	μg/Kg dry wt	137	EPA 8270 - S
2,4-Dichlorophenol	<137	μg/Kg dry wt	137	EPA 8270 - S
2,4-Dimethylphenol	<137	μg/Kg dry wt	137	EPA 8270 - S
2,4-Dinitrophenol	<686	μg/Kg dry wt	686	EPA 8270 - S
2,4-Dinitrotoluene	<137	μg/Kg dry wt	137	EPA 8270 - S
2,6-Dinitrotoluene	<137	μg/Kg dry wt	137	EPA 8270 - S
2-Chloronaphthalene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
2-Chlorophenol	<137	μg/Kg dry wt	137	EPA 8270 - S
2-Methylnaphthalene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
2-Methylphenol	<137	μg/Kg dry wt	137	EPA 8270 - S
2-Nitroaniline	<137	μg/Kg dry wt	137	EPA 8270 - S
2-Nitrophenol	<137	μg/Kg dry wt	137	EPA 8270 - S
3,3'-Dichlorobenzidine	<274	μg/Kg dry wt	274	EPA 8270 - S
3- & 4-Methylphenol	<274	μg/Kg dry wt	274	EPA 8270 - S
3-Nitroaniline	<137	μg/Kg dry wt	137	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<686	μg/Kg dry wt	686	EPA 8270 - S
4-Bromophenylphenyl ether	<137	μg/Kg dry wt	137	EPA 8270 - S
4-Chloro-3-methylphenol	<137	μg/Kg dry wt	137	EPA 8270 - S
4-Chloroaniline	<137	μg/Kg dry wt	137	EPA 8270 - S
4-Chlorophenylphenyl ether	<137	μg/Kg dry wt	137	EPA 8270 - S
4-Nitroaniline	<137	μg/Kg dry wt	137	EPA 8270 - S
4-Nitrophenol	<343	μg/Kg dry wt	343	EPA 8270 - S
Acenaphthene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Acenaphthylene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Anthracene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Benzo(a)anthracene	EST 17.6	μg/Kg dry wt	34.3	EPA 8270 - S
Benzo(a)pyrene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Benzo(g,h,i)perylene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Benzofluoranthenes	73.8	μg/Kg dry wt	34.3	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 13:40 System ID AH08398 Sample ID **FO031020**

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP931-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_4 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Benzoic acid	<686	μg/Kg dry wt	686	EPA 8270 - S
Benzyl alcohol	<172	μg/Kg dry wt	172	EPA 8270 - S
Benzyl butyl phthalate	<172	μg/Kg dry wt	172	EPA 8270 - S
Bis(2-chloroethoxy) methane	<137	μg/Kg dry wt	137	EPA 8270 - S
Bis(2-chloroethyl) ether	<137	μg/Kg dry wt	137	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<137	μg/Kg dry wt	137	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	941	μg/Kg dry wt	137	EPA 8270 - S
Chrysene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Di-n-butyl phthalate	<137	μg/Kg dry wt	137	EPA 8270 - S
Di-n-octyl phthalate	<137	μg/Kg dry wt	137	EPA 8270 - S
Dibenzo(a,h)anthracene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Dibenzofuran	<137	μg/Kg dry wt	137	EPA 8270 - S
Diethyl phthalate	<137	μg/Kg dry wt	137	EPA 8270 - S
Dimethyl phthalate	<137	μg/Kg dry wt	137	EPA 8270 - S
Fluoranthene	48.1	μg/Kg dry wt	34.3	EPA 8270 - S
Fluorene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Hexachlorobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
Hexachlorobutadiene	<137	μg/Kg dry wt	137	EPA 8270 - S
Hexachlorocyclopentadiene	<137	μg/Kg dry wt	137	EPA 8270 - S
Hexachloroethane	<137	μg/Kg dry wt	137	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Isophorone	<137	μg/Kg dry wt	137	EPA 8270 - S
N-Nitrosodi-n-propylamine	<137	μg/Kg dry wt	137	EPA 8270 - S
N-Nitrosodiphenylamine	<137	μg/Kg dry wt	137	EPA 8270 - S
Naphthalene	<34.3	μg/Kg dry wt	34.3	EPA 8270 - S
Nitrobenzene	<137	μg/Kg dry wt	137	EPA 8270 - S
Pentachlorophenol	<137	μg/Kg dry wt	137	EPA 8270 - S
Phenanthrene	EST 26.7	μg/Kg dry wt	34.3	EPA 8270 - S
Phenol	<137	μg/Kg dry wt	137	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 13:40 System ID AH08398 Sample ID **FO031020**

> 5 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP931-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

4488 NW YEON

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_4 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter Result MRL Units Method Pyrene 52 µg/Kg dry wt 34.3 EPA 8270 - S

End of Report for Sample ID: FO031020

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 14:20 System ID AH08399 Sample ID FO031021

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP932-1003 Date Received: Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_5 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	25.0	% W/W	0.01	SM 2540 G
METALS				
COPPER	144	mg/Kg dry wt	0.25	EPA 6020
ZINC	850	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (8) BY EPA 6020				
ARSENIC	67.3	mg/Kg dry wt	0.50	EPA 6020
BARIUM	324	mg/Kg dry wt	0.10	EPA 6020
CADMIUM	2.55	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	72.8	mg/Kg dry wt	0.50	EPA 6020
LEAD	226	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.277	mg/Kg dry wt	0.010	EPA 6020
SELENIUM	1.02	mg/Kg dry wt	1.00	EPA 6020
SILVER	145	mg/Kg dry wt	0.10	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	396	mg/Kg dry wt	200	NWTPH-Dx
DIESEL	<100	mg/Kg dry wt	100	NWTPH-Dx
KEROSENE	<100	mg/Kg dry wt	100	NWTPH-Dx
MOTOR OIL	1930	mg/Kg dry wt	200	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	82700	mg/Kg dry wt	216	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<57.6	μg/Kg dry wt	57.6	EPA 8081
4,4'-DDE	<57.6	μg/Kg dry wt	57.6	EPA 8081
4,4'-DDT	<57.6	μg/Kg dry wt	57.6	EPA 8081
Aldrin	<28.8	μg/Kg dry wt	28.8	EPA 8081
Alpha-BHC	<28.8	μg/Kg dry wt	28.8	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 14:20 System ID AH08399 Sample ID FO031021

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP932-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_5 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Alpha-Chlordane	<28.8	μg/Kg dry wt	28.8	EPA 8081
Beta-BHC	<28.8	μg/Kg dry wt	28.8	EPA 8081
Delta-BHC	<28.8	μg/Kg dry wt	28.8	EPA 8081
Dieldrin	<57.6	μg/Kg dry wt	57.6	EPA 8081
Endosulfan I	<28.8	μg/Kg dry wt	28.8	EPA 8081
Endosulfan II	<57.6	μg/Kg dry wt	57.6	EPA 8081
Endosulfan Sulfate	<57.6	μg/Kg dry wt	57.6	EPA 8081
Endrin	<57.6	μg/Kg dry wt	57.6	EPA 8081
Endrin Aldehyde	<57.6	μg/Kg dry wt	57.6	EPA 8081
Endrin Ketone	<57.6	μg/Kg dry wt	57.6	EPA 8081
Gamma-BHC(Lindane)	<28.8	μg/Kg dry wt	28.8	EPA 8081
Gamma-Chlordane	38.3	μg/Kg dry wt	28.8	EPA 8081
Heptachlor	<28.8	μg/Kg dry wt	28.8	EPA 8081
Heptachlor Epoxide	<28.8	μg/Kg dry wt	28.8	EPA 8081
Methoxychlor	<288	μg/Kg dry wt	288	EPA 8081
PCB 1016	<329	μg/Kg dry wt	329	EPA 8081
PCB 1221	<657	μg/Kg dry wt	657	EPA 8081
PCB 1232	<329	μg/Kg dry wt	329	EPA 8081
PCB 1242	<329	μg/Kg dry wt	329	EPA 8081
PCB 1248	<329	μg/Kg dry wt	329	EPA 8081
PCB 1254	<329	μg/Kg dry wt	329	EPA 8081
PCB 1260	EST 242	μg/Kg dry wt	329	EPA 8081
Toxaphene	<2880	μg/Kg dry wt	2880	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
1,2-Dichlorobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
1,3-Dichlorobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
1,4-Dichlorobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
2,4,5-Trichlorophenol	<831	μg/Kg dry wt	831	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 14:20 System ID AH08399 Sample ID FO031021

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP932-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_5 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
2,4,6-Trichlorophenol	<831	μg/Kg dry wt	831	EPA 8270 - S
2,4-Dichlorophenol	<831	μg/Kg dry wt	831	EPA 8270 - S
2,4-Dimethylphenol	<831	μg/Kg dry wt	831	EPA 8270 - S
2,4-Dinitrophenol	<4150	μg/Kg dry wt	4150	EPA 8270 - S
2,4-Dinitrotoluene	<831	μg/Kg dry wt	831	EPA 8270 - S
2,6-Dinitrotoluene	<831	μg/Kg dry wt	831	EPA 8270 - S
2-Chloronaphthalene	<208	μg/Kg dry wt	208	EPA 8270 - S
2-Chlorophenol	<831	μg/Kg dry wt	831	EPA 8270 - S
2-Methylnaphthalene	<208	μg/Kg dry wt	208	EPA 8270 - S
2-Methylphenol	<831	μg/Kg dry wt	831	EPA 8270 - S
2-Nitroaniline	<831	μg/Kg dry wt	831	EPA 8270 - S
2-Nitrophenol	<831	μg/Kg dry wt	831	EPA 8270 - S
3,3'-Dichlorobenzidine	<1660	μg/Kg dry wt	1660	EPA 8270 - S
3- & 4-Methylphenol	<1660	μg/Kg dry wt	1660	EPA 8270 - S
3-Nitroaniline	<831	μg/Kg dry wt	831	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<4150	μg/Kg dry wt	4150	EPA 8270 - S
4-Bromophenylphenyl ether	<831	μg/Kg dry wt	831	EPA 8270 - S
4-Chloro-3-methylphenol	<831	μg/Kg dry wt	831	EPA 8270 - S
4-Chloroaniline	<831	μg/Kg dry wt	831	EPA 8270 - S
4-Chlorophenylphenyl ether	<831	μg/Kg dry wt	831	EPA 8270 - S
4-Nitroaniline	<831	μg/Kg dry wt	831	EPA 8270 - S
4-Nitrophenol	<2080	μg/Kg dry wt	2080	EPA 8270 - S
Acenaphthene	<208	μg/Kg dry wt	208	EPA 8270 - S
Acenaphthylene	<208	μg/Kg dry wt	208	EPA 8270 - S
Anthracene	<208	μg/Kg dry wt	208	EPA 8270 - S
Benzo(a)anthracene	<208	μg/Kg dry wt	208	EPA 8270 - S
Benzo(a)pyrene	893	μg/Kg dry wt	208	EPA 8270 - S
Benzo(g,h,i)perylene	<208	μg/Kg dry wt	208	EPA 8270 - S
Benzofluoranthenes	790	μg/Kg dry wt	208	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/7/2003 14:20 System ID AH08399 Sample ID FO031021

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP932-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4488 NW YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_5 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Benzoic acid	<4150	μg/Kg dry wt	4150	EPA 8270 - S
Benzyl alcohol	<1040	μg/Kg dry wt	1040	EPA 8270 - S
Benzyl butyl phthalate	<1040	μg/Kg dry wt	1040	EPA 8270 - S
Bis(2-chloroethoxy) methane	<831	μg/Kg dry wt	831	EPA 8270 - S
Bis(2-chloroethyl) ether	<831	μg/Kg dry wt	831	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<831	μg/Kg dry wt	831	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	2200	μg/Kg dry wt	831	EPA 8270 - S
Chrysene	<208	μg/Kg dry wt	208	EPA 8270 - S
Di-n-butyl phthalate	<831	μg/Kg dry wt	831	EPA 8270 - S
Di-n-octyl phthalate	<831	μg/Kg dry wt	831	EPA 8270 - S
Dibenzo(a,h)anthracene	<208	μg/Kg dry wt	208	EPA 8270 - S
Dibenzofuran	<831	μg/Kg dry wt	831	EPA 8270 - S
Diethyl phthalate	<831	μg/Kg dry wt	831	EPA 8270 - S
Dimethyl phthalate	<831	μg/Kg dry wt	831	EPA 8270 - S
Fluoranthene	412	μg/Kg dry wt	208	EPA 8270 - S
Fluorene	<208	μg/Kg dry wt	208	EPA 8270 - S
Hexachlorobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
Hexachlorobutadiene	<831	μg/Kg dry wt	831	EPA 8270 - S
Hexachlorocyclopentadiene	<831	μg/Kg dry wt	831	EPA 8270 - S
Hexachloroethane	<831	μg/Kg dry wt	831	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<208	μg/Kg dry wt	208	EPA 8270 - S
Isophorone	<831	μg/Kg dry wt	831	EPA 8270 - S
N-Nitrosodi-n-propylamine	<831	μg/Kg dry wt	831	EPA 8270 - S
N-Nitrosodiphenylamine	<831	μg/Kg dry wt	831	EPA 8270 - S
Naphthalene	<208	μg/Kg dry wt	208	EPA 8270 - S
Nitrobenzene	<831	μg/Kg dry wt	831	EPA 8270 - S
Pentachlorophenol	<831	μg/Kg dry wt	831	EPA 8270 - S
Phenanthrene	EST 139	μg/Kg dry wt	208	EPA 8270 - S
Phenol	<831	μg/Kg dry wt	831	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/7/2003 14:20 System ID AH08399 Sample ID FO031021

> 5 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP932-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

4488 NW YEON

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_5 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

PDX/042100011.PDF

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Reporting limits are raised for NWTPH-Dx analysis due to the low %solids in the sample. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter Result MRL Units Method Pvrene 532 µg/Kg dry wt 208 EPA 8270 - S

End of Report for Sample ID: FO031021

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/8/2003 12:40 System ID AH08400 Sample ID FO031022

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAT496-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW ST HELENS & YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_6 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	76.0	% W/W	0.01	SM 2540 G
METALS				
COPPER	64.3	mg/Kg dry wt	0.25	EPA 6020
ZINC	208	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	8.08	mg/Kg dry wt	0.50	EPA 6020
CADMIUM	0.77	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	63.1	mg/Kg dry wt	0.50	EPA 6020
LEAD	27.0	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.033	mg/Kg dry wt	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	231	mg/Kg dry wt	50	NWTPH-Dx
DIESEL	<25	mg/Kg dry wt	25	NWTPH-Dx
KEROSENE	<25	mg/Kg dry wt	25	NWTPH-Dx
MOTOR OIL	980	mg/Kg dry wt	50	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	6670	mg/Kg dry wt	45.1	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<22.6	μg/Kg dry wt	22.6	EPA 8081
4,4'-DDE	<22.6	μg/Kg dry wt	22.6	EPA 8081
4,4'-DDT	<22.6	μg/Kg dry wt	22.6	EPA 8081
Aldrin	<11.3	μg/Kg dry wt	11.3	EPA 8081
Alpha-BHC	<11.3	μg/Kg dry wt	11.3	EPA 8081
Alpha-Chlordane	<11.3	μg/Kg dry wt	11.3	EPA 8081
Beta-BHC	<11.3	μg/Kg dry wt	11.3	EPA 8081
Delta-BHC	<11.3	μg/Kg dry wt	11.3	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/8/2003 12:40 System ID AH08400 Sample ID FO031022

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAT496-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW ST HELENS & YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_6 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Dieldrin	<22.6	μg/Kg dry wt	22.6	EPA 8081
Endosulfan I	<11.3	μg/Kg dry wt	11.3	EPA 8081
Endosulfan II	<22.6	μg/Kg dry wt	22.6	EPA 8081
Endosulfan Sulfate	<22.6	μg/Kg dry wt	22.6	EPA 8081
Endrin	<22.6	μg/Kg dry wt	22.6	EPA 8081
Endrin Aldehyde	<22.6	μg/Kg dry wt	22.6	EPA 8081
Endrin Ketone	<22.6	μg/Kg dry wt	22.6	EPA 8081
Gamma-BHC(Lindane)	<11.3	μg/Kg dry wt	11.3	EPA 8081
Gamma-Chlordane	<11.3	μg/Kg dry wt	11.3	EPA 8081
Heptachlor	<11.3	μg/Kg dry wt	11.3	EPA 8081
Heptachlor Epoxide	<11.3	μg/Kg dry wt	11.3	EPA 8081
Methoxychlor	<113	μg/Kg dry wt	113	EPA 8081
PCB 1016	<117	μg/Kg dry wt	117	EPA 8081
PCB 1221	<234	μg/Kg dry wt	234	EPA 8081
PCB 1232	<117	μg/Kg dry wt	117	EPA 8081
PCB 1242	<117	μg/Kg dry wt	117	EPA 8081
PCB 1248	<117	μg/Kg dry wt	117	EPA 8081
PCB 1254	<117	μg/Kg dry wt	117	EPA 8081
PCB 1260	<117	μg/Kg dry wt	117	EPA 8081
Toxaphene	<1130	μg/Kg dry wt	1130	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
1,2-Dichlorobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
1,3-Dichlorobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
1,4-Dichlorobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
2,4,5-Trichlorophenol	<319	μg/Kg dry wt	319	EPA 8270 - S
2,4,6-Trichlorophenol	<319	μg/Kg dry wt	319	EPA 8270 - S
2,4-Dichlorophenol	<319	μg/Kg dry wt	319	EPA 8270 - S
2,4-Dimethylphenol	<319	μg/Kg dry wt	319	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 12:40 System ID AH08400 Sample ID FO031022

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAT496-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND VALIDATED

NW ST HELENS & YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_6 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter Result Unit	s MRL	Method
2,4-Dinitrophenol <1600 µg/K	g dry wt 1600	EPA 8270 - S
2,4-Dinitrotoluene <319 µg/K	g dry wt 319	EPA 8270 - S
2,6-Dinitrotoluene <319 µg/K	g dry wt 319	EPA 8270 - S
2-Chloronaphthalene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
2-Chlorophenol <319 μg/K	g dry wt 319	EPA 8270 - S
2-Methylnaphthalene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
2-Methylphenol <319 μg/K	g dry wt 319	EPA 8270 - S
2-Nitroaniline <319 μg/K	g dry wt 319	EPA 8270 - S
2-Nitrophenol <319 μg/K	g dry wt 319	EPA 8270 - S
3,3'-Dichlorobenzidine <638 µg/K	g dry wt 638	EPA 8270 - S
3- & 4-Methylphenol <638 μg/K	g dry wt 638	EPA 8270 - S
3-Nitroaniline <319 µg/K	g dry wt 319	EPA 8270 - S
4,6-Dinitro-2-methylphenol <1600 µg/K	g dry wt 1600	EPA 8270 - S
4-Bromophenylphenyl ether <319 μg/K	g dry wt 319	EPA 8270 - S
4-Chloro-3-methylphenol <319 μg/K	g dry wt 319	EPA 8270 - S
4-Chloroaniline <319 μg/K	g dry wt 319	EPA 8270 - S
4-Chlorophenylphenyl ether <319 μg/K	g dry wt 319	EPA 8270 - S
4-Nitroaniline <319 μg/K	g dry wt 319	EPA 8270 - S
4-Nitrophenol <798 μg/K	g dry wt 798	EPA 8270 - S
Acenaphthene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
Acenaphthylene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
Anthracene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
Benzo(a)anthracene <79.8 µg/K	g dry wt 79.8	EPA 8270 - S
Benzo(a)pyrene <79.8 µg/K	g dry wt 79.8	EPA 8270 - S
Benzo(g,h,i)perylene <79.8 μg/K	g dry wt 79.8	EPA 8270 - S
Benzofluoranthenes <79.8 µg/K	g dry wt 79.8	EPA 8270 - S
Benzoic acid <1600 µg/K	g dry wt 1600	EPA 8270 - S
Benzyl alcohol <399 µg/K	g dry wt 399	EPA 8270 - S
Benzyl butyl phthalate <399 µg/K	g dry wt 399	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 12:40 System ID AH08400 Sample ID FO031022

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAT496-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

NW ST HELENS & YEON

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_6 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Contamination quantified as Fuel Oil most closely resembles the hydrocarbon pattern of JP-7 fuel. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroethoxy) methane	<319	μg/Kg dry wt	319	EPA 8270 - S
Bis(2-chloroethyl) ether	<319	μg/Kg dry wt	319	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<319	μg/Kg dry wt	319	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	549	μg/Kg dry wt	319	EPA 8270 - S
Chrysene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Di-n-butyl phthalate	<319	μg/Kg dry wt	319	EPA 8270 - S
Di-n-octyl phthalate	<319	μg/Kg dry wt	319	EPA 8270 - S
Dibenzo(a,h)anthracene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Dibenzofuran	<319	μg/Kg dry wt	319	EPA 8270 - S
Diethyl phthalate	<319	μg/Kg dry wt	319	EPA 8270 - S
Dimethyl phthalate	<319	μg/Kg dry wt	319	EPA 8270 - S
Fluoranthene	EST 78.5	μg/Kg dry wt	79.8	EPA 8270 - S
Fluorene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Hexachlorobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
Hexachlorobutadiene	<319	μg/Kg dry wt	319	EPA 8270 - S
Hexachlorocyclopentadiene	<319	μg/Kg dry wt	319	EPA 8270 - S
Hexachloroethane	<319	μg/Kg dry wt	319	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Isophorone	<319	μg/Kg dry wt	319	EPA 8270 - S
N-Nitrosodi-n-propylamine	<319	μg/Kg dry wt	319	EPA 8270 - S
N-Nitrosodiphenylamine	<319	μg/Kg dry wt	319	EPA 8270 - S
Naphthalene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Nitrobenzene	<319	μg/Kg dry wt	319	EPA 8270 - S
Pentachlorophenol	<319	μg/Kg dry wt	319	EPA 8270 - S
Phenanthrene	<79.8	μg/Kg dry wt	79.8	EPA 8270 - S
Phenol	<319	μg/Kg dry wt	319	EPA 8270 - S
Pyrene	111	μg/Kg dry wt	79.8	EPA 8270 - S

End of Report for Sample ID: FO031022

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 10:35 **System ID** AH08401 **Sample ID FO031023**

Page: 1

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP831-1003

Date Received: Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

CHEVRON ASPHALT

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_7 IMS File/Invoice #: 1020.001

Sample Type: Sample Matrix: SCollected By:

COMPOSITE SEDIMENT MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times,

calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	73.7	% W/W	0.01	SM 2540 G
METALS				
COPPER	81.1	mg/Kg dry wt	0.25	EPA 6020
ZINC	300	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	28.8	mg/Kg dry wt	0.50	EPA 6020
CADMIUM	1.12	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	36.4	mg/Kg dry wt	0.50	EPA 6020
LEAD	70.3	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.050	mg/Kg dry wt	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<50	mg/Kg dry wt	50	NWTPH-Dx
DIESEL	<25	mg/Kg dry wt	25	NWTPH-Dx
KEROSENE	<25	mg/Kg dry wt	25	NWTPH-Dx
MOTOR OIL	207	mg/Kg dry wt	50	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	5760	mg/Kg dry wt	39.5	EPA 9060 M
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<23.7	μg/Kg dry wt	23.7	EPA 8081
4,4'-DDE	<23.7	μg/Kg dry wt	23.7	EPA 8081
4,4'-DDT	<23.7	μg/Kg dry wt	23.7	EPA 8081
Aldrin	<11.9	μg/Kg dry wt	11.9	EPA 8081
Alpha-BHC	<11.9	μg/Kg dry wt	11.9	EPA 8081
Alpha-Chlordane	<11.9	μg/Kg dry wt	11.9	EPA 8081
Beta-BHC	<11.9	μg/Kg dry wt	11.9	EPA 8081
Delta-BHC	<11.9	μg/Kg dry wt	11.9	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 10:35 **System ID** AH08401 **Sample ID FO031023**

Page: 2

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP831-1003

Date Received: Sample Status:

10/8/2003 COMPLETE AND VALIDATED

ΔΟΡΗΔΙΤ

CHEVRON ASPHALT

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_7 IMS File/Invoice #: 1020.001

Sample Type: COMPOSITE
Sample Matrix: SEDIMENT
Collected By: MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Dieldrin	<23.7	μg/Kg dry wt	23.7	EPA 8081
Endosulfan I	<11.9	μg/Kg dry wt	11.9	EPA 8081
Endosulfan II	<23.7	μg/Kg dry wt	23.7	EPA 8081
Endosulfan Sulfate	<23.7	μg/Kg dry wt	23.7	EPA 8081
Endrin	<23.7	μg/Kg dry wt	23.7	EPA 8081
Endrin Aldehyde	<23.7	μg/Kg dry wt	23.7	EPA 8081
Endrin Ketone	<23.7	μg/Kg dry wt	23.7	EPA 8081
Gamma-BHC(Lindane)	<11.9	μg/Kg dry wt	11.9	EPA 8081
Gamma-Chlordane	<11.9	μg/Kg dry wt	11.9	EPA 8081
Heptachlor	<11.9	μg/Kg dry wt	11.9	EPA 8081
Heptachlor Epoxide	<11.9	μg/Kg dry wt	11.9	EPA 8081
Methoxychlor	<119	μg/Kg dry wt	119	EPA 8081
PCB 1016	<116	μg/Kg dry wt	116	EPA 8081
PCB 1221	<231	μg/Kg dry wt	231	EPA 8081
PCB 1232	<116	μg/Kg dry wt	116	EPA 8081
PCB 1242	<116	μg/Kg dry wt	116	EPA 8081
PCB 1248	<116	μg/Kg dry wt	116	EPA 8081
PCB 1254	<116	μg/Kg dry wt	116	EPA 8081
PCB 1260	<116	μg/Kg dry wt	116	EPA 8081
Toxaphene	<1190	μg/Kg dry wt	1190	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<306	μg/Kg dry wt	306	EPA 8270 - S
1,2-Dichlorobenzene	<306	μg/Kg dry wt	306	EPA 8270 - S
1,3-Dichlorobenzene	<306	μg/Kg dry wt	306	EPA 8270 - S
1,4-Dichlorobenzene	<306	μg/Kg dry wt	306	EPA 8270 - S
2,4,5-Trichlorophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
2,4,6-Trichlorophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
2,4-Dichlorophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
2,4-Dimethylphenol	<306	μg/Kg dry wt	306	EPA 8270 - S
•				

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 10/8/2003 10:35 **System ID** AH08401 **Sample ID FO031023**

Page: 3

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP831-1003

Date Received: 1 Sample Status: 9

10/8/2003 COMPLETE AND VALIDATED

CHEVRON ASPHALT

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_7 IMS File/Invoice #: 1020.001

Sample Type: COMPOSITE
Sample Matrix: SEDIMENT
Collected By: MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
2,4-Dinitrophenol	<1530	μg/Kg dry wt	1530	EPA 8270 - S
2,4-Dinitrotoluene	<306	μg/Kg dry wt	306	EPA 8270 - S
2,6-Dinitrotoluene	<306	μg/Kg dry wt	306	EPA 8270 - S
2-Chloronaphthalene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
2-Chlorophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
2-Methylnaphthalene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
2-Methylphenol	<306	μg/Kg dry wt	306	EPA 8270 - S
2-Nitroaniline	<306	μg/Kg dry wt	306	EPA 8270 - S
2-Nitrophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
3,3'-Dichlorobenzidine	<612	μg/Kg dry wt	612	EPA 8270 - S
3- & 4-Methylphenol	<612	μg/Kg dry wt	612	EPA 8270 - S
3-Nitroaniline	<306	μg/Kg dry wt	306	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1530	μg/Kg dry wt	1530	EPA 8270 - S
4-Bromophenylphenyl ether	<306	μg/Kg dry wt	306	EPA 8270 - S
4-Chloro-3-methylphenol	<306	μg/Kg dry wt	306	EPA 8270 - S
4-Chloroaniline	<306	μg/Kg dry wt	306	EPA 8270 - S
4-Chlorophenylphenyl ether	<306	μg/Kg dry wt	306	EPA 8270 - S
4-Nitroaniline	<306	μg/Kg dry wt	306	EPA 8270 - S
4-Nitrophenol	<764	μg/Kg dry wt	764	EPA 8270 - S
Acenaphthene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Acenaphthylene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Anthracene	EST 40	μg/Kg dry wt	76.4	EPA 8270 - S
Benzo(a)anthracene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Benzo(a)pyrene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Benzo(g,h,i)perylene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Benzofluoranthenes	539	μg/Kg dry wt	76.4	EPA 8270 - S
Benzoic acid	<1530	μg/Kg dry wt	1530	EPA 8270 - S
Benzyl alcohol	<382	μg/Kg dry wt	382	EPA 8270 - S
Benzyl butyl phthalate	<382	μg/Kg dry wt	382	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

....

