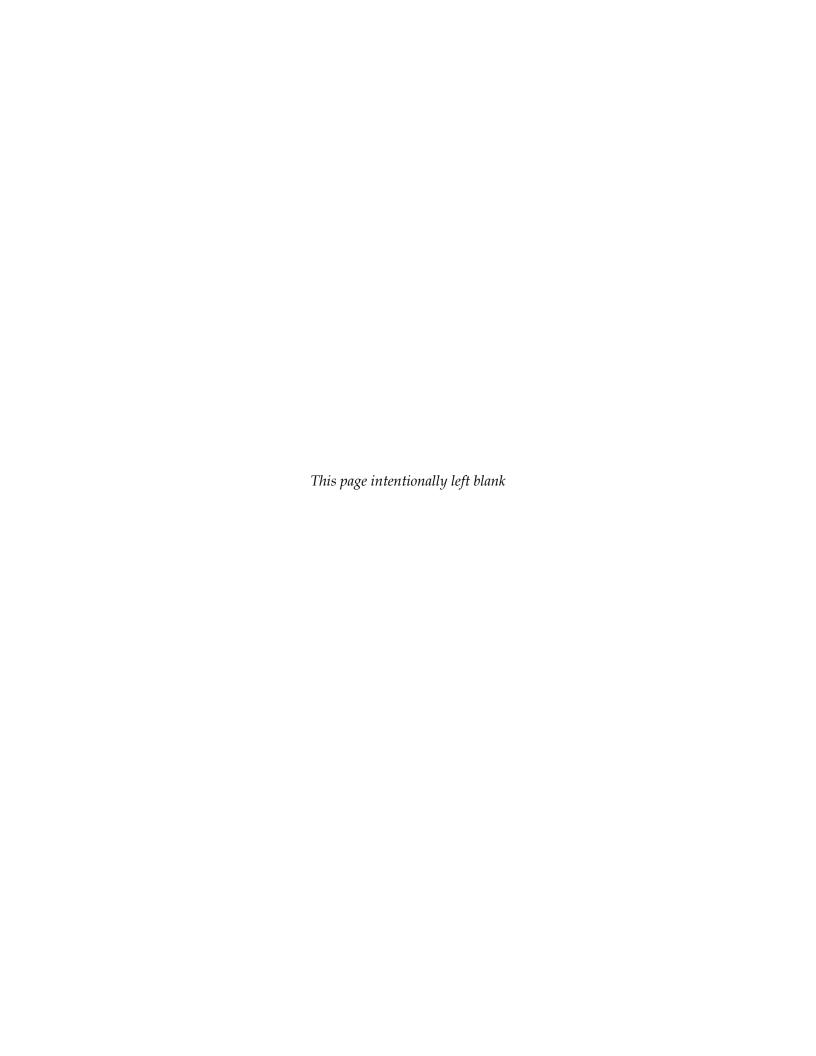
Intergovernmental
Agreement for
Remedial
Investigation and
Source Control
Measures

DEQ No. LQVC-NWR-03-10


Outfall Basin 18 East-Central Subbasin Source Investigation Report

City of Portland Outfall Project ECSI No. 2425

May 2012

PREPARED BY

Contents

1	Introduction	1-1
	1.1 Purpose and Scope	1-1
	1.2 Report Organization	
2	Background	2-1
	2.1 Conveyance System Configuration and Drainage Basin	2-1
	2.2 Previous Investigations	
	2.3 Source Tracing Contaminants	
	2.4 Potential Upland Sources	2-3
3	Source Investigation and Source Control Activities and Results	3-1
	3.1 Summary of Activities	3-1
	3.1.1 Fall 2009 Inline Solids Investigation	
	3.1.2 Summer 2010 Line Cleaning	
	3.1.3 Fall 2010 Surface Soil and Catch Basin Investigation	
	3.1.4 2011 Post-Line Cleaning Sediment Trap and Inline Solids Investigations	
	3.2 Summary of Source Investigation Results	3-3
4	Data Evaluation	4-1
	4.1 PCBs	4-1
	4.2 Pesticides	4-2
	4.3 Metals	4-3
	4.4 Erodible Soils Pathway Evaluation	4-3
	4.5 Subbasin Chronology and Source Control Status	
5	Conclusions and Next Steps	5-1
6	References	6-1
Т	ables	
F	igures	
<u>A</u>	<u>appendices</u>	
	Appendix A – Outfall Basin 18 East-Central Subbasin Fall 2009 Inline Solids Investi Data Summary Report	gation
	Appendix B - Memorandum re: NW 35th Ave. Line Cleaning Spoils Management C 1120	CSA#
	Appendix C – Outfall Basin 18 East-Central Subbasin September 2010 Surface Soil a Basin Solids Investigation Data Summary Report	nd Catch
	Appendix D - Outfall Basin 18 East-Central Subbasin 2011 Sediment Trap and Inlin Investigation Data Summary Report	e Solids

List of Tables

- Table 1. Potential Upland Sources Within and Adjacent to East-Central Subbasin of Basin 18
- Table 2. Basin 18 East-Central Subbasin Inline Solids Results Downstream of NW 35th Avenue Line
- Table 3. Basin 18 East-Central Subbasin Inline Solids Results NW 35th Avenue Line
- Table 4. Basin 18 East-Central Subbasin September 2010 Erodible Soils Pathway Results
- Table 5. Basin 18 East-Central Subbasin Conveyance System and Upland Site Data Comparison

List of Figures

- Figure 1. Basin 18 East-Central Subbasin Sample Locations
- Figure 2. Basin 18 East-Central Subbasin Summer 2010 Line Cleaning
- Figure 3. Basin 18 East-Central Subbasin Pre- and Post-Cleanout Results Total PCBs
- Figure 4. Basin 18 East-Central Subbasin Pre- and Post-Cleanout Results Total DDx, Total Chlordane, and Heptachlor
- Figure 5. Basin 18 East-Central Subbasin Pre- and Post-Cleanout Results Selected Metals
- Figure 6. Basin 18 East-Central Subbasin Erodible Soils Pathway Results
- Figure 7. Basin 18 East-Central Subbasin Solids Source Investigation/Control Measures
 Timeline

Abbreviations and Acronyms

AOPC Area of Potential Concern BEHP bis(2-ethylhexyl)phthalate

BES Bureau of Environmental Services

BMP Best Management Practice
CAP Columbia American Plating

City City of Portland

DDD dichlorodiphenyldichloroethane
DDE dichlorodiphenyldichloroethylene
DDT dichlorodiphenyltrichloroethane
DDx sum of DDD, DDE, and DDT

DEQ Oregon Department of Environmental Quality

ECSI Environmental Cleanup Site Information

EPA Environmental Protection Agency
JSCS Joint Source Control Strategy
LWG Lower Willamette Group

μ micron

μg/Kg microgram(s) per kilogram
 MRL method reporting limit
 mg/Kg milligram(s) per kilogram
 NEC No Exposure Certification

NPDES National Pollutant Discharge Elimination System

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl SLV screening level value

SVOC semivolatile organic compound VCP Voluntary Cleanup Program VOC volatile organic compound This page intentionally left blank

SECTION 1

Introduction

This report presents the results of the City of Portland (City) source investigation and source control activities in the east-central branch (aka, subbasin) of the Outfall Basin 18 stormwater conveyance system. The drainage area for this subbasin was identified as having major upland sources to the basin of polychlorinated biphenyls (PCBs), pesticides, and certain metals based on inline investigations conducted by the City in the east-central subbasin between 2003 and early 2009 (CH2M Hill, 2005; BES, 2010a). Following those investigations, the City determined that additional source investigation data were needed in this portion of Basin 18. Stormwater pathway evaluations are in progress under Oregon Department of Environmental Quality (DEQ) and U.S. Environmental Protection Agency (EPA) oversight at several upland sites in and adjacent to the east-central subbasin. The City conducted additional source investigations in the subbasin between September 2009 and June 2011 to supplement these upland site data evaluations and to determine whether there are ongoing major sources in this branch of Basin 18. The investigations presented in this report spanned a two-year period and were conducted before and after comprehensive cleaning of all main lines in the branch.

The source investigation results indicate that concentrations of PCBs and metals in solids in the east-central branch of Basin 18 have decreased from concentrations that were detected in samples collected before line cleanout activities were conducted in 2010. In addition to the removal of legacy contaminated soils from the system, this decrease also may be attributable in part to the recent source control implementation and site redevelopment at a known source of PCBs and metals to the upper part of the subbasin (the former Columbia American Plating facility). Though decreases in pesticides concentrations also were observed, locally elevated concentrations of pesticides in post-line cleanout samples suggests the continued presence of sources of these contaminants to the City stormwater system. Source investigation results collected at the Container Management facility under DEQ oversight indicate that erodible site soils are contaminated with PCBs, pesticides, and metals. Data collected by the City as part of the east-central subbasin investigation indicate that offsite migration of contaminated erodible soils from one or more sites within and adjacent to the subbasin (e.g., via vehicle tracking, overland runoff, and/or fugitive dusts) represents a likely current source to the subbasin. Investigation results, and known and potential sources of pesticides, PCBs, and metals to the east-central subbasin, are evaluated in more detail in this report.

The investigation activities described in this report are part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement between DEQ and the City. The data collected under these investigations support ongoing work by DEQ and the City to characterize and control discharges to the Basin 18 stormwater conveyance system.

1.1 Purpose and Scope

The purpose of this report is to evaluate recent source investigation data, along with information from upland sites within and adjacent to the east-central subbasin, to identify

possible current sources of PCBs, pesticides, and metals to this branch of Basin 18. The City source investigation activities described in this report include collection and analysis of inline solids samples in fall 2009, surface soil and catch basin solids in fall 2010, and sediment trap and inline solids samples in 2011. The report also evaluates inline solids data collected from this portion of the City system by two upland sites as part of site stormwater pathway evaluation efforts.

1.2 Report Organization

The remainder of this report is organized as follows:

- Section 2: Background Summarizes the subbasin conveyance system configuration and drainage basin setting, previous investigations, contaminants identified for source tracing, and potential upland sources.
- Section 3: Source Investigation and Source Control Activities and Results Describes the sampling and line cleanout activities that were conducted as part of this investigation, and summarizes laboratory analytical results.
- Section 4: Data Evaluation Evaluates the investigation results to identify possible current sources of contaminants in the subbasin.
- *Section 5: Conclusions and Next Steps* Summarizes the findings from the source investigation and identifies next steps the City plans to take in the subbasin.
- Section 6: References

Background

2.1 Conveyance System Configuration and Drainage Basin

Outfall 18 discharges to the west side of the Willamette River at approximately river mile 8.8. Basin 18 is a 465-acre stormwater basin with a mix of land uses, including approximately 267 acres of open space in Forest Park, 189 acres of industrial land, 7 acres of major transportation, and 2 acres of residential land. The Basin 18 stormwater conveyance system has two main trunk lines and five main branches.

The City delineated subbasin boundaries using available site drainage information, such as plumbing records and topography, to organize source investigation data collection and evaluation. Subbasin boundaries in this area of Basin 18, especially between the west-central and east-central branches, likely do not reflect all historical and current drainage patterns in this area. There is a documented history of overland flow between sites in the west-central and east-central drainage areas (Wohlers, 2000), and recent redevelopment at the former Columbia American Plating site included construction of a concrete berm between the site and adjacent properties to segregate site stormwater from other areas. While dividing Basin 18 into subbasins provides a useful mechanism for organizing basin information, all subbasin boundaries are subject to continuous change and should be considered as approximate and temporal. As upland sites complete stormwater pathway evaluations in these areas, subbasin boundaries may need revision to reflect additional drainage pathways.

The current east-central subbasin of Basin 18 encompasses a 38-acre drainage area comprised entirely of industrial land uses. Figure 1 shows the estimated east-central subbasin boundary and stormwater conveyance system. Stormwater lines draining this subbasin extend north beneath NW 35th Avenue and beneath private property, between NW St. Helens Road and NW Yeon Avenue. The majority of the current City storm system in this area was constructed by the Federal Housing Authority in the early 1940s. The southernmost segment (on NW 35th Avenue south of NW Lake Street) was constructed by the City in 1995.

2.2 Previous Investigations

Previous investigations conducted in Basin 18 that are relevant to the 2009 – 2011 source investigation activities in the east-central subbasin are briefly summarized below. Solids sampling locations in the east-central subbasin conveyance system are shown on Figure 1.

• *Phase 1 Data Evaluation*. Elevated concentrations of PCBs, metals, pesticides, and phthalates were detected in surface inriver sediment samples collected by the City in 2002 near Outfall 18 (CH2M Hill, 2004a). Phase 1 work included basin assessment research to identify potential sources within the basin. Following an evaluation of the

- outfall sediment data, the City designated Basin 18 as a Priority 1 basin for source investigation (CH2M Hill, 2004b).¹
- Phase 2 Inline Solids Pilot Project. As part of a pilot project in 2003, the City collected inline solids samples from the Basin 18 conveyance system to evaluate the feasibility of using inline solids as a source investigation tool and to identify basins where additional source investigation may be warranted (CH2M Hill, 2005). The investigation included one location in the east-central subbasin, and results indicated the presence of PCBs, metals, and pesticides sources within the basin.
- 2004 Inline Solids Sampling. The City conducted inline solids sampling in Basin 18 in 2004 in conjunction with routine stormwater line cleaning activities in the west-central subbasin, in the vicinity of the Container Management Services and Wilhelm Trucking facilities. Results of this investigation indicated elevated concentrations of PCBs, metals, phthalates, and polycyclic aromatic hydrocarbons (PAHs) in solids in the City stormwater lines in the vicinity of these two facilities (BES, 2006). Samples were not analyzed for pesticides. (Note: Although the samples were collected from the west-central subbasin, a portion of the Wilhelm facility is in the east-central subbasin and the Container Management facility is adjacent. Both sites are evaluated in this report as potential sources to the east-central subbasin.)
- Stormwater Evaluation Report. As part of its Portland Harbor stormwater screening effort, the City evaluated the 2007-2008 stormwater and sediment trap samples collected by the Lower Willamette Group (LWG) in Basin 18 at a point representing cumulative discharge from most of the basin. Based on this analysis, concentrations of total PCBs, pesticides, and copper in Basin 18 stormwater were identified as potentially warranting further source tracing (BES, 2010b).
- 2007 2009 Sediment Trap and Inline Solids Investigation. Between 2007 and 2009, the City installed sediment traps at multiple locations within Basin 18 to collect data concurrent with sediment trap sampling at a downstream location by the LWG. The objectives of this investigation were to identify potential source areas for contaminants detected at elevated concentrations in the LWG sediment traps and to conduct a pilot study of different trap designs and bottle shapes to evaluate stormwater solids capture rates. The investigation included two locations within the east-central subbasin; analytical results indicated that major sources of PCBs, pesticides, and metals were present (BES, 2010a).
- Columbia American Plating Investigation. In May 2009, private contractors collected two sediment samples from the City stormwater conveyance system in the vicinity of the former Columbia American Plating (CAP) facility at 3003 NW 35th Ave. Analytical results indicated sources of PCBs and metals to this line (O'Gara, 2009).
 - Although one sample was collected from a City manhole (manhole AAX318) located upstream of historical CAP connections, the City considers these analytical results to be influenced by CAP discharges due to sample collection procedures. This "upstream"

¹ Priority 1 designations were assigned to basins where significantly elevated contaminant concentrations had been detected in sediment near the outfall and further investigation efforts were needed to determine if these contaminants were being discharged to the City system.

sample was collected by maneuvering a vactor jet rod down the storm line from manhole AAX318 to the estimated location of the southern CAP site lateral connection, and then jet-washing material from this point back upstream for collection at manhole AAX318 (O'Gara, 2009). Solids sampled at manhole AAX318 may have included site contaminants if the jet rod was unintentionally positioned at or downgradient of the southern lateral or if historical surcharge conditions in the 35th Avenue line (e.g., resulting from sediment build up and/or root intrusions) occurred. These results are included in this evaluation but due to the uncertainty in their representativeness, data were not utilized for a spatial evaluation of potential source areas.

2.3 Source Tracing Contaminants

Outfall 18 and approximately 36 private outfalls discharge within the river reach identified by the EPA as an area of potential concern (AOPC 19) for metals, PAHs, bis(2-ethylhexyl)phthalate (BEHP), benzyl alcohol, PCBs, total TCDD-toxic equivalent, pesticides, and chloroethane (EPA, 2010). The area also has overwater activities associated with industrial activities. Based on the results of the previous City investigations in the east-central subbasin (see Section 2.2), contaminants identified for further source investigation are limited to PCBs, pesticides, and metals.

2.4 Potential Upland Sources

Table 1 lists facilities located within or adjacent to the east-central subbasin of Basin 18 that are sites with known or potential hazardous substance contamination and are included in DEQ's environmental cleanup site information (ECSI) database. Several of these are also covered by the National Pollutant Discharge Elimination System (NPDES) program to regulate discharges to the municipal storm system. The ECSI and NPDES sites within or adjacent to the Basin 18 east-central subbasin are considered potential upland sources of contaminants to this branch of the City stormwater conveyance system. ECSI facility locations are shown on Figure 1 and briefly discussed below.

Facilities Within the East-Central Subbasin

• ANRFS / ABF Freight Systems / ANRFS Holdings Inc. (ECSI #1820): ABF Freight Systems, Inc., owns and operates a truck terminal at this site. Onsite catch basins discharge to the City stormwater line in NW 35th Avenue and to the City line extending beneath the property between manholes AAX261 and AAX262. DEQ collected solids samples from two catch basins at this site in 2007 as part of a Portland Harbor Site Discovery pilot project. Several chemicals in these samples, including PCBs, exceeded Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLVs) (DEQ/EPA, 2005, as amended 2007). Due to the lower magnitude of the exceedances, DEQ concluded that concentrations did not warrant cleanup under DEQ oversight at this time (DEQ, 2008a). Pesticides were not detected in the samples; however, the laboratory method reporting limits (MRLs) were elevated. DEQ recommended the site clean out the onsite catch basins and storm lines and work with the City's Industrial Stormwater Program to improve best management practices (BMPs) to control sediment discharges to the system (DEQ, 2008a). Current operations at ABF qualify for an NPDES No Exposure Certification (NEC). MRP Environmental also operated on a portion of this site until

2010 under a separate NPDES 1200-Z permit to discharge stormwater to the City line in NW 35th Avenue.

- Carson Oil (ECSI #1405): The site discharges to the City stormwater line in NW 35th Avenue. Carson Oil operates a bulk oil facility at this site, which involves storage and distribution of petroleum-related products. DEQ collected solid samples from two catch basins at this site as part of the 2007 site discovery project (DEQ, 2008b). Total PCBs and certain metal concentrations in the samples exceeded JSCS SLVs, but the exceedances were relatively low. Pesticides were not detected in the samples, though MRLs were elevated. Based on other SLV exceedances (e.g., BEHP), DEQ requested that Carson Oil enter into a voluntary cleanup program (VCP) agreement to conduct a stormwater evaluation (DEQ, 2008b). The site subsequently cleaned out all onsite catch basins, the oil/water separator, and associated drain lines, and indicated plans to install an upgraded catch basin filter in the catch basin with the high phthalate detection and to resample catch basin solids at a later date (Wohlers, 2008; DEQ, 2008c). No additional catch basins sampling data have been submitted to DEQ. Carson Oil holds a current NPDES 1200-Z permit.
- Columbia American Plating (ECSI #29): The CAP site discharges to the City stormwater line in NW 35th Avenue. CAP, a former commercial metal plating facility, ceased operations at this site in 2003 after repeated violations of federal environmental and safety laws and regulatory enforcement actions related to hazardous materials contamination at the site (DEQ, 2009a). EPA conducted a removal action at the site in 2003 2004 to address the imminent threat site contamination posed to human health and the environment (DEQ, 2009a).

A Focused Phase II Environmental Site Assessment was completed in 2008 to address data gaps identified by DEQ for purposes of a Prospective Purchaser Agreement (BB&A, 2008). The scope of this assessment included sampling and limited analysis of stormwater solids from the onsite storm system, soil and groundwater from push-probe borings, and stockpiled concrete rubble. PCBs and metals were detected in the stormwater solids at high concentrations relative to the JSCS SLVs, and metals were elevated in near-surface soil samples (soil samples were not tested for PCBs); none of the samples were analyzed for pesticides (BB&A, 2008).

As part of developing a stormwater evaluation work plan to satisfy a Consent Judgment with DEQ, the onsite stormwater conveyance system was mapped and cleaned in May 2009; a segment of the adjacent City line along NW 35th Avenue also was cleaned as part of this work (O'Gara, 2009). Several cleanout solids samples from the onsite system, along with two samples from the adjacent City line, were submitted for analysis of metals, and selected samples also were analyzed for PCBs, pesticides and other contaminants. Maximum detected concentrations of PCBs and select metals were significantly elevated in onsite samples relative to the JSCS SLVs. Pesticides were not detected in the samples analyzed, but MRLs were elevated (Wohlers, 2011).

The site was redeveloped in 2009 through early 2011. Improvements made as part of the site redevelopment include stormwater system replacement, installation of a stormwater treatment system, and site paving. A stormwater pathway evaluation work plan

- (Wohlers, 2011) to evaluate the effectiveness of the site improvements and current BMPs is currently underway, and the site has been issued a new NPDES 1200-Z permit.
- Container Recovery Inc. (ECSI #4015): The site discharges to the subbasin downstream of manhole AAX261. Historical operations at the site included staging automobile hauling, construction of auto hauling trucks, manufacturing of furnaces, and sheet metal fabrication (DEQ, 2008d). Current operations at the site include processing used beverage containers in preparation for recycling. DEQ collected samples from two catch basins at this site during the 2007 site discovery project. Several chemicals, including metals and PCBs (total PCBs and Aroclor 1254) exceeded the JSCS SLVs; pesticides were not detected, though MRLs were elevated. Based on these results, DEQ requested that Container Recovery conduct a stormwater evaluation under the VCP (DEQ, 2008e). The site declined to enter the VCP but indicated plans to work with DEQ to resolve the issues (DEQ, 2008d). Between October 2008 and July 2009, Container Recovery cleaned and repaired the onsite catch basins and resampled the two catch basins sampled during the 2007 site discovery; sampled glass dust generated by site operations; and sampled solids present on the underbodies of truck/trailers at the site (Wohlers, 2010). PCBs concentrations were lower overall in the 2009 catch basin samples, but metals concentrations were similar to the 2007 results. Based on the analytical results, the site concluded that operational dust and/or facility truck traffic is a likely source of contaminants to the catch basins. Accordingly, the site implemented BMPs designed to reduce sediment in the onsite catch basins (Wohlers, 2010). Container Recovery holds a current NPDES 1200-Z permit.
- Magnus / Wilhelm Trucking (ECSI #69): Wilhelm Trucking discharges stormwater to both the east-central and the west-central subbasins. The portion of the site that is within the east-central subbasin is currently used for vehicle parking and fueling, and equipment and wood beam storage. Other activities currently conducted at the site include freight management and logistics, transformer and utilities rigging, heavy hauling, maintenance, and manufacture of industrial component shipping containers (HAI, 2011). Historical industrial operations at the site (beginning around 1930) included the former Magnus Company (Magnus) railcar journal bearing rehabilitation plant (HAI, 2011). As noted in Section 2.2, solids samples collected by the City in 2004 at locations receiving contributions from this site (and Container Management) contained very high concentrations of several chemicals, including PCBs and metals (BES, 2006). In 2008 the site entered into a VCP agreement to conduct a stormwater evaluation. A stormwater evaluation work plan (HAI, 2011) was approved by DEQ in April 2011; work is currently underway.
- Univar (Van Waters & Rogers) (ECSI #330): The majority of the site discharges to the east-central subbasin via several lateral connections between manholes AAX261 and AAT557. Univar has operated a bulk chemical handling facility at this site since 1947. Current operations at the site include the receipt, packaging, storage and distribution of industrial chemical products (mostly petroleum-based solvent) (PES, 2010a). Univar historically recycled spent chlorinated solvents and stored limited volumes of associated hazardous wastes at the site. As part of closure of the hazardous waste storage facility under EPA oversight, surface soils were analyzed for metals, semivolatile organic compound (SVOCs), and volatile organic compounds (VOCs). VOCs, PAHs, and certain

metals (arsenic, chromium, copper, nickel, and zinc) were detected in surface soils, and/or shallow groundwater (PES, 2006). In addition, pesticides and other contaminants were detected in shallow subsurface soils collected between 2002 and 2008 at the site in conjunction with planning work for repaving the site's eastern driveway (PES, 2010a).

Univar is conducting a stormwater pathway investigation under EPA oversight. The current EPA-approved work plan for this investigation (PES, 2010a) involves collecting and analyzing stormwater, sediment trap samples from the City system at manholes AAX261 and AAT557 (i.e., upstream and downstream of the site connections) but does not include investigation of the onsite stormwater system. To facilitate dry-weather flow assessments and sediment trap installations, Univar cleaned out the City stormwater line between manholes AAX261 and AAT557 in August 2010. The video survey confirmed that groundwater is infiltrating the City stormwater line adjacent to the Univar site; in response to this finding Univar prepared a separate work plan to sample and analyze dry-weather flow adjacent to the site (PES, 2011a). Univar has an individual NPDES permit for discharge of stormwater and remediated groundwater. Univar has completed sediment trap sampling (PES, 2011b) and three rounds of stormwater sampling at the two locations in the City line. The analytical data for the two sediment trap samples are evaluated as part of this report.

Facilities Adjacent to the East-Central Subbasin

- Ashland Chemical / Hill Investment (ECSI #1076): This site is located within the eastern subbasin of Basin 18, across NW 35th Avenue from ABF Freight Systems. Formerly the location of Ashland Chemical, the site is currently occupied by Crescent Electric Supply Company (distributors of electrical hardware and supplies). DEQ collected solids from one catch basin at this site during the 2007 site discovery project. Results indicated total PCBs and metals concentrations exceeded JSCS SLVs. Pesticides were not detected, though the MRLs were elevated (DEQ, 2008f). Ashland had recently vacated the site, and DEQ requested that the company also clean out the remainder of the onsite stormwater system to remove any remaining solids with elevated contaminant concentrations (DEQ, 2008f); Ashland did not clean the lines as part of its closure of site operations (DEQ, 2008g).
- Container Management Services (ECSI #4784): The site is located in the west-central subbasin and adjacent to the Carson Oil and former CAP sites. It has been operated as a storage drum reconditioning/recycling facility since approximately 1939 (SES, 2009). Analysis of stormwater solids collected by the City during the 2004 line cleanout in the west-central subbasin indicated PCBs, metals, and SVOCs were present at very high concentrations in the line downstream of Container Management's lateral connections (BES, 2006). Samples were not analyzed for pesticides. Based on these results, Container Management entered into an agreement with DEQ under the VCP to conduct a stormwater evaluation at the site (DEQ, 2008h). The final stormwater assessment work plan was submitted in April 2009 (SES, 2009) and stormwater data collection is underway.

Results of the site solids sampling to date (SES, 2011) indicate concentrations of PCBs and pesticides are significantly elevated in surface soils and catch basin solids at this site. Recent subsurface investigations at the loading dock, in the production area of one building, and in a site drainage structure adjacent to the railroad corridor indicate that subsurface site soils have elevated concentrations of PCBs, pesticides, metals, and SVOCs (SES, 2012a and 2012b). DEQ requested additional characterization of soils in unpaved areas (DEQ, 2011) and a work plan is currently under review. Based on the large area of unpaved ground at the site and the use of NW 35th Avenue by traffic exiting the site, Container Management is identified as a potential source of contaminants to the east-central subbasin via vehicle drag-out of erodible surface soil from the site. Overland flow of site stormwater to adjacent industrial properties is also a possible historical and current pathway. Redevelopment at the former CAP site included installation of a concrete berm between CAP and Container Management.

Owens Corning / Trumbull Asphalt (ECSI #1160): This site is located in the eastern subbasin, adjacent to the Container Recovery site. DEQ collected a site catch basin solids sample during the 2007 site discovery project. Several chemicals, including metals and PCBs, were detected at concentrations exceeding JSCS SLVs. Pesticides were not detected, though the MRLs were elevated (DEQ, 2008i). Based on the SLV exceedances, DEQ requested that the site conduct a stormwater evaluation under the VCP (DEQ, 2008i). The site declined (DEQ, 2008j).

This page intentionally left blank.

SECTION 3

Source Investigation and Source Control Activities and Results

The source investigation and source control activities evaluated in this report are briefly summarized below. Sampling locations are shown on Figure 1 and results are summarized on Tables 2 through 4. Details of the activities described below (including field and laboratory documentation) are presented in Appendices A through D.

3.1 Summary of Activities

3.1.1 Fall 2009 Inline Solids Investigation

Following evaluation of previous sediment trap and inline solids data collected from the subbasin, the City collected a total of eight stormwater solids samples from the upper portion of the east-central branch in September and October 2009 for analysis of PCBs and metals. The purpose of the investigation was to collect data in the upper portion of the subbasin that could be used, along with forthcoming data collected from the lower basin by Univar, to identify contaminant source areas in the subbasin. The City initiated this investigation after review of data collected by CAP in the NW 35th Avenue line raised concerns with the representativeness of the CAP "upstream" sample (see Section 2.2). Pesticides were not analyzed as part of the City source investigation because pesticides were not detected in the CAP samples and suspected sources in the subbasin were slated to evaluate pesticides in the stormwater pathway under EPA and DEQ oversight. The samples were collected from five manholes located along NW 35th Avenue (AAX374, AAX375, AAX376, AAX318, AAX278) and three manholes (AAX264, AAX263, AAX262) located on the east-west trending pipe just upstream of manhole AAX261. Findings indicated the presence of PCBs and metals sources in the upper portion of the subbasin. Results and documentation of the fall 2009 inline solids investigation are provided in Appendix A.

3.1.2 Summer 2010 Line Cleaning

In response to detections of elevated concentrations of contaminants in the fall 2009 inline solids samples and in anticipation of additional source investigations in the subbasin, the City cleaned the main lines upstream of manhole AAX261 in the summer of 2010. The line cleaning was conducted in June and July 2010 and extended from manhole AAX374 (near the upper end of the branch; see Figure 1) to manhole AAX261. The City analyzed samples of the cleanout solids for PCBs and selected metals² for waste disposal purposes. Details on the City's line cleaning and spoils profiling activities are provided in Appendix B.

As part of the site stormwater source control evaluation, Univar contracted with PES Environmental to clean the City stormwater line in the east-central subbasin from manhole

² Samples were analyzed for barium, lead and zinc by the Toxicity Characteristic Leaching Procedure (TCLP).

AAX261 to manhole AAX557 in August 2010 (PES, 2010b). Univar line cleaning was completed in advance of subsequent stormwater and sediment trap investigations in that portion of the subbasin. The sections of the City system cleaned by the City and by Univar in 2010 are shown on Figure 2.

3.1.3 Fall 2010 Surface Soil and Catch Basin Investigation

In September 2010, the City collected four composite samples of surface soils from NW Lake Street (see Figure 1), which is unpaved, and collected stormwater solids samples from four nearby catch basins along NW 35th Avenue (catch basins ANF164, ANB621, ANB622, and APN941³). The City selected these catch basins because they may be impacted by overland runoff and vehicle drag-out from NW Lake Street. The purpose of this investigation was to evaluate whether offsite migration of contaminants may be occurring from the Container. Management site to the NW Lake Street and whether Basin 18 catch basins on NW 35th Avenue may be a current pathway for contaminated erodible soils in runoff and/or vehicle drag-out from NW Lake Street (which is used almost exclusively by traffic from the adjacent Container Management site). The samples were analyzed for PCBs, pesticides, and metals – all of which had been detected in erodible soils at the Container Management site (DEQ, 2010). Results confirmed that PCBs, pesticides and metals are present in NW Lake St. surface soils and soils in catch basins along NW 35th Ave. The results and documentation for the fall 2010 investigation activities are provided in Appendix C.

3.1.4 2011 Post-Line Cleaning Sediment Trap and Inline Solids Investigations

In December 2010, following the completion of line cleaning described above, the City deployed two sediment traps in the upper portion of the east-central branch (at manholes AAX318 and AAX278) to identify potential current source areas of PCBs, pesticides, and metals being discharged to the City conveyance system. Due to the large volume and nature of sediment removed from the subbasin during cleaning activities, the City identified the need to collect additional data to identify current source areas within the upper subbasin. The sediment traps were inspected periodically to remove and archive accumulated solids and were removed from the system in June 2011. At the time of sediment trap removal, inline solids were noted in the vicinity of the trap equipment; inline solids samples were collected from the two sediment trap locations and one adjacent location (manhole AAX376) to supplement the source investigation. Inline solids samples also were analyzed for PCBs, metals, and pesticides. Though results confirmed the presence of PCBs, pesticides, and metals in upper subbasin inline solids, concentrations were lower than those previously detected in this portion of the subbasin. Results and documentation of the 2010 – 2011 sediment trap deployment and solids sampling activities are provided in Appendix D.

Concurrent with the City's sediment trap deployment in the upper portion of the subbasin, PES (on behalf of Univar) deployed two sediment traps at downstream locations. The sediment

MAY 2012 PAGE 3-2

_

³ Catch basin APN941 was sampled as an alternative to a proposed sample location at catch basin ADY099 (mapped in NW 35th Avenue on the corner of NW Guam Street), which no longer exists. Although subsequently it was determined that catch basin APN941 does not discharge to the east-central subbasin, the sample from this catch basin was retained for analysis because it receives runoff from approximately the same area of NW 35th Avenue as the original proposed sample location.

traps were installed in manholes AAX261 and AAT557 on November 30, 2010, and removed on April 28, 2011. The trap bottles were inspected periodically during this period and accumulated solids removed and archived. The final composited sample from each location was analyzed for PCB congeners, pesticides, metals, SVOCs, dioxin-furans, total organic carbon, and total solids (PES, 2011b).

3.2 Summary of Source Investigation Results

Chemical analytical results for the solids samples collected by the City and others from the east-central subbasin conveyance system are summarized in Tables 2 through 4. The data tables include the JSCS SLVs for reference. Total PCBs, total DDx, total chlordane, heptachlor, and some metals concentrations exceed the JSCS Toxicity SLVs in the samples from previous and/or current investigations in this subbasin. Results for PCBs, selected pesticides, and selected metals⁴ for the pre- and post-line cleanout stormwater solids samples are shown on Figures 3 through 6.

PCBs, pesticides, and metals were detected in most subbasin solids samples collected before and after the 2010 line cleaning activities, though concentrations generally are lower in the post-cleanout samples. PCB Aroclors, pesticides, and metals detected in erodible soils on NW Lake Street were also detected in subbasin catch basin solids. These results are evaluated in Section 4 with regard to the JSCS SLVs and "typical" ranges of detected concentrations in Portland Harbor (DEQ, 2010) and in relation to known or suspected contaminant sources.

⁴ Copper was identified in stormwater data evaluation for Basin 18 (BES, 2010b). A broader suite of metals evaluated up-the-pipe to assist with source tracing. Cadmium, copper, lead, and manganese were detected in localized areas at concentrations more than 10 times the JSCS Toxicity SLVs in one or more samples from previous and/or current investigations.

This page intentionally left blank.

SECTION 4

Data Evaluation

Results for the east-central subbasin stormwater solids and erodible soils investigations (presented in Tables 2 through 4) are evaluated in this section with regard to sources and source control status. As discussed in Section 2.4, there are multiple upland sites within and adjacent to this subbasin that are known and suspected sources of the subbasin source-tracing contaminants (PCBs, pesticides and certain metals). Based on the available site data, all source tracing contaminants have been detected at one or more of the identified upland sites in the east-central subbasin. Table 5 lists maximum concentrations of these constituents detected in solids samples from these sites, as well as maximum concentrations detected in pre- and post-cleanout stormwater solids samples from the City lines.

Several considerations were taken into account during data evaluation. As discussed in Section 2.1, subbasin boundaries likely do not reflect all historical and current stormwater contaminant migration pathways from upland sites to the east-central subbasin. Because changes to onsite conveyance systems, grading, paving, and development can alter drainage areas and discharge points, this evaluation includes site data from known and suspected sources adjacent to the subbasin. Also, during the course of the City's source investigation work in this basin, source control activities were occurring at several upland sites, which can complicate the interpretation of the inline results. For example, detection of elevated concentrations in solids adjacent to a facility that has implemented source controls may indicate offsite migration of a former source and not an ongoing source. This source investigation evaluation uses both inline and upland site data to assess whether there are additional sources in the basin warranting source control.

The data discussed in this section also are evaluated relative to the reference concentration ranges for Portland Harbor industrial sites provided in DEQ's *Stormwater Evaluation Guidance* (DEQ, 2010), where applicable.⁵ Results for the stormwater solids samples that were collected from storm lines after the summer 2010 line cleaning activities are compared to the pre-cleanout results to evaluate possible ongoing sources. The data indicate a general decrease in contaminant concentrations in the system following the 2010 comprehensive cleanout, although detections in the post-cleanout samples indicate there are still ongoing sources to the subbasin. Results from the NW Lake Street erodible soils investigation are evaluated separately. These findings are discussed in further detail below.

4.1 PCBs

Total PCBs concentrations were elevated relative to DEQ industrial reference concentrations in a number of solids samples collected prior to the 2010 line cleanout, with the highest concentrations detected in samples from the NW 35th Avenue line (see Figure 3). PCBs concentrations in the post-cleanout stormwater solids samples (Univar's May 2011 sediment trap samples and the City's June 2011 sediment trap and inline solids samples) are much lower

⁵ The DEQ guidance does not include data compilation for pesticides.

overall than in the pre-cleanout samples (see Table 5). With the exception of one sample, PCBs either were not detected in the post-cleanout samples or were detected at concentrations that are low compared to the range of DEQ industrial reference concentrations. The total PCBs concentration in the 2011 inline solids sample from manhole AAX278 (in NW 35th Avenue) is moderately elevated compared to the DEQ industrial reference concentrations (although PCBs were not detected in the 2011 sediment trap sample from this location; see Figure 3).

Connecting and adjacent upland sites where PCBs have been detected at elevated concentrations include the former CAP site, Container Recovery and Container Management (see Table 5). PCB-contaminated solids may have been discharged to the City lines via piped stormwater discharges from known sources in the subbasin, overland runoff from adjacent known sources to private conveyance systems discharging to the subbasin, and/or vehicle drag-out from one or more of these sites to streets drained by the City system. Decreased concentrations in the post-cleanout samples likely reflect both the removal of legacy contaminated solids from the municipal system and completion of source control activities at CAP and other upland sites (see Section 4.5). Additional source investigation and control work is underway at the Container Management and Wilhelm sites -- two suspected sources of PCBs to the subbasin (see Section 4.5). Source investigation data indicate that further City source tracing for PCBs is not warranted at this time.

4.2 Pesticides

Concentrations of DDx constituents, total chlordane, ⁶ and heptachlor exceeded the JSCS Toxicity SLVs in the 2003, 2007 and/or 2009 solids samples from the lower portion of this subbasin (see Figure 4). Limited pre-cleanout pesticides data are available upstream of Manhole AAX261. Pesticides were analyzed but not detected in the samples collected from the NW 35th Avenue line during the CAP investigation; however, MRLs for the pesticides analysis in these samples exceeded the JSCS SLVs by orders-of-magnitude (Wohlers, 2011; see Table 3), which could easily mask the presence of pesticides.

Total DDx, total chlordane, and heptachlor concentrations in the 2011 sediment trap samples from manholes AAT557 and AAX261 (Univar samples) are lower by approximately an order-of-magnitude compared to concentrations in most of the pre-cleanout samples from these locations. A separate chlordane mixture⁷ analyzed only in the Univar samples was detected at a concentration similar to the pre-line cleanout sample from manhole AAT557. One or both chlordane types in both Univar samples exceed the JSCS Toxicity SLV. Pesticides concentrations detected in the post-cleanout samples from the NW 35th Avenue line were generally low relative to the Toxicity SLVs with the exception of DDx constituents in the inline solids sample from manhole AAX278 (see Table 3).

Suspected pesticides sources to the subbasin have been identified (see Table 5). DDx constituents, chlordane and other pesticides have been detected at elevated concentrations in

⁶ The term "total chlordane" as used in this report refers to the sum of alpha-chlordane and beta-chlordane.

⁷ The chlordane mixture analyzed in the Univar samples labeled as "chlordane" on the associated laboratory report [Chemical Abstract Service (CAS) analyte no. 57-74-9] and Table 2 of this report, refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components.

stormwater solids and soils from the Container Management site, and pesticides were detected at concentrations above the JSCS SLVs in shallow soil samples collected beneath the pavement in Univar's eastern driveway (PES, 2010a). The Wilhelm stormwater pathway investigation will include pesticides analysis of stormwater solids and erodible soils. Although pesticides have not been detected in solids collected at the other upland sites listed in Table 5, MRLs in most cases were elevated relative to JSCS SLVs.

Though historical and current pathways from the Container Management site to Basin 18 are not fully understood, overland flow from this site to stormwater conveyance systems on adjacent sites in the east-central subbasin may have resulted in offsite migration of pesticides to the east-central branch. Completion of source investigation and control at the Container Management, Wilhelm, and Univar sites is expected to further reduce pesticides discharges to the east-central subbasin. Source investigation data indicate that further City source tracing for pesticides is not warranted at this time.

4.3 Metals

Though the City evaluation of Basin 18 stormwater data identified copper as the only metal needing further source tracing (BES, 2010b), the City analyzed a broader suite of metals to help identify potential metals source areas. Concentrations of certain metals (cadmium, copper, lead, and manganese) in one or more of the pre-cleanout stormwater solids samples were elevated relative to DEQ's industrial reference concentrations and/or more than 10 times the JSCS Toxicity SLVs. Metals concentrations in the post-cleanout samples were overall notably lower (see Figure 5 and Table 5), although cadmium and/or chromium concentrations in some of these samples are elevated relative to DEQ's reference concentrations.

As indicated by the metals concentrations detected in stormwater solids from the former CAP site (see Table 5), this site was a major historical source of metals to this subbasin. Copper concentrations in site storm system solids were similar to maximum concentrations detected in the east-central subbasin. Source controls have been implemented at the site and data collection is underway to evaluate whether source controls are sufficient to control contaminant discharges via the stormwater pathway (See Section 4.5). The significant reduction in metals concentrations in the post-cleanout stormwater solids is attributed in large part to the remediation and redevelopment of the former CAP site, as well as cleanout of legacy solids from the City lines. Source investigation data indicate that further City source tracing for copper and other metals is not warranted at this time.

4.4 Erodible Soils Pathway Evaluation

PCBs, pesticides, and metals were detected in the surface soil samples from NW Lake Street and in the solids from the nearby catch basins in NW 35th Avenue (see Table 4 and Figure 6). Total PCBs concentrations in the NW Lake Street samples were low to moderately elevated relative to the DEQ industrial reference concentrations, and concentrations of DDT and/or total chlordane in these samples exceed the JSCS Toxicity SLVs. Copper and other metals were detected in NW Lake Street erodible soils, though concentrations were not elevated relative to SLVs or industrial reference concentrations. Concentrations of all source tracing contaminants (PCBs, pesticides, and copper) in catch basin solids were below Toxicity SLVs.

Surface soil results confirm that offsite migration of PCBs, pesticides, and metals has occurred to NW Lake Street. The highest concentration of total PCBs, total DDx, and total chlordane in catch basin solids was observed in the catch basin closest to NW Lake Street (catch basin ANF164). Elevated concentrations of PCBs, total DDX, and total chlordane have been detected in soils at the adjacent Container Management site (see Table 5). NW Lake Street is utilized almost exclusively for access to and from the Container Management site and Container Management truck parking. The roadway and adjacent Container Management operational areas are unimproved, and sediment tracking has been observed (see Appendix C, Attachment C-1); analytical results and visual observations indicate that contaminated erodible soils dragged out to NW 35th Avenue by vehicles exiting the Container Management site may be an ongoing PCBs and pesticides source to the subbasin. A stormwater pathway investigation is underway at Container Management; work to date has not included an evaluation of the erodible soils pathway from the site to NW Lake Street.

4.5 Subbasin Chronology and Source Control Status

Figure 7 summarizes the chronology of solids source investigations and source control activities in the east-central subbasin. As shown on Figure 7, a number of upland sites have cleaned onsite storm systems to reduce contaminant loading to the east-central subbasin. The two major source control measures completed to date are the line cleanouts completed by the City and Univar in 2010 and the CAP site remediation/redevelopment completed in early 2011. These efforts appear to have reduced concentrations, of total PCBs pesticides, and metals being discharged to the City stormwater conveyance system (see Table 5). Investigations are underway at CAP, Univar, Wilhelm, and Container Management to identify and control site contaminant discharges to Basin 18.

There are other source control mechanisms beyond the State Cleanup program employed in the basin to help control current and future contaminant discharges to the conveyance system. The recently issued 1200-Z NPDES general stormwater permit has lower metals benchmarks and requirements for minimizing vehicle tracking offsite. Several upland sites operate under NPDES stormwater permits or NECs to minimize adverse impacts of industrial operations on stormwater quality. Further reductions in contaminant discharges to this system are expected once stormwater pathway evaluations are completed and source controls implemented at other upland sites in and adjacent to the subbasin.

SECTION 5

Conclusions and Next Steps

The City source investigation of the east-central subbasin, and concurrent evaluation of soils data collected at upland sites discharging to this branch, confirmed that major sources of PCBs, pesticides, and metals to this portion of Basin 18 have been identified and are in appropriate programs to select and implement necessary source controls. Investigation results also identified an apparent erodible soils pathway from the Container Management site to the east-central subbasin via offsite migration of PCBs and pesticides to NW Lake Street and the City storm line on NW 35th Avenue. DEQ is working with identified sources to the east-central basin, and further City source investigation is not needed.

Inline solids data collected from Basin 18 during investigations conducted between 2003 and 2009 indicated that there were major sources of PCBs, pesticides (DDx, total chlordane, heptachlor) and certain metals to the east-central subbasin. The subbasin has a number of known and suspected sources of these contaminants including but not limited to: ANRFS/ABF Freight Systems, Carson Oil, CAP, Container Management, Container Recovery, Univar, and Wilhelm Trucking. Since the initiation of City source investigations in this subbasin, several of these upland sites have commenced stormwater pathway evaluations under DEQ or EPA oversight to identify and control site contaminant discharges to Basin 18.

Stormwater pathway investigations are currently underway at the CAP, Container Management, Wilhelm Trucking, and Univar facilities. Evaluation of basin and upland site data indicates that the CAP site was a major historical source of metals and PCBs; source controls implemented at CAP in early 2011 are expected to reduce metals and PCBs loading to the subbasin. Source investigation data from Container Management indicates that the site is a likely major historical and current source of PCBs, pesticides, and metals. Additional investigation is needed to evaluate the erodible soils pathways from this site to NW Lake Street and adjacent sites and to identify necessary onsite source controls. Stormwater pathway data collection is also underway at Wilhelm and Univar.

Line cleaning completed by the City and Univar in 2010, as well as cleanout of several onsite stormwater systems (i.e., ANRFS/ABF, Carson Oil, CAP, Container Recovery), removed legacy sources of contamination associated with accumulated solids in this branch. Post-cleanout solids data from this subbasin indicate discharges of PCBs, pesticides, and metals have been reduced, although the data also indicate there are continuing sources to the subbasin. Available information from upland sites confirms the presence of these contaminants at sites within and adjacent to the subbasin. Likely current pathways for offsite migration of contaminants to the City stormwater conveyance system include direct piped stormwater discharges from known sources in the subbasin, overland runoff from adjacent known sources to private conveyance systems discharging to the subbasin, and vehicle drag-out of contaminated erodible soils from one or more of these sites to streets drained by the City system.

The City investigation in the east-central subbasin concludes that identified sources of PCBs, pesticides, and metals account for contamination observed in this portion of the Basin 18

stormwater conveyance system. Further reductions in contaminant loading to the east-central subbasin of Basin 18 will be accomplished through source control implementation at upland sites under DEQ and EPA oversight. Additional City investigation of sources of PCBs, pesticides, and metals is not warranted in this area because identified sources are in the process of being controlled. The City will continue to coordinate with DEQ and EPA on the review of work plans and reports related to ongoing evaluations at known and suspected sources to the east-central subbasin.

References

- BB&A. 2008. Focused Site Investigation for Completion of Prospective Purchaser Agreement, for ECSI #29, Former Columbia American Plating Co., 3-33 NW 35th Avenue, Portland, Oregon. Letter report submitted to M. Pugh (DEQ) by Bergeson-Boese & Associates, Inc. September 23, 2008.
- BES. 2006. Inline Solids Sampling in the Vicinity of Container Management Services and Wilhelm Trucking Co. Technical Memorandum No. OF18-1. City of Portland, Bureau of Environmental Services. March 21, 2006.
- BES. 2010a. Technical Memorandum No. OF18-2, Outfall Basin 18 Inline Solids Investigation. July 20, 2010.
- BES. 2010b. Stormwater Evaluation Report. City of Portland, Bureau of Environmental Services. February 2010.
- CH2M Hill. 2004a. Phase 1 Data Evaluation Report and Phase 2 Work Planning for City of Portland Outfall 18, Source Control Pilot Project. Prepared for the City of Portland, Bureau of Environmental Services. April 2004.
- CH2M Hill. 2004b. Programmatic Source control Remedial Investigation Work Plan for the City of Portland Outfalls Project. Prepared for the city of Portland, Bureau of Environmental Services. March 19, 2004.
- CH2M Hill. 2005. Data Evaluation Report. Inline Solids in Basins M-1 and 18. Prepared for the City of Portland, Bureau of Environmental Services, Portland Harbor Source Control Project. December 2005.
- DEQ. 2008a. Re: Catch Basin Sediment Sampling Results and Findings, ABF, ECSI #1820. Letter to C. Athens (ABF) from K. Johnson (DEQ). May 14, 2008.
- DEQ. 2008b. Re: Catch Basin Sediment Sampling Results and Findings, Carson Oil, ECSI #1405. Letter to S. Gaylord (Carson) from K. Johnson (DEQ). May 14, 2008.
- DEQ. 2008c. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 1405, Carson Oil NW 35th Ave. Last updated October 2008. Website accessed on September 15, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1405
- DEQ. 2008d. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 4015, Container Recovery. Last updated October 2008. Website accessed on September 15, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=4015

- DEQ. 2008e. Re: Catch Basin Sediment Sampling Results and Findings, Container Recovery, ECSI #4015. Letter to J. Fletcher (Container Recovery) from K. Johnson (DEQ). May 14, 2008.
- DEQ. 2008f. Re: Catch Basin Sediment Sampling Results and Findings, Ashland Chemical #1076. Letter to P.J. Sigler (Ashland Distribution Company) from K. Johnson (DEQ). May 14, 2008.
- DEQ. 2008g. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 1076, Hill Investment Co. Last updated September 2008. Website accessed on September 13, 2011. http://www.deg.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1076
- DEQ. 2008h. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 4784, Container Management Services. Last updated March 2008. Website accessed on September 15, 2011. http://www.deg.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=4784
- DEQ. 2008i. Re: Catch Basin Sediment Sampling Results and Findings, Owens Corning Yeon, ECSI #1160. Letter to D. Gonor (Owens Corning) from K. Johnson (DEQ). May 14, 2008.
- DEQ. 2008j. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 1160, Trumbull Asphalt Plant. Last updated October 2008. Website accessed on September 15, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1160
- DEQ. 2009a. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 29, Columbia American Plating Co. Last updated April 27, 2009. Website accessed on September 15, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=29
- DEQ. 2010. "Tool for Evaluating Stormwater Data" Appendix E to Guidance for Evaluating the Stormwater Pathway at Upland Sites. January 2009 (updated October 2010).
- DEQ. 2011. RE: DEQ Comments for Fourth Quarter 2010 Status Update for the Container Management Services Site at 3000 N.W. Saint Helens Road Portland, OR ECSI #4784. Letter to M. Bazargani (SES) from J. Orr (DEQ). July 25, 2011.
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).
- EPA. 2010. Re: Portland Harbor Superfund Site; Administrative Order on Consent for Remedial Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240. Portland Harbor Feasibility Study Source Tables. Letter from EPA to Mr. Bob Wyatt, Chairman, Lower Willamette Group. November 23, 2010.

- HAI. 2011. Storm Water Assessment Work Plan, Revision 2, Wilhelm Trucking Co. Facility. Prepared by Hahn and Associates (HAI). September 30, 2011.
- O'Gara. 2009. Re: On-site stormwater sewer cleanout, former Columbia American Plating site. Letter report submitted to DEQ. Prepared by Tim O'Gara, R.G., Consulting Hydrogeologist. September 29, 2009.
- PES. 2006. Final Draft Corrective Measures Study Report, Univar USA, Inc., Portland, Oregon. May 22, 2006.
- PES. 2010a. Revised Stormwater Pathway Investigation Work Plan. Prepared for Univar USA by PES Environmental, Inc. June 19, 2010.
- PES. 2010b. Re: June 10, 2010 Storm Sewer Main Video Survey, Summary Letter Univar USA, Inc. Facility, 3950 Yeon Avenue. Letter report submitted to L. Scheffler (BES) from B. O'Neal (PES). July 12, 2010.
- PES. 2011a. Request for Approval, Proposed Groundwater Infiltration Sampling, Stormwater Pathway Investigation, Univar USA, Inc., Portland, Oregon, ORD 009227398. Letter proposal submitted to H. Arrigoni (EPA) from B. O'Neal (PES). June 22, 2011.
- PES. 2011b. Subject: Univar Portland SPI Sediment results. Email to L. Scheffler (BES) from B. O'Neal (PES). July 19, 2011.
- SES. 2009. Stormwater Assessment Work Plan, Container Management Services, LLC, 3000 NW St. Helens Road, Portland, OR. Prepared for IMACC Corporation by Strategic Engineering & Science, Inc. January 30, 2009.
- SES. 2011. Re: Sediment and Soil Sampling Data Tables, Container Management Services, LLC, 3000 NW St. Helens Road, Portland, Oregon, ECSI #4784. Data transmittal to J. Orr (DEQ) from S. Kemnitz and M. Bazargani (Strategic Engineering & Science, Inc.). October 12, 2011.
- SES. 2012a. Re: Soil Excavation Report Loading Dock Area. Letter report from S. Kemnitz and M. Bazargani (Strategic Engineering & Science, Inc.) to J. Orr (DEQ). January 17, 2012.
- SES. 2012b. Re: Notice of Intent to Close Underground Injection Control System/Proposed Closure Plan for Manhole #2 and Pipe Junction Investigation. Letter report from S. Kemnitz and M. Bazargani (Strategic Engineering & Science, Inc.) to J. Orr (DEQ). March 30, 2012.
- Wohlers. 2000. Re: Transmittal of Documentation Pertaining to Storm Water Issues at Carson Oil Company Located at 3125 N.W. 35th Avenue in Portland Oregon, Wohlers Environmental Project No. 98-0096. Letter from Kelly A. Harrison (Wohlers Environmental Services, Inc.) to Mr. Robert Wilhelm, Jr. (Wilhelm Trucking Company). October 13, 2000.
- Wohlers. 2008. Subject: Carson Oil Co. Catch Basin Sediment Sampling. Email to K. Tarnow (DEQ) from J. Trask (Wohlers Environmental Services, Inc.). December 10, 2008.

- Wohlers. 2010. Sediment Sampling Summary Report, Oregon Beverage Recyclers Cooperative, 20900 N.W. Yeon Avenue, Portland, Oregon 97210. Prepared for Oregon Beverage Recyclers Cooperative, by Wohlers Environmental Services, Inc. March 5, 2010.
- Wohlers. 2011. Stormwater Assessment Workplan, Former Columbia American Plating Facility, 3003 N.W. 35th Avenue, Portland, Oregon. Prepared for 3003 NW 35th LLC (c/o Carson Oil Company) by Wohlers Environmental Services. July 22, 2011.

Table 1 Potential Upland Sources Within and Adjacent to East-Central Subbasin of Basin 18

Facility Name	DEQ Cleanup Site	Stormwater NPDES Permit	Site Contaminants of Interest ⁽¹⁾	DEQ Cleanup Program Status	Stormwater Pathway Evaluated Under DEQ or EPA Oversight?
Facilities Within the East-Central Subbasin					
ANRFS / ABF Freight Systems / ANRFS Holdings Inc. (ECSI #1820) ⁽²⁾	Х	Х	Arsenic, chromium, copper, zinc, PCBs, PAHs, BEHP	Inactive	No
Carson Oil (ECSI #1405)	Х	х	VOCs, PAHs, TPH, arsenic, chromium, copper, zinc, PCBs, BEHP	Inactive	No
Columbia American Plating (ECSI #29)	х	х	Lead, PCBs, VOCs, SVOCs	Active	In process
Container Recovery Inc. (ECSI #4015)	х	х	Cadmium, lead, zinc, PAHs, PCBs, phthalates	Inactive	No
Magnus / Wilhelm Trucking (ECSI #69)	х	х	Lead	Active	In process
Univar (Van Waters & Rogers) (ECSI #330)	Х	Х	Lead, pesticides, TPH, VOCs	Active (under EPA oversight)	In process
Facilities Adjacent to the East-Central Subb	asin				
Ashland Chemical / Hill Investment (ECSI #1076)	Х	х	Arsenic, chromium, copper, zinc, PCBs, PAHs, BEHP	Inactive	No
Container Management Services (ECSI #4784)	unagement Services (ECSI #4784) X		PCBs, lead, mercury, zinc, PAHs, PCBs, TPH	Active	In process
Owens Corning / Trumbull Asphalt (ECSI #1160)	Х	х	PAHs, PCBs, phthalates, arsenic, chromium, copper, zinc	Inactive	No

DEQ = Oregon Department of Environmental Quality ECSI = Environmental Cleanup Site Information List

MAY 2012 PAGE 1 OF 1

⁽¹⁾ See Stormwater Evaluation Report (BES, 2010) for basis of site COI identification.

⁽²⁾ Current operations at ABF qualify for an NPDES No Exposure Certification (NEC). MRP Services Inc., which operated on the southern portion of this site from 2007-2010, held a separate NPDES permit. MRP filed for bankruptcy in 2010 and has vacated the site.

Table 2
Basin 18 East-Central Subbasin Stormwater Solids Results - Downstream of NW 35th Avenue Line

		Downstream <									>	I Imotoro o ma		
		Downstream		IL-18-AAT557-0803				Manhole AAX261		Manhole AAX262	Manhole AAX263	Upstream Manhole AAX264		
		Inline Solids	Sediment Trap Solids	Inline Solids	Sediment Trap Solids	Sediment Trap Solids (Univar Sample) (1)	Inline Solids	Sediment Trap Solids (Univar Sample) (1)	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 42" line IL-18-AAT557-0803	Upstream of manhole in 42" line ST2: FO070806	Upstream of manhole in 42" line ST2: FO070807	Upstream of manhole in 42" line ST2: FO095693	Upstream of manhole in 42" line SPI-2-S-2010/2011	Downstream of manhole in 42" line ST5: FO095671	Downstream of manhole in 42" line SPI-1-S-2010/2011	n Upstream of manhole in 36" line ST5: FO095696	Downstream of manhole in 36" line FO095976	Upstream of manhole in 36" line FO095975	Upstream of manhole in 30" line FO 095974	Screen	JSCS ⁽²⁾ ing Level Value
Class Analyte	Units	8/19/2003	6/19/2007	6/19/2007	6/9/2009	5/10/2011	6/4/2009	5/10/2011	6/10/2009	10/6/2009	10/6/2009	10/6/2009	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)		52.000	105.000	04.400	52.200	45,000	70.6	112.000	00.500	00.200	75.400	10.000		
TOC	mg/Kg	52,900	106,000	91,100	52,200	46,800	786	112,000	90,600	89,200	75,400	19,000		
Total Solids (SM 2540G)														
TS	%	NA	54	7.18	45.9	69.6	63.5	62.4	59.7	58.2	60.4	79.4		
Grain Size (ASTM D421/422)														
Gravel (>4750 μm)	Fract %	NA	NA	NA	NA	NA	6.2	NA	NA	NA	NA	NA		
Coarse Sand (4750-2000 μm) Medium Sand (2000-425 μm)	Fract %	NA NA	NA NA	NA NA	NA NA	NA NA	1.4	NA NA	NA NA	NA NA	NA NA	NA NA		
Fine Sand (425-75 μm)	Fract %	NA NA	NA NA	NA NA	NA NA	NA NA	21.3	NA NA	NA NA	NA NA	NA NA	NA NA		
Silt (3.2-75 μm)	Fract %	NA NA	NA NA	NA	NA	NA NA	5.0	NA NA	NA NA	NA NA	NA NA	NA NA		
Clay (<3.2 µm)	Fract %	NA	NA	NA	NA	NA	4.6	NA	NA	NA	NA	NA		
Metals (EPA 6020)														
Aluminum	mg/Kg	NA	NA	13,800	NA	10,700	12,200	13,200	NA	NA	NA	NA		
Antimony	mg/Kg	NA	NA	9.1	NA	2.25	0.16	9.41	NA	NA	NA	NA	64	
Arsenic	mg/Kg	10.5	NA	114	4.75	3.38	2.14	3.45	3.54	4.56	4.55	3.08	33	7
Chromium	mg/Kg	14.9 188	NA NA	8.4 33.9	0.34 43.8	5.34 51.8	91.5 0.17	6.36 46.6	24.9 142	405 469	195 545	94.3	4.98 111	1
Chromium Copper	mg/Kg mg/Kg	151	NA NA	79.8	46.9	118	16.5	126	192	2,460	536	206	149	
Iron	mg/Kg	NA	NA	NA	NA	30,200	NA	37,100	NA	NA	NA	NA		
Lead	mg/Kg	636	NA	128	22.6	370	6.11	138	285	924	665	364	128	17
Manganese	mg/Kg	NA	NA	111,000	754	363	347	386	367	NA	NA	NA	1,100	
Mercury	mg/Kg	0.643	NA NA	0.12	0.260	0.177	0.018	0.086	0.299	0.833	0.532	0.309	1.06	0.07
Molybdenum Nickel	mg/Kg mg/Kg	NA NA	NA NA	NA 36	30.2	3.25	19.2	6.66	73.3	NA 171	NA 211	NA 103	48.6	
Selenium	mg/Kg	NA NA	NA NA	NA NA	NA	0.6 J	NA	0.9 J	NA	NA	NA	NA	5,000	2,000
Silver	mg/Kg	NA	NA	0.35	0.24	0.258	0.10 U	0.446	1.60	5.99	6.35	0.86	5	
Zinc	mg/Kg	374	NA	2,470	172	563	58.9	820	897	1,890	1,570	544	459	
Organochlorine Pesticides (EPA 8081A)														
2,4'-DDD	μg/Kg	NA	NA	NA	NA	7.6	NA	3.3 U	NA	NA	NA	NA		
2,4'-DDE	μg/Kg	NA	NA	NA	NA	3.0 U	NA	3.3 U	NA	NA	NA	NA		
2,4'-DDT	μg/Kg	NA 90	NA	NA 10	NA	3.7	NA 0.70 L	2.0 J	NA 45	NA NA	NA	NA NA		
4,4'-DDD ⁽³⁾ 4,4'-DDE ⁽³⁾	μg/Kg	80	100	19 26	55	6.9 4.2	0.70 J 0.97	3.3	45 68	NA NA	NA NA	NA NA	28	0.33
4,4'-DDE 4,4'-DDT ⁽³⁾	μg/Kg	21 284	44 U	17	23 U	8.2 U	0.97 0.46 J	4.6	95	NA NA	NA NA	NA NA	31.3 62.9	0.33
Estimated Total DDx	μg/Kg (4) μg/Kg	385	169	62	121	22.4	2.13 J	5.4 U 9.9 J	208	NA NA	NA NA	NA NA		0.33
Aldrin	μg/Kg μg/Kg	365	169	3.5 U	78	3.0 U	0.54 J	9.9 J 1.6 U	208 29 U	NA NA	NA NA	NA NA	40	0.33
alpha-BHC (α-BHC)	μg/Kg	1.1 U	9.3 U	3.7 U	2.2 U	3.0 U	0.79 U	0.64 J	8.9 U	NA NA	NA NA	NA NA		
beta-BHC (β-BHC)	μg/Kg	1.1 U	9.3 U	4.2 U	2.2 U	8.2	0.79 U	0.58 U	3.7 U	NA	NA	NA		
delta-BHC (δ-BHC)	μg/Kg	26	9.3 U	90 U	4.8 U	3.0 U	0.79 U	0.88 U	3.7 U	NA NA	NA	NA		
gamma-BHC (γ-BHC, Lindane)	μg/Kg	1.9	9.3 U	4.8 U	7.9 U	1.3 J	0.79 U	2.1 J	12 U	NA NA	NA NA	NA NA	4.99	
alpha-Chlordane ⁽⁵⁾ beta-Chlordane ⁽⁵⁾	μg/Kg	152 512	34 87	11 52	52 350	5.4	0.15 J 0.19 J	3.6 8.3	23 U 25 U	NA NA	NA NA	NA NA		
Total Chlordane	μg/Kg	664	121	63	402	23.4		11.9				NA NA	17.6	0.27
Chlordane (7)	100						0.34 J		ND NA	NA NA	NA NA	NA NA	17.6	0.37
Oxychlordane	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	110 5.3	NA NA	110 3.3 U	NA NA	NA NA	NA NA	NA NA	17.6	0.37
cis-Nonachlor	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	4.1 U	NA NA	3.3 U	NA NA	NA NA	NA NA	NA NA		
trans-Nonachlor	μg/Kg	NA	NA	NA	NA	4.1	NA	2.7 J	NA	NA	NA	NA		
Dieldrin	μg/Kg	46	40	4.4	3.8	1.0 J	0.79 U	2.0 U	13 U	NA	NA	NA	61.8	0.0081
Endosulfan I	μg/Kg	5.8	22	8.8	5.2 U	3.0 U	0.13 J	5.1 U	8.4	NA NA	NA NA	NA NA		
Endosulfan II Endosulfan sulfate	μg/Kg μg/Kg	2.2 U 2.2 U	16 15 U	3.5 U 3.5 U	18 U 2.4	3.0 U 0.87 J	0.79 U 0.79 U	3.3 U 3.9	20 U 4	NA NA	NA NA	NA NA		
Endrin Surrate	μg/Kg μg/Kg	70	9.3 U	3.5 U	2.4 3.2 U	3.0 U	0.79 U	0.34 U	3.7 U	NA NA	NA NA	NA NA	207	
Endrin aldehyde	μg/Kg	198 J	9.3 U	3.5 U	3.6 U	2.9 J	0.79 U	1.6 J	3.7 U	NA	NA	NA		
Endrin ketone	μg/Kg	2.2 U	9.3 U	7.1 U	8.8	5.8 U	0.79 U	3.3 U	3.7 U	NA	NA	NA		

MAY 2012 PAGE 1 OF 5

Table 2
Basin 18 East-Central Subbasin Stormwater Solids Results - Downstream of NW 35th Avenue Line

		Downstrason &	Dougstroom								Limotrosom			
		Downstream		IL-18-AAT557-0803	1			Manhole AAX261		Manhole AAX262	Manhole AAX263	Upstream Manhole AAX264		
		Inline Solids	Sediment Trap Solids	Inline Solids	Sediment Trap Solids	Sediment Trap Solids (Univar Sample) (1)	Inline Solids	Sediment Trap Solids (Univar Sample) (1)	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 42" line IL-18-AAT557-0803	Upstream of manhole in 42" line ST2: FO070806	Upstream of manhole in 42" line ST2: FO070807	Upstream of manhole in 42" line ST2: FO095693	Upstream of manhole in 42" line SPI-2-S-2010/2011	Downstream of manhole in 42" line ST5: F0095671	Downstream of manhole in 42" line SPI-1-S-2010/2011	n Upstream of manhole in 36" line ST5: FO095696	Downstream of manhole in 36" line FO095976	Upstream of manhole in 36" line FO095975	Upstream of manhole in 30" line FO 095974		JSCS ⁽²⁾ ing Level Value
Class Analyte	Units	8/19/2003	6/19/2007	6/19/2007	6/9/2009	5/10/2011	6/4/2009	5/10/2011	6/10/2009	10/6/2009	10/6/2009	10/6/2009	Toxicity	Bioaccumulation
Heptachlor	μg/Kg	3.0	66	31	300	2.8 J	0.79 U	4.7 U	12	NA	NA	NA	10	
Heptachlor epoxide Methoxychlor	μg/Kg μg/Kg	1.1 U 112 U	16 15 U	3.6 3.5 U	6.3 U 3.7 U	3.0 U 3.0 U	0.79 U 0.79 U	0.41 U 8.0	8.6 U 4.0 U	NA NA	NA NA	NA NA	16 	
Toxaphene	μg/Kg μg/Kg	112 U	1,600 U	240 U	790 U	240 U	40 U	200 U	970 U	NA NA	NA NA	NA NA		
<u> </u>			,,,,,											-
Chlorinated Herbicides (EPA 8151A) 2,4,5-T	μg/Kg	NA	NA	3,500 U	NA	NA	31.3 U	NA	NA	NA	NA	NA		
2,4,5-TP (Silvex)	μg/Kg	NA	NA	3,500 U	NA	NA	31.3 U	NA	NA	NA	NA	NA		
2,4-D	μg/Kg	NA	NA	3,500 U	NA	NA	31.3 U	NA	NA	NA	NA	NA		
2,4-DB	μg/Kg	NA	NA	7,200	NA	NA	31.3 U	NA	NA	NA	NA	NA		
Dalapon	μg/Kg	NA	NA	120,000 U	NA	NA	31.3 U	NA	NA	NA	NA	NA		
Dicamba	μg/Kg	NA	NA	3,500 U	NA NA	NA NA	31.3 U	NA NA	NA NA	NA NA	NA NA	NA NA		
Dichlorprop	μg/Kg	NA NA	NA	3,500 U	NA NA	NA NA	31.3 U	NA NA	NA NA	NA NA	NA NA	NA NA		
Dinoseb MCPA	μg/Kg μg/Kg	NA NA	NA NA	3,500 U 700,000 U	NA NA	NA NA	31.3 U 3,130 U	NA NA	NA NA	NA NA	NA NA	NA NA		
MCPP	μg/Kg μg/Kg	NA NA	NA NA	700,000 U	NA NA	NA	3,130 U	NA NA	NA	NA NA	NA NA	NA		
Polychlorinated Biphenyls Aroclors (P				,			,							
Aroclor 1016	μg/Kg	107 U	93 U	67 U	20 U	Note (9)	10 U	Note (9)	10 U	20 U	20 U	20 U	530	
Aroclor 1221	μg/Kg	213 U	190 U	93 U	40 U	Note (9)	20 U	Note (9)	20 U	40 U	40 U	40 U		
Aroclor 1232		107 U	93 U	190 U	20 U	Note (9)	10 U	Note (9)	10 U	20 U	20 U	20 U		
	μg/Kg													
Aroclor 1242	μg/Kg	107 U	93 U	140 U	20 U	Note (9)	10 U	Note (9)	10 U	20 U	20 U	20 U		
Aroclor 1248	μg/Kg	107 U	800	86 U	40 U	Note (9)	10 U	Note (9)	100 U	294	288	401	1500	
Aroclor 1254	μg/Kg	107 U	93 U	250	20 U	Note (9)	10 U	Note (9)	70	20 U	20 U	20 U	300	
Aroclor 1260	μg/Kg	624	400	93	20 U	Note (9)	10 U	Note (9)	37	123	153	122	200	
Aroclor 1262	μg/Kg	NA	93 U	62 U	20 U	Note (9)	10 U	Note (9)	10 U	20 U	20 U	20 U		
Aroclor 1268	μg/Kg	NA	180	35 U	20 U	Note (9)	10 U	Note (9)	10 U	20 U	20 U	20 U		
Total l	PCBs ⁽⁸⁾ µg/Kg	624	1,380	343	ND	99.5	ND	61.4	107	417	441	523	676	0.39
Polychlorinated Biphenyl Congeners (· · · · · · · · · · · · · · · · · · ·	7		·									
Total PCB		NA	NA	NA	NA	NA	NA	NA	NA	2,350 (11)	1,460 (11)	357 ⁽¹¹⁾	676	0.39
Chlorinated Dioxins and Furans (EPA										,	,			-
2,3,7,8-TCDD	μg/Kg	NA	NA	NA	NA	0.000966	NA	0.00159	NA	NA	NA	NA	0.009	0.0000091
1,2,3,7,8-PeCDD	μg/Kg	NA	NA	NA	NA	0.00752	NA	0.0172	NA	NA	NA	NA		0.0026
1,2,3,4,7,8-HxCDD	μg/Kg	NA	NA	NA	NA	0.0131	NA	0.0348	NA	NA	NA	NA		
1,2,3,6,7,8-HxCDD	μg/Kg	NA	NA	NA	NA	0.0571	NA	0.112	NA	NA	NA	NA		
1,2,3,7,8,9-HxCDD	μg/Kg	NA	NA	NA	NA	0.0334	NA	0.0787	NA	NA	NA	NA		
1,2,3,4,6,7,8-HpCDD	μg/Kg	NA	NA	NA NA	NA NA	1.35	NA	2.97 B	NA	NA NA	NA	NA NA		0.69
1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	12.7 0.00155	NA NA	25.0 B 0.00637	NA NA	NA NA	NA NA	NA NA		0.00077
1,2,3,7,8-PeCDF	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	0.00303	NA NA	0.00433	NA NA	NA NA	NA NA	NA NA		0.0026
2,3,4,7,8-PeCDF	μg/Kg	NA	NA	NA NA	NA NA	0.00378	NA	0.00450	NA	NA NA	NA	NA		0.00003
1,2,3,4,7,8-HxCDF	μg/Kg	NA	NA	NA	NA	0.0175	NA	0.0254	NA	NA	NA	NA		0.0027
1,2,3,6,7,8-HxCDF	μg/Kg	NA	NA	NA	NA	0.0132	NA	0.0144	NA	NA	NA	NA		0.0027
2,3,4,6,7,8-HxCDF	μg/Kg	NA	NA	NA	NA	0.00155 U	NA	0.00164 U	NA	NA	NA	NA		0.0027
1,2,3,7,8,9-HxCDF	μg/Kg	NA	NA	NA	NA	0.0353	NA	0.00867	NA	NA	NA	NA		0.0027
1,2,3,4,6,7,8-HpCDF	μg/Kg	NA NA	NA	NA	NA NA	0.611	NA NA	0.516	NA NA	NA NA	NA NA	NA NA		0.69
1,2,3,4,7,8,9-HpCDF	μg/Kg	NA NA	NA NA	NA NA	NA NA	0.0171	NA NA	0.0393	NA NA	NA NA	NA NA	NA NA		0.69
1,2,3,4,6,7,8,9-OCDF Total TCDD	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	1.82 0.00581	NA NA	3.89 B 0.0118	NA NA	NA NA	NA NA	NA NA		
Total PeCDD	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	0.00381	NA NA	0.0118	NA NA	NA NA	NA NA	NA NA		
Total HxCDD	μg/Kg μg/Kg	NA NA	NA NA	NA NA	NA NA	0.283	NA NA	0.595	NA NA	NA NA	NA NA	NA NA		
Total HpCDD	μg/Kg	NA	NA	NA	NA	2.56	NA	5.39	NA	NA	NA	NA		
Total TCDF	μg/Kg	NA	NA	NA	NA	0.0689	NA	0.0689	NA	NA	NA	NA		

MAY 2012 PAGE 2 OF 5

Table 2
Basin 18 East-Central Subbasin Stormwater Solids Results - Downstream of NW 35th Avenue Line