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 System ID AH08401 10:35 Sample ID **FO031023**

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AAP831-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

CHEVRON ASPHALT

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_7 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Results flagged as estimates are less than the PQL but detectable above the MDL.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroethoxy) methane	<306	μg/Kg dry wt	306	EPA 8270 - S
Bis(2-chloroethyl) ether	<306	μg/Kg dry wt	306	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<306	μg/Kg dry wt	306	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<306	μg/Kg dry wt	306	EPA 8270 - S
Chrysene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Di-n-butyl phthalate	<306	μg/Kg dry wt	306	EPA 8270 - S
Di-n-octyl phthalate	<306	μg/Kg dry wt	306	EPA 8270 - S
Dibenzo(a,h)anthracene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Dibenzofuran	<306	μg/Kg dry wt	306	EPA 8270 - S
Diethyl phthalate	<306	μg/Kg dry wt	306	EPA 8270 - S
Dimethyl phthalate	<306	μg/Kg dry wt	306	EPA 8270 - S
Fluoranthene	131	μg/Kg dry wt	76.4	EPA 8270 - S
Fluorene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Hexachlorobenzene	<306	μg/Kg dry wt	306	EPA 8270 - 3
Hexachlorobutadiene	<306	μg/Kg dry wt	306	EPA 8270 - 3
Hexachlorocyclopentadiene	<306	μg/Kg dry wt	306	EPA 8270 - S
Hexachloroethane	<306	μg/Kg dry wt	306	EPA 8270 - 3
Indeno(1,2,3-cd)pyrene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Isophorone	<306	μg/Kg dry wt	306	EPA 8270 - S
N-Nitrosodi-n-propylamine	<306	μg/Kg dry wt	306	EPA 8270 - S
N-Nitrosodiphenylamine	<306	μg/Kg dry wt	306	EPA 8270 - S
Naphthalene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Nitrobenzene	<306	μg/Kg dry wt	306	EPA 8270 - S
Pentachlorophenol	<306	μg/Kg dry wt	306	EPA 8270 - S
Phenanthrene	<76.4	μg/Kg dry wt	76.4	EPA 8270 - S
Phenol	<306	μg/Kg dry wt	306	EPA 8270 - S
Pyrene	125	μg/Kg dry wt	76.4	EPA 8270 - S

End of Report for Sample ID: FO031023

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 11:50 System ID AH08402 Sample ID FO031024

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AMZ077-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4465 NW YEON AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_8 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 2 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. One of 2 surrogates for Pesticide analysis had low recovery due to matrix interference.

Test Parameter	Result	Units	MRL	Method
GENERAL				
TOTAL SOLIDS - NOT REPORTED	79.8	% W/W	0.01	SM 2540 G
METALS				
COPPER	72.4	mg/Kg dry wt	0.25	EPA 6020
ZINC	338	mg/Kg dry wt	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	4.36	mg/Kg dry wt	0.50	EPA 6020
CADMIUM	0.75	mg/Kg dry wt	0.10	EPA 6020
CHROMIUM	65.9	mg/Kg dry wt	0.50	EPA 6020
LEAD	81.3	mg/Kg dry wt	0.10	EPA 6020
MERCURY	0.047	mg/Kg dry wt	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<100	mg/Kg dry wt	100	NWTPH-Dx
DIESEL	<50	mg/Kg dry wt	50.0	NWTPH-Dx
KEROSENE	<50	mg/Kg dry wt	50.0	NWTPH-Dx
MOTOR OIL	1010	mg/Kg dry wt	100	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	8660	mg/Kg dry wt	31.1	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<22.7	μg/Kg dry wt	22.7	EPA 8081
4,4'-DDE	<22.7	μg/Kg dry wt	22.7	EPA 8081
4,4'-DDT	<22.7	μg/Kg dry wt	22.7	EPA 8081
Aldrin	<11.4	μg/Kg dry wt	11.4	EPA 8081
Alpha-BHC	<11.4	μg/Kg dry wt	11.4	EPA 8081
Alpha-Chlordane	<11.4	μg/Kg dry wt	11.4	EPA 8081
Beta-BHC	<11.4	μg/Kg dry wt	11.4	EPA 8081
Delta-BHC	<11.4	μg/Kg dry wt	11.4	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/8/2003 11:50 System ID AH08402 Sample ID FO031024

> 2 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AMZ077-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND

VALIDATED

4465 NW YEON AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_8 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 2 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. One of 2 surrogates for Pesticide analysis had low recovery due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Dieldrin	<22.7	μg/Kg dry wt	22.7	EPA 8081
Endosulfan I	<11.4	μg/Kg dry wt	11.4	EPA 8081
Endosulfan II	<22.7	μg/Kg dry wt	22.7	EPA 8081
Endosulfan Sulfate	<22.7	μg/Kg dry wt	22.7	EPA 8081
Endrin	<22.7	μg/Kg dry wt	22.7	EPA 8081
Endrin Aldehyde	<22.7	μg/Kg dry wt	22.7	EPA 8081
Endrin Ketone	<22.7	μg/Kg dry wt	22.7	EPA 8081
Gamma-BHC(Lindane)	<11.4	μg/Kg dry wt	11.4	EPA 8081
Gamma-Chlordane	<11.4	μg/Kg dry wt	11.4	EPA 8081
Heptachlor	<11.4	μg/Kg dry wt	11.4	EPA 8081
Heptachlor Epoxide	<11.4	μg/Kg dry wt	11.4	EPA 8081
Methoxychlor	<114	μg/Kg dry wt	114	EPA 8081
PCB 1016	<112	μg/Kg dry wt	112	EPA 8081
PCB 1221	<225	μg/Kg dry wt	225	EPA 8081
PCB 1232	<112	μg/Kg dry wt	112	EPA 8081
PCB 1242	<112	μg/Kg dry wt	112	EPA 8081
PCB 1248	<112	μg/Kg dry wt	112	EPA 8081
PCB 1254	<112	μg/Kg dry wt	112	EPA 8081
PCB 1260	<112	μg/Kg dry wt	112	EPA 8081
Toxaphene	<1140	μg/Kg dry wt	1140	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
1,2-Dichlorobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
1,3-Dichlorobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
1,4-Dichlorobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
2,4,5-Trichlorophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
2,4,6-Trichlorophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
2,4-Dichlorophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
2,4-Dimethylphenol	<293	μg/Kg dry wt	293	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Validated By:

Sample Date/Time 10/8/2003 11:50 System ID AH08402 Sample ID FO031024

> 3 Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AMZ077-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND VALIDATED

4465 NW YEON AVE

Proj Subcategory: **REGULATORY PLAN & EVAL**

Sample Point Code: 19_8 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE **SEDIMENT** MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 2 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. One of 2 surrogates for Pesticide analysis had low recovery due to matrix interference.

Test Parameter	Result	Units	MRL	Method
2,4-Dinitrophenol	<1460	μg/Kg dry wt	1460	EPA 8270 - S
2,4-Dinitrotoluene	<293	μg/Kg dry wt	293	EPA 8270 - S
2,6-Dinitrotoluene	<293	μg/Kg dry wt	293	EPA 8270 - S
2-Chloronaphthalene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
2-Chlorophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
2-Methylnaphthalene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
2-Methylphenol	<293	μg/Kg dry wt	293	EPA 8270 - S
2-Nitroaniline	<293	μg/Kg dry wt	293	EPA 8270 - S
2-Nitrophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
3,3'-Dichlorobenzidine	<585	μg/Kg dry wt	585	EPA 8270 - S
3- & 4-Methylphenol	<585	μg/Kg dry wt	585	EPA 8270 - S
3-Nitroaniline	<293	μg/Kg dry wt	293	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1460	μg/Kg dry wt	1460	EPA 8270 - S
4-Bromophenylphenyl ether	<293	μg/Kg dry wt	293	EPA 8270 - S
4-Chloro-3-methylphenol	<293	μg/Kg dry wt	293	EPA 8270 - S
4-Chloroaniline	<293	μg/Kg dry wt	293	EPA 8270 - S
4-Chlorophenylphenyl ether	<293	μg/Kg dry wt	293	EPA 8270 - S
4-Nitroaniline	<293	μg/Kg dry wt	293	EPA 8270 - S
4-Nitrophenol	<732	μg/Kg dry wt	732	EPA 8270 - S
Acenaphthene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Acenaphthylene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Anthracene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Benzo(a)anthracene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Benzo(a)pyrene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Benzo(g,h,i)perylene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Benzofluoranthenes	553	μg/Kg dry wt	73.2	EPA 8270 - S
Benzoic acid	<1460	μg/Kg dry wt	1460	EPA 8270 - S
Benzyl alcohol	<366	μg/Kg dry wt	366	EPA 8270 - S
Benzyl butyl phthalate	<366	μg/Kg dry wt	366	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Sample Date/Time 10/8/2003 11:50 System ID AH08402 Sample ID FO031024

Page:

Proj./Company Name: LOWER HARBOR OUTFALL SED SAMP

Address/Location: IL-19-AMZ077-1003 **Date Received:** Sample Status:

10/8/2003 COMPLETE AND **VALIDATED**

4465 NW YEON AVE

Proj Subcategory: REGULATORY PLAN & EVAL

Sample Point Code: 19_8 IMS File/Invoice #: 1020.001 Sample Type: Sample Matrix: Collected By:

COMPOSITE SEDIMENT MJH/CJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The sample required dilution by a factor of 2 for NWTPH-Dx analysis due to the high concentration of petroleum hydrocarbons. Results flagged as estimates are less than the PQL but detectable above the MDL. One of 2 surrogates for Pesticide analysis had low recovery due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroethoxy) methane	<293	μg/Kg dry wt	293	EPA 8270 - S
Bis(2-chloroethyl) ether	<293	μg/Kg dry wt	293	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<293	μg/Kg dry wt	293	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1470	μg/Kg dry wt	293	EPA 8270 - S
Chrysene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Di-n-butyl phthalate	<293	μg/Kg dry wt	293	EPA 8270 - S
Di-n-octyl phthalate	<293	μg/Kg dry wt	293	EPA 8270 - S
Dibenzo(a,h)anthracene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Dibenzofuran	<293	μg/Kg dry wt	293	EPA 8270 - S
Diethyl phthalate	<293	μg/Kg dry wt	293	EPA 8270 - S
Dimethyl phthalate	<293	μg/Kg dry wt	293	EPA 8270 - S
Fluoranthene	234	μg/Kg dry wt	73.2	EPA 8270 - S
Fluorene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Hexachlorobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
Hexachlorobutadiene	<293	μg/Kg dry wt	293	EPA 8270 - S
Hexachlorocyclopentadiene	<293	μg/Kg dry wt	293	EPA 8270 - S
Hexachloroethane	<293	μg/Kg dry wt	293	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Isophorone	<293	μg/Kg dry wt	293	EPA 8270 - S
N-Nitrosodi-n-propylamine	<293	μg/Kg dry wt	293	EPA 8270 - S
N-Nitrosodiphenylamine	<293	μg/Kg dry wt	293	EPA 8270 - S
Naphthalene	<73.2	μg/Kg dry wt	73.2	EPA 8270 - S
Nitrobenzene	<293	μg/Kg dry wt	293	EPA 8270 - S
Pentachlorophenol	<293	μg/Kg dry wt	293	EPA 8270 - S
Phenanthrene	110	μg/Kg dry wt	73.2	EPA 8270 - S
Phenol	<293	μg/Kg dry wt	293	EPA 8270 - S
Pyrene	649	μg/Kg dry wt	73.2	EPA 8270 - S

End of Report for Sample ID: FO031024

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 11/17/2003

Part II: Severn Trent Laboratory Data Analysis Report

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: October 31, 2003

TO: Howard Holmes

North Creek Analytical 9405 S. W. Nimbus Ave. Beaverton, OR 97008

PROJECT: City of Portland Lower Harbor

REPORT NUMBER: 116855

TOTAL NUMBER OF PAGES: 59

Enclosed are the test results for eight samples received at STL Seattle on October 13, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely.

Tom Watson Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

STL Seattle

ANALYTICAL NARRATIVE

Client: North Creek Analytical

Date: February 25, 2004

Project:

City of Portland Lower Harbor

Lab No.: 116855

Organchlorine Pesticides 8081A

The QC Blank Spike Duplicate recovery for Eldrin Aldehyde failed high. Corrective action was not taken all samples were ND for Endrin Aldehyde.

STL Seattle

Sample Identification:

Lab. No.	Client ID	Date/Time Sampled	Matrix
116855-1	FO 031017	10-07-03 11:53	solid
116855-2	FO 031018	10-07-03 09:41	solid
116855-3	FO 031019	10-07-03 10:44	solid
116855-4	FO 031020	10-07-03 13:40	solid
116855-5	FO 031021	10-07-03 14:20	solid
116855-6	FO 031022	10-08-03 12:40	solid
116855-7	FO 031023	10-08-03 10:35	solid
116855-8	FO 031024	10-08-03 11:50	solid

STL Seattle

North Creek Analytical Client Name FO 031017 Client ID: 116855-01 Lab ID: Date Received: 10/13/03 10/20/03 Date Prepared: Date Analyzed: 10/20/03 % Solids 85.22 **Dilution Factor** 1

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	10300	98.7	39.5

, Y.

North Creek Analytical Client Name Client ID: FO 031018 Lab ID: 116855-02 Date Received: 10/13/03 10/20/03 Date Prepared: Date Analyzed: 10/20/03 % Solids 24.35 **Dilution Factor** 5

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	25900	5 64	226

Client Name North Creek Analytical FO 031019 Client ID: 116855-03 Lab ID: 10/13/03 Date Received: 10/20/03 Date Prepared: Date Analyzed: 10/20/03 83.46 % Solids **Dilution Factor** 1

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	3930	101	40.5

North Creek Analytical Client Name Client ID: FO 031020 Lab ID: 116855-04 Date Received: 10/13/03 Date Prepared: 10/20/03 Date Analyzed: 10/20/03 % Solids 18.66 **Dilution Factor** .10

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	36900	1180	472

Client Name North Creek Analytical Client ID: FO 031021 Lab ID: 116855-05 Date Received: 10/13/03 Date Prepared: 10/20/03 Date Analyzed: 10/20/03 % Solids 30.09 **Dilution Factor** 5

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

 Result

 Analyte
 (mg/kg)
 PQL
 MDL
 Flags

 TOC
 82700
 540
 216

Client Name	North Creek Analytical
Client ID:	FO 031022
Lab ID:	116855-06
Date Received:	10/13/03
Date Prepared:	10/20/03
Date Analyzed:	10/20/03
% Solids	80.52
Dilution Factor	1

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL.	MDL Flags
TOC	6670	113	45.1

North Creek Analytical Client Name FO 031023 Client ID: 116855-07 Lab ID: 10/13/03 Date Received: 10/20/03 Date Prepared: 10/20/03 Date Analyzed: 78.53 % Solids 1 **Dilution Factor**

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	5760	98.7	39.5

Client Name North Creek Analytical Client ID: FO 031024 Lab ID: 116855-08 Date Received: 10/13/03 Date Prepared: 10/20/03 Date Analyzed: 10/20/03 % Solids 82.91 **Dilution Factor** 1

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	8660	77.7	31.1

Client Name	North Creek Analytical
Client ID:	FO 031017
Lab ID:	116855-01
Date Received:	10/13/2003
Date Prepared:	10/15/2003
Date Analyzed:	10/15/2003
% Solids	85.22
Dilution Factor	10

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	105		35	144
Phenol - d5	131		39	140
Nitrobenzene - d5	147		37	156
2 - Fluorobiphenyl	101		39	145
2,4,6 - Tribromophenol	100		25	148
p - Terphenyl - d14	115		39	158

	Result			
Analyte	(ug/kg)	PQL	MRL Flags	;
Phenol	ND	308	154	
bis(2-Chloroethyl)ether	ND	308	154	
2-Chlorophenol	ND	308	154	
1,3-Dichlorobenzene	ND	308	154	
1,4-Dichlorobenzene	ND	308	154	
Benzyl Alcohol	ND	385	192	
1,2-Dichlorobenzene	ND	308	154	
2-Methylphenol	ND	308	154	
bis(2-Chloroisopropyl)ether	ND	308	154	
3-&4-Methylphenol	ND	615	308	
N-nitroso-di-n-propylamine	ND	308	154	
Hexachloroethane	ND	308	154	
Nitrobenzene	ND	308	154	
Isophorone	ND	308	154	
2-Nitrophenol	ND	308	154	
2,4-Dimethylphenol	ND	308	154	
Benzoic Acid	ND	1540	769	
bis(2-Chloroethoxy)methane	ND	308	154	
2,4-Dichlorophenol	ND	308	154	
1,2,4-Trichlorobenzene	ND	308	154	
Naphthalene	ND	76.9	38.5	
4-Chloroaniline	ND	308	154	
Hexachlorobutadiene	ND	308	154	
4-Chloro-3-methylphenol	ND	308	154	
2-Methylnaphthalene	ND	76.9	38.5	
Hexachlorocyclopentadiene	ND	308	154	

Semivolatile Organics by USEPA Method 8270 data for 116855-01 continued...

	Re	esult			
Analyte	(u	g/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		308	154	
2,4,5-Trichlorophenol	ND		308	154	
2-Chloronaphthalene	ND		76. 9	38.5	
2-Nitroaniline	ND		308	154	
Dimethylphthalate	ND		308	154	
Acenaphthylene	ND		76.9	38.5	
2,6-Dinitrotoluene	ND		308	154	
3-Nitroaniline	ND		308	154	
Acenaphthene	ND		76.9	38.5	
2,4-Dinitrophenol	ND		1540	769	
4-Nitrophenol	ND		769	385	
Dibenzofuran	ND		308	154	
2,4-Dinitrotoluene	ND		308	154	
Diethylphthalate	ND		308	154	
4-Chlorophenylphenylether	ND		308	154	
Fluorene	ND		76.9	38.5	
4-Nitroaniline	ND		308	154	
4,6-Dinitro-2-methylphenol	ND		1540	769	
N-Nitrosodiphenylamine	ND		308	154	
4-Bromophenylphenylether	ND		308	154	
Hexachiorobenzene	ND		308	154	
Pentachlorophenol	ND		308	154	
Phenanthrene		63.9	76.9	38.5	J
Anthracene	ND		76.9	38.5	
Di-n-butylphthalate	ND		308	154	
Fluoranthene		85.9	76.9	38.5	
Pyrene		124	76.9	38.5	
Butylbenzylphthalate	ND		385	192	
3,3'-Dichlorobenzidine	ND		615	308	
Benzo(a)anthracene	ND		76.9	38.5	
Chrysene	ND		76.9	38,5	
bis(2-Ethylhexyl)phthalate	ND		308	154	
Di-n-octylphthalate	ND		308	154	
Benzofluoranthenes	ND		76.9	38.5	
Benzo(a)pyrene	ND		76.9	38.5	
Indeno(1,2,3-cd)pyrene	ND		76.9	38.5	
Dibenz(a,h)anthracene	ND		76.9	38.5	
Benzo(g,h,i)perylene	ND		76.9	38.5	

North Creek Analytical Client Name FO 031018 Client ID: Lab ID: 116855-02 Date Received: 10/13/2003 Date Prepared: 10/15/2003 10/15/2003 Date Analyzed: % Solids 24.35 **Dilution Factor** 1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	79.1		35	144
Phenol - d5	95.6		39	140
Nitrobenzene - d5	104		37	156
2 - Fluorobiphenyl	97.1		39	145
2,4,6 - Tribromophenol	107		25	148
p - Terphenyl - d14	115		39	158

	Result			
Analyte	(ug/kg)	PQL	MRL Fla	gs
Phenoi	ND	97.5	48.8	
bis(2-Chloroethyl)ether	ND	97.5	48.8	
2-Chlorophenol	ND	97.5	48.8	
1,3-Dichlorobenzene	ND	97.5	48.8	
1,4-Dichlorobenzene	ND	97.5	48.8	
Benzyl Alcohol	ND	122	61	
1,2-Dichlorobenzene	ND	97,5	48.8	
2-Methylphenol	ND	97.5	48.8	
bis(2-Chloroisopropyl)ether	ND	97.5	48.8	
3-&4-Methylphenol	ND	195	97.5	
N-nitroso-di-n-propylamine	ND	97.5	48.8	
Hexachloroethane	ND	97.5	48.8	
Nitrobenzene	ND	97.5	48.8	
Isophorone	ND	97.5	48.8	
2-Nitrophenol	ND	97.5	48.8	
2,4-Dimethylphenol	ND	97.5	48.8	
Benzoic Acid	ND	488	244	
bis(2-Chloroethoxy)methane	ND	97.5	48.8	
2,4-Dichlorophenol	ND	97.5	48.8	
1,2,4-Trichlorobenzene	ND	97.5	48.8	
Naphthalene	ND	24.4	12.2	
4-Chloroaniline	ND	97.5	48.8	
Hexachlorobutadiene	ND	97.5	48.8	
4-Chloro-3-methylphenol	ND	97.5	48.8	
2-Methylnaphthalene	ND	24.4	12.2	
Hexachlorocyclopentadiene	ND	97.5	48.8	

Semivolatile Organics by USEPA Method 8270 data for 116855-02 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		97.5	48,8	
2,4,5-Trichlorophenol	ND		97.5	48.8	
2-Chloronaphthalene	ND		24.4	12.2	
2-Nitroaniline	ND		97.5	48.8	
Dimethylphthalate	ND		97.5	48,8	
Acenaphthylene		13.8	24.4	12.2	J
2,6-Dinitrotoluene	ND		97.5	48.8	
3-Nitroaniline	ND		97.5	48.8	
Acenaphthene	ND		24.4	12.2	
2,4-Dinitrophenol	ND		488	244	
4-Nitrophenol	ND		244	122	
Dibenzofuran	ND		97.5	48.8	
2,4-Dinitrotoluene	ND		97.5	48.8	
Diethylphthalate	ND		97.5	48.8	
4-Chlorophenylphenylether	ND		97.5	48.8	
Fluorene	ND		24.4	12.2	
4-Nitroaniline	ND		97.5	48.8	
4,6-Dinitro-2-methylphenol	ND		488	244	
N-Nitrosodiphenylamine	ND		97.5	48.8	
4-Bromophenylphenylether	ND		97.5	48.8	
Hexachlorobenzene	ND		97.5	48.8	
Pentachlorophenol	ND		97.5	48.8	
Phenanthrene		27.3	24.4	12.2	
Anthracene		13.1	24.4	12.2	J
Di-n-butylphthalate	ND		97.5	48.8	
Fluoranthene		87.6	24.4	12.2	
Pyrene		82	24.4	12.2	
Butylbenzylphthalate	ND		122	61	
3,3'-Dichlorobenzidine	ND		195	97.5	
Benzo(a)anthracene		91.4	24.4	12.2	
Chrysene		66.7	24.4	12.2	
bis(2-Ethylhexyl)phthalate	ND		97.5	48.8	
Di-n-octylphthalate	ND		97.5	48.8	
Benzofluoranthenes		271	24.4	12.2	
Benzo(a)pyrene		62.1	24.4	12.2	
Indeno(1,2,3-cd)pyrene		146	24.4	12.2	
Dibenz(a,h)anthracene	ND		24.4	12.2	
Benzo(g,h,i)perylene		188	24.4	12.2	

Client Name North Creek Analytical Client ID: FO 031019 Lab ID: 116855-03 10/13/2003 Date Received: 10/15/2003 Date Prepared: Date Analyzed: 10/15/2003 % Solids 83.46 Dilution Factor 10

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	111		35	144
Phenol - d5	112		39	140
Nitrobenzene - d5	101		37	156
2 - Fluorobiphenyl	91.4		39	145
2,4,6 - Tribromophenol	130		25	148
p - Terphenyl - d14	21.5	X9	39	158

Sample results are on a dry weight basis.