		Downstream <										Upstream		
				IL-18-AAT557-0803			Manhole AAX261			Manhole AAX262	Manhole AAX263	Manhole AAX264		
		Inline Solids	Sediment Trap Solids	Inline Solids	Sediment Trap Solids	Sediment Trap Solids (Univar Sample) (1)	Inline Solids	Sediment Trap Solids (Univar Sample) (1)	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 42" line IL-18-AAT557-0803	Upstream of manhole in 42" line ST2: FO070806	Upstream of manhole in 42" line ST2: FO070807	e Upstream of manhole in 42" line ST2: FO095693	Upstream of manhole in 42" line SPI-2-S-2010/2011	Downstream of manhole in 42" line ST5: FO095671	e Downstream of manhole in 42" line SPI-1-S-2010/2011	u Upstream of manhole in 36" line ST5: FO095696	Downstream of manhole in 36" line FO095976	Upstream of manhole in 36" line FO095975	Upstream of manhole in 30" line FO 095974	JSCS ⁽²⁾ Screening Level Value	
Class Analyte	Units	8/19/2003	6/19/2007	6/19/2007	6/9/2009	5/10/2011	6/4/2009	5/10/2011	6/10/2009	10/6/2009	10/6/2009	10/6/2009	Toxicity	Bioaccumulation
Total PeCDF	μg/Kg	NA	NA	NA	NA	0.258	NA	0.184	NA	NA	NA	NA		
Total HxCDF	μg/Kg	NA	NA	NA	NA	1.16	NA	0.379	NA	NA	NA	NA		
Total HpCDF	μg/Kg	NA	NA	NA	NA	2.26	NA	2.08	NA	NA	NA	NA		
Polycyclic Aromatic Hydrocarbons (EPA	A 8270-SIM)													
2-Methylnaphthalene	μg/Kg	355 J	99	18 U	NA	NA	NA	NA	NA	NA	NA	NA	200	
Acenaphthene	μg/Kg	75.0 U	38 U	18 U	146 U	NA	20.8 U	NA	223 U	NA	NA	NA	300	
Acenaphthylene	μg/Kg	478 J	58	18 U	146 U	NA	20.8 U	NA	223 U	NA	NA	NA	200	
Anthracene	μg/Kg	260 J	110	18 U	247	NA	20.8 U	NA	223 U	NA	NA	NA	845	
Benzo(a)anthracene	μg/Kg	75.0 U	340	18 U	163	NA	31.3	NA	267	NA	NA	NA	1,050	
Benzo(a)pyrene	μg/Kg	545 J	410	18 U	186	NA	23.7	NA	284	NA	NA	NA	1,450	
Benzo(b)fluoranthene	μg/Kg	NA	570	18 U	235	NA	20.8 U	NA	360	NA	NA	NA		
Benzo(g,h,i)perylene	μg/Kg	1,560 J	750	24	267	NA	20.8 U	NA	451	NA	NA	NA	300	
Benzo(k)fluoranthene	μg/Kg	NA	160	18 U	164	NA	20.8 U	NA	257	NA	NA	NA	13,000	
Benzofluoranthenes	μg/Kg	796	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Chrysene	μg/Kg	75.0 U	450	18 U	426	NA	35.3	NA	706	NA	NA	NA	1,290	
Dibenzo(a,h)anthracene	μg/Kg	75.0 U	180	18 U	146 U	NA	20.8 U	NA	223 U	NA	NA	NA	1,300	
Dibenzofuran	μg/Kg	298 U	45	18 U	NA	NA	NA	NA	NA	NA	NA	NA		
Fluoranthene	μg/Kg	656 J	900	18 U	491	NA	49.7	NA	934	NA	NA	NA	2,230	37,000
Fluorene	μg/Kg	75.0 U	87	18 U	146 U	NA	20.8 U	NA	447 U	NA	NA	NA	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	1,030 J	510	18 U	150	NA	20.8 U	NA	223 U	NA	NA	NA	100	
Naphthalene	μg/Kg	147 J	680	18 U	146	NA	20.8 U	NA	223 U	NA	NA	NA	561	
Phenanthrene	μg/Kg	445 J	520	18 U	463	NA	71.9	NA	1,250	NA	NA	NA	1,170	
Pyrene	μg/Kg	964 J	1,100	62	586	NA	55.4	NA	1,210	NA	NA	NA	1,520	1,900
Total PA		8,236 J	6,970	86	3,520	NA	267	NA	5,720	NA	NA	NA		
	,,,,,	· · · · · · · · · · · · · · · · · · ·	0,770	00	3,320	TVA	207	IWI	3,720	14/1	IWI	IVI		
Polycyclic Aromatic Hydrocarbons (PAF) NA	NA	NT A	NIA	NA	7.9 U	NA	NA	NA	NA	NI A	200	
2-Methylnaphthalene	μg/Kg			70 U	NA NA		7.9 U	NA NA	NA NA		NA NA	NA NA	300	
Acenaphthulana	μg/Kg	NA NA	610 U		NA NA	NA NA				NA NA		NA NA		
Acenaphthylene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	3.7 J	NA NA	NA NA	NA NA	NA NA	NA NA	200	
Anthracene	μg/Kg	NA NA	610 U	70 U 70 U	NA NA	NA NA	8.8	NA NA	NA	NA NA	NA NA	NA NA	845	
Benzo(a)anthracene	μg/Kg	NA NA	610 U		NA NA	NA NA	27	NA NA	NA NA	NA NA	NA NA	NA NA	1,050	
Benzo(a)pyrene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	26	NA NA	NA NA	NA NA	NA NA	NA NA	1,450	
Benzo(b)fluoranthene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	27	NA NA	NA NA	NA NA	NA NA	NA NA		
Benzo(g,h,i)perylene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	17	NA NA	NA NA	NA NA	NA NA	NA NA	300	
Benzo(k)fluoranthene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	11	NA NA	NA NA	NA NA	NA NA	NA NA	13,000	
Chrysene	μg/Kg	NA	670	70 U	NA NA	NA NA	31	NA NA	NA NA	NA NA	NA	NA NA	1,290	
Dibenzo(a,h)anthracene	μg/Kg	NA NA	610 U	70 U	NA NA	NA NA	4.1 J	NA NA	NA NA	NA NA	NA	NA NA	1,300	
Dibenzofuran	μg/Kg	NA NA	NA NA	NA To V	NA NA	NA	7.9 U	NA NA	NA NA	NA NA	NA	NA NA		
Fluoranthene	μg/Kg	NA	640	70 U	NA	NA	46	NA	NA	NA	NA	NA	2,230	37,000
Fluorene	μg/Kg	NA	610 U	70 U	NA	NA	7.9 U	NA	NA	NA	NA	NA	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	NA	610 U	70 U	NA	NA	15	NA	NA	NA	NA	NA	100	
Naphthalene	μg/Kg	NA	610 U	70 U	NA	NA	3.3 J	NA	NA	NA	NA	NA	561	
Phenanthrene	μg/Kg	NA	610 U	70 U	NA	NA	23	NA	NA	NA	NA	NA	1,170	
Pyrene	μg/Kg	NA	1,200	70 U	NA	NA	5.0 J	NA	NA	NA	NA	NA	1,520	1,900
Total PAI	Hs ⁽⁸⁾ μg/Kg	NA	2,510	ND	NA	NA	248	NA	NA	NA	NA	NA		

MAY 2012 PAGE 3 OF 5

Table 2
Basin 18 East-Central Subbasin Stormwater Solids Results - Downstream of NW 35th Avenue Line

		Downstream <												
								Manhole AAX261		Manhole AAX262	Manhole AAX263	Manhole AAX264		
		Inline Solids	Sediment Trap Solids	Inline Solids	Sediment Trap Solids	Sediment Trap Solids (Univar Sample) (1)	Inline Solids	Sediment Trap Solids (Univar Sample) (1)	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 42" line IL-18-AAT557-0803	Upstream of manhole in 42" line ST2: FO070806	Upstream of manhole in 42" line ST2: FO070807	Upstream of manhole in 42" line ST2: FO095693	Upstream of manhole in 42" line SPI-2-S-2010/2011	Downstream of manhol in 42" line ST5: FO095671	le Downstream of manhole is 42" line SPI-1-S-2010/2011	n Upstream of manhole in 36" line ST5: FO095696	Downstream of manhole in 36" line FO095976	Upstream of manhole in 36" line F0095975	Upstream of manhole in 30" line FO 095974		JSCS ⁽²⁾ ing Level Value
Class Analyte	Units	8/19/2003	6/19/2007	6/19/2007	6/9/2009	5/10/2011	6/4/2009	5/10/2011	6/10/2009	10/6/2009	10/6/2009	10/6/2009	Toxicity	Bioaccumulation
Phthalates (EPA 8270-SIM)													,	
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	NA	NA	NA	26,900	NA	68.9	NA	27,700	NA	NA	NA	800	330
Butyl Benzyl Phthalate	μg/Kg	NA	NA	NA	2,910 U	NA	41.7 U	NA	2,230 U	NA	NA	NA		
Diethyl phthalate	μg/Kg	NA	NA	NA	2,910 U	NA	41.7 U	NA	2,230 U	NA	NA	NA	600	
Dimethyl phthalate	μg/Kg	NA	NA	NA	2,910 U	NA	41.7 U	NA	2,230 U	NA	NA	NA		
Di-n-butyl phthalate	μg/Kg	NA	NA	NA	2,910 U	NA	41.7 U	NA	2,230 U	NA	NA	NA	100	60
Di-n-octyl phthalate	μg/Kg	NA	NA	NA	4,370 U	NA	41.7 U	NA	2,230 U	NA	NA	NA		
Phthalates (EPA8270C)														
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	298 U	29,000	1,600	NA	15,000	43 J	28,000	NA	NA	NA	NA	800	330
Butyl Benzyl Phthalate	μg/Kg	373 U	960	70 U	NA	780 U	7.9 U	1600	NA	NA	NA	NA		
Diethyl phthalate	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	120 U	NA	NA	NA	NA	600	
Dimethyl phthalate	μg/Kg	298 U	610 U	70 U	NA	110 J	7.9 U	140 J	NA	NA	NA	NA		
Di-n-butyl phthalate	μg/Kg	298 U	610 U	120 U	NA	1,000 J	16 U	700 U	NA	NA	NA	NA	100	60
Di-n-octyl phthalate	μg/Kg	298 U	610 U	70 U	NA	480 J	7.9 U	1300	NA	NA	NA	NA		
Semi-Volatile Organic Compounds (EPA 827	70C)													
1,2,4-Trichlorobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	230 U	NA	NA	NA	NA	9200	
1,2-Dichlorobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	260 U	NA	NA	NA	NA	1700	
1,3-Dichlorobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	270 U	NA	NA	NA	NA	300	
1,4-Dichlorobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	260 U	NA	NA	NA	NA	300	
2,4,5-Trichlorophenol	μg/Kg	298 U	610 U	78	NA	780 U	7.9 U	140 U	NA	NA	NA	NA		
2,4,6-Trichlorophenol	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	130 U	NA	NA	NA	NA		
2,4-Dichlorophenol	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	88 U	NA	NA	NA	NA		
2,4-Dimethylphenol	μg/Kg	298 U	3,100 U	350 U	NA	3,900 U	40 U	490 U	NA	NA	NA	NA		
2,4-Dinitrophenol	μg/Kg	1,490 U	13,000 U	1,400 U	NA	16,000 U	160 U	1,500 U	NA	NA	NA	NA		
2,4-Dinitrotoluene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	140 U	NA	NA	NA	NA		
2,6-Dinitrotoluene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	180 U	NA	NA	NA	NA		
2-Chloronaphthalene	μg/Kg	75 U	610 U	70 U	NA	780 U	7.9 U	150 U	NA	NA	NA	NA		
2-Chlorophenol	μg/Kg	298 U	610 U	70 U	NA NA	780 U	7.9 U	180 U	NA NA	NA NA	NA NA	NA NA		
2-Methyl-4,6-dinitrophenol	μg/Kg	1,490 U	6,100 U	700 U	NA NA	7,800 U	7.9 U	130 U	NA NA	NA NA	NA NA	NA NA		
2-Methylphenol	μg/Kg	298 U	610 U	70 U	NA NA	780 U	7.9 U	140 U	NA NA	NA NA	NA NA	NA NA		
2-Nitroanline	μg/Kg	298 U 298 U	1,300 U 610 U	140 U 70 U	NA NA	1,600 U 780 U	16 U 7.9 U	290 U 140 U	NA NA	NA NA	NA NA	NA NA		
2-Nitrophenol 3,3'-Dichlorobenzidine	μg/Kg μg/Kg	596 U	6,100 U	700 U	NA NA	7,800 U	7.9 U	330 U	NA NA	NA NA	NA NA	NA NA		<u></u>
3-Nitroaniline	μg/Kg μg/Kg	298 U	1,300 U	140 U	NA NA	1,600 U	16 U	220 U	NA NA	NA NA	NA NA	NA NA		
4-Bromophenylphenyl ether	μg/Kg	298 U	610 U	70 U	NA NA	780 U	7.9 U	150 U	NA NA	NA	NA NA	NA		
4-Chloro-3-methylphenol	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	130 U	NA	NA	NA	NA		
4-Chloroaniline	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	170 U	NA	NA	NA	NA		
4-Chlorophenyl phenyl ether	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	130 U	NA	NA	NA	NA		
4-Methylphenol ⁽¹²⁾	μg/Kg	596 U	610 U	70 U	NA	780 U	7.9 U	140 U	NA	NA	NA	NA		
4-Nitroaniline	μg/Kg	298 U	1,300 U	140 U	NA	1,600 U	16 U	160 U	NA	NA	NA	NA		
4-Nitrophenol	μg/Kg	745 U	6,100 U	700 U	NA	7,800 U	79 U	1,600 U	NA	NA	NA	NA		
Benzoic acid	μg/Kg	1,990 J	13,000 U	1,400 U	NA	16,000 U	99 J	8,500 U	NA	NA	NA	NA		
Benzyl alcohol	μg/Kg	373 U	1,300 U	140 U	NA	1,600 U	16 U	190 U	NA	NA	NA	NA		
Bis(2-chloroethoxy) methane	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	140 U	NA	NA	NA	NA		
Bis(2-chloroethyl) ether	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	170 U	NA	NA	NA	NA		
Bis(2-chloroisopropyl) ether	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	230 U	NA	NA	NA	NA		
Hexachlorobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	110 U	NA	NA	NA	NA	100	19
Hexachlorobutadiene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	220 U	NA	NA	NA	NA	600	
Hexachlorocyclopentadiene	μg/Kg	298 U	3,100 U	410 U	NA	780 U	40 U	2,600 U	NA	NA	NA	NA	400	

MAY 2012 PAGE 4 OF 5

Table 2
Basin 18 East-Central Subbasin Stormwater Solids Results - Downstream of NW 35th Avenue Line

			Downstream <										Upstream		
					IL-18-AAT557-080	3			Manhole AAX261		Manhole AAX262	Manhole AAX263	Manhole AAX264		
			Inline Solids	Sediment Trap Solids	Inline Solids	Sediment Trap Solids	Sediment Trap Solids (Univar Sample) (1)	Inline Solids	Sediment Trap Solids (Univar Sample) (1)	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids		
			in 42" line in 42" line IL-18-AAT557-0803 ST2: FO070806		in 42" line in 42" line in 42"		Upstream of manhole Upstream of manhole in 42" line in 42" line ST2: FO095693 SPI-2-S-2010/2011		e Downstream of manhole in 42" line SPI-1-S-2010/2011	Upstream of manhole in 36" line ST5: FO095696	Downstream of manhole in 36" line FO095976	Upstream of manhole in 36" line FO095975	Upstream of manhole in 30" line FO 095974	Screen	JSCS ⁽²⁾ ing Level Value
Class	Analyte	Units	8/19/2003	6/19/2007	6/19/2007	6/9/2009	5/10/2011	6/4/2009	5/10/2011	6/10/2009	10/6/2009	10/6/2009	10/6/2009	Toxicity	Bioaccumulation
	Hexachloroethane	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	280 U	NA	NA	NA	NA		
	Isophorone	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	88 U	NA	NA	NA	NA		
	Nitrobenzene	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	200 U	NA	NA	NA	NA		
	N-Nitrosodi-n-propylamine	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	220 U	NA	NA	NA	NA		
	N-Nitrosodiphenylamine	μg/Kg	298 U	610 U	70 U	NA	780 U	7.9 U	150 U	NA	NA	NA	NA		
	Pentachlorophenol	μg/Kg	298 U	6,100 U	700 U	NA	7,800 U	79 U	1,800 U	NA	NA	NA	NA	1000	250
	Phenol	μg/Kg	298 U	1,900 U	210 U	NA	2,400 U	5.0 J	180 U	NA	NA	NA	NA	50	

J = The analyte was detected at a concentration between the method detection limit and the method reporting limit.

NA = Not analyzed

ND = Not detected

U = The analyte was not detected above the reported sample quantification limit.

-- = No JSCS screening level available

 $\mu g/Kg = Micrograms per kilogram$

mg/Kg = Milligrams per kilogram

(1) Sample collected for Univar USA stormwater pathway investigation; data provided to City by PES Environmental, Inc. (PES, 2011b)

(2) JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

(3) The toxicity SLV represents the sum of the 2,4' and 4,4' isomers.

⁽⁴⁾ Estimated Total DDx is the sum of DDE, DDD and DDT.

(5) Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane and gamma-Chlordane.

⁽⁶⁾ Total Chlordane is the sum of alpha- and beta-Chlordane.

(7) Columbia Analytical Services (CAS) analyte number 57-74-9 comprises a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components.

(8) Total PCBs and total PAHs are calculated by assigning "0" to undetected constituents.

(9) Univar samples were analyzed for selected PCB congeners by EPA Method 8082A; individual PCB Aroclors were not quantified.

(10) Individual congener results are summarized in Tables A-2 and C-2, located in Appendix A and Appendix C, respectively.

(11) Total PCBs concentration may be biased slightly high or high (see Appendix A, Table A-2).

(12) This analyte cannot be separated from 3-Methylphenol.

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 3 Basin 18 East-Central Subbasin Stormwater Solids Results - NW 35th Avenue Line

		Downstream <												> Upstream		
		Manhole AAX264	· 	Manhole A	AX278		<u> </u>	Manhole	AAX318		Manhole A	AAX376	Manhole AAX375	Manhole AAX374		
		Inline Solids	Sediment Trap Solids	Inline Solids	Inline Solids (CAP Sample) (1)	Inline Solids	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids (CAP Sample) (1)	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 30" line FO 095974	Downstream of manhole in 30" Line ST7: W11F059-04	Downstream of manhole in 30" Line W11F059-05	Within manhole 35th Downstream	Within manhole FO095884	Downstream of manhole I in 15" line ST6: W11F059-01	Downstream of manhole in 15" line W11F059-02	Within manhole and downstream in 15" line FO095882	Within manhole	Within manhole FO 095883	Within Manhole W11F059-03	Within manhole FO 095881	Within manhole FO095880		JSCS ⁽²⁾ ing Level Value
Class Analyte	Units	10/6/2009	6/9/2011	6/9/2011	5/7/2009	9/2/2009	6/9/2011	6/9/2011	9/2/2009	5/7/2009	9/2/2009	6/9/2011	9/2/2009	9/2/2009	Toxicity	Bioaccumulation
otal Organic Carbon (EPA 9060		10.000	04.000	22.000	27.1	60.100	72 000	12.000	20.100	27.1	54.500	20.000	10.000	2550		
TOC	mg/Kg	19,000	96,000	23,000	NA	68,100	72,000	12,000	28,100	NA	54,500	30,000	12,300	3770		
otal Solids (SM2540G)																
TS	%	79.4	43.8	75.7	NA	63.5	57.9	83.3	73.6	NA	63.6	72.5	87.6	97.8		
Grain Size (ASTM D421/422)																
Gravel (>4750 μm)	Fract %		NA	NA	NA	NA	NA	22.6	NA	NA	NA	1.4	NA	NA		
Coarse Sand (4750-2000	• •		NA	NA	NA	NA	NA	30.1	NA	NA	NA	5.4	NA	NA		
Medium Sand (2000-425	. ,		NA NA	NA NA	NA NA	NA	NA NA	31.3	NA NA	NA NA	NA NA	33.7	NA NA	NA		
Fine Sand (425-75 μm) Silt (3.2-75 μm)	Fract %		NA NA	NA NA	NA NA	NA NA	NA NA	9.9	NA NA	NA NA	NA NA	30.9 25.8	NA NA	NA NA		
Clay (<3.2 μm)	Fract %		NA NA	NA NA	NA NA	NA NA	NA NA	4.9 1.4	NA NA	NA NA	NA NA	25.8	NA NA	NA NA		
	11dCt /(, IVA	11/1	IVA	11/1	IVA	11/1	1.7	INA	IVA	INA	2.0	11/1	INA	-	
Metals (EPA 6020)		2.00	, , ,	2.01	371	2.57	2.01	1	2.50	371	2.55	2.05	2.15	1.77	22	
Arsenic Cadmium	mg/Kg		4.65 3.02	2.91 6.08	NA 2 47	3.56 35.0	3.91 2.01	1.14 0.524	2.68 3.71	0.738	3.57 4.34	3.97 1.22	2.15 0.61	1.75 0.41	4.98	
Chromium	mg/Kg mg/Kg		93.6	100	2.47 118	223	106	52.4	150	69.2	309	554	61.3	33.7	4.98	
Copper	mg/Kg		134	92.7	80.3	193	110	33.7	97.9	48.0	104	149	50.5	25.4	149	
Lead	mg/Kg		175	252	678	1,090	160	23.7	1,170	623	2,280	100	66.0	41.0	128	17
Mercury	mg/Kg		0.169	0.405	0.0330	2.11	0.111	0.0154	2.09	0.736	4.61	0.0520	0.031	0.016	1.06	0.07
Nickel	mg/Kg		47.7	53.8	21.9	266	45.5	16.9	32.6	18.5	35.6	124	31.4	19.0	48.6	
Silver	mg/Kg		0.609	1.28	2.23	1.94	0.261	0.100 U	0.33	2.59	0.47	0.234	0.10 U	0.10 U	5	
Zinc	mg/Kg	544	730	478	336	768	558	131	575	317	880	343	309	209	459	
Organochlorine Pesticides (EPA	8081A)															
4,4'-DDD ⁽³⁾	μg/Kg	NA	4.1	36	<200 - 1000 U	NA	2.5	0.86	NA	<200 - 1000 U	NA	1.1 U	NA	NA	28	0.33
4,4'-DDE ⁽³⁾	μg/Kg	NA	4.5	43	<200 - 1000 U	NA	2.0	1.0	NA	<200 - 1000 U	NA	0.98	NA	NA	31.3	0.33
4,4'-DDT ⁽³⁾	μg/Kg	NA	23 U	18 U	<200 - 1000 U	NA	8.6 U	2.0 U	NA	<200 - 1000 U	NA	5.7 U	NA	NA	62.9	0.33
Esti	timated Total DDx ⁽⁴⁾ µg/Kg	NA	8.6	79	ND	NA	4.5	1.9	NA	ND	NA	0.98	NA	NA		0.33
Aldrin	µg/Кg	NA	1.5 J	8.5	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	0.76 U	NA	NA	40	
alpha-BHC (α-BHC)	μg/Kg	NA	2.5 U	0.72 U	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	0.76 U	NA	NA		
beta-BHC (β-BHC)	μg/Kg	NA	2.5 U	0.72 U	<200 - 1000 U	NA	3.6 U	0.60 U	NA	<200 - 1000 U	NA	0.91 U	NA	NA		
delta-BHC (δ-BHC)	μg/Kg	NA	2.5 U	2.7 U	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	0.76 U	NA	NA		
gamma-BHC (γ-BHC, Lin	ndane) μg/Kg	NA	7.6 U	2.0 U	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	1.8 U	NA	NA	4.99	
alpha-Chlordane(5)	μg/Kg	NA	6.1	4.9	<200 - 1000 U	NA	3.7	0.47 J	NA	<200 - 1000 U	NA	0.98	NA	NA		
beta-Chlordane ⁽⁵⁾	μg/Kg	NA	11 U	11	<200 - 1000 U	NA	6.4	0.85	NA	<200 - 1000 U	NA	2.1	NA	NA		
	Total Chlordane ⁽⁶⁾ μg/Kg	NA	6.1	16	ND	NA	10	1.3	NA	ND	NA	3.1	NA	NA	17.6	0.37
Dieldrin	μg/Kg	NA	3.8 U	4.9 U	<200 - 1000 U	NA	3.6 U	0.37 J	NA	<200 - 1000 U	NA	1.9 U	NA	NA	61.8	0.0081
Endosulfan I	μg/Kg	NA	2.5 U	3.8	<200 - 1000 U	NA	0.98 U	0.17 J	NA	<200 - 1000 U	NA	0.76 U	NA	NA		
Endosulfan II	μg/Kg	NA	5.5 U	5.9 U	<200 - 1000 U	NA	2.1 U	0.33 J	NA	<200 - 1000 U	NA	0.76 U	NA	NA		
Endosulfan sulfate Endrin	μg/Kg	NA NA	24 U	0.72 U 1.2 U	<200 - 1000 U <200 - 1000 U	NA NA	1.5 0.98 U	0.60 U 0.60 U	NA NA	<200 - 1000 U <200 - 1000 U	NA NA	0.76 U 0.76 U	NA NA	NA NA	207	
Endrin aldehyde	μg/Kg μg/Kg	NA NA	2.5 U 1.3 J	0.72 U	<200 - 1000 U	NA NA	0.98 U	0.60 U	NA NA	<200 - 1000 U	NA NA	0.76 U	NA NA	NA NA		
Endrin ketone	μg/Kg μg/Kg	NA NA	1.5 J	0.72 U	<200 - 1000 U	NA NA	0.97 J	0.60 U	NA NA	<200 - 1000 U	NA NA	0.76 U	NA NA	NA NA		
Heptachlor	μg/Kg μg/Kg		2.5 U	0.72 U	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	0.86 U	NA	NA	10	
Heptachlor epoxide	μg/Kg		2.5 U	0.72 U	<200 - 1000 U	NA	0.98 U	0.60 U	NA	<200 - 1000 U	NA	0.76 U	NA	NA	16	
Methoxychlor	μg/Kg		2.5 U	3.8 U	<200 - 1000 U	NA	1.2 U	0.60 U	NA	<200 - 1000 U	NA	2.4 U	NA	NA		
Toxaphene	μg/Kg		390 U	240 U	<200 - 1000 U	NA	350 U	30 U	NA	<200 - 1000 U	NA	330 U	NA	NA		
olychlorinated Biphenyls Aroclo	ors (PCBs) (FPA 8082)															
Aroclor 1016	μg/Kg	20 U	22.8 U	10.0 U	50 U	10 U	17.3 U	10.0 U	10 U	50 U	10 U	10.0 U	10 U	10 U	530	
Aroclor 1221	μg/Kg		45.7 U	20.0 U	50 U	20 U	34.5 U	20.0 U	20 U	50 U	20 U	20.0 U	20 U	20 U		
Aroclor 1232	μg/Kg		22.8 U	10.0 U	50 U	10 U	17.3 U	10.0 U	10 U	50 U	10 U	10.0 U	10 U	10 U		
Aroclor 1242	μg/Kg	20 U	22.8 U	10.0 U	50 U	10 U	17.3 U	10.0 U	10 U	50 U	10 U	10.0 U	10 U	10 U		
Aroclor 1248	μg/Kg		22.8 U	365	50 U	2,900	17.3 U	10.0 U	3350	50 U	3,450	10.0 U	10 U	10 U	1500	
Aroclor 1254	μg/Kg		22.8 U	10.0 U	6,400	10 U	17.3 U	10.0 U	10 U	2,230	10 U	10.0 U	10 U	10 U	300	
Aroclor 1260	μg/Kg		22.8 U	69.4	1,100	1,030	17.3 U	10.0 U	1,180	450	1,110	10.0 U	21	10 U ⁽⁷⁾	200	
Aroclor 1262	μg/Kg	20 U	22.8 U	10.0 U	50 U	10 U	17.3 U	10.0 U	10 U	50 U	10 U	10.0 U	10 U	10 U		
Aroclor 1268	μg/Kg		22.8 U	10.0 U	50 U	10 U	17.3 U	10.0 U	10 U	50 U	10 U	10.0 U	10 U	10 U		
	Total PCBs ⁽⁸⁾ μg/Kg	523	ND	434	7,500	3,930	ND	ND	4,530	2,680	4,560	ND	21	ND	676	0.39
Polyoblarinated Pinhamil Carrer	nore (EDA 1669A)															
olychlorinated Biphenyl Congen	Total PCBs (8)(9) µg/Kg	(10)													(51	
	Total PCBe (6)(7) ug/Kg	357 ⁽¹⁰⁾	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	676	0.39

Table 3
Basin 18 East-Central Subbasin Stormwater Solids Results - NW 35th Avenue Line

		Downstream Manhole AAX264 Manhole AAX278 Manhole AAX318									> Upstream					
		Manhole AAX264		Manhole AA	X278			Manhole	AAX318		Manhole A	AAX376	Manhole AAX375	Manhole AAX374		
		Inline Solids	Sediment Trap Solids	Inline Solids	Inline Solids (CAP Sample) (1)	Inline Solids	Sediment Trap Solids	Inline Solids	Inline Solids	Inline Solids (CAP Sample) (1)	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		Upstream of manhole in 30" line FO 095974	Downstream of manhole Doing 30" Line ST7: W11F059-04	ownstream of manhole in 30" Line W11F059-05	Within manhole 35th Downstream	Within manhole FO095884	Downstream of manhole E in 15" line ST6: W11F059-01	ownstream of manhole in 15" line W11F059-02	Within manhole and downstream in 15" line FO095882	Within manhole	Within manhole FO 095883	Within Manhole W11F059-03	Within manhole FO 095881	Within manhole FO095880	Screen	JSCS ⁽²⁾ ning Level Value
Class Analyte	Units	10/6/2009	6/9/2011	6/9/2011	5/7/2009	9/2/2009	6/9/2011	6/9/2011	9/2/2009	5/7/2009	9/2/2009	6/9/2011	9/2/2009	9/2/2009	Toxicity	Bioaccumulation
Polycyclic Aromatic Hydrocarbons (PAHs) (EPA	8270D-SIM)															
Acenaphthene	μg/Kg	NA	NA	NA	307	NA	NA	NA	NA	43.3	NA	NA	NA	NA	300	
Acenaphthylene	μg/Kg	NA	NA	NA	66.7 U	NA	NA	NA	NA	12.0	NA	NA	NA	NA	200	
Anthracene	μg/Kg	NA	NA	NA	513	NA	NA	NA	NA	81.3	NA	NA	NA	NA	845	
Benzo(a)anthracene	μg/Kg	NA	NA	NA	313	NA	NA	NA	NA	58.0	NA	NA	NA	NA	1050	
Benzo(a)pyrene	μg/Kg	NA	NA	NA	250	NA	NA	NA	NA	68.0	NA	NA	NA	NA	1450	
Benzo(b)fluoranthene	μg/Kg	NA	NA	NA	367	NA	NA	NA	NA	89.3	NA	NA	NA	NA		
Benzo(g,h,i)perylene	μg/Kg	NA	NA	NA	213	NA	NA	NA	NA	50.7	NA	NA	NA	NA	300	
Benzo(k)fluoranthene	μg/Kg	NA	NA	NA	120	NA	NA	NA	NA	22.7	NA	NA	NA	NA	13000	
Chrysene	μg/Kg	NA	NA	NA	380	NA	NA	NA	NA	108	NA	NA	NA	NA	1290	
Dibenzo(a,h)anthracene	μg/Kg	NA	NA	NA	66.7 U	NA	NA	NA	NA	11.3	NA	NA	NA	NA	1300	
Dibenzofuran	μg/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Fluoranthene	μg/Kg	NA	NA	NA	907	NA	NA	NA	NA	193	NA	NA	NA	NA	2230	37000
Fluorene	μg/Kg	NA	NA	NA	567	NA	NA	NA	NA	97.3	NA	NA	NA	NA	536	
Indeno(1,2,3-cd)pyrene	μg/Kg	NA	NA	NA	133	NA	NA	NA	NA	32.0	NA	NA	NA	NA	100	
Naphthalene	μg/Kg	NA	NA	NA	66.7 U	NA	NA	NA	NA	28.7	NA	NA	NA	NA	561	
Phenanthrene	μg/Kg	NA	NA	NA	500	NA	NA	NA	NA	215	NA	NA	NA	NA	1170	
Pyrene	μg/Kg	NA	NA	NA	1,000	NA	NA	NA	NA	200	NA	NA	NA	NA	1520	1900
Total PAH	Is ⁽⁸⁾ μg/Kg	NA	NA	NA	5,570	NA	NA	NA	NA	1,310	NA	NA	NA	NA		
Phthalates (EPA 8270D-SIM)																
Bis(2-ethylhexyl) phthalate (BEHP)	μg/Kg	NA	NA	NA	3,800	NA	NA	NA	NA	1,400	NA	NA	NA	NA	800	330
Butyl Benzyl Phthalate	μg/Kg	NA	NA	NA	170 U	NA	NA	NA	NA	33 U	NA	NA	NA	NA		
Diethyl phthalate	μg/Kg	NA	NA	NA	170 U	NA	NA	NA	NA	33 U	NA	NA	NA	NA	600	
Dimethyl phthalate	μg/Kg	NA	NA	NA	170 U	NA	NA	NA	NA	33 U	NA	NA	NA	NA		
Di-n-butyl phthalate	μg/Kg	NA	NA	NA	170 U	NA	NA	NA	NA	82	NA	NA	NA	NA	100	60
Di-n-octyl phthalate	µg/Кg	NA	NA	NA	170 U	NA	NA	NA	NA	33 U	NA	NA	NA	NA		

J = The analyte was detected at a concentration between the method detection limit and the method reporting limit.

NA = Not analyzed

ND = Not detected

U = The analyte was not detected above the reported sample quantification limit.

-- = No JSCS screening level available

 $\mu g/Kg = Micrograms per kilogram$

mg/Kg = Milligrams per kilogram

(1) Data summarized in Former Columbia American Plating (CAP) Facility Stormwater Assessment Workplan (Wohlers, 2011). Individual pesticides were not tabulated and laboratory reports were not included in the work plan.

(2) JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

(3) The toxicity SLV represents the sum of the 2,4' and 4,4' isomers.

(4) Estimated Total DDx is the sum of DDE, DDD and DDT.

 $^{(5)}$ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane and gamma-Chlordane.

(6) Total Chlordane is the sum of alpha- and beta-Chlordane.

⁽⁷⁾The analytical testing laboratory reports a possible trace of Aroclor 1260 at a concentration less than the reporting limit.

⁽⁸⁾ Total PCBs and total PAHs are calculated by assigning "0" to undetected constituents.

(9) Individual congener results are summarized in Tables A-2 and C-2, located in Appendix A and Appendix C, respectively.

Total PCBs concentration may be biased slightly high or high (see Appendix A, Table A-2).

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 4
Basin 18 East-Central Subbasin September 2010 Erodible Soils Pathway Results

			NW	Lake Street Right-of-V	Way		NW 35th Avenue Catch Basins					
		Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		West End of Lake St. FO105890	DUPLICATE West End of Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANF164 (Connects to MH AAX318) FO105894	Catch Basin APN941 (Not in Subbasin) FO105896	Catch Basin ANB622 FO105895	Catch Basin ANB621 FO105897		JSCS ⁽¹⁾ ng Level Value
Class Analyte	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)												
TOC	mg/Kg	11,100	9,930	8,520	12,600	20,200	40,300	84,000	102,000	111,000		
Total Solids (SM 2540 G)												
TS	%	96.3	96.2	98.0	92.3	90.2	92.7	62.0	67.1	58.7		
Metals (EPA 6020)												
Cadmium	mg/Kg	0.79	0.89	0.63	0.71	1.08	2.47	1.53	2.12	2.83	4.98	1
Chromium	mg/Kg	42.4	59.7	39.9	51.0	51.3	84.7	180	75.0	124	111	
Copper	mg/Kg	36.7	34.8	41.0	50.2	46.6	114	136	104	129	149	
Lead	mg/Kg	93.9	94.1	104	148	157	151	124	74.4	118	128	17
Mercury	mg/Kg	0.054	0.048	0.052	0.086	0.066	0.075	0.077	0.081	0.130	1.06	0.07
Nickel	mg/Kg	13.2	26.1	16.6	16.9	17.8	41.5	52.0	45.2	55.3	48.6	
Silver	mg/Kg	0.25	0.22	0.31	1.04	0.44	0.43	0.65	0.45	0.64	5	
Zinc	mg/Kg	179	185	239	264	237	644	884	872	1,317	459	
Organochlorine Pesticides (EPA 8081A)												
4,4'-DDD ⁽²⁾	μg/Kg	7.7	6.9 U	5.4 U	21	6.2	3.5	1.3	2.3	1.4 U	28	0.33
4,4'-DDE ⁽²⁾	μg/Kg	6.1	4.7	5.7	26	5.4	3.2	1.1 U	2.3	1.3	31.3	0.33
4,4'-DDT ⁽²⁾	μg/Kg	72	70	61	140	58	20	19	9.6 U	11 U	62.9	0.33
Estimated Total	ıl DDx ⁽³⁾ μg/Kg	86	75	67	187	70	27	20	4.6	1.3		0.33
Aldrin	μg/Kg	3.0 U	0.97 U	1.0 U	5.5 U	0.97 U	1.1	1.2 U	0.97 U	0.74 J	40	
alpha-BHC (α-BHC)	μg/Kg	1.0 U	0.97 U	1.0 U	0.99 U	0.97 U	0.99 U	0.98 U	0.97 U	1.0 U		
beta-BHC (β-BHC)	μg/Kg	1.0 U	4.0 U	1.4 U	0.99 U	1.2 U	2.9 U	6.9 U	2.3 U	1.0 U		
delta-BHC (δ-BHC)	μg/Kg	1.0 U	0.97 U	0.31 J	0.99 U	0.97 U	0.99 U	0.98 U	0.97 U	1.0 U		
gamma-BHC (γ-BHC, Lindane)	μg/Kg	1.0 U	0.97 U	1.0 U	0.99 U	0.97 U	0.99 U	0.98 U	1.4 U	1.6 U	4.99	
alpha-Chlordane ⁽⁴⁾	μg/Kg	61	60	82	120	17	5.8	2.3	1.4	2.5		
beta-Chlordane ⁽⁴⁾	μg/Kg	74	74	90	140	23	8.4	3.0	2.8	4.8		
Total Chle	ordane ⁽⁵⁾ µg/Kg	135	134	172	260	40	14	5.3	4.2	7.3	17.6	0.37
Dieldrin	μg/Kg	13	13	13	21	7.3	2.5 U	0.98 U	0.97 U	1.0 U	61.8	0.0081
Endosulfan I	μg/Kg	3.9 U	3.5 U	4.3 U	9.9 U	1.2 U	0.99 U	0.98 U	2.9	1.0 U		
Endosulfan II	μg/Kg	22 U	25 U	19 U	21 U	4.5 U	0.99 U	1.6 U	2.3 U	3.8 U		
Endosulfan sulfate	μg/Kg	4.0 U	2.7 U	1.8 U	6.1 U	1.7	2.0 U	1.7	2.5	3.9		
Endrin	μg/Kg	1.0 U	0.97 U	1.0 U	0.99 U	0.97 U	0.99 U	0.98 U	0.97 U	1.0 U	207	
Endrin aldehyde	μg/Kg	3.5 U	3.6 U	3.2 U	8.7 U	1.4 U	0.99 U	0.98 U	0.97 U	1.0 U		
Endrin ketone	μg/Kg	1.0 U	0.97 U	1.2 U	11 U	6.4 U	0.49 J	0.98 U	0.95 J	1.1 U		
Heptachlor	μg/Kg	1.0 U	0.97 U	1.0 U	0.99 U	0.97 U	0.61 J	16	3.4	3.2	10	
Heptachlor epoxide	μg/Kg	1.0 U	0.97 U	1.9 U	0.99 U	0.97 U	0.99 U	0.81 J	0.97 U	1.0 U	16	
Methoxychlor	μg/Kg	5.9 U	4.9 U	5.9 U	6.2 U	2.5 U	2.1 U	0.98 U	1.9 U	2.8 U		
Toxaphene	μg/Kg	420 U	570 U	600 U	580 U	290 U	280 U	97 U	140 U	140 U		

MAY 2012 PAGE 1 OF 2

Table 4
Basin 18 East-Central Subbasin September 2010 Erodible Soils Pathway Results

			NW	Lake Street Right-of-V	Way							
		Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		West End of Lake St FO105890	DUPLICATE West End of Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANF164 (Connects to MH AAX318) FO105894	Catch Basin APN941 (Not in Subbasin) FO105896	Catch Basin ANB622 FO105895	Catch Basin ANB621 FO105897		JSCS ⁽¹⁾ ing Level Value
lass Analyte	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
olychlorinated Biphenyls (P	PCBs) (EPA 8082)											
Aroclor 1016	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	μg/Kg	80 U	20 U	80 U	80 U	20 U	20 U	20 U	20 U	20 U		
Aroclor 1232	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1242	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U	1500	
Aroclor 1254	μg/Kg	125	151	85	151 EST	98	112	29	44	56	300	
Aroclor 1260	μg/Kg	40 U	57	63	110	48	76	38	57	42	200	
Aroclor 1262	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	40 U	10 U	40 U	40 U	10 U	10 U	10 U	10 U	10 U		==
	Total PCBs ⁽⁶⁾ µg/Kg	125	208	148	261 EST	146	188	67	101	98	676	0.39
olychlorinated Biphenyl Co	ngeners (PCBs) (EPA 1668A)											
, , , , , , , , , , , , , , , , , , ,	Total PCBs ⁽⁶⁾⁽⁷⁾ μg/Kg	234	248	235	385	183	177	90.0	81.7	92.7	676	0.39

EST = The result is an estimated concentration.

J = The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

NA = not analyzed

ND = not detected

U = The analyte was not detected above the reported sample quantification limit.

-- No JSCS screening level available

 $\mu g/Kg = micrograms \ per \ kilogram$

mg/Kg = milligrams per kilogram

(1) JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

(2) The toxicity SLV represents the sum of the 2,4' and 4,4' isomers

(3) Estimated Total DDx is the sum of DDE, DDD, and DDT.

(4) Alpha-chlordane is also known as cis-Chlordane. Beta-Chlordane is also known as trans-chlordane and gamma-chlordane.

 $^{(5)}\!$ Total Chlordane is the sum of alpha- and beta-isomers.

⁽⁶⁾ Total PCBs are calculated by assigning "0" to undetected constituents.

⁽⁷⁾ Individual congener results are summarized in Table C-2, located in Appendix C.

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 5
Basin 18 East-Central Subbasin Conveyance System and Upland Site Data Comparison

Subbasin Source-Tracing	Maximum Concentr Stormwater Solids		Maximum Conce	entrations Detected at U	Jpland Sites (3)
Contaminant (1)	Pre-Line Cleanout	Post-Line Cleanout	Site	Stormwater Solids	Site Soils
PCBs			1		
Total PCBs	7500 μg/Kg	434 μg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	34.5 μg/Kg 37.3 μg/Kg 1070 μg/Kg 615 μg/Kg 92.3 μg/Kg 1200 μg/Kg 113 μg/Kg	ND 51,100 μg/Kg
Pesticides					
Total DDx	385 μg/Kg	79 μg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ 377 μg/Kg ND ⁽⁴⁾	 103 μg/Kg 1900 μg/Kg
Total Chlordane	402 μg/Kg	110 μg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ 5300 µg/Kg ND ⁽⁴⁾	 106 μg/Kg 3300 μg/Kg
Heptachlor	300 μg/Kg	2.8 μg/Kg (estimated)	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ⁽⁴⁾ ND ND ⁽⁴⁾	 11 μg/Kg 3.9 μg/Kg
Metals					
Cadmium	405 mg/Kg	6.36 mg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	0.83 mg/Kg 2.4 mg/Kg 2050 mg/Kg 4 mg/Kg 8.2 mg/Kg 3.45 mg/Kg 0.98 mg/Kg	ND ND ⁽⁵⁾ 300 mg/Kg 14.9 mg/Kg

MAY 2012 PAGE 1 OF 2

Table 5
Basin 18 East-Central Subbasin Conveyance System and Upland Site Data Comparison

Subbasin Source-Tracing	Maximum Concent Stormwater Solids		Maximum Conce	entrations Detected at U	Jpland Sites ⁽³⁾
Contaminant (1)	Pre-Line Cleanout	Post-Line Cleanout	Site	Stormwater Solids	Site Soils
Copper	2460 mg/Kg	149 mg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	57.5 mg/Kg 62.1 mg/Kg 2890 mg/Kg 112 mg/Kg138 mg/Kg 188 mg/Kg 124 mg/Kg	ND ND ⁽⁵⁾ 239 mg/Kg 2840 mg/Kg
Lead	2280 mg/Kg	370 mg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	43.7 mg/Kg 33.3 mg/kg 4960 mg/Kg 250 mg/Kg 111 mg/Kg 286 mg/Kg 54.6 mg/Kg	ND ND ⁽⁵⁾ 84.2 mg/Kg 27.8 mg/Kg 39 mg/Kg 4150 mg/Kg
Manganese	111,000 mg/Kg	386 mg/Kg	In Subbasin: ANRFS/ABF Carson CAP Container Recovery Univar Wilhelm/Magnus Adjacent to Subbasin: Ashland Container Management Owens Corning	 776 mg/Kg	ND ND ⁽⁵⁾ 317 2400 mg/Kg

DEQ = Oregon Department of Environmental Quality

MRL = Laboratory method reporting limit

PCBs = Polychlorinated biphenyls

Total DDx = sum of DDE, DDD, and DDT

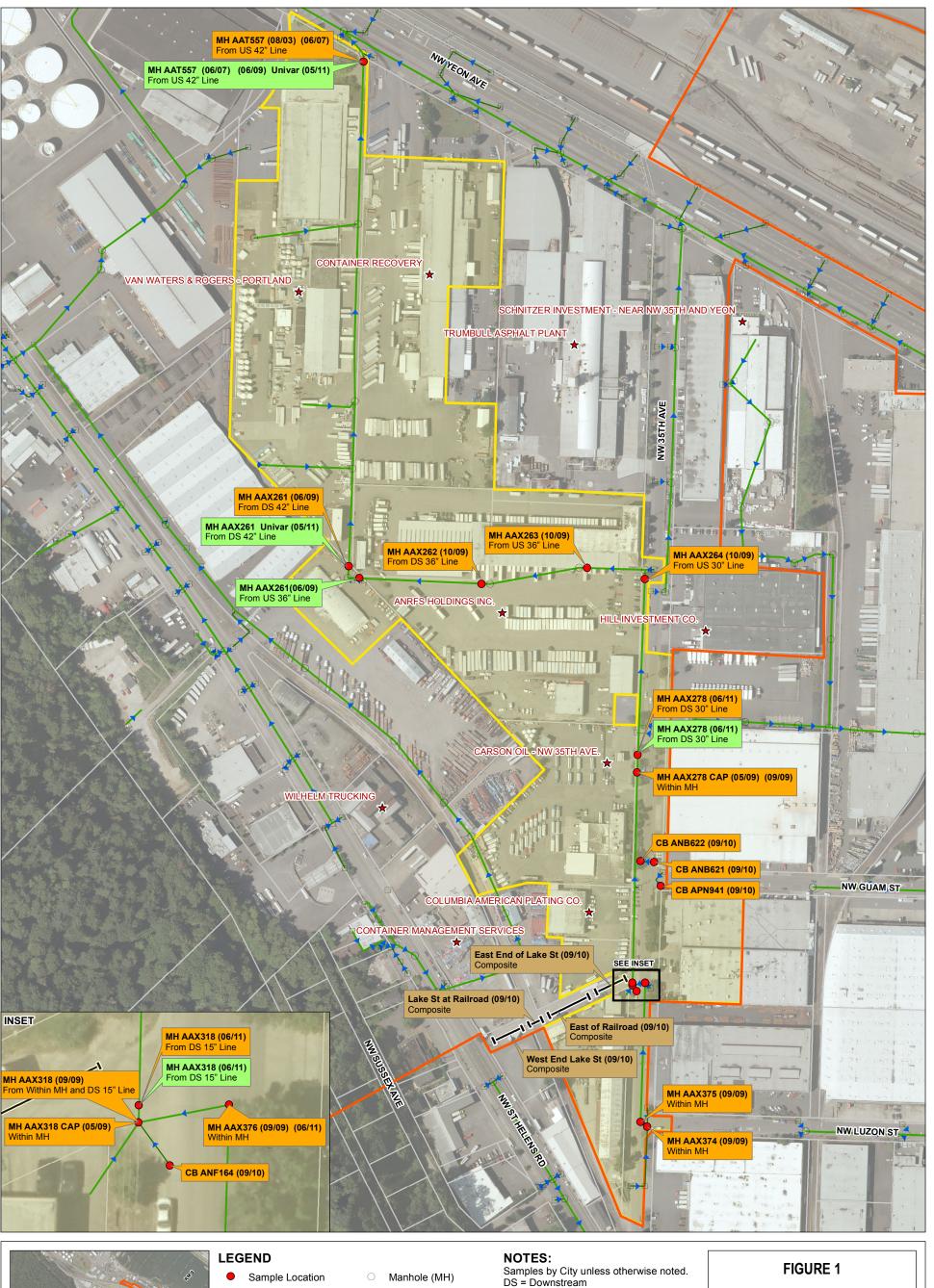
ND = Not detected

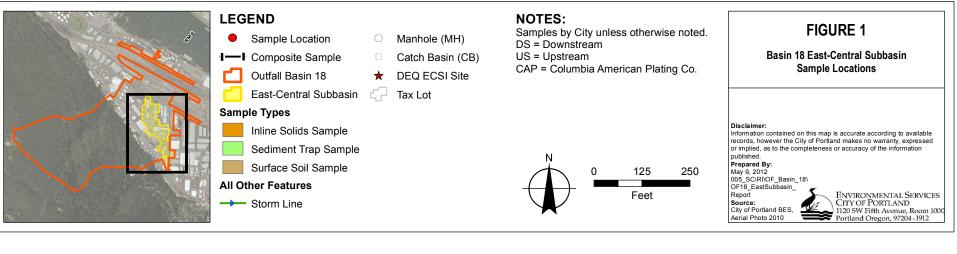
-- = Data not available

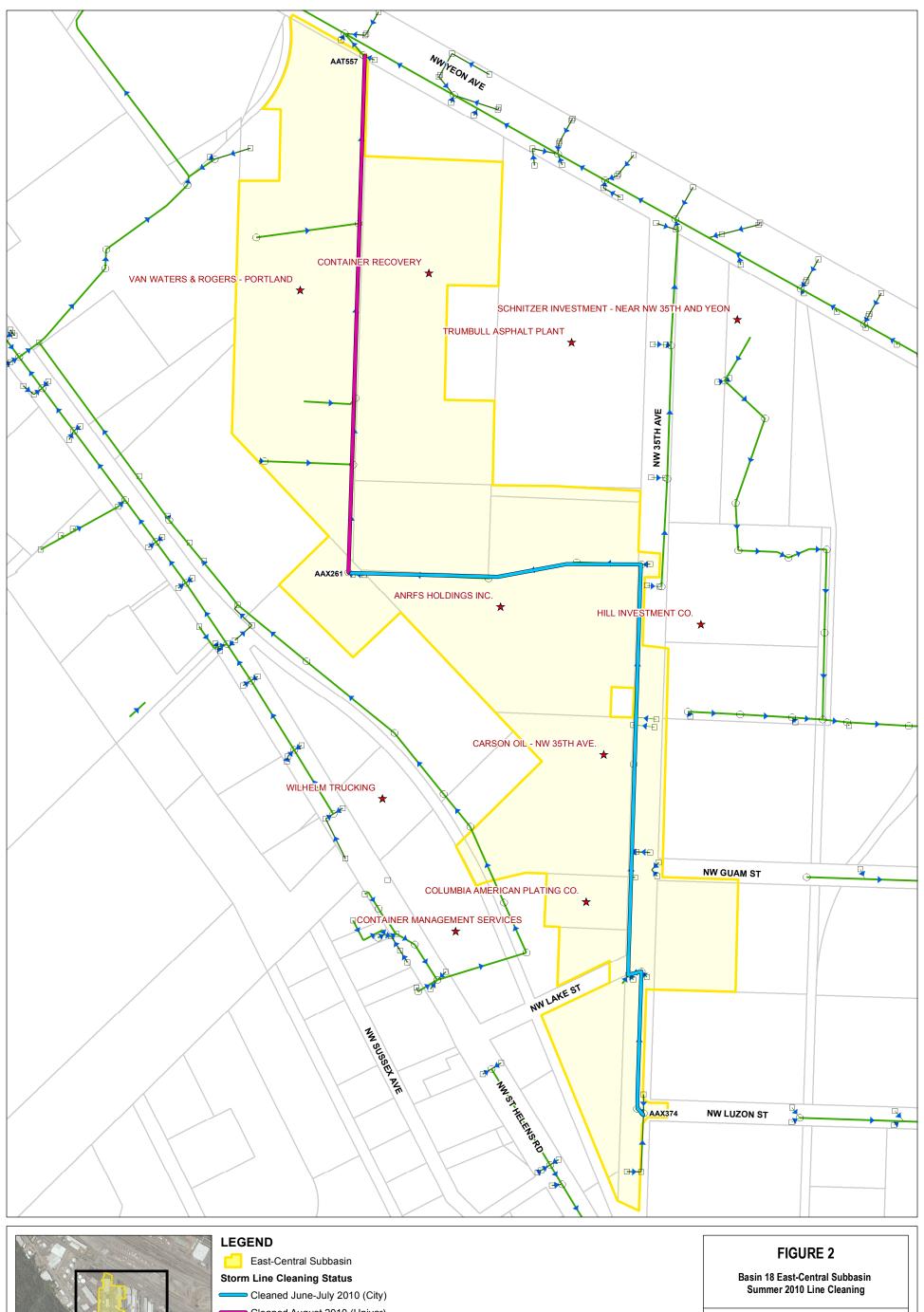
μg/Kg = micrograms per kilogram

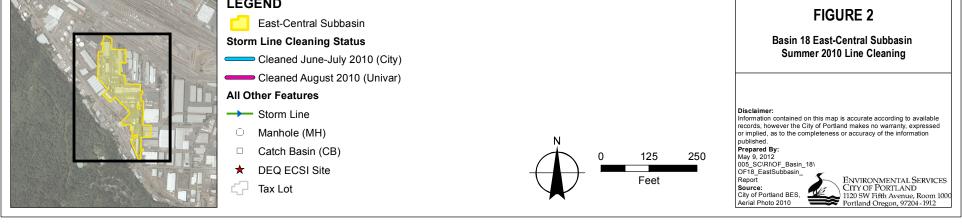
mg/Kg = milligrams per kilogram

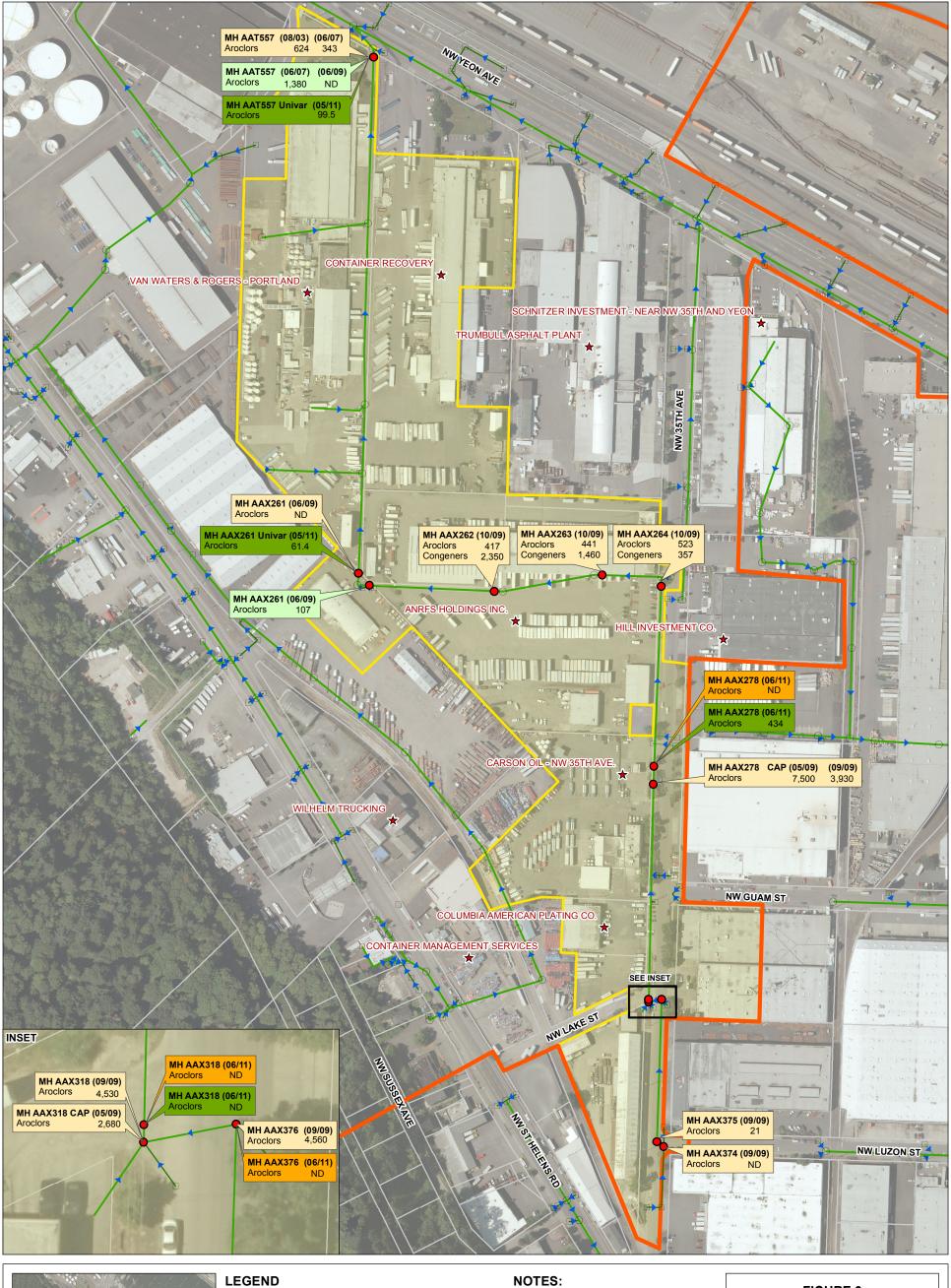
MAY 2012 PAGE 2 OF 2


⁽¹⁾ See Section 2.3 of report for basis of source-tracing contaminant identification. Selected pesticides and metals listed are those that were detected at significantly elevated concentrations in one or more samples from the City lines, as described in Section 3.2 of the report.


⁽²⁾ Refer to data tables in report (Tables 2 and 3). "Cleanout" refers to comprehensive cleanout of City stormwater lines in the east-central subbasin in completed in summer 2010 by the City (from manholes AAX374 to AAX261) and Univar, Inc. (from manholes AAX261 to AAX557).


⁽³⁾ See Table 1 for full site names and site information. Concentrations listed are based on review of available information. Data sources (see Section 6 for full citations): BBA, 2008; Cascade, 1992; Coastal, 1992; DEQ, 2008a, 2008c, 2008e, 2008f, 2008g, 2008j; EPA, 2004; HAI, 2011; PES, 2009, 2010a; SES, 2011, 2012b; Weston, 1994; Wohlers, 2010, 2011.


⁽⁴⁾ Laboratory method reporting limits were elevated.


 $[\]ensuremath{^{(5)}}\mbox{Soil}$ samples were analyzed for TCLP metals and not for total metals.



Outfall Basin 18 East-Central Subbasin

Sample Types

Inline Solids Sample, Pre-Cleanout

Inline Solids Sample, Post-Cleanout

Sediment Trap Sample, Pre-Cleanout

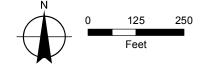
Sediment Trap Sample, Post-Cleanout

All Other Features

Storm Line

Manhole (MH)

Catch Basin (CB)


DEQ ECSI Site Tax Lot

NOTES:

All Solids results presented in micrograms per kilogram (µg/Kg). Samples by City unless otherwise noted. CAP = Columbia America Plating Co.

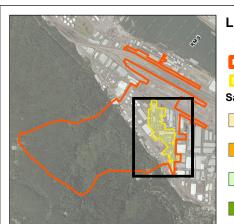
ND = Not Detected NA = Not Analyzed

EST = Estimated

FIGURE 3

Basin 18 East-Central Subbasin Pre- and Post-Cleanout Results - Total PCBs

Disclaimer:
Information contained on this map is accurate according to available records, however the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.


Prepared By:
May 9, 2012

005_SCRIOF_Basin_18\
0F18_EastSubbasin_

Report
Source:
City of Portland BES,
Aerial Photo 2010

ENVIRONMENTAL SERVICES
CITY OF PORTLAND
Portland Oregon, 97204-1912

Outfall Basin 18 East-Central Subbasin

Sample Types

Inline Solids Sample, Pre-Cleanout

Inline Solids Sample, Post-Cleanout

Sediment Trap Sample, Pre-Cleanout

Sediment Trap Sample, Post-Cleanout

All Other Features

Storm Line

Manhole (MH)

Catch Basin (CB)

DEQ ECSI Site

Tax Lot

NOTES:

¹ Univar samples were analyzed for a chlordane mixture comprised primarily of alpha-and beta- chlordane isomers. ² Laboratory method reporting limits were

significantly elevated.
Results in micrograms per kilogram (µg/Kg).

Samples by City unless otherwise noted. Total Chlordane is the sum of alpha- and beta-Chlordane.

CAP = Columbia American Plating Co. ND = Not Detected J = Estimated

125 250 Feet

FIGURE 4

Basin 18 East-Central Subbasin **Pre- and Post-Cleanout Results** Total DDx, Total Chlordane, and Heptachlor

Disclaimer:

Disclaimer:
Information contained on this map is accurate according to available records, however the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.

Prepared By:
May 9, 2012
005_SCRINOF_Basin_18\
OF18_EastSubbasin_
FRANKON KENEAL SCRINGERS CONTROL CONTROL SCRINGERS CONTROL CONTROL

Report
Source:
City of Portland BES,
Aerial Photo 2010

ENVIRONMENTAL SERVICES
CITY OF PORTLAND
1120 SW Fifth Avenue, Room 1000
Portland Oregon, 97204-1912

Outfall Basin 18
East-Central Subbasin

Sample Types

Inline Solids Sample, Pre-Cleanout

Inline Solids Sample,
Post-Cleanout

Sediment Trap Sample,
Pre-Cleanout

Sediment Trap Sample, Post-Cleanout

All Other Features

→ Storm Line

O Manhole (MH)

□ Catch Basin (CB)

★ DEQ ECSI Site

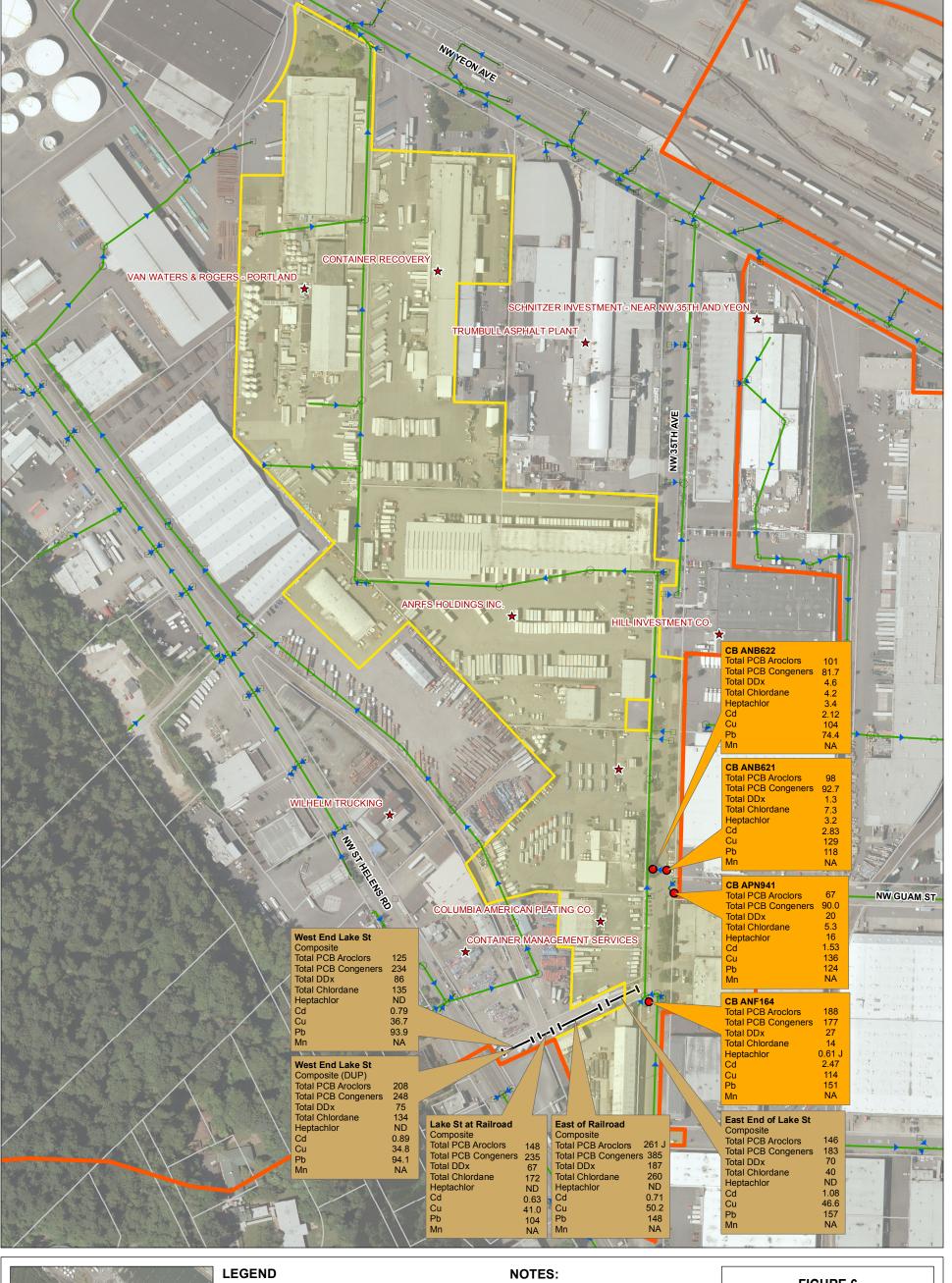
Tax Lot

All solids results presented in milligrams per kilogram (mg/Kg). Samples by City unless otherwise noted.

Samples by City unless otherwise note CAP = Columbia America Plating Co. NA = Not Analyzed

0 125 250 Feet

FIGURE 5 Basin 18 East-Central Subbasin Pre- and Post-Cleanout Results Selected Metals


No. de la como

Disclaimer:
Information contained on this map is accurate according to available records, however the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.

Prepared By:
May 9, 2012
005_SCRINOF_Basin_18\
OF18_EastSubbasin_
FRANKIONGENERA SERVICES

005_SCIRIOF_Basin_18\
OF18_EastSubbasin_
Report
Source:
City of PORTLAND
City of Portland BES,
Aerial Photo 2010

ENVIRONMENTAL SERVICES
CITY OF PORTLAND
Portland Oregon, 97204-1912

- Composite Sample

Outfall Basin 18 East-Central Subbasin

Sample Types

Catch Basin Solids Sample 🛑 Tax Lot

Surface Soil Sample

All Other Features

Storm Line

Manhole (MH) Catch Basin (CB)

DEQ ECSI Site

All PCB and pesticide results are presented in micrograms per kilogram (µg/Kg) All metal results are presented in milligrams per kilogram (mg/Kg). NA = Not Analyzed ND = Not Detected

J = Estimated

125 250 Feet

FIGURE 6

Basin 18 East-Central Subbasin September 2010 Erodible Soils Pathway Results

Disclaimer:
Information contained on this map is accurate according to available records, however the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.

Prepared By:
May 9, 2012
005_SCRINOF_Basin_18\
OF18_EastSubbasin_
FRANKIONGENERA SERVICES

Report
Source:
City of Portland BES,

Aerial Photo 2010

ENVIRONMENTAL SERVICES
CITY OF PORTLAND
1120 SW Fifth Avenue, Room 1000
Portland Oregon, 97204-1912

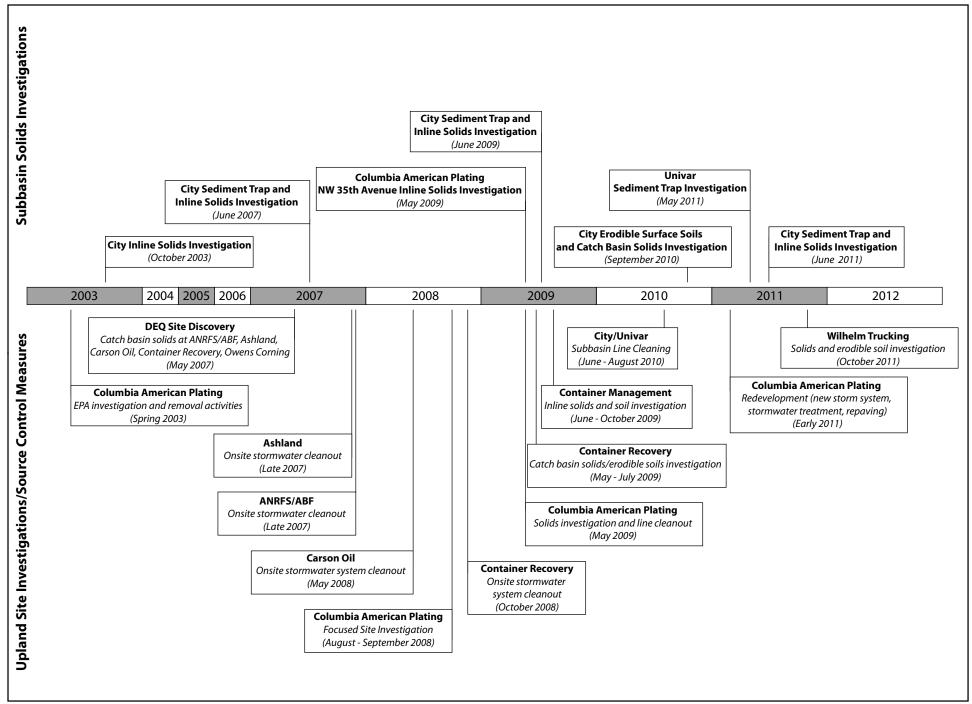


Figure 7. Basin 18 East-Central Subbasin Solids Source Investigation/Control Measures Timeline

Outfall Basin 18 East-Central Subbasin Fall 2009 Inline Solids Investigation Data Summary Report

Appendix A

Outfall Basin 18 East-Central Subbasin Fall 2009 Inline Solids Investigation Data Summary Report

Introduction

This report summarizes the results of the City of Portland fall 2009 inline solids investigation activities in the Outfall Basin 18 stormwater conveyance system. The City collected a total of eight stormwater solids samples in September and October 2009 from the east-central subbasin of Basin 18, which was identified as having upland sources of polychlorinated biphenyls (PCBs), pesticides, and metals based on results of sediment trap samples collected in spring 2007 and spring 2009 (BES, 2010). The purpose of the fall 2009 inline solids sampling was to identify possible sources of PCBs and metals upstream of the sediment trap sampling locations. Pesticides were not analyzed as part of this source investigation because two suspected sources¹ were slated to evaluate pesticides in the stormwater pathway under EPA and DEQ oversight.

This inline solids investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City. The data collected under this investigation support ongoing work by DEQ and the City to characterize and control discharges to the stormwater pathway from sites within Basin 18.

Sampling Activities and Analytical Approach

Inline solids samples were collected on September 2 and October 6, 2009, from a total of eight locations upstream of manhole AAX261, as communicated by email to DEQ (BES, 2009a; 2009b). The first round of locations was selected to evaluate potential sources upstream of the Columbia American Plating site. The second round of locations was selected to evaluate the nature and extent of contaminated inline solids in the east-central branch downstream of Columbia American Plating connections. The sampling locations are listed below and shown on Figure A-1.

¹ Univar (Van Waters & Rogers) (ECSI #330) and Magnus/Wilhelm Trucking (ECSI #69).

Sampling Location (Manhole)	Sampling Date	Description
AAX374	September 2, 2009	Within manhole
AAX375	September 2, 2009	Within manhole
AAX376	September 2, 2009	Within manhole
AAX318	September 2, 2009	Within manhole
AAX278	September 2, 2009	Within manhole
AAX264	October 6, 2009	Upstream in 30" line
AAX263	October 6, 2009	Upstream in 36" line
AAX262	October 6, 2009	Downstream in 36" line

Sample collection and handling procedures were conducted using the applicable standard operating procedures (SOPs)² included in the City's *Amended Programmatic Sampling and Analysis Plan* for collection of water and solids samples for the City of Portland Outfalls Project (BES, 2007a) and in accordance with the *Amended Programmatic Quality Assurance Project Plan* for the project (BES, 2007b). Photographs of the inline solids sampling locations and samples collected are included in Attachment A-1. Field notes recorded during sampling activities are provided in Attachment A-2.

The inline solids samples were homogenized and submitted to the City's Water Pollution Control Laboratory and subcontracted laboratories for analysis of metals, PCB Aroclors, total organic carbon, and total solids. In addition, the samples collected in October were analyzed for PCB congeners.

Summary of Results

PCBs were detected in all of the samples except the sample from the most upstream sampling location (manhole AAX374). Metals were detected in all of the samples. Tables A-1 and A-2 summarize the laboratory analytical results for the fall 2009 inline solids samples and include the JSCS SLVs for reference. The laboratory reports and data review memoranda for the samples are provided in Attachment A-3.

² The SOPs were established by the City's Field Operations section to standardize the data collection methodologies for a wide range of monitoring activities and thereby maintain comparability and representativeness of the data produced.

References

- BES. 2007a. Amended Programmatic Quality Assurance Project Plan, City of Portland Outfalls Project, Revision to Programmatic Source Control Remedial Investigation Work Plan Appendix D. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2009a. Subject: Basin 18 Inline Solids Sampling. Email to K. Tarnow (DEQ) from L. Scheffler (BES). August 26, 2009.
- BES. 2009b. Subject: FW: PH Sampling Request. Email to K. Tarnow (DEQ) from L. Scheffler (BES). September 17, 2009.
- BES. 2010. Technical Memorandum No. OF18-2, Outfall Basin 18 Inline Solids Investigation. July 20, 2010.
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).

Tables

Table A-1 – Basin 18 East-Central Subbasin Fall 2009 Inline Solids Results
Table A-2 – Basin 18 East-Central Subbasin Fall 2009 Inline Solids Results – PCB Congeners

Figure

Figure A-1 - Basin 18 East-Central Subbasin, Fall 2009 Inline Solids Sampling Locations

Attachments

Attachment A-1 – Field Photographs

Attachment A-2 - Field Data Sheets

Attachment A-3 – Laboratory Results

Table A-1
Basin 18 East-Central Subbasin Fall 2009 Inline Solids Results

		Downstream Manhole AAX262 Downstream in 36" Line FO 095976	Manhole AAX263 Upstream in 36" Line FO 095975	Manhole AAX264 Upstream in 30" Line FO 095974	Manhole AAX278 From Manhole FO 095884	Manhole AAX318 From Manhole FO 095882	Manhole AAX376 From Manhole FO 095883	Manhole AAX375 From Manhole FO 095881	Manhole AAX374 From Manhole FO 095880		JSCS ⁽¹⁾ ing Level Value
Class Analyte	Units	10/6/09	10/6/09	10/6/09	9/2/09	9/2/09	9/2/09	9/2/09	9/2/09	Toxicity	Bioaccumulation
Total Organic Carbon (E	PA 9060 MOD)										
TOC	mg/Kg	89,200	75,400	19,000	68,100	28,100	54,500	12,300	3770		
Total Solids (SM 2540 G	G)										
TS	%	58.2	60.4	79.4	63.5	73.6	63.6	87.6	97.8		
Metals (EPA 6020)											
Arsenic	mg/Kg	4.56	4.55	3.08	3.56	2.68	3.57	2.15	1.75	33	7
Cadmium	mg/Kg	405	195	13.8	35.0	3.71	4.34	0.61	0.41	4.98	1
Chromium	mg/Kg	469	545	94.3	223	150	309	61.3	33.7	111	
Copper	mg/Kg	2460	536	206	193	97.9	104	50.5	25.4	149	
Lead	mg/Kg	924	665	364	1090	1170	2280	66.0	41.0	128	17
Mercury	mg/Kg	0.833	0.532	0.309	2.11	2.09	4.61	0.031	0.016	1.06	0.07
Nickel	mg/Kg	171	211	103	266	32.6	35.6	31.4	19.0	48.6	
Silver	mg/Kg	5.99	6.35	0.86	1.94	0.33	0.47	0.10 U	0.10 U	5	
Zinc	mg/Kg	1890	1570	544	768	575	880	309	209	459	
Polychlorinated Bipheny	d Congeners (EPA 1668A)										
	Total PCB congeners ⁽²⁾⁽³⁾ µg/Kg	2350 (4)	1460 (4)	357 ⁽⁴⁾	NA	NA	NA	NA	NA	676	0.39
Polychlorinated Bipheny	ds Aroclors (EPA 8082)										
Aroclor 1016	μg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	µg/Kg	40 U	40 U	40 U	20 U	20 U	20 U	20 U	20 U		
Aroclor 1232	µg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1242	μg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	294	288	401	2900	3350	3450	10 U	10 U	1500	
Aroclor 1254	μg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U	300	
Aroclor 1260	μg/Kg	123	153	122	1030	1180	1110	21	10 U ⁽⁵⁾	200	
Aroclor 1262	μg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	20 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U		
	Total PCB Aroclors (3) µg/Kg	417	441	523	3930	4530	4560	21	ND	676	0.39

U = The analyte was not detected above the reported sample quantification limit.

ND = Not detected

-- = No JSCS screening level available

μg/Kg = Micrograms per kilogram

mg/Kg = Milligrams per kilogram

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

MAY 2012 Page 1 of 1

⁽¹⁾ JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽²⁾ Refer to Table 2 for individual congener concentrations.

⁽³⁾ Total PCBs are calculated by assigning "0" to undetected constituents.

⁽⁴⁾ Total PCBs concentration may be biased slightly high or high because of the percentage of estimated congener detections relative to the total number detected (see Table A-2).

⁽⁵⁾ The analytical testing laboratory reports a possible trace of Aroclor 1260 at a concentration less than the reporting limit.