PDX/042100011.PDF

	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Phenol	ND	302	151	
bis(2-Chloroethyl)ether	ND	302	151	
2-Chlorophenol	ND	302	151	
1,3-Dichlorobenzene	ND	302	151	
1,4-Dichlorobenzene	ND	302	151	
Benzyl Alcohol	ND	377	189	
1,2-Dichlorobenzene	ND	302	151	
2-Methylphenol	ND	302	151	
bis(2-Chloroisopropyl)ether	ND	302	151	
3-&4-Methylphenol	ND	603	302	
N-nitroso-di-n-propylamine	ND	302	151	
Hexachloroethane	ND	302	151	
Nitrobenzene	ND	302	151	
Isophorone	ND	302	151	
2-Nitrophenol	ND	302	151	
2,4-Dimethylphenol	ND	302	151	
Benzoic Acid	ND	1510	754	
bis(2-Chloroethoxy)methane	ND	302	151	
2,4-Dichlorophenol	ND	302	151	
1,2,4-Trichlorobenzene	ND	302	151	
Naphthalene	ND	75.4	37.7	
4-Chloroaniline	ND	302	151	
Hexachlorobutadiene	ND	302	151	
4-Chloro-3-methylphenol	ND	302	151	
2-Methylnaphthalene	ND	75.4	37.7	
Hexachlorocyclopentadiene	ND	302	151	

Semivolatile Organics by USEPA Method 8270 data for 116855-03 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		302	151	
2,4,5-Trichlorophenol	ND		302	151	
2-Chloronaphthalene	ND		75.4	37.7	
2-Nitroaniline	ND		302	151	
Dimethylphthalate	ND		302	151	
Acenaphthylene		95.8	75.4	37.7	
2,6-Dinitrotoluene	ND		302	151	
3-Nitroaniline	ND		302	151	
Acenaphthene	ND		75.4	37.7	
2,4-Dinitrophenol	ND		1510	754	
4-Nitrophenol	ND		754	377	
Dibenzofuran	ND		302	151	
2.4-Dinitrotoluene	ND		302	151	
Diethylphthalate	ND		302	1 51	
4-Chlorophenylphenylether	ND		302	151	
Fluorene	ND		75.4	37.7	
4-Nitroaniline	ND		302	151	
4,6-Dinitro-2-methylphenol	ND		1510	754	
N-Nitrosodiphenylamine	ND		302	151	
4-Bromophenylphenylether	ND		302	151	
Hexachlorobenzene	ND		302	151	
Pentachlorophenol	ND		302	151	
Phenanthrene		135	75.4	37.7	
Anthracene		73.6	75,4	37.7	J
Di-n-butylphthalate	ND		302	15 1	
Fluoranthene		372	75.4	37.7	
Pyrene		552	75.4	37 .7	
Butylbenzylphthalate	ND		377	189	
3,3'-Dichlorobenzidine	ND		603	302	
Benzo(a)anthracene	.,_	280	75.4	37.7	
Chrysene		292	75.4	37 .7	
bis(2-Ethylhexyl)phthalate		1050	302	151	B1
Di-n-octylphthalate	ND		302	151	
Benzofluoranthenes		350	75.4	37.7	
Benzo(a)pyrene	ND		75.4	37.7	
Indeno(1,2,3-cd)pyrene	ND		75.4	37.7	
Dibenz(a,h)anthracene	ND		75.4	37.7	
Benzo(g,h,i)perylene	ND		75.4	37.7	
- or mo/Shillshor lieure					

North Creek Analytical Client Name FO 031020 Client ID: 116855-04 Lab ID: 10/13/2003 Date Received: 10/15/2003 Date Prepared: 10/15/2003 Date Analyzed: 18.66 % Solids **Dilution Factor** 1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	79.1		35	144
Phenol - d5	85.8		39	140
Nitrobenzene - d5	91.6		37	156
2 - Fluorobiphenyl	83.3		39	145
2,4,6 - Tribromophenol	112		25	148
p - Terphenyl - d14	101		39	158

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	137	68.6
bis(2-Chloroethyl)ether	ND	137	68.6
2-Chlorophenol	ND	137	68.6
1,3-Dichlorobenzene	ND	137	68.6
1,4-Dichlorobenzene	ND	137	68.6
Benzyl Aicohol	ND	172	85.8
1,2-Dichlorobenzene	ND	137	68.6
2-Methylphenol	ND	137	68.6
bis(2-Chloroisopropyl)ether	ND	137	68.6
3-&4-Methylphenol	ND	274	137
N-nitroso-di-n-propylamine	ND	137	68.6
Hexachloroethane	ND	137	68.6
Nitrobenzene	ND	137	68.6
lsophorone	ND	137	68.6
2-Nitrophenol	ND	137	68.6
2,4-Dimethylphenol	ND	137	68.6
Benzoic Acid	ND	686	343
bis(2-Chloroethoxy)methane	ND	137	68.6
2,4-Dichlorophenol	ND	137	68.6
1,2,4-Trichlorobenzene	ND	137	68.6
Naphthalene	ND	34.3	17.2
4-Chlomaniline	ND	137	68.6
Hexachlorobutadiene	ND	137	68.6
4-Chloro-3-methylphenol	ND	137	68.6
2-Methylnaphthalene	ND	34.3	17.2
Hexachlorocyclopentadiene	ND	137	68.6

Semivolatile Organics by USEPA Method 8270 data for 116855-04 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		137	68.6	
2,4,5-Trichlorophenol	ND		137	68.6	
2-Chloronaphthalene	ND		34.3	17.2	
2-Nitroaniline	ND		137	68.6	
Dimethylphthalate	ND		137	68.6	
Acenaphthylene	ND		34.3	17.2	
2,6-Dinitrotoluene	ND		137	68.6	
3-Nitroaniline	ND		137	68.6	
Acenaphthene	ND		34.3	17.2	
2,4-Dinitrophenol	ND		686	343	
4-Nitrophenol	ND		343	172	
Dibenzofuran	ND		137	68.6	
2,4-Dinitrotoluene	ND		137	68.6	
Diethylphthalate	ND		137	68.6	
4-Chlorophenylphenylether	ND		137	68.6	
Fluorene	ND		34.3	17.2	
4-Nitroaniline	ND		137	68.6	
4,6-Dinitro-2-methylphenol	ND		686	343	
N-Nitrosodiphenylamine	ND		137	68.6	
4-Bromophenylphenylether	ИD		137	68.6	
Hexachlorobenzene	ND		137	68.6	
Pentachlorophenol	ND		137	68.6	
Phenanthrene		26.7	34.3	17.2	J
Anthracene	ND		34.3	17.2	
Di-n-butylphthalate	ND		137	68.6	
Fluoranthene		48.1	34.3	17.2	
Pyrene		52	34.3	17.2	
Butylbenzylphthalate	ND		172	85.8	
3,3'-Dichlorobenzidine	ND		274	137	
Benzo(a)anthracene		17.6	34.3	17.2	J
Chrysene	ND		34.3	17.2	
bis(2-Ethylhexyl)phthalate		941	137	68.6	B1
Di-n-octylphthalate	ND		137	68.6	
Benzofluoranthenes		73.8	34.3	17.2	
Benzo(a)pyrene	ND		34.3	17.2	
Indeno(1,2,3-cd)pyrene	ND		34.3	17.2	
Dibenz(a,h)anthracene	ND		34.3	17.2	
Benzo(g,h,i)perylene	ND		34.3	17.2	

North Creek Analytical Client Name FO 031021 Client ID: 116855-05 Lab ID: 10/13/2003 Date Received: 10/15/2003 Date Prepared: 10/15/2003 Date Analyzed: 30.09 % Solids 10 **Dilution Factor**

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	79.5		35	144
Phenol - d5	109		39	140
Nitrobenzene - d5	99,9		37	156
2 - Fluorobiphenyl	78		3 9	145
2,4,6 - Tribromophenol	100		25	148
p - Terphenyl - d14	124		39	158

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	831	415
bis(2-Chloroethyl)ether	ND	831	415
2-Chlorophenol	ND	831	415
1,3-Dichlorobenzene	ND	831	415
1,4-Dichlorobenzene	ND	831	415
Benzyl Alcohol	ND	1040	519
1,2-Dichlorobenzene	ND	831	415
2-Methylphenol	ND	831	415
bis(2-Chloroisopropyl)ether	ND	831	415
3-&4-Methylphenol	ND	1660	831
N-nitroso-di-n-propylamine	ND	831	415
Hexachloroethane	ND	831	415
Nitrobenzene	ND	831	415
Isophorone	ND	831	415
2-Nitrophenol	ND	831	415
2,4-Dimethylphenol	ND	831	415
Benzoic Acid	ND	4150	2080
bis(2-Chloroethoxy)methane	ND	831	415
2,4-Dichlorophenol	ND	831	415
1,2,4-Trichlorobenzene	ND	831	415
Naphthalene	ND	208	104
4-Chloroaniline	ND	831	415
Hexachlorobutadiene	ND	831	415
4-Chloro-3-methylphenol	ND	831	415
2-Methylnaphthalene	ND	208	104
Hexachlorocyclopentadiene	ND	831	415

Semivolatile Organics by USEPA Method 8270 data for 116855-05 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		831	415	
2,4,5-Trichlorophenol	ND		831	415	
2-Chloronaphthalene	ND		208	104	
2-Nitroaniline	ND		831	415	
Dimethylphthalate	ND		831	415	
Acenaphthylene	ND		208	104	
2,6-Dinitrotoluene	ND		831	415	
3-Nitroaniline	ND		831	415	
Acenaphthene	ND		208	104	
2,4-Dinitrophenol	ND		4150	2080	
4-Nitrophenol	ND		2080	1040	
Dibenzofuran	ND		831	415	
2,4-Dinitrotoluene	ND		831	415	
Diethylphthalate	ND		831	415	
4-Chiorophenylphenylether	ND		831	415	
Fluorene	ND		208	104	
4-Nitroaniline	ND		831	415	
4,6-Dinitro-2-methylphenol	ND		4150	2080	
N-Nitrosodiphenylamine	ND		831	415	
4-Bromophenylphenylether	ND		831	415	
Hexachlorobenzene	ND		831	415	
Pentachiorophenol	ND		831	415	
Phenanthrene		139	208	104	J
Anthracene	ND		208	104	
Di-n-butylphthalate	ND		831	415	
Fluoranthene		412	208	104	
Pyrene		532	208	104	
Butylbenzylphthalate	ND		1040	519	
3,3'-Dichlorobenzidine	ND		1660	831	
Benzo(a)anthracene	ND		208	104	
Chrysene	ND		208	104	
bis(2-Ethylhexyl)phthalate		2200	831	415	B1
Di-n-octylphthalate	ND		831	415	
Benzofluoranthenes		790	208	104	
Benzo(a)pyrene		893	208	104	
Indeno(1,2,3-cd)pyrene	ND		208	104	
Dibenz(a,h)anthracene	ND		208	104	
Benzo(g,h,i)perylene	ND		208	104	

Client Name	North Creek Analytical
Client ID:	FO 031022
Lab ID:	116855-06
Date Received:	10/13/2003
Date Prepared:	10/15/2003
Date Analyzed:	10/15/2003
% Solids	80,52
Dilution Factor	10

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	91.3		35	1 44
Phenol - d5	123		39	140
Nitrobenzene - d5	109		37	156
2 - Fluorobiphenyl	112		39	145
2,4,6 - Tribromophenol	94.9		25	148
p - Terphenyl - d14	146		39	158

	Result		sent Flaur
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	319	160
bis(2-Chloroethyl)ether	ND	319	160
2-Chlorophenol	ND	319	160
1,3-Dichlorobenzene	ND	319	160
1,4-Dichlorobenzene	ND	319	160
Benzyl Alcohol	ND	399	200
1,2-Dichlorobenzene	ND	319	160
2-Methylphenol	ND	319	160
bis(2-Chloroisopropyl)ether	ND	319	160
3-&4-Methylphenol	ND	638	319
N-nitroso-di-n-propylamine	ND	319	160
Hexachloroethane	ND	319	160
Nitrobenzene	ND	319	160
isophorone	ND	319	160
2-Nitrophenol	ND	319	160
2,4-Dimethylphenol	ND	319	160
Benzoic Acid	ND	1600	798
bis(2-Chloroethoxy)methane	ND	319	160
2,4-Dichlorophenol	ND	319	160
1,2,4-Trichlorobenzene	ND	319	160
Naphthalene	ND	79.8	39.9
4-Chloroaniline	ND	319	160
Hexachlorobutadiene	ND	319	160
4-Chloro-3-methylphenol	ND	319	160
2-Methylnaphthalene	ND	79.8	39.9
Hexachlorocyclopentadiene	ND	319	160

Semivolatile Organics by USEPA Method 8270 data for 116855-06 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		319	160	
2,4,5-Trichlorophenol	ND		319	160	
2-Chloronaphthalene	ND		79.8	39,9	
2-Nitroaniline	ND		319	160	
Dimethylphthalate	ND		319	160 ⁻	
Acenaphthylene	ND		79.8	39.9	
2,6-Dinitrotoluene	ND		319	160	
3-Nitroaniline	ND		319	160	
Acenaphthene	ND		79.8	39.9	
2,4-Dinitrophenol	ND		1600	' 798	
4-Nitrophenol	ND		798	399	
Dibenzofuran	ND		319	160	
2,4-Dinitrotoluene	ND		319	160	
Diethylphthalate	ND		319	160	
4-Chlorophenylphenylether	ND		319	160	
Fluorene	ND		79.8	39.9	
4-Nitroaniline	ND		319	160	
4,6-Dinitro-2-methylphenol	ND		1600	798	
N-Nitrosodiphenylamine	ND		319	160	
4-Bromophenylphenylether	ND		319	160	
Hexachlorobenzene	ND		319	160	
Pentachlorophenol	ND		319	160	
Phenanthrene	ND		79.8	39.9	
Anthracene	ND		79.8	39.9	
Di-n-butylphthalate	ND		319	160	
Fluoranthene		78.5	79.8	39.9	J
Pyrene		111	79.8	39,9	
Butylbenzylphthalate	ND		399	200	
3,3'-Dichlorobenzidine	ND		638	319	
Benzo(a)anthracene	ND		· 79.8	39.9	
Chrysene	ND		79.8	39.9	
bis(2-Ethylhexyl)phthalate		549	319	160	B1
Di-n-octylphthalate	ND		319	160	
Benzofluoranthenes	ND		79.8	39.9	
Benzo(a)pyrene	ND		79.8	39.9	
Indeno(1,2,3-cd)pyrene	ND		79.8	39.9	
Dibenz(a,h)anthracene	ND		79.8	39.9	
Benzo(g,h,i)perylene	ND		79.8	39.9	

North Creek Analytical Client Name FO 031023 Client ID: 116855-07 Lab ID: 10/13/2003 Date Received: 10/15/2003 Date Prepared: Date Analyzed: 10/15/2003 % Solids 78.53 10 **Dilution Factor**

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	68		35	144
Phenol - d5	111		39	140
Nitrobenzene - d5	120		37	156
2 - Fluorobiphenyl	106		39	145
2,4,6 - Tribromophenol	98.1		25	148
p - Terphenyl - d14	94.6		39	158

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	306	153
bis(2-Chloroethyl)ether	ND	306	153
2-Chlorophenol	ND	30 6	153
1,3-Dichlorobenzene	ND	306	153
1,4-Dichlorobenzene	ND	306	153
Benzyl Alcohol	ND	382	191
1,2-Dichlorobenzene	ND	306	153
2-Methylphenol	ND	306	153
bis(2-Chloroisopropyl)ether	ND	306	153
3-&4-Methylphenol	ND	612	306
N-nitroso-di-n-propylamine	ND	306	153
Hexachloroethane	ND	306	153
Nitrobenzene	ND	306	153
Isophorone	ND	306	153
2-Nitrophenol	ND	306	153
2,4-Dimethylphenol	ND	306	153
Benzoic Acid	ND	1530	764
bis(2-Chloroethoxy)methane	ND	306	153
2,4-Dichlorophenol	ND	306	153
1,2,4-Trichlorobenzene	ND	306	153
Naphthalene	ND	76.4	38.2
4-Chloroaniline	ND	306	153
Hexachlorobutadiene	ND	306	153
4-Chloro-3-methylphenol	ND	306	153
2-Methylnaphthalene	ND	76.4	38.2
Hexachlorocyclopentadiene	ND	306	153

Semivolatile Organics by USEPA Method 8270 data for 116855-07 continued...

		Result			
Analyte	ı	(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		306	153	
2,4,5-Trichlorophenol	ND		306	153	
2-Chloronaphthalene	ND		76.4	38.2	
2-Nitroaniline	ND		306	153	
Dimethylphthalate	ND		306	153	
Acenaphthylene	ND		76.4	38.2	
2,6-Dinitrotoluene	ND		306	153	
3-Nitroaniline	ND		306	153	
Acenaphthene	ND		76.4	38.2	
2,4-Dinitrophenol	ND		1530	764	
4-Nitrophenol	ND		764	382	
Dibenzofuran	ND		306	153	
2,4-Dinitrotoluene	ND		306	153	
Diethylphthalate	ND		306	153	
4-Chlorophenylphenylether	ND		306	153	
Fluorene	ND		76.4	38.2	
4-Nitroaniline	ND		306	153	
4,6-Dinitro-2-methylphenol	ND		1530	764	
N-Nitrosodiphenylamine	ND		306	153	
4-Bromophenylphenylether	ND		306	153	
Hexachlorobenzene	ИD		306	153	
Pentachlorophenol	ND		306	153	
Phenanthrene	ND		76.4	38.2	
Anthracene		40	76.4	38.2	J
Di-n-butylphthalate	ND		306	153	
Fluoranthene		131	76.4	38.2	
Pyrene		125	76.4	38.2	
Butylbenzylphthalate	ND		382	191	
3,3'-Dichlorobenzidine	ND		612	306	
Benzo(a)anthracene	ND		76.4	38.2	
Chrysene	ND		76.4	38.2	
bis(2-Ethylhexyl)phthalate	ND		306	153	
Di-n-octylphthalate	ND		306	153	
Benzofluoranthenes		539	76.4	38.2	
Benzo(a)pyrene	ND		76.4	38.2	
Indeno(1,2,3-cd)pyrene	ND		76.4	38.2	
Dibenz(a,h)anthracene	ND		76.4	38.2	
Benzo(g,h,i)perylene	ND		76.4	38.2	

Client Name	North Creek Analytical
Client ID:	FO 031024
Lab ID:	116855-08
Date Received:	10/13/2003
Date Prepared:	10/15/2003
Date Analyzed:	10/15/2003
% Solids	82.91
Dilution Factor	10

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	82.8		35	144
Phenol - d5	112		39	140
Nitrobenzene - d5	94		37	156
2 - Fluorobiphenyl	109		39	145
2,4,6 - Tribromophenol	126		25	148
p - Terphenyl - d14	80.9		39	158

	Result	noi	MRL Flags
Analyte	(ug/kg)	PQL	146
Phenol	ND	293	146
bis(2-Chloroethyl)ether	ND	293	146
2-Chlorophenol	ND	293	146
1,3-Dichlorobenzene	ND	293	146
1,4-Dichlorobenzene	ND	293	183
Benzyl Alcohol	ND	366	
1,2-Dichlorobenzene	ND	293	146
2-Methylphenol	ND	293	146
bis(2-Chloroisopropyl)ether	ND	293	146
3-&4-Methylphenol	ND	585	293
N-nitroso-di-n-propylamine	ND	293	146
Hexachloroethane	ND	293	146
Nitrobenzene	ND	293	146
Isophorone	ND	293	146
2-Nitrophenol	ND	293	146
2,4-Dimethylphenol	ND	293	146
Benzoic Acid	ND	1460	732
bis(2-Chloroethoxy)methane	ND	293	146
2,4-Dichlorophenol	ND	293	146
1,2,4-Trichlorobenzene	ND	293	146
Naphthalene	ND	73.2	36.6
4-Chloroaniline	ND	293	146
Hexachlorobutadiene	ND	293	146
4-Chloro-3-methylphenol	ND	293	146
2-Methylnaphthalene	ND	73.2	36.6
Hexachlorocyclopentadiene	ND	293	146

Semivolatile Organics by USEPA Method 8270 data for 116855-08 continued...

A call do		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		293	146	
2,4,5-Trichlorophenol	ND		293	146	
2-Chloronaphthalene	ND		73.2	36.6	
2-Nitroaniline	ND		293	146	
Dimethylphthalate	ND		293	146	
Acenaphthylene	ND		73.2	36.6	
2,6-Dinitrotoluene	ND		293	146	
3-Nitroaniline	ND		293	146	
Acenaphthene	ND		73.2	36.6	
2,4-Dinitrophenol	ND		1460	732	
4-Nitrophenol	ND		732	366	
Dibenzofuran	ND		293	146	
2,4-Dinitrotoluene	ND		293	146	
Diethylphthalate	ND		293	146	
4-Chlorophenylphenylether	ND		293	146	
Fluorene	ND		73.2	36.6	
4-Nitroaniline	ND		293	146	
4,6-Dinitro-2-methylphenol	ND		1460	732	
N-Nitrosodiphenylamine	ND		293	146	
4-Bromophenylphenylether	ND		293	146	
Hexachlorobenzene	ND		293	146	
Pentachlorophenol	ND		293	146	
Phenanthrene		110	73.2	36.6	
Anthracene	ND		73.2	36.6	
Di-n-butylphthalate	ND		293	146	
Fluoranthene		234	73.2	36.6	
Pyrene		649	73.2	36.6	
Butylbenzylphthalate	ND		366	183	
3,3'-Dichlorobenzidine	ND		585	293	
Benzo(a)anthracene	ND		73.2	36.6	
Chrysene	ND		73.2	36.6	
bis(2-Ethylhexyl)phthalate		1470	293	146	B1
Di-n-octylphthalate	ND		293	146	
Benzofluoranthenes		553	73.2	36.6	
Benzo(a)pyrene	ND	,	73.2	36.6	
Indeno(1,2,3-cd)pyrene	ND		73.2	36.6	
Dibenz(a,h)anthracene	ND		73.2	36.6	
Benzo(g,h,i)perylene	ND		73.2	36.6	
== /011.\b. =- \1.==				00.0	

North Creek Analytical Client Name FO 031017 Client ID: 116855-01 Lab ID: 10/13/03 Date Received: 10/17/03 Date Prepared: 10/18/03 Date Analyzed: 85.22 % Solids **Dilution Factor** 5

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	78.1		57	125
Decachlorobiphenyl	82.3		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.106	0.0532	
Aroclor 1221	ND	0.213	0.106	
Aroclor 1232	ND	0.106	0.0532	
Aroclor 1242	NÐ	0.106	0.0532	
Aroclor 1248	ND	0.106	0.0532	
Aroclor 1254	ND	0.106	0.0532	
Aroclor 1260	ND	0.106	0,0532	

Client Name	North Creek Analytical
Client ID:	FO 031018
Lab ID:	116855-02
Date Received:	10/13/03
Date Prepared:	10/17/03
Date Analyzed:	10/18/03
% Solids	24.35
Dilution Factor	5

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	108	•	57	125
Decachlorobiphenyl	115		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.41	0.205	
Aroclor 1221	ND	0.819	0.41	
Aroclor 1232	ND	0.41	0.205	
Aroclor 1242	ND	0.41	0.205	
Aroclor 1248	ND	0.41	0.205	
Aroclor 1254	ND	0.41	0.205	
Aroclor 1260	ND	0.41	0.205	

North Creek Analytical **Client Name** FO 031019 Client ID: 116855-03 Lab ID: 10/13/03 Date Received: 10/17/03 Date Prepared: 10/18/03 Date Analyzed: % Solids 83.46 5 **Dilution Factor**

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	80.6		57	125
Decachlorobiphenyl	83.4		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.11	0.055	
Aroclor 1221	ND	0.22	0.11	
Aroclor 1232	ND	0.11	0.055	
Aroclor 1242	ND	0.11	0.055	
Arocior 1248	ND	0.11	0.055	
Aroclor 1254	ND	0.11	0.055	
Aroclor 1260	0.23	0.11	0.055	

Client Name	`.	 North Creek Analytical
Client ID:		FO 031020
Lab ID:		116855-04
Date Received:		10/13/03
Date Prepared:		10/17/03
Date Analyzed:		10/18/03
% Solids		18.66
Dilution Factor		5

PCBs by USEPA Method 8082

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	106		57	125
Decachlorobiphenyl	111		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.516	0.258	
Aroclor 1221	ND	1.03	0.516	
Aroclor 1232	ND	0.516	0.258	
Arocior 1242	ND	0.516	0.258	
Aroclor 1248	ND	0.516	0.258	
Aroclor 1254	ND	0.516	0.258	
Arocior 1260	ND	0.516	0.258	

North Creek Analytical Client Name Client ID: FO 031021 116855-05 Lab ID: 10/13/03 Date Received: 10/17/03 Date Prepared: 10/18/03 Date Analyzed: 30.09 % Solids 5 **Dilution Factor**

PCBs by USEPA Method 8082

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	108		57	125
Decachlorobiphenyl	111		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.329	0.164	
Aroclor 1221	ND	0.657	0.329	
Aroclor 1232	ND	0.329	0.164	
Aroclor 1242	ND	0.329	0.164	
Aroclor 1248	ND	0.329	0.164	
Aroclor 1254	ND	0.329	0.164	
Aroclor 1260	0.242	0.329	0.164	J

Client Name	North Creek Analytical
Client ID:	FO 031022
Lab ID:	116855-06
Date Received:	10/13/03
Date Prepared:	10/17/03
Date Analyzed:	10/18/03
% Solids	80.52
Dilution Factor	5

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	83.3		57	125
Decachlorobiphenyl	86.8		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.117	0.0584	
Arocior 1221	ND	0.234	0.117	
Aroclor 1232	ND	0.117	0.0584	
Aroclor 1242	ND	0.117	0.0584	
Aroclor 1248	ND	0.117	0.0584	
Aroclor 1254	ND	0.117	0.0584	
Aroclor 1260	ND	0.117	0.0584	

North Creek Analytical Client Name FO 031023 Client ID: 116855-07 Lab ID: 10/13/03 Date Received: 10/17/03 Date Prepared: 10/18/03 Date Analyzed: 78.53 % Solids 5 **Dilution Factor**

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	82.6		57	125
Decachlorobiphenyl	85.3		63	126

	Result			
Analyte	(mg/kg)	PQL.	MRL	Flags
Aroclor 1016	ND	0.116	0.0578	
Aroclor 1221	ND	0.231	0.116	
Aroclor 1232	ND	0.116	0.0578	
Aroclor 1242	ND	0.116	0.0578	
Aroclor 1248	ND	0.116	0.0578	
Aroclor 1254	ND	0.116	0.0578	
Aroclor 1260	ND	0.116	0.0578	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

North Creek Analytical FO 031024 116855-08 10/13/03 10/17/03 10/18/03 82.91

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	85		57	125
Decachlorobiphenyl	84.1		63	126

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.112	0.0562	
Aroclor 1221	ND	0.225	0.112	
Aroclor 1232	ND	0.112	0.0562	
Aroclor 1242	ND	0.112	0.0562	
Aroclor 1248	ND	0.112	0.0562	
Aroclor 1254	ND	0.112	0.0562	
Aroclor 1260	ND	0.112	0.0562	

Client Name North Creek Analytical Client ID: FO 031017 Lab ID: 116855-01 Date Received: 10/13/2003 Date Prepared: 10/17/2003 Date Analyzed: 10/30/2003 % Solids 85.22 **Dilution Factor** 100

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	-	X8	57	153
Decachlorobiphenyl	-	X8	57	145

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	102	_
alpha-BHC	ND	102	
beta-BHC	ND	102	
delta-BHC	ND	102	
gamma-BHC (Lindane)	NÐ	102	
4,4'-DDD	ND	203	
4,4'-DDE	ND	203	
4,4'-DDT	ND	203	
Dieldrin	ND	203	
Endosulfan I	ND	102	
Endosulfan II	ND	203	
Endosulfan sulfate	ND	203	
Endrin	ND	203	
Endrin aldehyde	ND	203	
Heptachlor	ND	102	
Heptachlor epoxide	ND	102	
Methoxychlor	ND	1020	
Endrin ketone	ND	203	
Toxaphene	ND	10200	
alpha-Chlordane	ND	102	
gamma-Chlordane	ND	102	

North Creek Analytical Client Name Client ID: FO 031018 Lab ID: 116855-02 Date Received: 10/13/2003 Date Prepared: 10/17/2003 Date Analyzed: 10/28/2003 % Solids 24.35 **Dilution Factor** 10

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	109	_	57	153
Decachlorobiphenyl	111		57	145

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	40.6	
alpha-BHC	ND	40.6	
beta-BHC	ND	40.6	
delta-BHC	ND	40.6	
gamma-BHC (Lindane)	ND	40.6	
4,4'-DDD	ND	81.1	
4,4'-DDE	ND	81.1	
4,4'-DDT	ND	81.1	
Dieldrin	ND	81.1	
Endosulfan I	ND	40.6	
Endosulfan II	ND	81.1	
Endosulfan sulfate	ND	81.1	
Endrin	ND	81.1	
Endrin aldehyde	ND	81.1	
Heptachlor	ND	40.6	
Heptachlor epoxide	ND	40.6	
Methoxychlor	ND	406	
Endrin ketone	ND	81.1	
Toxaphene	ND	4060	
alpha-Chlordane	ND	40.6	
gamma-Chlordane	ND	40.6	

North Creek Analytical
FO 031019
116855-03
10/13/2003
10/17/2003
10/28/2003
83.46
10
e e Server

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	74.8		57	153
Decachlorobiphenyl	85.3		57	145

	Result				
Analyte	(ug/kg)	ı	PQL	Fla	gs
Aldrin	ND		11.2		_
alpha-BHC	ND		11.2		
beta-BHC	ND		11.2		
delta-BHC	ND		11.2		
gamma-BHC (Lindane)	ND		11.2	2	
4,4'-DDD	ND		22.4	,	
4,4'-DDE	ND		22.4	.	
4,4'-DDT		36.7	22.4	,	C1
Dieldrin	ND		22.4	ļ	
Endosulfan I	ND		11.2	•	
Endosulfan II	ND		22.4	•	
Endosulfan sulfate	ND		22.4		
Endrin	ND		22.4		
Endrin aldehyde	ND		22.4		
Heptachlor	ND		11.2	:	
Heptachlor epoxide	ND		11.2		
Methoxychlor	ND		112		
Endrin ketone	ND		22.4		
Toxaphene	ND		1120	l	
alpha-Chlordane	ND		11.2		
gamma-Chlordane	ND		11.2		

Client Name North Creek Analytical Client ID: FO 031020 Lab ID: 116855-04 Date Received: 10/13/2003 Date Prepared: 10/17/2003 Date Analyzed: 10/28/2003 % Solids 18.66 **Dilution Factor** 10

Organochlorine Pesticides by USEPA Methods 8081A

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	91.2		57	153
Decachlorobiphenyl	111		57	145

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	76.6	_
alpha-BHC	ND	76.6	
beta-BHC	ND	76.6	
delta-BHC	ND	76.6	
gamma-BHC (Lindane)	ND	76.6	
4,4'-DDD	ND	153	
4,4'-DDE	ND	153	
4,4'-DDT	ND	153	
Dieldrin	ND	153	
Endosulfan I	ND	76.6	
Endosulfan II	ND	153	
Endosulfan sulfate	ND	153	
Endrin	ND	153	
Endrin aldehyde	ND	153	
Heptachlor	ND	76.6	
Heptachlor epoxide	ND	76.6	
Methoxychlor	ND	766	
Endrin ketone	ND	153	
Toxaphene	ND	7660	
alpha-Chlordane	ND	76.6	
gamma-Chlordane	ND	76.6	

Client Name	North Creek Analytical
Client ID:	FO 031021
Lab ID:	116855-05
Date Received:	10/13/2003
Date Prepared:	10/17/2003
Date Analyzed:	10/28/2003
% Solids	30.09
Dilution Factor	10

Organochlorine Pesticides by USEPA Methods 8081A

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	91.9		57	153
Decachlorobiphenyl	79.2		57	145

	Result	t		
Analyte	(ug/kg))	PQL	Flags
Aldrin	ND		28.8	
alpha-BHC	ND		28.8	
beta-BHC	ND		28.8	
delta-BHC	ND		28.8	
gamma-BHC (Lindane)	ND		28.8	
4,4'-DDD	ND		57.6	
4,4'-DDE	ND		57.6	
4,4'-DDT	ND		57.6	
Dieldrin	ND		57.6	
Endosulfan I	ND		28.8	
Endosulfan II	ND		57.6	
Endosulfan sulfate	ND		57.6	
Endrin	ND		57.6	
Endrin aldehyde	ND		57.6	
Heptachlor	ND		28.8	
Heptachlor epoxide	ND		28.8	
Methoxychlor	ND		288	
Endrin ketone	ND		57.6	
Toxaphene	ND		2880	
alpha-Chlordane	ND		28.8	
gamma-Chlordane		38,3	28.8	C2

Client Name North Creek Analytical Client ID: FO 031022 Lab ID: 116855-06 Date Received: 10/13/2003 Date Prepared: 10/17/2003 Date Analyzed: 10/29/2003 % Solids 80.52 Dilution Factor 10

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags.	Low	High
Tetrachloro-m-xylene	90		57	153
Decachlorobiphenyl	79.8		57	145

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	11.3	
alpha-BHC	ND	11.3	
beta-BHC	ND	11.3	
delta-BHC	ND	11.3	
gamma-BHC (Lindane)	ND	11.3	
4,4'-DDD	ND	22.6	
4,4'-DDE	ND	22.6	
4,4'-DDT	ND	22.6	
Dieldrin	ND	22.6	
Endosulfan I	ND	11.3	
Endosulfan II	ND	22,6	
Endosulfan sulfate	ND	22.6	
Endrin	ND	22.6	
Endrin aldehyde	ND	22.6	
Heptachlor	ND	11.3	
Heptachlor epoxide	ND	11.3	
Methoxychlor	ND	113	
Endrin ketone	ND	22.6	
Toxaphene	ND	1130	
alpha-Chlordane	ND	11.3	
gamma-Chlordane	ND	11.3	

Client Name	North Creek Analytical
Client ID:	FO 031023
Lab ID:	116855-07
Date Received:	10/13/2003
Date Prepared:	10/17/2003
Date Analyzed:	10/29/2003
% Solids	78.53
Dilution Factor	10

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	77.3		57	153
Decachlorobiphenyl	116		57	145

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	11.9	
alpha-BHC	ND	11.9	
beta-BHC	ND	11.9	
delta-BHC	ND	11.9	
gamma-BHC (Lindane)	ND	11.9	
4,4'-DDD	ND	23.7	
4,4'-DDE	ND	23.7	
4,4'-DDT	ND	23.7	
Dieldrin	ND	23.7	
Endosulfan I	ND	11.9	
Endosulfan II	ND	23.7	
Endosulfan sulfate	ND	23.7	
Endrin	ND	23.7	
Endrin aldehyde	ND	23.7	
Heptachlor	ND	11.9	
Heptachlor epoxide	ND	1 1 .9	
Methoxychlor	ND	119	
Endrin ketone	ND	23.7	
Toxaphene	ND	1190	
alpha-Chlordane	ND	11.9	
gamma-Chlordane	ND	11.9	

Client Name	North Creek Analytical
Client ID:	FO 031024
Lab ID:	116855-08
Date Received:	10/13/2003
Date Prepared:	10/17/2003
Date Analyzed:	10/30/2003
% Solids	82.91
Dilution Factor	10

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	92.4		5 7	153
Decachlorobiphenyl	7.55	X9	57	145

Sample results are on a dry weight basis.

	Res	sult	
Analyte	(ug	/kg) PQL	Flags
Aldrin	ND	11.4	
alpha-BHC	ND	11.4	
beta-BHC	ND	11.4	
delta-BHC	ND	11.4	
gamma-BHC (Lindane)	ND	11.4	
4,4'-DDD	ND	22.7	
4,4'-DDE	ND	22.7	
4,4'-DDT	ND	22.7	
Dieldrin	ND	22.7	
Endosulfan I	ND	11.4	
Endosulfan II	ND	22.7	
Endosulfan sulfate	ND	22.7	
Endrin	ND	22.7	
Endrin aldehyde	ND	22.7	
Heptachlor	ND	11.4	
Heptachlor epoxide	ND	11.4	
Methoxychlor	ND	114	
Endrin ketone	ND	22.7	
Toxaphene	ND	1140	
alpha-Chlordane	ND	11.4	
gamma-Chlordane	ND	11.4	

Lab ID:

Method Blank - TOC1085

Date Received: Date Prepared:

10/20/03 10/20/03

Date Analyzed:

% Solids

1 **Dilution Factor**

ND

Total Organic Carbon by USEPA Method 9060

Sample results are on an as received basis.

Result Analyte

(mg/kg)

PQL

MDL

Flags

TOC

100

40

Matrix Spike/Matrix Spike Duplicate Report

 Client Sample ID:
 FO 031017

 Lab ID:
 116855-01

 Date Prepared:
 10/20/03

 Date Analyzed:
 10/20/03

 QC Batch ID:
 TOC1085

Total Organic Carbon by USEPA Method 9060

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
TOC	10000	19700	29200	95.9	30100	98.3	2.5	_

Lab ID:

Method Blank - \$\$0963

Date Received: Date Prepared:

10/15/2003

Date Analyzed: % Solids

10/15/2003

Dilution Factor

1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	113		35	144
Phenol - d5	106		39	140
Nitrobenzene - d5	101		37	156
2 - Fluorobiphenyl	98.7		39	145
2,4,6 - Tribromophenol	87.8		25	148
p - Terphenyl - d14	127		39	158

Sample results are on an as received basis.

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	26.7	13.3
bis(2-Chloroethyl)ether	ND	26.7	13.3
2-Chlorophenol	ND	26.7	13.3
1,3-Dichlorobenzene	ND	26.7	13.3
1,4-Dichlorobenzene	ND	26.7	13.3
Benzyl Alcohol	ND	33.3	16.7
1,2-Dichlorobenzene	ND	26.7	13.3
2-Methylphenol	ND	26.7	13.3
bis(2-Chloroisopropyl)ether	ND	26.7	13.3
3-&4-Methylphenol	ND	53.3	26.7
N-nitroso-di-n-propylamine	ND	26.7	13.3
Hexachloroethane	ND	26.7	13.3
Nitrobenzene	ND	26.7	13.3
Isophorone	ND	26.7	13.3
2-Nitrophenol	ND	26.7	13.3
2,4-Dimethylphenal	ND	26.7	13.3
Benzoic Acid	ND	133	66.7
bis(2-Chloroethoxy)methane	ND	26.7	13.3
2,4-Dichlorophenol	ND	26.7	13.3
1,2,4-Trichlorobenzene	ND	26.7	13.3
Naphthalene	ND	6.67	3.33
4-Chlomaniline	ND	26.7	13.3
Hexachlorobutadiene	ND	26.7	13.3
4-Chloro-3-methylphenol	ND	26.7	13.3
2-Methylnaphthalene	ND	6.67	3.33
Hexachlorocyclopentadiene	ND	26.7	13.3

Semivolatile Organics by USEPA Method 8270 data for SS0963 continued...

Analyte (ug/kg) PQL MRL 2,4,6-Trichlorophenol ND 26.7 13.3	_
2,4,0 Higherton	_
207	3
2,4,5-Trichlorophenol ND 26.7 13.	
2-Chlomnaphthalene ND 6.67 3.3	3
2-Nitroaniline ND 26.7 13.3	
Dimethylphthalate ND 26.7 13.3	
Acenaphthylene ND 6.67 3.3	
2,6-Dinitrotoluene ND 26.7 13.	
3-Nitroaniline ND 26.7 13.3	
Acenaphthene ND 6.67 3.3	
2,4-Dinitrophenol ND 133 66.	7
4-Nitrophenol ND 66.7 33.	3
Dibenzofuran ND 26.7 13.3	3
2,4-Dinitrotoluene ND 26.7 13.3	3
Diethylphthalate ND 26.7 13.	3
4-Chlorophenylphenylether ND 26.7 13.	3
Fluorene ND 6.67 3.3	3
4-Nitroaniline ND 26.7 13.	3
4,6-Dinitro-2-methylphenol ND 133 66.	7
N-Nitrosodiphenylamine ND 26.7 13.	3
4-Bromophenylphenylether ND 26.7 13.	3
Hexachlorobenzene ND 26.7 13.	3
Pentachlorophenol ND 26.7 13.	3
Phenanthrene ND 6.67 3.3	3
Anthracene ND 6.67 3.3	3
Di-n-butylphthalate ND 26.7 13.	3
Fluoranthene ND 6.67 3.3	3
Pyrene ND 6.67 3.3	3
Butylbenzylphthalate ND 33.3 16.	7
3,3'-Dichlorobenzidine ND 53.3 26.	7
Benzo(a)anthracene ND 6.67 3.3	3
Chrysene ND 6.67 3.3	3
bis(2-Ethylhexyl)phthalate 60.4 26.7 13.	3
Di-n-octylphthalate ND 26.7 13.	3
Benzofluoranthenes ND 6.67 3.3	3
Benzo(a)pyrene ND 6.67 3.3	3
Indeno(1,2,3-cd)pyrene ND 6.67 3.3	3
Dibenz(a,h)anthracene ND 6.67 3.3	3
Benzo(g,h,i)perylene ND 6.67 3.3	3

Blank Spike/Blank Spike Duplicate Report

 Lab ID:
 \$\$S0963

 Date Prepared:
 10/15/2003

 Date Analyzed:
 10/15/2003

 QC Batch ID:
 \$\$\$S0963

Semivolatile Organics by USEPA Method 8270

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Phenol	0	100	97	97	104	104	7	
2-Chlorophenol	0	100	99.7	99.7	115	115	14	
1,4-Dichlorobenzene	0	66.7	69.2	104	70.3	105	0.96	
N-nitroso-di-n-propylamine	0	66.7	65.9	98.8	70.8	106	7	
1,2,4-Trichlorobenzene	0	66.7	65	97.5	85.6	128	27	
4-Chloro-3-methylphenol	0	100	116	116	125	125	7.5	
Acenaphthene	0	66.7	75.6	113	81	122	7.7	
4-Nitrophenol	0	100	136	136	143	143	5	
2,4-Dinitrotoluene	0	66.7	57.8	86.7	71.1	107	21	
Pentachlorophenol	0	100	47.6	47.6	54.1	54.1	13	
Pyrene	0	66.7	84.9	127	80.3	120	-5.7	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: FQ 031019 116855-03 10/15/2003 10/15/2003 SS0963

Semivolatile Organics by USEPA Method 8270

	Sample Result	Spike Amount	MS Result	MS	MSD Result	MSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Phenol	0	111	107	96.3	107	97.4	1.1	
2-Chlorophenol	0	111	110	99.2	118	108	8.5	
1.4-Dichlorobenzene	0	74.2	1.98	2.67	52.7	72.1	190	X7
N-nitroso-di-n-propylamine	0	74.2	5.64	7.61	70.5	96.5	170	X7
1,2,4-Trichlorobenzene	0	74.2	71.4	96.2	74	101	4.9	
4-Chloro-3-methylphenol	0	111	145	130	151	138	6	
Acenaphthene	0	74.2	76.2	103	90.5	124	19	
4-Nitrophenol	0	111	238	214	149	136	-45	X7
2,4-Dinitrotoluene	0	74.2	61.1	82.3	53.2	72.8	-12	
Pentachiorophenol	0	111	137	123	99.2	90.6	-30	
Pyrene	550	74.2	192	0	757	281	200	X7a

Lab ID:

Method Blank - PB0621

Date Received: Date Prepared:

10/17/03

Date Analyzed:

10/17/03

% Solids
Dilution Factor

5

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	86,1		57	125
Decachlorobiphenyl	88.1		63	126

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.1	0.05	
Aroclor 1221	ND	0.2	0.1	
Aroclor 1232	.ND	0.1	0.05	
Aroclor 1242	ND	0.1	0.05	
Aroclor 1248	ND	0.1	0.05	
Aroclor 1254	ND	0.1	0.05	
Aroclor 1260	ND	0.1	0.05	

Blank Spike/Blank Spike Duplicate Report

 Lab ID:
 PB0621

 Date Prepared:
 10/17/03

 Date Analyzed:
 10/17/03

 QC Batch ID:
 PB0621

PCBs by USEPA Method 8082

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Arocior 1242	0	1	0.92	92	0.899	89.9	-2.3	
Aroclor 1260	0	1	1.02	102	0.99	99	-3	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

Lab ID:

Date Prepared:

Date Analyzed:

QC Batch ID:

MW-23-1-CUTTINGS

116961-10

10/17/03

10/17/03

PB0621

PCBs by USEPA Method 8082

Compound Name	Sample Result (mg/kg)	Spike Amount (mg/kg)	MS Result (mg/kg)	MS % Rec.	MSD Result (mg/kg)	MSD % Rec.	RPD	Flag
Aroclor 1242	0	1.03	0.997	96.5	1.02	97.4	0.93	
Aroclor 1260	0.22	1.03	1.25	100	1.25	98.5	-1.5	

Lab ID:

Method Blank - PE1651

Date Received:

Date Prepared: 10/1

Date Analyzed:

10/17/2003 10/24/2003

1

% Solids

Dilution Factor

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	119	_	57	153
Decachlorobiphenyl	122		57	145

Sample results are on an as received basis.

	Result		
Analyte	(ug/kg)	PQL	Flags
Aldrin	ND	1	3-
alpha-BHC	ND	1	
beta-BHC	ND	1	
delta-BHC	ND	1	
gamma-BHC (Lindane)	ND	1	
4,4'-DDD	ND	2	
4,4'-DDE	ND	2	
4,4'-DDT	ND	2	
Dieldrin	ND	2	
Endosulfan I	ND	· 1	
Endosulfan II	ND	2	
Endosulfan sulfate	ND	2	
Endrin	ND	2	
Endrin aldehyde	ND	2	
Heptachlor	ND	1	
Heptachlor epoxide	ND	i	
Methoxychlor	ND	10	
Endrin ketone	ND	2	
Toxaphene	ND	100	
alpha-Chlordane	ND	1	
gamma-Chlordane	ND	1	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PE1651 10/17/2003 10/24/2003 PE1651

Organochlorine Pesticides by USEPA Methods 8081A

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Aldrin	0	40	41.9	105	44.6	112	6.5	
alpha-BHC	0	40	44.6	112	47.8	120	6.9	
beta-BHC	0	40	39.1	97.8	42	105	7.1	
delta-BHC	0	40	36.9	92.2	40.3	101	9.1	
gamma-BHC (Lindane)	0	40	45	113	48.4	121	6.8	
4,4'-DDD	0	40	45.5	114	48.9	122	6.8	
4,4'-DDE	0	40	39	97.5	42.5	106	8.4	
4,4'-DDT	0	40	38.1	95.2	46.1	115	19	
Dieldrin	0	40	43.6	109	47.2	118	7.9	
Endosulfan I	0	40	41.8	105	44.7	112	6.5	
Endosulfan II	0	40	38.4	95.9	42.6	106	10	
Endosulfan sulfate	0	40	36.5	91.2	40.9	102	11	
Endrin	0	40	41.5	104	45.6	114	9.2	
Endrin aldehyde	0	40	49.1	123	53.8	134	8.6	N
Heptachlor	0	40	40.1	100	43.3	108	7.7	
Heptachlor epoxide	0	40	40.7	102	43.6	109	6.6	
Methoxychlor	0	40	41.2	103	42.7	107	3.8	
Endrin ketone	0	40	40.3	101	44.5	111	9.4	
alpha-Chlordane	0	40	40	100	43	107	6.8	
gamma-Chlordane	0	40	42.9	107	45.9	115	7.2	

Matrix Spike/Matrix Spike Duplicate Report

 Client Sample ID:
 FO 031022

 Lab ID:
 116855-06

 Date Prepared:
 10/17/2003

 Date Analyzed:
 10/29/2003

 QC Batch ID:
 PE1651

Organochlorine Pesticides by USEPA Methods 8081A

	Sample Result	Spike Amount	MS Result	MS	MSD Result	MSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Aldrin	0.	45.7	40.3	88.3	41.4	88.4	0.11	9
alpha-BHC	0	45.7	41.5	90.8	42.2	90.1	-0.77	
beta-BHC	0	45.7	43.9	96.1	44.5	95.1	-1	
delta-BHC	0	45.7	35.1	76.8	36.8	78.6	2.3	
gamma-BHC (Lindane)	0	45.7	43.8	95,9	44.1	94.3	-1.7	
4,4'-DDD	0	45.7	43.4	95	45.9	98.1	3.2	
4,4'-DDE	0	45.7	40.8	89.2	42.1	89.9	0.78	
4,4'-DDT	0	45.7	65.6	143	55.3	118	-19	
Dieldrin	0	45.7	43	94	44.8	95.7	1.8	
Endosulfan I	0	45.7	40.5	88.6	43	91.9	3.7	
Endosulfan II	0	45.7	41.1	89.8	42.2	90.2	0.44	
Endosulfan sulfate	0	45.7	39.9	87.3	40.1	85.6	-2	
Endrin	0	45.7	47.7	104	49.2	105	0.96	
Endrin aldehyde	0	45.7	46.7	102	45.8	97.9	-4.1	
Heptachlor	0	45.7	45.6	99.8	45.4	97	-2 .8	
Heptachlor epoxide	0	4 5.7	40.7	89	41.8	89.3	0.34	
Methoxychlor	0	45.7	48.5	106	48	102	-3.8	
Endrin ketone	0	45.7	40.4	88.5	45.5	97.3	9.5	
alpha-Chlordane	0	45.7	41.8	91.4	44.1	94.3	3.1	
gamma-Chlordane	0	45.7	48.5	106	49.8	106	0	

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 40%.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- C3: Second analysis confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 30%.
- C4: Second analysis confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 30%. The original analysis was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- MRL: Method Reporting Limit
- N: See analytical narrative
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

SUBCONTRACT ORDER

North Creek Analytical - Portland P3J0346

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: P3J0346-08	Soil S	Sampled: 10/08/03 11:50		
8081A/8082 Pest/PCB	10/23/03 17:00	0 10/22/03 11:50		
8270C Semivolatiles	10/23/03 17:00	0 10/22/03 11:50		low level analysis
Solids, Dry Weight	10/16/03 17:00	0 11/05/03 11:50		
Subcontract Outside	10/23/03 17:00	0 04/05/04 11:50		City of Portland-Lower Harbor
TOC-9060 mod	10/23/03 17:00	0 11/05/03 11:50		
Containers Supplied:				
4 oz. jar (A)	4 oz. jar (B)	4 oz. jar (C	C) 4 oz. j	ar (D)

Date

PDX/042100011.PDF

Released By

Page 3 of 3

Data Validation Report

M E M O R A N D U M

Review of Quality Assurance/Quality Control (QA/QC) Data for Portland Harbor Sediment Sampling, October 2003

TO: David Lacey/PDX

Tina Rice/PDX

COPIES: Project File

FROM: Wendi Gale/CVO

DATE: February 2, 2004

Summary

The majority of the data have met the QA/QC acceptance criteria outlined for the Portland Harbor Sediment Sampling study. Nonconformances with QA/QC criteria are discussed, identified, and qualified in this report. The following is a brief summary of the overall quality of the sample results.

All polychlorinated biphenyls (PCBs), pesticides, semivolatile petroleum products (NWTPH-Dx), metals, mercury, and total organic carbon (TOC) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy.

The majority of semivolatile organic compound (SVOC-SIM) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy. Nonconformances with the QA/QC criteria were observed as follows:

- SVOC-SIM results for one sediment sample were qualified as estimates and flagged with a "J" for positive results or with a "UJ" for nondetected results due to surrogate recoveries reported below the lower QC acceptance criteria.
- Pesticide results for one sediment sample were qualified as estimates and flagged with a
 "UJ" for nondetect results because surrogate recoveries were not reported due to
 dilution.

Introduction

Eight sediment samples were collected between October 7 and 8, 2003. Samples submitted for metals, mercury, and NWTPH-Dx analyses were performed by City of Portland Water Pollution Control Laboratory (CITY), located in Portland, Oregon. Samples submitted for SVOC-SIM, pesticides, PCBs, and TOC analyses were performed by Severn Trent Laboratory (STL), located in Tacoma, Washington.

PDX/042110004.DOC 1 182032.SC.15

Data Review Criteria

U.S. EPA Contract Laboratory Program (CLP) *National Functional Guidelines for Organic Data Review* (October 1999) and *National Functional Guidelines for Inorganic Data Review* (July 2002) provided guidelines for data qualification, where applicable. Only summary QA/QC information were reviewed for each analytical parameter.

This QA review focuses on criteria for the following QA/QC parameters and their overall effect on the data:

- Sample custody, handling, and preservation
- Holding time compliance
- Summary initial and continuing calibration data
- Method blanks
- Surrogate spike recovery
- Precision and Accuracy (laboratory control samples, spike/spike duplicates, and laboratory duplicates)

Analytical Methods

All samples were analyzed by and QA/QC criteria were taken from one of the following sources:

- U.S. EPA. Test Methods for Evaluating Solid Waste (SW 846), April 1998.
- Oregon D.E.Q. Northwest Total Petroleum Hydrocarbon-Dx Method (NWTPH-Dx) is based on Oregon's Department of Environmental Quality TPH and Washington's Department of Ecology WTPH methods.

Table 1 lists the analytical method used for each parameter and the number and type of samples analyzed.

Table 1 Summary of Analyses		
Parameter	Method	No. of Field Samples
SVOC-SIM	EPA 8270-SIM	8 sediment
Pesticides	SW 8081A	8 sediment
PCBs	SW 8082	8 sediment
TPH-#6 Fuel Oil, Diesel, Kerosene, Motor Oil	NWTPH-D	8 sediment
Metals and Mercury	EPA 6020	8 sediment
TOC	SW 9060	8 sediment

Oualifiers

The following definitions provide brief explanations of the data qualifiers that may be assigned to results in the data review process.

- U The analyte was analyzed for, but the analyte was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

The laboratory may have assigned additional data qualifiers. Laboratory data qualifiers are defined in each laboratory report.

Sample Custody, Handling, and Preservation

Chain-of-custody (COC) forms and the laboratory sample receiving checklists were reviewed to determine if any sample handling procedures might affect the integrity or the quality of the sample results.

According to the case narrative, all coolers were received by the laboratory at a temperature of $4 \,^{\circ}\text{C} \pm 2 \,^{\circ}\text{C}$, as recommended by EPA. All sample containers were received intact. All sediment samples were extracted and/or analyzed within their respective holding time requirements.

GC/MS Tune Criteria

Instrument tuning must be performed at the beginning of each twelve-hour instrument sequence, prior to standard and sample analyses. Analysis frequency criteria and ion abundance criteria for each instrument sequence were met.

Initial Calibration

Initial calibration criteria monitor analytical performance and proper compound identification at the start of analysis.

All acceptance criteria were met according to the case narrative. Initial calibration data were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

Continuing Calibration

Continuing calibration criteria monitor analytical performance and proper compound identification on a daily or more frequent basis.

All acceptance criteria were met according to the case narrative. Continuing calibration data were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

Method Blanks

Method blanks monitor contamination that may be introduced during analysis.

Method blanks were provided for all analyses by the STL laboratory. Except for the instance noted below, all method blanks were contamination-free, therefore meeting QC acceptance criteria.

• The SVOC-SIM method blank analyzed on October 15, 2003 (SDG 116855) was reported with detectable concentrations of bis(2-ethylhexyl)phthalate (60.4 μ g/kg). Bis(2-ethylhexyl)phthalate was not detected in any associated samples or was greater than five times the amount detected in the method blank, therefore sample results were considered unaffected and were not qualified.

Method blanks were not provided by the CITY laboratory, therefore compliance with QC criteria could not be verified. Method blanks were contamination-free according to the case narrative.

Surrogate Spike Recovery

Surrogate compounds are organic compounds which are similar to the analytes of interest in chemical composition, extraction, and chromatography, but are not likely to be found in environmental samples. Every sample and blank analyzed for organic parameters is spiked prior to extraction or analysis with surrogate compounds that are representative of the analysis.

All surrogate spike recoveries should be within the laboratory-established control limits to meet QC acceptance criteria.

EPA Method 8270-SIM (SVOC-SIM)

Surrogate recoveries should be within the QC control limits of 37 to 156 percent for nitrobenzene-d5, 39 to 145 percent for 2-fluorobiphenyl, 39 to 158 percent for p-terphenyl-d14, 39 to 140 percent for phenol-d5, 35 to 144 percent for 2-fluorophenol, and 25 to 148 percent for 2,4,6-tribromophenol for sediment samples. Except for the instances noted below, all surrogate recoveries were within the specified QC control limits for sediment samples.

• The surrogate recovery for p-terphenyl-d14 was reported below the lower QC control limit for sample IL-19-AAP918-1003 (21.5%). SVOC-SIM results for sample IL-19-AAP918-1003 were qualified as estimates and flagged with a "J" for positive results or with a "UJ" for nondetected results.

NWTPH-Dx Method (NWTPH-Dx Hydrocarbons)

All acceptance criteria were met according to the case narrative. Surrogate compounds and QC control limits were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

EPA Method SW 8081A (Pesticides)

Surrogate recoveries should be within the QC control limits of 57 to 153 percent for tetrachloro-m-xylene and 57 to 145 percent for decachlorobiphenyl in sediment samples. Pesticide results are not qualified based on surrogate results.

Except for the instance noted below, all surrogate recoveries were within the specified QC control limits.

- The surrogate recoveries for tetrachloro-m-xylene and dechlorobiphenyl were not reported as a result of sample dilution for sediment sample IL-19-AAP910-1003. Pesticide results for sample IL-19-AAP910-1003 were qualified as estimates and flagged with a "UJ" for nondetected results.
- The surrogate recovery for dechlorobiphenyl was reported below the lower QC control limit for sample IL-19-AMZ077-1003 (7.55%). The surrogate recovery for tetra-m-chloroxylene was acceptable and the low recovery of decachlorobiphenyl was due to a matrix interference; no sample results required qualification.

EPA Method SW 8082 (PCBs)

Surrogate recoveries should be within the QC control limits of 57 to 125 percent for tetrachloro-m-xylene and 63 to 126 percent for decachlorobiphenyl in sediment samples. PCB results are not qualified based on surrogate results.

All surrogate recoveries were within the specified QC control limits.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicates, and Laboratory Duplicates

Precision and accuracy of laboratory performance are evaluated by the analysis of laboratory control samples (LCS), matrix spike (MS), matrix spike duplicates (MSDs), and laboratory duplicates. LCSs, MS/MSDs, and laboratory duplicates should be performed at a frequency of five percent or once per analytical batch, whichever is more frequent. LCS, MS/MSD, and laboratory duplicate recoveries and relative percent difference (%RPD) results should be within laboratory established control limits to meet precision and accuracy QC acceptance criteria.

LCS, MS/MSD, and laboratory duplicate data were not provided by the CITY laboratory, therefore compliance with QC criteria could not be verified. All acceptance criteria were met according to the case narrative.

LCS, MS/MSD, and laboratory duplicate data were provided by the STL laboratory. Frequency criteria were met for all analytical methods. Except for the instance noted below, all LCS, MS/MSD, and laboratory duplicate recoveries and %RPD results were within the

laboratory established QC control limits for all samples analyzed. Therefore, the majority of the samples met precision and accuracy QC acceptance criteria.

 Several MS/MSD recoveries and RPD results were reported outside the laboratoryestablished QC control limits for SVOC-SIM analysis. Organic sample results cannot be qualified using MS/MSD data alone, but can be used in conjunction with other QC criteria to determine the precision and accuracy of individual samples. Sample results did not require qualification based on precision or accuracy criteria, therefore SVOC-SIM results were not qualified based on MS/MSD results.

APPENDIX B

Basin 19 Catch Basin Solids Sampling Adjacent to Greenway Recycling

Appendix B: Basin 19 Catch Basin Solids Sampling Adjacent to Greenway Recycling

Introduction

This appendix summarizes the results of the City of Portland BES source investigation of catch basin solids near the Greenway Recycling facility. The facility also is known as the Armstrong Disposal Company on DEQ's Environmental Cleanup Site Information (ECSI) database (ECSI Site No. 4655). The Greenway site is located within Outfall Basin 19.