⁼ concentration exceeds JSCS Toxicity Screening Level Value

Table A-2 Basin 18 East-Central Subbasin Fall 2009 Inline Solids Results - PCB Congeners

			Downstream		> Upstream		
			Manhole AAX262	Manhole AAX263	Manhole AAX264	ıs	$\mathbf{CS}^{(2)}$
			Downstream 36" Line FO 095976	Upstream 36" Line FO 095975	Upstream 30" Line FO 095974		Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	10/6/09	10/6/09	10/6/09	Toxicity I	Bioaccumulation
Polychlorinated Biphenyl	,	-///	4.00 FOT	0.000 507	0.400 FOT		
PCB 1 PCB 2	2-MoCB 3-MoCB	μg/Kg μg/Kg	1.82 EST 0.832 EST	0.933 EST 0.589 EST	0.190 EST 0.0428 EST		
PCB 3 PCB 4	4-MoCB 2,2'-DiCB	μg/Kg μg/Kg	2.42 7.63 EST	1.92 EST 5.13 EST	0.154 1.73		
PCB 5 PCB 6	2,3-DiCB 2,3'-DiCB	μg/Kg μg/Kg	0.0243 U 7.61 EST	0.0249 U 6.95 EST	0.0229 U 0.293		<u></u>
PCB 7 PCB 8	2,4-DiCB 2,4'-DiCB	μg/Kg μg/Kg	1.61 EST 35.1 EST	1.48 EST 31.8 EST	0.0632 1.56		
PCB 9 PCB 10	2,5-DiCB 2,6-DiCB	μg/Kg	2.43 0.389	2.41 0.182	0.0996 0.131		
PCB 11	3,3'-DiCB	μg/Kg μg/Kg	3.94	3.90	0.248		
PCB 12/13 PCB 14	3,4-DiCB + 3,4'-DiCB 3,5-DiCB	μg/Kg μg/Kg	2.01 3.21	2.20 0.0249 U	0.134 0.0229 U		
PCB 15 PCB 16	4,4'-DiCB 2,2',3-TriCB	μg/Kg μg/Kg	7.88 17.1	6.81 7.10	2.15 3.20		
PCB 17 PCB 18/30	2,2',4-TriCB 2,2',5-TriCB + 2,4,6-TriCB	μg/Kg μg/Kg	23.1 54.3	13.0 29.7	3.83 9.96		
PCB 19 PCB 20/28	2,2,6-TriCB 2,3,3'-TriCB + 2,4,4'-TriCB	μg/Kg	6.65	2.75	1.97 10.2		
PCB 21/33	2,3,4-TriCB + 2',3,4-TriCB	μg/Kg μg/Kg	74.4 34.7	43.3 21.0	3.03		
PCB 22 PCB 23	2,3,4'-TriCB 2,3,5-TriCB	μg/Kg μg/Kg	22.6 0.0658	12.9 0.0378	2.55 0.0299 U		
PCB 24 PCB 25	2,3,6-TriCB 2,3',4-TriCB	μg/Kg μg/Kg	0.0243 U 4.38	0.379 EMPC 2.42	0.180 0.431		
PCB 26/29 PCB 27	2,3',5-TriCB + 2,4,5-TriCB 2,3',6-TriCB	μg/Kg μg/Kg	11.5 3.48	6.46 1.82	1.33 0.845		
PCB 31	2,4',5-TriCB	μg/Kg	71.0	39.5	8.76		
PCB 32 PCB 34	2,4,6-TriCB 2,3,5-TriCB	μg/Kg μg/Kg	19.0 0.364	10.5 0.250	3.23 0.0532		
PCB 35 PCB 36	3,3',4-TriCB 3,3',5-TriCB	μg/Kg μg/Kg	0.836 0.0639 EMPC	0.527 0.0249 U	0.0738 0.0299 U		
PCB 37 PCB 38	3,4,4'-TriCB 3,4,5-TriCB	μg/Kg μg/Kg	17.0 0.103	10.6 0.0571	2.54 0.0229 U		
PCB 39 PCB 40/41/71	3,4',5-TriCB 2,2',3,3'-TeCB + 2,2',3,4-TeCB + 2,3',4',6-TeCB	μg/Kg μg/Kg	0.526 45.1	0.305 27.5	0.0581 9.69		
PCB 42	2,2',3,4'-TeCB	μg/Kg	19.7	11.8	4.53		
PCB 43/73 PCB 44/47/65	2,2',3,5-TeCB 2,2',3,5'-TeCB + 2,2',4,4'-TeCB + 2,3,5,6-TeCB	μg/Kg μg/Kg	8.84 81.5	6.76 48.0	0.273 17.1		
PCB 45/51 PCB 46	2,2',3,6-TeCB + 2,2',4,6'-TeCB 2,2',3,6'-TeCB	μg/Kg μg/Kg	18.5 6.14	10.6 3.60	4.75 1.67		
PCB 48 PCB 49/69	2,2',4,5-TeCB 2,2',4,5'-TeCB + 2,3',4,6-TeCB	μg/Kg μg/Kg	17.0 45.2	10.6 26.1	3.18 9.54		
PCB 50/53 PCB 52	2,2',4,6-TeCB + 2,2',5,6'-TeCB 2,2',5,5'-TeCB	μg/Kg μg/Kg	15.7 107	9.01 62.6	3.78 21.1		
PCB 54	2,2',6,6'-TeCB	μg/Kg	0.206	0.134 EST	0.0565		
PCB 55 PCB 56	2,3,3',4'-TeCB 2,3,3',4'-TeCB	μg/Kg μg/Kg	0.0487 U 33.1	1.14 EST 21.7 EST	0.0459 U 5.70		
PCB 57 PCB 58	2,3,3',5-TeCB 2,3,3',5'-TeCB	μg/Kg μg/Kg	0.146 0.211 EMPC	0.152 EST 0.197 EST	0.0615 0.0459 U		
PCB 59/62/75 PCB 60	2,3,3',6-TeCB + 2,3,4,6-TeCB + 2,4,4',6-TeCB 2,3,4,4'-TeCB	μg/Kg μg/Kg	6.61 15.7	4.06 EST 10.1 EST	1.52 2.44		
PCB 61/70/74/76 PCB 63	2,3,4,5-TeCB + 2,3',4',5-TeCB + 2,4,4',5-TeCB + 2',3,4,5-TeCB 2,3,4',5-TeCB	μg/Kg μg/Kg	131 2.68	81.5 EST 1.72 EST	20.1 0.408		
PCB 64	2,3,4',6-TeCB	μg/Kg	31.6	19.7 EST	6.92		
PCB 66 PCB 67	2,3',4,4'-TeCB 2,3',4,5-TeCB	μg/Kg μg/Kg	57.4 1.79	36.0 EST 1.11 EST	11.0 0.265		
PCB 68 PCB 72	2,3',4,5'-TeCB 2,3',5,5'-TeCB	μg/Kg μg/Kg	0.210 0.412	0.136 EST 0.231 EST	0.0459 U 0.0832		
PCB 77 PCB 78	3,3',4,4'-TeCB 3,3',4,5-TeCB	μg/Kg μg/Kg	6.25 0.0487 U	4.18 0.0499 U	1.10 0.0459 U		0.052
PCB 79 PCB 80	3,3',4,5'-TeCB 3,3',5,5'-TeCB	μg/Kg	0.614 0.0487 U	0.316 0.0499 U	0.0736 0.0459 U		
PCB 81	3,4,4',5-TeCB	μg/Kg μg/Kg	0.189 EMPC	0.165	0.0459 U		0.017
PCB 82 PCB 83	2,2',3,3',4-PeCB 2,2',3,3',5-PeCB	μg/Kg μg/Kg	13.6 6.07	8.51 5.59	2.36 1.09		
PCB 84 PCB 85/116/117	2,2',3,3',6-PeCB 2,2',3,4,4'-PeCB + 2,3,4,5,6-PeCB + 2,3,4',5,6-PeCB	μg/Kg μg/Kg	28.6 17.1	16.1 10.3	5.23 2.80		
PCB 86/87/97/108/119/125	2,2',3,4,5-PeCB + 2,2',3,4,5'-PeCB + 2,2',3',4,5-PeCB + 2,3,3',4,5'-PeCB + 2,3',4,4',6-PeCB + 2',3,4,5,6'-PeCB	μg/Kg	68.4	40.7	10.7		
PCB 88/91 PCB 89	2,2',3,4,6-PeCB + 2,2',3,4',6-PeCB 2,2',3,4,6'-PeCB	μg/Kg μg/Kg	15.0 1.84	8.46 1.13	2.60 0.363		
PCB 90/101/113	2,2',3,4',5-PeCB + 2,2',4,5,5'-PeCB + 2,3,3',5',6-PeCB	μg/Kg	92.8	54.0	14.2		
PCB 92 PCB 93/98/100/102	2,2',3,5,5'-PeCB 2,2',3,5,6-PeCB + 2,2',3',4,6-PeCB + 2,2',4,4',6-PeCB + 2,2',4,5,6'-	μg/Kg	15.6 5.07	8.86 2.87	2.55 0.847		
PCB 94	PeCB 2,2',3,5,6'-PeCB	μg/Kg μg/Kg	0.650	0.351	0.118		
PCB 95 PCB 96	2,2',3,5',6-PeCB 2,2',3,6,6'-PeCB	μg/Kg μg/Kg	78.0 1.08	42.5 0.609	13.6 0.219		
PCB 99 PCB 103	2,2',4,4',5-PeCB 2,2',4,5',6-PeCB	μg/Kg μg/Kg	39.2 0.573	21.6 0.316	5.79 0.0980		
PCB 104 PCB 105	2,2,4,6,6'-PeCB 2,3,3',4,4'-PeCB	μg/Kg μg/Kg	0.0487 U 34.5	0.0499 U 24.4	0.0459 U 4.36		0.17
PCB 106	2,3,3',4,5-PeCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		
PCB 107/124 PCB 109	2,3,3',4',5-PeCB + 2',3,4,5,5'-PeCB 2,3,3',4,6-PeCB	μg/Kg μg/Kg	3.24 4.97	2.13 3.42	0.408 0.694		
PCB 110/115 PCB 111	2,3,3',4',6-PeCB + 2,3,4,4',6-PeCB 2,3,3',5,5'-PeCB	μg/Kg μg/Kg	97.8 0.0487 U	62.4 0.0499 U	16.2 0.0459 U		
PCB 112 PCB 114	2,3,3',5,6-PeCB 2,3,4,4',5-PeCB	μg/Kg μg/Kg	0.0487 U 1.90	0.0499 U 1.53	0.0459 U 0.276		 0.17
PCB 118 PCB 120	2,3',4,4',5-PeCB 2,3',4,5,5'-PeCB	μg/Kg μg/Kg	79.1 0.143	45.7 0.104	9.36 0.0459 U	 	0.12
PCB 121	2,3',4,5',6-PeCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		
PCB 122 PCB 123	2',3,3',4,5-PeCB 2',3,4,4',5-PeCB	μg/Kg μg/Kg	0.887 1.79	0.756 1.03	0.170 0.207		0.21
PCB 126 PCB 127	3,3',4,4',5-PeCB 3,3',4,5,5'-PeCB	μg/Kg μg/Kg	1.08 0.306	0.195 0.193	0.0459 U 0.0459 U		0.00005
PCB 128/166 PCB 129/138/163	2,2',3,3',4,4'-HxCB + 2,3,4,4',5,6-HxCB 2,2',3,3',4,5-HxCB + 2,2',3,4,4',5'-HxCB + 2,3,3',4',5,6-HxCB	μg/Kg μg/Kg	13.7 98.0	9.06 67.0	1.65 11.7		
PCB 130 PCB 131	2,2',3,3',4,5-HxCB 2,2',3,3',4,6-HxCB	μg/Kg μg/Kg	5.40 1.34	3.62 0.870	0.662 0.170		
PCB 132	2,2',3,3',4,6'-HxCB 2,2',3,3',5,5'-HxCB	μg/Kg	32.8	21.3	4.27 0.126		
PCR 133		μg/Kg μg/Kg	1.06 4.79	0.671 2.98	0.592		
PCB 133 PCB 134/143	2,2',3,3',5,6-HxCB + 2,2',3,4,5,6'-HxCB		22.7	19.9	4.46		
PCB 134/143 PCB 135/151 PCB 136	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB 2,2',3,3',6,6'-HxCB	μg/Kg μg/Kg	33.7 12.6	7.23	1.79		
PCB 134/143 PCB 135/151	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB	μg/Kg		7.23 2.94 0.891	1.79 0.459 0.169	 	
PCB 134/143 PCB 135/151 PCB 136 PCB 137 PCB 137 PCB 139/140 PCB 141	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB 2,2',3,3',6,6'-HxCB 2,2',3,4,4',5-HxCB 2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB 2,2',3,4,5,5'-HxCB	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	12.6 6.05 1.45 19.0	2.94 0.891 12.1	0.459 0.169 2.30	 	
PCB 134/143 PCB 135/151 PCB 136 PCB 137 PCB 139/140 PCB 141 PCB 142 PCB 144	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB 2,2',3,3',6,6'-HxCB 2,2',3,4,4',5-HxCB 2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB 2,2',3,4,5,5'-HxCB 2,2',3,4,5,6-HxCB 2,2',3,4,5',6-HxCB	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	12.6 6.05 1.45 19.0 0.0487 U 2.77	2.94 0.891 12.1 0.0499 U 2.38	0.459 0.169 2.30 0.0459 U 0.606	 	
PCB 134/143 PCB 135/151 PCB 136 PCB 137 PCB 139/140 PCB 141 PCB 142 PCB 144 PCB 144 PCB 1445 PCB 1446	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB 2,2',3,3',6,6'-HxCB 2,2',3,4,4',5-HxCB 2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB 2,2',3,4,5,5'-HxCB 2,2',3,4,5',6-HxCB 2,2',3,4,6,6'-HxCB 2,2',3,4,5,6-HxCB 2,2',3,4,5,5'-HxCB	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	12.6 6.05 1.45 19.0 0.0487 U 2.77 0.0487 U 11.7	2.94 0.891 12.1 0.0499 U 2.38 0.0499 U 7.80	0.459 0.169 2.30 0.0459 U 0.606 0.0459 U	 	
PCB 134/143 PCB 135/151 PCB 136 PCB 137 PCB 139/140 PCB 141 PCB 142 PCB 144 PCB 145	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB 2,2',3,3',6,6'-HxCB 2,2',3,4,4',5-HxCB 2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB 2,2',3,4,5,5'-HxCB 2,2',3,4,5,6-HxCB 2,2',3,4,6,6'-HxCB	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	12.6 6.05 1.45 19.0 0.0487 U 2.77 0.0487 U	2.94 0.891 12.1 0.0499 U 2.38 0.0499 U	0.459 0.169 2.30 0.0459 U 0.606 0.0459 U	 	

MAY 2012 Page 1 of 2

Table A-2 Basin 18 East-Central Subbasin Fall 2009 Inline Solids Results - PCB Congeners

			Downstream		> Upstream		
			Manhole AAX262 Downstream 36" Line FO 095976	Manhole AAX263 Upstream 36" Line FO 095975	Manhole AAX264 Upstream 30" Line FO 095974	Screen	JSCS ⁽²⁾ ing Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	10/6/09	10/6/09	10/6/09	Toxicity	Bioaccumulation
Polychlorinated Bip	ohenyl Congeners (EPA 1668A)					•	
PCB 153/168	2,2',4,4',5,5'-HxCB + 2,3',4,4',5',6-HxCB	μg/Kg	75.2	50.2	8.72		
PCB 154	2,2',4,4',5,6'-HxCB	μg/Kg	0.677	0.408	0.0734		
PCB 155 PCB 156/157	2,2',4,4',6,6'-HxCB 2,3,3',4,4',5-HxCB + 2,3,3',4,4',5'-HxCB	μg/Kg	0.0487 U 10.5	0.0499 U 7.32	0.0459 U 1.17		
PCB 150/157 PCB 158	2,3,3',4,4',5-nxcb + 2,3,3',4,4',5-nxcb 2,3,3',4,4',6-HxcB	μg/Kg μg/Kg	9.02	6.19	1.17		
PCB 159	2,3,3',4,5,5'-HxCB	μg/Kg	0.0844	0.717	0.0965		
PCB 160	2,3,3',4,5,6-HxCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		-
PCB 161	2,3,3',4,5',6-HxCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		
PCB 162	2,3,3',4',5,5'-HxCB	μg/Kg	0.841	0.581	0.0859		
PCB 164 PCB 165	2,3,3',4',5',6-HxCB 2,3,3',5,5',6-HxCB	μg/Kg	5.10 0.0487 U	3.96 0.0499 U	0.781 0.0459 U		
PCB 167	2,3',4,4',5,5'-HxCB	μg/Kg μg/Kg	3.42	2.28	0.380		0.21
PCB 169	3,3',4,4',5,5'-HxCB	μg/Kg	0.140	0.0621	0.0459 U		0.00021
PCB 170	2,2',3,3',4,4',5-HpCB	μg/Kg	19.8	14.2	2.36		
PCB 171/173	2,2',3,3',4,4',6-HpCB + 2,2',3,3',4,5,6-HpCB	μ g/Kg	6.19	4.61	0.774		
PCB 172	2,2',3,3',4,5,5'-HpCB	μg/Kg	3.65	2.62	0.425		
PCB 174	2,2',3,3',4,5,6'-HpCB	μg/Kg	21.5	15.3	2.78		
PCB 175 PCB 176	2,2',3,3',4,5',6-HpCB 2,2',3,3',4,6,6'-HpCB	μg/Kg μg/Kg	1.05 3.08	0.689 2.07	0.122 0.384		
PCB 177	2,2',3,3',4',5,6-HpCB	μg/Kg μg/Kg	11.9	8.54	1.50		
PCB 178	2,2',3,3',5,5',6-HpCB	μg/Kg	4.45	3.07	0.537		
PCB 179	2,2',3,3',5,6,6'-HpCB	μg/Kg	9.42	6.37	1.19		
PCB 180/193	2,2',3,4,4',5,5'-HpCB + 2,3,3',4',5,5',6-HpCB	μg/Kg	46.3	32.9	5.33		
PCB 181	2,2',3,4,4',5,6-HpCB	μg/Kg	0.151	0.114	0.0459 U		
PCB 182 PCB 183/185	2,2',3,4,4',5,6'-HpCB	μg/Kg	0.0487 U	0.0770 EMPC	0.0459 U		
PCB 183/185 PCB 184	2,2',3,4,4',5',6-HpCB + 2,2',3,4,5,5',6-HpCB 2,2',3,4,4',6,6'-HpCB	μg/Kg μg/Kg	15.8 0.0487 U	11.3 0.0499 U	1.82 0.0459 U		
PCB 186	2,2',3,4,5,6,6'-HpCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		
PCB 187	2,2',3,4',5,5',6-HpCB	μg/Kg	27.7	19.1	3.38		
PCB 188	2,2',3,4',5,6,6'-HpCB	μg/Kg	0.0487 U	0.0499 U	0.0459 U		-
PCB 189	2,3,3',4,4',5,5'-HpCB	μg/Kg	0.798	0.595	0.0959		1.2
PCB 190 PCB 191	2,3,3',4,4',5,6-HpCB	μg/Kg	3.64	2.76	0.491		
PCB 191 PCB 192	2,3,3',4,4',5',6-HpCB 2,3,3',4,5,5',6-HpCB	μg/Kg μg/Kg	0.844 0.0487 U	0.590 0.0499 U	0.103 0.0459 U		
PCB 194	2,2',3,3',4,4',5,5'-OcCB	μg/Kg	10.1	6.80	1.02		
PCB 195	2,2',3,3',4,4',5,6-OcCB	μg/Kg	3.77	2.57	0.414		
PCB 196	2,2',3,3',4,4',5,6'-OcCB	μg/Kg	5.61	3.89	0.608		
PCB 197/200	2,2',3,3',4,4',6,6'-OcCB + 2,2',3,3',4,5,6,6'-OcCB	μg/Kg	1.87	1.27	0.207		
PCB 198/199	2,2',3,3',4,5,5',6'-OcCB + 2,2',3,3',4,5,5',6'-OcCB	μg/Kg	12.1	8.46	1.33		
PCB 201 PCB 202	2,2',3,3',4,5',6,6'-OcCB 2,2',3,3',5,5',6,6'-OcCB	μg/Kg	1.54 2.23	1.04 1.54	0.167 0.223		
PCB 202	2,2',3,4,4',5,5',6-OcCB	μg/Kg μg/Kg	7.04	5.06	0.772		
PCB 204	2,2',3,4,4',5,6,6'-OcCB	μg/Kg	0.0730 U	0.0748 U	0.0688 U		
PCB 205	2,3,3',4,4',5,5',6-OcCB	μg/Kg	0.568	0.389	0.0688 U		
PCB 206	2,2',3,3',4,4',5,5',6-NoCB	μg/Kg	4.12	2.65	0.414		
PCB 207	2,2',3,3',4,4',5,6,6'-NoCB	μg/Kg	0.500	0.359	0.0688 U		**
PCB 208 PCB 209	2,2',3,3',4,5,5',6,6'-NoCB Decachlorobiphenyl	μg/Kg	1.03 1.61	0.833 1.01	0.109 0.132		
1 00 200		μg/Kg	5.07 (3)	3.44 (3)			
	Total Monochlorobiphenyls	μg/Kg		3.44	0.387 (3)		
	Total Dichlorobiphenyls	μg/Kg	71.8 ⁽³⁾	60.9 ⁽³⁾	6.41		
	Total Trichlorobiphenyls	μg/Kg	361	202	52.2		
	Total Tetrachlorobiphenyls	μg/Kg	652	399 ⁽³⁾	125		
	Total Pentachlorobiphenyls	μg/Kg	609	364	94.2		
	Total Hexachlorobiphenyls	μg/Kg	419	275	52.0		
	, ,	μg/Kg					
	Total Heptachlorobiphenyls		176	125	21.3		
	Total Octachlorobiphenyls	μg/Kg	44.8	31.0	4.74		-
	Total Nonachlorobiphenyls	μg/Kg	5.65	3.84	0.523		
	Total Decachlorobiphenyls	μg/Kg	1.61	1.01	0.132		
	Total PCBs	μg/Kg	2350 ⁽³⁾	1460 (3)	357 ⁽³⁾	676	0.39

MoCB = Monochlorobiphenyl

DiCB = Dichlorobiphenyl

TriCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl

PeCB = Pentachlorobiphenyl

HeCB = Hexachlorobiphenyl HpCB = Heptachlorobiphenyl

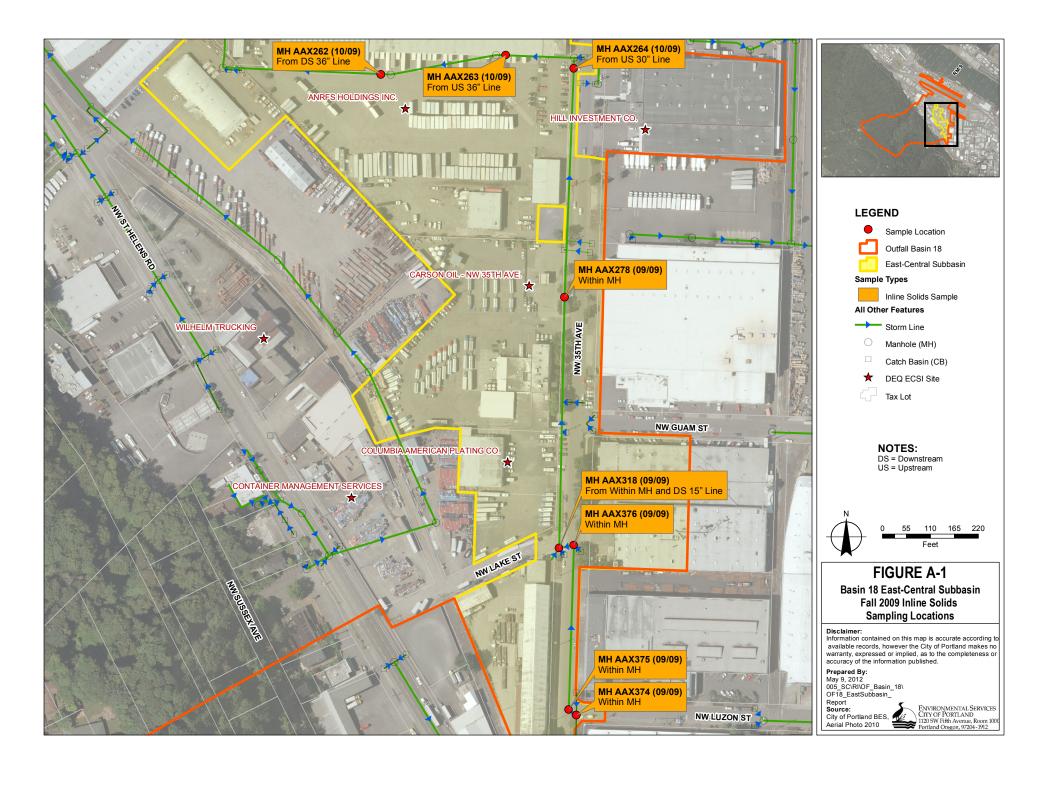
OcCB = Octachlorobiphenyl

NoCB = Octachlorobiphenyl

U = The analyte was not detected above the reported sample quantification limit.

EMPC = Estimated maximum possible concentration.

EST = Congener value is estimated due to matrix interference or an internal standard recovery outside of method control limits -- No JSCS screening level available.


bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

= concentration exceeds JSCS Toxicity Screening Level Value

ug/Kg = Micrograms per kilogram. $^{(1)}IUPAC = International$ Union of Pure and Applied Chemistry

⁽²⁾ JSCS = Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007).

⁽³⁾ Total homolog and total congener values are considered biased slightly high for samples FO095974 and FO095976. Total homolog and total congener values are considered biased high for sample FO095975 based on internal standard recoveries outside of method control limits.

Attachment A-1 Field Photographs

September 2009 Inline Solids Sampling

Photo 1 (September 2, 2009). Sampling setup at Manhole AAX374, at the intersection of NW 35th Avenue and NW Luzon Street.

Photo 2 (September 2, 2009). Solids at the bottom of Manhole AAX374, after sampling.

Photo 3 (September 2, 2009). Final homogenized solids sample from manhole AAX374.

Photo 4 (September 2, 2009). Sampling setup at Manhole AAX375, at the intersection of NW 35th Avenue and NW Luzon Street.

Photo 5 (September 2, 2009). Solids accumulated along west side of Manhole AAX375.

Photo 6 (September 2, 2009). Final homogenized solids sample from Manhole AAX375.

Photo 7 (September 2, 2009). Sampling setup at Manhole AAX318, at the southwest corner of NW Lake Street and NW 35th Avenue.

Photo 8 (September 2, 2009). Solids at the bottom of Manhole AAX318.

Photo 9 (September 2, 2009). Final homogenized solids sample from Manhole AAX318.

Photo 10 (September 2, 2009). Sampling setup at Manhole AAX376, in NW 35th Avenue at the intersection with NW Lake Street.

Photo 11 (September 2, 2009). Solids at the bottom of Manhole AAX376.

Photo 12 (September 2, 2009). Final homogenized solids sample from Manhole AAX376.

Photo 13 (September 2, 2009). Sampling setup at Manhole AAX278, in parking strip along the west side of NW 35th Avenue.

Photo 14 (September 2, 2009). Solids and standing water in Manhole AAX278.

Photo 15 (September 2, 2009). Homogenized solids sample from Manhole AAX278.

October 2009 Inline Solids Sampling

Note: Photos taken during the October 6, 2009, sampling activities were lost due to camera damage.

Attachment A-2 Field Notes

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services City of Portland Chain-of-Custody

Date: 9/2/09

Page: 으

Collected By: PTB, MJS, WCR

	i de	Kecelve Signature:		rinte	Kelingu Signature:	7 °			$\tilde{}$			•			; ;			, adami	Т	Ť	ס
	rinted Name:	10	Keter 8	₹ <i>1‱</i>	Kelinguished By: 1.				FO095885		FO095884	FO095883	FO095882	FO095881	FO095880	WPCL Sample I.D.				File Number: 102	**
			2025	The state of	0				an beauty (See		e green v velky og	**************************************	111111111111111111111111111111111111111		152353					1020.001	ST.
	name:	1	1 9/2/09		10110				FIELD DECON BLANK		IL-18-AAX278-0909 3125 NW 35th AVE	IL-18-AAX376-0909 NW 35th & LAKE	IL-18-AAX318-0909 NW 35th & LAKE	NW 35th & LUZON	IL-18-AAX374-0909 NW 35th & LUZON	Location		OUTFALL 18			PORTLAND HARBOR INLINE SAMP
t laured helicit	oignature.	Received By:	Franted Name:	oignature	Relinquished By:				FDB		18_15	18_14	18_13	18_12	18_11	Point Code		l oo		I	LINES
,		<u>Y:</u> 2			led By: 2.				9/2/09		9/2/09	9/2/09	9/2/09	9/2/09	9/2/09	Sample Date				Matrix:	AMP
	ļ. 1		10						1124		1144	1107	1035	0939	0906	Sample Time				SEDIMENT + DI	
Date:	Time:		· Date:	lime:					ഗ		С	C	С	C .	C	Sample Type			WATER	ξ□,	
									•		•	•	•	•	•	PCB Aro	clors - LL				
Print	Sign	Re	Prin	Sign	Re			-											Organics		
Printed Name:	Signature:	Received By:	Printed Name:	Signature:	Relinquished By:														ics		
	jas.	ω			Ву. 3.				1		•	•	•	•	•	Total Sol	dis				
							ļ	00 A C. A. C			•	•	•	•	•	тос			General		. •
							1 1									Total Met	als (As, Cd, Cr	;		Re	
Date:	Time:		Date:	Time:		·			5-	· · · · · · · · · · · · · · · · · · ·						Cu, Pb, Hg, f	Ni, Ag, Zn)	,	Metals	que	
'n	**		8.	P.					WATER											Requested Analyses	
Printer	Signature:	Rece	Printer	Signature:	Relir														·	\naly	
Printed Name:	ire:	Received By:	Printed Name:	ure:	Relinquished By:				SAMPLE						·				Fie	Ses	
		4			4														Field Comments	-	
																	-		nents		
Date:	Time:		Date:	Time:																	
						:											•				
									,		. 1		•		•	٠		l	-		

Portland Harbor Inline Samp COC - OF 18 (8-19-09).xls

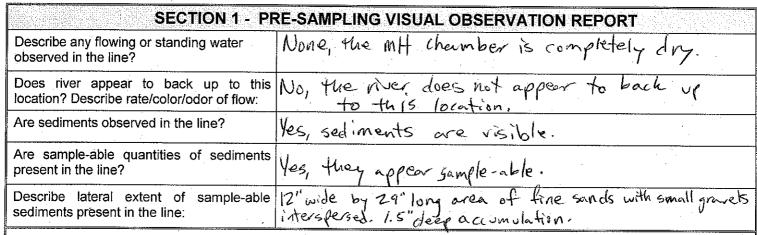
DAILY FIELD REPORT

Page ___ Project Portland Harbor Inline Samo Project No. 1020.001 Date 9/1/09 Location BASIN 18 Subject Sampling Activities By PTB, WCR, MJS 0836 Aprile at NW 35th + Luzon. Set up for AAX374. Sediment visible in MH invert. Will collect sample. 0906 Sample collected and given paint code 18-11. 0919 Set up for AAX375 Sediment visible. 0939 Sample collected and given point code 18-12. 1003 Arrive at NW Lake and NW 35th, Set up for AAX318. 1035 Sample collected and given point rade 18-13. 1045 Set up for AAX376. Sediment & Standing water visible 107 Sample collected and given point code 18-16 1124 Arrive at AAX278. Performed Field Decon Blank. FO095885 1132 Set up for AAX 278. Standing water present 1144 Sample collected and given point code 18-15. 1200 Finished packing up. Headed back to WPCL **Attachments**

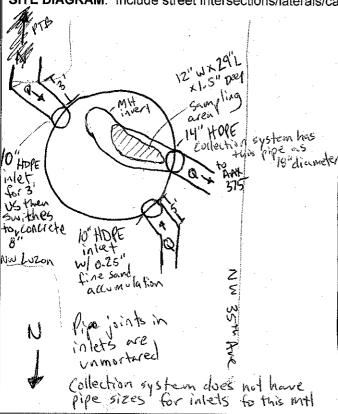
CITY OF PORTLAND

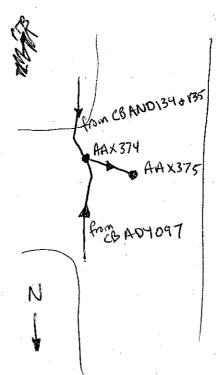
ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET


Project Name: Portland	Harbor Inli	ne Samp	Project Number: /020. 001
Sampling Team: PTB, WCA	Date: 9/2/09	Arrival Time: 0836	Current Weather Conditions/Last Rain: Partly cloudy, light vain ago
Basin: 18	Node: AAX374		Subbasin: NA


Sampling Location Description/Address:

NW 35th A Luzon

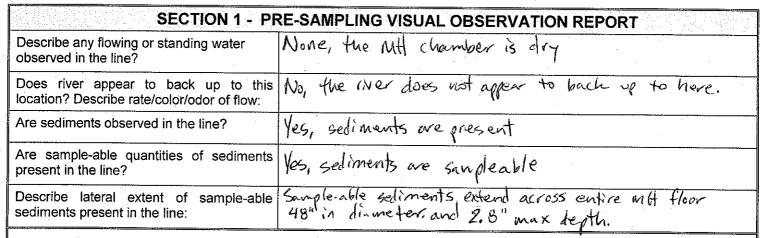
SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

			1091			
Date: 9/2/09 SEC	TION 2 - SAME	PLE COLLECTION REPORT	Node: AAX 374			
Sampling Equipment:	bStainless steel sp □ Other (Describe)	Stainless steel spoon & stainless steel bucket □ Other (Describe)				
Equipment Decontamination process:	prer SOP7.01a □ Other (Describe)					
Sample date: Sample time:	Sample Identification: (IL-XX-NNNNNN-mmyy) Point 18_11 1L-18-AA\374-0909					
Sample location description: (number of	feet from node of e	ntry) Sample collected from				
Sample collection technique:	Stainless strom repru	steel spoon used to scoop sediment out resentative areas along entire accumulation.				
Describe Color of sample:	Dork green	w/ flecks of other colo				
Describe Texture/Particle size:	95% fine so	ends, 5% small greels				
Describe visual or olfactory evidence of could bulk sediment sample (odor, sheen, disco		No visual or offactor	, evidence of			
Describe depth of solids in area where sa	ample collected:	Sediment was up to 1. The sample collection	5" deep in on area.			
Describe amount and type of debris in sa	mple:	Nodebris observed.				
Amount and type of debris removed from	,	None.				
Compositing notes: Sample collect with samp	el along entir le collection	e accumulation. Homoger spoon.	nized in bucket			
Sample Jars Collected (number, size, full	or partial)?	full 402. jars				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).						
FO095880						
Lab ID	Duplicate	sample collected? YN Dupe ID				
Duplicate sample identification # on COC						
Any deviations from standard procedures	None					

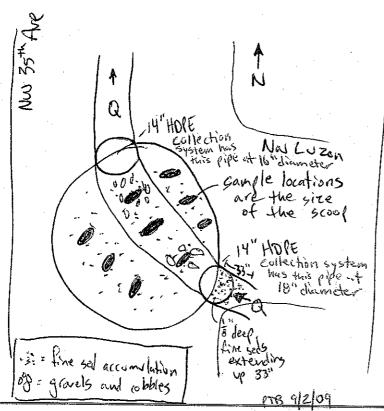
SECTION	N 3 - PHOTOGRAPH LOG
Overview of node showing drainage area	#3
Plan view of sediments inline	#2
Homogenized sample (sediment in bowl)	composited sample in collection jor #1
Other?	

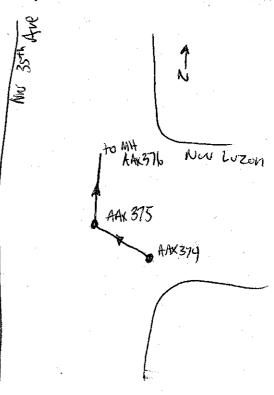
ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET


Project Name: Portland H	arbor Inline	Project Number: [DZ0 . 00]	
Sampling Team: ITB, WCL, MSS	Date: 9/2/09	Arrival Time:	Current Weather Conditions/Last Rain: Mostly Sunny / light (ain a) week
Basin: /ଓ	Node: A.A. 3	15	Subbasin: NA


Sampling Location Description/Address:

NW 35th and Luzon

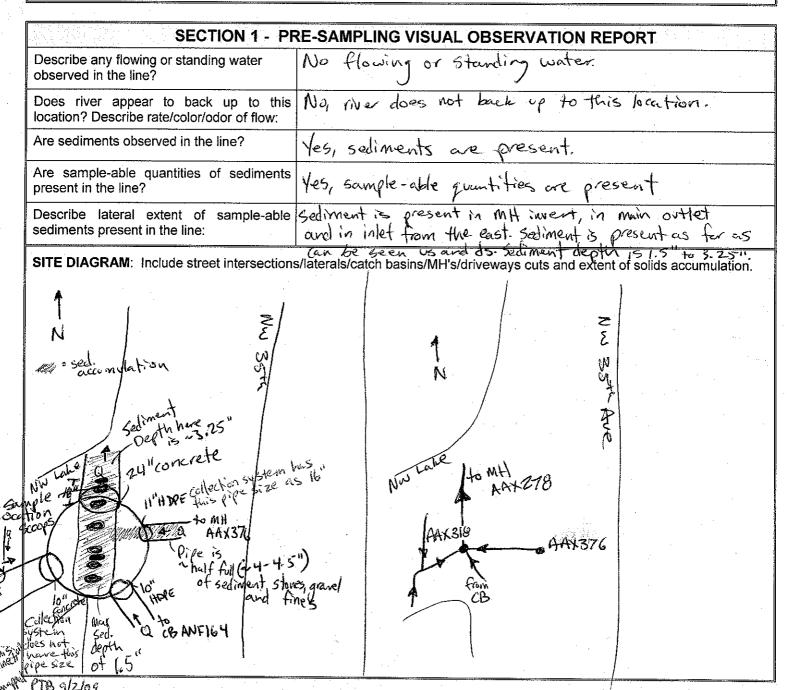
SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

The second control of					
Date: 9/2/89 SECT	TION 2 - SAMPLE COLLECTION REPORT Node: A4x 375				
Sampling Equipment:	Stainless steel spoon & stainless steel bucket Dother (Describe)				
Equipment Decontamination process:) Per SOP7.01a □ Other (Describe)				
Sample date: Sample time: 9/2/89 8939	Sample Identification: (IL-XX-NNNNN-mmyy) Point Code 1L-18-AAX375-0909 Pet from node of entry) Gample location includes MH invest and				
Sample location description: (number of fe	floor of MH Chamber				
Sample collection technique:	3 scoops taken from each side of MH invert from MH floor as well as from MH invert. Each scoop was the size of the				
Describe Color of sample:	Dark brown with white flecks. Sample is somewin				
Describe Texture/Particle size:	90% fine sands, 5% silts tines, 5% small gravels. 41% debot				
Describe visual or olfactory evidence of co bulk sediment sample (odor, sheen, discol	ontamination in No visual or offactory evidence of contamination				
Describe depth of solids in area where san	mple collected: Sediment depth was up to 2.8" deep at its deepest point.				
Describe amount and type of debris in sam	Describe amount and type of debris in sample:				
	Amount and type of debris removed from final sample: None removed from composite. Scoops were selected to exclude large gravels and cobbles				
Compositing notes: Sumple was homogenized in bucket using sample collection scoop.					
Sample Jars Collected (number, size, full o	or partial)? 3 full 4 oz. jars.				
If not enough sample to fill all of the jars, list collected and related analytes sampled (as analyte priority list in work order).					
FO095881					
Lab ID	Duplicate sample collected? Y/Ø Dupe ID				
Duplicate sample identification # on COC:					
Any deviations from standard procedures:	None.				

SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	1266. jeg				
Plan view of sediments inline	1269				
Homogenized sample (sediment in bowl)	1271				
Other?					

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor Inline Samp			Project Number: 1020.001
Sampling Team:	Date: 9/2/09	Arrival Time:	Current Weather Conditions/Last Rain: Mostly sonny / light rain ~ lweek
Basin: 18	Node: AAX3	(8	Subbasin: NA

Sampling Location Description/Address:

NW 35th & Lake

	Other (Describe)	oon & stainless steel bucket				
	Dor SOD7 010	xIStainless steel spoon & stainless steel bucket Other (Describe)				
		Per SOP7.01a Other (Describe)				
Sample date: Sample time: S	Sample Identification: (IL-XX-NNNNN-mmyy) Paint Code 18-15					
Sample location description: (number of feet t	from node of e	entry) O scoops were taken in total. 4 us of main inlet from E and 4 ds of inlet to 18" ds of EOP in MH chamber				
Sample collection technique:	Sc00 05 51	paced at regular intervals from 5 sick of MH own to 1811 into the outlet pipe				
11		ish brown (sediment is wetted)				
Describe Texture/Particle size:	10% fines	s, 8% fine sands, 2% particulate organics.				
Describe visual or olfactory evidence of contain bulk sediment sample (odor, sheen, discolorate		Smells oily from petroleum products. Upper layer is 30" faich brown w/ rusty reloring. Tower layer was silvery/sheen in appearance Sediment was 1.5"-3.25" in depth in				
Describe depth of solids in area where sample	Seliment was 1.5"-3.25" in depthin the sample collection area.					
Describe amount and type of debris in sample: No debris observed.						
Amount and type of debris removed from final	l sample:	No debris removed.				
Compositing notes: Homogenized Usin	ng sample of fresh	collection spoon and jors filled with a stainless steelspoon.				
Sample Jars Collected (number, size, full or page		full 402 jars				
If not enough sample to fill all of the jars, list ja collected and related analytes sampled (as pe analyte priority list in work order).	ars er					
	ļ.					
FO095882						
Lab ID	Duplicate	e sample collected? Y/N Dupe ID				
Duplicate sample identification # on COC:						
Any deviations from standard procedures: ()	one					

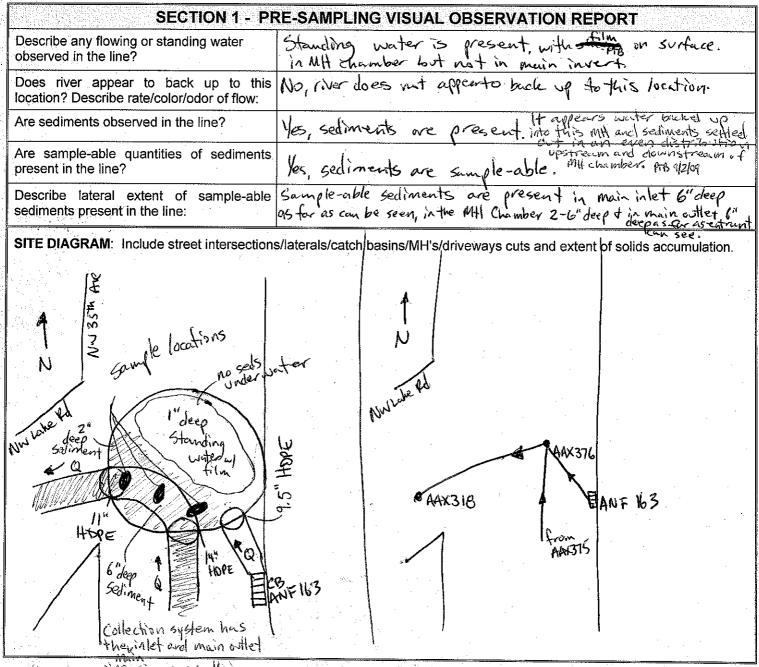
SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	1275				
Plan view of sediments inline	1272 + 1273				
Homogenized sample (sediment in bowl)	1274				
Other?					

18-14 #8-1508

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor Inline Samp			Project Number: 1070	
Sampling Team: PTB, MS, UCP	Date: 9/2/09	Arrival Time:	Current Weather Conditions Mostly Sunny / 1/5h	s/Last Rain: train ~ week ago
Basin: 18	Node: AAX 37	'b	Subbasin: NA	

Sampling Location Description/Address:

NW 35th & Lake

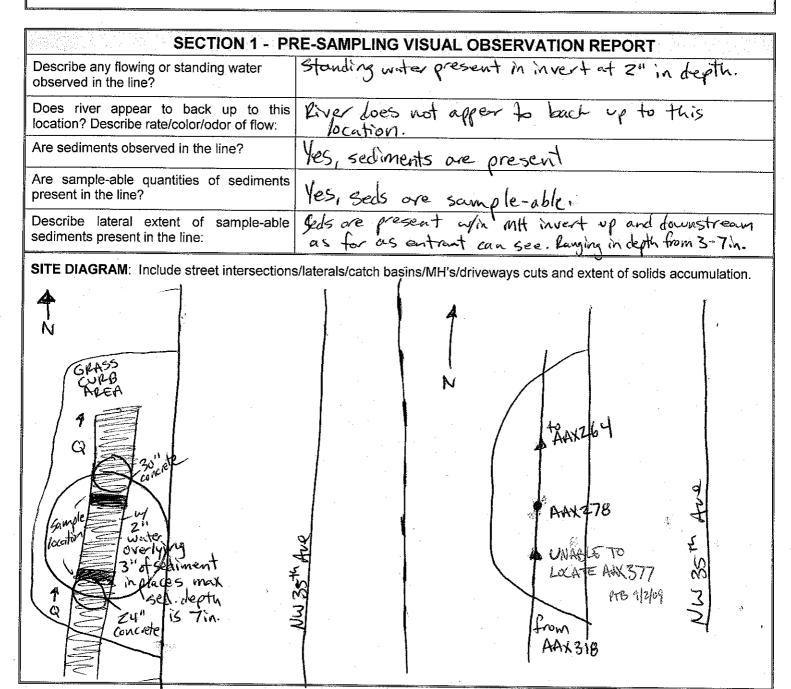
18-14 # 5 PTB

					- 1 40 0	- P113
Date: 9209 SEC	TION 2 - SAMI	PLE COL	LECTION R	EPORT	Node: AAX 376	
Sampling Equipment:	Destainless steel spoon & stainless steel bucket □ Other (Describe)					
Equipment Decontamination process:	> Per SOP7.01a □ Other (Describe)					****
Sample date: Sample time: 9(209 1107	Sample Identifi	- 18 - A	HAX376-	0909	Point Code 18_	
Sample location description: (number of fe		606	of inlet to	stlet and	l in middle of inv	t leA.
Sample collection technique:	Stainless st locations	eel scoo	Ops taken MH Chamb	from 3 re	presentative	
Describe Color of sample:	Very dark			١		
Describe Texture/Particle size:	100% fin	-				
Describe visual or olfactory evidence of co bulk sediment sample (odor, sheen, disco	entamination in loration, etc.):	Shee	g hydrocan u on sedin	bon och	or with visible	•
Describe depth of solids in area where sar	mple collected:	Sedime 4-6	nt depth "deep.	in collec	tion areas were	
Describe amount and type of debris in san	nple:	No de	bris in s	ample.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Amount and type of debris removed from t	í	No de	ebris revo	word.		
Compositing notes: Sample he magn	enized in bu with a f	chef u resh de	ith Samp conned st	le collec	steel spown.	
Sample Jars Collected (number, size, full o			4 02 jar			
If not enough sample to fill all of the jars, li collected and related analytes sampled (as analyte priority list in work order).	st jars s per		J			
	·		- was			
FO095883						
Lab ID	Duplicat	e sample c	ollected? Y&C	Dupe ID		******
Duplicate sample identification # on COC:		~~~				
Any deviations from standard procedures:	None					

SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	1276				
Plan view of sediments inline	1278				
Homogenized sample (sediment in bowl)	1279				
Other?					

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland	Harbor Inlin	e Samo	Project Number: 1020.001
Sampling Team: PTB, MSS, WCR	Date: 9/2/09	Arrival Time:	Current Weather Conditions/Last Rain: Sunny / light cain w/ week go
Basin: 18	Node: AAXZ7	· 8	Subbasin: NA

Sampling Location Description/Address:

3125 NW 35th Are

Date: 0/-2/00 SECT	TION 2 CAR	IDI E COL	LECTION DE	DODT	Node: - m	<u>)</u>
Date: 9/2/09 SECT	HON Z - SAN	IPLE COL	LECTION RE	PORT	Node: A4X 278	
Sampling Equipment:	ØStainless steel spoon & stainless steel bucket □ Other (Describe)					
Equipment Decontamination process:	Per SOP7.01a □ Other (Describ	e) ;			***************************************	
Sample date: Sample time:	<i> </i>	-12- AA	XX-NNNNNN-mr X278 - 090	29		
Sample location description: (number of fe	eet from node of	entry) Two	y cross inve	of the Mite	then perpindi chamber from US	icular td5 en
Sample collection technique:	Scoop take the scoop	n of enti-	ire profile of y water dea	accum-le	ution the widt or to addition to	h of sample
Describe Color of sample:			(very high	•	\	b
Describe Texture/Particle size:	90% fines	, 10%	fine jarel	15, < 1	% organics	
Describe visual or olfactory evidence of co bulk sediment sample (odor, sheen, discol	ntamination in oration, etc.):	Visible	e sheen proper	esent in odor.	% organics sediment.	
Describe depth of solids in area where sar		Sedimen	t depth was	3-7" iv	n over where	
Describe amount and type of debris in san	nple:	No be	debris pr	esent in	the sampl	'e
Amount and type of debris removed from f		No del	or's remov	ed, Coo	the sample arrest of grand anded from same	els ple.
Compositing notes: Sample was he added to so	mogenized u	ising stail	aless steel so sh Stainless	cop used	for collection	and
Sample Jars Collected (number, size, full o	or partial)? 3	fall 4	orz. jars			
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).						
FO095884						
Lab ID	Duplica	ate sample c	ollected? Y	Dupe ID		
Duplicate sample identification # on COC:						
Any deviations from standard procedures:	None					
	7					

SECTION 3 - PHOTOGRAPH LOG						
Overview of node showing drainage area	1282					
Plan view of sediments inline	1280 + 1281					
Homogenized sample (sediment in bowl)	1284					
Other?						

DAILY FIELD REPORT

The state of the s
Project PORTLAND HARROR NLINE SAMP Project No. 1020.001 Location 3333 NW 35th Avenue /BASIN 18 + 440 M1 Date 10/6/09 Subject Inline Seliment Simpling Activities By PTB, JXB, ECH
0924 DST ON-SITE 3333 NW 35th Avenue, ABF trucking. Informed ABF of our sampling activities on their property today. 0949 collected sample and filled sample jurs at AAX264 and given point cale 18-16.
1034 Collected sample and filled sample jors at AAXZ63 and given point code 18-17.
1124 Collected sample and filled sample jours et AAX262. Attributed point rade 18-18.
1214 ApplyE on-site at Basin 44 node AMQ287. To perform Field Decon Blank and Duplicate at this site.
1246 Performed Field Decon Blank. This node is adjacent to Pacific Power Substation where a diesel crane is currently operating in the assistance of the replacement of insulators as can be seen in the drainage overview photo. 1256 Field Decon Blank completed.
1318 Collected Sample and filled sample jars at AMQ287. Attributed point code 44-17
1419 ARRIVE on-site at Basin ML note: AADB31. Worker from Western Star facility informed sampling crew of water test occurring upstream of 1436 Collected Sample and Cilled Sample jars at AASB31. Attributed that he point code ML-10. Returned to CAPCL: Thereover the program increaseful
Attachments No increased flow was observed during sampling activities. Chamber to

FORTCHUS HARBOR MUNE SAMP 10 20.00

RE: SAMPLING PHOTOS FOR BASINS 18 +44 599901 20

WELL LOST DUE TO A DAMAGED SEDIMENT SAMPLING ACTIVITIES IN BASINS 18 4-9-4 FOR MCINE ALL PHOTOS TAKEN ON 10/6/09 CA MFRA.

Water Pollution Control Laboratory 6543 N. Burlington Ave.
Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

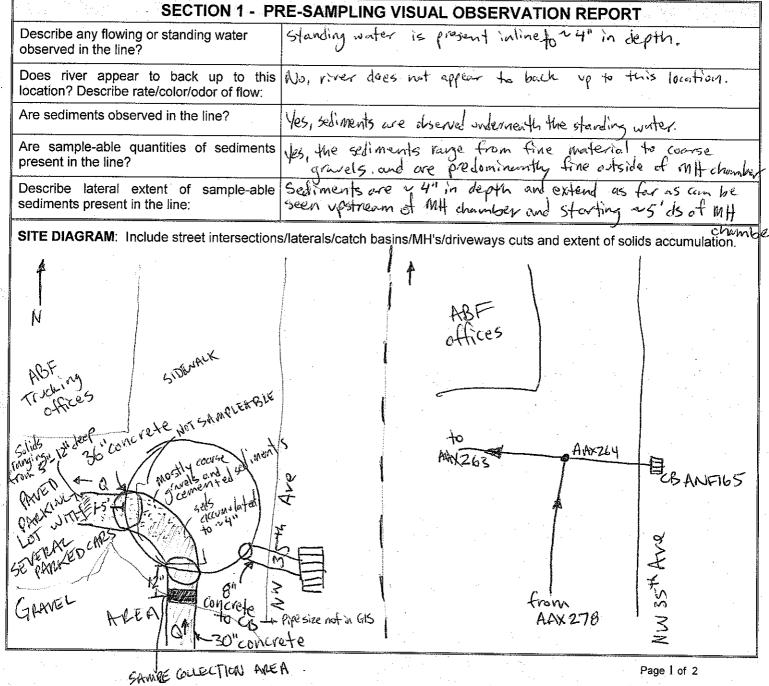
10/6/2009 Date: Page:

Collected By: JXB, PTB, ECH

Project Name: PORTLAND HARBOR INLINE SAMP File Number: 1020.001 Requested Analyses	Organics General	Jeners (All 209)	Point Sample Sample R C C C C C C C C C C C C C C C C C C	18_16 10/6/09 0949 C • •						Relinquished By: 2. Relinquished By: 3. Relinquished By: 4. Time: Signature: Signature: Time: Signature: Sign	Printed Name: Date: Printed Name: Date: Printed Name:	Received By: 2.	Signature: Signature: Signature:
			Sample Sample Area Time Type	• C 0949	1034 C	1124 C				2.	Date:	2. Time:	- Topic C
		OUTFALL 18		<u> </u>	<u> </u>					Relinguished Relinguished Signature:	Date: 15/09	Time: 1550	
File Number: 1020.001			WPCL Sample I.D.		FO095975	FO095976				Signature: M	Printed Name:	T	10/

Portland Harbor Inline Samp COC - OF 18 (9-21-09) xls

ENVIRONMENTAL SERVICES


Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

	HARBOR INLIA	IE SAMP	Project Number: 10 20.00 j
Sampling Team: PTB, JXB, ECH	Date: 10/6/09	Arrival Time: 8924	Current Weather Conditions/Last Rain:
Basin: 18	Node: AAXZ64		Subbasin: NA

Sampling Location Description/Address: 3333 NW 35th Ave.
Node is located in sidewalk in front of main office of ABF trucking in industrial northwest

Date: 10/6/09 SECT	TON 2 - SAME	PLE COLLECTION REPORT	Node: AAX 26 4				
Sampling Equipment:	jdStainless steel sp □ Other (Describe)	oon & stainless steel bucket					
Equipment Decontamination process:	⊅Per SOP7.01a □ Other (Describe)						
Sample date: Sample time:	11-18	cation: (IL-XX-NNNNNN-mmyy) - AA \ Z64 - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Sample location description: (number of fe	et from node of e <u>a Cross</u> se	ntry) 12" us of MH chamber, clion the length of the scool	sample is of the				
Sample collection technique:	Using Stainless deposition	s steel scoop to collect the unat a cross-section of the	pipe.				
Describe Color of sample:	VERY durk growy	and black	•				
Describe Texture/Particle size:	50% fine sands	, 40% course sands, < 1% coorse	a towels				
Describe visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.): Strong hydrocorbon odor, and a fact that sediment sample (odor, sheen, discoloration, etc.): Sheen-like film on surface of water between the contamination in the con							
Describe depth of solids in area where same	Describe depth of solids in area where sample collected: Solids were 4-6" in depth in sample collection area.						
Describe amount and type of debris in sam	< 1% course organics, 10	% anylor gravels.					
Amount and type of debris removed from final sample:							
Compositing notes: Homogenized in	sample coll	ection bowl using sample a	ollection scoop				
Sample Jars Collected (number, size, full o	r partial)? (∠∫	Ifull 402 jars					
If not enough sample to fill all of the jars, list collected and related analytes sampled (as analyte priority list in work order).							
FO095974							
Lab ID	Duplicate	sample collected? Y/N Dupe ID					
Duplicate sample identification # on COC:							
Any deviations from standard procedures:	None						

SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	1577.				
Plan view of sediments inline	1579.jps locking us. 1581.jps locking ds				
Homogenized sample (sediment in bowl)	1582				
Other?					

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAN	ID HARBOR INL	INF SAMP	Project Number: /020.001
Sampling Team: PTB, JXB, ECH	Date: 10/6/09	Arrival Time:	Current Weather Conditions/Last Rain:
Basin: /g	Node: AAX 263	3	Subbasin: NA

Sampling Location Description/Address: 3333 NW 35th Ave
Node is located in loading dock of ABF trucking where semi-trailers buch up and are
loaded in loading buy inside ABF facility there is a sign within 50 feet indicating a hazardous
Material

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT				
Describe any flowing or standing water observed in the line?	Standing water is present inline # 6" in depth			
Does river appear to back up to this location? Describe rate/color/odor of flow:	No, river does not appear to back up to this location.			
Are sediments observed in the line?	Yes, 12" of solids underneath the standing water			
Are sample-able quantities of sediments present in the line?	Ves, 12" of accommented sediment throughout line. I they appear to be fine + coarse sands. Solids are observed as for as entrant can see			
Describe lateral extent of sample-able sediments present in the line:	Solids are observed as for as entrant can see up and down stream.			

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

N

ABF LOADING BAY

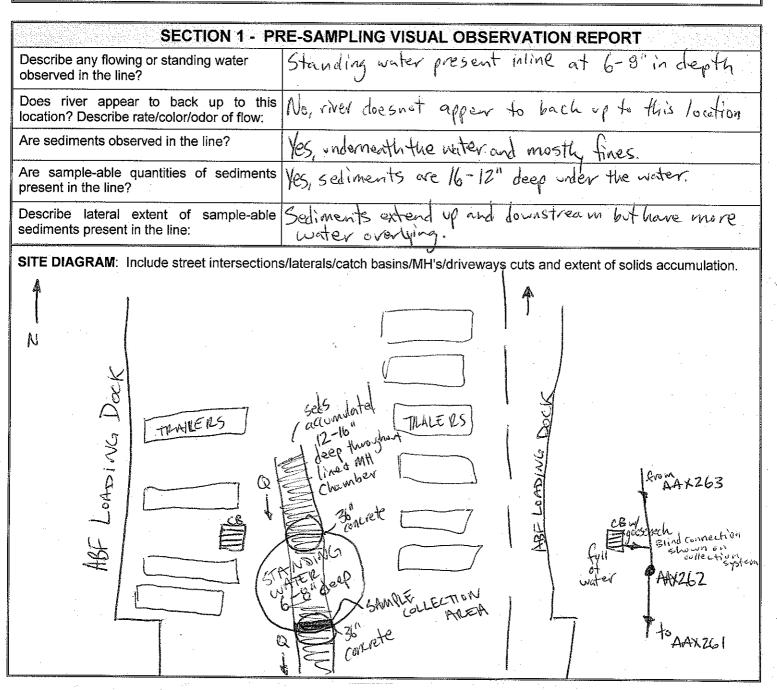
ABF LOADING BAY

Pater to AAR

ABF Trucho Thiler Parel Parking Area

Date: 10/6/09 SECT	TION 2 - SAMPLE COLLECTION REPORT Node: AAX 263
Sampling Equipment:	সুStainless steel spoon & stainless steel bucket □ Other (Describe)
Equipment Decontamination process:	Örder SOP7.01a □ Other (Describe)
Sample date: Sample time: 10/6/09 /034	Sample Identification: (IL-XX-NNNNN-mmyy) 1L-18-AAY263-1009 Teet from node of entry) 6"US from EOP in a cross-section
Sample location description: (number of fe	
Sample collection technique:	taking random scoops from cross-section the entire depth of the spoon (212" long)
Describe Color of sample:	Very dark very to black
Describe Texture/Particle size:	85% fine sands, strong 5/00 ganics 10% corse sands ontamination in Strong hydrocarbon odor and sheen like loration, etc.):
Describe visual or olfactory evidence of co bulk sediment sample (odor, sheen, discol	ontamination in Strong hydrocarbon odor and sheen like loration, etc.): film on surface with petroleum staining
Describe depth of solids in area where san	mple collected: 14-18" doep sediment accomulation with ~2" of standing water atop sediment.
Describe amount and type of debris in sam	mple: 5% coarse organics
Amount and type of debris removed from fi	final sample: None.
Compositing notes: Homerenized in	in sample collection bucket using sample collection spoon. or partial)? dors filled with fresh stainless steel spoon.
Sample Jars Collected (number, size, full o	or partial)? (4) full 402 jours
If not enough sample to fill all of the jars, list collected and related analytes sampled (as analyte priority list in work order).	stiars
FO095975	
Lab ID	Duplicate sample collected? Y/(N) Dupe ID
Duplicate sample identification # on COC:	Dupe ID
Any deviations from standard procedures:	None
the contract of the contract o	

SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	1583 looking 5, 1584 looking N				
Plan view of sediments inline	1587+188 look vs, 1589 Toding ds				
Homogenized sample (sediment in bowl)	1590				
Other?					



ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Project Number: 1020.001 Project Name: HARBOR INLINE SAMP ORTLA NO Sampling Team: Date: Arrival Time: Current Weather Conditions/Last Rain: Sunmy/3 days ago PTB, JXB, ECH 10/6/09 1100 Basin: Subbasin: NA Sampling Location Description/Address: 3333 NW 35th Ave In driveway between ABF for thing loading clock and truster parking.

	10-70
Date: 10/6/09 SEC	TION 2 - SAMPLE COLLECTION REPORT Node: AAY Z6 Z
Sampling Equipment:	Stainless steel spoon & stainless steel bucket Other (Describe)
Equipment Decontamination process:	પૃં Per SOP7.01a □ Other (Describe)
Sample date: Sample time:	Sample Identification: (IL-XX-NNNNN-mmyy) L-18-A4x262-1009
Sample location description: (number of fo	eet from node of entry) At EOP on ds side of MH in cross section
Sample collection technique:	In cross-section the width of the spoon taking randown Scoops up to the length of the spoon (apt) and forther pring to decent
Describe Color of sample:	VERY dork grey to black
Describe Texture/Particle size:	85% fines, 10% coarse sands, 5% organic debris
Describe visual or olfactory evidence of cobulk sediment sample (odor, sheen, disco	ontamination in Strong decomposing organics dor Black stringy
Describe depth of solids in area where sa	1 - 1 (1) . Vien . (1)
Describe amount and type of debris in sar	mple: 5% organic debois consisting of debois / plant matter
Amount and type of debris removed from	final sample: None-
Compositing notes: Hamagenized in &	bumple collection bucket using sample collection spour. Stainless steels
Sample Jars Collected (number, size, full	or partial)?(H) fill 4 oz. ; of s. to fill sample
If not enough sample to fill all of the jars, li collected and related analytes sampled (as analyte priority list in work order).	
FO095976	
Lab ID	Duplicate sample collected? Y/(Ñ) Dupe ID
Duplicate sample identification # on COC:	
Any deviations from standard procedures:	None

SECTION	l 3 - PHOTOGRAPH LOG
Overview of node showing drainage area	1591 looking NE. 1592 looking SW
Plan view of sediments inline	1593, US, 1595 ds
Homogenized sample (sediment in bowl)	1596+1597 1599
Other?	

Attachment A-3

Laboratory Reports and Data Review Memoranda (on CD only)

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Fall 2009 Inline Solids Sampling Outfall Basin 18 East-Central Subbasin

To: File

From: Andrew Davidson, GSI

Date: March 3, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during source control sampling and analyses conducted by the City of Portland (City) in September 2009. Five inline solids samples and one field decontamination blank water sample were collected in Outfall Basin 18 on September 2, 2009 and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and a subcontracted laboratory. The following laboratories conducted the analyses listed:

- BES WPCL
 - Total Solids SM 2540 G
 - o Metals EPA 6020
 - o Polychlorinated Biphenyl (PCB) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD

The WPCL summary report and the subcontracted laboratory's data report are attached for all analyses associated with these source control program samples. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based upon the available documentation provided by the subcontracted laboratory and on exceptions noted in the WPCL summary report.

The QA/QC review of the analytical data consisted of reviewing the following for each laboratory report if available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the sample. The chain-of-custody procedures were adequate and sample integrity was maintained through the sample collection and delivery process.

Analysis Holding Times

The samples were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

A method blank was processed during the subcontracted laboratory analysis of TOC. TOC was not detected in the method blank.

Laboratory Control / Duplicate Laboratory Control Samples

An LC sample was processed during the subcontracted laboratory analysis of TOC. LC sample recovery was within acceptance limits.

Other

WPCL reports that a possible trace of Aroclor 1260 was detected below reporting limits during the PCB analysis of sample FO095880.

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Fall 2009 Inline Solids Sampling Outfall Basin 18 East-Central Subbasin

To: File

From: Andrew Davidson, GSI

Date: March 2, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during a source control investigation sampling event conducted by the City of Portland (City). Three inline solids samples were collected in Outfall Basin 18 on October 6, 2009 and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - Total Solids SM 2540 G
 - o Metals EPA 6020
 - o Polychlorinated Biphenyl (PCB) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon EPA 9060 MOD
- Pace Analytical Services (Pace)
 - PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratories' data reports are attached for all analyses associated with these source control program samples. The WPCL summary report comments that all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation supplied from each subcontracted laboratory and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Internal standard recoveries within laboratory control limits
- Matrix spike/matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control/duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

The samples were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Two method blanks were processed during the subcontracted laboratory analysis of PCB congeners. One method blank was analyzed with sample FO095974. Samples FO095975 and FO095976 required dilution due to the presence of compounds that impacted the analysis and a separate method blank was processed for these two samples. PCB congener 31 was detected in the first method blank; however, because congener 31 was detected in the sample FO095974 at a concentration greater than 10 times the detection in the associated method blank, the result is not qualified. PCB congeners 1, 2, 3, and 31 were detected in the second method blank; however, because these congeners were detected in samples FO095975 and FO095976 at concentrations greater than 10 times the detections in the associated method blank, the results are not qualified. No analytes were detected in the method blank processed during the TOC analysis.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. Internal standard recoveries were within control limits with twelve exceptions, which are flagged "R" in the subcontracted laboratory report. Affected congeners are qualified with an "EST" flag.

Interfering background constituents impacted the measurement of one or more isotopically-labeled internal standards for field samples FO095975 and FO095976. These values are flagged

"I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. Affected congeners are qualified with an "EST" flag. One cleanup standard is flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained; however, because the recovery for this standard was within acceptance criteria, the result is not qualified.

Congener values qualified as "EST" account for 0.06, 15.5, and 2.3 percent of the total PCB concentration detected in samples FO095974, FO095975, and FO095976, respectively. Therefore, homolog and total PCB concentrations that include one or more estimated congener value(s) are considered biased high or slightly high.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples were prepared using aliquots of field sample FO095974 and processed during the laboratory analysis of PCB congeners. With the exception of isotopically-labeled PCB congener 1, labeled analyte recoveries were within laboratory control limits for the MS/MSD samples. Recoveries for the spiked native analytes appear to have been impacted by high background levels of PCB congeners in the matrix.

Laboratory Control Samples/Duplicate Laboratory Control Samples

LCS/DLC samples were processed during the analyses of PCB congeners and TOC. All laboratory control sample recoveries and relative percent differences were within laboratory control limits.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services Chair-of-Custody Stot Potaga

Date: 9/2/09

Page:

Collected By: PTB, NAS, WCR

Card.										IN INTAMEDICAL OF
	nata:		Printed Name:		Date			Printed Name:	Date Q V Q	Printed Names O 1 1 1 1 1 1
Received By: 4. Signature: Time:	Time:	μ	Signature:		Time:		H	Signature:	Time: 340	Signature:
Printed Name: Date:	Date:		Tallaga Maller		240			Deceived B	ant 9/2/04	reter or
			Drinted Name:		Date			Printed Name:		Printed Name: O
Kelinguished By: 4. Signature: Time:	Time:	i.	Signature:		Time:			Signature:	1340	Signature: MAK RA
			Bolinguishad D				ed Bv:	Relinguished By:		Relinguished By: 1.
The state of the s									-	
							744			
SAMPLE	· WATER	× ×		•	ဝ	1124	9/2/09	FDB	FIELD DECON BLANK	FO095885
					,					
		•		•	C	1144	9/2/09	18_15	IL-18-AAX278-0909 3125 NW 35th AVE	FO095884
	•	•		•	C	1107	9/2/09	18_14	IL-18-AAX376-0909 NW 35th & LAKE	FO095883
	•	•		•	ဂ	1035	9/2/09	18_13	IL-18-AAX318-0909 NW 35th & LAKE	FO095882
	•	•		•	C	0939	9/2/09	18_12	IL-18-AAX375-0909 NW 35th & LUZON	FO095881
	• 1	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	С	0906	9/2/09	18_11	IL-18-AAX374-0909 NW 35th & LUZON	FO095880
	Total Met	Total Solo		PCB Aro	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
	als (As, Cd, Cr li, Ag, Zn)			clors - LL						
					•				OUTFALL 18	
Field Comments	Metals	General	Organics		WATER					
alyses	Requested Analyses				T (D)	SEDIMENT + DI	Matrix:	•		File Number: 1020.001
				I			MP	LINE S	PORTLAND HARBOR INLINE SAMP	Project Name: PORT
						` 				

Portland Harbor Inline Samp COC - OF 18 (8-19-09) xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

09:06

Sample ID: FO095880

Sample Collected: 09/02/09

Sample Received: 09/02/09

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-AAX374-0909 NW 35TH & LUZON

Sample Point Code:

18_11

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

System ID:

AN08538

EID File #: LocCode:

Report Page:

1020.001 **PORTHARI**

Page 1 of 1

Collected By: PTB/MJS/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Analysis for PCB Aroclors detected a possible trace of Aroclor 1260 at less than the reporting limit.

	_ "	11.24	a a mai	Method	Analysis Date
Test Parameter	Result	Units	MRL	Wetnod	
GENERAL	•			•	
TOTAL SOLIDS	97.8	% [.] W/W	0.01	SM 2540 G	09/08/09
METALS					
ARSENIC	1.75	mg/Kg dry wt	0.50	EPA 6020	09/10/09
CADMIUM	0.41	mg/Kg dry wt	0.10	EPA 6020	09/10/09
CHROMIUM	33.7	mg/Kg dry wt	0.50	EPA 6020	09/10/09
COPPER	25.4	mg/Kg dry wt	0.25	EPA 6020	09/10/09
LEAD	41.0	mg/Kg dry wt	0.10	EPA 6020	09/10/09
MERCURY	0.016	mg/Kg dry wt	0.010	EPA 6020	09/10/09
NICKEL	19.0	mg/Kg dry wt	0.25	EPA 6020	09/10/09
SILVER	<0.10	mg/Kg dry wt	0.10	EPA 6020	09/10/09
ZINC	209	mg/Kg dry wt	0.50	EPA 6020	09/10/09
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/03/09
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	3770	mg/Kg dry wt	100	EPA 9060 MOD	09/15/09

End of Report for Sample ID: FO095880

Report Date: 09/18/09 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095881

Sample Collected: 09/02/09 Sample Received: 09/02/09

09:39

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-18-AAX375-0909

AN08539

NW 35TH & LUZON

System ID:

Sample Point Code:

18_12

EID File #: LocCode:

1020.001 **PORTHARI**

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

Collected By: PTB/MJS/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

		11.24	nam.	Method	Analysis Date
Test Parameter	Result	Units	MRL	Metuon	Date
GENERAL					00/00/00
TOTAL SOLIDS	87.6	% W/W	0.01	SM 2540 G	09/08/09
METALS					
ARSENIC	2.15	mg/Kg dry wt	0.50	EPA 6020	09/10/09
CADMIUM	0.61	mg/Kg dry wt	0.10	EPA 6020	09/10/09
CHROMIUM	61.3	mg/Kg dry wt	0.50	EPA 6020	09/10/09
COPPER	50.5	mg/Kg dry wt	0.25	EPA 6020	09/10/09
LEAD	66.0	mg/Kg dry wt	0.10	EPA 6020	09/10/09
MERCURY	0.031	mg/Kg dry wt	0.010	EPA 6020	09/10/09
NICKEL	31.4	mg/Kg dry wt	0.25	EPA 6020	09/10/09
SILVER	< 0.10	mg/Kg dry wt	0.10	EPA 6020	09/10/09
ZINC	309	mg/Kg dry wt	0.50	EPA 6020	09/10/09
GC ANALYSIS	,				•
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	09/03/09
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1260	21	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	12300	mg/Kg dry wt	100	EPA 9060 MOD	09/15/09

End of Report for Sample ID: FO095881

Report Date: 09/18/09

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

10:35

Sample ID: FO095882

Sample Collected: 09/02/09

Sample Received: 09/02/09

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-AAX318-0909

NW 35TH & LAKE

Sample Point Code:

18_13

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

Report Page:

Page 1 of 1

System ID:

AN08540

EID File #:

1020.001

LocCode:

PORTHARI

Collected By: PTB/MJS/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL		0/ 14/54/	0.04	OM 0540 C	09/08/09
TOTAL SOLIDS	73.6	% W/W	0.01	SM 2540 G	09/06/09
METALS					
ARSENIC	2.68	mg/Kg dry wt	0.50	EPA 6020	09/10/09
CADMIUM	3.71	mg/Kg dry wt	0.10	EPA 6020	09/10/09
CHROMIUM	150	mg/Kg dry wt	0.50	EPA 6020	09/10/09
COPPER	97.9	mg/Kg dry wt	0.25	EPA 6020	09/10/09
LEAD	1170	mg/Kg dry wt	0.10	EPA 6020	09/10/09
MERCURY	2.09	mg/Kg dry wt	0.010	EPA 6020	09/10/09
NICKEL	32.6	mg/Kg dry wt	0.25	EPA 6020	09/10/09
SILVER	0.33	mg/Kg dry wt	0.10	EPA 6020	09/10/09
ZINC	575	mg/Kg dry wt	0.50	EPA 6020	09/10/09
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCE	3)				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/03/09
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1248	3350	µg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1254	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1260	1180	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
OUTSIDE ANALYSIS	•			· .	
TOTAL ORGANIC CARBON	28100	mg/Kg dry wt	100	EPA 9060 MOD	09/15/09

End of Report for Sample ID: FO095882

Report Date: 09/18/09 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095883

Sample Collected: 09/02/09 Sample Received: 09/02/09

11:07

Sample Status: COMPLETE AND

VALIDATED

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-18-AAX376-0909

NW 35TH & LAKE

Sample Point Code:

18_14

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

System ID:

Report Page:

AN08541

Page 1 of 1

EID File #:

1020.001

LocCode: Collected By: PTB/MJS/WCR

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					٠.
TOTAL SOLIDS	63.6	% W/W	0.01	SM 2540 G	09/08/09
METALS					
ARSENIC	3.57	mg/Kg dry wt	0.50	EPA 6020	09/10/09
CADMIUM	4.34	mg/Kg dry wt	0.10	EPA 6020	09/10/09
CHROMIUM	309	mg/Kg dry wt	0.50	EPA 6020	09/10/09
COPPER	104	mg/Kg dry wt	0.25	EPA 6020	09/10/09
LEAD	2280	mg/Kg dry wt	0.10	EPA 6020	09/10/09
MERCURY	4.61	mg/Kg dry wt	0.010	EPA 6020	09/10/09
NICKEL	35.6	mg/Kg dry wt	0.25	EPA 6020	09/10/09
SILVER	0.47	mg/Kg dry wt	0.10	EPA 6020	09/10/09
ZINC	880	mg/Kg dry wt	0.50	EPA 6020	09/10/09
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)	•				V - 1
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/03/09
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1248	3450	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1260	1110	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	54500	mg/Kg dry wt	100	EPA 9060 MOD	09/15/09

End of Report for Sample ID: FO095883

Validated By: Report Date: 09/18/09

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095884

Sample Collected: 09/02/09 Sample Received: 09/02/09 11:44

Sample Status: COMPLETE AND

VALIDATED

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-18-AAX278-0909

3125 NW 35TH AVE

18_15

Sample Point Code: Sample Type: Sample Matrix:

COMPOSITE

SEDIMENT

Page 1 of 1 Report Page:

System ID:

AN08542

EID File #:

1020.001 **PORTHARI**

LocCode:

Collected By: PTB/MJS/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	63.5	% W/W	0.01	SM 2540 G	09/08/09
METALS					
ARSENIC	3.56	mg/Kg dry wt	0.50	EPA 6020	09/10/09
CADMIUM	35.0	mg/Kg dry wt	0.10	EPA 6020	09/10/09
CHROMIUM	223	mg/Kg dry wt	0.50	EPA 6020	09/10/09
COPPER	193	mg/Kg dry wt	0.25	EPA 6020	09/10/09
LEAD	1090	mg/Kg dry wt	0.10	EPA 6020	09/10/09
MERCURY	2.11	mg/Kg dry wt	0.010	EPA 6020	09/10/09
NICKEL	266	mg/Kg dry wt	0.25	EPA 6020	09/10/09
SILVER	1.94	mg/Kg dry wt	0.10	EPA 6020	09/10/09
ZINC	768	mg/Kg dry wt	0.50	EPA 6020	09/10/09
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PC	(B)				
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	09/03/09
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1248	2900	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1254	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1260	1030	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/03/09
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	68100	mg/Kg dry wt	100	EPA 9060 MOD	09/15/09

End of Report for Sample ID: FO095884

Validated By:

Report Date: 09/18/09

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095885

Sample Collected: 09/02/09 Sample Received: 09/02/09

11:24

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

FIELD DECON BLANK

System ID:

AN08543

Sample Point Code:

FDBLANK

EID File #:

1020.001

Sample Type: Sample Matrix: **GRAB**

LocCode:

PORTHARI Collected By: PTB/MJS/WCR

DIWTR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
MERCURY	<0.0020	μg/L	0.002	WPCLSOP M-10.02	09/03/09
METALS BY ICP-MS (TOTAL) - 8					
ARSENIC	<0.10	μg/L	0.1	EPA 200.8	09/11/09
CADMIUM	<0.10	μg/L	0.1	EPA 200.8	09/11/09
CHROMIUM	< 0.40	μg/L	0.4	EPA 200.8	09/11/09
COPPER	<0.20	μg/L	0.2	EPA 200.8	09/11/09
LEAD	<0.10	μg/L	0.1	EPA 200.8	09/11/09
NICKEL	<0.20	μg/L	0.2	EPA 200.8	09/11/09
SILVER	<0.10	μg/L	0.1	EPA 200.8	09/11/09
ZINC	0.98	μg/L	0.5	EPA 200.8	09/11/09
GC ANALYSIS				•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	< 0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1221	< 0.050	μg/L	0.050	EPA 8082	09/04/09
Aroclor 1232	<0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1248	<0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1254	<0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1260	<0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1262	< 0.025	μg/L	0.025	EPA 8082	09/04/09
Aroclor 1268	<0.025	μg/L	0.025	EPA 8082	09/04/09

End of Report for Sample ID: FO095885

Validated By:

Report Date: 09/18/09

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

September 18, 2009

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 09/03/09 14:50. The following list is a summary of the Work Orders contained in this report, generated on 09/18/09 09:15.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PSI0178	Portland Harbor	36238

TestAmerica Portland

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210 PORTLAND, OR

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. 36238 Report Created: Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/18/09 09:15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 095880	PSI0178-01	Soil	09/02/09 09:06	09/03/09 14:50
FO 095881	PSI0178-02	Soil	09/02/09 09:39	09/03/09 14:50
FO 095882	PSI0178-03	Soil	09/02/09 10:35	09/03/09 14:50
FO 095883	PSI0178-04	Soil	09/02/09 11:07	09/03/09 14:50
FO 095884	PSI0178-05	Soil	09/02/09 11:44	09/03/09 14:50

TestAmerica Portland

Howard Holmes, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

09/18/09 09:15

City of Portland Water Pollution Laboratory

Portland Harbor Project Name:

36238 Report Created:

6543 N. Burlington Ave. Portland, OR 97203

Project Manager: Jennifer Shackelford

Organic Carbon, Total (TOC)

Project Number:

TestAmerica Connecticut

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PSI0178-01	(FO 095880)			Soil			Samp	oled: 09/02/	/09 09:06		
Total Organic O Duplicates	Carbon -	9060	3770	10.4	100	mg/Kg	1x	31224	09/15/09 17:36	09/15/09 17:36	
PSI0178-02	(FO 095881)			Soil			Samı	oled: 09/02/	/09 09:39		
Total Organic O Duplicates	Carbon -	9060	12300	10.4	100	mg/Kg	1x	31224	09/15/09 17:49	09/15/09 17:49	
PSI0178-03	(FO 095882)			Soil			Samp	oled: 09/02/	/09 10:35		
Total Organic O Duplicates	Carbon -	9060	28100	10.4	100	mg/Kg	1x	31224	09/15/09 18:03	09/15/09 18:03	
PSI0178-04	(FO 095883)			Soil			Samp	oled: 09/02/	/09 11:07		
Total Organic O Duplicates	Carbon -	9060	54500	10.4	100	mg/Kg	1x	31224	09/15/09 18:16	09/15/09 18:16	
PSI0178-05	(FO 095884)			Soil			Samp	oled: 09/02/	/09 11:44		
Total Organic O	Carbon -	9060	68100	10.4	100	mg/Kg	1x	31224	09/15/09 18:47	09/15/09 18:47	

TestAmerica Portland

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/18/09 09:15

	Oı	rganic Carbo			Laborato Connectio	-	ality Con	trol Results				
QC Batch: 31224	Soil Pro	eparation Met	hod: NA									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Li Amt REC	imits) % RPD	(Limits)	Analyzed	Notes
LCS (220-31224-5)				QC Source:	:			Extracted: 09/1	15/09 17:22			
Total Organic Carbon - Duplicates	9060	4102	10.4	100	mg/Kg	1x		3530 116% (2	28-172)		09/15/09 17:22	
Blank (220-31224-6)				QC Source:	:			Extracted: 09/1	15/09 17:29			
Total Organic Carbon - Duplicates	9060	ND	10.4	100	mg/Kg	1x					09/15/09 17:29	

TestAmerica Portland

Howard Holmes, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. 36238 Report Created: Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/18/09 09:15

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11922 E. First Ave, Spokane, WA 99206-5302

425-420-9200 EAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

2000 W International Airport Rd Ste A10. Anchorage, AK 99502-1119

TA WO ID * Turnaround Requests less than standard may incur Rush Charges ŗ Work Order #: \STO \78 T S 4 3 2 1 DATE: LOCATION/ COMMENTS Organic & Inorganic Analyses TEMP: OTHER Specify: MATRIX # OF (W. S. O) CONT. JED CHAIN OF CUSTODY REPORT Liveles Lythe RECEIVED BY: PRINT NAME: RECEIVED BY PRINT NAME: REQUESTED ANALYSES PRESERVATIVE 36238 FIRM. CIM of POrtland TIME. 1401 DATE 1402 TIME 1452 P.O. NUMBER: OC Jennifer Shackelbud PHONE: PROJECT NAME: POFT PALLY HILLS FROJECT NAME: POFT PALLY HILLS 1635 101 五 0939 SAMPLING DATE/TIME CLIENT CITY & PORTIONA 4126 9/2 9124 FO 095882 D 89584 FO 095280 CLIENT SAMPLE IDENTIFICATION FO 095881 SAMPLED BY: PRINT NAME: RELEASED BY: REPORT TO: ADDRESS: PRINT NAME:

TAL-1000(0408)

TestAmerica Portland Sample Receiving Checklist

		ler #: PSIO178 Date/Time Received: 9/3/ me and Project: City of Polland	09 1450								
	Zone: DT/EST		□OTHER								
Co	oler #(eratur	(s):	Derature out of Range:Not enough or No IceIce MeltedW/in 4 Hrs of collection _Other:								
N/A	Yes	No	Initials:f_5								
Ø		1. If ESI client, were temp blanks received? If no, document	on NOD.								
\square		2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.									
		3. Chain of Custody present? If no, document on NOD.									
	otin	4. Bottles received intact? If no, document on NOD.	4. Bottles received intact? If no, document on NOD.								
	\square	5. Sample is not multiphasic? If no, document on NOD.									
		6. Proper Container and preservatives used? If no, document on NOD.									
\square		7. pH of all samples checked and meet requirements? If no, document on NOD.									
Ø		8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.									
\Box		9. HF Dilution required?	9. HF Dilution required?								
	\square	10. Sufficient volume provided for all analysis? If no, document on NOD and consult PM before proceeding.									
		11. Did chain of custody agree with samples received? If no	, document on NOD.								
		2 12. Is the "Sampled by" section of the COC completed?									
\square		13. Were VOA/Oil Syringe samples without headspace?									
		☐ 14. Were VOA vials preserved? ☐HCl ☐Sodium Thiosulfa	ite Ascorbic Acid								
		15. Did samples require preservation with sodium thiosulfate	?								
Ø		16. If yes to #14, was the residual chlorine test negative? If n	o, document on NOD.								
\square		17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.									
		 18. Is sufficient volume provided for client requested MS/MS no, document on NOD and contact PM before proceeding. 19. Are analyses with short holding times received in hold? 	•								
<i>i</i> -	\square	20. Was Standard Turn Around (TAT) requested?									
		21. Receipt date(s) < 48 hours past the collection date(s)? If i	no notify PM								

TestAmerica Portland Sample Receiving Checklist

Work Order #: PSIO178

Logi	n Ch	ecks	initials: PS							
N/A	Yes	No								
	\square		22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.							
\mathbb{Z}			23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If							
			no, document on NOD and contact PM.							
	\Box		24. Did the chain of custody include "received by" and "relinquished by" signatures,							
			dates and times?							
			25. Were special log in instructions read and followed?							
			26. Were tests logged checked against the COC?							
otag			7. Were rush notices printed and delivered?							
Ż			8. Were short hold notices printed and delivered?							
	otag		29. Were subcontract COCs printed?							
otag			30. Was HF dilution logged?							
Lab	eling	and	Storage Checks: Initials:							
N/A	Yes	No								
	\square		31. Were the subcontracted samples/containers put in Sx fridge?							
			32. Were sample bottles and COC double checked for dissolved/filtered metals?							
-	\square		33. Did the sample ID, Date, and Time from label match what was logged?							
X			34. Were Foreign sample stickers affixed to each container and containers stored in							
			foreign fridge?							
X			35. Were HF stickers affixed to each container, and containers stored in Sx fridge?							
\Box			36. Was an NOD for created for noted discrepancies and placed in folder?							
			roblems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy							
form	(NOD)).								