In 2004 and 2005, the City received complaints about erosion from the site onto NW St. Helens Road. Free petroleum product was observed draining from the Greenway site "out of soil and onto St. Helens Road after a rainstorm in early 2006" (DEQ, 2009a). The City collected solids samples from stormwater catch basins in the roadway adjacent to the site in June 2007 and submitted the samples for laboratory analyses. The purpose of this investigation was to evaluate whether possible overland discharges from the Greenway site are a current source of contaminants to the City conveyance system.

The investigation results indicate the presence of PCBs and other constituents in the catch basin solids; however, based on the detected concentrations, the Greenway facility does not appear to be a significant ongoing source of contaminants to the Basin 19 stormwater conveyance system.

Background

The Greenway site began site redevelopment, including grading, in 2004 without City permits or erosion control. Numerous complaints were received in 2004 and 2005 of mud from the site covering the road, sidewalks, and reaching the street catch basins. Offsite tracking of soils was also reported. The City required the site to apply for the appropriate permits and worked with the site to install onsite stormwater treatment (implemented in 2007), pursuant to the City's Stormwater Manual. Areas with higher soil contamination were also paved in 2007. Additional stormwater controls, such as construction of a cover for the woodchipper, have been added to the site since 2007.

Based on the site history and potential for contamination, the City collected catch basin solids samples on NW St. Helens Road, adjacent to the site, to help determine the appropriate onsite treatment and to evaluate current offsite migration of site contaminants. These catch basins discharge to the 30-inch-diameter stormwater conveyance line in NW St. Helens Road.

The Greenway site submitted an independent cleanup report and risk assessment summarizing soil and groundwater remedial activities conducted at the site between 2003 and 2006; these activities were not conducted under DEQ oversight. Analytical data presented in the report includes data for a soil sample collected near an onsite stormwater catch basin with a PCB Aroclor 1016 concentration of 560 μ g/Kg (Evren Northwest, 2007). The soil represented by this sample subsequently was excavated and disposed. DEQ issued a Conditional No Further Action

determination stating that "DEQ does not believe that stormwater from the site is contributing contaminants to the Willamette River at levels warranting DEQ oversight" (DEQ, 2009b).

Sampling Activities and Analytical Approach

Solids samples were collected on June 22, 2007 from three catch basins located in the site vicinity, which are shown on Figure B1. All three catch basins receive flows from the site, based on field observations of wood debris (see Attachment B1, similar to those at the Greenway site. Also, during the catch basin sampling event, BES sampling personnel observed water seeping from the ground surface at the properties on the west side of NW St. Helens Road, including the Greenway facility (see photograph 4 in Attachment B2). The seepage was observed to run along the west curb line draining to all three catch basins sampled.

The solids samples were collected from the bottom of each catch basin using a stainless steel trowel/spoon and bowl in accordance with BES Field Operations Standard Operating Procedures. Field notes recorded during sampling activities are provided in Attachment B1. Photographs of the sampling locations and inline solids are included in Attachment B2.

The three catch basin solids samples were homogenized and submitted to the City's Water Pollution Control Laboratory for analysis of metals, PCBs, polycyclic aromatic hydrocarbons (PAHs), phthalates, semi-volatile organic compounds (SVOCs), total organic carbon and total solids.

Summary of Results

Table B1 summarizes the laboratory analytical results for the City samples relative to the Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLVs) for bioaccumulation and toxicity (DEQ/EPA, 2005, as amended 2007). The laboratory reports and data review memorandum for the City samples are provided in Attachment B3.

- **Metals:** The results indicate that copper and lead are being discharged to the system at concentrations exceeding JSCS Toxicity SLVs (see Table B1).
- **PCBs:** PCBs were detected in the sample from catch basin ANF207 (the middle catch basin). Concentrations of the individual Aroclors do not exceed the SLVs; the total PCB concentration in this sample exceeds the Bioaccumulation SLV but is an order-of-magnitude less than the Toxicity SLV.
- **PAHs:** With the exception of indeno(1,2,3-cd)pyrene in the sample from catch basin ANF207, PAH concentrations in the samples were not elevated above SLVs.
- **Phthalates:** Bis(2-ethylhexyl)phthalate (BEHP) and/or di-n-butyl phthalate were detected in the samples. The detected concentrations were less than an order-of-magnitude greater than the SLVs.
- **SVOCs:** With the exception of phenol in the sample from catch basin AMZ192, detected SVOC concentrations in the samples were not elevated above SLVs.

Conclusions

The results of this source investigation indicate that indeno(1,2,3-cd)pyrene, BEHP and/or phenol are present in solids in catch basins that receive stormwater runoff from the Greenway facility at concentrations greater than (but within an order-of-magnitude of) the JSCS Toxicity SLVs. Total PCBs were detected in one catch basin sample adjacent to the site which exceeded the Bioaccumulation SLV; this detection may be related to PCBs that were documented in near-surface soil prior to site remedial activities (Evren Northwest, 2007) or may indicate the presence of an ongoing minor source of PCBs at the site or in the site vicinity. Based on these findings, the Greenway facility does not appear to be a significant ongoing source of contaminants to the Basin 19 stormwater conveyance system. The site also has an NPDES stormwater general permit (issued in 2007) and the City continues to work with the site to implement stormwater best management practices.

The sampling conducted adjacent to the Greenway facility was conducted after much of the site contamination had been removed and pavement placed in the areas of higher concentrations. Therefore, these results are not reflective of what may have historically discharged to the City system from this facility, especially when significant erosion was occurring during site grading.

References

DEQ. 2009a. DEQ Site Summary Report – Details for ECSI Site No. 4655. DEQ Environmental Cleanup Site Information (ECSI) Database.

http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=4655

DEQ. 2009b. Conditional No Further Action Determination, Greenway Recycling, 4135 NW Saint Helens Road, Portland, Oregon 97208, ECSI Site ID No. 4655. Letter to T. Garrett (Greenway) from K. Johnson (DEQ). February 23, 2009.

DEQ and EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).

Evren Northwest. 2007. Independent Cleanup Report, Greenway Recycling Facility, 4135 NW St. Helens Road, Portland, Oregon. Prepared for Greenway Recycling. December 4, 2007.

Table

Table B1 - Catch Basin Solids Samples Results Adjacent to Greenway Recycling, Outfall Basin 19

Figure

Figure B1 - Catch Basin Solids Sampling Locations

Attachments

Attachment B1 - Field Data Sheets

Attachment B2 - Field Photographs

Attachment B3 – Laboratory Results

Table B1 Catch Basin Solids Sample Results Adjacent to Greenway Recycling Outfall Basin 19

Outfall Basin 19		Upstream> Downstream			(f)	
		Catch Basin AAT525	Catch Basin ANF207	Catch Basin AMZ192 FO 070815		(SCS ⁽¹⁾ ng Level Value
Class Analyte	Units	6/22/2007	6/22/2007	6/22/2007	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD) TOC	/IZ	54200	64000	76400		
100	mg/Kg	34200	64000	/0400		
Total Solids (SM 2540 G)	0/33/33/	21.5	50.0	40		
TS	%W/W	34.6	68.8	49		
Metals (EPA 6020)						
Antimony	mg/Kg	3.68	3.84	56.7	64	7
Arsenic Cadmium	mg/Kg mg/Kg	3.95 0.72	5.44 0.47	3.92 1.57	33 4.98	1
Chromium	mg/Kg	71.6	60.8	52.1	111	
Copper	mg/Kg	158	114	60.9	149	
Lead	mg/Kg	140	128	111	128	17
Mercury Nickel	mg/Kg	0.169 31.9	0.085 31.8	0.156 25.1	1.06 48.6	0.07
Silver	mg/Kg mg/Kg	0.8	1.79	0.22	5	
Zinc	mg/Kg	458	307	438	459	
Polychlorinated Biphenyls(PCBs) (EPA 8082)						
Aroclor 1016	μg/Kg	15 U	10 U	10 U	530	
Aroclor 1221 Aroclor 1232	μg/Kg μg/Kg	30 U 15 U	20 U 10 U	20 U 10 U		
Aroclor 1232 Aroclor 1242	μg/Kg μg/Kg	15 U	21	10 U		
Aroclor 1248	μg/Kg	15 U	10 U	10 U	1500	
Aroclor 1254	μg/Kg	15 U	10 U	10 U	300	
Aroclor 1260 Aroclor 1262	μg/Kg μg/Kg	15 U 15 U	11 10 U	10 U 10 U	200	
Aroclor 1268	μg/Kg μg/Kg	15 U	10 U	10 U		
Total PCBs		ND	32	ND	676	0.39
Polynuclear Aromatic Hydrocarbons(PAH) (EPA 8270C-SIM) 2-Methylnaphthalene	μg/Kg	9.9	12	80	200	
Acenaphthene	μg/Kg μg/Kg	9.1	15	12	300	
Acenaphthylene	μg/Kg	4.4	10	5.8	200	
Anthracene	μg/Kg	30	46	29	845	
Benzo(a)anthracene	μg/Kg	91	180	100	1050	
Benzo(a)pyrene Benzo(b)fluoranthene	μg/Kg μg/Kg	92 130	180 250	95 130	1450	
Benzo(g,h,i)perylene	μg/Kg	110	190	110	300	
Benzo(k)fluoranthene	μg/Kg	37	93	39	13000	
Chrysene	μg/Kg	130	280	130	1290	
Dibenzo(a,h)anthracene Dibenzofuran	μg/Kg μg/Kg	24 8.2	36 13	22 8.1	1300	
Fluoranthene	μg/Kg μg/Kg	320	500	290	2230	37000
Fluorene	μg/Kg	12	17	12	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	100	200	98	100	
Naphthalene	μg/Kg	17	24	87	561	
Phenanthrene Pyrene	μg/Kg μg/Kg	160 230	240 390	160 280	1170 1520	1900
Total PAHs		1515	2676	1688		1900
Phthalates (EPA8270C)	<u> </u>					
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	3800	2100	2500	800	330
Butyl Benzyl Phthalate	μg/Kg	4600	1100	3900		
Diethyl phthalate Dimethyl phthalate	μg/Kg	130 U 130 U	100 U 100 U	120 U 120 U	600	
Di-n-butyl phthalate	μg/Kg μg/Kg	410	200 U	250 J	100	60
Di-n-octyl phthalate	μg/Kg	130 U	100 U	120 U		
Semivolatile Organic Compounds (SVOC) (EPA8270C)						
1,2,4-Trichlorobenzene	μg/Kg	130 U	100 U	120 U	9200	
1,2-Dichlorobenzene	μg/Kg μg/Kg	130 U	100 U	120 U	1700	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/Kg μg/Kg	130 U 130 U	100 U 100 U	120 U 120 U	300 300	
2,4,5-Trichlorophenol	μg/Kg	130 U	100 U	120 U		
2,4,6-Trichlorophenol	μg/Kg	130 U	100 U	120 U		
2,4-Dichlorophenol	μg/Kg	130 U	100 U	120 U		
2,4-Dimethylphenol	μg/Kg	620 U	500 U	580 U		
2,4-Dinitrophenol 2,4-Dinitrotoluene	μg/Kg μg/Kg	2500 U 130 U	2000 U 100 U	2300 U 120 U		
2,6-Dinitrotoluene	μg/Kg μg/Kg	130 U	100 U	120 U		
2-Chloronaphthalene	μg/Kg	130 U	100 U	120 U		
2-Chlorophenol	μg/Kg	130 U	100 U	120 U		
2-Methyl-4,6-dinitrophenol	μg/Kg	1300 U	1000 U	1200 U		

June 2010 Page 1 of 2

Table B1 Catch Basin Solids Sample Results Adjacent to Greenway Recycling Outfall Basin 19

		Upstream Catch Basin AAT525	Catch Basin ANF207	Catch Basin AMZ192 FO 070815		ISCS ⁽¹⁾ ng Level Value
ss Analyte	Units	6/22/2007	6/22/2007	6/22/2007	Toxicity	Bioaccumulation
2-Methylphenol	μg/Kg	130 U	100 U	120 U		
2-Nitroaniline	μg/Kg	250 U	200 U	230 U		
2-Nitrophenol	μg/Kg	130 U	100 U	120 U		
3,3'-Dichlorobenzidine	μg/Kg	1300 U	1000 U	1200 U		
3-Nitroaniline	μg/Kg	250 U	200 U	230 U		
4-Bromophenylphenyl ether	μg/Kg	130 U	100 U	120 U		
4-Chloro-3-methylphenol	μg/Kg	130 U	100 U	120 U		
4-Chloroaniline	μg/Kg	130 U	100 U	120 U		
4-Chlorophenyl phenyl ether	μg/Kg	130 U	100 U	120 U		
4-Methylphenol ⁽³⁾	μg/Kg	910	100 U	1400		
4-Nitroaniline	μg/Kg	250 U	200 U	230 U		
4-Nitrophenol	μg/Kg	1300 U	1000 U	1200 U		
Benzoic acid	μg/Kg	2500 U	2000 U	2300 U		
Benzyl alcohol	μg/Kg	330	200 U	230		
Bis(2-chloroethoxy) methane	μg/Kg	130 U	100 U	120 U		
Bis(2-chloroethyl) ether	μg/Kg	130 U	100 U	120 U		
Bis(2-chloroisopropyl) ether	μg/Kg	130 U	100 U	120 U		
Hexachlorobenzene	μg/Kg	130 U	100 U	120 U	100	19
Hexachlorobutadiene	μg/Kg	130 U	100 U	120 U	600	
Hexachlorocyclopentadiene	μg/Kg	730 U	500 U	680 U	400	
Hexachloroethane	μg/Kg	130 U	100 U	120 U		
Isophorone	μg/Kg	130 U	100 U	120 U		
Nitrobenzene	μg/Kg	130 U	100 U	120 U		
N-Nitrosodi-n-propylamine	μg/Kg	130 U	100 U	120 U		
N-Nitrosodiphenylamine	μg/Kg	130 U	100 U	120 U		
Pentachlorophenol	μg/Kg	1300 U	1000 U	1200 U	1000	250
Phenol	μg/Kg	380 U	300 U	400	50	

Notes

ND = Not detected

 $\mu g/Kg = Micrograms \ per \ kilogram.$

 $mg/Kg = Milligrams \ per \ kilogram.$

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

June 2010 Page 2 of 2

B = The analyte was found in the associated method blank at a level that is significant relative to the sample result. Sample results less than twenty times the level found in the blank are flagged as estimated.

 $[\]boldsymbol{U} = \boldsymbol{The}$ analyte was not detected above the reported sample quantification limit.

J = The analyte was detected in the method blank at a concentration greater than twenty times the level found in the sample; therefore, the results is qualified as estimated.

⁻⁻ No JSCS screening level has been established.

⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007).

⁽³⁾ Total PCBs and PAHs are calculated by assigning "0" to undetected constituents.

 $[\]underline{\ ^{(3)}}$ This analyte cannot be separated from 3-Methylphenol.

Legend

(Manhole
 T Sample Location
 T Inlet
 ? Trash Rack
 0 62.5 125 250 Feet
 > Storm Line

Source: City of Portland BES ENVIRONMENTAL SERVICES CITY OF PORTLAND 1120 SW Fifth Avenue, Room 1000 Portland Oregon, 97204-1912

Name:
s:\Corey Maps\OF19

Program Manager:
Dawn Sanders
Portland Harbor Superfund

1 OF 1 Date Printed: 04/21/10
Prepared by: Corey Treacy

Attachment B1 Field Data Sheets

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

	OR WLILL SAMP	Project Number: 1020 001
Sampling Team: WCN/スゴム	Date: 6/22/67	Arrival Time: 0936
	Node: AMZ-192	Address: 4/35 NWS7 HELENS RI
Current weather and last known rainfall:		DC.

SECTION 1 - PRE-S	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	COMPOSTIUL/RECYCLIUL FACILITY
Describe debris and/or clogging around, or in catch basin grate/cover:	SEDIMENTS IN GUTTER, GRATE, CATOR BAS
Is there standing water in catch basin?	NO
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	ORGANIC, MUDDY OKBAIS (STICKS/TWINS
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	1/4"OF SEAMELOS, CB 1524"DEEP
DRIVERRY DRIVER	CATCH BASIU; 24 DEEP 29" LOUG 11" WIDE

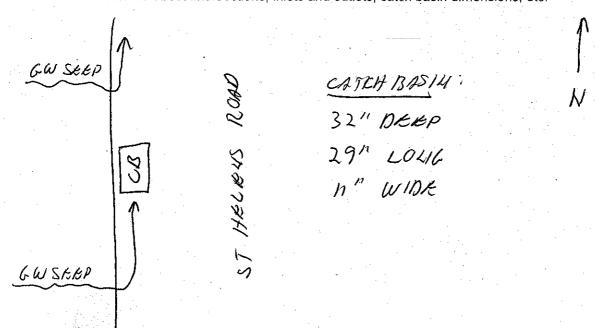
Date: 6/22/07 SECTION	N 2 - SAMPLE COLLECTION REPORT	Node: MZ-192
Sampling Equipment:	Stainless steel spoon & stainless steel bucket OTHER (DESCRIBE) STAINLESS TROWSC	
Equipment decontamination procedure:	□ OTHER (DESCRIBE)	
Sample date: 6/22/07	Sample time: 0936	
Sample Identification Code: 19_11 1L-19-A/12/92-0607	Sample collection technique and if/how overlying w PULCED SAMPLE a/TROWEL; WATE	ater was removed: ER 7RICILLE FLOWING
Subsample number and location:	TOOK ALC SENMENT OUT	
Color of sample: DARK BROWK		
Texture/particle size: COASE CHULK)		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)		
Amount and type of debris in bulk sample:	WOOD DEBNIS + TOURS, + STYROKOAM N 2-3 QUARTS	
Amount and type of debris removed from final sample:	8 4-07 JARJ	
Compositing notes: MIXEO IT UP,	PULLED OUT LARGE CHUNKS OF BA	RKMULCH
	artial)? 8 - 402., FULL	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		
FO 070045		
FO 070815	Duplicate sample collected? Y(N) Dupe ID	
Duplicate sample identification # on COC:		
Any deviations from standard procedures:		
SFC1	TION 3 - PHOTOGRAPH LOG	
Overview of CB showing drainage area	/ / / / / / / / / / / / / / / / / / /	
Catch basin plan view prior to sampling show	ving solids 1/0	
Lateral connections to/from CB	YES, 2 PHOTOS	
Homogenized sample (sediment in bowl)	,,	

COMPOST/PROYCLE FACILITY

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Aye., Portland, OR 97203-5452



CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

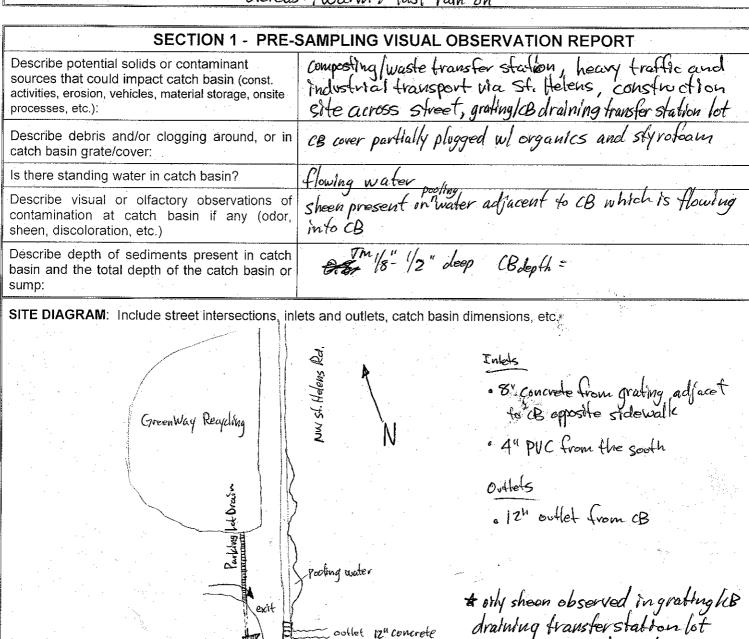
-		
Project Name:		Project Number:
PORTLAND HARBOR IN	LILIK SAMP	1020.001
Sampling Team:	Date: 6/22/67	Arrival Time:
wor/s sm	6/22/01	1006
Basin: 19	Node: AUF207	Address: 4/35 NW ST HELEUS RD
Current weather and last known rainfall:	CLEAR DRY COO	1130 1400 01 1/12 0040 100

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	COMPOSTIUS /RECYCLIUS FACILITY, GROWN WATER
Describe debris and/or clogging around, or in catch basin grate/cover:	WOOD DEBRIS, STRAW, STYROFOAM
Is there standing water in catch basin?	\forall
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	1"-2" DEEP SEDMEUTS 32" DEEP CATCH BASILI

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Date: 6/22/67 SECTION	N 2 - SAMPLE COLLECTION REPORT	Node: AUF 207
Sampling Equipment:	□Stainless steel spoon & stainless steel bucket , TROCUBO	4
Equipment decontamination procedure:	over SOP7.01a □ OTHER (DESCRIBE)	
Sample date: 6/22/07	Sample time: 1006	
Sample Identification Code: 19-12 12-19-AWF 207-0607	Sample collection technique and if/how overlying was SCRAPED 1T UP, TRICKLE OF FLO	ater was removed: W OVER THE SEL
Subsample number and location:		
Color of sample: DARK BROWN		
	O LARLE WOOD CHUURS	
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	HOUK	
Amount and type of debris in bulk sample:	MOSTLY ORLALIC DEBRIS, (N I LALLO	
Amount and type of debris removed from final sample:	METAL PIECES, BAND-AID, LARGE	ILIU, STRAW, FRECES STYROFOA
Compositing notes:		
Sample jars collected (number, size, full or pa	artial)? 8, 4-02, FULC	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		
FO 070816	Duplicate sample collected? YN Dupe ID	
Duplicate sample identification # on COC:		
Any deviations from standard procedures:		
SEC	FION 3 - PHOTOGRAPH LOG	
Overview of CB showing drainage area		
Catch basin plan view prior to sampling show	ving solids	
Lateral connections to/from CB		
Homogenized sample (sediment in bowl)	./	

CITY OF PORTLAND


ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Postland farbor	Inline Sed Samp. OF19		oject Number: 1020.001
Sampling Team: TM, WCR	Date: 6 ZZ 07	Arrival Tim	e: 9731 Wm 103(
Basin: 0Fig	Node: IL-19-AAT525-060	Address:	1135 NW St. Helens CB-S
Current weather and last known rainfa			
	Overcast, warm, last	rain on	

8 concrete

44 sed abserved in grating /CB

Date: 6/22/07 SECTION	N 2 - SAMPL	E COLLE	CTION RE	PORT	Node:	7-A4T525-060
Sampling Equipment: Stainless steel spoon, bowl decound perso			less steel bucket			
Equipment decontamination procedure:	er Per SOP7.01a □ OTHER (DES					
Sample date: 6/2/07	Sample time:	9958	- Tīm 1058			
Sample Identification Code:	Sample colle	ction techn	que and if/ho	w overlying v	water was r	emoved:
19-13	all sed in	n CB Con	uposited in	bowlion	gaulcs, si	tyro, puc, plastic
Subsample number and location:	, "				,	(ehu
Color of sample: brownish	dook brow	n beober	ed wl styn	balls		
Texture/particle size: fine to sand w	I ample o	rgantes	ed w/ styn	ilch		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)			organic			
Amount and type of debris in bulk sample:	fines, sa	indy wl	bark mule	ch, styro	balls	
Amount and type of debris removed from final sample:	1	* .	styro, bu	•		
Compositing notes: all Sed. In CB ca	omposited i	nbowl	mixed v	algorously		
Sample jars collected (number, size, full or p	partial)? ろく	oll, t	95% Fol	1 - 4	sampl	e
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).					1.	
FO 070817	Duplicate sam	ple collecte	ed? Y/M F	Oupe ID		
Duplicate sample identification # on COC:						· · · · · · · · · · · · · · · · · · ·
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	limited same	sle volva	10		-	
SEC	TION 3 - PH	HOTOG	RAPH LO	G		
Overview of CB showing drainage area						
Catch basin plan view prior to sampling sho	wing solids					
Lateral connections to/from CB		4		*		
Homogenized sample (sediment in bowl)						

Took photos of grading | CB | drain adjacent to IL-19-AMISTS-0607 Which appears to be draining transfer station lot into sample CB.

Page 2 of 2

Attachment B2 Field Photographs

Catch Basin Solids Investigation: June 2007

Photo 1. Location of catch basin AAT525. The Greenway Recycling facility is shown in the background.

Photo 2. Looking inside catch basin AAT525. These solids were collected for analysis.

Photo 3. Solids collected from catch basin AAT525.

Photo 4. Sampling at catch basin ANF207. Greenway Recycling is shown in the background. Note the seepage from the site into the right-of-way.

Photo 5. Looking inside catch basin ANF207.

Photo 6. Solids collected from catch basin ANF207.

Photo 7. Location of catch basin AMZ192.

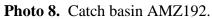


Photo 9. Solids collected from catch basin AMZ192.

Attachment B3 Laboratory Results

Laboratory Data QA/QC Review Inline Solids Investigation City Outfall Basin 19

To: File

From: Andrew Davidson, GSI

Date: February 24, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during source control investigation sampling and analyses conducted by the City of Portland (City) in Outfall Basin 19 on June 22, 2007. Three catch basin solids samples were collected in the immediate vicinity of the Greenway Recycling facility (a.k.a. Armstrong Disposal Company, ECSI #4655) and submitted for laboratory analyses.

The laboratory analyses were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and a subcontract laboratory, as follows:

- BES WPCL
 - o Total Organic Carbon (EPA 9060 MOD)
 - o Total Solids (SM 2540 G)
 - o Metals (EPA 6020)
 - o Polychlorinated Biphenyls (PCBs) (EPA 8082).
- Columbia Analytical Services (CAS)
 - o Total Solids (EPA 160.3)
 - o Polynuclear Aromatic Hydrocarbons (PAHs) (EPA 8270C-SIM)
 - o Phthalates and other Semi-volatile Organic Compounds (SVOCs) (EPA 8270C).

Sample results for these analyses are summarized in Table 1.

This QA/QC review is based upon the available documentation supplied from WPCL and CAS. The QA/QC review of laboratory data included the following checks:

• Chain-of-custody record (complete and correct)

- Analytical holding times
- Chemicals of interest in method blanks
- Surrogate recoveries within accuracy control limits
- Laboratory duplicates within accuracy control limits
- Laboratory control sample recoveries within accuracy control limits
- Laboratory control sample duplicate results within precision control limits

The results of the QA/QC review are presented below.

Chain-of-Custody

The chain-of-custody (COC) forms indicate tracking of sample custody from BES field personnel to the WPCL, and from WPCL to the contract laboratory (CAS). While the COC forms transferring samples from WPCL to CAS appear complete, the form showing initial transfer (relinquishing) from BES field staff to WPCL was unsigned by the WPCL receiving personnel. Excluding this deviation, the chain-of-custody procedures appear adequate.

Analysis Holding Times

The samples were extracted and analyzed within the required method-specific holding times.

Method Blanks

Method blanks were processed during the laboratory analyses of PAHs, phthalates and SVOCs. Di-n-butyl phthalate was detected in the method blank and in samples IL-19-AMZ192-0607 and IL-19-AAT525-0607. Because the detected concentration in sample IL-19-AMZ192-0607 is less than 20 times the method blank concentration, the result was qualified ("B") by CAS in accordance with its QA/QC policy. The presence of di-n-butyl phthalate in this sample is likely a result of laboratory contamination.

Surrogate Recoveries

Surrogate recoveries were completed during the laboratory analysis of PAHs, phthalates and SVOCs. Low recoveries for some SVOC surrogates in samples IL-19-AMZ192-0607 and IL-19-AAT525-0607, and in the method blank, prompted re-extraction of the entire batch. The results for the field samples were comparable for both determinations which indicated that the problems were restricted to the surrogate recovery or method blank; results of the re-extractions were comparable to the original data, and the original results were reported. All other surrogate recoveries were within laboratory control limits.

Laboratory Control/ Duplicate Laboratory Control Samples

Laboratory duplicates were processed during the laboratory analysis of total solids. The relative percent differences (RPDs) between the sample and the laboratory duplicate was within quality control limits.

Laboratory control sample recoveries were reported by WPCL to be within quality control limits.

Laboratory blank spike duplicate recoveries were reported by WPCL to be within quality control limits.

Other

The reporting limits were elevated for all samples analyzed for SVOCs by EPA 8270C. The sample extracts were diluted prior to instrumental analysis due to relatively high levels of nontarget background components. Clean-up of the extract did not eliminate enough of the background components to prevent dilution.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Service City of Portland Chain-of-Custody

Date: 6/27/07

-	አ የ
j	
-	
•	
_	

Collected By:

Date:	Printed Name:	Date:	Printed Name:	Print	Date:			Printed Name:	Date:	THE PROPERTY.
Timo:	Received by: 4.	Time:	Signature:	Sign	. Time:			Signature:	Пте:	Signature:
vale			Caived By 3	T)			2	Received Bv:	ann 6/22/07	Received By: 1.
	Printed Manne	Date:	Printed Name:	Prin	Date:			Printed Name:		Printed Narphi
Time:	Signature;	Time:	Signature:	Sign	Time:			Signature:		Signature: Juna Juna
	Relinquished By: 4.		Relinguished By: 3.	Re			ed By: 2.	Relinguished By:		Relinquished By: 1.
	,									0
									The state of the s	
						-				
						-				
								·		
			•	•	6	1058	6/22/07	19_13	IL-19-AAT525-0607 4135 NW St Helens CB-S	FO 070817
			•	•	۵ ,	1006	6/22/07	19_12	L-19-ANF207-0607 4135 NW St Helens CB-M	FO 070816
			•	•	ര	0936	6/22/07	19_11	IL-19-AMZ192-0607 4135 NW St Helens CB-N	FO 070815
		Cr, Cu, H	Total Sol	SVOCs PAH-SIM PCBs TOC	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
		g, Pb, St	tals (Ag,						,	
		o, Ni, Zn)			low:	ority list be	<u>Y</u> ned by pri ∑.TS	be perfor Metals, TO	OUTFALL 19 CHAIN-OF-CUSTODY If insufficient sample volume, analyses should be performed by priority list below: PCBs, SVOCs, PAH-SIM, Metals, TOC, TS	If insufficient sample
ts	Field Comments	Metals	General	Ger						
	alyses	Requested Analyses			NT	SEDIMENT	Matrix:	I	7	File Number: 1020.001
							MP	LINE S/	LAND HARBOR IN	Project Name: PORTLAND HARBOR INLINE SAMP

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

6/22/2007 09:36 Sample Collected: **COMPLETE AND** Sample ID: FO070815 Sample Status: **VALIDATED**

Sample Received: 06/22/07

PORTLAND HARBOR INLINE SAMP Page 1 of 3 Proj./Company Name: Report Page:

IL-19-AMZ192-0607 Address/Location:

4135 NW ST HELENS RD - NORTH CB

AL05908 System ID: 19 11 1020.001 Sample Point Code: EID File #: **GRAB PORTHARI** Sample Type: LocCode:

SEDIMENT JJM Sample Matrix: Collected By:

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace levels of Aroclors 1242 and 1260 were detected (<10 ug/Kg each).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	49.0	% W/W	0.01	SM 2540 G	06/25/07
METALS					
ANTIMONY	56.7	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ARSENIC	3.92	mg/Kg dry wt	0.50	EPA 6020	06/27/07
CADMIUM	1.57	mg/Kg dry wt	0.10	EPA 6020	06/27/07
CHROMIUM	52.1	mg/Kg dry wt	0.50	EPA 6020	06/27/07
COPPER	60.9	mg/Kg dry wt	0.25	EPA 6020	06/27/07
LEAD	111	mg/Kg dry wt	0.10	EPA 6020	06/27/07
MERCURY	0.156	mg/Kg dry wt	0.010	EPA 6020	06/27/07
NICKEL	25.1	mg/Kg dry wt	0.25	EPA 6020	06/27/07
SILVER	0.22	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ZINC	438	mg/Kg dry wt	0.50	EPA 6020	06/27/07
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/25/07
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1242	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	76400	mg/Kg dry wt	100	EPA 9060 MOD	07/05/07
POLYNUCLEAR AROMATICS - CAS					
2-Methylnaphthalene	80	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Acenaphthene	12	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Acenaphthylene	5.8	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Anthracene	29	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Benzo(a)anthracene	100	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

A .. . I.

LABORATORY ANALYSIS REPORT

6/22/2007 09:36 Sample Collected: **COMPLETE AND** Sample ID: FO070815 Sample Status: **VALIDATED**

Sample Received: 06/22/07

System ID:

Page 2 of 3

AL05908

PORTLAND HARBOR INLINE SAMP Proj./Company Name: Report Page:

IL-19-AMZ192-0607 Address/Location:

4135 NW ST HELENS RD - NORTH CB

19 11 1020.001 Sample Point Code: EID File #: **GRAB PORTHARI** Sample Type: LocCode: **SEDIMENT** JJM Sample Matrix: Collected By:

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace levels of Aroclors 1242 and 1260 were detected (<10 ug/Kg each).

Test Parameter	Result	Units	MRL	Method	Analysis Date
Benzo(a)pyrene	95	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Benzo(b)fluoranthene	130	μg/Kg dry wt	2.9	EPA 8270M-SIV	07/05/07
Benzo(ghi)perylene	110	μg/Kg dry wt	2.9	EPA 8270M-SIV	07/05/07
Benzo(k)fluoranthene	39	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Chrysene	130	μg/Kg dry wt	2.9	EPA 8270M-SIV	07/05/07
Dibenzo(a,h)anthracene	22	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Dibenzofuran	8.1	μg/Kg dry wt	2.9	EPA 8270M-SIV	07/05/07
Fluoranthene	290	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Fluorene	12	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Indeno(1,2,3-cd)pyrene	98	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Naphthalene	87	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Phenanthrene	160	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
Pyrene	280	μg/Kg dry wt	2.9	EPA 8270M-SIN	07/05/07
SEMI-VOLATILE ORGANICS - CAS					
1,2,4-Trichlorobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
1,2-Dichlorobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
1,3-Dichlorobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
1,4-Dichlorobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2,4,5-Trichlorophenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2,4,6-Trichlorophenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2,4-Dichlorophenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2,4-Dimethylphenol	<580	μg/Kg dry wt	580	EPA 8270 LV	07/05/07
2,4-Dinitrophenol	<2300	μg/Kg dry wt	2300	EPA 8270 LV	07/05/07
2,4-Dinitrotoluene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2,6-Dinitrotoluene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2-Chloronaphthalene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2-Chlorophenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2-Methylphenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
2-Nitroaniline	<230	μg/Kg dry wt	230	EPA 8270 LV	07/05/07
2-Nitrophenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
3,3'-Dichlorobenzidine	<1200	μg/Kg dry wt	1200	EPA 8270 LV	07/05/07
3-Nitroaniline	<230	μg/Kg dry wt	230	EPA 8270 LV	07/05/07
4,6-Dinitro-2-methylphenol	<1200	μg/Kg dry wt	1200	EPA 8270 LV	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

VALIDATED

Analysis

LABORATORY ANALYSIS REPORT

6/22/2007 09:36 Sample Collected: **COMPLETE AND** Sample ID: FO070815 Sample Status:

> Sample Received: 06/22/07

> > Page 3 of 3

PORTLAND HARBOR INLINE SAMP Proj./Company Name: Report Page:

IL-19-AMZ192-0607 Address/Location: 4135 NW ST HELENS RD - NORTH CB

AL05908 System ID: 19 11 1020.001 EID File #: **GRAB PORTHARI** LocCode:

SEDIMENT JJM Sample Matrix: Collected By:

Comments:

Sample Type:

Sample Point Code:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace levels of Aroclors 1242 and 1260 were detected (<10 ug/Kg each).

Test Parameter	Result	Units	MRL	Method	Date
4-Bromophenylphenyl ether	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
4-Chloro-3-methylphenol	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
4-Chloroaniline	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
4-Chlorophenylphenyl ether	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
4-Methylphenol	1400	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
4-Nitroaniline	<230	μg/Kg dry wt	230	EPA 8270 LV	07/05/07
4-Nitrophenol	<1200	μg/Kg dry wt	1200	EPA 8270 LV	07/05/07
Benzoic acid	<2300	μg/Kg dry wt	2300	EPA 8270 LV	07/05/07
Benzyl alcohol	230	μg/Kg dry wt	230	EPA 8270 LV	07/05/07
Bis(2-chloroethoxy) methane	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Bis(2-chloroethyl) ether	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Bis(2-chloroisopropyl) ether	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Bis(2-ethylhexyl) phthalate	2500	μg/Kg dry wt	1200	EPA 8270 LV	07/05/07
Butyl benzyl phthalate	3900	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Diethyl phthalate	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Dimethyl phthalate	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Di-n-butyl phthalate	250	μg/Kg dry wt	230	EPA 8270 LV	07/05/07
Di-n-octyl phthalate	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Hexachlorobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Hexachlorobutadiene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Hexachlorocyclopentadiene	<680	μg/Kg dry wt	680	EPA 8270 LV	07/05/07
Hexachloroethane	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Isophorone	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Nitrobenzene	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
N-Nitrosodi-n-propylamine	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
N-Nitrosodiphenylamine	<120	μg/Kg dry wt	120	EPA 8270 LV	07/05/07
Pentachlorophenol	<1200	μg/Kg dry wt	1200	EPA 8270 LV	07/05/07
Phenol	400	μg/Kg dry wt	350	EPA 8270 LV	07/05/07

End of Report for Sample ID: FO070815

Sample ID:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

6/22/2007 10:06 Sample Collected: **COMPLETE AND** Sample Status:

06/22/07 Sample Received:

System ID:

VALIDATED

AL05909

PORTLAND HARBOR INLINE SAMP Page 1 of 3 Proj./Company Name: Report Page:

IL-19-ANF207-0607 Address/Location:

FO070816

4135 NW ST HELENS RD - MIDDLE CB

EID File #: 19_12 1020.001 Sample Point Code: **GRAB PORTHARI** Sample Type: LocCode: **SEDIMENT** JJM Sample Matrix: Collected By:

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as

applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	68.8	% W/W	0.01	SM 2540 G	06/25/07
METALS					
ANTIMONY	3.84	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ARSENIC	5.44	mg/Kg dry wt	0.50	EPA 6020	06/27/07
CADMIUM	0.47	mg/Kg dry wt	0.10	EPA 6020	06/27/07
CHROMIUM	60.8	mg/Kg dry wt	0.50	EPA 6020	06/27/07
COPPER	114	mg/Kg dry wt	0.25	EPA 6020	06/27/07
LEAD	128	mg/Kg dry wt	0.10	EPA 6020	06/27/07
MERCURY	0.085	mg/Kg dry wt	0.010	EPA 6020	06/27/07
NICKEL	31.8	mg/Kg dry wt	0.25	EPA 6020	06/27/07
SILVER	1.79	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ZINC	307	mg/Kg dry wt	0.50	EPA 6020	06/27/07
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/25/07
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1242	21	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1260	11	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/25/07
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	64000	mg/Kg dry wt	100	EPA 9060 MOD	07/05/07
POLYNUCLEAR AROMATICS - CAS					
2-Methylnaphthalene	12	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Acenaphthene	15	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Acenaphthylene	10	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Anthracene	46	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Benzo(a)anthracene	180	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Benzo(a)pyrene	180	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Benzo(b)fluoranthene	250	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AL05909

6/22/2007 10:06 **COMPLETE AND** Sample Collected: Sample Status: Sample ID: FO070816 **VALIDATED**

06/22/07 Sample Received:

> Page 2 of 3 Report Page:

PORTLAND HARBOR INLINE SAMP Proj./Company Name:

IL-19-ANF207-0607 Address/Location:

4135 NW ST HELENS RD - MIDDLE CB System ID:

EID File #: 19_12 1020.001 Sample Point Code: **GRAB PORTHARI** Sample Type: LocCode: **SEDIMENT** JJM Sample Matrix: Collected By:

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Fest Parameter	Result	Units	MRL	Method	Analysis Date
	190		5.0	EPA 8270M-SIV	07/05/07
Benzo(ghi)perylene Benzo(k)fluoranthene	93	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Chrysene	280	μg/Kg dry wt μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Dibenzo(a,h)anthracene	36	μg/Kg dry wt μg/Kg dry wt	5.0	EPA 8270M-SIN	07/05/07
Dibenzofuran	13		2.5	EPA 8270M-SIN	07/05/07
Fluoranthene	500	μg/Kg dry wt	2.5 2.5	EPA 8270M-SIN	07/05/07
Fluorene	500 17	μg/Kg dry wt	2.5 2.5	EPA 8270M-SIN	07/05/07
		μg/Kg dry wt			
Indeno(1,2,3-cd)pyrene	200	μg/Kg dry wt	5.0	EPA 8270M-SIN	07/05/07
Naphthalene	24	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Phenanthrene	240	μg/Kg dry wt	2.5	EPA 8270M-SIN	07/05/07
Pyrene	390	μg/Kg dry wt	5.0	EPA 8270M-SIN	07/05/07
SEMI-VOLATILE ORGANICS - CAS					
1,2,4-Trichlorobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
1,2-Dichlorobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
1,3-Dichlorobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
1,4-Dichlorobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2,4,5-Trichlorophenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2,4,6-Trichlorophenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2,4-Dichlorophenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2,4-Dimethylphenol	<500	μg/Kg dry wt	500	EPA 8270 LV	07/05/07
2,4-Dinitrophenol	<2000	μg/Kg dry wt	2000	EPA 8270 LV	07/05/07
2,4-Dinitrotoluene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2,6-Dinitrotoluene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2-Chloronaphthalene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2-Chlorophenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2-Methylphenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
2-Nitroaniline	<200	μg/Kg dry wt	200	EPA 8270 LV	07/05/07
2-Nitrophenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
3.3'-Dichlorobenzidine	<1000	μg/Kg dry wt	1000	EPA 8270 LV	07/05/07
3-Nitroaniline	<200	μg/Kg dry wt	200	EPA 8270 LV	07/05/07
4,6-Dinitro-2-methylphenol	<1000	μg/Kg dry wt	1000	EPA 8270 LV	07/05/07
4-Bromophenylphenyl ether	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
4-Chloro-3-methylphenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
4-Chloroaniline	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
4-Chlorophenylphenyl ether	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

6/22/2007 10:06 Sample Collected: Sample Status: **COMPLETE AND** Sample ID: FO070816 **VALIDATED**

06/22/07 Sample Received:

PORTLAND HARBOR INLINE SAMP Page 3 of 3 Proj./Company Name: Report Page:

IL-19-ANF207-0607 Address/Location:

4135 NW ST HELENS RD - MIDDLE CB

AL05909 System ID: EID File #: 19 12 1020.001 Sample Point Code: **GRAB PORTHARI** Sample Type: LocCode: **SEDIMENT** JJM Sample Matrix: Collected By:

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
4-Methylphenol	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
4-Nitroaniline	<200	μg/Kg dry wt	200	EPA 8270 LV	07/05/07
4-Nitrophenol	<1000	μg/Kg dry wt	1000	EPA 8270 LV	07/05/07
Benzoic acid	<2000	μg/Kg dry wt	2000	EPA 8270 LV	07/05/07
Benzyl alcohol	<200	μg/Kg dry wt	200	EPA 8270 LV	07/05/07
Bis(2-chloroethoxy) methane	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Bis(2-chloroethyl) ether	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Bis(2-chloroisopropyl) ether	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Bis(2-ethylhexyl) phthalate	2100	μg/Kg dry wt	1000	EPA 8270 LV	07/05/07
Butyl benzyl phthalate	1100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Diethyl phthalate	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Dimethyl phthalate	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Di-n-butyl phthalate	<200	μg/Kg dry wt	200	EPA 8270 LV	07/05/07
Di-n-octyl phthalate	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Hexachlorobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Hexachlorobutadiene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Hexachlorocyclopentadiene	<500	μg/Kg dry wt	500	EPA 8270 LV	07/05/07
Hexachloroethane	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Isophorone	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Nitrobenzene	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
N-Nitrosodi-n-propylamine	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
N-Nitrosodiphenylamine	<100	μg/Kg dry wt	100	EPA 8270 LV	07/05/07
Pentachlorophenol	<1000	μg/Kg dry wt	1000	EPA 8270 LV	07/05/07
Phenol	<300	μg/Kg dry wt	300	EPA 8270 LV	07/05/07

End of Report for Sample ID: FO070816

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

VALIDATED

AL05910

LABORATORY ANALYSIS REPORT

6/22/2007 10:58 Sample Collected: **COMPLETE AND** Sample ID: FO070817 Sample Status:

> Sample Received: 06/22/07

PORTLAND HARBOR INLINE SAMP Page 1 of 3 Proj./Company Name: Report Page:

IL-19-AAT525-0607 Address/Location:

4135 NW ST HELENS RD - SOUTH CB

System ID: 19 13 1020.001 Sample Point Code: EID File #: **GRAB PORTHARI** Sample Type: LocCode:

SEDIMENT JJM Sample Matrix: Collected By:

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace level of Aroclor 1242 was detected (<15 ug/Kg).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	34.6	% W/W	0.01	SM 2540 G	06/25/07
METALS					
ANTIMONY	3.68	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ARSENIC	3.95	mg/Kg dry wt	0.50	EPA 6020	06/27/07
CADMIUM	0.72	mg/Kg dry wt	0.10	EPA 6020	06/27/07
CHROMIUM	71.6	mg/Kg dry wt	0.50	EPA 6020	06/27/07
COPPER	158	mg/Kg dry wt	0.25	EPA 6020	06/27/07
LEAD	140	mg/Kg dry wt	0.10	EPA 6020	06/27/07
MERCURY	0.169	mg/Kg dry wt	0.010	EPA 6020	06/27/07
NICKEL	31.9	mg/Kg dry wt	0.25	EPA 6020	06/27/07
SILVER	0.80	mg/Kg dry wt	0.10	EPA 6020	06/27/07
ZINC	458	mg/Kg dry wt	0.50	EPA 6020	06/27/07
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1221	<30	μg/Kg dry wt	30	EPA 8082	06/25/07
Aroclor 1232	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1242	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1248	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1254	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1260	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1262	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
Aroclor 1268	<15	μg/Kg dry wt	15	EPA 8082	06/25/07
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	54200	mg/Kg dry wt	100	EPA 9060 MOD	07/05/07
POLYNUCLEAR AROMATICS - CAS					
2-Methylnaphthalene	9.9	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Acenaphthene	9.1	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Acenaphthylene	4.4	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Anthracene	30	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Benzo(a)anthracene	91	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AL05910

LABORATORY ANALYSIS REPORT

6/22/2007 10:58 Sample Collected: **COMPLETE AND** Sample ID: FO070817 Sample Status: **VALIDATED**

Sample Received: 06/22/07

PORTLAND HARBOR INLINE SAMP Page 2 of 3 Proj./Company Name: Report Page:

IL-19-AAT525-0607 Address/Location:

4135 NW ST HELENS RD - SOUTH CB System ID:

19 13 1020.001 Sample Point Code: EID File #: **GRAB PORTHARI** Sample Type: LocCode: **SEDIMENT** JJM Sample Matrix: Collected By:

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace level of Aroclor 1242 was detected (<15 ug/Kg).

Fest Parameter	Result	Units	MRL	Method	Analysis Date
Benzo(a)pyrene	92	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Benzo(b)fluoranthene	130	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Benzo(ghi)perylene	110	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Benzo(k)fluoranthene	37	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Chrysene	130	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Dibenzo(a,h)anthracene	24	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Dibenzofuran	8.2	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Fluoranthene	320	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Fluorene	12	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Indeno(1,2,3-cd)pyrene	100	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Naphthalene	17	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Phenanthrene	160	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
Pyrene	230	μg/Kg dry wt	3.1	EPA 8270M-SIN	07/05/07
SEMI-VOLATILE ORGANICS - CAS					
1,2,4-Trichlorobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
1,2-Dichlorobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
1,3-Dichlorobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
1,4-Dichlorobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2,4,5-Trichlorophenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2,4,6-Trichlorophenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2,4-Dichlorophenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2,4-Dimethylphenol	<620	μg/Kg dry wt	620	EPA 8270 LV	07/05/07
2,4-Dinitrophenol	<2500	μg/Kg dry wt	2500	EPA 8270 LV	07/05/07
2,4-Dinitrotoluene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2,6-Dinitrotoluene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2-Chloronaphthalene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2-Chlorophenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2-Methylphenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
2-Nitroaniline	<250	μg/Kg dry wt	250	EPA 8270 LV	07/05/07
2-Nitrophenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
3,3'-Dichlorobenzidine	<1300	μg/Kg dry wt	1300	EPA 8270 LV	07/05/07
3-Nitroaniline	<250	μg/Kg dry wt	250	EPA 8270 LV	07/05/07
4,6-Dinitro-2-methylphenol	<1300	μg/Kg dry wt	1300	EPA 8270 LV	07/05/07

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

AL05910

System ID:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 3 of 3

Address/Location: IL-19-AAT525-0607

4135 NW ST HELENS RD - SOUTH CB

 Sample Point Code:
 19_13
 EID File #:
 1020.001

 Sample Type:
 GRAB
 LocCode:
 PORTHARI

 Sample Matrix:
 SEDIMENT
 Collected By:
 JJM

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Low recoveries for some Semivolatile Organic surrogates in both this sample and the Method Blank prompted re-extraction of the entire batch. Results of the re-extractions were comparable to the original data, and the original results are reported. LAB: Trace level of Aroclor 1242 was detected (<15 ug/Kg).

Test Parameter	Result	Units	MRL	Method	Analysis Date
4-Bromophenylphenyl ether	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
4-Chloro-3-methylphenol	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
4-Chloroaniline	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
4-Chlorophenylphenyl ether	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
4-Methylphenol	910	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
4-Nitroaniline	<250	μg/Kg dry wt	250	EPA 8270 LV	07/05/07
4-Nitrophenol	<1300	μg/Kg dry wt	1300	EPA 8270 LV	07/05/07
Benzoic acid	<2500	μg/Kg dry wt	2500	EPA 8270 LV	07/05/07
Benzyl alcohol	330	μg/Kg dry wt	250	EPA 8270 LV	07/05/07
Bis(2-chloroethoxy) methane	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Bis(2-chloroethyl) ether	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Bis(2-chloroisopropyl) ether	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Bis(2-ethylhexyl) phthalate	3800	μg/Kg dry wt	1300	EPA 8270 LV	07/05/07
Butyl benzyl phthalate	4600	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Diethyl phthalate	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Dimethyl phthalate	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Di-n-butyl phthalate	410	μg/Kg dry wt	250	EPA 8270 LV	07/05/07
Di-n-octyl phthalate	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Hexachlorobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Hexachlorobutadiene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Hexachlorocyclopentadiene	<730	μg/Kg dry wt	730	EPA 8270 LV	07/05/07
Hexachloroethane	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Isophorone	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Nitrobenzene	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
N-Nitrosodi-n-propylamine	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
N-Nitrosodiphenylamine	<130	μg/Kg dry wt	130	EPA 8270 LV	07/05/07
Pentachlorophenol	<1300	μg/Kg dry wt	1300	EPA 8270 LV	07/05/07
Phenol	<380	μg/Kg dry wt	380	EPA 8270 LV	07/05/07

End of Report for Sample ID: FO070817

August 13, 2007

Analytical Report for Service Request No: K0705445

Jennifer Shackelford Portland, City of 1120 SW Fifth Avenue # 600 Portland, OR 97204

RE: Portland Harbor Inline Samp

Dear Jennifer:

Enclosed are the results of the sample(s) submitted to our laboratory on June 25, 2007. For your reference, these analyses have been assigned our service request number K0705445.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at LVo@kelso.caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Loan Vo, Ph.D.

Project Chemist

LV/lb

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inli

Sample Matrix:

Sludge, solid

Total Solids

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Service Request: K0705445

Units: PERCENT

Basis: Wet

Result Date Date Date Analyzed Notes Collected Received Sample Name Lab Code Result 06/26/2007 43.2 FO 070815 K0705445-001 06/22/2007 06/25/2007 68.4 K0705445-002 06/26/2007 FO 070816 06/22/2007 06/25/2007 K0705445-003 06/22/2007 06/25/2007 06/26/2007 40.1 FO 070817

> 00005 Page 1 of 1

Printed: 06/29/2007 10:03 u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0707110

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inli

Sample Matrix:

Sludge, solid

Service Request: K0705445

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Date Analyzed: 06/26/2007

Duplicate Sample Summary Total Solids

Prep Method:

Analysis Method:

NONE

160.3M

Units: PERCENT

Basis: Wet

FO 070815

Test Notes:

Relative Duplicate Sample Percent

Average

Sample Name

Lab Code K0705445-001

Result 43.2

Sample

43.1 43.2

Result

Result Notes

<1

Difference

00006

Printed: 06/29/2007 10:03 $u:\Stealth\Crystal.rpt\Solids.rpt\\$

SuperSet Reference: W0707110

Page 1 of 1

Analytical Results

Client: Portland, City of

Project: Portland Harbor Inline Samp

Sample Matrix: Sediment

Service Request: K0705445

Date Collected: 06/22/2007

Date Received: 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: FO 070815 K0705445-001

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Bis(2-chloroethyl) Ether	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Phenol	400	D	350	10	07/05/07	07/17/07	KWG0707428	
2-Chlorophenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
1,3-Dichlorobenzene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
1,4-Dichlorobenzene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
1,2-Dichlorobenzene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Benzyl Alcohol	230		230	10	07/05/07	07/17/07	KWG0707428	
Bis(2-chloroisopropyl) Ether	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2-Methylphenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Hexachloroethane	ND		120	10	07/05/07	07/17/07	KWG0707428	
N-Nitrosodi-n-propylamine	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Methylphenol†	1400	D	120	10	07/05/07	07/17/07	KWG0707428	
Nitrobenzene	ND		120	10	07/05/07	07/17/07	KWG0707428	
Isophorone	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2-Nitrophenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2,4-Dimethylphenol	ND	U	580	10	07/05/07	07/17/07	KWG0707428	
Bis(2-chloroethoxy)methane	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2,4-Dichlorophenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Benzoic Acid	ND	U	2300	10	07/05/07	07/17/07	KWG0707428	
1,2,4-Trichlorobenzene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Chloroaniline	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Hexachlorobutadiene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Chloro-3-methylphenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Hexachlorocyclopentadiene	ND	U	680	10	07/05/07	07/17/07	KWG0707428	
2,4,6-Trichlorophenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2,4,5-Trichlorophenol	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2-Chloronaphthalene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2-Nitroaniline	ND		230	10	07/05/07	07/17/07	KWG0707428	
Dimethyl Phthalate	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
2,6-Dinitrotoluene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
3-Nitroaniline	ND	U	230	10	07/05/07	07/17/07	KWG0707428	
2,4-Dinitrophenol	ND	U	2300	10	07/05/07	07/17/07	KWG0707428	
4-Nitrophenol	ND	U	1200	10	07/05/07	07/17/07	KWG0707428	

Comments:

000017

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

FO 070815

Lab Code:

K0705445-001

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
2,4-Dinitrotoluene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Chlorophenyl Phenyl Ether	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Diethyl Phthalate	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Nitroaniline	ND	U	230	10	07/05/07	07/17/07	KWG0707428	
2-Methyl-4,6-dinitrophenol	ND	U	1200	10	07/05/07	07/17/07	KWG0707428	
N-Nitrosodiphenylamine	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
4-Bromophenyl Phenyl Ether	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Hexachlorobenzene	ND	U	120	10	07/05/07	07/17/07	KWG0707428	
Pentachlorophenol	ND	U	1200	10	07/05/07	07/17/07	KWG0707428	
Di-n-butyl Phthalate	250	BD	230	10	07/05/07	07/17/07	KWG0707428	
Butyl Benzyl Phthalate	3900	D	120	10	07/05/07	07/17/07	KWG0707428	
3,3'-Dichlorobenzidine	ND	U	1200	10	07/05/07	07/17/07	KWG0707428	
Bis(2-ethylhexyl) Phthalate	2500	D	1200	10	07/05/07	07/17/07	KWG0707428	
Di-n-octyl Phthalate	ND	U	120	10	07/05/07	07/17/07	KWG0707428	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed	Note	
2-Fluorophenol	11	10-86	07/17/07	Acceptable	
Phenol-d6	15	17-101	07/17/07	Outside Control Limits	
Nitrobenzene-d5	9	10-108	07/17/07	Outside Control Limits	
2-Fluorobiphenyl	13	10-108	07/17/07	Acceptable	
2,4,6-Tribromophenol	51	21-110	07/17/07	Acceptable	
Terphenyl-d14	76	26-122	07/17/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00008