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Project Name: PORTLAND HARBOR INLINE SAMP

Date: 10/6/2009

Page: ા _લ્ન

Collected By: JXB, PTB, ECH

City of Portland Chain-of-Custody Bureau of Environmental Services

COUTFALL 18 Country	MACHANIC MAC	Printed Name:	Signature:	Cet & you	Signature: MC Dry	Relinquished By: 1.						FO095976	FO095975	F0095974	WPCL Sample I.D.		File Number: 1020.001
Matrix: SEDIMENT: Kequested Analyses Point Sample Sample Sample Sample Sample Sample Sample Sam	10/10/10	Date, i		ļ								IL-18-AAX262-1009 3333 NE 35TH AVE	il-18-AAX263-1009 3333 NW 35TH AVE	IL-18-AAX264-1009 3333 NW 35TH AVE	OUTFALL 19 Location		
Sample Sa		Printed Name:	Received By Signature:	Printed Name:	Signature:	Relinquishe						18_18	18_17	18_16	Point Code		•.
C C Type PCB Aroclors - LL PCB Congeners (All 209) C PCB Congeners (All 209) C Total Metals (As, Cs, Cs, Cs, Pb, Hg M, Ag, Zn) Relinquished By: 3. Time: Relinquished By: 3. Relinquished By: 4. Reserved By: 4. Relinquished By: 4. Relinquished By: 4. Reserved By: 4. Relinquished By: 4. Relinquished By: 4. Relinquished By: 4. Relinquished By: 4.				i		<u>d Ву:</u> 2.						10/6/09	10/6/09	10/6/09			
Organics Field Comments Field Comments Total Soldis Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Organics Org							 					1124	1034	0949			SEDIMENT
Organics General Metals Field Comments Field Comments Field Comments Total Soldis Total Soldis Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Finded Name Date: Received By: 3. Relinquished By: 4. Signature Printed Name Date: Received By: 4. Signature Finded Name Printed Name Received By: 4.	9400	Date	Time:	Date:	Time:			ļ				C	C	င			
Field Comments Field Comments Field Comments Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn) Relinquished By: 4.			w. *									 	•			 <u>c</u>	
Ceneral Requested Analyses Total Soldis Total Metals (As, cd, cr, cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, cd, Cr, cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cr, cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, Cd, Cu, Pb, Hg, Ni, Ag, Zn) Total Metals (As, C	i i i i i i i i i i i i i i i i i i i	Printed Name:	Received By: Signature:	Printed Name:	Signature:	Relinquished B										ganics	
Cu, Ph, Hg, Ni, Ag, 2n) Cu, Ph, Hg, Ni, Ag, 2n) Field Comments			ယ			1.7						•	•	•		General	<u> </u>
Field Comments	- V - V - V				* * *	1			,	n symple	eri eri garija gar	•	•	•	* *	Metals	Kequ
Field Comments led By: 4.																-	ested Ana
	Finted Name:		d By:	Printed Name:	Signature:	Relinguished By: 4.										Field Comme	_
	Date:		Time:	Date:	Time:								A CONTRACTOR OF THE CONTRACTOR			ints	

Portland Harbor Inline Samp COC - OF 18 (9-21-09).xls

City of Portland **Water Pollution Control Laboratory**

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: **FO095974**

Sample Collected: 10/06/09

09:49

Sample Status: COMPLETE AND

Sample Received: 10/06/09

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-18-AAX264-1009

System ID:

AN09578

Sample Point Code:

3333 NW 35TH AVE

EID File #:

1020.001

Sample Type:

18_16

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE **SEDIMENT**

Collected By: JXB/PTB/ECH

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					,
TOTAL SOLIDS	79.4	% W/W	0.01	SM 2540 G	10/07/09
METALS					
ARSENIC	3.08	mg/Kg dry wt	0.50	EPA 6020	10/06/09
CADMIUM	13.8	mg/Kg dry wt	0.10	EPA 6020	10/06/09
CHROMIUM	94.3	mg/Kg dry wt	0.50	EPA 6020	10/06/09
COPPER	206	mg/Kg dry wt	0.25	EPA 6020	10/06/09
LEAD	364	mg/Kg dry wt	0.10	EPA 6020	10/06/09
MERCURY	0.309	mg/Kg dry wt	0.010	EPA 6020	10/06/09
NICKEL	103	mg/Kg dry wt	0.25	EPA 6020	10/06/09
SILVER	0.86	mg/Kg dry wt	0.10	EPA 6020	10/06/09
ZINC	544	mg/Kg dry wt	0.50	EPA 6020	10/06/09
GC ANALYSIS					*
POLYCHLORINATED BIPHENYLS (PC	(B)				
Aroclor 1016/1242	<20	μ g/Kg dry wt	20 .	EPA 8082	10/07/09
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	10/07/09
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1248	401	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1260	122	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1262	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1268	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	19000	mg/Kg dry wt	100	EPA 9060 MOD	10/15/09
POLYCHLORINATED BIPHENYL CON	GENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/22/09

End of Report for Sample ID: FO095974

Validated By:

Report Date: 11/18/09

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095975 Sample Collected: 10/06/09 10:34 Sample Status: COMPLETE AND

Sample Received: 10/06/09 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 1 of 1

Address/Location: IL-18-AAX263-1009

3333 NW 35TH AVE System ID: AN09579

Sample Point Code: 18_17 EID File #: 1020.001
Sample Type: COMPOSITE LocCode: PORTHARI

Sample Matrix: SEDIMENT Collected By: JXB/PTB/ECH

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	60.4	% W/W ·	0.01	SM 2540 G	10/07/09
METALS					
ARSENIC	4.55	mg/Kg dry wt	0.50	EPA 6020	10/06/09
CADMIUM	195	mg/Kg dry wt	0.10	EPA 6020	10/06/09
CHROMIUM	545	mg/Kg dry wt	0.50	EPA 6020	10/06/09
COPPER	536	mg/Kg dry wt	0.25	EPA 6020	10/06/09
LEAD	665	mg/Kg dry wt	0.10	EPA 6020	10/06/09
MERCURY	0.532	mg/Kg dry wt	0.010	EPA 6020	10/06/09
NICKEL	211	mg/Kg dry wt	0.25	EPA 6020	10/06/09
SILVER	6.35	mg/Kg dry wt	0.10	EPA 6020	10/06/09
ZINC	1570	mg/Kg dry wt	0.50	EPA 6020	10/06/09
GC ANALYSIS			•	·	
POLYCHLORINATED BIPHENYLS (PC	В)				
Aroclor 1016/1242	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	10/07/09
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1248	288	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1260	153	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1262	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
OUTSIDE ANALYSIS					•
TOTAL ORGANIC CARBON	75400	mg/Kg dry wt	100	EPA 9060 MOD	10/15/09
POLYCHLORINATED BIPHENYL CON	GENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/22/09

End of Report for Sample ID: FO095975

Report Date: 11/18/09 Validated By:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO095976

Sample Collected: 10/06/09 Sample Received: 10/06/09 11:24

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-18-AAX262-1009

System ID:

AN09580

Sample Point Code:

3333 NW 35TH AVE 18_18

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: JXB/PTB/ECH

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	58.2	% W/W	0.01	SM 2540 G	10/07/09
METALS					
ARSENIC	4.56	mg/Kg dry wt	0.50	EPA 6020	10/06/09
CADMIUM	405	mg/Kg dry wt	0.10	EPA 6020	10/06/09
CHROMIUM	469	mg/Kg dry wt	0.50	EPA 6020	10/06/09
COPPER	2460	mg/Kg dry wt	0.25	EPA 6020	10/06/09
LEAD	924	mg/Kg dry wt	0.10	EPA 6020	10/06/09
MERCURY	0.833	mg/Kg dry wt	0.010	EPA 6020	10/06/09
NICKEL	171	mg/Kg dry wt	0.25	EPA 6020	10/06/09
SILVER	5.99	mg/Kg dry wt	0.10	EPA 6020	10/06/09
ZINC	1890	mg/Kg dry wt	0.50	EPA 6020	10/06/09
GC ANALYSIS			•		N.
POLYCHLORINATED BIPHENYLS (PO	CB)				•
Aroclor 1016/1242	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	10/07/09
Aroclor 1232	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1248	294	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1254	<20	μ g/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1260	123	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	10/07/09
OUTSIDE ANALYSIS			•		
TOTAL ORGANIC CARBON	89200	mg/Kg dry wt	100	EPA 9060 MOD	10/15/09
POLYCHLORINATED BIPHENYL COM				TD. (000 1/07	40.000.00
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/22/09

End of Report for Sample ID: FO095976

Report Date: 11/18/09

Validated By:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Howard Holmes Test America-Portland 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY **ANALYSIS FOR PCBs**

Report Information:

Pace Project #: 10114354

Sample Receipt Date: 10/09/2009

Client Project #: PSJ0242

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 06, 2009

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 6, 2009

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts-per-trillion and were adjusted for the amount of the sample extracted.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 15-100%. With 12 exceptions, all of the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard or isotope dilution methods, the data were automatically corrected for variation in recovery and accurate values were obtained. In some cases, interfering substances impacted the measurement of the internal standards or native PCB congeners. These values are flagged "I" in the sample results tables to indicate that incorrect isotope ratios were obtained. Two of the samples (F0095975 and F0095976) contained compounds which impacted the chromatography, necessitating additional cleanup steps for those extracts. After the cleanup steps, the extracts still required dilutions of 10 fold and 50 fold to obtain peak areas for all of the PCB congeners. The congeners which were obtained from the 50 fold dilution are flagged "N2" in the results tables.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks, with the exception of a low level of congener #31 in the solid blank, to be free of PCB congeners at the reporting limits. This indicates that the sample preparation steps did not significantly impact the measurement of the native congeners in the field samples. The blank corresponding to the two extra cleanup samples was processed through the extra cleanup procedure along with the samples. Upon reanalysis, it was found to contain low levels of PCB congeners 1,2, and 3 in addition to congener 31. All of those congeners were detected in the samples at levels more than 10 times higher than the levels in the blank, indicating that the background levels did not significantly affect the sample measurements in this case either.

Laboratory spike samples were also prepared with the sample batches using solid or water reference matrices that had been fortified with native standards. The results show that the spiked native compounds in the water lab spikes were recovered at 92-115% with relative percent differences of 0-8.4%. The spiked native compounds in the solid lab spike were recovered at 97-112%. This indicates a high level of accuracy for these analyses. Matrix spikes were also prepared with the sample batch using aliquots of one of the samples fortified with native standards. Results for some congeners in the matrix spikes appear to have been impacted by the high levels of native PCB congeners in the sample used for the spikes.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN00064_2000
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
08-004r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 08-004r SLD MN00064 200012 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 08-004r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan South Carolina C-MN-01 Tennessee Tennessee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 9909 Wisconsin 027-053-137 Wyoming

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER

TestAmerica Portland PSJ0242

10114354

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Howard Holmes

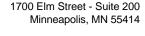
RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700 Fax: (612) 607-6444

Project Location: OR - OREGON
Receipt Temperature: 1 9 °C

			Rece	ipt Temperature:	<u>4,9_°</u> ℃	Ice: (Y) / N	
needs Excel EDD						_	
Analysis	Units	Due	Expires		Comments		
					Coty of 1	Portland I	D
Sample ID: PSJ0242-01	Soil		Sampled	10/06/09 09:49	FO 09	5974	001
1668 Coplanar PCBs - SUB	ug/i	11/04/09	04/04/10 09:49		***209 Cong	eners*** to Pace	
Containers Supplied: 4 oz. jar (A)				gg-ga-talanan y			
Sample ID: PSJ0242-02	Soil		Sampled	10/06/09 10:34	FO 09	5975	WZ
1668 Coplanar PCBs - SUB	ug/l	11/04/09	04/04/10 10:34		***209 Cong	eners*** to Pace	
Containers Supplied: 4 oz. jar (A)						_	
Sample ID: PSJ0242-03	Soil		Sampled:	10/06/09 11:24	FOO	95976	<u>co</u> 3
1668 Coplanar PCBs - SUB	ug/l	11/04/09	04/04/10 11:24		***209 Cong	eners*** to Pace	
Containers Supplied: 4 oz. jar (A)							
Sample ID: PSJ0242-04	Soil		Sampled:	10/06/09 13:18	FUO	95977	004
1668 Coplanar PCBs - SUB	ug/l	11/04/09	04/04/10 13:18		***209 Cong	eners*** to Pace	(
Containers Supplied: 4 oz. jar (A)							
Sample ID: PSJ0242-05	Soil		Sampled:	10/06/09 13:18	FUO	95978	<u>U5</u>
1668 Coplanar PCBs - SUB	ug/l	11/04/09	04/04/10 13:18		***209 Cong	eners*** to Pace	
Containers Supplied: 4 oz. jar (A)							·
Sample ID: PSJ0242-06	Water		Sampled:	10/06/09 12:56	FOC	95979	ccb
1668 Coplanar PCBs - SUB	ug/l	11/04/09	04/04/10 12:56	-	***209 Cong	eners*** to Pace	


Containers Supplied: 1L Amber - Unpres. (A)

Pace Analytical*

Sample Condition Upon Receipt

Project # 10/14354 Client Name: Courier: D Fed Ex D UPS D USPS D Client D Commercial D Pace Other Tracking #: 4170 7524 4666 Custody Seal on Cooler/Box Present: ☐ yes ☐ no Seals intact: Packing Material: Bubble Wrap None Other Temp Blank: Yes No 80344042 ok 179425 Type of Ice: Wet Blue Samples on ice, cooling process has begun Thermometer Used Biological Tissue is Frozen: Yes No **Cooler Temperature** Comments: Temp should be above freezing to 6°C VOYes DNo DNA 1 Chain of Custody Present: t⊠Yes □No DINA Chain of Custody Filled Out: □N/A 13. MC served Chain of Custody Relinquished: ∐Yes KÎNo □N/A Sampler Name & Signature on COC: ⊠Yes □No **DNA** Samples Arrived within Hold Time: ☐Yes MNo □N/A Short Hold Time Analysis (<72hr): UYes KINO - UNA Rush Turn Around Time Requested: KÎYes □No □N/A Sufficient Volume: ¥Yes □No **□N/A** Correct Containers Used: ∐Yes ⊠No **□N/A** -Pace Containers Used: ÄYes □No □NA 10. Containers Intact: □Yes □No **WANA** Filtered volume received for Dissolved tests 11. XXYes DNo. DNA 12. Sample Labels match COC: at on 150i -Includes date/time/ID/Analysis EONH ☐ H2SO4 NaOH All containers needing acid/base preservation have been □Yes □No ¬ZÎN/A 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in □Yes □No compliance with EPA recommendation. Initial when Lot # of added □Yes □No Exceptions: VOA,Colform, TOC, Oil and Grease, WI-DRO (water completed preservative YZHVA □Yes □No 14. Samples checked for dechlorination: 15. ☐Yes ☐No Headspace in VOA Vials (>6mm): ☐Yee ☐No **Ž**PN/A 16. Trip Blank Present: AVAKE ☐Yes ☐No Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Field Data Required? Y / N Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution: Date: **Project Manager Review:**

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Reach Charles, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Solid

10/06/2009 09:49

10/09/2009 10:10

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Client's Sample ID PSJ0242-01;F0095974
Lab Sample ID 10114354001
Filename P91101B_11
Injected By BAL
Total Amount Extracted 16.3 g

Total Amount Extracted 16.3 g Matrix
% Moisture 33.1 Dilution

Dry Weight Extracted 10.9 g Collected
ICAL ID P91101B02 Received

 CCal Filename(s)
 P91101B_01
 Extracted
 10/22/2009 16:10

 Method Blank ID
 BLANK-22143
 Analyzed
 11/02/2009 02:35

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2-J-DiCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,3',4,4',5,5'-HpCB 13C-2,2',3,4',5,6,6'-OcCB 13C-2,3',3',4,4',5,5',6,6'-OcCB	10PAC 1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205	9.205 12.668 13.015 21.198 17.485 29.511 21.529 36.789 37.376 28.119 40.981 40.981 40.327 39.455 44.150 34.374 47.202 46.045 50.539 40.293 53.135 45.743 56.174	2.78 2.96 1.62 1.62 1.19 1.11 0.75 0.84 0.79 1.64 1.72 1.61 1.62 1.62 1.56 1.36 1.22 1.23 1.10 1.07 0.95 0.87	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.376 0.853 0.698 1.34 1.03 1.72 1.25 1.71 1.61 1.36 1.62 1.61 1.62 1.59 1.66 1.47 3.10 1.56 1.54 1.56 1.54 1.54 1.54 1.54 1.554 1.54	% Recovery 19 R 43 35 67 51 86 62 85 80 68 81 80 88 81 80 88 81 80 88 81 80 88 81 80 83 74 77 78 82 77 73
13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB 13CDeCB	206 208 209	58.610 52.575 61.175	0.87 0.81 0.69	2.0 2.0 2.0 2.0	1.51 1.46 1.32	75 73 66
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.933 37.443 43.396	1.12 1.62 1.04	2.0 2.0 2.0	1.64 1.66 1.59	82 83 80
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.963 27.046 34.609 42.943 55.571	1.57 0.80 1.56 1.27 0.93	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-01;F0095974 10114354001 P91101B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.241	3.06	190		22.9
		12.416	2.87	42.8		22.9
3		12.704	3.14	154		22.9
2 3 4		13.051	1.61	1730		22.9
5		10.001		ND		22.9
5		16.538	1.49	293		22.9
7		16.227	1.40	63.2		22.9
8		17.149	1.57	1560		22.9
9		15.987	1.51	99.6		22.9
10		13.315	1.65	131		22.9
11		20.456	1.50	248		138
12	12/13	20.803	1.40	134		45.9
13	12/13	20.803	1.40	(134)		45.9
14	12/13	20.003		ND		22.9
15		21.222	1.54	2150		22.9
16		21.127	1.05	3200		22.9
17		20.575	1.05	3830		22.9
18	18/30	20.036	1.05	9960		45.9
19	10/30	17.508	1.05	1970		22.9
20	20/28	24.950	1.03	10200		45.9
21	21/33	25.218	1.02	3030		45.9
22	21/33	25.671	1.05	2550		22.9
23		25.071	1.05	ND		22.9
24		20.983	1.04	180		22.9
25		24.229	1.02	431		22.9
26	26/29	23.944	1.06	1330		45.9
27	20/29	20.839	1.05	845		22.9
28	20/28	24.950	1.03	(10200)		45.9
29	26/29	23.944	1.06	(1330)		45.9
30	18/30	20.036	1.05	(9960)		45.9
31	16/30	24.598	1.03	8760		22.9
32		21.814	1.04	3230		22.9
33	21/33	25.218	1.02	(3030)		45.9
34	21/33	23.390	1.14	53.2		22.9
35		29.075	1.01	73.8		22.9
36		29.073		ND		22.9
37		29.545	1.03	2540		22.9
38		29.545	1.03	ND		22.9
39		27.952	0.92	58.1		22.9
40	40/41/71	29.343	0.80	9690		138
41	40/41/71	29.343	0.80	(9690)		138
42	40/41/11	28.790	0.79	4530		45.9
43	43/73	27.348	0.79	273		45.9
43 44	44/47/65	28.186	0.78	17100		138
44 45	45/51	25.017	0.78	4750		91.7
45 46	- -0/01	25.369	0.80	1670		45.9
47	44/47/65	28.186	0.78	(17100)		138
48	17171100	27.968	0.78	3180		45.9
		21.000	0.70	0100		10.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-01;F0095974 10114354001 P91101B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.633	0.78	9540		91.7
50	50/53	24.229	0.81	3780		91.7
51	45/51	25.017	0.80	(4750)		91.7
52	10,01	27.080	0.80	21100		45.9
53	50/53	24.229	0.81	(3780)		91.7
54	00/00	21.529	0.77	56.5		45.9
55				ND		45.9
56		33.536	0.78	5700		45.9
57		31.339	0.78	61.5		45.9
58				ND		45.9
59	59/62/75	28.555	0.78	1520		138
60	39/02/13	33.770	0.76	2440		45.9
61	61/70/74/76	32.446	0.78	20100		183
62	59/62/75	28.555	0.78	(1520)		138
63	39/02/13	32.093	0.76	408		45.9
64		29.595	0.79	6920		45.9 45.9
65	44/47/65	28.186	0.78	(17100)		138
66	44/47/03	32.815	0.78	11000		45.9
67		31.808	0.78	265		45.9 45.9
68			0.79	ND		45.9 45.9
69	49/69	27.633	0.78	(9540)		45.9 91.7
70	61/70/74/76	32.446	0.78	(20100)		183
71	40/41/71	29.343	0.80	(9690)		138
72	40/70	30.567	0.84	83.2		45.9
73	43/73	27.348	0.76	(273)		45.9
74	61/70/74/76	32.446	0.78	(20100)		183
75	59/62/75	28.555	0.78	(1520)		138
76	61/70/74/76	32.446	0.78	(20100)		183
77		37.392	0.76	1100		45.9
78				ND		45.9
79		35.732	0.69	73.6		45.9
80				ND		45.9
81				ND		45.9
82		36.990	1.62	2360		45.9
83		35.112	1.48	1090		45.9
84		32.613	1.56	5230		45.9
85	85/116/117	36.504	1.43	2800		138
86	86/87/97/108/119/125	35.833	1.59	10700		275
87	86/87/97/108/119/125	35.833	1.59	(10700)		275
88	88/91	32.395	1.63	2600		91.7
89		33.167	1.63	363		45.9
90	90/101/113	34.642	1.58	14200		138
91	88/91	32.395	1.63	(2600)		91.7
92		34.039	1.58	2550		45.9
93	93/98/100/102	31.859	1.65	847		183
94		30.970	1.55	118		45.9
95		31.456	1.58	13600		45.9
96		28.522	1.61	219		45.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PSJ0242-01;F0095974 Lab Sample ID 10114354001

Filename P91101B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.833	1.59	(10700)		275
98	93/98/100/102	31.859	1.65	` (847)		183
99		35.246	1.57	579Ó		45.9
100	93/98/100/102	31.859	1.65	(847)		183
101	90/101/113	34.642	1.58	(14200)		138
102	93/98/100/102	31.859	1.65	(847)		183
103		30.752	1.65	`98.Ó		45.9
104				ND		45.9
105		40.998	1.60	4360		45.9
106				ND		45.9
107	107/124	39.103	1.56	408		91.7
108	86/87/97/108/119/125	35.833	1.59	(10700)		275
109		39.354	1.59	` 694		45.9
110	110/115	36.671	1.62	16200		91.7
111				ND		45.9
112				ND		45.9
113	90/101/113	34.642	1.58	(14200)		138
114		40.360	1.65	276		45.9
115	110/115	36.671	1.62	(16200)		91.7
116	85/116/117	36.504	1.43	(2800)		138
117	85/116/117	36.504	1.43	(2800)		138
118		39.824	1.58	9360		45.9
119	86/87/97/108/119/125	35.833	1.59	(10700)		275
120				ND		45.9
121				ND		45.9
122		40.142	1.54	170		45.9
123		39.472	1.53	207		45.9
124	107/124	39.103	1.56	(408)		91.7
125	86/87/97/108/119/125	35.833	1.59	(10700)		275
126				ND		45.9
127	/ /			ND		45.9
128	128/166	44.251	1.28	1650		91.7
129	129/138/163	42.976	1.27	11700		138
130		42.322	1.28	662		45.9
131		39.405	1.25	170		45.9
132		39.874	1.27	4270		45.9
133	404/440	40.428	1.18	126		45.9
134	134/143	38.784	1.26	592		91.7
135	135/151	37.644	1.28	4460		91.7
136 137		35.095	1.29 1.25	1790 459		45.9 45.9
137	129/138/163	42.540	1.25	(11700)		
139	139/140	42.976 39.220	1.32	169		138 91.7
140	139/140	39.220 39.220	1.32	(169)		91.7
140	133/140	41.903	1.32	2300		45.9
141		41.903	1.29	ND		45.9 45.9
142	134/143	38.784	1.26	(592)		91.7
143	107/170	38.214	1.31	606		45.9
1 -7 -7		00.217	1.01	330		TU.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion
X = Outside QC Limits

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-01;F0095974 10114354001 P91101B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		45.9
146		41.098	1.30	1330		45.9
147	147/149	38.600	1.27	9280		91.7
148				ND		45.9
149	147/149	38.600	1.27	(9280)		91.7
150				NĎ		45.9
151	135/151	37.644	1.28	(4460)		91.7
152				` NĎ		45.9
153	153/168	41.719	1.28	8720		91.7
154		37.929	1.30	73.4		45.9
155				ND		45.9
156	156/157	47.219	1.26	1170		91.7
157	156/157	47.219	1.26	(1170)		91.7
158		43.379	1.29	`110Ó		45.9
159		45.207	1.12	96.5		45.9
160				ND		45.9
161				ND		45.9
162		45.609	1.28	85.9		45.9
163	129/138/163	42.976	1.27	(11700)		138
164		42.658	1.28	781		45.9
165				ND		45.9
166	128/166	44.251	1.28	(1650)		91.7
167		46.079	1.23	380		45.9
168	153/168	41.719	1.28	(8720)		91.7
169				NĎ		45.9
170		49.902	1.07	2360		45.9
171	171/173	46.297	1.09	774		91.7
172		47.973	1.06	425		45.9
173	171/173	46.297	1.09	(774)		91.7
174		45.190	1.09	278Ó		45.9
175		44.083	1.16	122		45.9
176		41.534	1.03	384		45.9
177		45.659	1.06	1500		45.9
178		43.429	1.06	537		45.9
179		40.645	1.05	1190		45.9
180	180/193	48.627	1.07	5330		91.7
181				ND		45.9
182				ND		45.9
183	183/185	44.972	1.03	1820		91.7
184				ND		45.9
185	183/185	44.972	1.03	(1820)		91.7
186				` NĎ		45.9
187		44.351	1.06	3380		45.9
188				ND		45.9
189		53.157	1.01	95.9		45.9
190		50.455	1.08	491		45.9
191		48.980	1.05	103		45.9
192				ND		45.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-01;F0095974 10114354001 P91101B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.627	1.07	(5330)		91.7
194		55.592	0.89	`102Ó		68.8
195		52.855	0.91	414		68.8
196		51.294	0.88	608		68.8
197	197/200	47.722	0.93	207		138
198	198/199	50.623	0.89	1330		138
199	198/199	50.623	0.89	(1330)		138
200	197/200	47.722	0.93	`(207)		138
201		46.699	0.88	`16 7		68.8
202		45.760	0.90	223		68.8
203		51.512	0.92	772		68.8
204				ND		68.8
205				ND		68.8
206		58.653	0.76	414		68.8
207				ND		68.8
208		52.597	0.80	109		68.8
209		61.196	0.74	132		68.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-01;F0095974 10114354001 P91101B_11

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	387	
Total Dichloro Biphenyls	6410	
Total Trichloro Biphenyls	52200	
Total Tetrachloro Biphenyls	125000	
Total Pentachloro Biphenyls	94200	
Total Hexachloro Biphenyls	52000	
Total Heptachloro Biphenyls	21300	
Total Octachloro Biphenyls	4740	
Total Nonachloro Biphenyls	523	
Decachloro Biphenyls	132	
Total DCPa	357000	
Total PCBs	357000	

ND = Not Detected
Results reported on a dry weight basis

Solid

10

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Matrix Dilution

Client's Sample ID PSJ0242-02;F0095975
Lab Sample ID 10114354002
Filename P91105B_04
Injected By BAL
Total Amount Extracted 16.9 g
% Moisture 40.8

10.0 g Dry Weight Extracted Collected 10/06/2009 10:34 **ICAL ID** P91105B02 Received 10/09/2009 10:10 CCal Filename(s) P91105B 01 Extracted 10/22/2009 16:10 Method Blank ID BLANK-22143 Analyzed 11/05/2009 22:46

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.240	0.32	2.0	0.138	21 IR
13C-4-MoCB	3	12.738	2.19	2.0	0.700	39 Î
13C-2,2'-DiCB	4	13.014	1.56	2.0	0.290	15 R
13C-4,4'-DiCB	15	21.232	1.49	2.0	0.614	31
13C-2,2',6-TrCB	19	17.542	1.03	2.0	0.818	41
13C-3,4,4'-TrCB	37	29.625	1.10	2.0	1.73	87
13C-2,2',6,6'-TeCB	54	21.628	0.95	2.0	0.951	52 I
13C-3,4,4',5-TeCB	81	36.852	0.79	2.0	1.99	100
13C-3,3',4,4'-TeCB	77	37.439	0.80	2.0	1.82	91
13C-2,2',4,6,6'-PeCB	104	28.183	1.58	2.0	1.16	58
13C-2,3,3',4,4'-PeCB	105	41.044	1.76	2.0	1.51	75
13C-2,3,4,4',5-PeCB	114	40.390	1.51	2.0	1.60	80
13C-2,3',4,4',5-PeCB	118	39.853	1.52	2.0	1.74	87
13C-2,3',4,4',5'-PeCB	123	39.518	1.63	2.0	1.65	83
13C-3,3',4,4',5-PeCB	126	44.230	1.69	2.0	1.54	77
13C-2,2',4,4',6,6'-HxCB	155	34.387	1.32	2.0	1.35	67
13C-HxCB (156/157)	156/157	47.265	1.23	4.0	3.07	77
13C-2,3',4,4 ['] ,5,5'-HxĆB	167	46.108	1.25	2.0	1.70	85
13C-3,3',4,4',5,5'-HxCB	169	50.601	1.38	2.0	1.62	81
13C-2,2',3,4',5,6,6'-HpCB	188	40.356	0.99	2.0	1.37	69
13C-2,3,3',4,4',5,5'-HpCB	189	53.195	0.93	2.0	1.58	79
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.789	0.89	2.0	1.47	74
13C-2,3,3',4,4',5,5',6-OcCB	205	56.255	0.90	2.0	1.34	67
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.691	0.84	2.0	1.58	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.635	0.88	2.0	1.29	64
13CDeCB	209	61.234	0.78	2.0	1.23	61
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.031	1.25	2.0	1.58	87 I
13C-2,3,3',5,5'-PeCB	111	37.489	1.60	2.0	1.45	73
13C-2,2',3,3',5,5',6-HpCB	178	43.475	1.04	2.0	1.47	74
Recovery Standards						
13C-2,5-DiCB	9	16.069	1.47	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.161	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.639	1.71	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.022	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.652	0.86	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-02;F0095975 10114354002 P91105B_04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.288	3.36	933		24.9
2		12.499	2.79	589		24.9
3		12.738	3.19	1920		24.9
4		13.086	1.55	5130		24.9
4 5 6				ND		24.9
6		16.632	1.55	6950		24.9
7		16.297	1.53	1480		24.9
8		17.231	1.56	31800		24.9
9		16.069	1.40	2410		24.9
10		13.361	1.58	182		24.9
11		20.562	1.38	3900		150
12	12/13	20.909	1.34	2200		49.9
13	12/13	20.909	1.34	(2200)		49.9
14				` NĎ		24.9
15		21.233	1.56	6810 N2		24.9
16		21.220	1.09	7100		24.9
17		20.669	1.07	13000		24.9
18	18/30	20.130	1.05	29700		49.9
19		17.578	1.09	2750		24.9
20	20/28	25.031	1.02	43300		49.9
21	21/33	25.316	1.03	21000		49.9
22		25.769	1.03	12900		24.9
23		23.707	1.09	37.8		24.9
24		21.089	1.52 l		379	24.9
25		24.327	1.03	2420		24.9
26	26/29	24.042	1.02	6460		49.9
27		20.933	1.05	1820		24.9
28	20/28	25.031	1.02	(43300)		49.9
29	26/29	24.042	1.02	(6460)		49.9
30	18/30	20.130	1.05	(29700)		49.9
31		24.696	1.02	39500		24.9
32		21.896	1.00	10500		24.9
33	21/33	25.316	1.03	(21000)		49.9
34		23.522	1.01	250		24.9
35		29.189	0.92	527		24.9
36				ND		24.9
37		29.625	1.01	10600		24.9
38		28.636	0.98	57.1		24.9
39		28.049	0.89	305		24.9
40	40/41/71	29.407	0.79	27500		150
41	40/41/71	29.407	0.79	(27500)		150
42	10/70	28.871	0.79	11800		49.9
43	43/73	27.429	0.80	6760		99.7
44	44/47/65	28.267	0.80	48000		150
45	45/51	25.098	0.80	10600		99.7
46	4.4/47/05	25.451	0.81	3600		49.9
47	44/47/65	28.267	0.80	(48000)		150
48		28.049	0.79	10600		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-02;F0095975 10114354002 P91105B_04

	. •					
IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.731	0.80	26100		99.7
50	50/53	24.327	0.80	9010		99.7
51	45/51	25.098	0.80	(10600)		99.7
52	10/01	27.177	0.80	62600		49.9
53	50/53	24.327	0.80	(9010)		99.7
54	00/00	21.611	0.84	134		49.9
55		32.979	0.78	1140		49.9
56		33.532	0.78	21700		49.9
57		31.386	0.84	152		49.9
58		31.604	0.76	197		49.9
59	59/62/75	28.653	0.79	4060		150
60	00/02/10	33.767	0.75	10100		49.9
61	61/70/74/76	32.476	0.76	81500		199
62	59/62/75	28.653	0.79	(4060)		150
63	03/02/10	32.124	0.76	1720		49.9
64		29.659	0.79	19700		49.9
65	44/47/65	28.267	0.80	(48000)		150
66	44/41/00	32.811	0.78	36000		49.9
67		31.839	0.75	1110		49.9
68		30.950	0.73	136		49.9
69	49/69	27.731	0.80	(26100)		99.7
70	61/70/74/76	32.476	0.76	(81500)		199
71	40/41/71	29.407	0.79	(27500)		150
72	40/41/11	30.631	0.73	231		49.9
73	43/73	27.429	0.80	(6760)		99.7
73 74	61/70/74/76	32.476	0.76	(81500)		199
7 5	59/62/75	28.653	0.79	(4060)		150
76	61/70/74/76	32.476	0.76	(81500)		199
70 77	01/10/14/10	37.456	0.76	4180		49.9
78				ND		49.9
70 79		35.796	0.68	316		49.9
80				ND		49.9
81		36.885	0.72	165		49.9
82		37.053	1.60	8510		49.9
83		35.175	1.60	5590		49.9
84		32.660	1.63	16100		49.9
85	85/116/117	36.567	1.60	10300		150
86	86/87/97/108/119/125	35.896	1.59	40700		299
87	86/87/97/108/119/125	35.896	1.59	(40700)		299
88	88/91	32.442	1.54	8460		99.7
89	00/91	33.163	1.59	1130		49.9
90	90/101/113	34.672	1.61	54000		150
91	88/91	32.442	1.54	(8460)		99.7
92	00/01	34.052	1.60	8860		49.9
93	93/98/100/102	31.889	1.68	2870		199
94	30,30,100,102	31.017	1.57	351		49.9
95		31.503	1.64	42500		49.9
96		28.619	1.63	609		49.9
50		20.010	1.00	000		70.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PSJ0242-02;F0095975
Lab Sample ID 10114354002
Filename P91105B_04

97 86/87/97/108/119/125 35.896 1.59 (40700) 299 98 93/98/100/102 31.889 1.68 (2870) 199 99 100 93/98/100/102 31.889 1.68 (2870) 199 101 90/101/113 34.672 1.61 (54000) 150 102 93/98/100/102 31.889 1.68 (2870) 199 103 33/98/100/102 31.889 1.68 (2870) 199 104 ND 49.9 105 41.077 1.52 24400 49.9 106 ND 49.9 106 ND 49.9 107 107/124 39.166 1.55 2130 99.7 108 86/87/97/108/119/125 35.896 1.59 (40700) 299 110 110/115 36.735 1.59 62400 99.7 111 ND 49.9 112 ND 49.9 113 90/101/113 34.672 1.61 (54000) 150 114 4 40.424 1.51 1.530 49.9 115 110/115 36.735 1.59 (62400) 199.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 85/116/117 36.567 1.60 (10300) 150 118 85/116/117 36.567 1.60 (10300) 150 118 85/116/117 36.567 1.60 (10300) 150 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 40.205 1.51 7566 49.9 121	IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
98 93/98/100/102 31.889 1.68 (2870) 199 99 35/98/100/102 31.889 1.68 (2870) 199 100 93/98/100/102 31.889 1.68 (2870) 199 101 99/101/113 34.672 1.61 (54000) 150 102 93/98/100/102 31.889 1.68 (2870) 199 103 30.799 1.57 316 49.9 104	97	86/87/97/108/119/125	35.896	1.59	(40700)		299
99		93/98/100/102	31.889	1.68	(2870)		199
100 93/98/100/102 31.889 1.68 (2870) 199 101 90/101/113 34.672 1.61 (54000) 102 93/98/100/102 31.889 1.68 (2870) 103 104 105 106 107 107/124 39.166 1.55 2130 108 86/87/97/108/119/125 35.896 1.59 (40700) 299 109 ND 110 110/115 ND 49.9 111 ND 49.9 112 ND 49.9 113 90/101/113 34.672 1.61 (54000) 49.9 114 ND 49.9 115 110/115 36.735 1.59 (62400) 49.9 116 85/116/117 36.567 1.60 (10300) 150 117 88/116/117 36.567 1.60 (10300) 150 118 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 124 107/124 39.166 1.55 (2130) 49.9 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 40.205 1.51 756 49.9 127 ND 49.9 128 128/166 44.314 39.166 1.55 (2130) 49.9 129 129/138/163 43.039 1.27 67000 49.9 131 39.468 1.31 870 49.9 132 129/138/163 43.039 1.27 67000 49.9 133 134/143 39.468 1.31 870 49.9 134 134/143 39.887 1.26 2940 49.9 135 129/138/163 43.039 1.27 67000 49.9 136 129/138/163 43.039 1.27 67000 49.9 137	99		35.293	1.59	2160Ó		49.9
101 90/101/113 34.672 1.61 (54000) 150 102 93/98/100/102 31.889 1.68 (2870) 199 103 30.799 1.57 316 49.9 105 ND 49.9 105 41.077 1.52 24400 49.9 105 ND 49.9 106 ND 49.9 107 107/124 39.166 1.55 2130 99.7 108 86/87/97/108/119/125 35.896 1.59 (40700) 2299 109 ND 49.9 110 110/115 36.735 1.59 62400 49.9 110 110/115 36.735 1.59 62400 99.7 111 ND 49.9 112 ND 49.9 113 90/101/113 34.672 1.61 (54000) 150 49.9 113 90/101/113 34.672 1.61 (54000) 150 114 40.424 1.51 1530 49.9 115 110/115 36.735 1.59 (62400) 99.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 85/116/117 36.567 1.60 (10300) 150 118 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 1.04 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 (10300) 150 49.9 124 107/124 39.66 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 129 129/138/163 43.039 1.27 67000 150 49.9 131 39.468 1.31 870 49.9 131 39.468 1.31 870 49.9 131 39.468 3.31 870 49.9 313 39.468 3.31 870 49.9 313 39.468 3.31 870 49.9 313 39.468 3.31 39.707 39.937 27 27.200 49.9 313 39.468 33.442 39.937 27 27.200 49.9 313 39.440 39.283 1.27 891 49.9 313 39/140 39.283 1.27 (67000) 49.9	100	93/98/100/102	31.889	1.68	(2870)		199
103	101	90/101/113	34.672	1.61	(54000)		150
104	102	93/98/100/102	31.889	1.68	`(2870)		199
105	103		30.799	1.57	` 316		49.9
106					ND		49.9
107 107/124 39.166 1.55 2130			41.077	1.52			49.9
108 86/87/97/108/119/125 35.896 1.59 (40700)					ND		49.9
109							
110 110/115 36.735 1.59 62400 99.7 111 ND 49.9 112 ND 49.9 113 90/101/113 34.672 1.61 (54000) 150 114 40.424 1.51 1530 49.9 115 110/115 36.735 1.59 (62400) 99.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 39.187 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 107/124 39.535	108	86/87/97/108/119/125		1.59	(40700)		299
111 112 113 114 116 117 118 119 118 119 119 119 1119 119 1110 1114 1111 1111				1.49			49.9
112		110/115	36.735	1.59			
113 90/101/113 34.672 1.61 (54000) 49.9 114 40.424 1.51 1530 49.9 115 110/115 36.735 1.59 (62400) 99.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 1							49.9
114 40.424 1.51 1530 49.9 115 110/115 36.735 1.59 (62400) 99.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 49.9 118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 49.9 124 107/124 39.166 1.55 (2130) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193<							49.9
115 110/115 36,735 1.59 (62400) 99.7 116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 ND 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 122 40.205 1.51 756 49.9 122 40.205 1.51 756 49.9 122 40.205 1.51 756 49.9 122 40.205 1.50 1030 49.9 122 40.205 1.50 1030 49.9 122 40.205 1.50 1030		90/101/113		1.61	(54000)		150
116 85/116/117 36.567 1.60 (10300) 150 117 85/116/117 36.567 1.60 (10300) 150 118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 49.9 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 42.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 <td></td> <td></td> <td></td> <td>1.51</td> <td>1530</td> <td></td> <td>49.9</td>				1.51	1530		49.9
117 85/116/117 36.567 1.60 (10300) 150 118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 49.9 131 39.468		110/115	36.735	1.59			99.7
118 39.887 1.51 45700 49.9 119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300		85/116/117	36.567	1.60	(10300)		150
119 86/87/97/108/119/125 35.896 1.59 (40700) 299 120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 133 40.491 1.30 671 <td></td> <td>85/116/117</td> <td>36.567</td> <td>1.60</td> <td></td> <td></td> <td>150</td>		85/116/117	36.567	1.60			150
120 38.009 1.71 104 49.9 121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 99.7 126 44.230 1.36 195 49.9 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 </td <td></td> <td></td> <td>39.887</td> <td>1.51</td> <td></td> <td></td> <td>49.9</td>			39.887	1.51			49.9
121 ND 49.9 122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671		86/87/97/108/119/125	35.896	1.59			299
122 40.205 1.51 756 49.9 123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 134/143 38.847 1.29 2980 49.9 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27							49.9
123 39.535 1.50 1030 49.9 124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27							49.9
124 107/124 39.166 1.55 (2130) 99.7 125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.03			40.205	1.51	756		49.9
125 86/87/97/108/119/125 35.896 1.59 (40700) 299 126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 138 129/138/163 43.039 1.27 (67000) 49.9 139 139/140 39.2		407/404	39.535	1.50			
126 44.230 1.36 195 49.9 127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 8			39.166	1.55			99.7
127 42.687 1.40 193 49.9 128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 49.9 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 <t< td=""><td></td><td>86/87/97/108/119/125</td><td>35.896</td><td>1.59</td><td></td><td></td><td>299</td></t<>		86/87/97/108/119/125	35.896	1.59			299
128 128/166 44.314 1.36 9060 99.7 129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 141 41.966 1.27 12100 49.9 143 134/143 38.847				1.36			
129 129/138/163 43.039 1.27 67000 150 130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980		400/400	42.687	1.40	193		49.9
130 42.385 1.29 3620 49.9 131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) </td <td></td> <td></td> <td></td> <td>1.36</td> <td></td> <td></td> <td>99.7</td>				1.36			99.7
131 39.468 1.31 870 49.9 132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7	129	129/138/163	43.039	1.27	67000		150
132 39.937 1.27 21300 49.9 133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7	130			1.29			49.9
133 40.491 1.30 671 49.9 134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7	131			1.31	21200		49.9
134 134/143 38.847 1.29 2980 99.7 135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7	132			1.27			49.9
135 135/151 37.707 1.28 19900 99.7 136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7		124/142					
136 35.142 1.27 7230 49.9 137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7				1.29	10000		99.7
137 42.603 1.26 2940 49.9 138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7	133	135/151	37.707	1.20	7220		99.7 40.0
138 129/138/163 43.039 1.27 (67000) 150 139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7				1.27			49.9 40.0
139 139/140 39.283 1.27 891 99.7 140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7		120/138/163		1.20			49.9 150
140 139/140 39.283 1.27 (891) 99.7 141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7			30 283	1.27	891		99.7
141 41.966 1.27 12100 49.9 142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7				1.27			
142 ND 49.9 143 134/143 38.847 1.29 (2980) 99.7		100/170		1.27	12100		49 Q
143 134/143 38.847 1.29 (2980) 99.7							40 Q
		134/143					
		10 1,110					

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-02;F0095975 10114354002 P91105B_04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.9
146		41.145	1.27	7800		49.9
147	147/149	38.646	1.26	44300		99.7
148	1 1771 10			ND		49.9
149	147/149	38.646	1.26	(44300)		99.7
150	1 1771 10			ND		49.9
151	135/151	37.707	1.28	(19900)		99.7
152	100/101			ND		49.9
153	153/168	41.782	1.28	50200		99.7
154	100/100	37.975	1.17	408		49.9
155				ND		49.9
156	156/157	47.281	1.26	7320		99.7
157	156/157	47.281	1.26	(7320)		99.7
158	100/10/	43.442	1.25	6190		49.9
159		45.269	1.30	717		49.9
160				ND		49.9
161				ND		49.9
162		45.689	1.20	581		49.9
163	129/138/163	43.039	1.27	(67000)		150
164	123/100/100	42.721	1.26	3960		49.9
165				ND		49.9
166	128/166	44.314	1.36	(9060)		99.7
167	120/100	46.124	1.24	2280		49.9
168	153/168	41.782	1.28	(50200)		99.7
169	100/100	50.685	1.42	62.1		49.9
170		49.964	1.06	14200		49.9
171	171/173	46.359	1.08	4610		99.7
172	17 17 17 0	48.036	1.11	2620		49.9
173	171/173	46.359	1.08	(4610)		99.7
174	17 17 17 0	45.269	1.06	15300		49.9
175		44.146	0.93	689		49.9
176		41.597	1.08	2070		49.9
177		45.705	1.06	8540		49.9
178		43.492	1.09	3070		49.9
179		40.692	1.06	6370		49.9
180	180/193	48.690	1.08	32900		99.7
181		46.124	1.07	114		49.9
182		44.549	2.37 I		77.0	49.9
183	183/185	45.035	1.07	11300		99.7
184				ND		49.9
185	183/185	45.035	1.07	(11300)		99.7
186				ND		49.9
187		44.414	1.05	19100		49.9
188				ND		49.9
189		53.238	1.00	595		49.9
190		50.534	1.02	2760		49.9
191		49.059	1.09	590		49.9
192				ND		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses Results reported on a dry weight basis NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-02;F0095975 10114354002 P91105B 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.690	1.08	(32900)		99.7
194		55.695	0.91	` 680Ó		74.8
195		52.936	0.92	2570		74.8
196		51.356	0.84	3890		74.8
197	197/200	47.784	0.87	1270		150
198	198/199	50.685	0.89	8460		150
199	198/199	50.685	0.89	(8460)		150
200	197/200	47.784	0.87	(1270)		150
201		46.778	0.90	`104Ó		74.8
202		45.823	0.88	1540		74.8
203		51.557	0.93	5060		74.8
204				ND		74.8
205		56.320	0.89	389		74.8
206		58.734	0.81	2650		74.8
207		53.669	0.76	359		74.8
208		52.656	0.82	833		74.8
209		61.320	0.69	1010		74.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-02;F0095975 10114354002 P91105B_04

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	3440	
Total Dichloro Biphenyls	60900	
Total Trichloro Biphenyls	202000	
Total Tetrachloro Biphenyls	399000	
Total Pentachloro Biphenyls	364000	
Total Hexachloro Biphenyls	275000	
Total Heptachloro Biphenyls	125000	
Total Octachloro Biphenyls	31000	
Total Nonachloro Biphenyls	3840	
Decachloro Biphenyls	1010	
Total PCBs	1460000	

ND = Not Detected
Results reported on a dry weight basis

Method Blank ID

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Client's Sample ID PSJ0242-03:F0095976 Lab Sample ID 10114354003 P91105B_06 Filename Injected By BAL Total Amount Extracted 16.9 g % Moisture 39.3

10.3 g Dry Weight Extracted **ICAL ID** P91105B02 CCal Filename(s) P91105B 01

Dilution 10 Collected 10/06/2009 11:24 Received 10/09/2009 10:10 Extracted 10/22/2009 16:10 BLANK-22143 Analyzed 11/06/2009 00:56

Matrix

Solid

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.240	0.50	2.0	0.147	17 IR
13C-4-MoCB	3	12.726	2.78	2.0	0.719	36
13C-2,2'-DiCB	4	13.038	1.64	2.0	0.401	20 R
13C-4,4'-DiCB	15	21.233	1.75	2.0	0.719	36
13C-2,2',6-TrCB	19	17.579	1.06	2.0	0.587	29
13C-3,4,4'-TrCB	37	29.592	1.20	2.0	1.41	70
13C-2,2',6,6'-TeCB	54	21.561	0.86	2.0	1.02	51
13C-3,4,4',5-TeCB	81	36.919	0.84	2.0	1.56	78
13C-3,3',4,4'-TeCB	77	37.456	0.87	2.0	1.46	73
13C-2,2',4,6,6'-PeCB	104	28.183	1.70	2.0	1.15	57
13C-2,3,3',4,4'-PeCB	105	41.111	1.56	2.0	1.38	69
13C-2,3,4,4',5-PeCB	114	40.457	1.37	2.0	1.47	73
13C-2,3',4,4',5-PeCB	118	39.920	1.74	2.0	1.35	68
13C-2,3',4,4',5'-PeCB	123	39.552	1.43	2.0	1.41	71
13C-3,3',4,4',5-PeCB	126	44.330	1.46	2.0	1.27	64
13C-2,2',4,4',6,6'-HxCB	155	34.438	1.27	2.0	1.29	65
13C-HxCB (156/157)	156/157	47.399	1.23	4.0	2.63	66
13C-2,3',4,4',5,5'-HxCB	167	46.225	1.24	2.0	1.43	71
13C-3,3',4,4',5,5'-HxCB	169	50.769	1.41	2.0	1.19	59
13C-2,2',3,4',5,6,6'-HpCB	188	40.407	1.17	2.0	1.28	64
13C-2,3,3',4,4',5,5'-HpCB	189	53.324	0.93	2.0	1.40	70
13C-2,2',3,3',5,5',6,6'-OcCB	202 205	45.906	0.94	2.0	1.27 1.18	63 59
13C-2,3,3',4,4',5,5',6-OcCB	206	56.449 58.820	0.87 0.79	2.0 2.0	1.32	66
13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.742	0.79	2.0	1.32	61
13C2,2,3,3,4,5,5,6,6-NOCB	209	61.384	0.64	2.0	1.22	61
13CDeCB	209	01.304	0.04	2.0	1.22	01
Cleanup Standards		0= 04=	4.00		4.40	
13C-2,4,4'-TrCB	28	25.015	1.20	2.0	1.43	71
13C-2,3,3',5,5'-PeCB	111	37.539	1.51	2.0	1.30	65
13C-2,2',3,3',5,5',6-HpCB	178	43.525	0.93	2.0	1.22	61
Recovery Standards						
13C-2,5-DiCB	9	16.033	1.59	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.127	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.672	1.52	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.073	1.28	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.803	1.01	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-03;F0095976 10114354003 P91105B_06

II IDAO	On abother	DT	D - 41 -	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.264	3.21	1820		24.3
2		12.475	2.92	832		24.3
3		12.738	3.05	2420		24.3
4		13.098	1.60	7630		24.3
4 5 6 7				ND		24.3
6		16.608	1.51	7610		24.3
7		16.261	1.43	1610		24.3
8		17.207	1.55	35100		24.3
9		16.057	1.47	2430		24.3
10		13.314	1.44	389		24.3
11		20.526	1.63	3940		146
12	12/13	20.909	1.50	2010		48.7
13	12/13	20.909	1.50	(2010)		48.7
14		20.118	1.45	3210		24.3
15		21.233	1.52	7880 N2		24.3
16		21.197	1.07	17100		24.3
17		20.646	1.07	23100		24.3
18	18/30	20.106	1.06	54300		48.7
19		17.567	1.06	6650		24.3
20	20/28	25.031	1.02	74400		48.7
21	21/33	25.300	1.00	34700		48.7
22		25.752	1.03	22600		24.3
23		23.656	1.08	65.8		24.3
24				ND		24.3
25		24.310	1.02	4380		24.3
26	26/29	24.025	1.02	11500		48.7
27		20.909	1.02	3480		24.3
28	20/28	25.031	1.02	(74400)		48.7
29	26/29	24.025	1.02	(11500)		48.7
30	18/30	20.106	1.06	(54300)		48.7
31		24.679	1.02	71000		24.3
32		21.879	1.02	19000		24.3
33	21/33	25.300	1.00	(34700)		48.7
34		23.472	1.05	364		24.3
35		29.189	1.01	836		24.3
36		27.597	0.59 I	47000	63.9	24.3
37		29.625	1.02	17000		24.3
38		28.636	0.89	103		24.3
39	40/44/74	28.049	0.97	526		24.3
40	40/41/71	29.407	0.79	45100 (45100)		146
41	40/41/71	29.407	0.79	(45100)		146
42 43	43/73	28.871	0.78	19700		48.7 97.4
43 44		27.412 28.267	0.86 0.80	8840 81500		97.4 146
44 45	44/47/65 45/51		0.80	18500		
	45/51	25.082 25.434	0.80	6140		97.4 48.7
46 47	44/47/65	25.434 28.267	0.80	(81500)		48.7 146
	44/47/00					
48		28.033	0.80	17000		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-03;F0095976 10114354003 P91105B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.714	0.79	45200		97.4
50	50/53	24.310	0.81	15700		97.4
51	45/51	25.082	0.80	(18500)		97.4
52		27.161	0.80	10700Ó		48.7
53	50/53	24.310	0.81	(15700)		97.4
54		21.628	0.75	206		48.7
55				ND		48.7
56		33.549	0.77	33100		48.7
57		31.369	0.76	146		48.7
58		31.604	0.48 I		211	48.7
59	59/62/75	28.636	0.83	6610		146
60		33.784	0.76	15700		48.7
61	61/70/74/76	32.493	0.77	131000		195
62	59/62/75	28.636	0.83	(6610)		146
63		32.141	0.76	2680		48.7
64		29.676	0.80	31600		48.7
65	44/47/65	28.267	0.80	(81500)		146
66		32.845	0.76	57400		48.7
67		31.855	0.77	1790		48.7
68		30.967	0.86	210		48.7
69	49/69	27.714	0.79	(45200)		97.4
70	61/70/74/76	32.493	0.77	(131000)		195
71	40/41/71	29.407	0.79	(45100)		146
72		30.665	0.80	412		48.7
73	43/73	27.412	0.86	(8840)		97.4
74	61/70/74/76	32.493	0.77	(131000)		195
75	59/62/75	28.636	0.83	(6610)		146
<u>76</u>	61/70/74/76	32.493	0.77	(131000)		195
77		37.523	0.78	6250		48.7
78				ND		48.7
79		35.829	0.69	614		48.7
80				ND		48.7
81		36.919	0.92 I		189	48.7
82		37.087	1.60	13600		48.7
83		35.175	1.59	6070		48.7
84	05/440/447	32.660	1.58	28600		48.7
85	85/116/117	36.584	1.56	17100		146
86	86/87/97/108/119/125	35.913	1.60	68400		292
87	86/87/97/108/119/125	35.913	1.60	(68400)		292
88	88/91	32.442	1.66	15000		97.4
89	00/404/442	33.180	1.65	1840		48.7
90 91	90/101/113	34.706 32.442	1.59 1.66	92800		146 97.4
	88/91			(15000)		
92 93	93/98/100/102	34.085 31.906	1.61 1.54	`1560Ó 5070		48.7 195
93 94	33/30/100/10Z	31.906	1.64	650		48.7
94 95		31.034	1.64	78000		48.7 48.7
95 96		28.603	1.55	1080		48.7 48.7
90		20.003	1.00	1000		40.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PSJ0242-03;F0095976 Lab Sample ID 10114354003 Filename P91105B_06

	. •					
IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.913	1.60	(68400)		292
98	93/98/100/102	31.906	1.54	(5070)		195
99	33/30/100/102	35.326	1.59	39200		48.7
100	93/98/100/102	31.906	1.54	(5070)		195
100	90/101/113	34.706	1.59	(92800)		146
101	93/98/100/102	31.906	1.59	(5070)		195
102	93/96/100/102	30.816	1.54			48.7
103				573		
104			 1.53	ND		48.7
105		41.144		34500		48.7
106	407/404		4.50	ND		48.7
107	107/124	39.216	1.56	3240		97.4
108	86/87/97/108/119/125	35.913	1.60	(68400)		292
109	440/445	39.484	1.58	4970		48.7
110	110/115	36.768	1.61	97800		97.4
111				ND		48.7
112				ND		48.7
113	90/101/113	34.706	1.59	(92800)		146
114		40.490	1.52	1900		48.7
115	110/115	36.768	1.61	(97800)		97.4
116	85/116/117	36.584	1.56	(17100)		146
117	85/116/117	36.584	1.56	(17100)		146
118		39.937	1.52	`7910Ó		48.7
119	86/87/97/108/119/125	35.913	1.60	(68400)		292
120		38.042	1.61	143		48.7
121				ND		48.7
122		40.272	1.53	887		48.7
123		39.585	1.54	1790		48.7
124	107/124	39.216	1.56	(3240)		97.4
125	86/87/97/108/119/125	35.913	1.60	(6̀8400)́		292
126		44.364	1.55	1080		48.7
127		42.788	1.45	306		48.7
128	128/166	44.380	1.27	13700		97.4
129	129/138/163	43.123	1.27	98000		146
130		42.452	1.30	5400		48.7
131		39.535	1.22	1340		48.7
132		40.004	1.26	32800		48.7
133		40.591	1.18	1060		48.7
134	134/143	38.898	1.29	4790		97.4
135	135/151	37.741	1.28	33700		97.4
136	100/101	35.159	1.28	12600		48.7
137		42.687	1.28	6050		48.7
138	129/138/163	43.123	1.27	(98000)		146
139	139/140	39.334	1.25	1450		97.4
140	139/140	39.334	1.25	(1450)		97.4 97.4
140	133/140	42.033	1.25	19000		97.4 48.7
141			1.27	19000 ND		48.7 48.7
	134/143	20 000	1.29			
143	134/143	38.898		(4790)		97.4
144		38.245	1.31	2770 N2		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses Results reported on a dry weight basis NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-03;F0095976 10114354003 P91105B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.7
146		41.228	1.24	11700		48.7
147	147/149	38.713	1.26	69200		97.4
148	1177110	37.187	1.45 I		50.8	48.7
149	147/149	38.713	1.26	(69200)		97.4
150	1177110	34.823	1.33	92.8		48.7
151	135/151	37.741	1.28	(33700)		97.4
152	100/101	34.605	1.65 I	(557 55)	72.4	48.7
153	153/168	41.865	1.27	75200		97.4
154	100/100	38.026	1.19	677		48.7
155				ND		48.7
156	156/157	47.382	1.24	10500		97.4
157	156/157	47.382	1.24	(10500)		97.4
158	100,101	43.525	1.27	9020		48.7
159		45.454	0.94 I		84.4	48.7
160				ND		48.7
161				ND		48.7
162		45.772	1.23	841		48.7
163	129/138/163	43.123	1.27	(98000)		146
164		42.804	1.27	` 510Ó		48.7
165				ND		48.7
166	128/166	44.380	1.27	(13700)		97.4
167		46.242	1.26	` 342Ó		48.7
168	153/168	41.865	1.27	(75200)		97.4
169		50.785	1.42	140		48.7
170		50.081	1.06	19800		48.7
171	171/173	46.443	1.08	6190		97.4
172		48.120	1.04	3650		48.7
173	171/173	46.443	1.08	(6190)		97.4
174		45.336	1.05	21500		48.7
175		44.230	1.05	1050		48.7
176		41.664	1.04	3080		48.7
177		45.789	1.04	11900		48.7
178		43.576	1.07	4450		48.7
179		40.759	1.07	9420		48.7
180	180/193	48.807	1.05	46300		97.4
181		46.208	1.12	151		48.7
182				ND		48.7
183	183/185	45.135	1.05	15800		97.4
184				ND		48.7
185	183/185	45.135	1.05	(15800)		97.4
186				ND		48.7
187		44.498	1.07	27700		48.7
188				ND		48.7
189		53.367	1.01	798		48.7
190		50.635	1.00	3640		48.7
191		49.159	1.03	844 ND		48.7
192				ND		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-03;F0095976 10114354003 P91105B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.807	1.05	(46300)		97.4
194		55.846	0.91	`1010Ó		73.0
195		53.044	0.90	3770		73.0
196		51.456	0.90	5610		73.0
197	197/200	47.868	0.89	1870		146
198	198/199	50.786	0.89	12100		146
199	198/199	50.786	0.89	(12100)		146
200	197/200	47.868	0.89	(1870)		146
201		46.862	0.90	`154Ó		73.0
202		45.906	0.86	2230		73.0
203		51.674	0.88	7040		73.0
204				ND		73.0
205		56.471	0.96	568		73.0
206		58.906	0.78	4120		73.0
207		53.777	0.81	500		73.0
208		52.742	0.78	1030		73.0
209		61.514	0.72	1610		73.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-03;F0095976 10114354003 P91105B_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	5070	
Total Dichloro Biphenyls	71800	
Total Trichloro Biphenyls	361000	
Total Tetrachloro Biphenyls	652000	
Total Pentachloro Biphenyls	609000	
Total Hexachloro Biphenyls	419000	
Total Heptachloro Biphenyls	176000	
Total Octachloro Biphenyls	44800	
Total Nonachloro Biphenyls	5650	
Decachloro Biphenyls	1610	
Total PCBs	2350000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Matrix

Dilution

Client's Sample ID PSJ0242-04;F0095977
Lab Sample ID 10114354004
Filename P91101B_09
Injected By BAL
Total Amount Extracted 14.8 g
% Moisture 29.7
Dry Weight Extracted 10.4 g

10.4 g Dry Weight Extracted Collected 10/06/2009 13:18 **ICAL ID** P91101B02 Received 10/09/2009 10:10 CCal Filename(s) P91101B 01 Extracted 10/22/2009 16:10 Method Blank ID **BLANK-22143** Analyzed 11/02/2009 00:25

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.180	2.83	2.0	0.547	27
13C-4-MoCB	3	12.619	3.55	2.0	0.923	46
13C-2,2'-DiCB	4	12.978	1.58	2.0	0.711	36
13C-4,4'-DiCB	15	21.138	1.59	2.0	1.36	68
13C-2,2',6-TrCB	19	17.435	0.99	2.0	0.854	43
13C-3,4,4'-TrCB	37	29.442	1.03	2.0	1.51	76
13C-2,2',6,6'-TeCB	54	21.461	0.84	2.0	1.05	52
13C-3,4,4',5-TeCB	81	36.770	0.82	2.0	1.62	81
13C-3,3',4,4'-TeCB	77	37.324	0.76	2.0	1.57	78
13C-2,2',4,6,6'-PeCB	104	28.034	1.53	2.0	1.21	61
13C-2,3,3',4,4'-PeCB	105	40.962	1.67	2.0	1.62	81
13C-2,3,4,4',5-PeCB	114	40.308	1.63	2.0	1.53	76
13C-2,3',4,4',5-PeCB	118	39.755	1.66	2.0	1.50	75
13C-2,3',4,4',5'-PeCB	123	39.420	1.52	2.0	1.51	75
13C-3,3',4,4',5-PeCB	126	44.148	1.60	2.0	1.63	81
13C-2,2',4,4',6,6'-HxCB	155	34.322	1.31	2.0	1.28	64
13C-HxCB (156/157)	156/157	47.217	1.26	4.0	3.11	78
13C-2,3',4,4',5,5'-HxĆB	167	46.043	1.26	2.0	1.55	78
13C-3,3',4,4',5,5'-HxCB	169	50.537	1.28	2.0	1.59	79
13C-2,2',3,4',5,6,6'-HpCB	188	40.258	1.02	2.0	1.36	68
13C-2,3,3',4,4',5,5'-HpCB	189	53.134	1.03	2.0	1.62	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.741	0.95	2.0	1.34	67
13C-2,3,3',4,4',5,5',6-OcCB	205	56.172	0.90	2.0	1.39	69
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.629	0.77	2.0	1.32	66
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.573	0.81	2.0	1.34	67
13CDeCB	209	61.173	0.70	2.0	1.23	62
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.848	1.09	2.0	1.52	76
13C-2,3,3',5,5'-PeCB	111	37.391	1.54	2.0	1.47	73
13C-2,2',3,3',5,5',6-HpCB	178	43.394	0.99	2.0	1.45	73
Recovery Standards						
13C-2,5-DiCB	9	15.901	1.60	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.994	0.77	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.557	1.63	2.0	ŇA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.924	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.591	0.94	2.0	NA	NA
. , , , , , ,						

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-04;F0095977 10114354004 P91101B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.0
2				ND		24.0
3				ND		24.0
4		13.002	1.67	81.5		24.0
5				ND		24.0
6		16.489	1.55	33.0		24.0
7				ND		24.0
8		17.088	1.53	146		24.0
9				ND		24.0
10				ND		24.0
11		20.371	1.58	812		144
12	12/13			ND		48.0
13	12/13			ND		48.0
14				ND		24.0
15		21.150	1.53	149		24.0
16		21.078	1.08	119		24.0
17		20.503	1.13	139		24.0
18	18/30	19.963	1.06	274		48.0
19		17.459	1.17	41.6		24.0
20	20/28	24.882	1.02	677		48.0
21	21/33	25.167	0.99	247		48.0
22		25.603	1.10	283		24.0
23				ND		24.0
24				ND		24.0
25	00/00	24.161	1.07	41.3		24.0
26	26/29	23.876	1.08	85.7		48.0
27	00/00	20.778	1.13	30.0		24.0
28	20/28	24.882	1.02	(677)		48.0
29	26/29	23.876	1.08	(85.7)		48.0
30	18/30	19.963	1.06	(274)		48.0
31		24.530	1.03	458		24.0
32	24/22	21.746	1.04	118		24.0
33	21/33	25.167	0.99	(247)		48.0
34 35		29.040	 1.11	ND 20.4		24.0
35 36			1.11	29.1 ND		24.0
36 37		 29.476	0.99	273		24.0
3 <i>1</i> 38			0.99	ND		24.0 24.0
36 39				ND ND		24.0 24.0
40	40/41/71	29.292	0.82	515		24.0 144
40	40/41/71	29.292	0.82	(515)		144
42	40/41/71	28.738	0.82	225		48.0
43	43/73	20.730	0.75	ND		48.0
43 44	43/73 44/47/65	28.118	0.76	992		46.0 144
45	45/51	24.949	0.76	143		95.9
45 46	TU/U I	25.301	0.84	54.1		48.0
47	44/47/65	28.118	0.76	(992)		144
48	11,71700	27.900	0.70	146		48.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-04;F0095977 10114354004 P91101B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.581	0.79	530		95.9
50	50/53	24.177	0.83	110		95.9
51	45/51	24.949	0.84	(143)		95.9
52	45/51	27.011	0.81	1570		48.0
53	50/53	24.177	0.83	(110)		95.9
54	30/33	24.17 <i>1</i>		ND		48.0
55				ND ND		48.0
56		33.433	0.76	369		48.0
57		33. 4 33	0.76	ND		48.0
57 58				ND ND		48.0
	59/62/75					
59	59/62/75			ND		144
60	04/70/74/70	33.685	0.81	191		48.0
61	61/70/74/76	32.360	0.77	1530		192
62	59/62/75			ND		144
63				ND		48.0
64	44/47/05	29.526	0.81	410		48.0
65	44/47/65	28.118	0.76	(992)		144
66		32.746	0.75	727		48.0
67				ND		48.0
68				ND		48.0
69	49/69	27.581	0.79	(530)		95.9
70	61/70/74/76	32.360	0.77	(1530)		192
71	40/41/71	29.292	0.82	(515)		144
72				ND		48.0
73	43/73			ND		48.0
74	61/70/74/76	32.360	0.77	(1530)		192
75	59/62/75			NĎ		144
76	61/70/74/76	32.360	0.77	(1530)		192
77		37.357	0.77	170		48.0
78				ND		48.0
79				ND		48.0
80				ND		48.0
81				ND		48.0
82		36.971	1.59	546		48.0
83		35.043	1.55	247		48.0
84		32.545	1.64	1230		48.0
85	85/116/117	36.452	1.77	697		144
86	86/87/97/108/119/125	35.781	1.57	3020		288
87	86/87/97/108/119/125	35.781	1.57	(3020)		288
88	88/91	32.327	1.53	593		95.9
89				ND		48.0
90	90/101/113	34.574	1.58	4880		144
91	88/91	32.327	1.53	(593)		95.9
92		33.970	1.56	847		48.0
93	93/98/100/102			ND		192
94				ND		48.0
95		31.388	1.59	4340		48.0
96				ND		48.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion
X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PSJ0242-04;F0095977
Lab Sample ID 10114354004
Filename P91101B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.781	1.57	(3020)		288
98	93/98/100/102			NĎ		192
99		35.194	1.56	1580		48.0
100	93/98/100/102			ND		192
101	90/101/113	34.574	1.58	(4880)		144
102	93/98/100/102			ND		192
103	00,00,100,100			ND		48.0
104				ND		48.0
105		40.979	1.59	1450		48.0
106				ND		48.0
107	107/124	39.084	1.61	166		95.9
108	86/87/97/108/119/125	35.781	1.57	(3020)		288
109	00/07/07/100/110/120	39.319	1.52	249		48.0
110	110/115	36.636	1.57	6130		95.9
111	110/110			ND		48.0
112				ND		48.0
113	90/101/113	34.574	1.58	(4880)		144
114	00/101/110	40.325	1.66	69.1		48.0
115	110/115	36.636	1.57	(6130)		95.9
116	85/116/117	36.452	1.77	(697)		144
117	85/116/117	36.452	1.77	(697)		144
118	00/110/117	39.789	1.54	3820		48.0
119	86/87/97/108/119/125	35.781	1.57	(3020)		288
120	00/01/01/100/110/120			ND		48.0
121				ND		48.0
122		40.124	1.54	63.1		48.0
123		39.453	1.52	55.3		48.0
124	107/124	39.084	1.61	(166)		95.9
125	86/87/97/108/119/125	35.781	1.57	(3020)		288
126	00/01/01/100/110/120			ND		48.0
127				ND		48.0
128	128/166	44.232	1.29	1350		95.9
129	129/138/163	42.958	1.27	11600		144
130	120/100/100	42.287	1.26	534		48.0
131		39.386	1.25	114		48.0
132		39.839	1.27	3700		48.0
133		40.392	1.22	121		48.0
134	134/143	38.766	1.33	429		95.9
135	135/151	37.592	1.28	6060		95.9
136	100/101	35.043	1.27	1720		48.0
137		42.505	1.22	288		48.0
138	129/138/163	42.958	1.27	(11600)		144
139	139/140	39.185	1.25	125		95.9
140	139/140	39.185	1.25	(125)		95.9
141	. 55, 1 10	41.885	1.29	2930		48.0
142				ND		48.0
143	134/143	38.766	1.33	(429)		95.9
144	- · · · · ·	38.196	1.21	715		48.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-04;F0095977 10114354004 P91101B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.0
146		41.063	1.24	1460		48.0
147	147/149	38.565	1.27	11400		95.9
148				ND		48.0
149	147/149	38.565	1.27	(11400)		95.9
150				` NĎ		48.0
151	135/151	37.592	1.28	(6060)		95.9
152				` NĎ		48.0
153	153/168	41.700	1.27	11700		95.9
154		37.877	1.35	61.2		48.0
155				ND		48.0
156	156/157	47.200	1.26	921		95.9
157	156/157	47.200	1.26	(921)		95.9
158		43.377	1.26	ì03Ó		48.0
159		45.205	1.18	302		48.0
160				ND		48.0
161				ND		48.0
162		45.641	1.25	192		48.0
163	129/138/163	42.958	1.27	(11600)		144
164		42.639	1.26	` 816		48.0
165				ND		48.0
166	128/166	44.232	1.29	(1350)		95.9
167		46.060	1.24	361		48.0
168	153/168	41.700	1.27	(11700)		95.9
169				ND		48.0
170		49.900	1.06	4960		48.0
171	171/173	46.278	1.16	1470		95.9
172		47.972	1.06	1020		48.0
173	171/173	46.278	1.16	(1470)		95.9
174		45.188	1.06	8250		48.0
175		44.064	1.11	301		48.0
176		41.532	1.04	984		48.0
177		45.641	1.07	3890		48.0
178		43.410	1.05	1710		48.0
179		40.610	1.05	3890		48.0
180	180/193	48.625	1.05	16300		95.9
181				ND		48.0
182				ND		48.0
183	183/185	44.970	1.05	5330		95.9
184				ND		48.0
185	183/185	44.970	1.05	(5330)		95.9
186				` NĎ		48.0
187		44.333	1.06	11400		48.0
188				ND		48.0
189		53.177	1.18	156		48.0
190		50.453	1.12	1170		48.0
191		48.994	1.06	203		48.0
192				ND		48.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-04;F0095977 10114354004 P91101B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.625	1.05	(16300)		95.9
194		55.612	0.91	` 570Ó		71.9
195		52.853	0.90	2140		71.9
196		51.292	0.90	3100		71.9
197	197/200	47.720	0.94	1200		144
198	198/199	50.621	0.91	8200		144
199	198/199	50.621	0.91	(8200)		144
200	197/200	47.720	0.94	(1200)		144
201		46.714	0.90	` 96Ó		71.9
202		45.758	0.96	1520		71.9
203		51.510	0.91	4570		71.9
204				ND		71.9
205		56.216	0.93	272		71.9
206		58.629	0.79	2300		71.9
207		53.608	0.79	313		71.9
208		52.616	0.83	486		71.9
209		61.194	0.71	129		71.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-04;F0095977 10114354004 P91101B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	1220	
Total Trichloro Biphenyls	2820	
Total Tetrachloro Biphenyls	7680	
Total Pentachloro Biphenyls	30000	
Total Hexachloro Biphenyls	57900	
Total Heptachloro Biphenyls	61000	
Total Octachloro Biphenyls	27700	
Total Nonachloro Biphenyls	3100	
Decachloro Biphenyls	129	
Total PCBs	192000	

ND = Not Detected
Results reported on a dry weight basis

Solid

10/06/2009 13:18

10/09/2009 10:10

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Matrix

Client's Sample ID PSJ0242-05;F0095978
Lab Sample ID 10114354005
Filename P91101B_10
Injected By BAL
Total Amount Extracted 14.7 g

% Moisture 27.2 Dilution

Dry Weight Extracted 10.7 g Collected

ICAL ID P91101B02 Received

 CCal Filename(s)
 P91101B_01
 Extracted
 10/22/2009 16:10

 Method Blank ID
 BLANK-22143
 Analyzed
 11/02/2009 01:30

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.193	3.03	2.0	0.327	16 R
13C-4-MoCB	3	12.631	2.70	2.0	0.702	35
13C-2,2'-DiCB	4	12.979	1.67	2.0	0.527	26
13C-4,4'-DiCB	15	21.126	1.62	2.0	1.41	71
13C-2,2',6-TrCB	19	17.448	1.20	2.0	0.879	44
13C-3,4,4'-TrCB	37	29.461	1.16	2.0	1.53	77
13C-2,2',6,6'-TeCB	54	21.462	0.76	2.0	1.02	<u>51</u>
13C-3,4,4',5-TeCB	<u>81</u>	36.772	0.82	2.0	1.49	74
13C-3,3',4,4'-TeCB	77	37.342	0.82	2.0	1.51	76
13C-2,2',4,6,6'-PeCB	104	28.052	1.72	2.0	1.15	58
13C-2,3,3',4,4'-PeCB	105	40.982	1.61	2.0	1.41	70 70
13C-2,3,4,4,5-PeCB	114 118	40.294 39.757	1.54 1.53	2.0 2.0	1.43 1.43	72 72
13C-2,3',4,4',5-PeCB	123	39.757 39.439	1.53 1.58	2.0	1.43 1.42	72 71
13C-2,3',4,4',5'-PeCB 13C-3,3',4,4',5-PeCB	126	44.151	1.57	2.0	1.54	77
13C-2,2',4,4',6,6'-HxCB	155	34.324	1.23	2.0	1.47	73
13C-E,2,4,4,0,0-11XCB	156/157	47.203	1.28	4.0	2.98	73 74
13C-2,3',4,4',5,5'-HxCB	167	46.046	1.33	2.0	1.51	7 4 76
13C-3,3',4,4',5,5'-HxCB	169	50.557	1.25	2.0	1.55	78 78
13C-2,2',3,4',5,6,6'-HpCB	188	40.260	1.04	2.0	1.46	73
13C-2,3,3',4,4',5,5'-HpCB	189	53.180	1.01	2.0	1.63	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.744	0.88	2.0	1.45	72
13C-2,3,3',4,4',5,5',6-OcCB	205	56.240	0.86	2.0	1.34	67
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.654	0.84	2.0	1.33	67
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.598	0.77	2.0	1.35	67
13CDeCB	209	61.219	0.68	2.0	1.27	64
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.849	1.06	2.0	1.54	77
13C-2,3,3',5,5'-PeCB	111	37.410	1.52	2.0	1.46	73
13C-2,2',3,3',5,5',6-HpCB	178	43.413	0.99	2.0	1.50	75
Recovery Standards						
13C-2,5-DiCB	9	15.914	1.65	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.979	0.79	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	34.559	1.64	2.0	NA NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	42.943	1.28	2.0	NA NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.594	0.91	2.0	NA NA	NA NA
100 2,2,0,0,7,7,0,0 0000	104	30.004	0.01	2.0	1 1/1	1 1/ 1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-05;F0095978 10114354005 P91101B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		23.4
2				ND		23.4
3		12.655	3.19	24.5		23.4
4		13.015	1.46	55.6		23.4
4 5				ND		23.4
6		16.525	1.44	24.8		23.4
6 7				ND		23.4
8		17.077	1.44	112		23.4
9				ND		23.4
10				ND		23.4
11		20.396	1.54	723		140
12	12/13	20.000		ND		46.8
13	12/13			ND		46.8
14	12/10			ND		23.4
15		21.162	1.43	120		23.4
16		21.079	1.06	79.0		23.4
17		20.515	1.08	97.3		23.4
18	18/30	19.964	1.15	195		46.8
19	10/30	17.484	1.06	30.1		23.4
20	20/28	24.900	1.00	554		46.8
21	21/33	25.168	1.07	187		46.8
22	21/33	25.621	1.07	222		23.4
23		25.021		ND		23.4
24				ND		23.4
25		24.179	1.10	35.0		23.4
26	26/29	23.893	1.06	70.4		46.8
27	20/23			ND		23.4
28	20/28	24.900	1.00	(554)		46.8
29	26/29	23.893	1.06	(70.4)		46.8
30	18/30	19.964	1.15	(195)		46.8
31	10/30	24.547	1.01	382		23.4
32		21.764	1.04	95.6		23.4
33	21/33	25.168	1.07	(187)		46.8
34	21/00	20.100		ND		23.4
35				ND		23.4
36				ND		23.4
37		29.494	0.98	229		23.4
38		20.101		ND		23.4
39				ND		23.4
40	40/41/71	29.293	0.77	450		140
41	40/41/71	29.293	0.77	(450)		140
42		28.723	0.80	207		46.8
43	43/73			ND		46.8
44	44/47/65	28.136	0.81	894		140
45	45/51	24.933	0.72	115		93.6
46				ND		46.8
47	44/47/65	28.136	0.81	(894)		140
48		27.901	0.83	121		46.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-05;F0095978 10114354005 P91101B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.566	0.80	500		93.6
50	50/53	24.162	0.86	97.4		93.6
51	45/51	24.933	0.72	(115)		93.6
52		27.029	0.80	Ì52Ó		46.8
53	50/53	24.162	0.86	(97.4)		93.6
54				` NĎ		46.8
55				ND		46.8
56		33.469	0.79	335		46.8
57				ND		46.8
58				ND		46.8
59	59/62/75			ND		140
60	30,32,13	33.687	0.78	175		46.8
61	61/70/74/76	32.362	0.79	1500		187
62	59/62/75			ND		140
63	00/02/70			ND		46.8
64		29.545	0.78	374		46.8
65	44/47/65	28.136	0.81	(894)		140
66	44/41/00	32.748	0.77	700		46.8
67				ND		46.8
68				ND		46.8
69	49/69	27.566	0.80	(500)		93.6
70	61/70/74/76	32.362	0.79	(1500)		187
71	40/41/71	29.293	0.77	(450)		140
71	40/41/71	29.293	0.77 	(430) ND		46.8
73	43/73			ND ND		46.8
73 74	61/70/74/76	32.362	0.79	(1500)		187
74 75	59/62/75	32.302	0.79	(1500) ND		140
75 76	61/70/74/76	32.362	0.79	(1500)		187
70 77	01/70/74/70	37.376	0.79	141		46.8
7 <i>1</i> 78		37.370 	0.77	ND		46.8
76 79				64.6		46.8
79 80		35.800 	0.76 	ND		46.8
80 81				ND ND		
82		36.957		495		46.8 46.8
			1.61 1.53			
83		35.062	1.53	279		46.8
84	05/446/447	32.563	1.60	1150		46.8
85	85/116/117	36.470	1.59	640		140
86	86/87/97/108/119/125	35.800	1.60	2950		281
87	86/87/97/108/119/125	35.800	1.60	(2950)		281
88	88/91	32.328	1.58	581		93.6
89	00/404/440		4.50	ND		46.8
90	90/101/113	34.592	1.59	4990		140
91	88/91	32.328	1.58	(581)		93.6
92	00/00/400/400	33.972	1.59	846		46.8
93	93/98/100/102			ND		187
94				ND		46.8
95		31.389	1.62	4230		46.8
96				ND		46.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PSJ0242-05;F0095978
Lab Sample ID 10114354005
Filename P91101B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.800	1.60	(2950)		281
98	93/98/100/102			NĎ		187
99		35.196	1.59	1540		46.8
100	93/98/100/102			ND		187
101	90/101/113	34.592	1.59	(4990)		140
102	93/98/100/102			` NĎ		187
103				ND		46.8
104				ND		46.8
105		40.998	1.59	1340		46.8
106				ND		46.8
107	107/124	39.087	1.52	142		93.6
108	86/87/97/108/119/125	35.800	1.60	(2950)		281
109		39.338	1.45	` 22 8		46.8
110	110/115	36.638	1.59	5760		93.6
111				ND		46.8
112				ND		46.8
113	90/101/113	34.592	1.59	(4990)		140
114		40.344	1.57	55.7		46.8
115	110/115	36.638	1.59	(5760)		93.6
116	85/116/117	36.470	1.59	(640)		140
117	85/116/117	36.470	1.59	(640)		140
118		39.808	1.57	3210		46.8
119	86/87/97/108/119/125	35.800	1.60	(2950)		281
120				` NĎ		46.8
121				ND		46.8
122		40.143	1.44	49.0		46.8
123				ND		46.8
124	107/124	39.087	1.52	(142)		93.6
125	86/87/97/108/119/125	35.800	1.60	(2950)		281
126				ND		46.8
127				ND		46.8
128	128/166	44.251	1.27	1240		93.6
129	129/138/163	42.977	1.26	11100		140
130		42.306	1.32	486		46.8
131		39.388	1.26	114		46.8
132		39.858	1.27	3410		46.8
133	404/440	40.411	1.27	124		46.8
134	134/143	38.768	1.27	438		93.6
135	135/151	37.594	1.29	6310		93.6
136		35.045	1.26 1.26	1770 361		46.8
137	120/129/162	42.541 42.977				46.8
138	129/138/163		1.26	(11100)		140
139 140	139/140	39.187 39.187	1.26 1.26	115 (115)		93.6 93.6
	139/140	39.187 41.904	1.26			
141 142		41.904	1.29	2750 ND		46.8 46.8
142	134/143	38.768	1.27	(438)		46.8 93.6
143	134/143	38.198	1.27	735		46.8
		55.100	· ·	. 50		. 5.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-05;F0095978 10114354005 P91101B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		46.8
146		41.082	1.28	1430		46.8
147	147/149	38.567	1.27	11200		93.6
148	,			ND		46.8
149	147/149	38.567	1.27	(11200)		93.6
150	,			ND		46.8
151	135/151	37.594	1.29	(6310)		93.6
152				ND		46.8
153	153/168	41.719	1.25	11400		93.6
154	100/100	37.879	1.15	65.2		46.8
155				ND		46.8
156	156/157	47.236	1.22	816		93.6
157	156/157	47.236	1.22	(816)		93.6
158	100/107	43.379	1.28	963		46.8
159		45.207	1.16	269		46.8
160				ND		46.8
161				ND		46.8
162		45.660	1.22	175		46.8
163	129/138/163	42.977	1.26	(11100)		140
164	123/130/103	42.658	1.29	711		46.8
165		40.629	1.17	53.6		46.8
166	128/166	44.251	1.27	(1240)		93.6
167	120/100	46.079	1.29	312		46.8
168	153/168	41.719	1.25	(11400)		93.6
169	133/100	41.719	1.25	(11400) ND		46.8
170		49.919	1.07	4410		46.8
171	171/173	46.297	1.04	1370		93.6
172	17 1/173	47.974	1.03	951		46.8
173	171/173	46.297	1.03	(1370)		93.6
173	17 1/173	45.207	1.04	7780		46.8
175		44.067	1.13	296		46.8
176		41.535	1.07	968		46.8
177		45.660	1.04	3590		46.8
178		43.430	1.07	1700		46.8
179		40.629	1.07	3870		46.8
180	180/193	48.645	1.04	15100		93.6
181	100/193	40.043	1.04	ND		46.8
182				ND		46.8
183	183/185	44.989	0.99	4960		93.6
184	103/103		0.99	ND		46.8
185	183/185	44.989	0.99	(4960)		93.6
186	103/103	44.303	0.99	(4900) ND		46.8
187		44.352	1.06	11300		46.8
188			1.00	ND		46.8
189		53.180	0.94	133		46.8
190		50.473	1.08	1070		46.8
190		48.997	1.10	183		46.8
191		40.997	1.10	ND		46.8
102				שאו		+0.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-05;F0095978 10114354005 P91101B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.645	1.04	(15100)		93.6
194		55.637	0.89	. 548Ó		70.2
195		52.878	0.89	2010		70.2
196		51.311	0.91	3090		70.2
197	197/200	47.739	0.90	1170		140
198	198/199	50.641	0.91	8080		140
199	198/199	50.641	0.91	(8080)		140
200	197/200	47.739	0.90	(1170)		140
201		46.717	0.89	[•] 929		70.2
202		45.777	0.90	1380		70.2
203		51.529	0.91	4520		70.2
204				ND		70.2
205		56.240	0.88	264		70.2
206		58.698	0.78	2300		70.2
207		53.632	0.79	327		70.2
208		52.619	0.81	477		70.2
209		61.263	0.74	123		70.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-05;F0095978 10114354005 P91101B_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	24.5	
Total Dichloro Biphenyls	1040	
Total Trichloro Biphenyls	2180	
Total Tetrachloro Biphenyls	7190	
Total Pentachloro Biphenyls	28500	
Total Hexachloro Biphenyls	56300	
Total Heptachloro Biphenyls	57700	
Total Octachloro Biphenyls	26900	
Total Nonachloro Biphenyls	3100	
Decachloro Biphenyls	123	
Total PCBs	183000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America-Portland

Client's Sample ID PSJ0242-06:F0095979 Lab Sample ID 10114354006 Filename P91027A_10

Injected By **SMT** 951 mL Total Amount Extracted

Water Matrix % Moisture NA Dilution NA Dry Weight Extracted NA Collected 10/06/2009 12:56

ICAL ID P91027A02 Received 10/09/2009 10:10 CCal Filename(s) P91027A 01 Extracted 10/23/2009 08:00 Method Blank ID BLANK-22134 Analyzed 10/27/2009 18:37

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.229	2.95	2.0	0.609	30
13C-4-MoCB	3	12.655	2.96	2.0	0.798	40
13C-2,2'-DiCB	4	13.002	1.74	2.0	0.683	34
13C-4,4'-DiCB	15	21.125	1.57	2.0	1.13	57
13C-2,2',6-TrCB	19	17.447	1.07	2.0	0.931	47
13C-3,4,4'-TrCB	37	29.443	1.09	2.0	1.70	85
13C-2,2',6,6'-TeCB	54	21.477	0.81	2.0	1.08	54
13C-3,4,4',5-TeCB	81	36.721	0.79	2.0	1.73	87
13C-3,3',4,4'-TeCB	77	37.308	0.78	2.0	1.75	87
13C-2,2',4,6,6'-PeCB	104	28.034	1.68	2.0	1.31	66
13C-2,3,3',4,4'-PeCB	105	40.914	1.64	2.0	1.71	85
13C-2,3,4,4',5-PeCB	114	40.226	1.65	2.0	1.76	88
13C-2,3',4,4',5-PeCB	118	39.706	1.64	2.0	1.77	88
13C-2,3',4,4',5'-PeCB	123	39.371	1.61	2.0	1.70	85
13C-3,3',4,4',5-PeCB	126	44.066	1.57	2.0	1.76	88
13C-2,2',4,4',6,6'-HxCB	155	34.256	1.34	2.0	1.57	79
13C-HxCB (156/157)	156/157	47.119	1.30	4.0	3.59	90
13C-2,3',4,4',5,5'-HxCB	167	45.945	1.28	2.0	1.80	90
13C-3,3',4,4',5,5'-HxCB	169	50.422	1.32	2.0	1.78	89
13C-2,2',3,4',5,6,6'-HpCB	188	40.226	1.05	2.0	1.72	86
13C-2,3,3',4,4',5,5'-HpCB	189	53.007	1.06	2.0	1.83	92
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.660	0.94	2.0	1.72	86
13C-2,3,3',4,4',5,5',6-OcCB	205	56.046	0.90	2.0	1.63	81
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.439	0.79	2.0	1.67	83
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.489 60.982	0.82	2.0	1.64	82
13CDeCB	209	60.962	0.70	2.0	1.60	80
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.848	1.04	2.0	1.59	80
13C-2,3,3',5,5'-PeCB	111	37.341	1.65	2.0	1.66	83
13C-2,2 ['] ,3,3 ['] ,5,5 ['] ,6-HpCB	178	43.328	1.00	2.0	1.63	82
Recovery Standards						
13C-2,5-DiCB	9	15.914	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.961	0.80	2.0	ŇA	NA
13C-2,2',4,5,5'-PeCB	101	34.507	1.66	2.0	ŇA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.876	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.421	0.91	2.0	ŇA	NA
	. • .	·	0.01	=.5		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.263
2				ND		0.263
3				ND		0.263
4				ND		0.263
5				ND		0.263
6				ND ND		0.263
7				ND ND		0.263
8				ND ND		0.263
9						0.263
				ND		
10				ND		0.263
11	40/40			ND		1.58
12	12/13			ND		0.526
13	12/13			ND		0.526
14				ND		0.263
15				ND		0.263
16				ND		0.263
17				ND		0.263
18	18/30			ND		0.526
19				ND		0.263
20	20/28			ND		0.526
21	21/33			ND		0.526
22				ND		0.263
23				ND		0.263
24				ND		0.263
25				ND		0.263
26	26/29			ND		0.526
27				ND		0.263
28	20/28			ND		0.526
29	26/29			ND		0.526
30	18/30			ND		0.526
31	10/00			ND		0.263
32				ND		0.263
33	21/33			ND		0.526
34	21/00			ND		0.263
35				ND		0.263
36				ND ND		0.263
36 37				ND ND		0.263
37						0.263
38				ND		0.263
39	40/44/74			ND		0.263
40	40/41/71			ND		1.58
41	40/41/71			ND		1.58
42	40/70			ND		0.526
43	43/73			ND		0.526
44	44/47/65			ND		1.58
45	45/51			ND		1.05
46				ND		0.526
47	44/47/65			ND		1.58
48				ND		0.526

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		1.05
50	50/53			ND		1.05
51	45/51			ND		1.05
52				ND		0.526
53	50/53			ND		1.05
54	30,00			ND		0.526
55				ND		0.526
56				ND		0.526
57				ND		0.526
58				ND		0.526
59	59/62/75			ND		1.58
60	00/02/10			ND		0.526
61	61/70/74/76			ND		2.10
62	59/62/75			ND		1.58
63	39/02/13			ND		0.526
64				ND		0.526
65	44/47/65			ND		1.58
66	44/41/03			ND		0.526
67				ND		0.526
68				ND		0.526
69	49/69			ND ND		1.05
70	61/70/74/76			ND ND		2.10
70 71	40/41/71			ND ND		1.58
71	40/41/71			ND ND		0.526
73	42/72					
	43/73			ND ND		0.526
74 75	61/70/74/76			ND ND		2.10
	59/62/75 64/70/74/76			ND ND		1.58
76 77	61/70/74/76			ND ND		2.10
77				ND ND		0.526
78				ND ND		0.526
79				ND		0.526
80				ND		0.526
81				ND		0.526
82				ND		0.526
83				ND		0.526
84	05/440/447			ND		0.526
85	85/116/117			ND		1.58
86	86/87/97/108/119/125			ND		3.15
87	86/87/97/108/119/125			ND		3.15
88	88/91			ND		1.05
89	00/404/440			ND		0.526
90	90/101/113			ND		1.58
91	88/91			ND		1.05
92	00/00/400/455			ND		0.526
93	93/98/100/102			ND		2.10
94				ND		0.526
95				ND		0.526
96				ND		0.526

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		3.15
98	93/98/100/102			ND		2.10
99				ND		0.526
100	93/98/100/102			ND		2.10
101	90/101/113			ND		1.58
102	93/98/100/102			ND		2.10
103				ND		0.526
104				ND		0.526
105				ND		0.526
106				ND		0.526
107	107/124			ND		1.05
108	86/87/97/108/119/125			ND		3.15
109				ND		0.526
110	110/115			ND		1.05
111				ND		0.526
112				ND		0.526
113	90/101/113			ND		1.58
114				ND		0.526
115	110/115			ND		1.05
116	85/116/117			ND		1.58
117	85/116/117			ND		1.58
118				ND		0.526
119	86/87/97/108/119/125			ND		3.15
120				ND		0.526
121				ND		0.526
122				ND		0.526
123				ND		0.526
124	107/124			ND		1.05
125	86/87/97/108/119/125			ND		3.15
126				ND		0.526
127				ND		0.526
128	128/166			ND		1.05
129	129/138/163			ND		1.58
130				ND		0.526
131				ND		0.526
132				ND		0.526
133				ND		0.526
134	134/143			ND		1.05
135	135/151			ND		1.05
136				ND		0.526
137				ND		0.526
138	129/138/163			ND		1.58
139	139/140			ND		1.05
140	139/140			ND		1.05
141				ND		0.526
142				ND		0.526
143	134/143			ND		1.05
144				ND		0.526

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Page 47 of 79

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
145				ND		0.526
146				ND		0.526
147	147/149			ND		1.05
148				ND		0.526
149	147/149			ND		1.05
150				ND		0.526
151	135/151			ND		1.05
152				ND		0.526
153	153/168			ND		1.05
154				ND		0.526
155				ND		0.526
156	156/157			ND		1.05
157	156/157			ND		1.05
158				ND		0.526
159				ND		0.526
160				ND		0.526
161				ND		0.526
162				ND		0.526
163	129/138/163			ND		1.58
164				ND		0.526
165				ND		0.526
166	128/166			ND		1.05
167				ND		0.526
168	153/168			ND		1.05
169				ND		0.526
170				ND		0.526
171	171/173			ND		1.05
172				ND		0.526
173	171/173			ND		1.05
174				ND		0.526
175				ND		0.526
176				ND		0.526
177				ND		0.526
178				ND		0.526
179				ND		0.526
180	180/193			ND		1.05
181				ND		0.526
182				ND		0.526
183	183/185			ND		1.05
184				ND		0.526
185	183/185			ND		1.05
186				ND		0.526
187				ND		0.526
188				ND		0.526
189				ND		0.526
190				ND		0.526
191				ND		0.526
192				ND		0.526

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193			ND		1.05
194				ND		0.788
195				ND		0.788
196				ND		0.788
197	197/200			ND		1.58
198	198/199			ND		1.58
199	198/199			ND		1.58
200	197/200			ND		1.58
201				ND		0.788
202				ND		0.788
203				ND		0.788
204				ND		0.788
205				ND		0.788
206				ND		0.788
207				ND		0.788
208				ND		0.788
209				ND		0.788

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PSJ0242-06;F0095979 10114354006 P91027A_10

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Water

Matrix

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-22134
Filename P91026A_08
Injected By CVS
Total Amount Extracted 961 mL

Total Amount Extracted 961 mL Extracted 10/23/2009 08:00 ICAL ID P91026A02 Analyzed 10/26/2009 22:40

CCal Filename(s) P91026A_01 Dilution NA

CCal Filename(s)	P91026A_	01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4,4'-DiCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-TrCB 13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,3',4,4',5,5'-HxCB 13C-2,3',4,4',5,5'-HxCB 13C-2,3',4,4',5,5'-HxCB 13C-2,3',3,4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-G-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	9.181 12.609 12.968 21.081 17.390 29.397 21.431 36.658 37.262 27.988 40.850 40.196 39.660 39.308 44.020 34.226 47.072 45.882 50.376 40.163 52.951 45.613 55.947 58.340 52.434 60.884	2.21 1.68 1.49 1.56 1.10 1.06 0.80 0.76 0.78 1.59 1.61 1.65 1.55 1.66 1.34 1.28 1.30 1.31 1.08 1.01 0.88 0.92 0.80 0.82 0.70	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0396 0.0879 0.0921 0.553 0.290 1.33 0.517 1.67 0.995 1.71 1.72 1.75 1.78 1.26 3.50 1.71 1.74 1.49 1.82 1.49 1.65 1.61 1.56	2 IR 5 IR 5 R 28 14 R 67 26 84 83 50 85 86 88 89 63 88 88 87 75 91 75 82 81 78 75
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.802 37.278 43.282	1.08 1.59 1.04	2.0 2.0 2.0	1.13 1.55 1.57	56 77 79
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.880 26.915 34.461 42.829 55.365	1.62 0.86 1.62 1.34 0.93	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22134 P91026A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1		9.241	2.53 I		0.261	0.260
2				ND		0.260
2 3 4 5 6 7				ND		0.260
4				ND		0.260
5				ND		0.260
6				ND		0.260
7				ND		0.260
8				ND		0.260
9				ND		0.260
10				ND		0.260
11				ND		1.56
12	12/13			ND		0.520
13	12/13			ND		0.520
14				ND		0.260
15				ND		0.260
16				ND		0.260
17				ND		0.260
18	18/30			ND		0.520
19				ND		0.260
20	20/28			ND		0.520
21	21/33			ND		0.520
22				ND		0.260
23				ND		0.260
24				ND		0.260
25				ND		0.260
26	26/29			ND		0.520
27				ND		0.260
28	20/28			ND		0.520
29	26/29			ND		0.520
30	18/30			ND		0.520
31				ND		0.260
32				ND		0.260
33	21/33			ND		0.520
34				ND		0.260
35				ND		0.260
36				ND		0.260
37				ND		0.260
38				ND		0.260
39				ND		0.260
40	40/41/71			ND		1.56
41	40/41/71			ND		1.56
42				ND		0.520
43	43/73			ND		0.520
44	44/47/65			ND		1.56
45	45/51			ND		1.04

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

* = See DiscussionX = Outside QC LimitsRT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22134 P91026A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.520
47	44/47/65			ND		1.56
48				ND		0.520
49	49/69			ND		1.04
50	50/53			ND		1.04
51	45/51			ND		1.04
52	.5/5 :			ND		0.520
53	50/53			ND		1.04
54	33/33			ND		0.520
55				ND		0.520
56				ND		0.520
57				ND		0.520
58				ND		0.520
59	59/62/75			ND		1.56
60	00/02/10			ND		0.520
61	61/70/74/76			ND		2.08
62	59/62/75			ND		1.56
63	00/02/10			ND		0.520
64				ND		0.520
65	44/47/65			ND		1.56
66	44/4//05			ND		0.520
67				ND		0.520
68				ND		0.520
69	49/69			ND		1.04
70	61/70/74/76			ND		2.08
70 71	40/41/71			ND		1.56
72	40/41/71			ND		0.520
73	43/73			ND		0.520
73 74	61/70/74/76			ND		2.08
7 4 75	59/62/75			ND ND		1.56
76	61/70/74/76			ND ND		2.08
77	01/10/14/10			ND		0.520
78				ND		0.520
70 79				ND ND		0.520
80				ND ND		0.520
81				ND ND		0.520
82				ND ND		0.520
83				ND ND		0.520
84				ND ND		0.520
85	85/116/117			ND ND		1.56
86	86/87/97/108/119/125			ND ND		3.12
86 87				ND ND		
87 88	86/87/97/108/119/125 88/91					3.12 1.04
	00/9 I			ND		
89	00/101/112			ND ND		0.520
90	90/101/113			ND		1.56

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22134 P91026A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
		111	Natio		iig/L	
91	88/91			ND		1.04
92				ND		0.520
93	93/98/100/102			ND		2.08
94				ND		0.520
95				ND		0.520
96				ND		0.520
97	86/87/97/108/119/125			ND		3.12
98	93/98/100/102			ND		2.08
99				ND		0.520
100	93/98/100/102			ND		2.08
101	90/101/113			ND		1.56
102	93/98/100/102			ND		2.08
103				ND		0.520
104				ND		0.520
105				ND		0.520
106				ND		0.520
107	107/124			ND		1.04
108	86/87/97/108/119/125			ND		3.12
109				ND		0.520
110	110/115			ND		1.04
111				ND		0.520
112				ND		0.520
113	90/101/113			ND		1.56
114	00/101/110			ND		0.520
115	110/115			ND		1.04
116	85/116/117			ND		1.56
117	85/116/117			ND		1.56
118	03/110/11/			ND ND		0.520
119	86/87/97/108/119/125			ND ND		3.12
120	00/07/97/100/119/129			ND ND		0.520
121				ND ND		0.520
122				ND ND		0.520
123				ND ND		0.520
123	107/124			ND ND		1.04
125	86/87/97/108/119/125			ND ND		3.12
	00/07/97/100/119/125			ND ND		0.520
126 127						
	400/400			ND		0.520
128	128/166			ND		1.04
129	129/138/163			ND		1.56
130				ND		0.520
131				ND		0.520
132				ND		0.520
133	10.1/1.10			ND		0.520
134	134/143			ND		1.04
135	135/151			ND		1.04

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22134 P91026A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.520
137				ND ND		0.520
138	129/138/163			ND		1.56
139	139/140			ND ND		1.04
140	139/140			ND ND		1.04
141	155/140			ND ND		0.520
142				ND		0.520
143	134/143			ND ND		1.04
144	104/140			ND		0.520
145				ND		0.520
146				ND		0.520
147	147/149			ND		1.04
148	1477140			ND		0.520
149	147/149			ND		1.04
150	1477140			ND		0.520
151	135/151			ND		1.04
152	100/101			ND		0.520
153	153/168			ND		1.04
154	100/100			ND		0.520
155				ND		0.520
156	156/157			ND		1.04
157	156/157			ND		1.04
158	100/107			ND		0.520
159				ND		0.520
160				ND		0.520
161				ND		0.520
162				ND		0.520
163	129/138/163			ND		1.56
164	120/100/100			ND		0.520
165				ND		0.520
166	128/166			ND		1.04
167	. = 0, . 0 0			ND		0.520
168	153/168			ND		1.04
169				ND		0.520
170				ND		0.520
171	171/173			ND		1.04
172				ND		0.520
173	171/173			ND		1.04
174	·, · · · ·			ND		0.520
175				ND		0.520
176				ND		0.520
177				ND		0.520
178				ND		0.520
179				ND		0.520
180	180/193			ND		1.04

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22134 P91026A_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.520
182				ND		0.520
183	183/185			ND		1.04
184				ND		0.520
185	183/185			ND		1.04
186				ND		0.520
187				ND		0.520
188				ND		0.520
189				ND		0.520
190				ND		0.520
191				ND		0.520
192				ND		0.520
193	180/193			ND		1.04
194				ND		0.780
195				ND		0.780
196				ND		0.780
197	197/200			ND		1.56
198	198/199			ND		1.56
199	198/199			ND		1.56
200	197/200			ND		1.56
201				ND		0.780
202				ND		0.780
203				ND		0.780
204				ND		0.780
205				ND		0.780
206				ND		0.780
207				ND		0.780
208				ND		0.780
209				ND		0.780

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename

BLANK-22134 P91026A_08

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-22143 Filename P91101A 05 Injected By BAL **Total Amount Extracted** 10.2 g **ICAL ID**

P91101A02 CCal Filename(s) P91101A 01

Matrix Extracted Analyzed Dilution

Solid-extracleanup 10/22/2009 16:10 11/01/2009 07:58

CCai Filename(s)	P91101A_	UΊ		Dilution	5	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.157	3.34	2.0	0.819	41
13C-4-MoCB	3 4	12.571	3.20	2.0	1.02	51
13C-2,2'-DiCB	4	12.919	1.61	2.0	0.884	44
13C-4,4'-DiCB	15	21.066	1.68	2.0	1.37	69
13C-2,2',6-TrCB	19	17.376	1.05	2.0	1.17	59
13C-3,4,4'-TrCB	37	29.360	1.04	2.0	1.52	76
13C-2,2',6,6'-TeCB	54	21.378	0.82	2.0	1.20	60
13C-3,4,4',5-TeCB	81	36.637	0.79	2.0	1.66	83
13C-3,3',4,4'-TeCB	77 104	37.224 27.951	0.78 1.56	2.0 2.0	1.63 1.19	82 60
13C-2,2',4,6,6'-PeCB 13C-2,3,3',4,4'-PeCB	104	40.813	1.55	2.0	1.19	83
13C-2,3,4,4',5-PeCB	114	40.159	1.61	2.0	1.67	83
13C-2,3',4,4',5-PeCB	118	39.622	1.58	2.0	1.67	83
13C-2,3',4,4',5'-PeCB	123	39.287	1.62	2.0	1.62	81
13C-3,3',4,4',5-PeCB	126	43.982	1.56	2.0	1.69	84
13C-2,2',4,4',6,6'-HxCB	155	34.189	1.25	2.0	1.26	63
13C-HxCB (156/157)	156/157	47.017	1.28	4.0	3.24	81
13C-2,3',4,4',5,5'-HxĆB	167	45.860	1.27	2.0	1.64	82
13C-3,3',4,4',5,5'-HxCB	169	50.337	1.30	2.0	1.70	85
13C-2,2',3,4',5,6,6'-HpCB	188	40.142	1.05	2.0	1.38	69
13C-2,3,3',4,4',5,5'-HpCB	189	52.919	1.04	2.0	1.68	84
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.592	0.91	2.0	1.45	72
13C-2,3,3',4,4',5,5',6-OcCB	205	55.894	0.93	2.0	1.64	82
13C-2,2',3,3',4,4',5,5',6-NoCB		58.308 52.380	0.80 0.76	2.0 2.0	1.67 1.60	83 80
13C-2,2',3,3',4,5,5',6,6'-NoCB 13CDeCB	208	60.829	0.76	2.0	1.54	77
13C-DeCB	209	00.029	0.71	2.0	1.54	7.7
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.765	1.03	2.0	1.54	77
13C-2,3,3',5,5'-PeCB	111	37.258	1.55	2.0	1.67	83
13C-2,2',3,3',5,5',6-HpCB	178	43.244	1.07	2.0	1.65	82
Recovery Standards						
13C-2,5-DiCB	9	15.842	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.895	0.83	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.424	1.63	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.791	1.33	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.312	0.93	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91101A_05

	0 1 4		5 41	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1				ND		24.6
2				ND		24.6
3				ND		24.6
4				ND		24.6
5				ND		24.6
5 6				ND		24.6
7				ND		24.6
8				ND		24.6
9				ND		24.6
10				ND		24.6
11				ND		148
12	12/13			ND		49.3
13	12/13			ND		49.3
14				ND		24.6
15				ND		24.6
16				ND		24.6
17				ND		24.6
18	18/30			ND		49.3
19				ND		24.6
20	20/28			ND		49.3
21	21/33			ND		49.3
22				ND		24.6
23				ND		24.6
24				ND		24.6
25				ND		24.6
26	26/29			ND		49.3
27				ND		24.6
28	20/28			ND		49.3
29	26/29			ND		49.3
30	18/30			ND		49.3
31		24.447	0.89	30.7		24.6
32	0.1.10.0			ND		24.6
33	21/33			ND		49.3
34				ND		24.6
35				ND		24.6
36				ND		24.6
37				ND		24.6
38				ND		24.6
39	40/44/74			ND		24.6
40	40/41/71			ND		148
41	40/41/71			ND		148
42	40/70			ND		49.3
43	43/73			ND		98.5
44	44/47/65			ND		148
45	45/51			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91101A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.3
47	44/47/65			ND		148
48				ND		49.3
49	49/69			ND		98.5
50	50/53			ND		98.5
51	45/51			ND		98.5
52	16/61			ND		49.3
53	50/53			ND		98.5
54	00/00			ND		49.3
55				ND		49.3
56				ND		49.3
57				ND		49.3
58				ND		49.3
59	59/62/75			ND		148
60	00/02/10			ND		49.3
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63	03/02/10			ND		49.3
64				ND		49.3
65	44/47/65			ND ND		148
66	44/4//05			ND ND		49.3
67				ND		49.3
68				ND ND		49.3
69	49/69			ND ND		98.5
70	61/70/74/76			ND		197
70 71	40/41/71			ND ND		148
72	40/41/71			ND ND		49.3
73	43/73			ND ND		98.5
73 74	61/70/74/76			ND ND		197
75 75	59/62/75			ND ND		148
76 76	61/70/74/76			ND ND		197
77 77	01/10/14/10			ND ND		49.3
78				ND ND		49.3
78 79				ND		49.3
80				ND ND		49.3 49.3
81				ND ND		49.3 49.3
82				ND ND		49.3 49.3
83				ND ND		49.3 49.3
84				ND ND		49.3 49.3
85	85/116/117			ND ND		49.3 148
86	86/87/97/108/119/125			ND ND		296
86 87	86/87/97/108/119/125			ND ND		296 296
	88/91					
88	00/9 I			ND		98.5
89	00/101/112			ND		49.3
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91101A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		98.5
92				ND		49.3
93	93/98/100/102			ND		197
94				ND		49.3
95				ND		49.3
96				ND		49.3
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99	33,33,133,132			ND		49.3
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103	30/30/100/102			ND		49.3
104				ND		49.3
105				ND		49.3
106				ND ND		49.3
107	107/124			ND ND		98.5
107	86/87/97/108/119/125			ND ND		296
108	00/07/97/100/119/125			ND ND		49.3
1109	110/115			ND ND		49.5 98.5
110	110/115			ND ND		
						49.3
112	00/404/440			ND		49.3
113	90/101/113			ND		148
114	440/445			ND		49.3
115	110/115			ND		98.5
116	85/116/117			ND		148
117	85/116/117			ND		148
118	00/07/07/400/440/407			ND		49.3
119	86/87/97/108/119/125			ND		296
120				ND		49.3
121				ND		49.3
122				ND		49.3
123				ND		49.3
124	107/124			ND		98.5
125	86/87/97/108/119/125			ND		296
126				ND		49.3
127				ND		49.3
128	128/166			ND		98.5
129	129/138/163			ND		148
130				ND		49.3
131				ND		49.3
132				ND		49.3
133				ND		49.3
134	134/143			ND		98.5
135	135/151			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91101A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OC CIGHOTIS		ratio		119/119	
136				ND		49.3
137				ND		49.3
138	129/138/163			ND		148
139	139/140			ND		98.5
140	139/140			ND		98.5
141				ND		49.3
142				ND		49.3
143	134/143			ND		98.5
144				ND		49.3
145				ND		49.3
146				ND		49.3
147	147/149			ND		98.5
148				ND		49.3
149	147/149			ND		98.5
150				ND		49.3
151	135/151			ND		98.5
152				ND		49.3
153	153/168			ND		98.5
154	100/100			ND		49.3
155				ND		49.3
156	156/157			ND		98.5
157	156/157			ND		98.5
158	100/107			ND		49.3
159				ND		49.3
160				ND		49.3
161				ND ND		49.3
162				ND ND		49.3
163	129/138/163			ND ND		148
164	129/130/103			ND ND		49.3
165				ND ND		49.3 49.3
166	128/166			ND ND		49.3 98.5
100	120/100					90.5
167	450/400			ND		49.3
168	153/168			ND		98.5
169				ND		49.3
170	474/470			ND		49.3
171	171/173			ND		98.5
172	4-4/4-0			ND		49.3
173	171/173			ND		98.5
174				ND		49.3
175				ND		49.3
176				ND		49.3
177				ND		49.3
178				ND		49.3
179				ND		49.3
180	180/193			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91101A_05

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.3
182				ND		49.3
183	183/185			ND		98.5
184				ND		49.3
185	183/185			ND		98.5
186				ND		49.3
187				ND		49.3
188				ND		49.3
189				ND		49.3
190				ND		49.3
191				ND		49.3
192				ND		49.3
193	180/193			ND		98.5
194				ND		73.9
195				ND		73.9
196				ND		73.9
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		73.9
202				ND		73.9
203				ND		73.9
204				ND		73.9
205				ND		73.9
206				ND		73.9
207				ND		73.9
208				ND		73.9
209				ND		73.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename

BLANK-22143 P91101A_05

Congener Group	Concentration ng/Kg	
- Congenier Croup	9.1.9	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	30.7	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	30.7	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-22143 Filename P91105A 09 Injected By SMT Total Amount Extracted 10.2 g ICAL ID P91105B02

Matrix Extracted Analyzed

Solid-extracleanup 10/22/2009 16:10 11/05/2009 16:08

CCal Filename(s)	P91105B_	01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-3,4,4'-TrCB 13C-3,3',4,4'-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,6,6'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	9.432 12.739 13.086 21.125 17.459 29.375 21.443 36.653 37.240 27.966 40.845 40.174 39.638 39.302 43.998 34.204 47.049 45.876 50.370 40.157 52.940 45.590 55.958 58.328 52.401 60.872	2.69 3.02 1.64 1.58 1.13 1.07 0.80 0.78 0.80 1.69 1.70 1.63 1.57 1.55 1.69 1.30 1.28 1.27 1.27 1.07 1.08 0.93 0.93 0.79 0.82 0.73	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.245 0.737 0.464 1.60 0.848 1.82 1.12 1.97 2.09 1.99 1.93 1.92 1.85 2.06 1.10 4.01 1.96 2.05 1.21 1.86 1.33 1.60 1.39 1.45 1.23	12 R 37 23 R 80 42 91 56 98 104 55 100 97 96 93 103 55 100 98 102 61 93 67 80 69 72 62
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.797 37.273 43.260	1.02 1.63 1.05	2.0 2.0 2.0	1.80 1.75 1.50	90 88 75
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.949 26.910 34.439 42.807 55.333	1.61 0.79 1.62 1.29 0.91	2.0 2.0 2.0 2.0 2.0	NA NA NA NA NA	NA NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91105A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.432	3.04	49.9		24.6
2		12.499	3.10	54.7		24.6
2 3		12.751	2.87	34.5		24.6
4			2.07	ND		24.6
5				ND		24.6
5 6 7				ND		24.6
7				ND		24.6
8				ND		24.6
9				ND		24.6
10				ND		24.6
11				ND		148
12	12/13			ND		49.3
13	12/13			ND		49.3
14	12/13			ND		24.6
15				ND		24.6
16				ND		24.6
17				ND		24.6
18	18/30			ND ND		49.3
19	10/30			ND ND		24.6
20	20/28			ND ND		49.3
20 21	21/33			ND ND		49.3 49.3
22	21/33			ND ND		24.6
23				ND ND		24.6
23 24				ND ND		24.6
24 25				ND ND		24.6 24.6
26 26	26/29			ND ND		49.3
20 27	20/29			ND ND		24.6
27 28	20/28			ND ND		49.3
29	26/29			ND ND		49.3
30	18/30	04.470		ND		49.3
31 32		24.479	0.98	35.1 ND		24.6
32	04/00					24.6
33	21/33			ND ND		49.3
34				ND		24.6
35				ND		24.6
36				ND		24.6
37				ND ND		24.6
38				ND ND		24.6
39	40/44/74			ND		24.6
40	40/41/71			ND		148
41	40/41/71			ND		148
42	40/70			ND		49.3
43	43/73			ND		98.5
44	44/47/65			ND		148
45	45/51			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91105A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.3
47	44/47/65			ND		148
48	,,			ND		49.3
49	49/69			ND		98.5
50	50/53			ND		98.5
51	45/51			ND		98.5
52				ND		49.3
53	50/53			ND		98.5
54				ND		49.3
55				ND		49.3
56				ND		49.3
57				ND		49.3
58				ND		49.3
59	59/62/75			ND		148
60				ND		49.3
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63				ND		49.3
64				ND		49.3
65	44/47/65			ND		148
66				ND		49.3
67				ND		49.3
68				ND		49.3
69	49/69			ND		98.5
70	61/70/74/76			ND		197
71	40/41/71			ND		148
72				ND		49.3
73	43/73			ND		98.5
74	61/70/74/76			ND		197
75	59/62/75			ND		148
76	61/70/74/76			ND		197
77				ND		49.3
78				ND		49.3
79				ND		49.3
80				ND		49.3
81				ND		49.3
82				ND		49.3
83				ND		49.3
84	0=///0//			ND		49.3
85	85/116/117			ND		148
86	86/87/97/108/119/125			ND		296
87	86/87/97/108/119/125			ND		296
88	88/91			ND		98.5
89				ND		49.3
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91105A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
IUFAC	Co-elutions	N I	Natio	ng/Ng	ilg/Kg	ng/kg
91	88/91			ND		98.5
92				ND		49.3
93	93/98/100/102			ND		197
94				ND		49.3
95				ND		49.3
96				ND		49.3
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99				ND		49.3
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103				ND		49.3
104				ND		49.3
105				ND		49.3
106				ND		49.3
107	107/124			ND		98.5
108	86/87/97/108/119/125			ND		296
109				ND		49.3
110	110/115			ND		98.5
111				ND		49.3
112				ND		49.3
113	90/101/113			ND		148
114				ND		49.3
115	110/115			ND		98.5
116	85/116/117			ND		148
117	85/116/117			ND		148
118				ND		49.3
119	86/87/97/108/119/125			ND		296
120				ND		49.3
121				ND		49.3
122				ND		49.3
123				ND		49.3
124	107/124			ND		98.5
125	86/87/97/108/119/125			ND		296
126				ND		49.3
127				ND		49.3
128	128/166			ND		98.5
129	129/138/163			ND		148
130	-			ND		49.3
131				ND		49.3
132				ND		49.3
133				ND		49.3
134	134/143			ND		98.5
135	135/151			ND		98.5
				· ·		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91105A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OO CIGUIOTIS		ratio		119/119	
136				ND		49.3
137				ND		49.3
138	129/138/163			ND		148
139	139/140			ND		98.5
140	139/140			ND		98.5
141				ND		49.3
142				ND		49.3
143	134/143			ND		98.5
144				ND		49.3
145				ND		49.3
146				ND		49.3
147	147/149			ND		98.5
148				ND		49.3
149	147/149			ND		98.5
150				ND		49.3
151	135/151			ND		98.5
152				ND		49.3
153	153/168			ND		98.5
154	100/100			ND		49.3
155				ND		49.3
156	156/157			ND		98.5
157	156/157			ND		98.5
158	100/107			ND		49.3
159				ND		49.3
160				ND		49.3
161				ND ND		49.3
162				ND ND		49.3
163	129/138/163			ND ND		148
164	129/130/103			ND ND		49.3
165				ND ND		49.3 49.3
166	128/166			ND ND		49.3 98.5
100	120/100					90.5
167	450/400			ND		49.3
168	153/168			ND		98.5
169				ND		49.3
170	474/470			ND		49.3
171	171/173			ND		98.5
172	4-4/4-0			ND		49.3
173	171/173			ND		98.5
174				ND		49.3
175				ND		49.3
176				ND		49.3
177				ND		49.3
178				ND		49.3
179				ND		49.3
180	180/193			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-22143 P91105A_09

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.3
182				ND		49.3
183	183/185			ND		98.5
184				ND		49.3
185	183/185			ND		98.5
186				ND		49.3
187				ND		49.3
188				ND		49.3
189				ND		49.3
190				ND		49.3
191				ND		49.3
192				ND		49.3
193	180/193			ND		98.5
194				ND		73.9
195				ND		73.9
196				ND		73.9
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		73.9
202				ND		73.9
203				ND		73.9
204				ND		73.9
205				ND		73.9
206				ND		73.9
207				ND		73.9
208				ND		73.9
209				ND		73.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename

BLANK-22143 P91105A_09

Congener Group	Concentration ng/Kg	
Congener Croup	nanta	
Total Monochloro Biphenyls	139	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	35.1	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	174	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s)

Method Blank ID

LCS-22135 P91026A_11

948 mL P91026A02 P91026A_01 BLANK-22134 Matrix Water Dilution NA

Extracted 10/23/2009 08:00 Analyzed 10/27/2009 01:56

Injected By **CVS**

	1	Native Analy	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.08	108	2.0	0.404	20	 R
3	1.0	1.01	101	2.0	0.515	26	R
4	1.0	1.06	106	2.0	0.423	21	R
15	1.0	1.15	115	2.0	0.853	43	
19	1.0	0.984	98	2.0	0.578	29	R
37	1.0	1.04	104	2.0	1.51	75	
54	1.0	0.995	100	2.0	0.750	37	
81	1.0	0.996	100	2.0	1.69	84	
77	1.0	0.995	99	2.0	1.67	84	
104	1.0	0.921	92	2.0	1.13	57	
105	1.0	1.09	109	2.0	1.75	88	
114	1.0	1.00	100	2.0	1.82	91	
118	1.0	1.03	103	2.0	1.82	91	
123	1.0	0.979	98	2.0	1.82	91	
126	1.0	1.00	100	2.0	1.92	96	
155	1.0	1.03	103	2.0	1.32	66	
156/157	2.0	2.05	102	4.0	3.67	92	
167	1.0	1.02	102	2.0	1.81	91	
169	1.0	1.02	102	2.0	1.84	92	
188	1.0	1.05	105	2.0	1.54	77	
189	1.0	1.04	104	2.0	1.85	93	
202	1.0	1.03	103	2.0	1.62	81	
205	1.0	1.00	100	2.0	1.74	87	
206	1.0	1.00	100	2.0	1.72	86	
208	1.0	0.997	100	2.0	1.61	81	
209	1.0	0.985	99	2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID LCS-22144 Filename P91101A_03 **Total Amount Extracted** 10.4 g ICAL ID P91101A02 CCal Filename(s)

P91101A_01 Method Blank ID BLANK-22143 Matrix Solid-extracleanup Dilution

Extracted 10/22/2009 16:10 Analyzed 11/01/2009 05:48

Injected By BAL

	N	Native Analyt	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.07	107	2.0	0.653	33
3	1.0	1.10	110	2.0	0.948	47
4	1.0	1.07	107	2.0	0.865	43
15	1.0	1.07	107	2.0	1.47	74
19	1.0	1.01	101	2.0	1.17	58
37	1.0	1.08	108	2.0	1.63	81
54	1.0	0.996	100	2.0	1.22	61
81	1.0	0.971	97	2.0	1.79	90
77	1.0	1.01	101	2.0	1.74	87
104	1.0	0.979	98	2.0	1.27	64
105	1.0	1.06	106	2.0	1.80	90
114	1.0	1.02	102	2.0	1.74	87
118	1.0	1.12	112	2.0	1.76	88
123	1.0	1.03	103	2.0	1.75	88
126	1.0	0.995	99	2.0	1.86	93
155	1.0	1.02	102	2.0	1.38	69
156/157	2.0	1.95	97	4.0	3.73	93
167	1.0	1.02	102	2.0	1.79	90
169	1.0	0.990	99	2.0	1.89	94
188	1.0	1.03	103	2.0	1.41	70
189	1.0	1.03	103	2.0	1.76	88
202	1.0	0.995	99	2.0	1.52	76
205	1.0	1.04	104	2.0	1.73	86
206	1.0	0.996	100	2.0	1.71	86
208	1.0	1.01	101	2.0	1.61	80
209	1.0	1.03	103	2.0	1.61	81

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID LCS-22144 Filename P91105A_07 **Total Amount Extracted** 10.4 g ICAL ID P91105A02 CCal Filename(s) Method Blank ID

P91105A_01 BLANK-22143 Matrix Solid-extracleanup Dilution NA

Extracted 10/22/2009 16:10 Analyzed 11/05/2009 13:57

Injected By SMT

	1	Native Analy	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.35	135	2.0	0.221	11	 R
3	1.0	1.28	128	2.0	0.641	32	
4	1.0	1.20	120	2.0	0.425	21	R
15	1.0	1.08	108	2.0	1.89	95	
19	1.0	1.04	104	2.0	0.886	44	
37	1.0	1.06	106	2.0	1.99	99	
54	1.0	1.04	104	2.0	1.06	53	
81	1.0	0.978	98	2.0	2.07	104	
77	1.0	1.04	104	2.0	2.14	107	
104	1.0	1.01	101	2.0	1.13	56	
105	1.0	0.989	99	2.0	1.99	99	
114	1.0	0.974	97	2.0	1.99	99	
118	1.0	1.06	106	2.0	1.93	97	
123	1.0	0.941	94	2.0	1.95	97	
126	1.0	0.931	93	2.0	2.06	103	
155	1.0	1.01	101	2.0	1.23	61	
156/157	2.0	2.01	101	4.0	4.23	106	
167	1.0	0.973	97	2.0	2.12	106	
169	1.0	1.01	101	2.0	2.10	105	
188	1.0	1.06	106	2.0	1.39	69	
189	1.0	1.00	100	2.0	2.01	101	
202	1.0	1.09	109	2.0	1.43	72	
205	1.0	1.07	107	2.0	1.71	86	
206	1.0	1.03	103	2.0	1.49	74	
208	1.0	1.04	104	2.0	1.51	76	
209	1.0	1.09	109	2.0	1.28	64	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filena

CCal Filename(s) Method Blank ID LCSD-22136 P91026A_12 949 mL

P91026A02 P91026A_01 BLANK-22134 Matrix Water Dilution NA

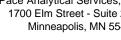
Extracted 10/23/2009 08:00 Analyzed 10/27/2009 03:01

Injected By CVS

	1	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.02	102	2.0	0.571	 29 F
3	1.0	1.05	105	2.0	0.741	37
4	1.0	1.06	106	2.0	0.629	31
15	1.0	1.08	108	2.0	1.24	62
19	1.0	0.968	97	2.0	0.871	44
37	1.0	1.04	104	2.0	1.82	91
54	1.0	0.997	100	2.0	1.13	56
81	1.0	0.997	100	2.0	1.89	95
77	1.0	1.01	101	2.0	1.88	94
104	1.0	0.970	97	2.0	1.38	69
105	1.0	1.07	107	2.0	1.82	91
114	1.0	1.02	102	2.0	1.91	95
118	1.0	1.12	112	2.0	1.88	94
123	1.0	1.01	101	2.0	1.92	96
126	1.0	1.00	100	2.0	1.92	96
155	1.0	0.993	99	2.0	1.55	78
156/157	2.0	2.13	106	4.0	3.71	93
167	1.0	1.06	106	2.0	1.84	92
169	1.0	1.00	100	2.0	1.83	92
188	1.0	1.05	105	2.0	1.70	85
189	1.0	1.07	107	2.0	1.88	94
202	1.0	1.01	101	2.0	1.71	85
205	1.0	1.04	104	2.0	1.73	87
206	1.0	0.999	100	2.0	1.68	84
208	1.0	1.01	101	2.0	1.63	82
209	1.0	0.956	96	2.0	1.69	84

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis


ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America-Portland

Spike 1 ID LCS-22135 Spike 2 ID LCSD-22136 Spike 1 Filename Spike 2 Filename P91026A_11 P91026A_12

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	108	102	5.7	
4-MoCB	3	101	105	3.9	
2,2'-DiCB	4	106	106	0.0	
4,4'-DiCB	15	115	108	6.3	
2,2',6-TrCB	19	98	97	1.0	
3,4,4'-TrCB	37	104	104	0.0	
2,2',6,6'-TeCB	54	100	100	0.0	
3,3',4,4'-TeCB	77	99	101	2.0	
3,4,4',5-TeCB	81	100	100	0.0	
2,2',4,6,6'-PeCB	104	92	97	5.3	
2,3,3',4,4'-PeCB	105	109	107	1.9	
2,3,4,4',5-PeCB	114	100	102	2.0	
2,3',4,4',5-PeCB	118	103	112	8.4	
2,3',4,4',5'-PeCB	123	98	101	3.0	
3,3',4,4',5-PeCB	126	100	100	0.0	
2,2',4,4',6,6'-HxCB	155	103	99	4.0	
(156/157)	156/157	102	106	3.8	
2,3',4,4',5,5'-HxCB	167	102	106	3.8	
3,3',4,4',5,5'-HxCB	169	102	100	2.0	
2,2',3,4',5,6,6'-HpCB	188	105	105	0.0	
2,3,3',4,4',5,5'-HpCB	189	104	107	2.8	
2,2',3,3',5,5',6,6'-OcCB	202	103	101	2.0	
2,3,3',4,4',5,5',6-OcCB	205	100	104	3.9	
2,2',3,3',4,4',5,5',6-NoCB	206	100	100	0.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	100	101	1.0	
Decachlorobiphenyl	209	99	96	3.1	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Polychlorobiphenyls Matrix Spike Analysis Results

Client - Test America-Portland

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

10114354001-MS P91102A_03

16.4 g

P91102A02 P91102A_01 BLANK-22143 Matrix Solid Dilution 5

Extracted 10/22/2009 16:10 Analyzed 11/02/2009 06:55

Injected By BAL

	N	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	5.74	574	2.0	0.177	12 F
3	1.0	10.1	1015	2.0	0.704	35
4	1.0	17.9	1788	2.0	0.532	27
15	1.0	26.8	2684	2.0	1.48	74
19	1.0	21.8	2178	2.0	0.943	47
37	1.0	34.4	3440	2.0	1.53	77
54	1.0	1.61	161	2.0	1.09	54
81	1.0	1.48	148	2.0	1.68	84
77	1.0	15.2	1525	2.0	1.64	82
104	1.0	1.05	105	2.0	1.26	63
105	1.0	60.8	6082	2.0	1.56	78
114	1.0	4.85	485	2.0	1.56	78
118	1.0	132	13193	2.0	1.54	77
123	1.0	3.75	375	2.0	1.54	77
126	1.0	1.31	131	2.0	1.62	81
155	1.0	1.03	103	2.0	1.32	66
156/157	2.0	19.2	961	4.0	2.86	71
167	1.0	6.56	656	2.0	1.44	72
169	1.0	1.27	127	2.0	1.47	74
188	1.0	1.06	106	2.0	1.50	75
189	1.0	2.30	230	2.0	1.58	79
202	1.0	4.04	404	2.0	1.50	75
205	1.0	1.79	179	2.0	1.39	70
206	1.0	6.31	631	2.0	1.47	73
208	1.0	2.27	227	2.0	1.48	74
209	1.0	2.66	266	2.0	1.30	65

R = Recovery outside of method

1668A control limits

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

Method 1668A Polychlorobiphenyls Matrix Spike Analysis Results

Client - Test America-Portland

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID 10114354001-MSD

P91102A_04 16.8 g

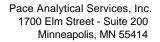
P91102A02 P91102A_01 BLANK-22143 Matrix Solid Dilution 5

Extracted 10/22/2009 16:10 Analyzed 11/02/2009 08:00

Injected By BAL

	N	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	3.30	330	2.0	0.243	14 F
3	1.0	3.17	317	2.0	0.801	40
4	1.0	21.1	2106	2.0	0.597	30
15	1.0	27.9	2792	2.0	1.35	68
19	1.0	23.4	2336	2.0	0.970	48
37	1.0	33.9	3392	2.0	1.54	77
54	1.0	1.65	165	2.0	1.10	55
81	1.0	1.39	139	2.0	1.63	82
77	1.0	14.8	1476	2.0	1.63	82
104	1.0	1.08	108	2.0	1.19	60
105	1.0	56.9	5686	2.0	1.52	76
114	1.0	4.75	475	2.0	1.45	73
118	1.0	118	11805	2.0	1.53	76
123	1.0	2.88	288	2.0	1.54	77
126	1.0	1.06	106	2.0	1.58	79
155	1.0	1.03	103	2.0	1.29	64
156/157	2.0	17.9	893	4.0	2.81	70
167	1.0	6.16	616	2.0	1.43	72
169	1.0	1.19	119	2.0	1.42	71
188	1.0	1.04	104	2.0	1.53	76
189	1.0	2.36	236	2.0	1.60	80
202	1.0	4.43	443	2.0	1.44	72
205	1.0	1.85	185	2.0	1.33	67
206	1.0	17.9	1792	2.0	1.44	72
208	1.0	7.30	730	2.0	1.37	68
209	1.0	17.4	1738	2.0	1.33	67

R = Recovery outside of method


1668A control limits

ND = Not Detected

NA = Not Applicable

NC = Not Calculated
* = See Discussion

ng = Nanograms

Pace Analytical™

Tel: 612-607-1700 Fax: 612- 607-6444

Method PCB1668-209 Spike Sample Results

Client - Test America-Portland Client Sample ID PSJ0242-01;F0095974 **Dry Weights** Sample Filename Lab Sample ID P91101B 11 Sample Amount 10.9 g 10114354001 MS Filename MS ID P91102A_03 MS Amount 10114354001-MS 11.0 g MSD ID MSD Amount P91102A_04 11.2 g 10114354001-MSD MSD Filename

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	nd Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2-MoCB	190.000	1.00	5.74	3.30	53.8	365	117	102.6
4-MoCB	154.000	1.00	10.15	3.17	104.8	845	144	141.8
2,2'-DiCB	1730.000	1.00	17.88	21.06	16.4	0	162	200.0
4,4'-DiCB	2150.000	1.00	26.84	27.92	3.9	315	375	17.5
2,2',6-TrCB	1970.000	1.00	21.78	23.36	7.0	13	127	163.2
3,4,4'-TrCB	2540.000	1.00	34.40	33.92	1.4	642	539	17.6
2,2',6,6'-TeCB	56.500	1.00	1.61	1.65	2.1	99	101	2.2
3,3',4,4'-TeCB	1100.000	1.00	15.25	14.76	3.3	313	239	26.5
3,4,4',5-TeCB	0.000	1.00	1.48	1.39	6.2	111	102	9.1
2,2',4,6,6'-PeCB	0.000	1.00	1.05	1.08	2.8	105	108	2.8
2,3,3',4,4'-PeCB	4360.000	1.00	60.82	56.86	6.7	1288	795	47.3
2,3,4,4',5-PeCB	276.000	1.00	4.85	4.75	2.1	181	165	9.3
2,3',4,4',5-PeCB	9360.000	1.00	131.93	118.05	11.1	2891	1297	76.1
2,3',4,4',5'-PeCB	207.000	1.00	3.75	2.88	26.3	147	56	90.4
3,3',4,4',5-PeCB	0.000	1.00	1.31	1.06	21.4	111	85	26.4
2,2',4,4',6,6'-HxCB	0.000	1.00	1.03	1.03	0.3	103	103	0.3
(156/157)	1170.000	2.00	19.21	17.85	7.3	315	234	29.5
2,3',4,4',5,5'-HxCB	380.000	1.00	6.56	6.16	6.3	238	189	22.8
3,3',4,4',5,5'-HxCB	0.000	1.00	1.27	1.19	6.5	112	103	7.7
2,2',3,4',5,6,6'-HpCB	0.000	1.00	1.06	1.04	2.5	106	104	2.5
2,3,3',4,4',5,5'-HpCB	95.900	1.00	2.30	2.36	2.8	124	128	3.5
2,2',3,3',5,5',6,6'-OcCB	223.000	1.00	4.04	4.43	9.2	158	192	19.4
2,3,3',4,4',5,5',6-OcCB	0.000	1.00	1.79	1.85	3.4	117	121	4.1
2,2',3,3',4,4',5,5',6-NoCB		1.00	6.31	17.92	95.8	176	1327	153.2
2,2',3,3',4,5,5',6,6'-NoCB		1.00	2.27	7.30	105.1	107	608	140.0
Decachlorobiphenyl	132.000	1.00	2.66	17.38	146.8	121	1589	171.7

Definitions

MS = Matrix Spike Qm = Quantity Measured MSD = Matrix Spike Duplicate Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference NA = Not Applicable

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

Amended Report

December 24, 2009

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 10/07/09 12:40. The following list is a summary of the Work Orders contained in this report, generated on 12/24/09 08:58.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	<u>ProjectNumber</u>
PSJ0242	Portland Harbor	36238

TestAmerica Portland

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 12/24/09 08:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 095974	PSJ0242-01	Soil	10/06/09 09:49	10/07/09 12:40
FO 095975	PSJ0242-02	Soil	10/06/09 10:34	10/07/09 12:40
FO 095976	PSJ0242-03	Soil	10/06/09 11:24	10/07/09 12:40
FO 095977	PSJ0242-04	Soil	10/06/09 13:18	10/07/09 12:40
FO 095978	PSJ0242-05	Soil	10/06/09 13:18	10/07/09 12:40
FO 095979	PSJ0242-06	Water	10/06/09 12:56	10/07/09 12:40
FO 095980	PSJ0242-07	Soil	10/06/09 14:36	10/07/09 12:40

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford12/24/09 08:58

Analytical Case Narrative

TestAmerica - Portland, OR

PSJ0242

Amended Report

2-Methylnaphthalene was added to the 8270 SIM PAH results as requested by Peter Abrams on 12/23/09

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

Project Name: Portland Harbor

6543 N. Burlington Ave. Portland, OR 97203

Project Number: 36238
Project Manager: Jennifer Shackelford

Report Created: 12/24/09 08:58

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PSJ0242-07 (FO 095980)			So	il		Samp	led: 10/06/	09 14:36			RL3
2-Methylnaphthale	ene	EPA 8270m	412		84.7	ug/kg dry	5x	9100355	10/12/09 11:30	10/13/09 20:07		
Acenaphthene		"	ND		84.7	"	"	"	"	"		
Acenaphthylene		"	ND		84.7	"	"	"	"	"		
Anthracene		"	89.1		84.7	"	"	"	"	"		
Benzo (a) anthracen	ne	"	ND		84.7	"	"	"	"	"		
Benzo (a) pyrene		"	ND		84.7	"	"	"	"	"		
Benzo (b) fluoranti	hene	"	109		84.7		"	"	"	"		
Benzo (ghi) perylen	ne	"	ND		84.7	"	"	"	"	"		
Benzo (k) fluoranth	ene	"	ND		84.7	"	"	"	"	"		
Chrysene		"	149		84.7	"	"	"	"	"		
Dibenzo (a,h) anthra	acene	"	ND		84.7	"	"	"	"	"		
Fluoranthene		"	266		84.7	"	"	"	"	"		
Fluorene		"	198		84.7	"	"	"	"	"		
Indeno (1,2,3-cd) py	yrene	"	ND		84.7	"	"	"	"	"		
Naphthalene		"	169		84.7	"	"	"	"	"		
Phenanthrene		"	840		84.7	"	"	"	"	"		
Pyrene		"	266		84.7	"	"	"	"	"		
Surrogate(s):	Fluorene-d10				94.5%		24 - 125 %				"	
- ''	Pyrene-d10				74.7%		41 - 141 %				"	
	Benzo (a) pyrene-d1	2			101%		38 - 143 %				"	

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

Project Name:

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Project Number: Portland, OR 97203

Report Created:

36238 Project Manager: Jennifer Shackelford

Portland Harbor

12/24/09 08:58

Phthalates per EPA 8270-SIM

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	N	otes
PSJ0242-07 (FO 095980)			Soi	il		Samp	led: 10/06/	09 14:36			RL7
Dimethyl phthalate	EPA 8270m	ND		842	ug/kg dry	25x	9100711	10/20/09 16:00	10/22/09 05:11		
Diethyl phthalate	"	ND		842	"	"	"	"	"		
Di-n-butyl phthalate	"	ND		842	"	"	"	"	"		
Butyl benzyl phthalate	"	ND		842	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	"	11300		842	"	"	"	"	"		
Di-n-octyl phthalate	"	7980		842	"	"	"	"	"		
Surrogate(s): 2-Fluorobiphenyl	,			106%		10 - 150 %				"	Z3
p-Terphenyl-d14				119%		10 - 150 %				"	Z3

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203 Project Name: **Portland Harbor**

Project Number: 36238
Project Manager: Jennifer Shackelford

Report Created: 12/24/09 08:58

Percent Dry Weight (Solids) per ASTM D2216-80

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PSJ0242-07	(FO 095980)			Soil	ļ		Sam				
% Solids		NCA SOP	78.8		0.0100	% by	1x	9100358	10/12/09 07:26	10/12/09 07:26	

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203 Project Name: **Portland Harbor**

Project Number: 36238
Project Manager: Jennifer Shackelford

Report Created: 12/24/09 08:58

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PSJ0242-01 (FO 095974)			Soil			Sam	pled: 10/06	/09 09:49		
Total Organic Carbon - Duplicates	9060	19000	30.0	100	mg/Kg	1x	32393	10/15/09 21:24	10/15/09 21:24	
PSJ0242-02 (FO 095975)			Soil			Samj	pled: 10/06	/09 10:34		
Total Organic Carbon - Duplicates	9060	75400	30.0	100	mg/Kg	1x	32393	10/15/09 21:38	10/15/09 21:38	
PSJ0242-03 (FO 095976)			Soil			Samj	pled: 10/06	/09 11:24		
Total Organic Carbon - Duplicates	9060	89200	30.0	100	mg/Kg	1x	32393	10/15/09 21:53	10/15/09 21:53	
PSJ0242-04 (FO 095977)			Soil			Samj	pled: 10/06	/09 13:18		
Total Organic Carbon - Duplicates	9060	35500	30.0	100	mg/Kg	1x	32393	10/15/09 22:07	10/15/09 22:07	
PSJ0242-05 (FO 095978)			Soil			Samj	pled: 10/06	/09 13:18		
Total Organic Carbon - Duplicates	9060	24600	30.0	100	mg/Kg	1x	32393	10/15/09 22:37	10/15/09 22:37	
PSJ0242-07 (FO 095980)			Soil			Samj	pled: 10/06	/09 14:36		
Total Organic Carbon - Duplicates	9060	28600	30.0	100	mg/Kg	1x	32393	10/15/09 22:51	10/15/09 22:51	

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

Project Name: Portland Harbor

6543 N. Burlington Ave. Portland, OR 97203 Project Number: 36238
Project Manager: Jennifer Shackelford

Report Created: 12/24/09 08:58

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

TestAmerica Portland

QC Batcl	h: 9100355	Soil Pre	paration M	lethod: EPA	3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (910035	55-BLK1)								Extr	acted:	10/12/09 11	:30			
Benzo (e) pyrene		EPA 8270m	ND		13.3	ug/kg wet	1x							10/12/09 18:35	ID5
2-Methylnaphthalene	e	"	ND		13.3	"	"							"	
Acenaphthene		"	ND		13.3	"	"							"	
Acenaphthylene		"	ND		13.3	"	"							"	
Anthracene		"	ND		13.3	"	"							"	
Benzo (a) anthracene	e	"	ND		13.3	"	"							"	
Benzo (a) pyrene		"	ND		13.3	"	"							"	
Benzo (b) fluoranthe	ne	"	ND		13.3	"	"							"	
Benzo (ghi) perylene		"	ND		13.3	"	"							"	
Benzo (k) fluoranthe	ne	"	ND		13.3	"	"							"	ID4
Chrysene		•	ND		13.3	"	"							"	
Dibenzo (a,h) anthra	cene	•	ND		13.3	"	"							"	
Fluoranthene		•	ND		13.3	"	"							"	
Fluorene		"	ND		13.3	"	"							"	
Indeno (1,2,3-cd) pyr	rene	"	ND		13.3	"	"							"	
Naphthalene		"	ND		13.3	"	"							"	
Phenanthrene		"	ND		13.3	"	"							"	
Pyrene		"	ND		13.3	"	"							"	
Surrogate(s):	Fluorene-d10		Recovery:	83.5%	L	imits: 24-1259	6							10/12/09 18:35	
	Pyrene-d10			96.2%		41-141	%							"	
	Benzo (a) pyrene-d12			88.0%		38-143	%							"	
LCS (9100355	3-BS1)								Extr	acted:	10/12/09 11	:30			
Acenaphthene		EPA 8270m	172		13.2	ug/kg wet	1x		164	105%	(33-139)			10/12/09 19:05	
Benzo (a) pyrene		,,	173		13.2	"	"		"	105%	(45-149)			"	
Pyrene		"	172		13.2	"	"		"	104%	(39-138)			"	
Surrogate(s):	Fluorene-d10		Recovery:	96.6%	L	imits: 24-1259	6							10/12/09 19:05	
	Pyrene-d10			91.8%		41-141	%							"	
	Benzo (a) pyrene-d12			94.0%		38-143	%							"	

TestAmerica Portland

Invested Halman Drainat Managar

Amended Report

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

Portland Harbor Project Name:

6543 N. Burlington Ave. Portland, OR 97203

Project Number: Project Manager: Jennifer Shackelford

36238

Report Created: 12/24/09 08:58

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

TestAmerica Portland

QC Batc	h: 9100355	Soil Pre	paration M	Iethod: EP.	A 3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike	(9100355-MS1)				QC Source	e: PSJ0372-0	3		Extr	acted:	10/12/09 11	:30			
Acenaphthene		EPA 8270m	172		137	ug/kg dry	10x	ND	171	101%	(33-139)			10/12/09 19:34	
Benzo (a) pyrene		"	321		137	"	"	54.0	"	156%	(45-149)			"	M
Pyrene		"	704		137	"	"	101	"	353%	(39-138)			"	M
Surrogate(s):	Fluorene-d10		Recovery:	86.2%	Li	imits: 24-1259	%							10/12/09 19:34	
	Pyrene-d10			86.2%		41-141	%							"	
	Benzo (a) pyrene-d12			87.8%		38-143	%							"	
Matrix Spike I	Oup (9100355-MSI	D 1)			QC Source	e: PSJ0372-0	3		Extr	acted:	10/12/09 11	:30			
Acenaphthene		EPA 8270m	159		138	ug/kg dry	10x	ND	172	92.4%	(33-139)	7.75%	(60)	10/12/09 20:03	
Benzo (a) pyrene		"	205		138	"	"	54.0	"	87.7%	(45-149)	44.3%	ó "	"	
Pyrene		"	239		138	"	"	101	"	79.9%	(39-138)	98.7%	, "	"	R.
Surrogate(s):	Fluorene-d10		Recovery:	84.0%	Li	imits: 24-1259	%							10/12/09 20:03	
	Pyrene-d10			82.6%		41-141	%							"	
	Benzo (a) pyrene-d12			84.9%		38-143	%							"	

TestAmerica Portland

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

City of Portland Water Pollution Laboratory

TestAmerico

Project Name: Portland Harbor

6543 N. Burlington Ave. Portland, OR 97203

Project Manager: Jennifer Shackelford

36238

Report Created: 12/24/09 08:58

$Phthalates\ per\ EPA\ 8270-SIM\ -\ Laboratory\ Quality\ Control\ Results$

TestAmerica Portland

Project Number:

QC Batch:	9100711	Soil Pre	paration M	Iethod:	EPA 3550										
Analyte		Method	Result	M	IDL* MRI	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (9100711-	BLK1)								Extr	acted:	10/20/09 16	:00			
Dimethyl phthalate		EPA 8270m	ND	-	26.8	ug/kg wet	1x							10/21/09 20:47	
Diethyl phthalate		"	ND	-	26.8	"	"							"	
Di-n-butyl phthalate		"	ND	-	26.8	"	"							"	
Butyl benzyl phthalate		"	ND	-	26.8	"	"							"	
Bis(2-ethylhexyl)phthala	ate	"	ND	-	26.8	"	"							"	
Di-n-octyl phthalate		"	ND	-	26.8	"	"							"	
= ::	-Fluorobiphenyl -Terphenyl-d14		Recovery:	110% 101%	1	imits: 10-15								10/21/09 20:47	
LCS (9100711-B	SS1)								Extr	acted:	10/20/09 16	:00			
Dimethyl phthalate		EPA 8270m	122	-	26.8	ug/kg wet	1x		133	91.5%	(20-150)			10/21/09 21:24	
Diethyl phthalate		"	133	-	26.8	"	"		"	99.6%	"			"	
Di-n-butyl phthalate		"	145	-	26.8	"	"		"	109%	"			"	
Butyl benzyl phthalate		"	149	-	26.8	"	"		"	112%	"			"	
Bis(2-ethylhexyl)phthala	ate	"	148	-	26.8	"	"		"	111%	"			"	
Di-n-octyl phthalate		"	143	-	26.8	"	"		"	107%	"			"	
	-Fluorobiphenyl -Terphenyl-d14		Recovery:	127% 112%	1	imits: 10-15.								10/21/09 21:24	
Matrix Spike (91	100711-MS1)				QC Source	e: PSJ0657	-06		Extr	acted:	10/20/09 16	:00			
Dimethyl phthalate		EPA 8270m	152	-	296	ug/kg dry	10x	ND	147	103%	(10-150)			10/22/09 22:21	
Diethyl phthalate		"	155	-	296	"	"	ND	"	106%	"			"	
Di-n-butyl phthalate		"	162	-	296	"	"	ND	"	110%	"			"	
Butyl benzyl phthalate		"	182	-	296	"	"	37.6	"	98.1%	"			"	
Bis(2-ethylhexyl)phthala	ate	"	307	-	296	"	"	95.2	"	144%	"			"	
Di-n-octyl phthalate		"	141	-	296	"	"	ND	"	95.5%	"			"	
	-Fluorobiphenyl -Terphenyl-d14		Recovery:	92.8% 93.2%	1	imits: 10-15								10/22/09 22:21	
Matrix Spike Dur	o (9100711-MS	SD1)			QC Source	e: PSJ0657	-06		Extr	acted:	10/20/09 16	:00			
Dimethyl phthalate		EPA 8270m	149	-	295	ug/kg dry	10x	ND	147	101%	(10-150)	1.92%	(50)	10/22/09 22:57	
Diethyl phthalate		"	216	-	295	"	"	ND	"	147%	"	32.4%	ó "	"	
Di-n-butyl phthalate		"	160		295	"	"	ND	"	109%	"	0.7249	/ ₀ "	"	
Butyl benzyl phthalate		"	205	-	295	"	"	37.6	"	114%	"	11.79		"	
Bis(2-ethylhexyl)phthala	ate	"	1330	-	295	"	"	95.2	"	841%	"	125%	, "	"	M7,
Di-n-octyl phthalate		"	269	-	295	"	"	ND	"	183%	"	62.5%	ó "	"	M7, 1
•	-Fluorobiphenyl -Terphenyl-d14		Recovery:	92.1% 91.1%	1	imits: 10-15								10/22/09 22:57	

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

77.1

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

0.388% (20)

Amended Report

City of Portland Water Pollution Laboratory

NCA SOP

77.4

6543 N. Burlington Ave. Portland, OR 97203

% Solids

Portland Harbor Project Name:

36238 Project Number: Project Manager: Jennifer Shackelford Report Created: 12/24/09 08:58

10/12/09 07:26

	Percent Dry	Weight (Sol	/ L	STM D22 estAmeric		Labor	atory Q	ality Control Results	
QC Batch: 9100358	Soil Pro	eparation Met	hod: Dry	Weight					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Amt REC	Notes
Dunlicate (9100358-DUP1)				QC Source:	PSJ0276-02			Extracted: 10/12/09 07:26	

0.0100 % by Weight

TestAmerica Portland

Howard Holmes, Project Manager

Amended Report

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory

Portland Harbor Project Name: 36238

Project Number:

6543 N. Burlington Ave. Portland, OR 97203

Project Manager: Jennifer Shackelford Report Created: 12/24/09 08:58

Organic Carbon, Total (TOC) - Laboratory Quality Control Results

TestAmerica Connecticut

QC Batch: 32393	Soil Pr	eparation Met	hod: NA										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (220-32393-6)				QC Source:				Extracted:	10/15/09 2	1:10			
Total Organic Carbon - Duplicates	9060	3783	30.0	100	mg/Kg	1x		3530 107%	(28-172)			10/15/09 21:10	
Blank (220-32393-7)				QC Source:				Extracted:	10/15/09 2	1:17			
Total Organic Carbon - Dunlicates	9060	ND	30.0	100	ma/K a	1v						10/15/09 21:17	

TestAmerica Portland

Amended Report

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

36238 Report Created: 6543 N. Burlington Ave. Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 12/24/09 08:58

Notes and Definitions

Report Specific Notes:

ID4 Benzo(j)fluoranthene coelutes with Benzo(k)fluoranthene. The reported result is a summation of the isomers and the concentration is based on the response factor of Benzo(k)fluoranthene.