Page 2 of 2

Printed: 08/09/2007 12:41:03

Form 1A - Organic

Merged

SuperSet Reference:

RR75187

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

FO 070816

Lab Code:

K0705445-002

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND		100	10	07/05/07	07/12/07	KWG0707428	
Phenol	ND		300	10	07/05/07	07/12/07	KWG0707428	
2-Chlorophenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
1,3-Dichlorobenzene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
1,4-Dichlorobenzene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
1,2-Dichlorobenzene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Benzyl Alcohol	ND	U	200	10	07/05/07	07/12/07	KWG0707428	
Bis(2-chloroisopropyl) Ether	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2-Methylphenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Hexachloroethane	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
N-Nitrosodi-n-propylamine	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
4-Methylphenol†	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Nitrobenzene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Isophorone	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2-Nitrophenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2,4-Dimethylphenol	ND	U	500	10	07/05/07	07/12/07	KWG0707428	
Bis(2-chloroethoxy)methane	ND		100	10	07/05/07	07/12/07	KWG0707428	
2,4-Dichlorophenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Benzoic Acid	ND		2000	10	07/05/07	07/12/07	KWG0707428	
1,2,4-Trichlorobenzene	ND		100	10	07/05/07	07/12/07	KWG0707428	
4-Chloroaniline	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Hexachlorobutadiene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
4-Chloro-3-methylphenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Hexachlorocyclopentadiene	ND	U	500	10	07/05/07	07/12/07	KWG0707428	
2,4,6-Trichlorophenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2,4,5-Trichlorophenol	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2-Chloronaphthalene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2-Nitroaniline	ND	U	200	10	07/05/07	07/12/07	KWG0707428	
Dimethyl Phthalate	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
2,6-Dinitrotoluene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
3-Nitroaniline	ND	U	200	10	07/05/07	07/12/07	KWG0707428	
2,4-Dinitrophenol	ND	U	2000	10	07/05/07	07/12/07	KWG0707428	
4-Nitrophenol	ND	U	1000	10	07/05/07	07/12/07	KWG0707428	***************************************

Comments:

Printed: 08/09/2007 12:41:05

Merged

Form 1A - Organic

00009 Page 1 of 2

SuperSet Reference: RR75187

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

FO 070816

Lab Code:

K0705445-002

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg
Basis: Dry

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2,4-Dinitrotoluene	ND		100	10	07/05/07	07/12/07	KWG0707428	
4-Chlorophenyl Phenyl Ether	ND	_	100	10	07/05/07	07/12/07	KWG0707428	
Diethyl Phthalate	ND	_	100	10	07/05/07	07/12/07	KWG0707428	
4-Nitroaniline	ND	U	200	10	07/05/07	07/12/07	KWG0707428	
2-Methyl-4,6-dinitrophenol	ND	U	1000	10	07/05/07	07/12/07	KWG0707428	
N-Nitrosodiphenylamine	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
4-Bromophenyl Phenyl Ether	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Hexachlorobenzene	ND	U	100	10	07/05/07	07/12/07	KWG0707428	
Pentachlorophenol	ND	U	1000	10	07/05/07	07/12/07	KWG0707428	
Di-n-butyl Phthalate	ND	U	200	10	07/05/07	07/12/07	KWG0707428	
Butyl Benzyl Phthalate	1100	D	100	10	07/05/07	07/12/07	KWG0707428	
3,3'-Dichlorobenzidine	ND	U	1000	10	07/05/07	07/12/07	KWG0707428	
Bis(2-ethylhexyl) Phthalate	2100	D	1000	10	07/05/07	07/12/07	KWG0707428	
Di-n-octyl Phthalate	ND	U	100	10	07/05/07	07/12/07	KWG0707428	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed	Note	
2-Fluorophenol	36	10-86	07/12/07	Acceptable	
Phenol-d6	52	17-101	07/12/07	Acceptable	
Nitrobenzene-d5	37	10-108	07/12/07	Acceptable	
2-Fluorobiphenyl	54	10-108	07/12/07	Acceptable	
2,4,6-Tribromophenol	65	21-110	07/12/07	Acceptable	
Terphenyl-d14	63	26-122	07/12/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Merged

Comments:

0 0.0 1 0 Page 2 of 2

Printed: 08/09/2007 12:41:05

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007

Date Received: 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

FO 070817

Lab Code:

K0705445-003

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyta Nama	Dagult	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result		130	10	07/05/07	07/17/07	KWG0707428	Note
Bis(2-chloroethyl) Ether	ND ND		380	10	07/05/07	07/17/07	KWG0707428 KWG0707428	
Phenol	ND ND		130	10	07/05/07	07/17/07	KWG0707428 KWG0707428	
2-Chlorophenol								
1,3-Dichlorobenzene	ND		130	10	07/05/07	07/17/07	KWG0707428	
1,4-Dichlorobenzene	ND		130	10	07/05/07	07/17/07	KWG0707428	
1,2-Dichlorobenzene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Benzyl Alcohol	330		250	10	07/05/07	07/17/07	KWG0707428	
Bis(2-chloroisopropyl) Ether	ND		130	10	07/05/07	07/17/07	KWG0707428	
2-Methylphenol	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Hexachloroethane	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
N-Nitrosodi-n-propylamine	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
4-Methylphenol†	910	D	130	10	07/05/07	07/17/07	KWG0707428	
Nitrobenzene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Isophorone	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2-Nitrophenol	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2,4-Dimethylphenol	ND	U	620	10	07/05/07	07/17/07	KWG0707428	
Bis(2-chloroethoxy)methane	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2,4-Dichlorophenol	ND	U	130	10	07/05/07	07/17/07	KWG0707428	Phone State of Company and Company
Benzoic Acid		U	2500	10	07/05/07	07/17/07	KWG0707428	
1,2,4-Trichlorobenzene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
4-Chloroaniline	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Hexachlorobutadiene	ND		130	10	07/05/07	07/17/07	KWG0707428	
4-Chloro-3-methylphenol	ND		130	10	07/05/07	07/17/07	KWG0707428	
Hexachlorocyclopentadiene	ND	U	730	10	07/05/07	07/17/07	KWG0707428	
2,4,6-Trichlorophenol	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2,4,5-Trichlorophenol	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2-Chloronaphthalene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
2-Nitroaniline		U	250	10	07/05/07	07/17/07	KWG0707428	
Dimethyl Phthalate		U	130	10	07/05/07	07/17/07	KWG0707428	
2.6-Dinitrotoluene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
3-Nitroaniline .	ND		250	10	07/05/07	07/17/07	KWG0707428	
2,4-Dinitrophenol		U	2500	10	07/05/07	07/17/07	KWG0707428	
4-Nitrophenol	ND	U	1300	10	07/05/07	07/17/07	KWG0707428	

Comments:

Page 1 of 2

Form 1A - Organic

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

FO 070817

Lab Code:

K0705445-003

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyta Nama	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name								
2,4-Dinitrotoluene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
4-Chlorophenyl Phenyl Ether	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Diethyl Phthalate	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
4-Nitroaniline	ND	U	250	10	07/05/07	07/17/07	KWG0707428	
2-Methyl-4,6-dinitrophenol	ND	U	1300	10	07/05/07	07/17/07	KWG0707428	
N-Nitrosodiphenylamine	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
4-Bromophenyl Phenyl Ether	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Hexachlorobenzene	ND	U	130	10	07/05/07	07/17/07	KWG0707428	
Pentachlorophenol	ND	U	1300	10	07/05/07	07/17/07	KWG0707428	
Di-n-butyl Phthalate	410	D	250	10	07/05/07	07/17/07	KWG0707428	
Butyl Benzyl Phthalate	4600	D	130	10	07/05/07	07/17/07	KWG0707428	
3,3'-Dichlorobenzidine	ND	U	1300	10	07/05/07	07/17/07	KWG0707428	
Bis(2-ethylhexyl) Phthalate	3800	D	1300	10	07/05/07	07/17/07	KWG0707428	
Di-n-octyl Phthalate	ND	U	130	10	07/05/07	07/17/07	KWG0707428	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed	Note	
2-Fluorophenol	9	10-86	07/17/07	Outside Control Limits	
Phenol-d6	14	17-101	07/17/07	Outside Control Limits	
Nitrobenzene-d5	9	10-108	07/17/07	Outside Control Limits	
2-Fluorobiphenyl	11	10-108	07/17/07	Acceptable	
2,4,6-Tribromophenol	52	21-110	07/17/07	Acceptable	
Terphenyl-d14	74	26-122	07/17/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 08/09/2007 12:41:06

Form 1A - Organic

Page 2 of 2

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0707428-5

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Name					Dilution	Date	Date	Extraction	
Phenol	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.3-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.4-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.4-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.2-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.2-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.2-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 1.3-Dichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428	Bis(2-chloroethyl) Ether	ND	U	5.0	1	07/05/07	07/12/07		
1,3-Dichlorobenzene	Phenol	ND	U	15	1	07/05/07	07/12/07		
1,4-Dichlorobenzene	2-Chlorophenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
1.2-Dichlorobenzene	1,3-Dichlorobenzene	ND	U	5.0	1	07/05/07	07/12/07		
Benzyl Alcohol	1,4-Dichlorobenzene	ND	U	5.0	1	07/05/07	07/12/07		
Bis(2-chloroisopropyl) Ether ND U 5.0 1 07/05/07 07/12/07 KWG0707428	1,2-Dichlorobenzene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2-Methylphenol	Benzyl Alcohol	ND	U	10	1	07/05/07	07/12/07		
Hexachloroethane	Bis(2-chloroisopropyl) Ether	ND	U	5.0	1	07/05/07	07/12/07		
N-Nitrosodi-n-propylamine	2-Methylphenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
4-Methylphenol† ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Nitrobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Isophorone ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitrophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4-Dimethylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4-Dichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4Chloroaliline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0	Hexachloroethane	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Nitrobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428	N-Nitrosodi-n-propylamine	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Isophorone	4-Methylphenol†	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2-Nitrophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4-Dimethylphenol ND U 25 1 07/05/07 07/12/07 KWG0707428 Bis(2-chloroethoxy)methane ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4-Dichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Benzoic Acid ND U 100 1 07/05/07 07/12/07 KWG0707428 1,2,4-Trichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorobutadiene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 0 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 10 1 0 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 10 1 0 1 07/05/07 07/12/07 KWG0707428	Nitrobenzene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2,4-Dimethylphenol ND U 25 1 07/05/07 07/12/07 KWG0707428 Bis(2-chloroethoxy)methane ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4-Dichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Benzoic Acid ND U 100 1 07/05/07 07/12/07 KWG0707428 1,2,4-Trichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0 1	Isophorone	ND	U	5.0	1	07/05/07	07/12/07		
Bis(2-chloroethoxy)methane	2-Nitrophenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2,4-Dichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Benzoic Acid ND U 100 1 07/05/07 07/12/07 KWG0707428 1,2,4-Trichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorobutadiene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorocyclopentadiene ND U 29 1 07/05/07 07/12/07 KWG0707428 2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U <td>2,4-Dimethylphenol</td> <td>ND</td> <td>U</td> <td>25</td> <td>1</td> <td>07/05/07</td> <td>07/12/07</td> <td></td> <td></td>	2,4-Dimethylphenol	ND	U	25	1	07/05/07	07/12/07		
Benzoic Acid ND U 100	Bis(2-chloroethoxy)methane	ND	U	5.0	1	07/05/07	07/12/07		
1,2,4-Trichlorobenzene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorobutadiene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorocyclopentadiene ND U 29 1 07/05/07 07/12/07 KWG0707428 2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U<	2,4-Dichlorophenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
4-Chloroaniline ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorobutadiene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 4-Chloro-3-methylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorocyclopentadiene ND U 29 1 07/05/07 07/12/07 KWG0707428 2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U	Benzoic Acid	ND	U	100	1	07/05/07	07/12/07		
Hexachlorobutadiene	1,2,4-Trichlorobenzene	ND	U	5.0	1	07/05/07	07/12/07		
4-Chloro-3-methylphenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 Hexachlorocyclopentadiene ND U 29 1 07/05/07 07/12/07 KWG0707428 2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	4-Chloroaniline	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Hexachlorocyclopentadiene ND U 29 1 07/05/07 07/12/07 KWG0707428 2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	Hexachlorobutadiene	ND	U	5.0	1	07/05/07	07/12/07		
2,4,6-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	4-Chloro-3-methylphenol	ND	U	5.0	1	07/05/07	07/12/07		
2,4,5-Trichlorophenol ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	Hexachlorocyclopentadiene	ND	U	29	1	07/05/07	07/12/07	KWG0707428	
2-Chloronaphthalene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	2,4,6-Trichlorophenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	2,4,5-Trichlorophenol	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Dimethyl Phthalate ND U 5.0 1 07/05/07 07/12/07 KWG0707428 2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	2-Chloronaphthalene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2,6-Dinitrotoluene ND U 5.0 1 07/05/07 07/12/07 KWG0707428 3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	2-Nitroaniline	ND	U	10	1	07/05/07	07/12/07		
3-Nitroaniline ND U 10 1 07/05/07 07/12/07 KWG0707428 2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	Dimethyl Phthalate	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
2,4-Dinitrophenol ND U 100 1 07/05/07 07/12/07 KWG0707428	2,6-Dinitrotoluene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
1120	3-Nitroaniline	ND	U	10	1	07/05/07	07/12/07		
	2,4-Dinitrophenol	ND	U	100	1	07/05/07	07/12/07		
	•	ND	U	50	1	07/05/07	07/12/07	KWG0707428	

Comments:

Printed: 08/09/2007 12:41:08
u:\Stealth\Crystal.rpt\Formlm.rpt Merged

Form 1A - Organic

00013 Page 1 of

SuperSet Reference: RR75187

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: NA **Date Received:** NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Lab Code:

Method Blank KWG0707428-5

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg
Basis: Dry

Level: Low

Analyta Nama	Dogult	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result			Factor				Note
2,4-Dinitrotoluene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
4-Chlorophenyl Phenyl Ether	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Diethyl Phthalate	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
4-Nitroaniline	ND	U	10	1	07/05/07	07/12/07	KWG0707428	
2-Methyl-4,6-dinitrophenol	ND	U	50	1	07/05/07	07/12/07	KWG0707428	
N-Nitrosodiphenylamine	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
4-Bromophenyl Phenyl Ether	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Hexachlorobenzene	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
Pentachlorophenol	ND	U	50	1	07/05/07	07/12/07	KWG0707428	
Di-n-butyl Phthalate	13		10	1	07/05/07	07/12/07	KWG0707428	
Butyl Benzyl Phthalate	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	
3,3'-Dichlorobenzidine	ND	U	50	1	07/05/07	07/12/07	KWG0707428	
Bis(2-ethylhexyl) Phthalate	ND	U	50	1	07/05/07	07/12/07	KWG0707428	
Di-n-octyl Phthalate	ND	U	5.0	1	07/05/07	07/12/07	KWG0707428	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Note
2-Fluorophenol	8	10-86	07/12/07	Outside Control Limits
Phenol-d6	19	17-101	07/12/07	Acceptable
Nitrobenzene-d5	3	10-108	07/12/07	Outside Control Limits
2-Fluorobiphenyl	8	10-108	07/12/07	Outside Control Limits
2,4,6-Tribromophenol	49	21-110	07/12/07	Acceptable
Terphenyl-d14	73	26-122	07/12/07	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00014

Printed: 08/09/2007 12:41:08 u:\Stealth\Crystal.rpt\Formlm.rpt

Form 1A - Organic

Page 2 of 2

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007

Date Received: 06/25/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

FO 070815

Lab Code:

K0705445-001

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270C SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	87	2.9	1	07/05/07	07/18/07	KWG0707426	
2-Methylnaphthalene	80	2.9	1	07/05/07	07/18/07	KWG0707426	
Acenaphthylene	5.8	2.9	1	07/05/07	07/18/07	KWG0707426	
Acenaphthene	12	2.9	1	07/05/07	07/18/07	KWG0707426	
Fluorene	12	2.9	1	07/05/07	07/18/07	KWG0707426	
Dibenzofuran	8.1	2.9	1	07/05/07	07/18/07	KWG0707426	_
Phenanthrene	160	2.9	1	07/05/07	07/18/07	KWG0707426	
Anthracene	29	2.9	1	07/05/07	07/18/07	KWG0707426	
Fluoranthene	290	2.9	1	07/05/07	07/18/07	KWG0707426	
Pyrene	280	2.9	1	07/05/07	07/18/07	KWG0707426	
Benzo(b)fluoranthene	130	2.9	1	07/05/07	07/18/07	KWG0707426	
Benzo(k)fluoranthene	39	2.9	1	07/05/07	07/18/07	KWG0707426	
Benz(a)anthracene	100	2.9	1	07/05/07	07/18/07	KWG0707426	
Chrysene	130	2.9	1	07/05/07	07/18/07	KWG0707426	
Benzo(a)pyrene	95	2.9	1	07/05/07	07/18/07	KWG0707426	
Indeno(1,2,3-cd)pyrene	98	2.9	1	07/05/07	07/18/07	KWG0707426	
Dibenz(a,h)anthracene	22	2.9	1	07/05/07	07/18/07	KWG0707426	
Benzo(g,h,i)perylene	110	2.9	1	07/05/07	07/18/07	KWG0707426	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	24	10-123	07/18/07	Acceptable
Fluoranthene-d10	71	10-136	07/18/07	Acceptable
Terphenyl-d14	66	32-123	07/18/07	Acceptable

Comments:

Merged

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007

Date Received: 06/25/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

FO 070816

Lab Code:

K0705445-002

Extraction Method:

EPA 3541

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

A waluta Nama	Popult O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q		Pactor				TVOLE
Naphthalene	24	2.5	1	07/05/07	07/16/07	KWG0707426	
2-Methylnaphthalene	12	2.5	1	07/05/07	07/16/07	KWG0707426	
Acenaphthylene	10	2.5	1	07/05/07	07/16/07	KWG0707426	
Acenaphthene	15	2.5	1	07/05/07	07/16/07	KWG0707426	
Fluorene	17	2.5	1	07/05/07	07/16/07	KWG0707426	
Dibenzofuran	13	2.5	1	07/05/07	07/16/07	KWG0707426	
Phenanthrene	240	2.5	1	07/05/07	07/16/07	KWG0707426	
Anthracene	46	2.5	1	07/05/07	07/16/07	KWG0707426	
Fluoranthene	500	2.5	1	07/05/07	07/16/07	KWG0707426	
Pyrene	390 D	5.0	2	07/05/07	07/18/07	KWG0707426	
Benzo(b)fluoranthene	250	2.5	1	07/05/07	07/16/07	KWG0707426	
Benzo(k)fluoranthene	93	2.5	1	07/05/07	07/16/07	KWG0707426	
Benz(a)anthracene	180	2.5	1	07/05/07	07/16/07	KWG0707426	
Chrysene	280	2.5	1	07/05/07	07/16/07	KWG0707426	
Benzo(a)pyrene	180	2.5	1	07/05/07	07/16/07	KWG0707426	
Indeno(1,2,3-cd)pyrene	200 D	5.0	2	07/05/07	07/18/07	KWG0707426	
Dibenz(a,h)anthracene	36 D	5.0	2	07/05/07	07/18/07	KWG0707426	
Benzo(g,h,i)perylene	190 D	5.0	2	07/05/07	07/18/07	KWG0707426	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	61	10-123	07/16/07	Acceptable	
Fluoranthene-d10	76	10-136	07/16/07	Acceptable	
Terphenyl-d14	66	32-123	07/16/07	Acceptable	

Comments:

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: 06/22/2007 **Date Received:** 06/25/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

FO 070817

Lab Code:

K0705445-003

Extraction Method:

EPA 3541

Units: ug/Kg
Basis: Dry

Level: Low

Analysis Method:

8270C SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	17	3.1	1	07/05/07	07/18/07	KWG0707426	
2-Methylnaphthalene	9.9	3.1	1	07/05/07	07/18/07	KWG0707426	
Acenaphthylene	4.4	3.1	1	07/05/07	07/18/07	KWG0707426	
Acenaphthene	9.1	3.1	1	07/05/07	07/18/07	KWG0707426	
Fluorene	12	3.1	1	07/05/07	07/18/07	KWG0707426	
Dibenzofuran	8.2	3.1	1	07/05/07	07/18/07	KWG0707426	
Phenanthrene	160	3.1	1	07/05/07	07/18/07	KWG0707426	
Anthracene	30	3.1	1	07/05/07	07/18/07	KWG0707426	
Fluoranthene	320	3.1	1	07/05/07	07/18/07	KWG0707426	
Pyrene	230	3.1	1	07/05/07	07/18/07	KWG0707426	
Benzo(b)fluoranthene	130	3.1	1	07/05/07	07/18/07	KWG0707426	
Benzo(k)fluoranthene	37	3.1	1	07/05/07	07/18/07	KWG0707426	
Benz(a)anthracene	91	3.1	1	07/05/07	07/18/07	KWG0707426	
Chrysene	130	3.1	1	07/05/07	07/18/07	KWG0707426	
Benzo(a)pyrene	92	3.1	1	07/05/07	07/18/07	KWG0707426	
Indeno(1,2,3-cd)pyrene	100	3.1	1	07/05/07	07/18/07	KWG0707426	
Dibenz(a,h)anthracene	24	3.1	1	07/05/07	07/18/07	KWG0707426	
Benzo(g,h,i)perylene	110	3.1	1	07/05/07	07/18/07	KWG0707426	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	28	10-123	07/18/07	Acceptable
Fluoranthene-d10	77	10-136	07/18/07	Acceptable
Terphenyl-d14	70	32-123	07/18/07	Acceptable

Comments:

Merged

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K0705445

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG0707426-5

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

DAN HELION MICHIGAN	LI 11 35 11
Analysis Method:	8270C SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
2-Methylnaphthalene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Acenaphthylene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Acenaphthene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Fluorene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Dibenzofuran	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Phenanthrene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Anthracene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Fluoranthene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Pyrene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Benzo(b)fluoranthene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Benzo(k)fluoranthene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Benz(a)anthracene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Chrysene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Benzo(a)pyrene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Indeno(1,2,3-cd)pyrene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Dibenz(a,h)anthracene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	
Benzo(g,h,i)perylene	ND U	1.3	1	07/05/07	07/18/07	KWG0707426	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	43	10-123	07/18/07	Acceptable
Fluoranthene-d10	75	10-136	07/18/07	Acceptable
Terphenyl-d14	86	32-123	07/18/07	Acceptable

Comments:

Merged

Client:

City of Portland

Project:

Porland Harbor Inline Sampling

Sample Matrix:

Sediment

Service Request No.: Date Received:

o.: K0705445

06/25/2007

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three sediment samples were received for analysis at Columbia Analytical Services on 06/25/2007. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded Di-n-octyl Phthalate in ICAL ID CAL6370. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 7.9%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

Method Blank Exceptions:

The Method Blank KWG0707428-5 contained low levels of Di-n-butyl Phthalate above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank are flagged as estimated.

Surrogate Exceptions:

The lower control criterion was exceeded for 2-Fluorophenol, Nitrobenzene-d5, and 2-Fluorophenyl in method blank KWG0707428-5. Since the problem indicates a potential negative bias in the Method Blank, all associated field samples containing target analytes were re-extracted past the recommended hold time and reanalyzed. The Method Blank met control criteria for the reanalysis. Note the results for the field samples were comparable for both determinations, which indicates the problem with the initial analysis was restricted to the Method Blank. Therefore, the results from the original analysis are reported. The data is flagged to indicate the problem.

The control criteria were exceeded for Phenol-d6, Nitrobenzsene-d5 in FO 070815. Since the problem may indicate a potential bias in the analytical batch, all associated field samples were re-extracted past the recommended hold time and reanalyzed. The surrogates met control criteria for the reanalysis. Note the results for the field samples were comparable for both determinations, which indicates the problem with the initial analysis was restricted to the surrogate recovery. Therefore, the results from the original analysis are reported. The data is flagged to indicate the problem.

			_			
Approved by	\mathcal{L}^{\prime}	Date	- 9	-13	-07	

The control criteria were exceeded for 2-Fluorophenol, Phenol-d6, and Nitrobenzsene-d5 in FO 070817. Since the problem may indicate a potential bias in the analytical batch, all associated field samples were re-extracted past the recommended hold time and reanalyzed. The surrogates met control criteria for the reanalysis. Note the results for the field samples were comparable for both determinations, which indicates the problem with the initial analysis was restricted to the surrogate recovery. Therefore, the results from the original analysis are reported. The data is flagged to indicate the problem.

Elevated Method Reporting Limits:

The reporting limit is elevated for all samples. The sample extracts were diluted prior to instrumental analysis due to relatively high levels of non-target background components. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

CHAIN OF CUSTODY Sediment and Tissue Chemistry

Keprs ofox

	TIE Firm	Printed Name		Firm	e	nnted Wame			Firm		Printed Name					Γ
Time	Pate Date	Signature		Bate/Time		gnature	~ (OÎ	Ф	W Sate/Time	F	rure		Porgean	Care Title	Servis C	ni. '
h 1/4/4/10	RECEIVED B	, Jan 1	00.00	BYS BY:	RELINQUISHED			9.58	5.07	RECEIVED BY:		Myss	85.60	6/15/67	Simplify Date of the State of t	.ul
											ort Date	Requested Report Date	Req			Τ
					***************************************										V. EDD	1
					uoona oromi						sults	Provide FAX Results	Prov	Report	IV. CLP Deliverable Report	
										evs)	working d	Standard (10-15 working days)	Stan	data)	(includes all raw data)	
											_48 hr.	< 	24 nr.	Report	III. Data Validation Report	
						AMENTS:	ONS/COM	SPECIAL INSTRUCTIONS/COMMENTS:	ECIAL IN		UIREME	TURNAROUND REQUIREMENTS	TURNAR	, MSD as	II. Report Dup., MS, MSD as required	1
										 					required	
			ם	Zn Pb Se Zn	Hg Ag Ni	Cr Pb	As Cd	Ag Ag	SMS Metals: CA Metals:				Bill To:	Method , as	I. Routine Report: Method Blank, Surrogate, as	I
	-					ed.	o be analyz	Circle which metals are to be analyzed:	rcle which r		INFORMATION		P.O. #	ENTS	REPORT REQUIREMENTS	
																T
																T
										-						Т
	-						1			-						Т
																T
						-										T
																T
		X		X						- -	580		1058	6/11/67	FO 070817	T
		X		X						3	520		1006	6/27/07	FO 070816	T
				\neg	\dashv					w	cen		2936	6/11/07	FO 070815	L
REMARK	\frac{2\pi}{\rm}		Volati,	$\leq M_0$	Pest/ PCB	Amn D To	Sulfi D To	TOC Gra	Met.	NUN	MATRIX	LAB I.D.	TIME	DATE	SAMPLE I.D.	T
_	*/Y .		es (o	η_0	cides	SEN Ponia	osize de etal (c	(AS	otal V	/BER					ren o didivo confi	9
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		J Di	S_e	(808	<i>y</i>	- PS	al Sc TM L	ist be	OF					SAMPI ER'S SIGNATI DE	2)
_	thak			Con GC/M alates	(m) (81)		SEP /	ile Sol Dlids 04129	CON;	_	02 97	PORTLAND, OR 97203	T Cr.	TUN AU	6543 N BURLENGTON	च वर
_	EPA ates		er ri ~	UPhe	Por	la.	M) ASTM	ids Lij	TAINE			OrV	or Pentinuo	CITY	COMPANY/ADDRESS	
	827C E218		Tetra	20-1	e _{Water}	D422 Pr Solub	01ds D422	oids	'RS		010	SMACKECFOR	in 54	NNSF	PROJECT MANAGER	0 0
02	2000		PSEP			/le	<u></u>	_	<u> </u>		SAMP	ていしまいな	- 1	NO HARBAR	PROJECT NUMBER	О
	COC #	 	PAGE	PΑ		-1068	FAX (360) 636-1068		360) 577-7;)8626 • (elso, WA s	th Ave. • k	1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 •		PROJECT NAME	-DI.