ID5 Benzo(e)pyrene concentration is based on the response factor of Benzo(a)pyrene, and has not been calibrated independently.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

R2 The RPD exceeded the acceptance limit.

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

RL3 Reporting limit raised due to high concentrations of non-target analytes.

RL7 Sample required dilution due to high concentrations of target analyte.

Z3The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

<u>Laboratory Reporting Conventions:</u>

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting -

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

Electronic

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Signature

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Howard Holmes, Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400. Bothell, WA 98011-8244 11922 E. First Ave. Spokane, WA 99206-5302 9405 SW Nimbus Ave.Beaverton. OR 97008-7145 2000 W International Airport Rd Ste A10. Anchorage. AK 99502-1119

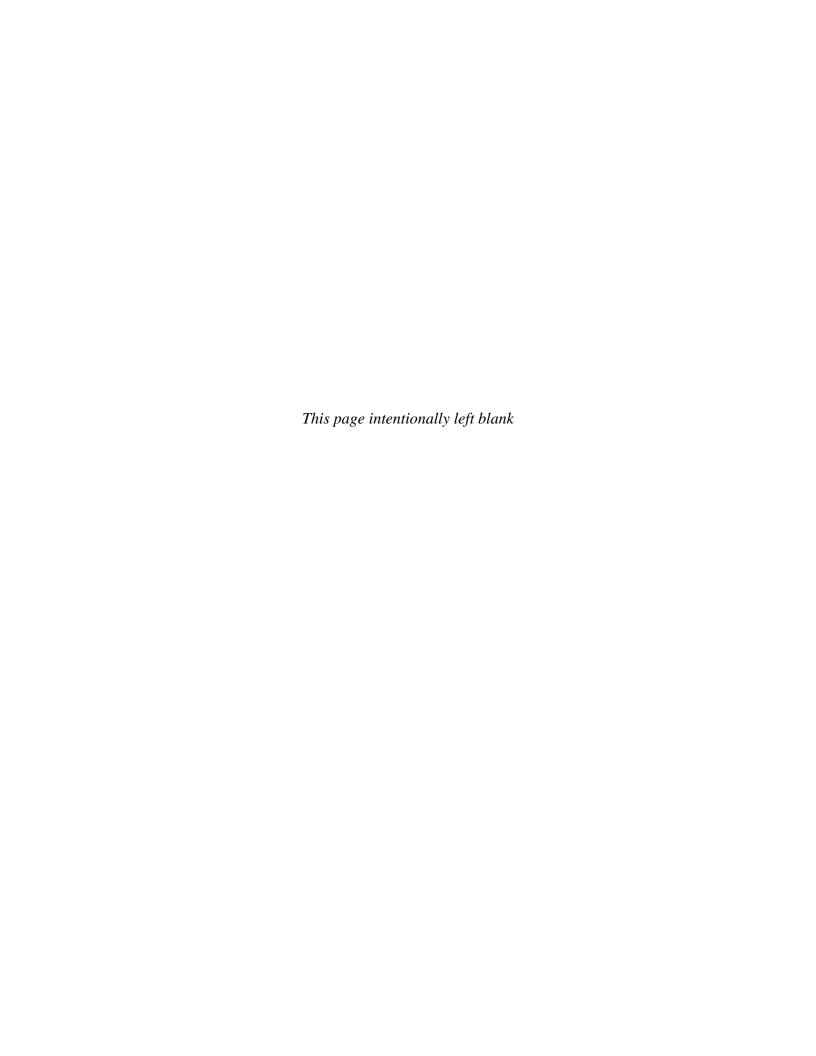
425-420-9200 FAX 420-9210 S09-924 9200 FAX 924-9290 FAX 904-9290 S03-906-9200 FAX 906-9210 S03-907-563-9200 FAX 563-9210

THE LEADER IN ENVIROIMMENTAL TEGING	CHAIN OF CUSTODY REPORT	Work Order #: \$55 0242
CLIENT CIFY of Portland	INVOICE TO:	TURNAROUND REQUEST
, t	Charles Lutle	in Business Days *
Jennith Unackelt	ţ	Organic & Inorganic Analyses 7 5 4 3 2 1 <-1
HANONE:	3 / PO. NUMBER: 36238	roleum Hydrocarbon Analyses
TNAME: POFTIANS	1)	STD 4 3 2 1 <1
Tame	REOUESTED ANALYSES	OTHER Specify:
SAMPLED BY:		* Turnaround Requests less than standard may incur Rush Charges.
CLIENT SAMPLE SAMPLING CALENTIFICATION DATE/TIME	2642) 101	MATRIX # OF LOCATION/ TA (W, S, O) CONT. COMMENTS WO ID
Floagand Help and X	X	2 \$
	X	2 S
Kansaza Staspas	×	2 5
X 8161 FF PS POOT	*	2 5
X 8151 8-4 POOR	X	2 2
•		-3
>	× ×	2 2
×		
ō		
9		
CLASSED BY: Mac (1932)	PRINT C 1 47 OF POTTENT TIME 1704, PRINT NAME TO DE	FIRM: TAP TIME: 12:05
" Darford	DATE 16/7/9 RECEIVED BY: TIME 12.10	PIRM: TO TIME: 17 10
ADDITIONAL REMARKS:		TEMP. PAGE OF
		ļ

TAL-1000(0408)

TestAmerica Portland Sample Receiving Checklist

	c Orde at Nam	-	PSJ nd Project		Date/	Γime Rec	eived:	land	109 1241 Harbor)
Time ED	Zone: T/EST		□CDT/CS	т []	MDT/MST	PDT/	PST	□AK	□OTHER	
Coo	oler #(s erature	s): :s:	Digi #2 IR	Gan (Pla	stic Glass	s)	_	Temp	Not enough of Ice Melted W/in 4 Hrs of Other:	or No Ice of collection
N/A	Yes	No							Initial	s? //VC
V					temp blank					,
\mathbf{M}									ent on NOD.	
					present? If					
					ntact? If no					
			-		Itiphasic? If and preserve				t on NOD	
									document on NO	OD.
			-						ents? If no, notif	
						Sumues	id incet	requireme	mis. If no, noting	<i>y</i> 1112.
			9. HF Dilt	_		for all analy	veis? If	no docui	ment on NOD an	d consult
			PM before	proceedir	ıg.					
									o, document on N	IOD.
1	9			-	by" section					
					Syringe sam					
									ate Ascorbic	Acid
. /		V		-	uire preserva					
									no, document on	
									? If no, documer	
12/ 2/			no, docum	ent on NC	ume provide DD and conta th short hold	act PM befo	ore proc	eeding.	ISD or matrix du	plicates? If
				-	urn Around					
								ate(s)? If	no, notify PM.	


TestAmerica Portland Sample Receiving Checklist

Work Order #: PSTO242

Logi	in Ch	ecks	Initials:_\frac{\beta_S}{}_
N/A	Yes	No	
	\angle		22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
Ø			23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
,			no, document on NOD and contact PM.
	Ø		24. Did the chain of custody include "received by" and "relinquished by" signatures,
			dates and times?
\square			25. Were special log in instructions read and followed?
,	\square		26. Were tests logged checked against the COC?
\square			27. Were rush notices printed and delivered?
			28. Were short hold notices printed and delivered?
			29. Were subcontract COCs printed?
Ø			30. Was HF dilution logged?
Lab	eling	and	Storage Checks: Initials:
N/A	Yes	No	
数	X 7		31. Were the subcontracted samples/containers put in Sx fridge?
4Z(32. Were sample bottles and COC double checked for dissolved/filtered metals?
	X		33. Did the sample ID, Date, and Time from label match what was logged?
A			34. Were Foreign sample stickers affixed to each container and containers stored in
			foreign fridge?
, A			35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
*X			36. Was an NOD for created for noted discrepancies and placed in folder?
	ment a		oblems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

APPENDIX B

NW 35th Ave. Line Cleaning Spoils Management CSA# 1120 (Memorandum dated October 18, 2010)

Memorandum

Date: October 18, 2010
To: Linda Scheffler

From: John O'Donovan, PE

RE: NW 35th Ave. Line Cleaning Spoils Management CSA# 1120

Background:

The City of Portland's Bureau of Environmental Services (BES) Coordinated Site Analysis (CSA) program was requested to characterize for disposal the liquid and solid materials generated from storm line cleaning activities conducted in June and July, 2010. The storm lines are located within and near NW 35th Avenue and NW Luzon in Portland, Oregon (see Figure 1). Iron Horse Inc. was hired to complete the line cleaning for the City. Iron Horse Inc. used vactor trucks to remove the solids and liquids from the City of Portland storm lines. Iron Horse Inc. was also tasked with management and disposal of the non-hazardous solid and liquid waste generated as part of the line cleaning effort. The City of Portland CSA program was tasked with characterization, transportation, and disposal of hazardous waste generated as part of the line cleaning effort. The overall project was managed by the BES Maintenance Engineering section. Because previous investigation of storm system solids in this area indicated releases of various contaminants to the storm lines, CSA analyzed the spoils for detected contaminants of concern (COC) including; metals, and PCBs. The following is a summary of the results of sampling and analysis, characterization, and disposal of the spoils.

Spoils Management

The storm system segments were cleaned in a general upstream to downstream directions (i.e., manhole AAX374 to manhole AAX261). Solids were transferred from the vactor truck into lined and covered drop boxes. After extraction from City storm lines, liquids were decanted from the vactor truck and deposited into a 20,000-gallon storage tank. Solids and liquids were kept on site until a disposal determination was made.

Spoils Sampling and Analyses

Solids

CSA coordinated with BES Maintenance Engineering and Iron Horse to collect representative solids samples from the drop boxes as the line cleaning activities progressed. A total of 7 solids samples were collected and analyzed for TCLP metals and/or PCB Aroclors. One additional solids sample was also collected and analyzed to characterize the residual sludge in the 20,000-gallon tank utilized to store wash water. Care was taken to avoid collecting sample material that was in contact with the sides or the floor of the drop boxes. Samples were collected using clean Nitril gloves. Composite samples were collected from three different areas within the drop boxes. Samples were composited from surface materials to a depth of approximately one foot from the surface of the material. Detected concentrations are summarized in Table 1 and laboratory sheets are provided in Appendix A.

Memorandum

Liquids

Liquids generated during line cleaning activities were characterized in accordance with batch discharge requirements for disposal to the sanitary sewer. Following cleaning of the upper portion of the system, CSA collected a liquid sample from the storage tank by using a new clean bailer from the top tank portal. The sample was submitted for total suspended solids (TSS), TCLP metals, and PCB Aroclor analysis. A second sample was collected from the tank portal, filtered, and submitted for TSS analysis to evaluate whether liquids should be filtered before discharge to the sanitary sewer. Subsequent liquid samples were not required due to the volume of the washwater generated and disposed of and the analytical results of the characterization samples. Detected concentrations are summarized in Table 1 and laboratory sheets and chains of custody are provided in Appendix A.

Table 1: Summary of Analytical Data

Sample ID	Sample Lab ID Date		Media	Detected TCLP Metals	PCBs (Aroclor)	TSS	
16 inch line	6/24/2010	C5040	Solid	Ba 0.6 mg/L Pb 0.4 mg/L	ND	NA	
				Zn 2.9 mg/L			
600'-24 inch line	6/29/2010	C5185	Solid	Ba 4 mg/L Pb 6 mg/L	1.4 ppm (1260)	NA	
				Zn 9 mg/L			
600ft-1100ft 24in Line	6/30/2010	C5245	Solid	Ba 0.9 mg/L	0.2 ppm (1260)	NA	
				Cd 0.6 mg/L			
				Pb 0.2 mg/L Zn 7 mg/L			
36 inch TCLP-8+Zn	7/2/2010	C5501	Solid	Ba 0.4 mg/L	0.95 ppm	NA	
				Pb 0.3 mg/L	(1260)		
				Zn 1.6 mg/L			
End 24 inch	7/9/2010	C5937	Solid	Ba 0.9 mg/L	0.3 ppm (1260)	NA	
				Cd 1.5 mg/L			
				Pb 0.5 mg/L			
0.70.011				Zn 20 mg/L			
0-70 36 inch	7/9/2010	C5936	Solid	Ba 0.9 mg/L	0.4 ppm (1260)	NA	
				Cd 1.6 mg/L			
				Pb 0.5 mg/L Zn 23 mg/L			
36 inch 70-160	7/14/2010	C6412	Solid	Ba 0.8 mg/L	0.1 ppm (1260)	NA	
30 men 70-100	//14/2010	C0412	Solid	Cd 0.8 mg/L	0.1 ppiii (1200)	INA	
				Zn 13 mg/L			
16 inch line water non filtered ¹	6/24/2010	C5041	Liquid	Ba 0.5 mg/L	ND	12,300 mg/L	
			1	Cr 0.1 mg/L		,,,,,,	
				Pb 3.8 mg/L			
				Zn 0.8 mg/L			
16 inch line water filtered ¹	6/24/2010	C5041	Liquid	NA	NA	1 mg/L	
Baker Tank Sludge PCB	7/16/2010	C6607	Solid	Ba 1 mg/L	ND	NA	
				Cd 1 mg/L			
				Pb 1 mg/L			
				Zn 15 mg/L			

Bold Hazardous Waste Level

NA Not Analyzed

¹Batch Discharge Samples

Spoils Disposal Summary

Based on the chemical analysis the line cleaning spoils were characterized into three categories; hazardous waste solids, non-hazardous waste solids (contaminated media), and liquids.

Solids

The resulting analytical data were used to characterize the solid spoils as either contaminated media suitable for disposal at a Subtitle-D-Landfill, or as hazardous waste requiring disposal at a Subtitle-C-Landfill. Solids were transferred from the vactor trucks to the lined drop boxes. Solids remained on site until a waste determination was completed.

Of the approximate 39 tons of solids removed from the lines, **28.61** tons were classified as contaminated media and were disposed of at Hillsboro Landfill, a Subtitle-D-Landfill, under Permit number **106859OR**. **10.35** tons were classified as hazardous waste and were disposed of at Chem Waste, Arlington, Oregon, a Subtitle-C-Landfill, under manifest number **001823773JJK**.

Residual solids from the liquid storage tanks were removed by Iron Horse and placed in the drop boxes for disposal at Hillsboro Landfill. The non-hazardous solids were transported to Hillsboro landfill by Iron Horse Inc. Fillup's Trucking, a licensed hazardous waste hauler in the state of Oregon, transported the hazardous waste solids to Arlington. Solids disposal information is summarized in Table 2. The disposal permits and the hazardous waste manifest are provided in Appendix B.

Table 2: Spoils Disposal

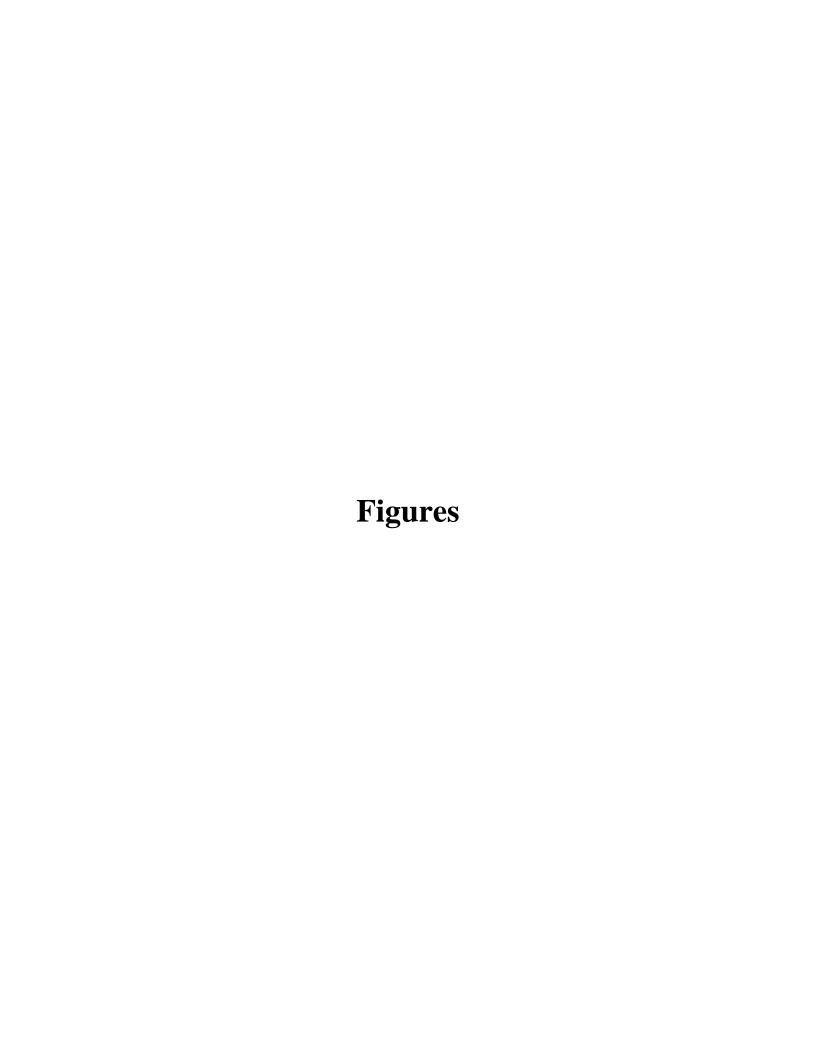
Solids	Disposal Site	Permit Number	Manifest Number	USEPA Generator Identification Number	Quantity (Tons)
Contaminated Media	Waste Management- Hillsboro Landfill Hillsboro Oregon	106859OR	NA	NA	28.61
Hazardous Waste	Waste Management- Chem Waste Arlington Oregon	OR304171	001823777JJK	ORQ000028951	10.35

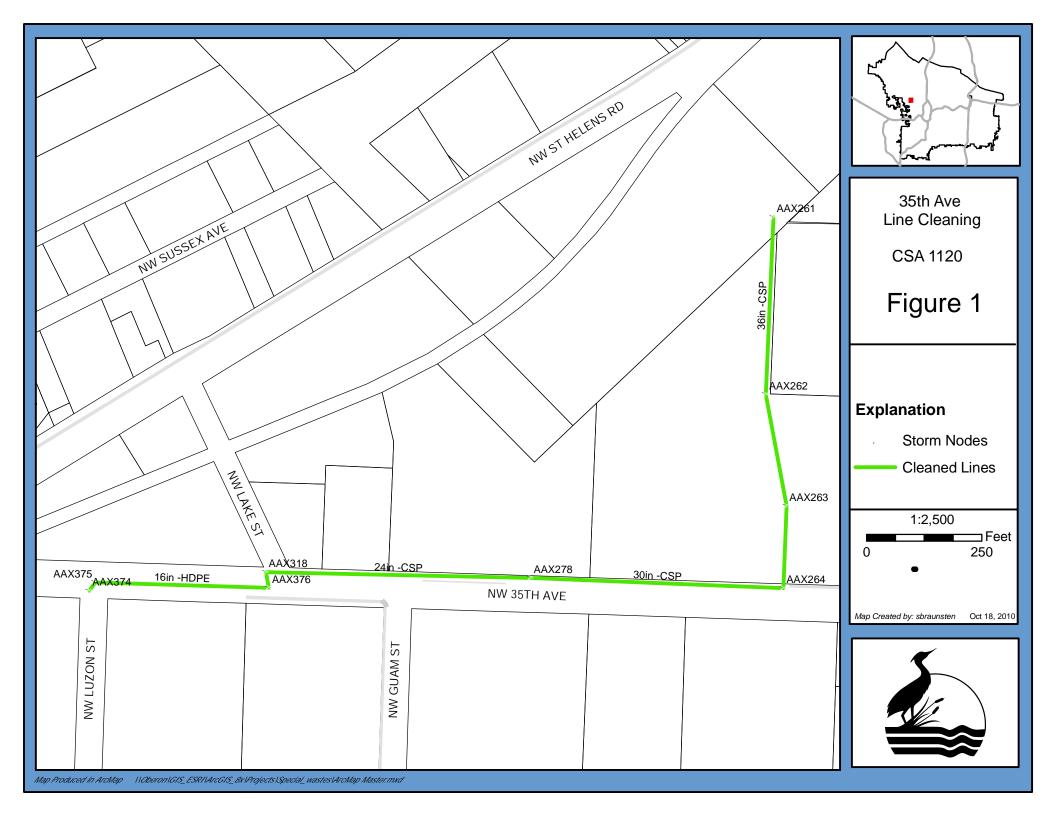
Liquids

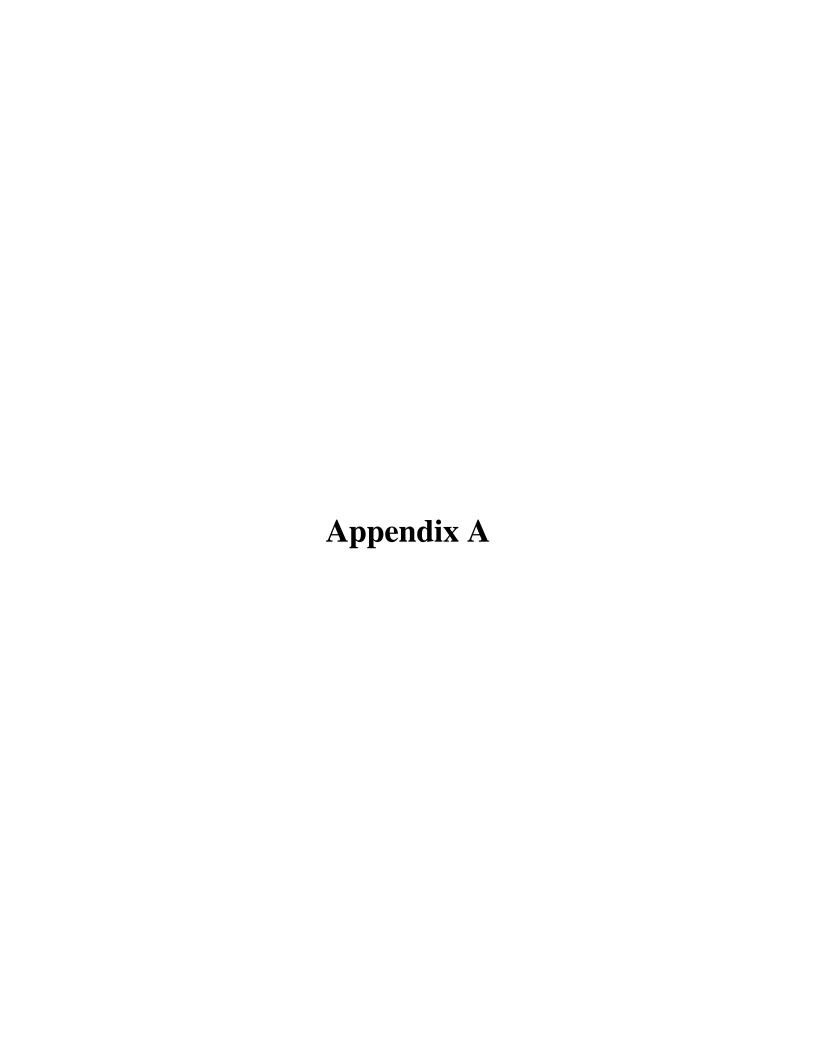
Analytical results were sufficient for batch discharge disposal of decanted liquids to the sanitary sewer. After treatment, approximately 20,000 gallons of water were discharged to City of Portland sanitary sewer manhole AAX326, at the intersection of NW 35th Avenue and NW Luzon Street. A copy of the batch discharge authorization is included in Appendix B.

Conclusions

The line cleaning spoils were managed and disposed of in accordance with all applicable rules, laws, and policies.


Recommendations


Additional action is not required.


Limitations

The purpose of this report is to summarize activities related to a City of Portland Line cleaning effort. Sampling and analysis was conducted to identify contamination related to environmental conditions at the subject site. The samples collected only indicate the presence or absence of contaminants in the samples. The sampling locations target the most likely locations for contamination, but contamination may exist in areas not sampled. The focus of this survey is on hazardous substances likely associated with the historic activities conducted within the subject site. In this context, the term hazardous substance includes the chemicals listed as hazardous substances in the Code of Federal Regulations, Oregon Administrative Rules, and petroleum products.

Please contact me if you have further questions or if other suspect materials are encountered during site activities. I may be reached at 503-823-7881.

78610

Environmental Sciences, Inc.	
2415 SE 11th Ave. Portland Oregon 9721	4

CHAIN OF CUSTODY

Report Number_____

	SCHOOLSHOOM SOUTHWARE SOUTHWAT SOUTHWARE SOUTH												T	
Company CO	COP/BES			Phone 503-823-7881										Comments
Project #			FAX SO3	×503-823-5565								F		RUN TCIPONIS
Project Name	5Th LINE Cle	uning	Purchase Order #								TEX)	(PAI		ON RCRAS +ZN
Site () (1) 33	NW 35Th LINE CLEUNING			on Wak	Collec	ted By	0094	ă	GX	NW-TPH-HCID	EPA 8021B (BTEX)	SIM	9	
Samples:	erature On Ice? Yes		Turnaround T	·	Regular	3-5 Business	Days	TPH-	NW-TPH-GX	TPH-	8021	EPA 8270 SIM (PAH)	EPA 8260B	Kush
LAB ID	Field ID		Sampling Date	Sampling Time	Matrix	3-5 Business	Volume	-MN	-MN	-MN	EPA	EPA	EPA	Analysis Requested
C9740'	16 INCh Line		6/24/10	Ogio		Jar	402							RCRA-8 + ZN(TC)
	11		11	iı '	11	11	i l							PCB
C5041	16!NCh LIN	7	11	OUZL	water	Bottle	1-L							FILTER FIRST PCB
•			U	11	11 -	11	0,54							FILER RCRA-8+ZN FILEN TSS/NON FILEN
			11	1)	11	1/	1602							FILLY TSS/NON FILEY
9														
Relinquished by Affiliation COP/BES		Date 6/24/10 Time 11: 10		Received by		W		Affiliation				Date Time (170)		
Relinquished by Affiliation		18	Date	Time		Received by	OI.			Affiliation			Date Time	
		VI 202												

City of Portland Environmental Services

1120 SW 5th Ave., Room 1000

Report Number: 78610

Report Date: 6-28-10

Project Name:

NW 35th Line Cleaning

Project Location:

NW 35th / LU2ON

Project Number:

Date Sampled:

6/24/10

Date received:

6/24/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in water

All concentration	s listed in u	g/L (ppb)	AR	OCLO	₹#			Surrogate
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)
16 inch Line	C5041	ND	ND	ND	ND	ND	ND	ND	96%
BLANK Reporting Limit	etr 504	ND 0.2	N D 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	ND 0.2	

Surrogate is Decachlorobiphenyl ND = Not Detected (below reporting limit or detection limit)

QC Report for PCB

Batch Date: 6-25-10

Matrix I		Result (ug/L)	Acceptable Range	Surrogate Recovery	Surr. Acc. Range
DLANK	PCB100625-1	0.1	<0.2	108%	50%-150%
Matrix S	<u> </u>	Result (ug/ml)	Theoretical Result (ug/ml)	Percent Recovery	Acc. Range
LCS1	PCB100625-1	0.9	1	90%	70%-130%

City of Portland Environmental Services

1120 SW 5th Ave., Room 1000

Report Number: 78610

Report Date: 6-28-10

Project Name:

NW 35th Line Cleaning

NW 33th/LU2ON

Project Location:

Project Number:

Date Sampled: 6/24/10

Date received:

6/24/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

All concentration	ons listed in	mg/Kg (ppm)						
				AR	OCLO	₹#			Surrogate
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)
16 inch Line	C5040	ND	39%						
BLANK Reporting Limi	 it	ND 0.5							

Note Low surrogate recovery, detection limits have been raised Surrogate is Decachlorobiphenyl ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA8082

Batch Date:

6/25/2010

Matrix	Preparation	Result	Acceptable	Surrogate	Surr. Acc.
Blank	Batch	(ug/ml)	Range	Recovery	Range
BLANK	PCB100625-1	0.01	<0.1	117%	50%-150%
Matrix Spike LCS1	Preparation Batch PCB100625-1	Result (ug/ml) 0.9	Theoretical Result (ug/ml)	Percent Recovery 90%	Acc. Range 70%-130%

City of Portland Environmental Services

Project Name:

NW 35th Line Cleaning

Project Location:

NE 35th / LU2ON

Project Number:

Date Sampled:

6/24/2010

Date received:

6/24/2010

EPA 160.2

Report Number: 78610

Report Date: 6-28-10

Analytic: Total Suspended Solids

Field ID	Lab ID	Quantiation	Detection Limit	
		mg/L (ppm)	mg/L (ppm)	
16 inch line-water- non-filtered	C5041	12,300	1	
16 inch line-water filtered	C5041	1	1	
	Blank	ND	1	

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME:

NW 35th Line Cleaning

REPORT NUMBER: 78610

SITE LOCATION: PROJECT NUMBER: NW 35th / LU2ON

REPORT DATE: PAGE:

6/28/10 Page 1 of 1

ICPMS Metals Report - TCLP Metals

EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

											Sample
		Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn	Collection
Field ID	LAB ID	mg/L	Date Batch								
16 inch Line	C5040	ND	ND	0.6	ND	ND	ND	0.4	ND	2.9	6/24/2010 10F2512A.B
16 inch Line-water	C5041	ND	ND	0.5	ND	0.1	ND	3.8	ND	0.8	6/24/2010 10F2512A.B
Blank		ND									
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	

78670

CHAIN OF CUSTODY

Report	Number	
LOPOIL	I TUITIOUT	

Environmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214

Project Name Site Samples: Temp	Line Cleaning Hin Derature 1 5 C On Ice? Yes / No	Phone 503-423-788 FAX 513-5565 Purchase Order # Report Attention Danovan Danovan Turnaround Time: Regular 3-5 Business Days					NW-TPH-Dx	NW-TPH-GX	NW-TPH-HCID	EPA 8021B (BTEX)	A 8270 SIM (PAH)	A 8260B	Comments Rus 4 Analysis Requested
LAB ID	Field ID	Sampling Date	Sampling Time	Matrix	Container	Volume	Ž	Š	Š	EP/	EP/	EP/	Analysis Requested
(5/85	600'-24thch Line	CM9/10		50.1	Jar	402							TCLP-RCRAS+Zh
(210)	TOO PHILON DIVE	(// /-	t of t		J								PCB
									9				
	4												
^	1												
Relinquished by	Affiliation Affiliation	Date 6 29	/O Time	105	Received by		h	\bigcirc	Affilia				Date / Time
Relinquished by	Affiliation /	Date	Time		Received by	2			Affilia	tion			Date Time

City of Portland Environmental Services

Project Name:

35TH Ave Line Cleaning

Project Location:

600ft-24in

Project Number:

Date Sampled:

6/29/10

Date received:

6/29/10

EPA 8082

Report Number: 78670

Report Date: 6-30-10

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

	Surrogate								
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)
600'-24inch line	C5185	ND	ND	ND	ND	ND	ND	1.4*	109%
BLANK Reporting Limit	- -	ND 0.1							

^{*} Sample contains mostly Ar1260 with some Ar1254, quantified as Ar1262 Surrogate is Decachlorobiphenyl

ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA8082

Batch Date:

6/29/2010

Matrix	Preparation	Result	Acceptable	Surrogate	Surr. Acc.
Blank	Batch	(ug/ml)	Range	Recovery	Range
BLANK	PCB100629-1	0.002	<0.1	139%	50%-150%
Matrix	Preparation	Result	Theoretical Result	Percent	
Spike	Batch	(ug/ml)	(ug/ml)	Recovery	Acc. Range
LCS1	PCB100629-1	1.07	1	107%	70%-130%

I VSORA

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME:

600ft-24in

REPORT NUMBER: 78670

医三氏性水类反射 加热基基金层

SITE LOCATION:

REPORT DATE:

6/30/10

PROJECT NUMBER: 35th Ave line Cleaning

PAGE:

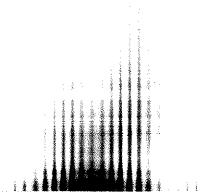
Page 1 of 1

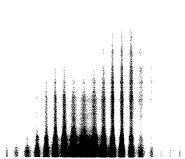
ICPMS Metals Report - TCLP Soil

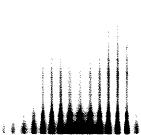
EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

Field ID	LAB ID	Ag mg/L	As mg/L	Ba mg/L	Cd mg/L	Cr mg/L	Hg mg/L	Pb mg/L	Se mg/L	Zn mg/L	Sample Collection Date Batch
600'-24inch line	C5185	ND	ND	4	ND	ND	ND	6	ND	9	6/29/2010 10F3012A.B
Blank Reporting Limit		ND 0.1									


1 1 1


Wy East Environmental Sciences, Inc.


. Labarana anglimba d

Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn
10F3012A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
В	0.00	5.75	0.00	0.00	0.00	4.17	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	4.48	0.00	0.00	0.00	4.16	0.00	2.91	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	389.90	248.70	327.70	355.50	216.70	**	372.40	272.40	188.60
Theoretical Value	300.00	300.00	300.00	300.00	300.00		300.00	300.00	250.00
Percent Recovery	130%	83%	109%	119%	72%		124%	91%	75%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		PASS	PASS	PASS
Calibration R ²	1.000	1.000	1.000 :	1.000	1.000	1.000	1.000	1.000	1.000
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990

7869	2
------	---

Environmental Sciences, Inc.

CHAIN OF CUSTODY

Report Number_____

Environmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214

											W. S.				75 ((666) 261 661
Company Of A	Auritand Bu	ESICSA	Phone 503	-823-	7881									Comments	
Project #			FAX 503-	823.5	565							(
Project Name	Line Cleanit	10	Purchase Order #								EX)	(PAF			
Site		/	Report Attention Collected By John O Donoran John O Donoran					×	X	CID	3 (BT	SIM	m		
Samples: Temp	perature 24°C	On Ice? Yes / No	Turnaround Time: Regular 3-5 Business Days					NW-TPH-Dx	NW-TPH-GX	TPH-	EPA 8021B (BTEX)	A 8270	8260E	Rush	
LAB ID	F	ield ID	Sampling Date	Sampling Time	Matrix	Container	Volume	Š	-WN	-WN	EPA	EPA	EPA	Analysis Reque	sted
C5245	600ft-1100ft	24in Line	6/30/10	10:30an	Sall	Ja	402							RCRA & +	-Z TCLP
														PCB	
		·													
					*										
			1												
			-					\vdash							
								\vdash	-						
			 							-			-		
								H	-			-	-		
8									\dashv				\dashv		
			-						\dashv			\dashv			
								\vdash	\dashv			\dashv	\dashv		
Relinquished by	A	Affiliation BES/CSA	Date 6/30/0	Time		Received by				Affiliat	ion			Date /	Time
Relinquished by		Affiliation	6/30/(c)	Time	6an	Received by	h	\sim)	A &C'11 - 1				Date / 30/()	
		, minduoii	Date	Time		neceived by	207			Affiliat	ION			Date	Time /

City of Portland Environmental Services

Project Name:

35th Ave Line cleaning

Project Location:

Project Number:

Date Sampled: Date received:

ed: 6/30/10

6/30/10

Report Number: 78692 Report Date: 7-1-10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

			Surrogate						
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)
600ft-1100ft 24in. Line	C5245	ND	ND	ND	ND	ND	ND	0.2*	106%
BLANK		ND	ND	ND	ND	ND	ND	ND	
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	

^{*} Sample contains mostly AR1260 and some AR1254, Quantified as AR1260

Surrogate is Decachlorobiphenyl

ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA8082

Batch Date:

7/1/2010

Matrix Blank BLANK	Preparation Batch PCB100701-1	Result (ug/ml) 0.005	Acceptable Range <0.1	Surrogate Recovery 128%	Surr. Acc. Range 50%-150%
Matrix	Dramanation	Denvik	Theoretical	D	
Matrix	Preparation	Result	Result	Percent	
Spike	Batch	(ug/ml)	(ug/ml)	Recovery	Acc. Range
LCS1	PCB100701-1	1.01	1	101%	70%-130%

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME:

35th Ave Line Cleaning

REPORT NUMBER: 78692

SITE LOCATION:

REPORT DATE:

7/1/10

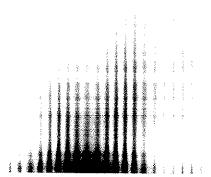
PROJECT NUMBER:

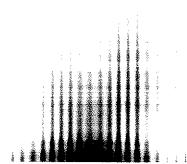
PAGE:

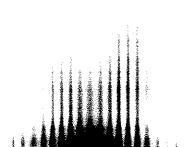
Page 1 of 1

ICPMS Metals Report - TCLP Soil

EPA 1311 / EPA 200.8

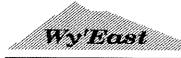

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)


											Sample	
		Ag	As	Ba	Cđ	Cr	Hg	Pb	Se	Zn	Collection	
Field ID	LAB ID	mg/L	Date	Batch								
600ft-1100ft 24in L	Line C5245	ND	ND	0.9	0.6	ND	ND	0.2	ND	7	6/30/2010	10G0112A.B
Blank		ND										
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		



Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn
10G0112A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
В	0.00	6.20	0.00	0.00	0.00	4.15	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	3.03	0.00	0.00	0.00	4.13	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	253.90	243.70	233.50	233.50	270.80		226.50	229.70	217.40
Theoretical Value	250.00	250.00	250.00	250.00	250.00		250.00	250.00	250.00
Percent Recovery	102%	97%	93%	93%	108%		91%	92%	87%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		PASS	PASS	PASS
Calibration R ²	1.000	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990


WAS EXCENTED
<u>illillillillillillillillillillillillill</u>
Environmental Sciences, Inc.
2415 SE 11th Ave. Portland Oregon 97214

CHAIN OF CUSTODY

	701	جے رب خ
Report Number		

nvironmental Sciences, Inc.

Project Name 35Th Au Site 361NCV	e Line C SW hin	Jeaning & Cleaning	Phone FAX Purchase Ord Report Attenti Turnaround T	er# 0n NOUA	in Collection		aN	NW-TPH-Dx	NW-TPH-GX	NW-TPH-HCID	EPA 8021B (BTEX)	, 8270 SIM (PAH)	8260B	Comments TC1P-RC1 RUSH	2A8+ZV.
LAB ID		ield ID	Sampling Date	Sampling Time	Matrix	Container	Volume	Š	Š	Š	EPA	EPA	EPA	Analysis Reques	
(550)	36/NCH		12148											TCIPRA	248+ZN
			7/2/10	12:40	SOIL	JAZ	402							PCB,	
									<u> </u>						
									<u> </u>						
									<u> </u>						
										<u> </u>					
									<u> </u>	 					
									ļ	<u></u>					
												<u> </u>			
											<u> </u>				
		·							ļ	<u> </u>	<u> </u>				
								<u> </u>							
Relinquished by		Affiliation	Date	Time		Received by				Affilia	tion			Date i j	Time
Mu Dle	and the second seco	COPURES	Date 7/2//	0 15	1/5	Received by	-	1/	\bigcup	Aillia	adOH			7/2/10-	15:55
Rélinquished by		Affiliation	Date	Time		Received by		'-		Affilia	ation			Date ²	Time

City of Portland Environmental Services

1120 SW 5th Ave., Room 1000

Project Name:

35th ave line cleaning 36 inch nw line cleaning

Project Location:

Project Number: Date Sampled:

7/2/10

Report Number: 78732 Report Date: 7/6/10

Date received:

7/2/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

All concent	trations listed	d in mg/h	(g (ppn	ר)					•		
	AROCLOR #										
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)		
36 inch	C5501	ND	ND	ND	ND	ND	ND	0.95*	102%		
BLANK Reporting I	 Limit	ND 0.1									

^{*} mostly Ar1260 with some Ar1254, quantified as AR1260

Surrogate is Decachlorobiphenyl

ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA8082

Batch Date:

7/6/2010

Matrix Blank BLANK	Preparation Batch PCB100706-1	Result (ug/ml) 0.006	Acceptable Range <0.1	Surrogate Recovery 130%	Surr. Acc. Range 50%-150%
Matrix	Preparation	Result	Theoretical Result	Percent	
Spike	Batch	(ug/ml)	(ug/ml)	Recovery	Acc. Range
LCS1	PCB100706-1	0.99	1	99%	70%-130%

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME:

35th Ave Line Cleaning

REPORT NUMBER: 78732

SITE LOCATION:

36 Inch NW Line Cleaning

REPORT DATE:

7/6/10

PROJECT NUMBER:

PAGE:

Page 1 of 1

ICPMS Metals Report - TCLP Soil

EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

											Sample	
		Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn	Collection	
Field ID	LAB ID	mg/L	Date	Batch								
36inch	C5501	ND	ND	0.4	ND	ND	ND	0.3	ND	1.6	7/2/2010	10G0611A.B
Blank		ND										
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		

Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb ug/L	Se ug/L	Zn ug/L
10G0611A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
В	0.00	0.00	0.00	0.00	0.00	3.82	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	0.00	0.01	0.00	0.00	0.00	0.03	0.00	0.57
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	312.60	316.30	303.90	313.20	295.00		345.30	329.10	320.00
Theoretical Value	300.00	300.00	300.00	300.00	300.00		300.00	300.00	300.00
Percent Recovery	104%	105%	101%	104%	98%		115%	110%	107%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		PASS	PASS	PASS
Calibration R ²	0.999	0.999	0.998	0.999	0.999	0.999	0.998	0.999	0.999
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990

#78804

NYS EGST

CHAIN OF CUSTODY

Report Number_____

Environmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214

Project Name 35 Th Site Nw 36	Ave s	RTAND Camples 36inch Line On loe? Yes / No	Phone FAX Purchase One Report Attent Tumaround 1	AX SO3-823-788 Purchase Order # Report Attention Collected By JONN ODONAL COLONO CAN umaround Time: Regular 3-5 Business Days Sampling Sampling					NW-TPH-GX	NW-TPH-HCID	EPA 8021B (BTEX)	, 8270 SIM (PAH)	8260B	Comments RUSH
LAB ID		Field ID	Sampling Date	Sampling Time	Matrix	Container	Volume	xG-Hd1-WN	-MN	-WN	ЕРА	EPA	EPA	Analysis Requested
		36 INCh Z4 INCh	7/9/18	10:20		JAR	4.02							TCLPRCRA-8+ PCB tclp-RCRA-8+ZN PCB
Relinquished by Relinquished by		Affiliation BES Affiliation	Date 7(4))	Time (1.1)	55	Received by)	Affilia				Date Time Date Time

City of Portland Environmental Services

1120 SW 5th Ave., Room 1000

Report Number: 78804

Report Date: 7/12/10

Project Name:

35th Ave Samples

Project Location:

NW 36th Ave 36 inch line

Project Number:

Date Sampled:

7/9/10

Date received:

7/9/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

All concentrations listed in mg/Kg (ppm) AROCLOR# Surrogate Field ID Lab ID 1016 1221 1232 1242 1248 1254 1260 Recovery (%) 0-70 36 inch C5936 ND ND ND ND ND ND 0.4* 87% End 34 inch C5937 ND ND 0.3* 90% ND ND ND ND **BLANK** ND ND ND ND ND ND ND Reporting Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Surrogate is Decachlorobiphenyl

ND = Not Detected (below reporting limit or detection limit)

^{*} Mostly Ar1260 with some Ar1254, quantified as Ar 1260

Quality Control Report for PCB by EPA8082

Batch Date:

7/9/2010

Matrix Blank BLA N K	Preparation Batch PCB100708-1	Result (ug/ml) 0.004	Acceptable Range <0.01	Surrogate Recovery 107%	Surr. Acc. Range 50%-150%
Matrix Spike	Preparation Batch	Result (ug/ml)	Theoretical Result (ug/ml)	Percent Recovery	Acc. Range
LCS1	PCB100708-1	1	1	100%	70%-130%

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME: SITE LOCATION:

35th Ave Samples NW 36th Ave 36inch Line **REPORT NUMBER: 78804**

REPORT DATE: 7/12/10

PROJECT NUMBER:

PAGE: Page 1 of 1

ICPMS Metals Report - TCLP Soil

EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

											Sample	
		Ag	As	Ba	Cđ	Cr	Hg	Pb	Se	Zn	Collection	
Field ID	LAB ID	mg/L	Date	Batch								
0-70 36inch	C5936	ND	ND	0.9	1.6	ND	ND	0.5	ND	23	7/9/2010	10G1211A.B
End 24inch	C5937	ND	ND	0.9	1.5	ND	ND	0.5	ND	20	7/9/2010	10G1211A.B
Blank		ND										
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		

Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn
10G1211A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
В	0.00	0.77	0.00	0.00	0.00	3.82	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	0.98	0.00	0.00	0.00	3.82	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	258.70	253.10	245.10	237.10	286.60		258.50	237.90	237.30
Theoretical Value	250.00	250.00	250.00	250.00	250.00		250.00	250.00	250.00
Percent Recovery	103%	101%	98%	95%	115%		103%	95%	95%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		PASS	PASS	PASS
Calibration R ²	0.998	0.998	0.999	0.999	0.996	0.999	0.999	0.998	0.998
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990

CHAIN OF CUSTODY

78878

200		1	U	U	
Report	Number_				

Company CC	P/BES		Phone	3-8	323-	-788 556	51							Comments
Project #			FAX 50	3-8	73-	556	55							
Project Name	35T LIN CEAN		Durchage Ore	10=#							EX)	SIM (PAH)		RUSH
NW 33			Report Attent	DONOL	AN J	cted By	S Days Volume	ă	Š	NW-TPH-HCID	EPA 8021B (BTEX)	SIM	8	
Samples: Temp	perature 2615 On Ice? Yes / I	No	Turnaround T	ime:	Regular	3-5 Business	Days	TPH-	NW-TPH-GX	TPH-	802	EPA 8270	8260B	
LAB ID	Field ID		Sampling Date	Sampling Time	Matrix	Container	Volume	N.	-MN	-MN	EPA	EPA	EPA	Analysis Requested
(6412	36-INCh-70-160		4/14/10	11:35	SoiL	JAR	407							TCLP-RCRA-8+2N
	1		·L	1		1	V							PCB
					-									
											_	_		
										_	_			
* · · · · · · · · · · · · · · · · · · ·								_				_	_	
									_					
Relinquished by	Affiliation > /		Date	Time		Received by				Affilia	tion			Date / Time
11. DIL	BESIC	OP	Date 7) (4)	0 15	130			1		, anna				Date / Time 7270
Relinquished by	Affiliation /		Date	Time		Received by	105			Affilia	tion			Date Time

City of Portland/BES

Project Name:

NW 35th Lin Cleaning

Project Location:

on: NW 35th

Project Number:

Date Sampled:

7/14/10

Report Number: Report Date: 78878 7/15/10

Date received:

7/14/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

All concentration	ns listed in mo	g/Kg (ppm)									
			AROCLOR #								
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)		
36inch 70-160	C6412	ND	ND	ND	ND	ND	ND	0.1	72%		
BLANK Reporting Limit		N D 0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	89%		

Surrogate is Decachlorobiphenyl ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA8082

Batch Date:

7/15/2010

Matrix Blank	Preparation Result Batch (ug/ml)	Acceptable Range	Surrogate Recovery	Surr. Acc. Range
BLANK	PCB100715-1 0.005	<0.1	89%	50%-150%
Matrix Spike	Preparation Result Batch (ug/ml)	Theoretical Result (ug/ml)	Percent Recovery	Acc. Range
LCS1	PCB100715-1 1	1	100%	70%-130%

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME:

NW 35th Line Cleaning

REPORT NUMBER: 78878

SITE LOCATION:

NW 35th

7/15/10

PROJECT NUMBER:

PAGE:

REPORT DATE:

Page 1 of 1

ICPMS Metals Report - TCLP Soil

EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

											Sample	
		Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn	Collection	
Field ID	LAB ID	mg/L	Date	Batch								
36 inch 70-160	C6412	ND	ND	0.8	0.8	ND	ND	ND	ND	13	7/14/2010	10G1512A.B
Blank		ND										
Reporting Limit		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		

Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn
10G1512A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
В	0.00	2.27	0.00	0.00	0.00	4.05	10.88	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<15	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	1.16	0.00	0.00	0.00	4.03	9.98	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	238.30	234.80	222.40	221.70	248.20		160.70	205.50	204.30
Theoretical Value	250.00	250.00	250.00	250.00	250.00		250.00	250.00	250.00
Percent Recovery	95%	94%	89%	89%	99%		64%	82%	82%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		FAIL	PASS	PASS
Calibration R ²	0.998	0.998	0.999	0.999	0.998	1.000	1.000	0,999	0,999
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990

CHAIN OF CUSTODY

Errorironmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214

	tro: : ortiana or									_			,	/	
Company City of POVTICUO			Phone 503-823-788/											Comments	
Project#			FAX 503-823-5365					Dx	GX	NW-TPH-HCID	EPA 8021B (BTEX)	EPA 8270 SIM (PAH)			
Project Name NIW 3572 LINE CLEUNING			Purchase Order #												
Project Name NW357 LINE CLEUNING Site NW357 BAKER TANK Samples:			Report Attention Collected By										98	7,001	
Samples: Temperature 2.7.0 On Ice? Yes / No			Turnaround Time: Regular 3-5 Business Days				Days	NW-TPH-Dx	NW-TPH-GX	표	8021	8270	EPA 8260B	RUSH	
LAB ID	F	Field ID	Sampling Sampling Date Time Matrix Container Volume		NN.	N.	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	EPA	EPA	EPA	Analysis Reque	sted			
Cle 60 at		ANKSludge	7816110	The second second second second	-	JAR	402							RCRA-8	+ZN
			7/16/10	V	1	V	V							PCBs	
			of To												
										-					
										_		_			
									_	_		_			
										_					
					-				_	-					
Relinquished by		Affiliation	Date	Time		Received by				Δffilia	tion			Date	Time
COA/BES		7 / 16/10 Time 14(1)		LF				Affiliation				7/16/10	2:10p		
Relinquished by Affiliation		Date Time		Received by			Affiliation				Date	Time			

LABORATORY REPORT

City of Portland Environmental Services 1120 SW 5th Ave., Room 1000

PROJECT NAME: SITE LOCATION: NW 35th Line Cleaning NW 35th Baker Tank

REPORT NUMBER: 78921

REPORT DATE:

7/19/10

PROJECT NUMBER:

PAGE:

Page 1 of 1

ICPMS Metals Report - TCLP Soil

EPA 1311 / EPA 200.8

Silver (Ag) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Mercury (Hg) Lead (Pb) Selenium (Se) Zinc (Zn)

		Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn	Sample Collection
Field ID	LAB ID	mg/L	Date Batch								
BAKER TANK S	SLUD(C6607	ND	ND	1	1	ND	ND	1	ND	15	7/16/2010 10G1910A.B
Blank Reporting Limit		ND 0.1									

Wy East Environmental Sciences, Inc.

Quality Control Report for Metals by ICPMS

	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Zn
10G1910A.B	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
В	0.00	3.05	0.00	0.00	0.00	3.96	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
LRB	0.00	1.57	0.00	0.00	0.00	3.94	0.00	0.00	0.00
Acceptable Range	<10	<10	<10	<10	<10	<10	<10	<10	<10
CONTROL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
SB	304.80	286.70	277.60	292.70	324.20		302.10	284.60	272.20
Theoretical Value	300.00	300.00	300.00	300.00	300.00		300.00	300.00	300.00
Percent Recovery	102%	96%	93%	98%	108%		101%	95%	91%
Acceptable Range	70%-130%	70%-130%	70%-130%	70%-130%	70%-130%		70%-130%	70%-130%	70%-130%
CONTROL	PASS	PASS	PASS	PASS	PASS		PASS	PASS	PASS
Calibration R ²	0.999	0.999	1.000	1.000	0.998	0.999	0.999	0.999	0.999
Acceptable Range	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990	> 0.990

PCB Laboratory Report

City of Portland Environmental Services

1120 SW 5th Ave., Room 1000 Portland, OR 97204-1912

Project Name: Project Location:

NW 35th Line Cleaning NW 35th Baker Tank

Project Number:

Report Number: Report Date: 78921 7/20/10 Date Sampled: Date received: 7/16/10 7/16/10

EPA 8082

Analyte: Polychlorinated biphenyls (PCBs) identification and quantification in soil

All Concentiations in	stea in mg/Ng	(ppm)							
				ARO	CLOR:	#			Surrogate
Field ID	Lab ID	1016	1221	1232	1242	1248	1254	1260	Recovery (%)
Baker tank Sludge	C6607	ND	ND	ND	ND	ND	ND	ND	58%

BLANK	 ND	ND	ND	ND	ND	ND	ND	95%
Reporting Limit	0.1	0.1	0.1	0.1	0.1	0.1	0.1	

Surrogate is Decachlorobiphenyl

ND = Not Detected (below reporting limit or detection limit)

Quality Control Report for PCB by EPA 8082

Batch Date:

7/19/2010

Matrix Blank		esult ıg/ml)	Acceptable Range	Surrogate Recovery	Surr. Acc. Range
BLANK	PCB100719-1	0.008	<0.1	95%	50%-150%
Matrix Spike		esult g/ml)	Theoretical Result (ug/ml)	Percent Recovery	Acc. Range
LCS1	PCB100719-1	0.99	1	99%	70%-130%

WASTE MANAGEMENT, INCNON HAZARDOUS WASTE DISPOSAL SOLUTIONS FOR THE PACIFIC NORTHWEST

Hillsboro Landfill, Inc.

3205 SE MINTER BRIDGE ROAD HILLSBORO, OR 97123

PERMIT # 106859OR

Tracking Number 14190

PERMIT TO DISPOSE OF NON-HAZARDOUS MATERIALS

This permit authorizes disposul of Customer's waste materials in accordance with the Industrial Waste & Disposal Services Agreement dated

EXPIRES: 10/15/2010 GENERATOR: CITY OF PORTLAND - BES - 35TH AVENUE LINE CLEANING DESCRIPTION:STORM LINE SEDIMENT AND TONS:100 DEBRIS SPECIAL WASTE CS C&D CLEAN-UP LOCATION: PORTLAND, OREGON COUNTY: Multnomah NW 35TH AND ST. HELENS ROAD CONTACT: SCOTT BRAUNSTEN PHONE: 503-823-5836 FAX: 503-823-5565 PO#: N/A BILLING: Landfill account CITY OF PORTLAND - BES JOB#: N/A We accept business checks, cash, VISA / Mastercard or charge(with prior approval) SPECIAL HANDLING: NOTE: PREAPPROVAL ONLY, PROJECT START DATE OF 6/1/2010, BES WILL CALL WITH EXTENSION DATE OF PERMIT

APPROVED:

KRISTIN CASTNER

DATE: 07/15/10 2:29:44 PM

A COPY OF THIS PERMIT MUST BE SHOWN BY EACH DRIVER THERE IS A MINIMUM CHARGE OF \$50-\$60 FOR EACH LOAD OF SPECIAL WASTE

WASTE MANAGEMENT

Chemical Waste Management of the Northwest 17629 Cedar Springs Lane Arlington, OR 97812 (541) 454-3235 (541) 454-3237 INVOICE

THIS IS AN INVOICE FOR CURRENT CHARGES.
PLEASE PAY AMOUNT INDICATED BELOW

CERMS

DUE UPON RECEIPTOR PER CONTRACT

ALL PAST DUE AMOUNTS WILL BEAR INTEREST AT ONE AND ONE HALF PERCENT PER MONTH OR THE MAXIMUM RATE ALLOWED BY LAW, WHICHEVER IS LESS

DPR-0012053802

CITY OF PORTLAND
ATTN: BETHANY NABHAN
1120 SW 5TH AVE RM 1000
PORTLAND OR 97204-1912

m+1# 5000102016

2010

Invoice Date: 08/01/2010 Customer #: 450-1319842

Invoice #: 2236-0086823

Page #:

Profile Description rifest# Gener/Quantity P.O.#/Unit Biller Rate Total 10409116 OR304171 SEWER LINE CLEANING 008358 CITY OF PORTLAN 110349 · TWORLEY Svc Date 07/28/2010 DIRECT LANDFILL DISPOSAL/FEES 10.35 TONS 110.00000 1.138.50 OTHER SERVICES NON CONFORMING WASTE 1.00 LOAD 500.00000 500.00

\$500 OTHER SERVICES
CHARGE IS FOR THE
LOAD BEING
SOLIDIFIED DUE TO
THE PRESENCE OF
FREE LIQUID.
PRICE AGREEMENT#
31000157
CONTRACT BID# 110349
MANIFEST DOCUMENT 001823777JJK

Subtotal

1,638.50

** PAYMENT DUE UPON RECEIPT OF INVOICE OR PER CONTRACT ** THANK YOU FOR YOUR BUSINESS!

CONTRACT 31000 157
CSA # 1120
COST CENTER ESWW000003
WBS
1/0. 9ESWW000000 42
GRANT
PO/DPO # 22051709
DATE 8/25/10
PROJECT MANAGER Don Wolsborn
SIGNATURE Was Walshorn

Chemical Waste Management of the Northwest 17629 Cedar Springs Lane Arlington, OR 97812 (541) 454-3235 (541) 454-3237

INVOICE

THIS IS AN INVOICE FOR CURRENT CHARGES. PLEASE PAY AMOUNT INDICATED BELOW

DUE UPON RECEIPT OR PER CONTRACT

ALL PAST DUE AMOUNTS WILL BEAR INTEREST AT ONE AND ONE HALF PERCENT PER MONTH OR THE MAXIMUM RATE ALLOWED BY LAW, WHICHEVER IS LESS

DPR-0012053802

CITY OF PORTLAND ATTN: BETHANY NABHAN 1120 SW 5TH AVE RM 1000 PORTLAND OR 97204-1912

Invoice Date: 08/01/2010

Customer #: 450-1319842

Invoice #: 2236-0086823

Page #:

Manifest# 0000409116 Profile Description

Gener/Quantity OR304171 SEWER LINE CLEANING 008358 CITY OF PORTLAN 110349

P.O.#/Unit Biller TWORLEY

Rate Svc Date

Total 07/28/2010

DIRECT LANDFILL OTHER SERVICES

DISPOSAL/FEES NON CONFORMING WASTE 10.35 1.00

TONS LOAD 110.00000 500.00000

1,138.50 500.00

\$500 OTHER SERVICES

CHARGE IS FOR THE LOAD BEING

SOLIDIFIED DUE TO

THE PRESENCE OF

FREE LIQUID.

PRICE AGREEMENT#

31000157

CONTRACT BID# 110349

MANIFEST DOCUMENT 001823777JJK

Subtota1

1,638.50

** PAYMENT DUE UPON RECEIPT OF INVOICE OR PER CONTRACT ** THANK YOU FOR YOUR BUSINESS!

CONTRACT 31000 157 CSA #

WBS

COST CENTER ESWW000003

1/0.

9ESWW0000042 GRANT

PO/DPO # 22051709 DATE 8/25/10 PROJECT MANAGER 20

SIGNATURE Wen Wal

Remit to: CHEMICAL WASTE MANAGEMENT, INC.

P.O. BOX 660345 DALLAS, TX 75266 Total Due

\$1,638.50

409116

Form Approved, OMB No. 205 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number 1. Generator ID Number UNIFORM HAZARDOUS **WASTE MANIFEST** ORQ000028951 (900)424-9300 Generator's Site Address (if different than mailing address 5. Generator's Name and Malling Address CITY OF PORTLAND BES NW 35TH NW 35TH AND ST HELENS ROAD OR 37213 PORTLAND 503:523-5836 Generator's Phone: U.S. EPA ID Number 6. Transporter 1 Company Name ORA 0000 2 8 173 U.S. EPA ID Number Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address CHEMICAL WASTE MANAGEMENT, INC 17629 CEDAR SPRINGS LANE 0 R D 0 8 8 4 5 2 3 5 3 ARLINGTON OR 97842-9788 Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, &m 5 7-30-14 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) Quantity Wt./Vol. НМ Туре HAZARDOUS WASTE, SOLID, N.O.S., 9,NA3077, IR (D019 TES: P DT504 - 74 14. Special Handling Instructions and Additional Information GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and i am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAcknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month Day Year 1AVO WOU 10 OH N 16. International Shipments Import to U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S. 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Month Year Transporter 2 Printed/Typed Name 18. Discrepancy Discrepancy Indication Space Partial Rejection Full Rejection ree liquid source is the waste Scott Braunsten/Cay. Environments - Environments 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 囧 18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete

Surcharges: Bill in addition to contract pricing for landfill	Price per unit or hour	·
TSDF Billable Services Customer Approved Services: Surchanges: Bill in addition to contract pricing for landfill	Price per unit or hour	
Customer Approved Services: Surchanges: Bill in addition to contract pricing for landfill Free Liquid Stabilization/ Drums (Unscheduled)		# of units or hour
		<u>,</u>
ree Equit Stabilization Dittins (Onscheduled)	\$100/days	
Free Liquid Stabilization/ Bulk (Unscheduled)	\$100/drum \$500/load	
Orum Less than 90% Full	\$300/load \$20/drum	<u> </u>
Leaking shipment	\$500/load	
Profile Approval Fees:	\$300/load	
Profile Approval at the gate	\$1500.00/profile	
Re-Certification at the gate	\$150.00/profile	
Truck Washout (Unscheduled/Disposed on Site)	\$1.00/gallon	
Site Services:	\$1.00/gaii011	
General Labor	\$45/hour	
Response Leader/ Supervisor	\$90/hour	
Supplies:		
55 gal Drum	\$65/drum	
35 gal Salvage Drum	\$150/drum	
6 mil plastic	\$100/roll	*
6 mil plastic - Diaper truck/pup	\$50/truck/pup	
Flyash	\$35/ton	
Absorbents	\$10/sack	
Hydraulic Oil	\$8/gallon	
Poly Drum	\$30/drum	
Equipment (Spill Cleanup Usage):		
oader	\$85/hour	
Grader	\$85/hour	
Scraper	\$85/hour	,
Oozer	\$85/hour	
/acuum Truck	\$85/hour	
Backhoe	\$85/hour	
aylor	\$85/hour	
Crane (25,000 lb capacity)	\$85/hour	
Comments: OKay To Solidity Comments: OKay To Solidity GOV- Environmental Schulsty.	\$2000/day	

Water Pollution Control Laboratory

6543 N. Burlington Avenue, Bldg. 217, Portland, Oregon 97203 • Dan Saltzman, Commissioner • Dean Marriott, Director

June 10, 2010

Mr. John O'Donovan City of Portland - BES 1120 SW 5th Avenue Portland, OR 97204

Subject:

Industrial Wastewater Batch Discharge Authorization (Batch-2010-028)

Dear Mr. O'Donovan:

This letter responds to your June 2, 2010 batch discharge request. The Industrial Source Control Division has reviewed your request and finds the waste meets City limits and is acceptable for discharge to the sanitary sewer system. This letter authorizes the discharge of approximately 100,000 gallons of sewer cleaning effluent into the City's sanitary sewer system. This is a one-time authorization for this project and this particular waste only.

This authorization is subject to the following stipulations:

- The discharge point shall be to sanitary manhole nodes #AAX317, AAX282, AAX271 or AAX254(as identified in your application).
- At no time shall discharge water be allowed to enter the storm sewer system.
- The discharge rate shall not exceed 50 gallons per minute and shall meet local discharge limitations.
- Appropriate measures (filtering, settling, etc.) shall be taken to reduce suspended solids entering the sanitary sewer system.
- A copy of this authorization shall be at the discharge location at all times.
- The discharge must take place during DRY WEATHER ONLY. Dry weather is defined by the Oregon Department of Environmental Quality as a time it is not raining and it has not rained in the Portland metropolitan area during the previous eight (8) hours.
- Within thirty (30) days of concluding discharge, return the enclosed Monthly Batch Discharge Report in order to notify this office of the date, volume discharged and discharge location.

Please sign a copy of this letter acknowledging your agreement to the above-mentioned terms and return it to this office prior to discharge. If you have any questions concerning the above requirements, please contact the undersigned at 503-823-7230 or anno@bes.ci.portland.or.us.

Respectfully,

Ann O'Roke Industrial Permitting Section Industrial Source Control Division Bureau of Environmental Services Agreement to above terms:

Name

Date

Ph: 503-823-5600 Fax: 503-823-5656 • www.cleanriverspdx.org • Using recycled paper. • An Equal Opportunity Employer. For disability accommodation requests call 503-823-7740, Oregon Relay Service at 1-800-735-2900, or TDD 503-823-6868.

APPENDIX C

Outfall Basin 18 East-Central Subbasin September 2010 Surface Soil and Catch Basin Solids Investigation Data Summary Report

Appendix C

Outfall Basin 18 East-Central Subbasin September 2010 Surface Soil and Catch Basin Solids Investigation Data Summary Report

Introduction

The east-central subbasin of Basin 18 was identified as having upland sources of polychlorinated biphenyls (PCBs), pesticides, and metals, based on results of sediment trap samples collected in spring 2007 and spring 2009 (BES, 2010a). After the sediment trap investigation, the City investigated inline solids from the City conveyance system at several locations upstream of the sediment trap locations, and PCBs and metals were detected in most of the samples (BES, 2012). This report summarizes the results of the subsequent City of Portland surface soil and inline solids investigation in this area. In September 2010, the City collected four surface soil samples from NW Lake Street (which is unpaved) and solids samples from four catch basins along NW 35th Avenue.

The purpose of the fall 2010 sampling event was to investigate a potential erodible soils pathway between a known source of PCBs, pesticides, and metals and the east-central subbasin conveyance system. Container Management Services is a site being investigated under the DEQ Cleanup program, and is located in an area that may have historical and current pathways to the east-central subbasin. In 2009, Container Management analyzed site catch basin solids and erodible soils; results indicate that the site is a major source of pesticides and PCBs (SES, 2011). The analytical results indicate the presence of these contaminants in surface soils from NW Lake Street and in the catch basin solids from the sampled locations along NW 35th Avenue.

This inline solids investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City. The data collected under this investigation support ongoing work by DEQ and the City to characterize and control discharges to the stormwater pathway from sites within Basin 18.

Background

The Container Management site has operated as a storage drum reconditiong/recycling facility since approximately 1939 (SES, 2009), and data from the site (SES, 2011) indicate PCBs and pesticides are present at elevated concentrations in onsite surface soils and stormwater solids. Vehicles exit the site onto NW 35th Avenue by way of NW Lake Street (see Figure A-1). Although NW Lake Street is a public road, it is used almost exclusively by traffic from the adjacent Container Management site. NW Lake Street is unimproved and shows evidence of

erosion (see photographs 1 through 12 in Attachment C-1). In turn, soil tracked from the Container Management site via NW Lake Street is a potential source of contaminants to a stretch of NW 35th Avenue where runoff discharges to adjacent catch basins within the east-central subbasin.

Based on the large area of unpaved ground at the Container Management site, its long history of industrial operations, and the use of NW 35th Avenue by traffic exiting the site, the City identified Container Management as a potential source of contaminants to the east-central subbasin via vehicle drag-out of erodible surface soil from the site.

Sampling Activities and Analytical Approach

The surface soil and catch basin solids sampling activities were completed in accordance with the Summer 2010 Sampling and Analysis Plan (SAP) submitted to DEQ in August 2010 (BES, 2010b). Four composite surface soil samples (0 - 2 inches below the ground surface) were collected on September 14, 2010, from the NW Lake Street right-of-way, at the locations shown on Figure C-1. Sample locations were selected to represent areas that may be impacted by Container Management operations. Each sample represents a composite of five subsamples collected from discrete locations in close proximity. These subsamples were first composited and then homogenized into a representative composite sample for chemical analysis. Also on September 14, solids samples were collected from four catch basins along NW 35th Avenue and near NW Lake Street. The locations of these catch basins are shown on Figure C-1. One of the catch basins proposed for sampling (catch basin ADY099, mapped in NW 35th Avenue on the corner of NW Guam Street) was no longer present; therefore, nearby catch basin APN941 was sampled as an alternative. Although it was determined that catch basin APN941 is not connected to the eastcentral subbasin, accumulated solids in the catch basin were analyzed because they represent contributions of solids from vehicle traffic on NW 35th Avenue. Visual observation at catch basin APP278 indicated that sampleable soils were not present at that location. The surface soil and catch basin sampling locations are listed below:

Sample Identification	Description
West end of Lake St.	NW Lake Street between NW St. Helens Road and railroad tracks
Lake St. at railroad tracks	NW Lake Street between railroad tracks that cross NW Lake Street
East of railroad tracks	NW Lake Street on the east side of the railroad tracks
East end of Lake St.	NW Lake Street just west of NW 35th Avenue
Catch basin ANF164	Catch basin on west side of NW 35th Avenue at the intersection with NW Lake Street
Catch basin APN941	Catch basin on the south side of NW Guam Street at the intersection with NW 35th Avenue (referred to as "unnamed catch basin" in Attachment C-2 field notes). This catch basin is not connected to the east-central subbasin conveyance system.
Catch basin ANB621	Catch basin on the east side NW 35th Avenue north of the intersection with NW Guam Street
Catch basin ANB622	Catch basin on the west side of NW 35 th Avenue north of the intersection with NW Guam Street

Photographs of the sampling locations and samples collected are included in Attachment C-1. Field notes recorded during sampling activities are provided in Attachment C-2.

The surface soil and inline solids samples were submitted to the City's Water Pollution Control Laboratory or contracted laboratories for analysis of metals, PCB congeners, PCB Aroclors, pesticides, total organic carbon, and total solids.

Summary of Results

PCBs, metals, and pesticides were detected in all of the samples. Tables C-1 and C-2 summarize the laboratory analytical results and include the JSCS SLVs for reference. The laboratory reports and data review memorandum for the samples are provided in Attachment C-3.

References

BES. 2007a. Amended Programmatic Quality Assurance Project Plan, City of Portland Outfalls Project, Revision to Programmatic Source Control Remedial Investigation Work Plan Appendix D. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.

BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.

- BES. 2010a. Technical Memorandum No. OF18-2, Outfall Basin 18 Inline Solids Investigation. July 20, 2010.
- BES. 2010b. Subject: City of Portland Outfall Project, Source Investigations for Basins 18, 19A, 52, 52C, 53, 53A, and S-1, Summer 2010 Sampling and Analysis Plan. Letter to K. Tarnow (DEQ) from L. Scheffler (BES). August 11, 2010.
- BES. 2012. Outfall Basin 18 East-Central Subbasin, Fall 2009 Inline Solids Sampling, Data Summary Report. Appendix A to Outfall Basin 18, East-Central Subbasin Source Investigation Report. May 2012.
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).
- SES. 2009. Stormwater Assessment Work Plan, Container Management Services, LLC, 3000 NW St. Helens Road, Portland, OR. Prepared for IMACC Corporation by Strategic Engineering & Science, Inc. January 30, 2009.
- SES. 2011. Re: Sediment and Soil Sampling Data Tables, Container Management Services, LLC, 3000 NW St. Helens Road, Portland, Oregon, ECSI #4784. Data transmittal to J. Orr (DEQ) from S. Kemnitz and M. Bazargani (SES). October 12, 2011.

Tables

Table C-1 – Basin 18 East-Central Subbasin Fall 2010 Surface Soils and Catch Basin Solids Results

Table C-2 – Basin 18 East-Central Subbasin Fall 2010 Surface Soils and Catch Basin Solids PCB Congener Results

Figure

Figure C-1 – Basin 18 East-Central Subbasin, Fall 2010 Surface Soil and Catch Basin Solids Sampling Locations

Attachments

Attachment C-1 – *Field Photographs*

Attachment C-2 – Field Data Sheets

Attachment C-3 – *Laboratory Results*

Table C-1 Basin 18 East-Central Subbasin September 2010 Surface Soil and Catch Basin Solids Results

			NW	Lake Street Right-of-	Way			NW 35th A	venue Catch Basins			
		Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		West End of Lake St FO105890	DUPLICATE West End of Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANB622 FO105895	Catch Basin ANB621 FO105897	Catch Basin APN941 (Not in Subbasin) FO105896	Catch Basin ANF164 (Connects to MH AAX318) FO105894		JSCS ⁽¹⁾ ing Level Value
Class Analyte	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)												
TOC	mg/Kg	11,100	9,930	8,520	12,600	20,200	102,000	111,000	84,000	40,300		
Total Solids (SM 2540G)												
TS	%	96.3	96.2	98	92.3	90.2	67.1	58.7	62.0	92.7		
Metals (EPA 6020)												
Cadmium	mg/Kg	0.79	0.89	0.63	0.71	1.08	2.12	2.83	1.53	2.47	4.98	1
Chromium	mg/Kg	42.4	59.7	39.9	51.0	51.3	75.0	124	180	84.7	111	
Copper	mg/Kg	36.7	34.8	41.0	50.2	46.6	104	129	136	114	149	
Lead	mg/Kg	93.9	94.1	104	148	157	74.4	118	124	151	128	17
Mercury	mg/Kg	0.054	0.048	0.052	0.086	0.066	0.081	0.130	0.077	0.075	1.06	0.07
Nickel	mg/Kg	13.2	26.1	16.6	16.9	17.8	45.2	55.3	52.0	41.5	48.6	
Silver	mg/Kg	0.25	0.22	0.31	1.04	0.44	0.45	0.64	0.65	0.43	5	
Zinc	mg/Kg	179	185	239	264	237	872	1,317	884	644	459	
Organochlorine Pesticides (EPA 8081A)												
4,4'-DDD ⁽²⁾	μg/Kg	7.7	6.9 U	5.4 U	21	6.2	2.3	1.4 U	1.3	3.5	28	0.33
4,4'-DDE ⁽²⁾	μg/Kg	6.1	4.7	5.7	26	5.4	2.3	1.3	1.1 U	3.2	31.3	0.33
4,4'-DDT ⁽²⁾	μg/Kg	72	70	61	140	58	9.6 U	11 U	19	20	62.9	0.33
Estimated Total DDx		86	75	67	187	70	4.6	1.3	20	27		0.33
Aldrin	μg/Kg	3 U	0.97 U	1 U	5.5 U	0.97 U	0.97 U	0.74 J	1.2 U	1.1	40	
alpha-BHC (α-BHC)	μg/Kg	1 U	0.97 U	1 U	0.99 U	0.97 U	0.97 U	1.0 U	0.98 U	0.99 U		
beta-BHC (β-BHC)	μg/Kg	1 U	4 U	1.4 U	0.99 U	1.2 U	2.3 U	1.0 U	6.9 U	2.9 U		
delta-BHC (δ-BHC)	μg/Kg	1 U	0.97 U	0.31 J	0.99 U	0.97 U	0.97 U	1.0 U	0.98 U	0.99 U		
gamma-BHC (γ-BHC, Lindane)	μg/Kg	1 U	0.97 U	1 U	0.99 U	0.97 U	1.4 U	1.6 U	0.98 U	0.99 U	4.99	
alpha-Chlordane ⁽⁴⁾	μg/Kg	61	60	82	120	17	1.4	2.5	2.3	5.8		
beta-Chlordane ⁽⁴⁾	μg/Kg	74	74	90	140	23	2.8	4.8	3.0	8.4		
Total Chlordane	⁽⁵⁾ μg/Kg	135	134	172	260	40	4.2	7.3	5.3	14	17.6	0.37
Dieldrin	μg/Kg	13	13	13	21	7.3	0.97 U	1.0 U	0.98 U	2.5 U	61.8	0.0081
Endosulfan I	μg/Kg	3.9 U	3.5 U	4.3 U	9.9 U	1.2 U	2.9	1.0 U	0.98 U	0.99 U		
Endosulfan II	μg/Kg	22 U	25 U	19 U	21 U	4.5 U	2.3 U	3.8 U	1.6 U	0.99 U		
Endosulfan sulfate	μg/Kg	4 U	2.7 U	1.8 U	6.1 U	1.7	2.5	3.9	1.7	2.0 U		
Endrin	μg/Kg	1 U	0.97 U	1 U	0.99 U	0.97 U	0.97 U	1.0 U	0.98 U	0.99 U	207	
Endrin aldehyde	μg/Kg	3.5 U	3.6 U	3.2 U	8.7 U	1.4 U	0.97 U	1.0 U	0.98 U	0.99 U		
Endrin ketone	μg/Kg	1 U	0.97 U	1.2 U	11 U 0.99 U	6.4 U	0.95 J 3.4	1.1 U	0.98 U 16	0.49 J 0.61 J	10	
Heptachlor Heptachlor epoxide	μg/Kg	1 U 1 U	0.97 U 0.97 U	1 U 1.9 U	0.99 U 0.99 U	0.97 U 0.97 U	0.97 U	3.2 1.0 U	0.81 J	0.61 J 0.99 U	10 16	
Methoxychlor	μg/Kg μg/Kg	5.9 U	4.9 U	5.9 U	6.2 U	2.5 U	1.9 U	2.8 U	0.81 J 0.98 U	2.1 U		
Toxaphene	μg/Kg μg/Kg	420 U	570 U	600 U	580 U	290 U	1.9 U	140 U	97 U	2.1 U		
Толирноно	μg/IXg	720 0	370	000	300 0	270 0	170 0	170 0	71 0	200 C		· · · · · · · · · · · · · · · · · · ·

MAY 2012 PAGE 1 OF 2

Table C-1 Basin 18 East-Central Subbasin September 2010 Surface Soil and Catch Basin Solids Results

					NW	Lake Street	Right-of-	Way					NW 35th A	venue Catch Basins			
		Surfac	e Soil	Surface	Soil	Surface	e Soil	Surface	e Soil	Surface	Soil	Inline Solids	Inline Solids	Inline Solids	Inline Solids		
		West End o		DUPLIC West End of FO105	Lake St.	Lake St. at FO105		East of R FO105		East End of FO105		Catch Basin ANB622 FO105895	Catch Basin ANB621 FO105897	Catch Basin APN941 (Not in Subbasin) FO105896	Catch Basin ANF164 (Connects to MH AAX318) FO105894	Screen	JSCS ⁽¹⁾ ning Level Value
Class Analyte	Units	9/14/2	2010	9/14/20	010	9/14/2	2010	9/14/2	010	9/14/2	010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
Polychlorinated Biphenyls Arc	oclors (PCBs) (EPA 8082)																
Aroclor 1016	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	μg/Kg	80	U	20	U	80	U	80	U	20	U	20 U	20 U	20 U	20 U		
Aroclor 1232	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U		
Aroclor 1242	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U	1500	
Aroclor 1254	μg/Kg	125		151		85		151	EST	98		44	56	29	112	300	
Aroclor 1260	μg/Kg	40	U	57		63		110		48		57	42	38	76	200	
Aroclor 1262	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	40	U	10	U	40	U	40	U	10	U	10 U	10 U	10 U	10 U		
	Total PCBs ⁽⁶⁾ µg/Kg	125		208		148		261	EST	146		101	98	67	188	676	0.39
Polychlorinated Biphenyl Con	geners (EPA 1668A)																
	Total PCBs (6) (7) μg/Kg	234		248		235		385		183		81.7	92.7	90.0	177	676	0.39

Notes:

J = The analyte was detected at a concentration between the method detection limit and the method reporting limit.

NA = Not analyzed

ND = Not detected

U = The analyte was not detected above the reported sample quantification limit.

-- = No JSCS screening level available

μg/Kg = Micrograms per kilogram

mg/Kg = Milligrams per kilogram

(1) JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

 $^{(2)}$ The toxicity SLV represents the sum of the 2,4' and 4,4' isomers.

(3) Estimated Total DDx is the sum of DDE, DDD and DDT.

⁽⁴⁾ Alpha-Chlordane also is known as cis-Chlordane. Beta-Chlordane also is known as trans-Chlordane and gamma-Chlordane.

⁽⁵⁾ Total Chlordane is the sum of alpha- and beta-Chlordane.

⁽⁶⁾ Total PCBs are calculated by assigning "0" to undetected constituents.

(7) Individual congener results are summarized in TableC-2.

= concentration exceeds JSCS Toxicity Screening Level Value

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value

MAY 2012 PAGE 2 OF 2

Table C-2 Basin 18 East-Central Subbasin Fall 2010 Surface Soil and Inline Solids Results - PCB Congeners

		_		NW Lak	ke Street Surface Soil Sampl	es		- <u></u>	NW 35th Avenue Cat	ch Basin Solids Samples			
			West End Lake St. FO105890	DUPLICATE West End Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANF 164 FO105894	Catch Basin APN941 FO105896	Catch Basin ANB621 FO105897	Catch Basin ANB622 FO105895	Scree	JSCS ⁽²⁾ ning Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
Chlorinated Biphenyl Conger	, ,	/1/ -	0.0220	0.0202	0.0240.11	0.0247.11	0.0220 11	0.0245 11	0.0220 11	0.0240 11	0.0247.11		
PCB 1 PCB 2	2-MoCB 3-MoCB	μg/Kg μg/Kg	0.0229 0.0287	0.0282 0.0316	0.0240 U 0.0240 U	0.0247 U 0.0264	0.0239 U 0.0248	0.0245 U 0.0245 U	0.0239 U 0.0239 U	0.0248 U 0.0248 U	0.0247 U 0.0247 U		
PCB 3	4-MoCB	μg/Kg	0.0267	0.0312	0.0250	0.0280	0.0251	0.0245 U	0.0239 U	0.0325	0.0247 U		
PCB 4	2,2'-DiCB	μg/Kg	0.0378	0.0410	0.0321	0.0513	0.0329	0.0738	0.0263	0.0295	0.0286	-	
PCB 5 PCB 6	2,3-DiCB 2,3'-DiCB	μg/Kg μg/Kg	0.0219 U 0.0239	0.0247 U 0.0247 U	0.0240 U 0.0240 U	0.0247 U 0.0247 U	0.0239 U 0.0239 U	0.0245 U 0.0245 U	0.0239 U 0.0239 U	0.0248 U 0.0248 U	0.0247 U 0.0247 U		
PCB 7	2,4-DiCB	μg/Kg μg/Kg	0.0239 0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 8	2,4'-DiCB	μg/Kg	0.082	0.0906	0.0788	0.0943	0.0685	0.0726	0.0756	0.0889	0.0778		
PCB 9	2,5-DiCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 10 PCB 11	2,6-DiCB 3,3'-DiCB	μg/Kg μg/Kg	0.0219 U 1.57	0.0247 U 1.71	0.0240 U 1.50	0.0247 U 1.89	0.0239 U 1.10	0.0245 U 0.522	0.0239 U 5.82	0.0248 U 2.37	0.0247 U 0.950		
PCB 12/13	3,4-DiCB + 3,4'-DiCB	μg/Kg μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0500	0.0494 U		
PCB 14	3,5-DiCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 15	4,4'-DiCB	μg/Kg	0.165	0.151	0.116	0.180	0.122	0.194	0.144	0.172	0.200		
PCB 16 PCB 17	2,2',3-TriCB 2,2',4-TriCB	μg/Kg μg/Kg	0.109 0.115	0.0799 0.0926	0.0656 0.0715	0.105 0.113	0.0574 0.0674	0.175 0.166	0.0554	0.0544 0.0512	0.0582 0.0549		
PCB 17 PCB 18/30	2,2',5-TriCB + 2,4,6-TriCB	μg/Kg μg/Kg	0.115	0.0926	0.0715	0.113	0.0674	0.166	0.0509	0.0512	0.0549		
PCB 19	2,2',6-TriCB	μg/Kg	0.0405	0.039	0.0261	0.0438	0.0239 U	0.171	0.0262	0.0276	0.0293		
PCB 20/28	2,3,3'-TriCB + 2,4,4'-TriCB	μg/Kg	0.515	0.492	0.341	0.547	0.278	0.459	0.336	0.385	0.323		
PCB 21/33	2,3,4-TriCB + 2',3,4-TriCB	μg/Kg	0.235	0.198	0.157	0.230	0.136	0.230	0.166	0.173	0.135		
PCB 22 PCB 23	2,3,4'-TriCB 2,3,5-TriCB	μg/Kg μg/Kg	0.178 0.0219 U	0.160 0.0247 U	0.116 0.0240 U	0.185 0.0247 U	0.0988 0.0239 U	0.163 0.0245 U	0.124 0.0239 U	0.132 0.0248 U	0.102 0.0247 U		
PCB 24	2,3,6-TriCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 25	2,3',4-TriCB	μg/Kg	0.0381	0.0362	0.0278	0.0407	0.0239 U	0.0408	0.0256	0.0283	0.0247 U		
PCB 26/29	2,3',5-TriCB + 2,4,5-TriCB	μg/Kg	0.0756	0.0714	0.0510	0.0799	0.0478 U	0.0652	0.0478 U	0.0591	0.0494 U		
PCB 27 PCB 31	2,3',6-TriCB	μg/Kg	0.0326 0.514	0.0251 0.424	0.0240 U 0.313	0.0313	0.0239 U 0.266	0.0591 0.425	0.0239 U 0.261	0.0248 U 0.291	0.0291		
PCB 32	2,4',5-TriCB 2,4',6-TriCB	μg/Kg μg/Kg	0.514	0.424	0.0749	0.525	0.0693	0.425	0.261	0.291	0.244		
PCB 34	2',3,5-TriCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 35	3,3',4-TriCB	μg/Kg	0.0443	0.0462	0.0368	0.0486	0.0283	0.0249	0.0851	0.0507	0.0439		
PCB 36	3,3',5-TriCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0367	0.0248 U	0.0247 U		
PCB 37 PCB 38	3,4,4-TriCB 3,4,5-TriCB	μg/Kg μg/Kg	0.338 0.0219 U	0.342 0.0247 U	0.248 0.0240 U	0.393 0.0247 U	0.178 0.0239 U	0.218 0.0245 U	0.274 0.0239 U	0.288 0.0248 U	0.274 0.0247 U		
PCB 39	3,4',5-TriCB	μg/Kg	0.0219 U	0.0247 U	0.0240 U	0.0247 U	0.0239 U	0.0245 U	0.0239 U	0.0248 U	0.0247 U		
PCB 40/41/71	2,2',3,3'-TeCB + 2,2',3,4-TeCB + 2,3',4',6-TeCB	μg/Kg	1.61	1.44	1.07	2.54	0.703	0.974	0.521	0.535	0.560		
PCB 42	2,2',3,4'-TeCB	μg/Kg	0.613	0.563	0.448	1.05	0.306	0.448	0.203	0.204	0.209	-	
PCB 43/73 PCB 44/47/65	2,2',3,5-TeCB + 2,3',5',6-TeCB 2,2',3,5'-TeCB + 2,2',4,4'-TeCB + 2,3,5,6-TeCB	μg/Kg	0.0875 U 3.07	0.0986 U 3.07	0.0959 U 2.80	0.0988 U 5.26	0.0955 U 2.11	0.098 U 2.27	0.0478 U 0.944	0.0992 U 0.897	0.0987 U 0.869		
PCB 45/51	2,2',3,6-TeCB + 2,2',4,4-TeCB + 2,3,5,0-TeCB 2,2',3,6-TeCB + 2,2',4,6'-TeCB	μg/Kg μg/Kg	0.471	0.434	0.298	0.552	0.184	0.719	0.944	0.897	0.869		
PCB 46	2,2',3,6'-TeCB	μg/Kg	0.179	0.160	0.112	0.198	0.0698	0.290	0.0589	0.0664	0.0730		
PCB 48	2,2',4,5-TeCB	μg/Kg	0.295	0.238	0.190	0.399	0.129	0.245	0.106	0.115	0.104		
PCB 49/69	2,2',4,5'-TeCB + 2,3',4,6-TeCB	μg/Kg	1.69	1.67	1.45	2.75	1.09	1.25	0.509	0.464	0.446		
PCB 50/53 PCB 52	2,2',4,6-TeCB + 2,2',5,6'-TeCB 2,2',5,5'-TeCB	μg/Kg μg/Kg	0.420 6.54	0.403 6.91	0.293 6.83	0.485	0.201 5.41	0.633 5.08	0.129 1.85	0.147 1.90	0.156 1.63		
PCB 54	2,2',6,6'-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 55	2,3,3',4-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 56	2,3,3',4'-TeCB	μg/Kg	1.14	1.05	0.927	2.09	0.633	0.540	0.404	0.452	0.428		
PCB 57 PCB 58	2,3,3',5-TeCB 2.3.3',5'-TeCB	μg/Kg μg/Kg	0.0438 U 0.0438 U	0.0493 U 0.0493 U	0.0479 U 0.0479 U	0.0494 U 0.0494 U	0.0478 U 0.0478 U	0.0490 U 0.0490 U	0.0478 U 0.0478 U	0.0496 U 0.0496 U	0.0494 U 0.0494 U		
PCB 59/62/75	2,3,3',6-TeCB + 2,3,4,6-TeCB + 2,4,4',6-TeCB	μg/Kg μg/Kg	0.235	0.213	0.149	0.336	0.0478 U	0.152	0.143 U	0.149 U	0.148 U		
PCB 60	2,3,4,4'-TeCB	μg/Kg	0.459	0.388	0.327	0.589	0.231	0.210	0.178	0.213	0.203		
PCB 61/70/74/76	2,3,4,5-TeCB + 2,3',4',5-TeCB + 2,4,4',5-TeCB + 2',3,4,5-TeCB	μg/Kg	5.07	5.04	4.86	8.75	3.54	2.98	1.81	1.86	1.64		
PCB 63 PCB 64	2,3,4',5-TeCB 2,3,4',6-TeCB	μg/Kg	0.0733	0.0624	0.0582 0.912	0.109 2.23	0.0478 U 0.686	0.0490 U 0.663	0.0478 U 0.387	0.0496 U 0.520	0.0494 U 0.514		
PCB 64 PCB 66	2,3,4,6-1eCB 2,3',4,4'-TeCB	μg/Kg μg/Kg	2.50	2.40	2.08	4.32	1.43	1.24	0.387	0.520	0.514	-	
PCB 67	2,3',4,5-TeCB	μg/Kg	0.0520	0.0493 U	0.0479 U	0.0719	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 68	2,3',4,5'-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 72	2,3',5,5'-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 77 PCB 78	3,3',4,4'-TeCB 3,3',4,5-TeCB	μg/Kg μg/Kg	0.608 0.104	0.584 0.115	0.460 0.0479 U	0.826 0.180	0.283 0.0859	0.278 0.0490 U	0.218 0.0478 U	0.247 0.0496 U	0.272 0.0494 U		0.052
PCB 79	3,3',4,5'-TeCB	μg/Kg μg/Kg	0.104	0.115	0.0479 0	0.180	0.0859	0.0490 0	0.0478 U	0.0496 U	0.0494 U		
PCB 80	3,3',5,5'-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 81	3,4,4',5-TeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		0.017
PCB 82	2,2',3,3',4-PeCB	μg/Kg	2.18	2.30	2.04	3.61	1.53	1.30	0.500	0.543	0.470		
PCB 83 PCB 84	2,2',3,3',5-PeCB 2,2',3,3',6-PeCB	μg/Kg μg/Kg	0.912 4.44	1.06 4.70	0.956 4.46	7.03	0.601 3.24	0.572 2.94	0.244 1.35	0.292 1.52	0.264		
PCB 85/116/117	2,2',3,4,4'-PeCB + 2,3,4,5,6-PeCB + 2,3,4',5,6-PeCB	μg/Kg μg/Kg	2.57	2.60	2.49	4.48	1.98	1.46	0.630	0.598	0.540		
		r-0 **b	2.31	2.00	2.7/	7.70	1.70	1.70	0.050	0.570	3.540		

Table C-2 Basin 18 East-Central Subbasin Fall 2010 Surface Soil and Inline Solids Results - PCB Congeners

		_		NW Lak	ke Street Surface Soil Sampl	es			NW 35th Avenue Cat	ch Basin Solids Samples			
			West End Lake St. FO105890	DUPLICATE West End Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANF 164 FO105894	Catch Basin APN941 FO105896	Catch Basin ANB621 FO105897	Catch Basin ANB622 FO105895	Scree	JSCS ⁽²⁾ ning Level Value
IUPAC Number(1)	Chemical Name	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
PCB 86/87/97/108/119/125	2,2',3,4,5-PeCB + 2,2',3,4,5'-PeCB + 2,2',3',4,5-PeCB + 2,3,3',4,5'-	/IZ	10.1	10.1	10.5	17.3	8.04	6.73	3.51	3.64	2.97	_	
PCB 88/91	PeCB + 2,3',4,4',6-PeCB + 2',3,4,5,6'-PeCB 2,2',3,4,6-PeCB + 2,2',3,4',6-PeCB	μg/Kg μg/Kg	2.13	2.26	2.06	3.57	1.55	1.30	0.598	0.640	0.562		
PCB 89	2,2',3,4,6'-PeCB	μg/Kg	0.220	0.221	0.171	0.303	0.122	0.121	0.0528	0.0562	0.0543		
PCB 90/101/113 PCB 92	2,2',3,4',5-PeCB + 2,2',4,5,5'-PeCB + 2,3,3',5',6-PeCB 2,2',3,5,5'-PeCB	μg/Kg μg/Kg	13.2 2.68	14.1 2.84	14.1 2.84	22.8 4.63	10.7 2.10	8.96 1.74	5.17 0.930	5.47 1.01	4.49 0.805		
PCB 93/98/100/102	2,2',3,5,6-PeCB + 2,2',3',4,6-PeCB + 2,2',4,4',6-PeCB + 2,2',4,5,6'-	µg/Кg	0.496	0.519	0.457	0.817	0.327	0.282	0.191 U	0.198 U	0.803 0.197 U		
	PeCB	μg/Kg											
PCB 94 PCB 95	2,2',3,5,6'-PeCB 2,2',3,5',6-PeCB	μg/Kg μg/Kg	0.0758 12.4	0.0757	0.0713	0.118 20.2	0.0533 9.66	0.0490 U 8.55	0.0478 U 4.18	0.0496 U 4.60	0.0494 U 3.71		
PCB 96	2,2',3,6,6'-PeCB	μg/Kg	0.102	0.109	0.0899	0.179	0.0737	0.0725	0.0478 U	0.0496 U	0.0494 U		
PCB 99	2,2',4,4',5-PeCB	μg/Kg	5.41	5.64	5.56	9.76	4.46	3.28	1.69	1.69	1.41		
PCB 103 PCB 104	2,2',4,5',6-PeCB 2,2',4,6,6'-PeCB	μg/Kg μg/Kg	0.0630 0.0438 U	0.0698 0.0493 U	0.0624 0.0479 U	0.0960 0.0494 U	0.0478 U 0.0478 U	0.0490 U 0.0490 U	0.0478 U 0.0478 U	0.0496 U 0.0496 U	0.0494 U 0.0494 U		
PCB 105	2,3,3',4,4'-PeCB	μg/Kg	5.05	5.64	5.26	9.10	4.31	3.71	1.55	1.78	1.61		0.17
PCB 106	2,3,3',4,5-PeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 107/124 PCB 109	2,3,3',4',5-PeCB + 2',3,4,5,5'-PeCB 2,3,3',4,6-PeCB	μg/Kg	0.605 0.814	0.665 0.848	0.631 0.855	1.03	0.464 0.601	0.401 0.555	0.151 0.196	0.177 0.253	0.152 0.186		
PCB 110/115	2,3,3',4',6-PeCB + 2,3,4,4',6-PeCB	μg/Kg μg/Kg	18.1	19.5	18.9	31.2	14.9	12.4	4.82	5.44	4.41		
PCB 111	2,3,3',5,5'-PeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 112	2,3,3',5,6-PeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 114 PCB 118	2,3,4,4',5-PeCB 2,3',4,4',5-PeCB	μg/Kg μg/Kg	0.253 11.1	0.289	0.282 12.2	0.409 19.7	0.201 9.63	0.172 7.75	0.0748 3.41	0.0865 4.04	0.0777 3.49		0.17 0.12
PCB 120	2,3',4,5,5'-PeCB	μg/Kg μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 121	2,3',4,5',6-PeCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 122	2',3,3',4,5-PeCB	μg/Kg	0.223	0.245	0.215	0.374	0.164	0.126	0.0487	0.0496 U	0.0494 U		
PCB 123 PCB 126	2',3,4,4',5-PeCB 3,3',4,4',5-PeCB	μg/Kg μg/Kg	0.287 0.289	0.368 0.0584	0.273 0.272	0.605 0.0759 EMPC	0.264 0.0663	0.160 0.0729	0.0855 0.103	0.0716 0.0496 U	0.101 0.109		0.21 0.00005
PCB 127	3,3',4,5,5'-PeCB	μg/Kg μg/Kg	0.0733 EMPC	0.0493 U	0.0479 U	0.0612 EMPC	0.0478 U	0.0490 U	0.103 0.0478 U	0.0496 U	0.0494 U		0.00003
PCB 128/166	2,2',3,3',4,4'-HxCB + 2,3,4,4',5,6-HxCB	μg/Kg	3.09	3.43	3.23	4.87	2.57	2.69	0.936	1.15	0.906		
PCB 129/138/163	2,2',3,3',4,5-HxCB + 2,2',3,4,4',5'-HxCB + 2,3,3',4',5,6-HxCB	μg/Kg	18.5	20.6	19.8	30.0	15.7	16.0	6.45	7.76	6.42		
PCB 130	2,2',3,3',4,5'-HxCB	μg/Kg	1.19	1.35	1.30	1.88	0.976	1.02	0.393	0.472	0.378		
PCB 131 PCB 132	2,2',3,3',4,6-HxCB 2,2',3,3',4,6'-HxCB	μg/Kg μg/Kg	0.281 6.23	0.315 6.87	0.323 6.77	0.458	0.235 5.22	0.236 5.02	0.0858	0.103 2.43	0.0852 2.00		
PCB 133	2,2',3,3',5,5'-HxCB	μg/Kg	0.215	0.235	0.230	0.329	0.174	0.176	0.0744	0.0854	0.0743		
PCB 134/143	2,2',3,3',5,6-HxCB + 2,2',3,4,5,6'-HxCB	μg/Kg	1.04	1.10	1.14	1.70	0.783	0.836	0.278	0.346	0.272		
PCB 135/151	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB	μg/Kg	4.73	5.25	5.09	7.99	3.92	3.77	2.00	2.18	1.80		
PCB 136 PCB 137	2,2',3,3',6,6'-HxCB 2,2',3,4,4',5-HxCB	μg/Kg μg/Kg	2.04 0.995	2.21	2.23	3.45 1.36	1.75 0.866	1.54 0.792	0.977 0.246	0.360	0.912 0.336		
PCB 139/140	2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB	μg/Kg	0.330	0.363	0.367	0.520	0.273	0.240	0.0956 U	0.106	0.0987 U		
PCB 141	2,2',3,4,5,5'-HxCB	μg/Kg	2.91	3.37	2.98	4.79	2.32	2.51	1.07	1.26	1.10		
PCB 142	2,2',3,4,5,6-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 144 PCB 145	2,2',3,4,5',6-HxCB 2,2',3,4,6,6'-HxCB	μg/Kg μg/Kg	0.781 0.0438 U	0.851 0.0493 U	0.822 0.0479 U	1.29 0.0494 U	0.619 0.0478 U	0.605 0.0490 U	0.186 0.0478 U	0.0615 0.0496 U	0.112 0.0494 U		
PCB 145	2,2',3,4',5,5'-HxCB	μg/Kg μg/Kg	2.16	2.39	2.27	3.45	1.77	1.79	0.0478 0	0.0490 0	0.0494 0		
PCB 147/149	2,2',3,4',5,6-HxCB + 2,2',3,4',5',6-HxCB	μg/Kg	12.3	13.4	13.1	20.2	10.3	9.69	4.33	5.01	4.13		
PCB 148	2,2',3,4',5,6'-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 150 PCB 152	2,2',3,4',6,6'-HxCB 2,2',3,5,6,6'-HxCB	μg/Kg	0.0438 U 0.0438 U	0.0493 U 0.0493 U	0.0479 U 0.0479 U	0.0494 U 0.0494 U	0.0478 U 0.0478 U	0.0490 U 0.0490 U	0.0478 U 0.0478 U	0.0496 U 0.0496 U	0.0494 U 0.0494 U		
PCB 152 PCB 153/168	2,2',4,4',5,5'-HxCB + 2,3',4,4',5',6-HxCB	μg/Kg μg/Kg	12.3	13.6	13.0	20.7	10.2	10.4	4.86	5.68	4.81		
PCB 154	2,2',4,4',5,6'-HxCB	μg/Kg	0.128	0.124	0.118	0.171	0.0887	0.0930	0.0478 U	0.0496 U	0.0494 U		
PCB 155	2,2',4,4',6,6'-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 156/157	2,3,3',4,4',5-HxCB + 2,3,3',4,4',5'-HxCB	μg/Kg	2.31 1.75	2.54 1.97	2.50	3.64 2.86	1.93	2.16 1.52	0.856 0.602	0.970 0.737	0.879 0.594		0.21
PCB 158 PCB 159	2,3,3',4,4',6-HxCB 2,3,3',4,5,5'-HxCB	μg/Kg μg/Kg	0.163	0.162	1.90 0.0479 U	2.86 0.0494 U	1.48 0.121	0.0490 U	0.602 0.0478 U	0.737 0.0496 U	0.594 0.0494 U		
PCB 160	2,3,3',4,5,6-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 161	2,3,3',4,5',6-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 162	2,3,3',4',5,5'-HxCB	μg/Kg	0.149	0.156	0.0479 U	0.0677	0.110	0.0490 U	0.0591	0.0496 U	0.0575		
PCB 164 PCB 165	2,3,3',4',5',6-HxCB 2,3,3',5,5',6-HxCB	μg/Kg μg/Kg	0.902 0.0438 U	1.19 0.0493 U	1.17 0.0479 U	1.90 0.0494 U	0.927 0.0478 U	0.986 0.0490 U	0.408 0.0478 U	0.450 0.0496 U	0.361 0.0494 U		
PCB 167	2,3',4,4',5,5'-HxCB	μg/Kg μg/Kg	0.776	0.0493 0	0.869	1.26	0.660	0.713	0.331	0.343	0.324		0.21
PCB 169	3,3',4,4',5,5'-HxCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		0.00021
PCB 170	2,2',3,3',4,4',5-HpCB	μg/Kg	3.43	3.68	3.20	5.22	2.55	3.11	1.65	1.41	1.74		
PCB 171/173 PCB 172	2,2',3,3',4,4',6-HpCB + 2,2',3,3',4,5,6-HpCB 2,2',3,3',4,5,5'-HpCB	μg/Kg	1.04 0.619	1.11 0.651	0.978 0.542	1.63 0.909	0.787 0.444	0.893 0.536	0.523 0.322	0.438 0.265	0.523 0.324		
PCB 172 PCB 174	2,2',3,3',4,5,6'-HpCB	μg/Kg μg/Kg	2.95	3.12	2.69	4.60	2.18	2.51	1.70	1.41	1.59		
PCB 175	2,2',3,3',4,5',6-HpCB	μg/Kg	0.156	0.163	0.139	0.236	0.110	0.126	0.0799	0.0736	0.0717		
PCB 176	2,2',3,3',4,6,6'-HpCB		0.421	0.439	0.387	0.683	0.317	0.330	0.217	0.230	0.206		

Table C-2 Basin 18 East-Central Subbasin Fall 2010 Surface Soil and Inline Solids Results - PCB Congeners

				NW Lak	e Street Surface Soil Sampl	es			NW 35th Avenue Cate	ch Basin Solids Samples			
			West End Lake St. FO105890	DUPLICATE West End Lake St. FO105899	Lake St. at Railroad FO105891	East of Railroad FO105892	East End of Lake St. FO105893	Catch Basin ANF 164 FO105894	Catch Basin APN941 FO105896	Catch Basin ANB621 FO105897	Catch Basin ANB622 FO105895	Screen	JSCS ⁽²⁾ ning Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	9/14/2010	Toxicity	Bioaccumulation
PCB 177	2,2',3,3',4',5,6-HpCB	μg/Kg	1.84	1.92	1.66	2.83	1.34	1.56	1.01	0.820	0.974		
PCB 178	2,2',3,3',5,5',6-HpCB	μg/Kg	0.613	0.678	0.552	0.949	0.452	0.521	0.444	0.359	0.319		
PCB 179	2,2',3,3',5,6,6'-HpCB	μg/Kg	1.27	1.29	1.15	2.04	0.961	0.997	0.700	0.702	0.641		
PCB 180/193	2,2',3,4,4',5,5'-HpCB + 2,3,3',4',5,5',6-HpCB	μg/Kg	6.84	7.16	6.11	10.4	5.02	6.06	3.63	3.09	3.72		
PCB 181	2,2',3,4,4',5,6-HpCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0526	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 182	2,2',3,4,4',5,6'-HpCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 183/185	2,2',3,4,4',5',6-HpCB + 2,2',3,4,5,5',6-HpCB	μg/Kg	2.25	2.31	2.05	3.62	1.74	1.87	1.17	1.01	1.21		
PCB 184	2,2',3,4,4',6,6'-HpCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 186	2,2',3,4,5,6,6'-HpCB	μg/Kg	0.0438 U	0.0493 U	0.0479 U	0.0494 U	0.0478 U	0.0490 U	0.0478 U	0.0496 U	0.0494 U		
PCB 187	2,2',3,4',5,5',6-HpCB	μg/Kg	3.50	3.55 0.0493 U	3.05	5.24	2.54 0.0478 U	3.00 0.0490 U	1.85 0.0478 U	1.82 0.0496 U	1.79 0.0494 U		
PCB 188 PCB 189	2,2',3,4',5,6,6'-HpCB 2,3,3',4,4',5,5'-HpCB	μg/Kg	0.0438 U 0.154	0.0493 U 0.172	0.0479 U 0.144	0.0494 U 0.234	0.0478 U 0.117	0.0490 U 0.141	0.0478 U 0.0869	0.0496 U 0.0806	0.0494 U		
PCB 189 PCB 190	2,3,3',4,4',5,6-HpCB 2,3,3',4,4',5,6-HpCB	μg/Kg μg/Kg	0.154	0.172	0.144	1.04	0.117	0.141	0.0869	0.0806	0.0777		1.2
PCB 190 PCB 191	2,3,3,4,4,5,6-HpCB 2,3,3',4,4',5',6-HpCB	μg/Kg μg/Kg	0.091	0.734	0.622	0.227	0.501	0.019	0.0688	0.290	0.333		1.2
PCB 191 PCB 192	2,3,3,4,4,5,0-HpCB 2,3,3',4,5,5',6-HpCB	μg/Kg μg/Kg	0.145 0.0438 U	0.0493 U	0.134 0.0479 U	0.227 0.0494 U	0.113 0.0478 U	0.127 0.0490 U	0.0688 0.0478 U	0.0399 0.0496 U	0.0722 0.0494 U		
PCB 192	2,2',3,3',4,4',5,5'-OcCB	μg/Kg μg/Kg	1.45	1.51	1.27	2.20	1.04	1.30	0.890	0.864	0.909		
PCB 195	2,2',3,3',4,4',5,6-OcCB	μg/Kg	0.603	0.627	0.533	0.947	0.440	0.519	0.323	0.335	0.357		
PCB 196	2,2',3,3',4,4',5,6'-OcCB	μg/Kg	0.866	0.849	0.757	1.28	0.599	0.721	0.421	0.442	0.479		
PCB 197/200	2,2',3,3',4,4',6,6'-OcCB + 2,2',3,3',4,5,6,6'-OcCB	μg/Kg	0.264	0.275	0.235	0.414	0.207	0.228	0.143 U	0.149 U	0.148 U		
PCB 198/199	2,2',3,3',4,5,5',6-OcCB + 2,2',3,3',4,5,5',6'-OcCB	μg/Kg	1.67	1.69	1.51	2.53	1.21	1.57	0.861	0.919	0.956		
PCB 201	2,2',3,3',4,5',6,6'-OcCB	μg/Kg	0.203	0.207	0.179	0.317	0.156	0.182	0.119	0.122	0.125		
PCB 202	2,2',3,3',5,5',6,6'-OcCB	μg/Kg	0.281	0.297	0.254	0.444	0.221	0.292	0.208	0.208	0.208		
PCB 203	2,2',3,4,4',5,5',6-OcCB	μg/Kg	0.987	1.01	0.930	1.57	0.742	0.965	0.525	0.552	0.600		
PCB 204	2,2',3,4,4',5,6,6'-OcCB	μg/Kg	0.0656 U	0.0740 U	0.0719 U	0.0741 U	0.0717 U	0.0735 U	0.0717 U	0.0744 U	0.0740 U	-	
PCB 205	2,3,3',4,4',5,5',6-OcCB	μg/Kg	0.0897	0.0901	0.0788	0.131	0.0717 U	0.0735 U	0.0717 U	0.0744 U	0.0740 U		
PCB 206	2,2',3,3',4,4',5,5',6-NoCB	μg/Kg	0.541	0.572	0.614	0.902	0.444	0.739	0.377	0.358	0.353		
PCB 207	2,2',3,3',4,4',5,6,6'-NoCB	μg/Kg	0.0782	0.0846	0.0826	0.139	0.0717 U	0.0975	0.0717 U	0.0744 U	0.0740 U		
PCB 208	2,2',3,3',4,5,5',6,6'-NoCB	μg/Kg	0.126	0.135	0.152	0.231	0.107	0.204	0.108	0.115	0.112		
PCB 209	Decachlorobiphenyl	μg/Kg	0.176	0.171	0.196	0.419	0.263	0.366	0.162	0.189	0.161	-	
	Total Monochlorobiphenyls	μg/Kg	0.0783	0.0910	0.0250	0.0544	0.0499	ND	ND	0.0325	ND	-	
	Total Dichlorobiphenyls	μg/Kg	1.88	1.99	1.73	2.22	1.32	0.862	6.07	2.71	1.26	-	
	Total Trichlorobiphenyls	μg/Kg	2.64	2.33	1.70	2.75	1.33	2.78	1.58	1.70	1.48		
	Total Tetrachlorobiphenyls	μg/Kg	26.7	25.9	23.4	45.0	17.2	18.1	8.34	8.70	8.18		
	Total Pentachlorobiphenyls	μg/Kg	93.7	99.8	97.8	160	75.0	62.7	29.3	31.9	26.6		
	Total Hexachlorobiphenyls	μg/Kg	75.3	83.6	80.4	123	63.0	62.8	26.9	31.5	26.3		
	Total Heptachlorobiphenyls	μg/Kg	25.9	27.1	23.4	39.9	19.2	22.4	13.8	12.1	13.6		
	Total Octachlorobiphenyls	μg/Kg	6.41	6.56	5.75	9.83	4.62	5.78	3.35	3.44	3.63		
	Total Nonachlorobiphenyls	μg/Kg	0.745	0.792	0.849	1.27	0.551	1.04	0.485	0.473	0.465	-	
	Total Decachlorobiphenyls	μg/Kg	0.176	0.171	0.196	0.419	0.263	0.366	0.162	0.189	0.161		
	Total PCBs ⁽³⁾	μg/Kg	234	248	235	385	183	177	90.0	92.7	81.7	676	0.39

Notes:

MoCB = Monochlorobiphenyl
DiCB = Dichlorobiphenyl
TriCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl PeCB = Pentachlorobiphenyl

HeCB = Hexachlorobiphenyl

HpCB = Heptachlorobiphenyl OcCB = Octachlorobiphenyl

NoCB = Nonachlorobiphenyl

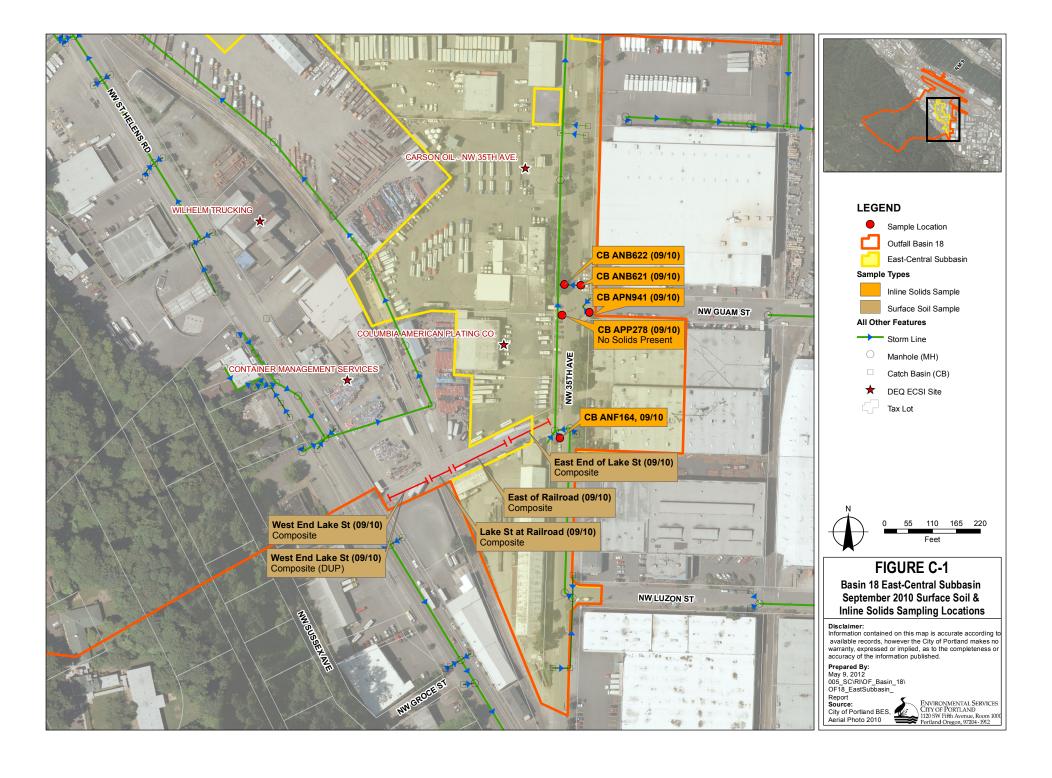
-- No JSCS screening level available.

EMPC = Estimated Maximum Possible Concentration.

 $U = The \ analyte \ was \ not \ detected \ above \ the \ reported \ sample \ quantification \ limit.$

 $\mu g/Kg = micrograms$ per liter. $ND = not \ detected$.

 $\ensuremath{^{(1)}}\textsc{IUPAC}$ - International Union of Pure and Applied Chemistry.


(2) JSCS SLVs- Portland Harbor Joint Source Control Strategy Screening Level Values (DEQ/EPA Final December 2005, Amended July 2007).

(3) Total homologs and total congener concentrations are calculated by assigning "0" to undetected and EMPC-qualified constituents.

= concentration exceeds JSCS Toxicity Screening Level Value.

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

MAY 2012 PAGE 3 OF 3

Attachment C-1 Field Photographs

Surface Soil Sampling in NW Lake Street

Photo 1 (September 14, 2010). Area of composite surface soil sample 18_20 (West End Lake St.). Sample area is in the (unpaved) street between NW St. Helens Road and the railroad tracks (see Figure A-1). View is to the southwest.

Photo 2 (September 14, 2010). Erodible surface soil caked onto truck tire parked at west end of NW Lake Street.

Photo 3 (September 14, 2010). Collecting subsample A from sample location 18_20. View is to the southwest.

Photo 4 (September 14, 2010). Collecting subsample E from sample location 18_20. View is to the northeast.

Photo 5 (September 14, 2010). Area of composite surface soil sample 18_21 (Lake St. at Railroad). Sample area is in the vicinity of the railroad tracks (see Figure A-1). View is to the northeast.

Photo 6 (September 14, 2010). Collecting subsample D from sample location 18_21.

Photo 7 (September 14, 2010). Area of composite surface soil sample 18_22 (East of Railroad), on the east side of the railroad tracks (see Figure A-1). View is to the northeast.

Photo 8 (September 14, 2010). Location of subsample A from sample location 18_22.

Photo 9 (September 14, 2010). Collecting subsample B from sample location 18_22.

Photo 10 (September 14, 2010). Area of composite surface soil sample 18_23 (East End Lake St.). Sample area is near the east end of NW Lake Street (see Figure A-1). View is to the southwest.

Photo 11 (September 14, 2010). Collecting subsample C from sample location 18_23.

Photo 12 (September 14, 2010). Collecting subsample D from sample location 18_23.

September 2010 Catch Basin Sampling

Photo 13 (September 14, 2010). Catch basin ANF164, on the southwest corner of NW 35th Avenue and NW Lake Street. View is to the northwest.

Photo 14 (September 14, 2010). Final homogenized solids sample from catch basin ANF164.

Photo 15 (September 14, 2010). Catch basin ANB622, on the west side of NW 35th Avenue. View is to the north.

Photo 16 (September 14, 2010). Solids and overlying organic matter and debris in catch basin ANB622 before sampling.

Photo 17 (September 14, 2010). Catch basin APN941 (adjacent to wheel of parked car) on the south side of NW Guam Street near the intersection with NW 35th Avenue. View is to the east.

Photo 18 (September 14, 2010). Catch basin APN941 before sampling.

Photo 19 (September 14, 2010). Catch basin ANB621, on the east side of NW 35th Avenue near the intersection with NW Guam Street. View is to the southeast.

Attachment C-2 Field Notes

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Collected By: JJM, OTD, AND

		,						L						000 0110 000	Dodland Lashor falls
	Date:	Printed Name:	Date:				Printed Name:	Prin		Date:			Printed Name:	Date:	rinted Name:
	 Time:		Time:				Signature:	Sig		· Time:	··· = .		Signature:	Time: S	signature:
		Received By: 4.				7: 3.	Received By:	Re			. 2	,2 1.7	Received By:		Necelved by:
	Date:	Printed Name:	Date:				Printed Name:	Prir	,	Date:	-5		Printed Name:	Date: 4/15/10	Brance Peter Brown
	Time:	Signature:	Time:				Signature:	Sig		Time:	,		Signature:	ļ	orginative. With the
		Relinguished By: 4.				id By: 3.	Relinquished By:	Re				d By: 2.	Relinquished By:		10 Cl
			-	•		•		•	•	C .		9/14/10	DUP	DUPLICATE	FO105899
	4.			•				•	•	o	1304	9/14/10	FDBLANK	FIELD DECON BLANK	FO105898
				•		•		•	•	C .	1453	9/14/10	18_27	1L-18-ANB621-0910 3441 NW GUAM ST	FO105897
				•		•		•	ě	С	1351	9/14/10	18_26	IL-18-UNNAMEDCB-0910 2840 NW 35TH AVE	FO105896
				•				•	•	C .	1411	9/14/10	18_25	IL-18-ANB622-0910 3125 NW 35TH AVE	FO105895
				•		•		•	•	C	1320	9/14/10	18_24	IL-18-ANF164-0910 2727 NW 35TH AVE	FO105894
				•		•		•	•	C	1118	9/14/10	18_23	EAST END OF NW LAKE	FO105893
			-	•		•.	•	•	•	С	1041	9/14/10	18_22	IL-18-NWLAKE3-0910 EAST OF RR TRACKS	FO105892
				•		•	•	•	•	C	1004	9/14/10	18_21	IL-18-NWLAKE2-0910 NW LAKE@RR TRACKS	FO105891
				•		•		•	•	C	0942	9/14/10	18_20	IL-18-NWLAKE1-0910 WEST END OF NW LAKE	FO105890
			(19, 10, 7)	Total Met		Total Solo	TOC	Pesticide	PCB Aroo	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
• • •	~		91			dis									
				r, Cu, i					VII 200V					,	
				Pb,									ne e	Basin 18 Inline	
_	ents	Field Comments	S	Metals	General		ics	Organics							
		alyses	Requested Analyses	Regi							SEDIMENT	Matrix:)1	File Number: 1020.001
1												MP	INE SA	Project Name: PORTLAND HARBOR INLINE SAMP	Project Name: POR

DAILY FIELD REPORT

Page of 2

Project PORTLAND HARBOR INLINE SAMP	Project No. 1020.001
Location BASIN 18	Date <u>9 /14/10</u>
Subject Surface composites + CB composites	By LIM, PTB
0900 Arrive on-site NW Lake Rd at Conta	ner Management
for the Mulahel composite. Met Andrew Dan	vidson, GSI, to aid
in direction for sampling. Andrew informed us A	but the intent of the
0-2" designation was to emphasize surface san	apling and that it was
not necessary to reach two inches for each si	16-sample, but rather
to go no deeper than two inches. Sampling los	cations closen opportunishally
to go no deeper than two inches. Sampling to to focus on low points where fines are likely and dry puddles)	to have settled lie pot-holes
and dry puddles)	
NG(12 P a) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	f farl 2 d
0942 Completed sub-sample collection, homogenized an Grave Point code 18-20. Duplicate sample col	d tilled sample jors.
Clare Point Code (0-20. Duplicate Sumple (0)	lected here.
0947 Reggin (Oline Alal Lave) at the RR La	alas coscio Alla IDIE
0947 Began sampling NW LAKEZ at the RR tra	9 000 000 000 000 000 000 000 000 000 0
1004 Completed sampling. Filled jors Gare point	code 18-21.
1014 Began sampling WWLAKES. at NW LAKE ST extending to east end of gate into Kervin Bros	EAST OF MATRACKS and
extending to east end of gate into Kenvin Bros	Iron Works.
	그는 그들의 그렇게 그렇다는 그 그들은 그들은 사람들은 그는 그를 그 것으로 그를 모시 하셨다.
1041 Completed sampling of MWLAKE3. Filled jors	Given point code 18-22.
10 1 Begin Sampling NWCAGE9 at east end of No	V lake ST. from tast
1049 Begin sampling NWLAKEY at east end of Will end of gate into Kervin Buthers Iron Works	NW SS Ave.
1118 Completed Campling of MULAKEY. Filled jus	
1304 Performed fieldderon blank at CBANFIG	YNI UPDI from WPCL
1304 Performed fielddecon blank at CBANFIG Attachments on buchetand sampling spoon & in Cilling spoo	F0405000
	FO105898

DAILY FIELD REPORT

Page 12 of 2

Project PORTLAND HARBOR WLINE SAME Project No. 102	0.001
Location 67510 0 Date 914/10	
Subject CB sanfling By JJM, PT6	 Control of the state of the sta
1308 Began sampling of CB ANF164.	
▲ 하는 사람들은 사람들이 많아 하는 하는 사람들이 되었다. 나는 사람들이 가는 사람들이 되는 사람들이 되었다.	
1320 Finished collecting sample at ANF164. Given point code	18-24.
Un-named CB/	
1335 Arrive on-site ADY099. Begin sampling of un-named CB	
1351 Finished allecting sample. After consulting map, the CB we the	20W they
HW1099 appears to actually be an var named, abandoned CB. The	mup shows
that it previously connected to the sanitary line. Field observations	s suggest
that it is either still connected or is now connected to stormwater.	Abyogg
does not currently exist as it is mapped. Pooling water is in	stead where
the CB should be. The Golds Collected will be jorred and stored t	or later
decision.	
하는 것이 하는 것이 되는 것이 되었다. 그는 사람들은 사람들에서 하는 것이 되었다. 그는 것이 하는 것이 하는 것이 되었다. 그는 것은 모든 것이 되었다. 그는 것은 것은 것이 되었다. 	
1400 Begon sampling at ANB622.	
보는 사람들은 사람들은 사람들은 사람들이 되는 학생들이 가는 사람들이 가장 그렇게 되었다. 그는 사람들이 가장 하는 사람들이 되었다.	
1411 Completed sampling at ANB622. Filled sample just,	grey
1440 Collected sample at ANB621 per direction of AND. due	
confusion with A04099 and whether or not it would be subm	
This cb could serve as an alternate sample for that site.	
1453 Completed sample collection @ AWB621. Filled fors.	
1630 Per customer communication all collected samples will be submitt	enla
The un named CB thought to be 104099 at address 2840 NW 35th	
will be given point code 18-26 & CB ANB621 will be given point	code 18-27.
Attachments	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAND Sampling Team:	Date: 911410	Arrival Time:	Project Number: 1028-60/ Current Weather Conditions/Last Rain:
Basin: (8	Node: NA	0900	Overcost/Last Week (9/8) Subbasin: NA

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT

Sampling Location Description/Address:

WESTEND of NW Lake St to PR tracks

Describe any flowing or standing water observed in the line?	AN
Does river appear to back up to this location? Describe rate/color/odor of flow:	NA
Are sediments observed in the line?	Yes, NW Lake is a gravel/dirt road.
Are sample-able quantities of sediments present in the line?	Yes, NW take is a gravel/dirt road. Yes, there is abundant sediment
Describe lateral extent of sample-able sediments present in the line:	Soil is present allalong NW Lake.
SITE DIAGRAM: Include street intersections	s/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.
Continue Mine Dollar	AMPLE DE POST-HOLE SEMI-TRAILERS
	Does river appear to back up to this location? Describe rate/color/odor of flow: Are sediments observed in the line? Are sample-able quantities of sediments present in the line? Describe lateral extent of sample-able sediments present in the line: SITE DIAGRAM: Include street intersections Contact Action 1. The line is the

Date: 9/14/10	SEC	CTION 2 - SAM	PLE COLL	ECTION RE	PORT	Node: NWLakel		
Sampling Equipmen	nt:	Stainless steel sports of Other (Describe		steel bucket		mortane,		
Equipment Deconta	mination process:	Per SOP7.01a				·		
Sample date:	Sample time:	Sample Identif			nyy)			
Sample location des	scription: (number of	feet from node of	entry) 5 らい	b. sample	5 I with	in the tracks, now lake Rel. then scooped into		
Sample collection te	chnique:	Georgia will boulfexe	the trowel	to firm pile	2 which is	then scooped into		
Describe Color of sa	ımple:	Light brow	,	, 		• .		
Describe Texture/Pa	ırticle size:	85% fines	Zsills & Sund	rs, 15% pea	u-sizeel	gravels		
Describe visual or ol bulk sediment sampl	factory evidence of ole (odor, sheen, disc	contamination in	None	,				
Describe depth of so	olids in area where sa	ample collected:	Surface	Soils colle 0.25" -	cted.			
Describe amount and	d type of debris in sa	ımple:	None					
Amount and type of	debris removed from	final sample:	None					
Compositing notes:	Ho magenized	in boul.						
Sample Jars Collecte	ed (number, size, ful	or partial)? 7(UI 402	jors				
If not enough sample collected and related analyte priority list in	l analytes sampled (a							
FO ₁	05890		- 3		·			
Lab ID			te sample coll	ected?	Dupe ID	FO105899		
Duplicate sample ide			-		:			
Any deviations from s	standard procedures	None	<u> </u>					
	SE	CTION 3 - P	HOTOGR	APH LOG				
Overview of node sho	owing drainage area							
Plan view of sedimen	nts inline							
Homogenized sample	e (sediment in bowl)							
Other?								

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543.N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Basin: 18	Node: NA		Subbasin: NA			
Sampling Team:	Date: 9/14/10	Arrival Time:	Current Weather Conditions/Last Rain: Over(ast / Last week (9/8)			
Project Name: POILT AND	HARROR INC	WE SAMP	Project Number: 1020 - 001			

Sampling Location Description/Address:

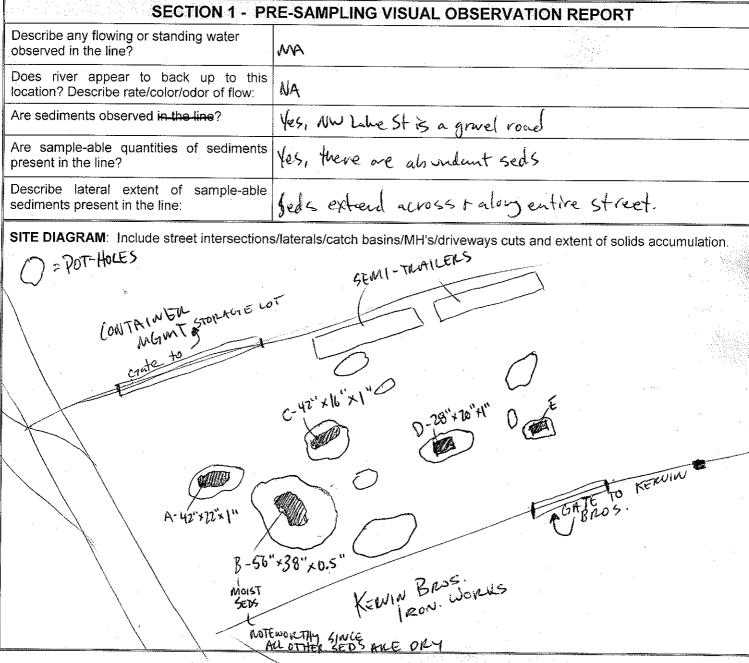
NW Lake St at Matracks

SECTION 1 - PF	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	NA .
Does river appear to back up to this location? Describe rate/color/odor of flow:	NA
Are sediments observed in the line? on Street	Yes, NW Lake is gravel with lines
Are sample-able quantities of sediments present in the line?	Yes, NW Lake is gravel with fines Yes, plenty of seds along tracks & road. Gample-able solicis all along road.
Describe lateral extent of sample-able sediments present in the line:	Gample-able solicis all along road.
SITE DIAGRAM: Include street intersections	s/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.
Contains med GWAN LOT	10 (10" x 20" x 1" x 20" x 0.5" 0

Date: 9/14/10	SECT	ION 2 - SAM	PLE CO	LECTION RE	PORT	Node: NWLAKEZ
Sampling Equipment: Stainless steel spoon & stainless steel bucket Other (Describe)						
Equipment Deconta	mination process:	APer SOP7.01a □ Other (Describe)			
Sample date: 9/14/10	Sample time:	Sample Identification: (IL-XX-NNNNN-mmyy) (L)8-NWLAKE 2 - 0910				
Sample location des	scription: (number of fee	et from node of	entry) 5	sub-sample	along/	between railroad
Sample location description: (number of feet from node of entry) 5 5 cb-samples along/between (ailvo tracks where they cross Whilehe sample collection technique: PTB Sample Surface With from Coilected into be					collected into bowl	
Describe Color of sa	ample:	ight brown				
Describe Texture/Pa	article size;	85% fines	, souds o	silts, 15%	pea-siz	ed graels.
Describe visual or ol bulk sediment samp	factory evidence of con le (odor, sheen, discolo	tamination in	Non	•		•
Describe depth of so	olids in area where sam	ple collected:	0.5"	-1" depth of	- collecte	ed soils
Describe amount an	d type of debris in samp	ole:	None			
Amount and type of debris removed from final sample:						
	Ho mogenized in					
Sample Jars Collecte	ed (number, size, full or	partial)? 7 .	Full 4	02. juns		
If not enough sample	e to fill all of the jars, list I analytes sampled (as p	jars				
FO10)5891					
Lab ID		Duṗlica	cate sample collected? Y Dupe ID			
Duplicate sample ide	ntification # on COC:					
Any deviations from s	standard procedures: 🔨	Jone				
	SEC	TION 3 - P	НОТО	SRAPH LOC	3	
Overview of node she	owing drainage area					
Plan view of sedimer	nts inline					·
Homogenized sample	e (sediment in bowl)					
Other?						

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452



INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAND	HARBOR INC	INE SAMP	Project Number: 1020-001
Sampling Team: JJM, PTB, AWD	Date: 9/14/10	Arrival Time:	Current Weather Conditions/Last Rain: Diversast/Last week (9/8)
Basin: \&	Node: NA		Subbasin: NA

Sampling Location Description/Address:

NW LAKE ST EAST OF PRTRACKS

Date: 9/14/10	SEC	CTION 2 - SAMPLE COLLECTION REPORT Node: WILAKES			
Sampling Equipmen	nt:	Stainless steel spoon & stainless steel bucket □ Other (Describe)			
Equipment Deconta	mination process:	FPer SOP7.01a □ Other (Describe)			
Sample date:	Sample time:	Sample Identification: (IL-XX-NNNNN-mmyy) IL-IB-NWLAKE3-0910			
Sample location des	scription: (number of	feet from node of entry) 5 Sub-samples from pot-holes along			
Sample collection te	chnique:	Scraped top layer of seds from each sub-sample location, excluding large gravels			
Describe Color of sa	ımple:	Brown			
Describe Texture/Pa	article size:	0.5"-1" in gob san 80% fine silts, sands. 20% per sieds			
Describe visual or ol bulk sediment sampl		contamination in			
Describe depth of so	olids in area where sa	ample collected: 0.5"-1" in 5 sh-sample lantis ns			
Describe amount and	Describe amount and type of debris in sample: A piece of aluminum run				
Amount and type of	debris removed from	ample: O.5"-1" in sub-sample lantions ample: A piece of aluminum can, final sample: femoved debris			
Compositing notes:	Homogenized in	sample container			
Sample Jars Collecte	ed (number, size, full	or partial)? 7 foll 4 oz. iws			
If not enough sample collected and related analyte priority list in	analytes sampled (a	list jars			
FO10	05892				
Lab ID		Duplicate sample collected? YM Dupe ID			
Duplicate sample ide	ntification # on COC				
Any deviations from s	standard procedures	Wone			
	SE	ECTION 3 - PHOTOGRAPH LOG			
Overview of node sho	owing drainage area				
Plan view of sedimen	nts inline				
Homogenized sample	e (sediment in bowl)				

Other?

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAWD	HARBOR IN	LINE SAMP	Project Number: /620-00/
Sampling Team: JSM, PTB, AND	Date: 9(14/10	Arrival Time:	Current Weather Conditions/Last Rain: Overcast/Lustweek(9/8)
Basin: / 8	Node: NA		Subbasin: NA

Sampling Location Description/Address:

NW LAKE ST tast end of

Describe any flowing or standing water observed in the line?
Does river appear to back up to this location? Describe rate/color/odor of flow: . NA
Are sediments observed in the lines Yes, NW Luke Street is a gravel road.
Are sediments observed in the line? Ves, NW Lake Street is a gravel road. Are sample-able quantities of sediments present in the line? Ves, there are ample quantities of seds.
Describe lateral extent of sample-able sediments present in the line: Seds cover entire area of street.
SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.
SEMI THALLERS 3-14" XN" H.5" D-42" XN" X D.75" A-25" XS" A-25" XS" Capte into Kenin Iron works Page 1 of 2

\$ 18.23

9/14/10	SEC	TION 2 -	SAMI	PLE CO	LLECTION R	EPORT	Node: NWLAKEY	
Sampling Equipment:				ainless steel spoon & stainless steel bucket ther (Describe)				
Equipment Decontamination process:			P7.01a Describe)					
9/14/16 11:0				. 4 . 4 . 3	-XX-NNNNNN-n AKEY - 0 9	a n		
Sample location des	scription: (number of f	eet from n	ode of e	entry) 5	Sub-sample	es foon	n along NW Luke	
Sample collection technique: Scrapel surface				ice for	soils excludiv	y lange a	ngular grmels.	
Describe Color of sa	ample:	Bron	/ N					
Describe Texture/Pa	article size:	80% f	ines,50	ruds dsil	ts, 18% gove	ds, 2% e	ouse organ ics	
Describe visual or ol bulk sediment samp	lfactory evidence of co le (odor, sheen, disco	ontaminati	on in	None				
Describe depth of so	olids in area where sa	mple colle	cted:	0.75	-1" depths o	f the sul	osamples	
Describe amount an	d type of debris in sar	mple:	None					
Amount and type of debris removed from final samp			al sample: None					
Compositing notes:	Homogenized is	n Gan	ple	buchet	l			
	ed (number, size, full			-VII 4	02. jus			
If not enough sample collected and related analyte priority list in	e to fill all of the jars, li I analytes sampled (a work order).	st jars s per						
		-						
FO10)5893							
Lab ID			Duplicate sample collected? Y Dupe ID					
Duplicate sample ide	entification # on COC:							
Any deviations from	standard procedures:	None						
	SE	CTION	3 - Pl	нотос	GRAPH LO	G		
Overview of node sh	owing drainage area			-				
Plan view of sedimer	nts inline							
Homogenized sample	e (sediment in bowl)							
Other?								

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: PORTLAND HAD	BOR WLINE SAMP	Project Number:
Sampling Team: JJM, RTB	Date: 4/14/10	Arrival Time: 1300
Basin: (2)	Node: ANF164	Address: 2727 NW 35th Ave
Current weather and last known rainfa	": Overcarst. Last rain	was last week (9/8)

SECTION 1 DDE	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	NW Lake St is a grandfirst road, with container mome at its end that coushes to inflatiners. Here y track traffic used this road regularly NW 35th Are is a regularly travelled road for many truchs coming from to Carson Oil.
Describe debris and/or clogging around, or in catch basin grate/cover:	illiani 1001 at 10 and total it colin out
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	10011
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	
NW CAKE CA	30" 10" HDPE outlet

Date: q/14/10 SECT	ION 2 - SAMPLE COLLECTION REPORT	Node: ANF164		
Sampling Equipment:	Destainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)			
Equipment decontamination procedure:	Per SOP7.01a □ OTHER (DESCRIBE)			
Sample date: 9/14/10	Sample time: 1320			
Sample Identification Code:	Sample collection technique and if/how overlying w	ater was removed:		
11-18-ANF164-0910	Per SOP 5.01a			
Subsample number and location:	All available solids collected			
Color of sample:	Brown			
Texture/particle size:	15% small greats, 25% organics, 5% fi	15% small grads, 25% organics, 50% fines + silts, 10% sands		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None			
Amount and type of debris in bulk sample	: Kjæretle butts			
Amount and type of debris removed from final sample:	I cigarette butts removed			
Compositing notes: Homogenized	in bucket			
Sample jars collected (number, size, full o	or partial)? 7 foll 4 oz. jws			
If not enough sample to fill all of the jars, jars collected and related analytes sampl (as per analyte priority list in work order).				
FO105894				
Lab ID	Duplicate sample collected? Y Dupe ID			
Duplicate sample identification # on COC				
Any deviations from standard procedures	None			
		4.		

SECTION 3 - P	PHOTOGRAPH LOG
Overview of CB showing drainage area	
Catch basin plan view prior to sampling showing solids	
Lateral connections to/from CB	
Homogenized sample (sediment in bowl)	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portano HARR	SOR WHUE Samp		Project Number: /02000
Sampling Team: JJM, PTB, AWD	Date: 9/14/(3	Arrival	Time: 1400
Basin: 18	Node: ANB622	Addres	ss: 31 25 NW 35th Ave
Current weather and last known rainfall	Partly sonny Las	it week	(9/8)

SECTION 1 - PRE-S	SAMPLING VISUAL OBSERVATION REPORT
sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Heavy truck traffic on NW 35th Avenue in Industrial area.
Describe debris and/or clogging around, or in catch basin grate/cover:	Extensive leaf accumulation. 10" on top of seds.
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	Wone
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	10" of seliment across thour of CB 32" deep CB
Wai 35 The	Guam St 10" Concrete outlet

Date: 9/14/10	SECTION	2 - SAMPLE COLLECTION REPORT	Node: ANB627	
Sampling Equipment		Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)		
Equipment decontam	ination procedure:	g/Per SOP7.01a □ OTHER (DESCRIBE)		
Sample date: 9/14/	10	Sample time: [4()		
Sample Identification	Code:	Sample collection technique and if/how overlying v	vater was removed:	
Subsample number a	nd location:	5totat. Un corners of lin car	nte	
Color of sample:		Veny dark brown		
Texture/particle size:		85% fines + 5ilts, 15% organics (ro	ots + leves)	
Visual or olfactory evidentamination in bulk (odor, sheen, discolor	sediment sample	None		
Amount and type of de	ebris in bulk sample:	15% organics (roots +leves)		
Amount and type of definal sample:	ebris removed from	10% nots deaves		
Compositing notes:	omogenized in	bowl		
Sample jars collected	(number, size, full or pa	ntial)? 7 fill Yoz. jars		
If not enough sample jars collected and rela (as per analyte priority				
FO105				
Lab ID		Duplicate sample collected? Y Dupe ID		
Duplicate sample iden	tification # on COC:		New York Control of the Control of t	
Any deviations from st	andard procedures:	None		
		West .		

SECTION 3 - PHOTOGRAPH LOG				
Overview of CB showing drainage area				
Catch basin plan view prior to sampling showing solid	ds			 · .
Lateral connections to/from CB				 -
Homogenized sample (sediment in bowl)		<u> </u>		

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: PORTLAWD HARBO	e laline Samp	Project Number: 10Zo.001
Sampling Team: WM, PTB	Date: 9/14/10	Arrival Time: 1335
Basin: 18	Node: 101099 CB	Address: 2840 NW 35th Ave
Current weather and last known rainfall:	Overcast. Last rais	n was last week (9/8)

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT		
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Heavy trick traffic by here in industrial area.	
Describe debris and/or clogging around, or in catch basin grate/cover:	10% clossed with dirt, grass clippings + leaves	
Is there standing water in catch basin?	No	
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None	
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	No seds in bottom of CB, but seds present in grate and along rim.	

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

35 th Ave

Pooled CB
Water ADY099
Should have been

CLEAN

-seds present ingrate

Date: 9/14/10 SE	CTION 2 - SAMPLE COLLECTION REPORT Node: Un-varied CB
Sampling Equipment:	Describe (Describe)
Equipment decontamination procedure	e: Per SOP7.01a □ OTHER (DESCRIBE)
Sample date: 9/14/10	Sample time: 135
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:
11-18 - AD 10-19-0910	Per 50P5.01a
Subsample number and location:	Sub-samples were taken from the grate clogging in the cover as there were no sels in the bottom
Color of sample:	Dark brown
Texture/particle size:	90% fines, silts + saids, 5% leaves + moss, 5% small gravels
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	
Amount and type of debris in bulk sam	ple: 5% lewes imas
Amount and type of debris removed fro final sample:	om 5% leaves + moss excluded
Compositing notes: Homogeniz	ed in sample bucket
Sample jars collected (number, size, fu	Ill or partial)? 7 full 4 oz. jas
If not enough sample to fill all of the jar	
jars collected and related analytes sam (as per analyte priority list in work orde	
FO105896	Duplicate sample collected? Y Dupe ID
Duplicate sample identification # on CC	DC:
Any deviations from standard procedur	es: None

SECTION 3 - PHOTOGRAPH LOG		
Overview of CB showing drainage area		
Catch basin plan view prior to sampling showing solids		
Lateral connections to/from CB		
Homogenized sample (sediment in bowl)		

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

Project Name: PORTZAND HARR	SOR WLINE SAMP	Project Number:
Sampling Team: WW, PTB, AND	Date: 9/14/10	Arrival Time: 1440
Basin: 10	Node: ANB 621	Address: 3441 NW Guam ST

1 / 20031	week (470)
SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Hony truck traffic in industrial area
Describe debris and/or clogging around, or in catch basin grate/cover:	5% clogged at grate with seds and leowes
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	could not physically measure (reach) bottom of CB. Estimated to be 165" deep. Depth of seds estimated to 135" indepth.
ANB621 NW GUAM ST	lets and outlets, catch basin dimensions, etc. = sub-sample location (each 10" deep) Loas far as could be reached 25" Depth to seds 75" SEDS 12" Outlet was not visible

Date: 9/14/10	SECTION	2 - SAMPLE COLLECTION REPORT	Node: ANBGZ1					
Sampling Equipment:		DeStainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)						
Equipment decontam	ination procedure:	▶ Per SOP7.01a □ OTHER (DESCRIBE)						
Sample date: 9/10	1/10	Sample time: 1453						
Sample Identification		Sample collection technique and if/how overlyin	g water was removed:					
Subsample number a	nd location:	5 sub-samples. One in each corni	er and one in the					
Color of sample:		Very dork brown						
Texture/particle size:		90% fines, sitts, 10% coarse arganics						
Visual or olfactory evid contamination in bulk (odor, sheen, discolor	sediment sample	90% fines, sitts, 10% coarse organics Decomposing organic odor (as from leves) No apparent contamination						
Amount and type of de	ebris in bulk sample:	10% course organics						
Amount and type of definal sample:	ebris removed from	5% course organics large enough	n to exclude					
Compositing notes:	Homogenized in	n sample bucket						
Sample jars collected	(number, size, full or pa	rtial)? 7 full 4 oz. jars						
If not enough sample jars collected and rela (as per analyte priority								
FO10	05897							
Lab ID		Duplicate sample collected? Y Dupe ID						
Duplicate sample iden								
Any deviations from st	andard procedures: W	on e						

SECTION 3 - PHOTO	SECTION 3 - PHOTOGRAPH LOG							
Overview of CB showing drainage area								
Catch basin plan view prior to sampling showing solids	·							
Lateral connections to/from CB								
Homogenized sample (sediment in bowl)								

Attachment C-3

Laboratory Reports and Data Review Memoranda (on CD only)

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Erodible Soils and Catch Basin Sampling Outfall Basin 18 East-Central Subbasin

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: September 26, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a sampling event conducted by the City of Portland (City) in the east-central sub-basin of Outfall (OF) Basin 18 on September 14, 2010. Four erodible soil samples (FO105890 – FO105893), four catch basin solids samples (FO105894 – FO105897), one field duplicate sample (FO105898), and one equipment decontamination sample (FO105899) were collected and submitted for analyses.

The laboratory analyses for these solids samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed below:

- BES WPCL
 - o Total Solids (TS) SM 2540G
 - o Total Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon EPA 9060 MOD
- Pace Analytical (Pace)
 - o PCB Congeners EPA 1668A
- Columbia Analytical Services (CAS)
 - o Pesticides EPA 8081A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratory and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within accuracy control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within control limits

The results from the QA/QC review of the available information in the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Method blanks were processed during the subcontracted laboratory analyses of TOC, PCBs, and organochlorine pesticides. Additionally, the field decontamination blank (FO10598) was analyzed for organochlorine pesticides. No analytes were detected in the method blanks.

CAS notes that method detection limits (MDL) for Endosulfan II and Toxaphene were elevated in both the method blank and in the field decontamination blank sample due to the presence of non-target background components, which were reportedly introduced as laboratory artifacts. The contamination prevented adequate resolution of the target compounds at the MDL, but the level of background was relatively low compared to the MDL. Therefore the effect on the results

was minimal. These results are flagged in the subcontracted report to indicate the slightly elevated detection limits.

Surrogate Recoveries

Surrogates were utilized during the analysis of organochlorine pesticides. The surrogate, Decachlorobiphenyl, was above the laboratory control limit for field samples FO105891 and FO105892. However, because the other surrogate, Tetrachloro-m-xylene, was recovered within laboratory control limits, the results are not qualified further.

Internal Standards

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. Internal standard recoveries are within control limits with three exceptions in the QC samples, which are flagged "R" in the subcontracted laboratory report. All internal standards processed with the field samples were recovered within control criteria, and the data are not qualified further.

Interfering background constituents impacted the measurement of some PCB congeners and internal standards. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. These values are qualified as estimated maximum possible concentrations (EMPCs). Also, in some cases, low levels of congeners 15 and 144 eluted outside the acquisition window. This resulted in slightly reduced concentrations for these congeners. Because the sum of congeners 15 and 144 and the EMPC value(s) are not significant relative to the total PCB concentration (i.e. <1%), total homolog and total PCB concentrations are considered only slightly biased.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS/MSD samples were processed during the subcontracted analyses of TOC and organochlorine pesticides. MS/MSD recoveries and RPDs were all within laboratory control limits during the TOC analysis.

During the pesticide analysis, sample FO105891was used for the MS/MSD samples. Several analytes were recovered outside of control limits in the MS/MSD samples, and the relative percent difference (RPD) for several analytes was above acceptance limits. CAS reports that the control criteria for several analytes in the MS/MSD samples are not applicable because non-target matrix background components contributed to the reported matrix spike concentrations. While the RPD results indicate a low/high bias in the MS/MSD samples, all recoveries in the associated LC sample were within acceptance limits, indicating that the analytical batch was in control. Accordingly, the data are not further qualified.

Laboratory Control/Laboratory Control Duplicate Sample (LC/LCD)

LC samples were processed with the field samples during the subcontracted laboratory analyses of TOC and organochlorine pesticides, and LC/DLC samples were processed with the field decontamination blank during the pesticide analysis. Additionally, two sets of LC/DLC samples

were processed during the PCB congener analysis. Spike recoveries and RPDs were within laboratory control limits for all analyses.

Other

CAS reports that results from the primary and verification columns varied by more than 40% for several analytes detected during the organochlorine pesticide analysis. These analytes are qualified as estimates "EST" in the WPCL report. Several analytes were detected between the method reporting limit (MRL) and method detection limit (MDL) during the pesticide analysis. These analytes are flagged "J" in the subcontracted report. CAS also notes that the primary evaluation criteria were not met on the confirmation column for Decachlorobiphenyl in the continuing calibration verification (CCV) 1005F029, for Methoxychlor and Decachlorobiphenyl in sample CCV 0928F004, and for a few analytes in CCV 1011F004. The results were reported from the column with an acceptable CCV. The data quality was not affected, and no further corrective action was necessary.

Dilutions were required during the PCB analysis of samples FO105890, FO105891, and FO105892 due to the presence of high concentrations of non-target background constituents. As a result, detection limits were elevated in these samples.