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC.	LOA	11

Received:	lient / Project: City	1 & PPX		•		_Service	Requ	est <i>K07</i>	5446	<u> </u>		
2. Samples were received in: (circle) Cooler Bax Envelope Other 3. Were custody seals on coolers? If present, were custody seals intact? Y N If present, were they signed and dated? Y Is shipper's air-bill filed? If not, record air-bill number: 5. Temperature of cooler(s) upon receipt (°C): Temperature Blank (°C): 6. If applicable, list Chain of Custody Numbers: 7. Were custody papers properly filled out (ink, signed, etc.)? 8. Packing material used. Inserts Bubble Wrap Gel Packs Wet Ice Steeves Other 9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles used for the tests indicated? 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received at the lab with the appropriate pH? Indicate in the table below. 16. Was C12/Res negative? 17. Sample ID on Bottle	le la A	Opened:_	le,	125/0	<u>/</u> By	/:	7	Sal				
If present, were custody seals intact? Y N If present, were they signed and dated? Y Is shipper's air-bill filed? If not, record air-bill number: Temperature of cooler(s) upon receipt ("C): Temperature Blank ("C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Peaching material used. Inserts Bubble Wrap Gel Packs Wet Ice Sleeves Other NA D Were all asmple labels complete (i.e analysis, preservation, etc.)? Were the correct types of bottles used for the tests indicated? Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below. Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Y Were VOA vails and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Y Y Were SI27Res negative? Sample ID on Bottle	1. Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Court 2. Samples were received in: (circle) Cooler Box Envelope Other									NA NA		
4. Is shipper's air-bill filed? If not, record air-bill number: Sample ID Bottle Type Dut of Head- Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC		100									v	
5. Temperature of cooler(s) upon receipt (*C): **Emperature Blank (*C): 6. If applicable, list Chain of Custody Numbers: 7. Were custody papers properly filled out (ink, signed, etc.)? 8. Packing material used. **Inserts** **Bubble Wrap** Gel Packs** Wet Lee** Sleeves** Other** 9. Did all bottles arrive in good condition (unbroken)? **Indicate in the table below.** 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sample labels and tags agree with custody papers? **Indicate in the table below** 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? **Indicate in the table below** 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? **Indicate in the table below** 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Sample ID on Bottle 19.	•					•						N
Temperature Blank (*C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Were custody papers properly filled out (ink, signed, etc.)? Packing material used. **Inserts** **Bubble Wrap** Gel Packs** Wer Ice** Sleeves** Other** NA	Is shipper's air-bill filed? If no	ot, record air-	bill number:_					W	.,	NA)	. Y	N
6. If applicable, list Chain of Custody Numbers: 7. Were custody papers properly filled out (ink, signed, etc.)? 8. Packing material used. Inserts Bubble Wrap Gel Packs Wet Ice Sleeves Other 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 12. Were all sample labels and tags agree with custody papers? Indicate in the table below 13. Were all of the preserved bottles used for the tests indicated? 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Packing material used. Inserts Bubble Wrap Gel Packs Wet Ice Sleeves Other 19. NA 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sortles preserved bottles received at the lab with the appropriate pH? Indicate in the table below. 10. Y 11. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 11. Y 12. Were VOA microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 18. Y 19. Y 19. Sample ID on Bottle 19. Samp	Temperature of cooler(s) upo	on receipt (°C	C):	Ma				, · · ·				
7. Were custody papers properly filled out (ink, signed, etc.)? 8. Packing material used. **Inserts** **Bubble Wrap** Gel Packs** Wet Ice** Sleeves** Other** 9. **Did all bottles arrive in good condition (unbroken)? **Indicate in the table below.** 10. Were all sample labels complete (i.e. analysis, preservation, etc.)? 21. Did all sample labels and tags agree with custody papers? **Indicate in the table below** 22. Were the correct types of bottles used for the tests indicated? 23. Were all of the preserved bottles received at the lab with the appropriate pH? **Indicate in the table below** 24. Were VOA vials and I631 Mercury bottles checked for absence of air bubbles? **Indicate in the table below** 25. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 26. Y 27. Sample ID on Bottle 28. Sample ID on Bottle 29. Sample ID on Bottle 30. Sample ID on Bottle 30. Sample ID on Bottle 30. Sample ID on Bottle 31. Sample ID on Bottle 32. Sample ID on Bottle 33. Were custody papers? **Indicate in the table below** 34. Y 35. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 36. Y 37. Y 38. Sample ID on Bottle 38. Sample ID on Bottle 39. Sample ID on Bottle 39. Sample ID on Bottle 30. Volume Reagent Lot Number 40. Number 40. Additional Notes, Discrepancies, & Resolutions:	Temperature Blank (°C):		M		<u>,</u>							_
8. Packing material used. **Inserts** **Bubble Wrap** Gel Packs** Wet Ice** Sleeves** Other** 9. Did all bottles arrive in good condition (unbroken)? **Indicate in the table below.** 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sample labels and tags agree with custody papers? **Indicate in the table below** 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? **Indicate in the table below.** 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? **Indicate in the table below.** 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Sample ID on Bottle 19. Sample ID on Bottle 20. Sample ID on Bottle 21. Sample ID on Bottle 22. Sample ID on Bottle 23. Sample ID on Bottle 24. Volume Reagent Lot Number 24. Number 25. Nample ID on Bottle 26. Sample ID on Bottle 27. Sample ID on Bottle 28. Sample ID on Bottle 29. Sample ID on Bottle	If applicable, list Chain of Cust	tody Numbers	s:						·			_
9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sample labels and tags agree with custody papers? Indicate in the table below 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below, 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Sample ID on Bottle 19. Sample ID on Bottle 19					cks	Wet Ice	SI	eeves Oth	er	NA	€) И
10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sample labels and tags agree with custody papers? Indicate in the table below 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below, 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below, 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Sample ID on Bottle 19. Reagent Lot Number 19. Additional Notes, Discrepancies, & Resolutions:		condition (u)	nbroken)?	Indicate	in the	table bel	ow.			NA	X	N
12. Were the correct types of bottles used for the tests indicated? NA Part 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below. 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle Sample ID on Bo	0. Were all sample labels complete (i.e analysis, preservation, etc.)?										8	N
13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below, 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on Bottle 18. Sample ID on Bottle 19. Sample ID on COC 20. Sample ID on Bottle 21. Sample ID on COC 22. Sample ID on Bottle 23. Sample ID on COC 24. Sample ID on COC 25. Sample ID on Bottle 26. Sample ID on COC 27. Sample ID on COC 28. Sample ID on COC 29.	1. Did all sample labels and tags agree with custody papers? Indicate in the table below											N
14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 16. Was C12/Res negative? 17. Sample ID on Bottle Sample ID on B	2. Were the correct types of bottles used for the tests indicated?									NA	\bigcirc	N
15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Y 16. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample I	3. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below,									XA	Y	_N
Sample ID on Bottle Sample ID on COC Additional Notes, Discrepancies, & Resolutions:	Were VOA vials and 1631 Me	rcury bottles	checked for a	bsence	of air b	oubbles?	Indica	te in the table	below.	MA	Y	N
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Sample ID on	15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection?									NA	Y	N
Sample ID Bottle Count Bottle Type Temp Space Broken Brok	. Was C12/Res negative?						,			(NA)	Y	N
Sample ID Bottle Count Bottle Type Temp Space Broken PH Reagent Additional Notes, Discrepancies, & Resolutions:	Sample ID on Bottle			Sample ID on Bottle Sample ID on Bottle					ample ID on COC			
Sample ID Count Bottle Type Temp space Broken pH Reagent added Number I												
Sample ID Count Bottle Type Temp space Broken pH Reagent added Number I												
Sample ID Count Bottle Type Temp space Broken pH Reagent added Number I												
Sample ID Count Bottle Type Temp space Broken pH Reagent added Number I Bottle Type Temp space Broken pH R						f					······································	-
Additional Notes, Discrepancies, & Resolutions:	Sample ID		Bottle Type			Broken	рН	Reagent				Initials
					ر	1.						
							•					
						<u></u>						
]					
00022	lditional Notes, Discrepancies	, & Resoluti	ions:									
00022												
										0.0	022)

APPENDIX C Basin 19 Upland Source Updates

Appendix C: Basin 19 Upland Source Updates

The Oregon Department of Environmental Quality (DEQ) maintains an Environmental Cleanup Site Information (ECSI) database. Information in the ECSI database for DEQ Cleanup Sites located in or near Basin 19 was reviewed during development of the Basin 19 conceptual site model, as described in the *Phase 1 Report for City of Portland Priority 1 Basins* (Phase 1 Report; GSI, 2006),¹ to identify potential sources and migration pathways. This appendix provides updated site summaries for DEQ Cleanup Sites in Basin 19, based on information from the ECSI database and from selected site-specific reports on file at DEQ and the City. ²

Upland Sites Located within Basin 19

Anderson Brothers (ECSI #970). Activities conducted at this site subsequent to the Phase 1 Report include site investigation and remediation activities in 2005 (including removal of petroleum-contaminated soil), catch basin sampling (March 2006), stormwater system mapping, cleanout and sampling (August 2006), and collection of stormwater samples (2006 - 2007). Site ownership changed in late 2007 and among the site improvements made by the new owner were installation of new asphalt surfacing, an additional catch basin, and a shallow "soakage trench" to capture roof drainage prior to discharge to the stormwater system. These activities are summarized in the site's Stormwater Source Control Evaluation Report (Wohlers, 2008).

Solids collected from the stormwater conveyance system in 2006 included composite solids samples from one sump and three catch basins, inline solids samples, and an onsite stream sediment sample; these samples were collected before the August 2006 cleanout of the onsite stormwater line. PCBs were detected in most of these solids samples (total PCB concentrations up to 66 μ g/Kg). The samples also contained BEHP (up to 29,000 μ g/Kg), diesel- and oil-range hydrocarbons, other semivolatile organic compounds (SVOCs), and metals (Wohlers, 2008).

Four rounds of stormwater sampling were conducted at the site between December 2006 and December 2007. The stormwater samples were tested for TPH, VOCs, SVOCs, PAHs, PCB Aroclors, metals, and pesticides. Several metals, pesticides, PAHs, and one VOC exceeded JSCS SLVs (Wohlers, 2008).

Additional stormwater sampling has not been conducted to evaluate the effectiveness of the site improvements implemented in 2007 as source control measures. Stormwater best management practices (BMPs) also have been implemented that reportedly will continue to be maintained under the new ownership.

DEQ issued a partial No Further Action (NFA) determination for soil and groundwater at the site on February 5, 2007. The partial NFA determination did not provide a final finding on potential impacts associated with stormwater discharging from the site (DEQ, 2007b).

¹ References cited in this appendix are listed in Section 6 of the *Source Investigation Update Report for City of Portland Basin* 19

² Review of the ECSI database for the purposes of the Basin 19 source investigation update was performed February 4, 2010.

Based on a review of the 2006 – 2007 stormwater and sediment sampling results (and dependent upon continued implementation of the stormwater BMPs), DEQ concluded that the site does not appear to be a significant ongoing source of contaminants to the Willamette River and issued a draft Source Control Decision to complete the NFA issued in 2007 (DEQ, 2009d). EPA indicated it disagrees with DEQ's conclusions in the draft Source Control Decision; among EPA's specific points of disagreement was the significance of JSCS SLV exceedances, the potential effectiveness of the site's stormwater BMPs, and the lack of an enforcement mechanism to ensure that the stormwater BMPs continue to be implemented in the long term (EPA, 2009). DEQ responded to EPA's comments (DEQ, 2009e) and issued a final NFA determination and Source Control Decision in December 2009 (DEQ, 2009f).

Brazil & Co. (ECSI #1026). Research of DEQ files for the Brazil & Co. site indicates that no additional information has been received by DEQ subsequent to the Phase 1 Report.

Results of the City's 2006 stormwater system investigation activities adjacent to the PGE – Forest Park property (BES, 2007) indicate that the Brazil & Co. site may be a possible source of PCBs and pesticides to the Basin 19 conveyance system. PCB Aroclor 1260 was detected at concentrations greater than the JSCS Toxicity SLV in two solids samples collected in the immediate vicinity of the Brazil & Co. site (the line from which these samples were collected was subsequently abandoned). PCBs also were detected in a sample collected from a catch basin immediately adjacent to the Brazil & Co. site that receives stormwater from a site lateral connection and discharges to the active stormwater line in NW St. Helens Road (BES, 2007). Total DDx concentrations exceeded the JSCS Bioaccumulation SLV in samples collected from the historic storm lines adjacent and downstream of the site. While these lines have since been abandoned, the potential for the site to be a current source of pesticides to Basin 19 is unknown.

Calbag Metals - Front Ave. (ECSI #2454). Information post-dating research for the Phase 1 Report includes a report summarizing the results of stormwater system evaluations conducted following implementation of source control measures (SCMs) at the site (Creekside, 2006). Before site remediation, PCBs, metals, and phthalates were detected at concentrations significantly greater than JSCS toxicity SLVs in solids samples collected from onsite catch basins and stormwater lines; total PCBs concentrations in the solids samples ranged up to 22,020 μg/Kg. In 2005, accumulated sediments within the storm drain lines at the site and in adjacent portions of the Basin 19 conveyance system were removed and the site was repaved with the goal of reducing or eliminating the source of contaminants to the Basin 19 conveyance system. In its final Source Control Decision and NFA determination, DEO indicated that the "site was a potential historic source of copper, lead, chromium, mercury, PCBs and phthalates to the Willamette River" (DEQ, 2005). In the NFA, DEQ required the site to collect confirmatory stormwater samples through the spring of 2006. However, the stormwater samples were analyzed only for total suspended solids and total and dissolved copper, lead and zinc; Calbag Metals was not required to analyze the stormwater samples for additional site contaminants of interest identified by DEQ, including PCBs, phthalates, and other metals. The results of the post-source control stormwater sampling indicate that one or more total metals concentrations exceeded NPDES stormwater permit benchmarks and ISCS SLVs (Creekside, 2006).

Since implementation of SCMs at the Calbag Metals site in 2005, the site has not collected solids samples to evaluate the effectiveness of the SCM. Additionally, post-SCM stormwater samples collected at the site have not been analyzed for all contaminants. However, the City collected solids samples from the storm lateral from the Calbag Metals site in 2007 and 2008, and results

for both samples indicated significantly elevated total PCBs concentrations (630-2,360 μ g/Kg) in the stormwater solids discharged from the site (BES, 2008; 2009a).

Chapel Steel (ECSI #4920). This site was not discussed in the Phase 1 Report as it was not identified as an ECSI site at the time the report was prepared. Chapel Steel handles and distributes raw steel, performs truck loading, trailer fabrication, fork lift maintenance, and tractor maintenance. Stormwater from this site drains to a multiparty, private line that connects to the stormwater main line in NW Kittridge Avenue. As part of a Portland Harbor Site Discovery pilot project, DEQ visited the site in June 2007 and sampled solids accumulated in a catch basin located on the north side of the property. The sample was tested for PCB Aroclors, PAHs, pesticides, phthalates, and metals. Total PCBs (33.7 μ g/Kg) and BEHP (7990 μ /Kg) concentrations exceeded the JSCS SLVs, and a few metals (lead, nickel, and zinc) slightly exceeded the SLVs. In the site discovery summary report (DEQ, 2007c), DEQ reported that catch basins at this facility do not have filters installed and are not routinely cleaned out. Based on the site discovery findings, DEQ recommended that the site work with the City's Industrial Stormwater Program and undertake a cleanout of the entire stormwater conveyance system (DEQ, 2008a). The City is not aware of any source control actions taken by the site since the 2007 site discovery sampling.

Dura Industries (ECSI #111). Limited information for this site was on file at DEQ when the Phase 1 Report was prepared, and no additional information is currently on file.

Greenway Recycling (ECSI #4655). This site (also referred to as Armstrong Disposal Company in the ECSI database) was not discussed in the Phase 1 Report as it was not identified as an ECSI site at the time the report was prepared. In 2004 and 2005, the site began grading for redevelopment without appropriate permits; numerous complaints of mud washing onto the street and into the City's storm system were received during this period. The City required the site to apply for the appropriate permits and required stormwater collection and treatment to be installed, pursuant to the City Stormwater Manual. Site stormwater requirements by the City were coordinated with DEQ during the site development permitting process. Subsequently, the site entered DEQ's Cleanup Program to evaluate whether the redevelopment was adequate to meet JSCS requirements. A stormwater collection and treatment system was installed at the site in accordance with the City's Stormwater Manual in 2007.

An independent cleanup and risk assessment report summarizing soil and groundwater sampling efforts and remedial activities conducted at the site between 2003 and 2006 was submitted to DEQ in 2007 (Evren Northwest, 2007). Analytical data presented in the report includes PCB data for a soil sample collected near an onsite stormwater catch basin that exceeded JSCS SLVs (Aroclor 1016 concentration of 560 μ g/Kg) (Evren Northwest, 2007). The soil represented by this sample was subsequently excavated and disposed offsite. Data were not collected at the site under the DEQ Cleanup Program to evaluate the effectiveness of stormwater source control measures.

The City collected solids samples from three catch basins in the vicinity of the Greenway facility in 2007 before the site had installed onsite stormwater treatment. Total PCBs were detected at a concentration of 32 μ g/Kg in one of the catch basins immediately adjacent to the site (see Appendix B). DEQ issued a proposed NFA recommendation (DEQ, 2008c) concluding, based on review of the independent cleanup report, that remaining petroleum hydrocarbon constituents, metals, and chlorinated VOCs are present at low levels in the soil and groundwater and the site

was not likely to be contributing contaminants to the Willamette River at levels warranting DEQ oversight. DEQ issued a Conditional NFA Determination for the site in 2009 (DEQ, 2009a), which included an Easement and Equitable Servitude for additional site restrictions.

Mt. Hood Chemical Corp. (ECSI #81). At the time of the Phase 1 Report, potential migration pathways to the Outfall 19 area had not been evaluated at the site. In early 2008, the site entered into an agreement with DEQ to conduct a stormwater assessment and source control evaluation. The current focus has been on groundwater and soil vapor investigation. Work on the stormwater pathway has been limited but a work plan is expected later this year.

Mt. Hood Chemical Property (ECSI #1328). No additional information subsequent to the Phase 1 Report is on file at DEQ. As indicated in the Phase 1 Report, the site has been investigated and received closure from DEQ, although the stormwater pathway was not evaluated as part of the closure.

Penske Truck Leasing (ECSI #5055). This site was not discussed in the Phase 1 Report as it was not identified as an ECSI site at the time the report was prepared. Subsurface contaminated soil was remediated in conjunction with site redevelopment activities in 2007. Review of the site characterization and excavation report (EFI Global, 2008) indicates former oil-water separators and aboveground storage tanks were removed from the site and associated petroleumcontaminated soils were excavated during the remedial activities. Confirmation soil and groundwater samples collected after the soil removals did not detect petroleum-related contaminants at levels above Oregon's risk-based concentrations. DEQ issued an NFA determination for the site in December 2008 (DEQ, 2008d) based on its finding that residual concentrations of metals, petroleum hydrocarbons, and associated constituents in subsurface soils and groundwater are unlikely to present a threat to human health or the Willamette River and the fact that the site has been redeveloped in accordance with the City's Stormwater Manual (DEQ, 2008b). Redevelopment included construction of three flow-through planters, a detention vault, and sediment manhole to treat stormwater on site. Data were not collected at the site under the DEQ Cleanup Program to evaluate the effectiveness of stormwater source control measures.

PGE-Forest Park (ECSI #2406). A 1999 site investigation at this site showed that PCBs were present in surface and subsurface soils over a large percentage of the site, up to 1,400 ppm. Based on a cleanup level of 1.2 ppm, this site was remediated in 2000, including removal of 2,100 tons of site soils. During remedial excavation, a concrete French drain and inlet pipe were removed from the property. Metal piping leading from the drain to the City's stormwater system was cleaned and the open end of the lateral under the sidewalk was sealed by plugging it with quick-set concrete. An NFA determination was made by DEQ in May 2001, although the stormwater pathway had not been evaluated.

In April 2005, the City entered into a Prospective Purchaser Agreement (PPA) for the site with DEQ. In accordance with the PPA, the City evaluated the potential for current or historical offsite migration of site contaminants via the stormwater pathway. The City collected catch basin and inline solids samples in the storm system adjacent to the site and abandoned several unused lines in the vicinity of the site in 2006. The analytical results for the solids samples indicated the presence of PCB Aroclors 1248 and/or 1260 in 11 of the 15 samples. The highest total PCB concentrations were detected in two inline solids samples collected upstream of the site, adjacent to the Brazil & Co. site, in the subsequently abandoned lines (BES, 2007).

This site was obtained for a public trailhead to Forest Park but has not been developed pending funding through the City Parks & Recreation Bureau. Additional interim source control measures, such as placing gravel on the fire lane to stabilize soils and placement of jersey barriers to restrict vehicular access and reduce erosion from the site, were implemented in 2007. When funding is available, the site will be developed with DEQ approval to assure that activities do not exacerbate site contamination or offsite migration of contaminants.

Schnitzer-Kittridge Distribution Center (ECSI # 2442). This site was redeveloped in 1996. Prior to redevelopment activities, acetone, arsenic, cadmium, lead, mercury, zinc, 4-Methyl-2-pentanone, PCBs, and total petroleum hydrocarbons were identified as site soil and/or groundwater contaminants (DEQ, 2007a). Additionally, stormwater samples collected between 1991 and 1995 (as required by the site's general stormwater discharge permit) indicated detections of several metals (cadmium, chromium, copper, lead, mercury, nickel, and zinc); however, the information was deemed insufficient to determine the potential for metals or other hazardous substances to have been deposited or accumulated in the stormwater drainage system or in Willamette River sediments as a result of the site's stormwater discharges (DEQ, 2004).

DEQ issued a Source Control Decision for the site in 2004 (DEQ, 2004), as noted in the Phase 1 Report. The Source Control Decision recommended additional information be developed to address specific data gaps with regard to possible site contamination from VOCs, SVOCs, PAHs, phenols, metals and PCBs in soil and groundwater that could pose a threat to site workers, utility workers and groundwater. In response, the site submitted a site characterization summary report (Bridgewater, 2006a), a land and beneficial water use report (Bridgewater, 2006b), a human health risk assessment (Bridgewater, 2006c), a Level 1 ecological risk assessment (Bridgewater, 2006d) and a feasibility study (Bridgewater, 2006e). Based on information in these documents, DEQ selected a combination of worker training, maintenance of the existing pavement, building and landscape cap, and placement of institutional controls on the site as the final remedies for the site. The Record of Decision, including a conditional NFA determination, was issued in January 2007 (DEQ, 2007a).

Upland Sites Located Partially Within Basin 19

Chevron USA Asphalt Refinery (ECSI #1281). Stormwater from a portion of the site (the Guilds Lake Tank Yard) discharges to the Basin 19 conveyance system. Chevron has completed a stormwater source control evaluation at the site since submittal of the Phase 1 Report. In October 2006, Chevron submitted a work plan to DEQ for conducting a stormwater evaluation (BBL, 2006a). Based on comments received from DEQ (that incorporated comments sent by the City via email to DEQ), a revised stormwater evaluation work plan was submitted in November 2006 (BBL, 2006b), followed by submittal of a storm water sampling plan in August 2007 (ARCADIS BBL, 2007).

Chevron conducted catch basin cleanout and solids sampling (September 2006 and August 2007); stormwater line cleanout, solids sampling and a video survey of various onsite and offsite stormwater drain lines (February, June and October 2007); and stormwater sampling in accordance with the JSCS (October 2007 – March 2008). Analytical results for the solids samples collected during the 2006 and 2007 catch basin and stormwater line cleanout activities indicate concentrations of total PCBs, metals, DDD, DDE, DDT, PAHs, and/or BEHP at concentrations greater than JSCS SLVs. In stormwater samples collected following the catch basin and line

cleanout activities from the portion of the site discharging to Basin 19, analytes detected at concentrations greater than the corresponding JSCS SLVs were metals (copper, lead, mercury, and zinc), PAHs, and pesticides (total DDT, dieldrin, and heptachlor). The Source Control Evaluation Report was submitted to DEQ in 2009 (ARCADIS, 2009a). The City commented on the Source Control Evaluation Report in August 2009 (BES, 2009b). A proposed Source Control Decision was drafted by DEQ and reviewed by EPA and is expected to be finalized by summer 2010.

Front Avenue LP (ECSI #1239) - Tube Forgings. As discussed in the Phase 1 Report, the Front Avenue LP Properties site consists of four tax lots. Only one-half of one tax lot, occupied by Tube Forgings of America, is located within Basin 19. A stormwater evaluation work plan was submitted to DEQ in March 2007 (MFA, 2007). The City commented on the work plan in a letter to DEQ dated April 20, 2007. An updated work plan (MFA, 2008a) was submitted to DEQ, and DEQ approved the work plan in a letter dated May 21, 2008. Catch basin samples were collected in May 2008 in accordance with the approved work plan. Based on the summary of the catch basin sampling results (MFA, 2008b), metals, phthalates, PAHs and phenol were detected at concentrations greater than JSCS SLVs. PCBs were not detected in the catch basin solids (although detection limits were about 20 ppb per Aroclor). The stormwater sampling component of the evaluation was initiated in November 2008. Based on the memorandum summarizing the results of one sampling event in November 2008 (MFA, 2009), BEHP, metals, and PAHs are present at concentrations exceeding JSCS SLVs in stormwater discharging from the site to Basin 19. In addition, PCB Aroclor 1254 also exceeded the JSCS SLV in one sample. The remaining rounds of stormwater sampling were expected to be completed in fall 2009, with reporting to follow.

Unocal - Willbridge Terminal (#1549/#177). This site was not discussed in the Phase 1 Report; however, a portion of this site (Tank Farm #3) discharges to Outfall 19. A stormwater evaluation work plan for the site was submitted to DEQ in October 2006 (Delta, 2006), and investigation activities in accordance with the work plan were initiated in fall 2007. Results of catch basin sampling (Delta, 2008) indicate BEHP, metals, and total PCBs are present at concentrations greater than JSCS SLVs in the Tank Farm #3 stormwater drainage system. Stormwater sampling was scheduled to be completed in fall 2009 (DEQ, 2009b). Difficulties in locating a viable monitoring location for evaluating site stormwater discharges to Basin 19 resulted in a data gap. DEQ is currently working with the site to identify a location to sample and a stormwater evaluation report for the site is expected in 2010.

BNSF Willbridge Yard (ECSI #3395). This site has no identified direct connections to the Basin 19 stormwater conveyance system and was not discussed in the Phase 1 Report, though storm lines discharging to Outfall 19 cross through the site. A Preliminary Assessment (PA) and Expanded PA (XPA) work plan were submitted to DEQ in September 2006 (RETEC Group, Inc., 2006). The PA states that stormwater infiltrates into the subsurface and concludes that the stormwater pathway is therefore incomplete; however the limited information presented in the PA was insufficient to support this conclusion (i.e., it did not evaluate the presence of subsurface drainage systems, such as perforated pipes common under rail lines, or the potential for a groundwater preferential pathway into/along the stormwater system). DEQ issued comments requiring the proposed XPA work plan to include a stormwater pathway investigation (DEQ, 2009c), and in response BNSF proposed a work plan addendum to include

evaluation of surface water and the stormwater pathway (AECOM, 2009). The stormwater pathway investigation is currently underway.

Nonpoint Sources and Pathways Located Near Outfall 19

Lakeside Industries (ECSI #2372). This site was identified as a potential source of metals and SVOCs to the Willamette River based on detections in river sediments adjacent to the site. As noted in the Phase 1 Report, stormwater at the site formerly discharged to onsite dry wells. The two dry wells were closed in late 2003 / early 2004 (DEQ, 1999). The site directed its stormwater to the City's sanitary sewer without a permit and without knowledge of the City. The City has required the site to collect stormwater data to evaluate whether contaminants in the site's stormwater discharge are within allowable concentration ranges and is reviewing these discharges to determine whether the City will require stormwater flows to be redirected to the stormwater system. DEQ will decide whether or not a stormwater pathway evaluation is needed at this site pending the outcome of the City's review.

Shaver Transportation (ECSI #2377). This site was identified as a potential source of PAHs and diesel to river sediments based on site operations and contaminant concentrations detected in river sediments in the adjacent harbor. Based on its review of available information, DEQ determined this site poses no significant threat to human health or the environment and issued an NFA determination in June 2003 (DEQ, 2003).