WPCL notes that for sample FO105892, quantification of PCB Aroclor 1254 is based on only 2 chromatographic peaks due to matrix interferences. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Project Name: PORTLAND HARBOR INLINE SAMP

Chain-of-Custody Bureau of Environmental Services

Page: 4/15/10

Collected By: JJM, OTD, AND

Portland Harbor Inl	\sim	nature: Land Ch	1/20/	thed Name Color	nature: MIF IL	FO105899	FO105898	FO105897	FO105896	FO105895	FO105894	FO105893	FO105892	FO105891	FO105890	WPCL Sample I.D.					File Number: 1020.001
Fortland Harbor Inline Samp COC - OF 18 (9-14-10) xis	neh 9/15/10	12	Syant " 1/5/10	+		FIEL DUPLICATE	FIELD DECON BLANK	IL-18-ANB621-0910 3441 NW GUAM ST	IL-18-UNNAMEDCB-0910 2840 NW 35TH AVE	1L-18-ANB622-0910 3125 NW 35TH AVE	IL-18-ANF164-0910 2727 NW 35TH AVE	IL-18-NWLAKE4-0910 EAST END OF NW LAKE	IL-18-NWLAKE3-0910 EAST OF RR TRACKS	IL-18-NWLAKE2-0910 NWLAKE@RRTRACKS	IL-18-NWLAKE1-0910 WEST END OF NW LAKE	Location			Basin 18 Inline		001
) xis	Printed Name:	Kecelved By: Signature:	Printed Name:	C G	Relinquished By: Signature:	DUP	FDBLANK	18_27	18_26	18_25	18_24	18_23	18_22	18_21	18_20	Point Code			lline		
		, i			d By: 2.	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	Sample Date					Matrix:
	,						1304	1453	1351	1411	1320	1118	1041	1004	0942	Sample Time					SEDIMENT
	Date:	Time:	Date:	lime:		0	G	0	n	ဂ	С	С	C	င	С	Sample Type					
	:					•	•	•	•	•	•	•	•	•	•	PCB Aroo	geners (All 209)		0	
	Printed Name:	Received By: Signature:	Printed Name:	Signature:	Relinquished By:	•		•	•	•	•	•	•	•	•	Pesticide: TOC	s <u>L</u> L	.(CA	5) —	Organics	
		By: 3.			hed By: 3.	•		•	•	•	•	•	•	•	•	Total Sold	lis				
																				General	
	Date:	Time:	D	Ħ		•	•	•	•	•	•	•	•	•	. • !	Total Meta (Hg, Ni, Ag		Cr, Cu, I	Pb,	Metals	Reque
	rte:	ne:	Date:	Time:														`.			sted A
	Printed Name:	Received By: Signature:	Printed Name:	Signature:	Relinquished By:		-								, }						Requested Analyses
		<u>3y:</u> 4.			ned By: 4.															•	.
																				Field Comments	
	Date:	Time:	Date:	Time:														·			

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

09:42

Sample ID: FO105890

Sample Collected: 09/14/10 Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-18-NWLAKE1-0910

NW LAKE SOILS 0-2 IN W END TO RR TRKS

System ID:

AO08191

Sample Point Code:

18 20

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. LAB: For PCB analysis, dilution was required due to high levels of non-target compounds, resulting in raised reporting limits.

Test Parameter						Analysis
TOTAL SOLIDS 96.3 % W/W 0.01 SM 2540 G 09/16/10 METALS CADMIUM 0.79 mg/Kg dry wt 0.10 EPA 6020 09/17/10 CHROMIUM 42.4 mg/Kg dry wt 0.50 EPA 6020 09/17/10 COPPER 36.7 mg/Kg dry wt 0.25 EPA 6020 09/17/10 LEAD 93.9 mg/Kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/Kg dry wt 0.10 EPA 6020 09/17/10 NICKEL 13.2 mg/Kg dry wt 0.10 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.10 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1221 <80	Test Parameter	Result	Units	MRL	Method	Date
TOTAL SOLIDS 96.3 % W/W 0.01 SM 2540 G 09/16/10 METALS CADMIUM 0.79 mg/Kg dry wt 0.10 EPA 6020 09/17/10 CHROMIUM 42.4 mg/Kg dry wt 0.50 EPA 6020 09/17/10 COPPER 36.7 mg/Kg dry wt 0.25 EPA 6020 09/17/10 LEAD 93.9 mg/Kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/Kg dry wt 0.10 EPA 6020 09/17/10 NICKEL 13.2 mg/Kg dry wt 0.10 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.10 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1221 <80 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1232 <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 </td <td>GENERAL</td> <td></td> <td></td> <td></td> <td></td> <td></td>	GENERAL					
CADMIUM CHROMIUM 42.4 mg/Kg dry wt 0.10 EPA 6020 09/17/10 CHROMIUM 42.4 mg/Kg dry wt 0.50 EPA 6020 09/17/10 LEAD 93.9 mg/Kg dry wt 0.25 EPA 6020 09/17/10 LEAD 93.9 mg/Kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/Kg dry wt 0.10 EPA 6020 09/17/10 MICKEL 13.2 mg/Kg dry wt 0.010 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.05 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.50 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.50 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 <0		96.3	% W/W	0.01	SM 2540 G	09/16/10
CHROMIUM 42.4 mg/Kg dry wt 0.50 EPA 6020 09/17/10 COPPER 36.7 mg/Kg dry wt 0.25 EPA 6020 09/17/10 LEAD 93.9 mg/Kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/Kg dry wt 0.10 EPA 6020 09/17/10 NICKEL 13.2 mg/Kg dry wt 0.25 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.25 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.10 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.50 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1221 480 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1222 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 440 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1263 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1264 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1265 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/Kg dry wt 40 EPA 8082 09/16/10 OUTSIDE ANALYSIS TOTAL ORGANIC CARBON 11100 mg/Kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 6.10 µg/Kg dry wt 1 EPA 8081A 09/26/10 A/4'-DDT 72.0 µg/Kg dry wt 1 EPA 8081A 09/26/10 A/4'-DDT 72.0 µg/Kg dry wt 5 EPA 8081A 09/26/10 A/4-DDT 72.0 µg/Kg dry wt 5 EPA 8081A 09/26/10 A/4-DDT 9PA 8081A 09/26/10 A/4-DDT 5PA 8081A 09/26/10 A/4-DDT 5PA 8081A 09/26/10 A/4-DDT 5PA 8081A 09/26/10 A/4-DDT 6PA 8081A 09/26/10 A/4-DDT 5PA 8081A 09/26/10 A/4-DDT 6PA 8081A 09/26/10	METALS					
COPPER 36.7 mg/kg dry wt 0.25 EPA 6020 09/17/10 LEAD 93.9 mg/kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/kg dry wt 0.10 EPA 6020 09/17/10 MERCURY 0.054 mg/kg dry wt 0.010 EPA 6020 09/17/10 NICKEL 13.2 mg/kg dry wt 0.25 EPA 6020 09/17/10 SILVER 0.25 mg/kg dry wt 0.10 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/kg dry wt 0.50 EPA 8082 09/16/10 Aroclor 1016/1242 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1221 480 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1232 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 50 µg/kg dry wt 40 EPA 8082 09/16/10 DUTSIDE ANALYSIS TOTAL ORGANIC CARBON 11100 mg/kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 6.10 µg/kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4'-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4'-DDE EST 6.10 µg/kg dry wt 1 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/26/10 A/4-DDE EST 6.10 µg/kg dry wt 5 EPA 8081A 09/2	CADMIUM	0.79	mg/Kg dry wt	0.10	EPA 6020	
LEAD	CHROMIUM	42.4	mg/Kg dry wt	0.50	EPA 6020	09/17/10
MERCURY 0.054 mg/Kg dry wt 0.010 EPA 6020 09/17/10 NICKEL 13.2 mg/Kg dry wt 0.25 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.10 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 <40	COPPER	36.7	mg/Kg dry wt	0.25	EPA 6020	09/17/10
NICKEL 13.2 mg/Kg dry wt 0.25 EPA 6020 09/17/10 SILVER 0.25 mg/Kg dry wt 0.10 EPA 6020 09/17/10 ZINC 179 mg/Kg dry wt 0.50 EPA 6020 09/17/10 ZINC 179 mg/Kg dry wt 0.50 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 < <0 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1221 < <80 µg/Kg dry wt 80 EPA 8082 09/16/10 Aroclor 1232 < <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 < <0 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 < <0 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 < 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 < 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 < 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 < 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 < 40 µg/Kg dry wt 40 EPA 8082 09/16/10 OUTSIDE ANALYSIS TOTAL ORGANIC CARBON 11100 mg/Kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 7.70 µg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 µg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin < 3 µg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin < 3 µg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-BHC < 1 µg/Kg dry wt 1 EPA 8081A 09/26/10 Beta-BHC < 1 µg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC	LEAD	93.9	mg/Kg dry wt	0.10	EPA 6020	09/17/10
SILVER ZINC 179 mg/Kg dry wt 0.50 EPA 6020 09/17/10 ZINC 0.50 mg/Kg dry wt 0.50 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 <40 µg/Kg dry wt 80 EPA 8082 09/16/10 Aroclor 1221 <80 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1232 <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1248 <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1254 125 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1260 <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1261 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1262 40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 <40 µg/Kg dry wt 40 EPA 8082 09/16/10 Aroclor 1268 40 µg/Kg dry wt 40 EPA 8082 09/16/10 OUTSIDE ANALYSIS TOTAL ORGANIC CARBON 11100 mg/Kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 7.70 µg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 µg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3 µg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-BHC <1 µg/Kg dry wt 1 EPA 8081A 09/26/10 Beta-BHC <1 µg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 µg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 µg/Kg dry wt 1 EPA 8081A 09/26/10	MERCURY	0.054	mg/Kg dry wt	0.010	EPA 6020	09/17/10
ZINC 179 mg/Kg dry wt 0.50 EPA 6020 09/17/10 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242	NICKEL	13.2	mg/Kg dry wt	0.25	EPA 6020	09/17/10
GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242	SILVER	0.25	mg/Kg dry wt	0.10	EPA 6020	09/17/10
POLYCHLORINATED BIPHENYLS (PCB) Aroclor 1016/1242 <40	ZINC	. 179		0.50	EPA 6020	09/17/10
Aroclor 1016/1242 <40	GC ANALYSIS					
Aroclor 1016/1242 <40	POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1232		<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1248 <40 μg/Kg dry wt	Aroclor 1221	<80	μg/Kg dry wt	80	EPA 8082	09/16/10
Aroclor 1248 <40 μg/Kg dry wt	Aroclor 1232	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1260 <40	Aroclor 1248	<40		40	EPA 8082	09/16/10
Aroclor 1260 <40	Aroclor 1254	125		40	EPA 8082	09/16/10
Aroclor 1262 <40 μg/Kg dry wt	Aroclor 1260	<40.		40	EPA 8082	09/16/10
Aroclor 1268 <40 μg/Kg dry wt 40 EPA 8082 09/16/10 OUTSIDE ANALYSIS TOTAL ORGANIC CARBON 11100 mg/Kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 7.70 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3	Aroclor 1262	<40		40	EPA 8082	09/16/10
TOTAL ORGANIC CARBON 11100 mg/Kg dry wt 100 EPA 9060 MOD 09/22/10 PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 7.70 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3 μg/Kg dry wt 3 EPA 8081A 09/26/10 Alpha-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-Chlordane 61.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10	Aroclor 1268	<40		40	. EPA 8082	09/16/10
PESTICIDES BY EPA 8081 - CAS 4,4'-DDD EST 7.70 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3	OUTSIDE ANALYSIS					
4,4'-DDD EST 7.70 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDE EST 6.10 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3	TOTAL ORGANIC CARBON	11100	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
4,4'-DDE EST 6.10 μg/Kg dry wt 1 EPA 8081A 09/26/10 4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3 μg/Kg dry wt 3 EPA 8081A 09/26/10 Alpha-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-Chlordane 61.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10						
4,4'-DDT 72.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Aldrin <3 μg/Kg dry wt 3 EPA 8081A 09/26/10 Alpha-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-Chlordane 61.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10	4,4'-DDD			1	EPA 8081A	09/26/10
Aldrin <3	·	EST 6.10	μg/Kg dry wt	1	EPA 8081A	
Alpha-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10 Alpha-Chlordane 61.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1	·	72.0	µg/Kg dry wt	5	EPA 8081A	
Alpha-Chlordane 61.0 μg/Kg dry wt 5 EPA 8081A 09/26/10 Beta-BHC <1 μg/Kg dry wt		<3		3	EPA 8081A	
Beta-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10	Alpha-BHC	<1	μg/Kg dry wt	[.] 1	EPA 8081A	09/26/10
100,	Alpha-Chlordane	61.0		5	EPA 8081A	09/26/10
Delta-BHC <1 μg/Kg dry wt 1 EPA 8081A 09/26/10	Beta-BHC	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
	, Delta-BHC	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105890

09:42 Sample Collected: 09/14/10

Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-NWLAKE1-0910

NW LAKE SOILS 0-2 IN W END TO RR TRKS

System ID:

AO08191

Report Page: Page 2 of 2

Sample Point Code:

18_20

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. LAB: For PCB analysis, dilution was required due to high levels of non-target compounds, resulting in raised reporting limits.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Dieldrin	13.0	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endosulfan I	<3.9	μg/Kg dry wt	3.9	EPA 8081A	09/26/10
Endosulfan II	<22	μg/Kg dry wt	22	EPA 8081A	09/26/10
Endosulfan Sulfate	<4	μg/Kg dry wt	4	EPA 8081A	09/26/10
Endrin	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endrin Aldehyde	<3.5	μg/Kg dry wt	3.5	EPA 8081A	09/26/10
Endrin Ketone	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Gamma-Chlordane	74.0	μg/Kg dry wt	5	EPA 8081A	09/26/10
Heptachlor	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Heptachlor Epoxide	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Methoxychlor	<5.9	μg/Kg dry wt	5.9	EPA 8081A	09/26/10
Toxaphene	<420	μg/Kg dry wt	420	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL CO	NGENERS -PACE	•		5	,
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105890

Validated By

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105891

Sample Collected: 09/14/10 Sample Received: 09/15/10 10:04

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-NWLAKE2-0910

NW LAKE SOILS 0-2 IN LAKE ST @ RR TRKS

AO08192

Page 1 of 2

Sample Point Code:

18_21

System ID: EID File #:

Report Page:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. This sample exhibited significant matrix interferences for organic analyses, causing high spike recoveries and RPDs for pesticide analysis, and raised reporting limits for PCBs.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL	•				
TOTAL SOLIDS	98.0	% W/W	0.01	SM 2540 G	09/16/10
METALS					
CADMIUM	0.63	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	39.9	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	41.0	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	104	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.052	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	16.6	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.31	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	239	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)				4	*
Aroclor 1016/1242	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1221	<80	μg/Kg dry wt	80	EPA 8082	09/16/10
Aroclor 1232	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1248	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1254	85	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1260	63	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1262	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1268	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	8520	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS				·	
4,4'-DDD	<5.4	μg/Kg dry wt	5.4	EPA 8081A	09/26/10
4,4'-DDE	EST 5.70°	μg/Kg dry wt	1	EPA 8081A	09/26/10
4,4'-DDT	61.0	μg/Kg dry wt	5	EPA 8081A	09/26/10
Aldrin	<1	µg/Kg dry wt	1	EPA 8081A	09/26/10
Alpha-BHC	<1	µg/Kg dry wt	1	EPA 8081A	09/26/10
Alpha-Chlordane	82	μg/Kg dry wt	5	EPA 8081A	09/26/10
Beta-BHC	<1.4	μg/Kg dry wt	1.4	EPA 8081A	09/26/10
Delta-BHC	· <1	μg/Kg dry wt	1	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105891

Sample Collected: 09/14/10 Sample Received: 09/15/10

10:04

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-NWLAKE2-0910

System ID:

AO08192

Sample Point Code:

NW LAKE SOILS 0-2 IN LAKE ST @ RR TRKS 18 21

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. This sample exhibited significant matrix interferences for organic analyses, causing high spike recoveries and RPDs for pesticide analysis, and raised reporting limits for PCBs.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Dieldrin	13.0	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endosulfan I	<4.3	μg/Kg dry wt	4.3	EPA 8081A	09/26/10
Endosulfan II	<19	μg/Kg dry wt	19	EPA 8081A	. 09/26/10
Endosulfan Sulfate	<1.8	μg/Kg dry wt	1.8	EPA 8081A	. 09/26/10
Endrin	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endrin Aldehyde	<3.2	μg/Kg dry wt	3.2	EPA 8081A	09/26/10
Endrin Ketone	<1.2	μg/Kg dry wt	1.2	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Gamma-Chlordane	90	μg/Kg dry wt	- 5	EPA 8081A	09/26/10
Heptachlor	<u><</u> 1	μg/Kg dry wt	1 .	EPA 8081A	09/26/10
Heptachlor Epoxide	<1.9	μg/Kg dry wt	1.9	EPA 8081A	09/26/10
Methoxychlor	<5.9	μg/Kg dry wt	5.9	EPA 8081A	09/26/10
Toxaphene	<600	μg/Kg dry wt	600	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL CO	ONGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105891

Report Date: 10/20/10

6543 N. Burtington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105892

Sample Collected: 09/14/10 10:41

Sample Received: 09/15/10

Sample Status: COMPLETE AND

Report Page: Page 1 of 2

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-NWLAKE3-0910

NW LAKE SOILS 0-2 IN EAST OF RR TRKS

Sample Point Code:

18 22

Sample Type: Sample Matrix:

COMPOSITE SEDIMENT

System ID:

AO08193

EID File #: LocCode:

1020.001

PORTHARI

Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Quantification of PCB Aroclor 1254 is based on only 2 chromatographic peaks due to matrix interferences. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. LAB: For PCB analysis, dilution was required due to high levels of non-target compounds, resulting in raised reporting limits.

Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
TOTAL SOLIDS	92.3	% W/W	0.01	SM 2540 G	09/16/10
METALS			,		
CADMIUM	0.71	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	51.0	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	50.2	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	148	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.086	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	16.9	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	1.04	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	264	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)	•	•		*	
Aroclor 1016/1242	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1221	<80	μg/Kg dry wt	80	EPA 8082	09/16/10
Aroclor 1232	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1248	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1254	EST 151	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1260	110	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1262	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1268	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	12600	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS				•	
4,4'-DDD	EST 21	μg/Kg dry wt	9.9	EPA 8081A	09/26/10
4,4'-DDE	26.0	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
4,4'-DDT	140	μg/Kg dry wt	9.9	EPA 8081A	09/26/10
Aldrin	<5.5	μg/Kg dry wt	5.5	EPA 8081A	09/26/10
Alpha-BHC	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Alpha-Chlordane	120	μg/Kg dry wt	9.9	EPA 8081A	09/26/10
Beta-BHC	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Delta-BHC	<0.99	µg/Kg dry wt	0.99	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105892

Sample Collected: 09/14/10

Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-18-NWLAKE3-0910

NW LAKE SOILS 0-2 IN EAST OF RR TRKS

Report Page:

Page 2 of 2

Sample Point Code:

18 22

System ID: EID File #: AO08193 1020,001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Quantification of PCB Aroclor 1254 is based on only 2 chromatographic peaks due to matrix interferences. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%. LAB: For PCB analysis, dilution was required due to high levels of non-target compounds, resulting in raised reporting limits.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Dieldrin	21.0	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endosulfan I	<9.9	μg/Kg dry wt	9.9	EPA 8081A	09/26/10
Endosulfan II	<21	μg/Kg dry wt	21	EPA 8081A	09/26/10
Endosulfan Sulfate	<6.1	μg/Kg dry wt	6.1	EPA 8081A	09/26/10
Endrin	< 0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endrin Aldehyde	<8.7	μg/Kg dry wt	8.7	EPA 8081A	09/26/10
Endrin Ketone	<11	μg/Kg dry wt	11	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Gamma-Chlordane	140	μg/Kg dry wt	9.9	EPA 8081A	09/26/10
Heptachlor	< 0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Heptachlor Epoxide	< 0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Methoxychlor	<6.2	μg/Kg dry wt	6.2	EPA 8081A	09/26/10
Toxaphene	<580	μg/Kg dry wt	580	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL C	ONGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105892

Validated By:

Report Date: 10/20/10

6543 N. Burtington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

11:18

Sample ID: FO105893

Sample Collected: 09/14/10

Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-18-NWLAKE4-0910

NW LAKE SOILS 0-2 IN E END OF LAKE ST

18 23

Sample Point Code: Sample Type: Sample Matrix:

COMPOSITE SEDIMENT

Report Page:

Page 1 of 2

System ID:

AO08194

EID File #: LocCode:

1020.001

Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units.	MRL	Method	Analysis Date
GENERAL TOTAL SOLIDS	90.2	% W/W	0.01	SM 2540 G	09/16/10
	90.2	70 VV/VV	0.01	OM 2040 O	00/10/10
METALS					0011-110
CADMIUM	1.08	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	51.3	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	46.6	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	157	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.066	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	17.8	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.44	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	237	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS		•			
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	- 10	EPA 8082	09/16/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1254	98	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1260	48	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	20200	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	EST 6.20	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
4,4'-DDE	EST 5.40	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
4,4'-DDT	58.0	μg/Kg dry wt	4.9	EPA 8081A	09/26/10
Aldrin	< 0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Alpha-BHC	< 0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Alpha-Chlordane	17.0	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Beta-BHC	<1.2	μg/Kg dry wt	1.2	EPA 8081A	09/26/10
Delta-BHC	< 0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Dieldrin	7.30	μg/Kg dry wt	0.97	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105893

Sample Collected: 09/14/10 Sample Received: 09/15/10

11:18

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-NWLAKE4-0910

AO08194

NW LAKE SOILS 0-2 IN E END OF LAKE ST

System ID:

Sample Point Code:

18_23

EID File #:

1020.001 PORTHARI

Sample Type: Sample Matrix:

COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endosulfan I	<1.2	μg/Kg dry wt	1.2	EPA 8081A	09/26/10
Endosulfan II	<4.5	μg/Kg dry wt	4.5	EPA 8081A	09/26/10
Endosulfan Sulfate	EST 1.70	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin Aldehyde	<1.4	μg/Kg dry wt	1.4	EPA 8081A	09/26/10
Endrin Ketone	<6.4	μg/Kg dry wt	6.4	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Gamma-Chlordane	23.0	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Heptachlor	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Heptachlor Epoxide	< 0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Methoxychlor	<2.5	μg/Kg dry wt	2.5	EPA 8081A	09/26/10
Toxaphene	<290	μg/Kg dry wt	290	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL CO	ONGENERS -PACE			· .	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105893

Validated By:

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105894

Sample Collected: 09/14/10 Sample Received: 09/15/10

13:20

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Page 1 of 2

Address/Location:

IL-18-ANF164-0910

System ID:

Report Page:

AO08195

2727 NW 35TH CB ON WEST SIDE OF 35TH

EID File #:

Sample Point Code: Sample Type:

18 24 COMPOSITE

LocCode:

1020.001 **PORTHARI**

Sample Matrix:

SEDIMENT

Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

GENERAL TOTAL SOLIDS METALS CADMIUM	92.7 2.47 84.7	% W/W mg/Kg dry wt	0.01	SM 2540 G	00/40/40
TOTAL SOLIDS METALS	2.47	•	0.01	SM 2540 G	00/40/40
METALS	2.47	•	•		09/16/10
		malka darud			
		LITTLE OF A COLOR OF A STATE OF THE STATE OF	0.10	EPA 6020	09/17/10
CHROMIUM		mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	114	.mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	151	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.075	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	41.5	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.43	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	644	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANÁLYSIS				•	
POLYCHLORINATED BIPHENYLS (PCB)	-				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1254	112	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1260	76	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
OUTSIDE ANALYSIS					•
TOTAL ORGANIC CARBON	40300	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS				•	
4,4'-DDD	3.50	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
4,4'-DDE	EST 3.20	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
4,4'-DDT	EST 20.0	μg/Kg dry wt	5	EPA 8081A	09/26/10
Aldrin	1.10	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Alpha-BHC	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Alpha-Chlordane	5.80	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Beta-BHC	<2.9	μg/Kg dry wt	2.9	EPA 8081A	09/26/10
Delta-BHC	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Dieldrin	<2.5	μg/Kg dry wt	2.5	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105894

Sample Collected: 09/14/10

13:20

Sample Status: COMPLETE AND

Sample Received: 09/15/10

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-ANF164-0910

2727 NW 35TH CB ON WEST SIDE OF 35TH

System ID:

AO08195

Sample Point Code:

18 24

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endosulfan I	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endosulfan II	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endosulfan Sulfate	<2	μg/Kg dry wt	2	EPA 8081A	09/26/10
Endrin	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endrin Aldehyde	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Endrin Ketone	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Gamma-Chlordane	8.40	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Heptachlor	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Heptachlor Epoxide	<0.99	μg/Kg dry wt	0.99	EPA 8081A	09/26/10
Methoxychlor	<2.1	μg/Kg dry wt	2.1	EPA 8081A	09/26/10
Toxaphene	<280	μg/Kg dry wt	280	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL C	ONGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105894

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105895

Sample Collected: 09/14/10 Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

3125 NW 35TH CB ON WEST SIDE OF 35TH

Page 1 of 2 Report Page:

Address/Location:

IL-18-ANB622-0910

System ID:

Sample Point Code:

EID File #:

AQ08196

Sample Type:

18 25

1020.001 PORTHARI

Sample Matrix:

COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

% W/W mg/Kg dry wt ug/Kg dry wt	0.01 0.10 0.50 0.25 0.10 0.010 0.25 0.10 0.50	Method SM 2540 G EPA 6020	09/16/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt ug/Kg dry wt ug/Kg dry wt ug/Kg dry wt	0.10 0.50 0.25 0.10 0.010 0.25 0.10 0.50	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt ug/Kg dry wt ug/Kg dry wt ug/Kg dry wt	0.10 0.50 0.25 0.10 0.010 0.25 0.10 0.50	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt pg/Kg dry wt pg/Kg dry wt pg/Kg dry wt	0.50 0.25 0.10 0.010 0.25 0.10 0.50	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt pg/Kg dry wt pg/Kg dry wt pg/Kg dry wt	0.50 0.25 0.10 0.010 0.25 0.10 0.50	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.25 0.10 0.010 0.25 0.10 0.50 10	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.10 0.010 0.25 0.10 0.50 10 20	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt mg/Kg dry wt mg/Kg dry wt mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.010 0.25 0.10 0.50 10 20	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt mg/Kg dry wt mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.25 0.10 0.50 10 20 10	EPA 6020 EPA 6020 EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.10 0.50 10 20 10	EPA 6020 EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10 09/17/10
mg/Kg dry wt µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	0.50 10 20 10	EPA 6020 EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10 09/17/10
µg/Kg dry wt µg/Kg dry wt µg/Kg dry wt	10 20 10	EPA 8082 EPA 8082	09/17/10 09/17/10 09/17/10
μg/Kg dry wt μg/Kg dry wt	20 10	EPA 8082	09/17/10 09/17/10
μg/Kg dry wt μg/Kg dry wt	20 10	EPA 8082	09/17/10 09/17/10
μg/Kg dry wt μg/Kg dry wt	20 10	EPA 8082	09/17/10 09/17/10
μg/Kg dry wt	10		09/17/10
		EPA 8082	
ua/Ka day wt			
pg/ing dry wi	10	EPA 8082	09/17/10
μg/Kg dry wt	10	EPA 8082	09/17/10
μg/Kg dry wt	10	EPA 8082	09/17/10
μg/Kg dry wt	10	EPA 8082	09/17/10
μg/Kg dry wt	10	EPA 8082	09/17/10
mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
-			
μg/Kg dry wt	0.97	EPA 8081A	09/26/10
	0.97	EPA 8081A	09/26/10
	9.6	EPA 8081A	09/26/10
		EPA 8081A	09/26/10
		EPA 8081A	09/26/10
	0.97	EPA 8081A	09/26/10
		EPA 8081A	09/26/10
			09/26/10
μg/Kg dry wt	0.97	EPA 8081A	09/26/10
	μg/Kg dry wt μg/Kg dry wt mg/Kg dry wt μg/Kg dry wt	μg/Kg dry wt μg/Kg dry wt 10 mg/Kg dry wt 100 μg/Kg dry wt	μg/Kg dry wt μg/Kg dry wt 10 EPA 8082 EPA 8082 mg/Kg dry wt 100 EPA 9060 MOD μg/Kg dry wt 0.97 EPA 8081A μg/Kg dry wt 0.97 EPA 8081A μg/Kg dry wt 9.6 EPA 8081A μg/Kg dry wt 0.97 EPA 8081A

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105895

Sample Collected: 09/14/10 Sample Received: 09/15/10

14:11

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-ANB622-0910 3125 NW 35TH CB ON WEST SIDE OF 35TH

System ID:

AO08196

Sample Point Code:

18 25

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endosulfan i	EST 2.90	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endosulfan II	<2.3	μg/Kg dry wt	2.3	EPA 8081A	09/26/10
Endosulfan Sulfate	EST 2.50	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin Aldehyde	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin Ketone	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<1.4	μg/Kg dry wt	1.4	EPA 8081A	09/26/10
Gamma-Chlordane	EST 2.80	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Heptachlor	3.40	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Heptachlor Epoxide	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Methoxychlor	<1.9	μg/Kg dry wt	1.9	EPA 8081A	09/26/10
Toxaphene	<140	μg/Kg dry wt	140	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL CO	ONGENERS -PACE				·
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105895

Validated By:

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105896

Sample Collected: 09/14/10 Sample Received: 09/15/10

13:51

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-18-UNNAMEDCB-0910

System ID:

AO08197

Sample Point Code:

18_26

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

2840 NW 35TH AVE

LocCode:

PORTHARI Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL			X.	•	
TOTAL SOLIDS	62.0	% W/W	0.01	SM 2540 G	09/16/10
METALS					
CADMIUM	1.53	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	180	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	136	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	124	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.077	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	52.0	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.65	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	884	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PC	3)				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/17/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1254	29	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1260	38	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	. 09/17/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	84000	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	EST 1.30	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
4,4'-DDE	<1.1	μg/Kg dry wt	1.1	EPA 8081A	09/26/10
4,4'-DDT	EST 19.0	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Aldrin	<1.2	μg/Kg dry wt	1.2	EPA 8081A	09/26/10
Alpha-BHC	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Alpha-Chlordane	EST 2.30	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Beta-BHC	<6.9	μg/Kg dry wt	6.9	EPA 8081A	09/26/10
Delta-BHC	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Dieldrin	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10

Report Date: 10/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105896

Sample Collected: 09/14/10

13:51 Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-UNNAMEDCB-0910

AO08197

2840 NW 35TH AVE

System ID:

1020.001

Sample Point Code: Sample Type:

18 26

EID File #: LocCode:

PORTHARI

Sample Matrix:

COMPOSITE **SEDIMENT**

Collected By:

JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

	,				Analysis
Test Parameter	Result	Units	MRL	Method	Date
Endosulfan I	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Endosulfan II	<1.6	μg/Kg dry wt	1.6	EPA 8081A	09/26/10
Endosulfan Sulfate	EST 1.70	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Endrin	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Endrin Aldehyde	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Endrin Ketone	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Gamma-Chlordane	EST 3.00	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Heptachlor	16.0	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Heptachlor Epoxide	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Methoxychlor	<0.98	μg/Kg dry wt	0.98	EPA 8081A	09/26/10
Toxaphene	<97	μg/Kg dry wt	97	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL C	ONGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105896

Report Date: 10/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105897

Sample Collected: 09/14/10

14:53

Sample Status: COMPLETE AND

Sample Received: 09/15/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-18-ANB621-0910

System ID:

AO08198

Sample Point Code:

3441 NW GUAM ST 18 27

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	58.7	% W/W	0.01	SM 2540 G	09/16/10
METALS					
CADMIUM	2.83	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	124	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	129	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	118	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.130	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	55.3	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.64	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	1317	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS				•	•
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/17/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1254	56	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1260	42	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
OUTSIDE ANALYSIS			,		
TOTAL ORGANIC CARBON	111000	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	<1.4	μg/Kg dry wt	1.4	EPA 8081A	09/26/10
4,4'-DDE	EST 1.30	μg/Kg dry wt	1	EPA 8081A	09/26/10
4,4'-DDT	<11	μg/Kg dry wt·	11	EPA 8081A	09/26/10
Aldrin	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Alpha-BHC	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Alpha-Chlordane	EST 2.50	μg/Kg dry wt	1 .	EPA 8081A	09/26/10
Beta-BHC	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Delta-BHC	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Dieldrin	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10

Report Date: 10/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105897

Sample Collected: 09/14/10 Sample Received: 09/15/10 14:53

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-18-ANB621-0910

3441 NW GUAM ST

System ID:

AO08198

Sample Point Code:

18 27

EID File #:

1020.001 **PORTHARI**

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endosulfan I	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endosulfan II	<3.8	μg/Kg dry wt	3.8	EPA 8081A	09/26/10
Endosulfan Sulfate	3.90	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endrin	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endrin Aldehyde	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Endrin Ketone	<1.1	μg/Kg dry wt	1.1	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	<1.6	μg/Kg dry wt	1.6	EPA 8081A	09/26/10
Gamma-Chlordane	4.80	μg/Kg dry wt	1	EPA 8081A	09/26/10
Heptachlor	3.20	μg/Kg dry wt	1	EPA 8081A	09/26/10
Heptachlor Epoxide	<1	μg/Kg dry wt	1	EPA 8081A	09/26/10
Methoxychlor	<2.8	μg/Kg dry wt	2.8	EPA 8081A	09/26/10
Toxaphene	<140	μg/Kg dry wt	140	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL C	ONGENERS -PACE			•	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105897

Report Date: 10/20/10 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105898

Sample Collected: 09/14/10

13:04

Sample Status: COMPLETE AND

Sample Received: 09/15/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

FIELD DECON BLANK

System ID:

AO08199

Sample Point Code: Sample Type:

FDBLANK GRAB

EID File #:

1020.001

Sample Matrix:

DIWTR

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

	•				Analysis
Test Parameter	Result	Units	MRL	Method	Date
METALS					
MERCURY	<0.0020	μg/L	0.002	WPCLSOP M-10.02	09/17/10
METALS BY ICP-MS (TOTAL) - 7					
CADMIUM	<0.10	μg/L	0.1	EPA 200.8	10/02/10
CHROMIUM	< 0.40	μg/L	0.4	EPA 200.8	10/02/10
COPPER	<0.20	μg/L	0.2	EPA 200.8	10/02/10
LEAD	<0.10	μg/L	0.1	EPA 200.8	10/02/10
NICKEL	<0.20	μg/L	0.2	EPA 200.8	10/02/10
SILVER	<0.10	μg/L	0.1	EPA 200.8	10/02/10
ZINC	2.00	µg/L	0.5	EPA 200.8	10/02/10
GC ANALYSIS			1		
POLYCHLORINATED BIPHENYLS (PCB)			•		
Aroclor 1016/1242	<0.025	μg/L	0.025	EPA 8082 .	09/30/10
Aroclor 1221	< 0.050	μg/L	0.050	EPA 8082	09/30/10
Aroclor 1232	<0.025	μg/L	0.025	EPA 8082	09/30/10
Aroclor 1248	<0.025	μg/L	0.025	EPA 8082	09/30/10
Aroclor 1254	<0.025	μg/L	0.025	EPA 8082	09/30/10
Aroclor 1260	<0.025	μg/L	0.025	EPA 8082	09/30/10
Aroclor 1262	<0.025	μg/L	0.025	EPA 8082	09/30/10
Aroclor 1268	<0.025	µg/L	0.025	EPA 8082	09/30/10
OUTSIDE ANALYSIS		e.		,	
PESTICIDES BY EPA 8081 - CAS					
4,4'-DDD	< 0.52	ng/L	0.52	EPA 8081	09/20/10
4,4'-DDE	<0.52	ng/L	0.52	EPA 8081	09/20/10
4,4'-DDT	<0.52	ng/L	0.52	EPA 8081	09/20/10
Aldrin	<0.52	ng/L	0.52	EPA 8081	09/20/10
Alpha-BHC	<0.52	ng/L	0.52	EPA 8081	09/20/10
Alpha-Chlordane	<0.52	ng/L	0.52	EPA 8081	09/20/10
Beta-BHC	<0.52	ng/L	0.52	EPA 8081	09/20/10
Delta-BHC	<0.52	ng/L	0.52	EPA 8081	09/20/10
Dieldrin	<0.52	ng/L	0.52	EPA 8081	09/20/10
Endosulfan I	<0.52	ng/L	0.52	EPA 8081	09/20/10
Endosulfan II	<0.52	ng/L	0.52	EPA 8081	09/20/10
Endosulfan Sulfate	<0.52	ng/L	0.52	EPA 8081	09/20/10

Report Date: 10/20/10

Validated By

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105898

Sample Collected: 09/14/10 Sample Received: 09/15/10

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

FIELD DECON BLANK

System ID:

AO08199

Sample Point Code:

FDBLANK

EID File #:

1020.001

Sample Type: Sample Matrix: **GRAB DIWTR** LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endrin	<0.52	ng/L	0.52	EPA 8081	09/20/10
Endrin Aldehyde	<0.52	ng/L	0.52	EPA 8081	09/20/10
Endrin Ketone	<0.52	ng/L	0.52	EPA 8081	09/20/10
Gamma-BHC(Lindane)	<0.52	ng/L	0.52	EPA 8081	09/20/10
Gamma-Chlordane	<0.52	ng/L	0.52	EPA 8081	09/20/10
Heptachlor	<0.52	ng/L	0.52	EPA 8081	09/20/10
Heptachlor Epoxide	< 0.52	ng/L	0.52	EPA 8081	09/20/10
Methoxychlor	<0.52	ng/L	0.52	EPA 8081	09/20/10
Toxaphene	<45	ng/L	45	EPA 8081	09/20/10

End of Report for Sample ID: FO105898

Report Date: 10/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105899

Sample Collected: 09/14/10 Sample Received: 09/15/10

00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

FIELD DUPLICATE

System ID:

AO08200

Sample Point Code:

DUP

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode:

PORTHARI Collected By: JJM/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	96.2	% W/W	0.01	SM 2540 G	09/16/10
METALS	4				
CADMIUM	0.89	mg/Kg dry wt	0.10	EPA 6020	09/17/10
CHROMIUM	59.7	mg/Kg dry wt	0.50	EPA 6020	09/17/10
COPPER	34.8	mg/Kg dry wt	0.25	EPA 6020	09/17/10
LEAD	94.1	mg/Kg dry wt	0.10	EPA 6020	09/17/10
MERCURY	0.048	mg/Kg dry wt	0.010	EPA 6020	09/17/10
NICKEL	26.1	mg/Kg dry wt	0.25	EPA 6020	09/17/10
SILVER	0.22	mg/Kg dry wt	0.10	EPA 6020	09/17/10
ZINC	185	mg/Kg dry wt	0.50	EPA 6020	09/17/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/17/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1254	151	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1260	57	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/17/10
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	9930	mg/Kg dry wt	100	EPA 9060 MOD	09/22/10
PESTICIDES BY EPA 8081 - CAS		•			
4,4'-DDD	<6.9	μg/Kg dry wt	6.9	EPA 8081A	09/26/10
4,4'-DDE	EST 4.70	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
4,4'-DDT	70.0	μg/Kg dry wt	4.9	EPA 8081A	09/26/10
Aldrin	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Alpha-BHC	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Alpha-Chlordane	60.0	μg/Kg dry wt	4.9	EPA 8081A	09/26/10
Beta-BHC	<4	μg/Kg dry wt	4	EPA 8081A	09/26/10
Delta-BHC	< 0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Dieldrin	13.0	μg/Kg dry wt	0.97	EPA 8081A	09/26/10

Report Date: 10/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105899

Sample Collected: 09/14/10 Sample Received: 09/15/10

00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

FIELD DUPLICATE

System ID:

AO08200

Sample Point Code: Sample Type:

DUP

EID File #:

1020.001

Sample Matrix:

COMPOSITE **SEDIMENT**

LocCode: Collected By: JJM/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For pesticide results flagged as estimates, results from the primary and verification columns varied by more than 40%.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Endosulfan I	<3.5	μg/Kg dry wt	3.5	EPA 8081A	09/26/10
Endosulfan II	<25	μg/Kg dry wt	25	EPA 8081A	09/26/10
Endosulfan Sulfate	<2.7	μg/Kg dry wt	2.7	EPA 8081A	09/26/10
Endrin	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Endrin Aldehyde	<3.6	μg/Kg dry wt	3.6	EPA 8081A	09/26/10
Endrin Ketone	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Gamma-BHC(Lindane)	< 0.97	μg/Kg dry wt	0.97	EPA-8081A	09/26/10
Gamma-Chlordane	74	μg/Kg dry wt	4.9	EPA 8081A	09/26/10
Heptachlor	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Heptachlor Epoxide	<0.97	μg/Kg dry wt	0.97	EPA 8081A	09/26/10
Methoxychlor	<4.9	μg/Kg dry wt	4.9	EPA 8081A	09/26/10
Toxaphene	<570	μg/Kg dry wt	570	EPA 8081A	09/26/10
POLYCHLORINATED BIPHENYL CO	ONGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105899

Validated By

Report Date: 10/20/10

October 15, 2010

Analytical Report for Service Request No: K1010183

Jennifer Shackelford Portland, City of 1120 SW Fifth Avenue # 1000 Portland, OR 97204

RE: Portland Harbor Inline Samp

Dear Jennifer:

Enclosed are the results of the samples submitted to our laboratory on September 16, 2010. For your reference, these analyses have been assigned our service request number K1010183.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Howard Holmes

Project Chemist

HH/jb

Page I of 27

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit,
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- See case narrative. One or more quality control criteria was outside the limits.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	~
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment & Water

Service Request No.:

K1010183

Date Received:

9/16/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Nine sediment & one water samples were received for analysis at Columbia Analytical Services on 9/16/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Sediment

Calibration Verification Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Decachlorobiphenyl in CCV 1005F029; for a few analytes in CCV 1011F004. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Matrix Spike Recovery Exceptions:

The control criteria for the matrix spike recovery of several analytes for sample FO 105891 was not applicable. The chromatogram indicated non-target matrix background components contributed to the reported matrix spike concentrations. Thus, the reported recoveries contained a high bias. Based on the magnitude of background contribution, the interference appeared to be minimal.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for several analytes in the replicate matrix spike analyses of sample FO 105891 was outside control criteria. In general, the RPD was relatively high for all spiked compounds, which indicates a low/high bias in the Matrix Spike (MS)/Matrix Spike Duplicate (MSD). All spike recoveries in the associated Laboratory Control Sample (LCS) were within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

Approved by

Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for one or more analytes was exceeded in all samples. The lower of the two values was reported when no evidence of a matrix interference was observed, or the higher of the two values was reported when there was an apparent problem on the alternate column that produced the higher value.

Elevated Detection Limits:

Several samples required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

The detection limit was elevated for a few analytes in all samples. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

Water

Calibration Verification Exceptions:

The analysis of Chlorinated Pesticides by EPA 8081 requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the higher of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Methoxychlor and Decachlorobiphenyl in CCV 0928F004. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Elevated Detection Limits:

The MDL is elevated for Endosulfan II and Toxaphene in sample Method Blank KWG1010160-3. The chromatogram indicated the presence of non-target background components, which were apparently introduced as laboratory artifacts. The contamination prevented adequate resolution of the target compounds at the MDL. Note the level of background was relatively low compared to the MDL, so the affect on the results was minimal. The results are flagged to indicate the problem.

The detection limit was elevated for Endosulfan II and Toxaphene in sample FO 105898. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the normal limit. The results were flagged to indicate the matrix interference.

No other anomalies associated with the analysis of these samples were observed.

approved by Howard Holland Date 10-15-10

CHAIN OF CUSTODY

်ရှ ၂

.

end Cc3	1317 South 13th Ave. • Kelso, WA 98626 •	8626 * (360) 577:7222 * (800) 695-7222x07	· FA	TAGE	OFCOC	#
CATUAND HAI			<u> </u>			
PROJECT NUMBER	THE THE PARTY OF T	- September	TEX / ITO / IN		02, 10, 106 [
Jenniter Sh	かみしずっ	CAL			(le) (70) 7 50	
COMPANYADORESS CITY IF PORTING	13. / アアCL	by Gu	0) 1664	ved	COINTRN, 33 350 (
CITYSTATE 71D	HAMAHA I I I I I I I I I I I I I I I I I I	70cs 82 802 802	(F) H gene des 814	SIM)X 10	
E-MAIL AODRESS	TO THE	Organ	Screen Screen	or Di	Total Total No.	
PHONE #	FAX #	latile Orga 8260 Brbor	reases HE	Tota belo	circle 20 E	
SAMPLER'S SIGNATURE		miyo 525 i Natile Idroca	& GI 1662 B's clore sticic ilorop	etals, e list anide)X 90,	_
SAMPLE I.D. DATE	TIME LABID, MATRIX	S / VS/ H'G/	0 /P(A)(P(B) O [T]	88 0/D	77	HEMIAHKS
F0105870 9/14/10	0942 Sedimen	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	> <.	SOCIOLO SOCIO		
and A	Ē		· ·	ASSA FOLIABANE APER		понумоченостьм
×32			*	MATERIAL PROPERTY.		
3	All the second s	2003330	X			
	72		X			·
3						Management of the Control of the Con
22	25		×.			The state of the s
	3		X			THE RESIDENCE OF THE PROPERTY
3	23.4 East		>	AND MALE AND A STATE OF THE STATE OF T	MANAGEMENT AND ASSESSMENT OF THE PARTY OF TH	
<	Schine					
REPORT REQUIREMENTS	P.O. #	Circle which metals are to be analyzed	analyzed:			
I. Routine Report: Method Blank, Surrogate, as	Bill To:	≥ ≥	Be B Ca Cd Co Cr	Fe Pb Mg Mn	Ni K Ag Na Se	TI Sn V Zn
		*INDICATE STATE HYDROCARBON PROCEDU	RE:	AK CA WI NORTHWEST	EST OTHER:	(CIRCLE
required	UND REQ	ENTS SPECIAL INSTRUCTIONS/COMMENTS	••	i Na	and the state of t	
iii. Data Validation Report (includes all raw data)	5 Day5 Day5 Standard (10-15 working days)	Plase run	low-level	Tubout P	The second of th	
IV. CLP Deliverable Report	Provide FAX Results	ann Anna San San San San San San San San San				
V. EDD	Requester Report Date	oroniorinini			> .	
		RECEIVED BY:	RELINQUISHED	BY:) REDEIVED, B	9.8V:
Signature Date/Time	Sona Me	Dalle 10 19	Standard		Signature	
lame Figh	TWIN WPCL Printed With	Firm	Printed-Name		Printed Name	

Cooler Receipt and Preservation Form Client/Project: City of Portland. Service Request K10_10183 Received: 91610 91610 By: Samples were received via? Mail PDXFed Ex UPS DHLCourier Hand Delivered Samples were received in: (circle) Cooler BoxEnvelope OtherNA- Were custody seals on coolers? NA N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Υ N Cooler Temp Thermometer Cooler/COC Blank °C Temp °C ID: Tracking Number ID NA NA Filed Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NΑ Ν Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. N Were appropriate bottles/containers and volumes received for the tests indicated? ΝÁ Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N Were VOA vials received without headspace? Indicate in the table below. N 5. Was C12/Res negative? Ν Sample ID on Bottle Sample ID on COC identified by: Out of Head-**Bottle Count** Volume Reagent Lot Sample 1D Bottle Type Temp space Broke Reagent рH added Number Initials 'otes, Discrepancies, & Resolutions: Page 1 of

Columbia Analytical Services, Inc.

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inli

Sample Matrix:

Sediment

Total Solids

Prep Method:

NONE 160.3M Units: PERCENT

Service Request: K1010183

Analysis Method: Test Notes:

Basis: Wet

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
FO 105890	K1010183-001	09/14/2010	09/16/2010	09/21/2010	96.2	
FO 105891	K1010183-002	09/14/2010	09/16/2010	09/21/2010	98.2	
FO 105892	K1010183-003	09/14/2010	09/16/2010	09/21/2010	93.9	
FO 105893	K1010183-004	09/14/2010	09/16/2010	09/21/2010	90.6	
FO 105894	K1010183-005	09/14/2010	09/16/2010	09/21/2010	. 93.3	
FO 105895	K1010183-006	09/14/2010	09/16/2010	09/21/2010	66.2	
FO 105896	K1010183-007	09/14/2010	09/16/2010	09/21/2010	69.2	
FO 105897	K1010183-008	09/14/2010	09/16/2010	09/21/2010	59.0	
FO 105899	K1010183-010	09/14/2010	09/16/2010	09/21/2010	96.3	

SuperSet Reference: W1010020

Page

I of]

u:\Stealth\Crystal.rpt\Solids.rpt

QA/QC Report

Client: Project: Portland, City of Portland Harbor Inli

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Date Analyzed: 09/21/2010

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Basis: Wet

Test Notes:

Analysis Method: 160.3M

Relative Duplicate Sample Percent Sample Result Difference Result Average

FO 105890

Sample Name

K1010183-001

Lab Code

96.2

96.7

96.5

<1

Notes

Result

Printed: 09/23/2010 04:51 u:\Stealth\Crystaf.rpt\Solids.rpt

SuperSet Reference: W1010020

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105890

Lab Code:

K1010183-001

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	1.0	0.11	. 1	09/26/10	10/05/10	KWG1010563	
beta-BHC	ND	Ui	1.0	0.99	1	09/26/10	10/05/10	KWG1010563	
gamma-BHC (Lindane)	ND	Ui	1.0	0.34	1	09/26/10	10/05/10	KWG1010563	
delta-BHC	ND	Ui	1.0	0.20	1	09/26/10	10/05/10	KWG1010563	
Heptachlor	ND	Ui	1.0	1.0	1	09/26/10	10/05/10	KWG1010563	
Aldrin	ND	Ui	3.0	3.0	1	09/26/10	10/05/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	1.0	1.0	. 1	09/26/10	10/05/10	KWG1010563	
gamma-Chlordane†	74	D	5.0	0.45	5	09/26/10	10/06/10	KWG1010563	
Endosulfan I	ND	Ui	3.9	3.9	1	09/26/10	10/05/10	KWG1010563	
alpha-Chlordane	61	D	5.0	0.50	5	09/26/10	10/06/10	KWG1010563	
Dieldrin	13		1.0	0.14	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDE	6.1	P	1.0	0.11	1	09/26/10	10/05/10	KWG1010563	
Endrin	ND	Ui	1.0	1.0	1	09/26/10	10/05/10	KWG1010563	
Endosulfan II	ND	Ui	22	22	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDD	7.7	P	1.0	0.11	1	09/26/10	10/05/10	KWG1010563	
Endrin Aldehyde	ND	Ui	3.5	3.5	1	09/26/10	10/05/10	KWG1010563	
Endosulfan Sulfate	ND	Ui	4.0	4.0	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDT	72	D	5.0	0.85	5	09/26/10	10/06/10	KWG1010563	
Endrin Ketone	ND	Ui	1.0	1.0	· 1	09/26/10	10/05/10	KWG1010563	
Methoxychlor	ND	Ui	5.9	5.9	1	09/26/10	10/05/10	KWG1010563	
Toxaphene	ND	Ui	420	420	1	09/26/10	10/05/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	67 111	21-112 15-130	10/05/10 10/05/10	Acceptable Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:58:53 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic 11

SuperSet Reference:

Page

1 of

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105891

Lab Code:

K1010183-002

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note Note
alpha-BHC	ND	U	1.0	0.11	1	09/26/10	10/06/10	KWG1010563	
beta-BHC	ND	Ui	1.4	1.4	1	09/26/10	10/06/10	KWG1010563	
gamma-BHC (Lindane)	ND	Ui	1.0	0.37	1	09/26/10	10/06/10	KWG1010563	
delta-BHC	0.31	JP	1.0	0.074	1	09/26/10	10/06/10	KWG1010563	-
Heptachlor	ND	Ui	1.0	1.0	1	09/26/10	10/06/10	KWG1010563	
Aldrin	ND	Ui	1.0	1.0	1	09/26/10	10/06/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	1.9	1.9	1	09/26/10	10/06/10	KWG1010563	
gamma-Chlordane†	90	D	5.0	0.45	5	09/26/10	10/06/10	KWG1010563	
Endosulfan I	ND	Ui	4.3	4.3	1	09/26/10	10/06/10	KWG1010563	
alpha-Chlordane	82	D	5.0	0.50	5	09/26/10	10/06/10	KWG1010563	
Dieldrin	13		1.0	0.14	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDE	5.7	P	1.0	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin	ND	Ui	1.0	1.0	1	09/26/10	10/06/10	KWG1010563	***************************************
Endosulfan II	ND	Ui	19	19	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDD	ND	Ui	5.4	5.4	1	09/26/10	10/06/10	KWG1010563	
Endrin Aldehyde	ND	Ui	3.2	3.2	1	09/26/10	10/06/10	KWG1010563	
Endosulfan Sulfate	ND	Ui	1.8	1.8	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDT	61	D	5,0	0.85	5	09/26/10	10/06/10	KWG1010563	
Endrin Ketone	ND	Ui	1.2	1.2	1	09/26/10	10/06/10	KWG1010563	Pitteramor
Methoxychlor	ND	Ui	5.9	5.9	1	09/26/10	10/06/10	KWG1010563	
Toxaphene	ND	Ui	600	600	1	09/26/10	10/06/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	78	21-112	10/06/10	Acceptable Outside Control Limits
Decachlorobiphenyl	136	15-130	10/06/10	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:58:56 u;\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

SuperSet Reference: RR120978

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105892

Lab Code:

K1010183-003

Extraction Method: Analysis Method:

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND	Ui	0.99	0.20	1	09/26/10	10/06/10	KWG1010563	
beta-BHC	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
gamma-BHC (Lindane)	ND	U	0.99	0.080	1	09/26/10	10/06/10	KWG1010563	
delta-BHC	ND	Ui	0.99	0.51	1	09/26/10	10/06/10	KWG1010563	
Heptachlor	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
Aldrin	ND	Ui	5.5	5.5	1	09/26/10	10/06/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
gamma-Chlordane†	140	\mathbf{D}^{-r}	9.9	0.90	10	09/26/10	10/08/10	KWG1010563	
Endosulfan I	ND	Ui	9.9	9.9	10	09/26/10	10/08/10	KWG1010563	
alpha-Chlordane	120	D	9.9	1.0	10	09/26/10	10/08/10	KWG1010563	
Dieldrin	21		0,99	0.14	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDE	26		0.99	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
Endosulfan II	ND	Ui	21	21	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDD	21	PD	9.9	1.1	10	09/26/10	10/08/10	KWG1010563	
Endrin Aldehyde	ND	Ui	8.7	8.7	1	09/26/10	10/06/10	KWG1010563	
Endosulfan Sulfate	ND	Ui	6.1	6.1	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDT	140	D	9.9	1.7	10	09/26/10	10/08/10	KWG1010563	
Endrin Ketone	ND	Ui	11	11	1	09/26/10	10/06/10	KWG1010563	
Methoxychlor	ND	Ui	6.2	6.2	1	09/26/10	10/06/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	78	21-112	10/06/10	Acceptable Outside Control Limits
Decachlorobiphenyl	266	15-130	10/06/10	

580

580

† Analyte Comments

Toxaphene

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

1

09/26/10

10/06/10

KWG1010563

Comments:

Printed: 10/14/2010 15:59:00 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

ND Ui

Form 1A - Organic

SuperSet Reference: RR120978

Page 1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105893

Lab Code:

K1010183-004

Extraction Method: Analysis Method:

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND Ui	0.97	0.12	1	09/26/10	10/06/10	KWG1010563	
beta-BHC	ND Ui	1.2	1.2	1	09/26/10	10/06/10	KWG1010563	
gamma-BHC (Lindane)	ND Ui	0.97	0.11	1	09/26/10	10/06/10	KWG1010563	
delta-BHC	ND U	0.97	0.074	1	09/26/10	10/06/10	KWG1010563	
Heptachlor	ND Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Aldrin	ND Ui	0.97	0.94	1	09/26/10	10/06/10	KWG1010563	
Heptachlor Epoxide	ND Ui	0.97	0.83	1	09/26/10	10/06/10	KWG1010563	77107
gamma-Chlordane†	23	0.97	0.090	1	09/26/10	10/06/10	KWG1010563	
Endosulfan I	ND Ui	1.2	1.2	1	09/26/10	10/06/10	KWG1010563	
alpha-Chlordane	17	0.97	0.10	1	09/26/10	10/06/10	KWG1010563	
Dieldrin	7,3	0.97	0.14	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDE	5.4 P	0.97	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin	ND Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Endosulfan II	ND Ui	4.5	4.5	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDD	6.2 P	0.97	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin Aldehyde	ND Ui	1.4	1.4	1	09/26/10	10/06/10	KWG1010563	
Endosulfan Sulfate	1.7 P	0.97	0.11	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDT	58 D	4.9	0.85	5	09/26/10	10/07/10	KWG1010563	
Endrin Ketone	ND Ui	6.4	6.4	1	09/26/10	10/06/10	KWG1010563	
Methoxychlor	ND Ui	2.5	2.5	1	09/26/10	10/06/10	KWG1010563	
Toxaphene	ND Ui	290	290	1	09/26/10	10/06/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	65	21-112	10/06/10	Acceptable	
Decachlorobiphenyl	92	15-130	10/06/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:03 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105894

Lab Code:

K1010183-005

Extraction Method: Analysis Method:

EPA 3541 8081A

Units: ug/Kg Basis: Dry

Level: Low

	*** **.	_	2500	N.F.N.T	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
beta-BHC	ND	Ui	2.9	2.9	1	09/26/10	10/06/10	KWG1010563	
gamma-BHC (Lindane)	ND	U	0.99	0.080	1	09/26/10	10/06/10	KWG1010563	
delta-BHC	ND	U	0.99	0.074	1	09/26/10	10/06/10	KWG1010563	
Heptachlor	0.61	JР	0.99	0.12	1	09/26/10	10/06/10	KWG1010563	
Aldrin	1.1		0.99	0.16	1	09/26/10	10/06/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
gamma-Chlordane†	8.4		0.99	0.090	1	09/26/10	10/06/10	KWG1010563	
Endosulfan I	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
alpha-Chlordane	5.8		0.99	0.10	1	09/26/10	10/06/10	KWG1010563	
Dieldrin	ND	Ui	2.5	2.5	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDE	3.2	P	0.99	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin	ND	Ui	0.99	0.40	1	09/26/10	10/06/10	KWG1010563	
Endosulfan II	ND	Ui	0.99	0.99	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDD	3.5		0.99	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin Aldehyde	ND	U	0.99	0.12	1	09/26/10	10/06/10	KWG1010563	
Endosulfan Sulfate	ND	Ui	2.0	2.0	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDT	20	PD	5.0	0.85	5	09/26/10	10/07/10	KWG1010563	
Endrin Ketone	0.49	JP	0.99	0.093	1	09/26/10	10/06/10	KWG1010563	
Methoxychlor	ND	Ui	2.1	2.1	1	09/26/10	10/06/10	KWG1010563	
Toxaphene	ND	Ui	280	280	1	09/26/10	10/06/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	75	21-112	10/06/10	Acceptable
Decachlorobiphenyl	127	15-130	10/06/10	Acceptable

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:06 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 15

SuperSet Reference: RR120978

Page

1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183 Date Collected: 09/14/2010

Date Received: 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105895

Lab Code:

K1010183-006

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Let	Note
alpha-BHC	ND	Ui	0.97	0.97	1	09/26/10	10/08/10	KWG1010563	
beta-BHC	ND	Ui	2.3	2.3	1	09/26/10	10/08/10	KWG1010563	
gamma-BHC (Lindane)	ND	Ui	1.4	1.4	1	09/26/10	10/08/10	KWG1010563	
delta-BHC	ND	U	0.97	0.074	1	09/26/10	10/08/10	KWG1010563	
Heptachlor	3.4		0.97	0.12	1	09/26/10	10/08/10	KWG1010563	
Aldrin	ND	Ui	0.97	0.97	1	09/26/10	10/08/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	0.97	0.97	1	09/26/10	10/08/10	KWG1010563	
gamma-Chlordane†	2.8	P	0.97	0.090	1	09/26/10	10/08/10	KWG1010563	
Endosulfan I	2.9	P	0.97	0.063	1	09/26/10	10/08/10	KWG1010563	
alpha-Chlordane	1.4	P	0.97	0.10	1	09/26/10	10/08/10	KWG1010563	
Dieldrin	ND	Ui	0.97	0.97	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDE	2.3	P	0.97	0.11	1	09/26/10	10/08/10	KWG1010563	
Endrin	ND	Ui	0.97	0.18	1	09/26/10	10/08/10	KWG1010563	
Endosulfan II	ND	Ui	2.3	2.3	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDD	2.3	P	0.97	0.11	1	09/26/10	10/08/10	KWG1010563	
Endrin Aldehyde	ND	Ui	0.97	0.67	1	09/26/10	10/08/10	KWG1010563	
Endosulfan Sulfate	2.5	P	0.97	0.11	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDT	ND	Ui	9.6	9.6	1	09/26/10	10/08/10	KWG1010563	
Endrin Ketone	0.95		0.97	0.093	1	09/26/10	10/08/10	KWG1010563	
Methoxychlor	ND	Ui	1.9	1.9	1	09/26/10	10/08/10	KWG1010563	
Toxaphene	ND	Ui	140	140	1	09/26/10	10/08/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	79	21-112	10/08/10	Acceptable	
Decachlorobiphenyl	76	15-130	10/08/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:10 $u; \label{lem:limit} w; \label{lem:limit} u : \label{lem:limit} I m \label{lem:limit} w : \label{lem:limit} u : \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u : \label{lem:limit} \l$

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105896

Lab Code:

K1010183-007

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND		0.98	0.11	1	09/26/10	10/08/10	KWG1010563	11000
beta-BHC	ND		6.9	6.9	1	09/26/10	10/08/10	KWG1010563	
gamma-BHC (Lindane)			0.98	0.98	1	09/26/10	10/08/10	KWG1010563	
delta-BHC	ND	U .	0.98	0.074	1	09/26/10	10/08/10	KWG1010563	
Heptachlor	16		0.98	0.12	1	09/26/10	10/08/10	KWG1010563	
Aldrin	ND	Ui	1.2	1.2	1	09/26/10	10/08/10	KWG1010563	
Heptachlor Epoxide	0.81	J	0.98	0.084	1	09/26/10	10/08/10	KWG1010563	
gamma-Chlordane†	3.0	P	0.98	0.090	1	09/26/10	10/08/10	KWG1010563	
Endosulfan I	ND	Ui	0.98	0.98	I	09/26/10	10/08/10	KWG1010563	
alpha-Chlordane	2.3	P	0.98	0.10	I	09/26/10	10/08/10	KWG1010563	
Dieldrin	ND	Ui	0.98	0.98	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDE	ND	Ui	1.1	1.1	1	09/26/10	10/08/10	KWG1010563	
Endrin	ND	Ui	0.98	0.11	1	09/26/10	10/08/10	KWG1010563	
Endosulfan II	ND	Ui	1.6	1.6	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDD	1.3	P	0.98	0.11	1	09/26/10	10/08/10	KWG1010563	
Endrin Aldehyde	ND	Ui	0.98	0.98	1	09/26/10	10/08/10	KWG1010563	
Endosulfan Sulfate	1.7	P	0.98	0.11	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDT	19	P	0.98	0.17	1	09/26/10	10/08/10	KWG1010563	
Endrin Ketone	ND	Ui	0.98	0.98	1	09/26/10	10/08/10	KWG1010563	
Methoxychlor	ND	Ui	0.98	0.71	1	09/26/10	10/08/10	KWG1010563	
Toxaphene	ND	Ui	97	97	1	09/26/10	10/08/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
oro-m-xylene	68	21-112	10/08/10	Acceptable	
Decachlorobiphenyl	95	15-130	10/08/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:13

Merged

Form 1A - Organic 17

Page

1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105897

Lab Code:

K1010183-008

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: Analysis Method: 8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	1.0	0.11	1	09/26/10	10/08/10	KWG1010563	11010
beta-BHC	ND Ui	1.0	1.0	1	09/26/10	10/08/10	KWG1010563	
gamma-BHC (Lindane)	ND Ui	1.6	1.6	ĩ	09/26/10	10/08/10	KWG1010563	
delta-BHC	ND Ui	1.0	1.0	1	09/26/10	10/08/10	KWG1010563	
Heptachlor	3.2	1.0	0.12	1	09/26/10	10/08/10	KWG1010563	
Aldrin	0.74 JP	1.0	0.16	1	09/26/10	10/08/10	KWG1010563	
Heptachlor Epoxide	ND Ui	1.0	0.70	1	09/26/10	10/08/10	KWG1010563	
gamma-Chlordane†	4.8	1.0	0.090	1	09/26/10	10/08/10	KWG1010563	
Endosulfan I	ND Ui	1.0	1.0	1	09/26/10	10/08/10	KWG1010563	
alpha-Chlordane	2.5 P	1.0	0.10	1	09/26/10	10/08/10	KWG1010563	
Dieldrin	ND Ui	1.0	1.0	l	09/26/10	10/08/10	KWG1010563	
4,4'-DDE	1.3 P	1.0	0.11	1	09/26/10	10/08/10	KWG1010563	
Endrin	ND Ui	1.0	1.0	1	09/26/10	10/08/10	KWG1010563	
Endosulfan II	ND Ui	3.8	3.8	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDD	ND Ui	1.4	1.4	1	09/26/10	10/08/10	KWG1010563	
Endrin Aldehyde	ND Ui	1.0	1.0	1	09/26/10	10/08/10	KWG1010563	
Endosulfan Sulfate	3.9	1.0	0.11	1	09/26/10	10/08/10	KWG1010563	
4,4'-DDT	ND Ui	11	11	1	09/26/10	10/08/10	KWG1010563	
Endrin Ketone	ND Ui	1.1	1,1	1	09/26/10	10/08/10	KWG1010563	
Methoxychlor	ND Ui	2.8	2.8	1	09/26/10	10/08/10	KWG1010563	
Toxaphene	ND Ui	140	140	1	09/26/10	10/08/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	84	21-112	10/08/10	Acceptable	
Decachlorobiphenyl	81	15-130	10/08/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:16

Merged

Form 1A - Organic 18

SuperSet Reference:

Page

1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: 09/14/2010

Date Received: 09/16/2010

Organochlorine Pesticides

Sample Name:

FO 105899

Lab Code:

K1010183-010

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8081A

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	Ui	0.97	0.14	1	09/26/10	10/06/10	KWG1010563	
beta-BHC	ND	Ui	4.0	4.0	1	09/26/10	10/06/10	KWG1010563	
gamma-BHC (Lindane)	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
delta-BHC	ND	Ui	0.97	0.22	1	09/26/10	10/06/10	KWG1010563	
Heptachlor	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Aldrin	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Heptachlor Epoxide	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
gamma-Chlordane†	74	D	4.9	0.45	5	09/26/10	10/07/10	KWG1010563	
Endosulfan I	ND	Ui	3,5	3.5	1	09/26/10	10/06/10	KWG1010563	
alpha-Chlordane	60	D	4.9	0.50	5	09/26/10	10/07/10	KWG1010563	
Dieldrin	13		0.97	0.14	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDE	4.7	P	0.97	0.11	1	09/26/10	10/06/10	KWG1010563	
Endrin	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Endosulfan II	ND	Ui	25	25	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDD	ND	Ui	6.9	6.9	1	09/26/10	10/06/10	KWG1010563	
Endrin Aldehyde	ND	Ui	3.6	3.6	1	09/26/10	10/06/10	KWG1010563	
Endosulfan Sulfate	ND	Ui	2.7	2.7	1	09/26/10	10/06/10	KWG1010563	
4,4'-DDT	70	D	4.9	0.85	5	09/26/10	10/07/10	KWG1010563	
Endrin Ketone	ND	Ui	0.97	0.97	1	09/26/10	10/06/10	KWG1010563	
Methoxychlor	ND	Ui	4.9	4.9	1	09/26/10	10/06/10	KWG1010563	
Toxaphene	ND	Ùi	570	570	1	09/26/10	10/06/10	KWG1010563	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	72	21-112	10/06/10	Acceptable	
Decachlorobiphenyl	94	15-130	10/06/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:20 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR120978

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG1010563-4

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

		_			Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.59	0.11	1	09/26/10	10/05/10	KWG1010563	
beta-BHC	ND	U	0.59	0.18	1	09/26/10	10/05/10	KWG1010563	
gamma-BHC (Lindane)	ND	U	0.59	0.080	1	09/26/10	10/05/10	KWG1010563	
delta-BHC	ND	U	0,59	0.074	1	09/26/10	10/05/10	KWG1010563	
Heptachlor	ND	U	0.59	0.12	1	09/26/10	10/05/10	KWG1010563	
Aldrin	ND	U	0.59	0.16	1	09/26/10	10/05/10	KWG1010563	
Heptachlor Epoxide	ND	U	0.59	0.084	1	09/26/10	10/05/10	KWG1010563	
gamma-Chlordane†	ND	U	0.59	0.090	1	09/26/10	10/05/10	KWG1010563	
Endosulfan I	ND	U	0.59	0.063	1	09/26/10	10/05/10	KWG1010563	
alpha-Chlordane	ND	U	0.59	0.10	1	09/26/10	10/05/10	KWG1010563	
Dieldrin	ND	U	0.59	0.14	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDE	ND	U	0.59	0.11	1	09/26/10	10/05/10	KWG1010563	
Endrin	ND	U	0.59	0.094	1	09/26/10	10/05/10	KWG1010563	
Endosulfan II	ND	U	0.59	0.14	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDD	ND	U	0,59	0.11	1	09/26/10	10/05/10	KWG1010563	
Endrin Aldehyde	ND	U	0.59	0.12	1	09/26/10	10/05/10	KWG1010563	
Endosulfan Sulfate	ND	U	0.59	0.11	1	09/26/10	10/05/10	KWG1010563	
4,4'-DDT	ND	U	0.59	0.17	1	09/26/10	10/05/10	KWG1010563	
Endrin Ketone	ND	U	0.59	0,093	1	09/26/10	10/05/10	KWG1010563	
Methoxychlor	ND	U	0.59	0.19	1	09/26/10	10/05/10	KWG1010563	
Toxaphene	ND	U	30	4.8	1	09/26/10	10/05/10	KWG1010563	
Mine Marine Control of the Control o							***************************************		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	71	21-112	10/05/10	Acceptable	
Decachlorobiphenyl	92	15-130	10/05/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 10/14/2010 15:59:23

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Form 1A - Organic

Page 1 of 1

SuperSet Reference:

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method: EPA 3541

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
FO 105890	K1010183-001	67	111
FO 105891	K1010183-002	78	136
FO 105892	K1010183-003	78	266 '
FO 105893	K1010183-004	65	92
FO 105894	K1010183-005	75	127
FO 105895	K1010183-006	79	76
FO 105896	K1010183-007	68	95
FO 105897	K1010183-008	84	81
FO 105899	K1010183-010	72	94
Method Blank	KWG1010563-4	71	92
FO 105891MS	KWG1010563-1	79	116
FO 105891DMS	KWG1010563-2	75	120
Lab Control Sample	KWG1010563-3	65	89

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 21-112 Sur2 = Decachlorobiphenyl 15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 10/14/2010 15:59:29

Form 2A - Organic

Page

1 of 1

SuperSet Reference: RR120978

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183 **Date Extracted:** 09/26/2010

Date Analyzed: 10/06/2010 -

10/11/2010

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

FO 105891

Lab Code:

K1010183-002

Extraction Method:

EPA 3541

Analysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1010563

FO 105891MS KWG1010563-1 FO 105891DMS KWG1010563-2

	Sample	Matrix Spike			Duplic	cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	16.3	19.7	83	14.7	19,9	74	23-133	10	40
beta-BHC	ND	17.8	19.7	90 #	16.0	19.9	80 #	22-142	11	40
gamma-BHC (Lindane)	ND	17.4	19.7	88	15.6	19.9	78	26-135	11	40
delta-BHC	0.31	23.6	19.7	118	16.0	19.9	79	25-148	38	40
Heptachlor	ND	18.8	19.7	95	17.2	19.9	86	21-136	9	40
Aldrin	ND	16.5	19.7	84	16.7	19.9	84	22-135	1	40
Heptachlor Epoxide	ND	27.6	19.7	140 #	15.9	19.9	80 #	25-129	54 *	40
gamma-Chlordane	90	136	19.7	233 #	103	19.9	67 #	24-133	27	40
Endosulfan I	ND	36.9	19.7	187 #	25.7	19.9	129 #	15-119	36	40
alpha-Chlordane	82	92.6	19.7	55 #	88.7	19.9	35 #	24-132	4	40
Dieldrin	13	59.1	19.7	235 *	27.4	19.9	73	26-133	73 *	40
4,4'-DDE	5.7	30.3	19.7	124	20.1	19.9	72	22-142	41 *	40
Endrin	ND	32.6	19.7	165 *	14.1	19.9	71	22-145	79 *	40
Endosulfan II	ND	62.3	19.7	316 #	18.8	19.9	94 #	13-129	107 *	40
4,4'-DDD	ND	91.9	19.7	466 #	25.4	19.9	127 #	19-143	113 *	40
Endrin Aldehyde	ND	165	19.7	835 #	28.3	19.9	142 #	10-129	141 *	40
Endosulfan Sulfate	ND	79.6	19.7	404 #	22.8	19.9	114 #	20-134	111 *	40
4,4'-DDT	61	73.2	19.7	62	85.1	19.9	121	19-154	15	40
Endrin Ketone	ND	70.1	19.7	355 #	18.3	19.9	92 #	19-139	117 *	40
Methoxychlor	ND	107	19.7	543 #	25.8	19.9	129 #	24-151	122 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 10/14/2010 15:59:32 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page RR120978

SuperSet Reference:

1 of 1

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Sediment

Service Request: K1010183

Date Extracted: 09/26/2010 **Date Analyzed:** 10/05/2010

Lab Control Spike Summary **Organochlorine Pesticides**

Extraction Method: EPA 3541

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1010563

Lab Control Sample KWG1010563-3 Lab Control Spike

		Control Spik		%Rec
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	13.3	20,0	66	36-139
beta-BHC	13.6	20.0	68	38-142
gamma-BHC (Lindane)	13.6	20.0	68	40-142
delta-BHC	14.5	20.0	73	48-145
Heptachlor	13.4	20.0	67	39-135
Aldrin	13.6	20.0	68	37-134
Heptachlor Epoxide	14.3	20.0	71	45-118
gamma-Chlordane	14.1	20.0	70	41-135
Endosulfan I	13.2	20.0	66	35-121
alpha-Chlordane	14.3	20.0	72	41-134
Dieldrin	14.8	20.0	74	46-136
4,4'-DDE	15.2	20.0	76	46-141
Endrin	14.0	20.0	70	40-152
Endosulfan II	14.4	20.0	72	39-128
4,4'-DDD	15.2	20.0	76	46-146
Endrin Aldehyde	15.0	20.0	75	32-132
Endosulfan Sulfate	15.6	20.0	78	43-138
4,4'-DDT	17.8	20.0	89	46-151
Endrin Ketone	18.4	20.0	92	47-135
Methoxychlor	17.7	20.0	89	42-147

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

RR120978

SuperSet Reference:

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Water

Service Request: K1010183

Date Collected: 09/14/2010 **Date Received:** 09/16/2010

Organochlorine Pesticides

Sample Name: Lab Code:

FO 105898

Extraction Method:

K1010183-009 EPA 3535A

Analysis Method:

8081A

Units: ng/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.52	0.22	1	09/20/10	09/29/10	KWG1010160	
beta-BHC	ND	U	0.52	0.43	1	09/20/10	09/29/10	KWG1010160	
gamma-BHC (Lindane)	ND	U	0.52	0.49	1	09/20/10	09/29/10	KWG1010160	
delta-BHC	ND	U	0,52	0.15	1	09/20/10	09/29/10	KWG1010160	
Heptachlor	ND	U	0.52	0.19	1	09/20/10	09/29/10	KWG1010160	
Aldrin	ND	U	0.52	0.12	1	09/20/10	09/29/10	KWG1010160	
Heptachlor Epoxide	ND	U	0,52	0.22	1	09/20/10	09/29/10	KWG1010160	
gamma-Chlordane†	ND	U	0.52	0.32	1	09/20/10	09/29/10	KWG1010160	
Endosulfan I	ND	U	0,52	0.26	I	09/20/10	09/29/10	KWG1010160	
alpha-Chlordane	ND	U	0.52	0.28	1	09/20/10	09/29/10	KWG1010160	
Dieldrin	ND	U	0.52	0.39	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDE	ND	U	0.52	0.20	1	09/20/10	09/29/10	KWG1010160	
Endrin	ND	U	0.52	0.51	1	09/20/10	09/29/10	KWG1010160	
Endosulfan II	ND	Ui	0.52	0.52	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDD	ND	U	0.52	0.22	1	09/20/10	09/29/10	KWG1010160	
Endrin Aldehyde	ND	U	0.52	0.22	1	09/20/10	09/29/10	KWG1010160	
Endosulfan Sulfate	ND	U	0.52	0.29	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDT	ND	U	0.52	0.18	1	09/20/10	09/29/10	KWG1010160	
Endrin Ketone	ND	U	0.52	0.33	l	09/20/10	09/29/10	KWG1010160	
Methoxychlor	ND	U	0.52	0.29	1	09/20/10	09/29/10	KWG1010160	
Toxaphene	ND	Ui	45	45	1	09/20/10	09/29/10	KWG1010160	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	96	20-102	09/29/10	Acceptable Acceptable
Decachlorobiphenyl	73	35-128	09/29/10	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 09/29/2010 16:48:20 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic 24

Page 1 of 1

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Water

Service Request: K1010183

Date Collected: NA
Date Received: NA

Organochlorine Pesticides

Sample Name:

Lab Code:

Method Blank

Extraction Method:

KWG1010160-3

Analysis Method:

EPA 3535A 8081A Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	0,50	0.21	1	09/20/10	09/29/10	KWG1010160	
beta-BHC	ND U	0.50	0.41	1	09/20/10	09/29/10	KWG1010160	
gamma-BHC (Lindane)	ND U	0.50	0.47	1	09/20/10	09/29/10	KWG1010160	
delta-BHC	ND U	0.50	0.14	1	09/20/10	09/29/10	KWG1010160	
Heptachlor	ND U	0.50	0.18	1	09/20/10	09/29/10	KWG1010160	
Aldrin	ND U	0.50	0.11	1	09/20/10	09/29/10	KWG1010160	
Heptachlor Epoxide	ND U	0.50	0.21	1	09/20/10	09/29/10	KWG1010160	
gamma-Chlordane†	ND U	0.50	0.31	1	09/20/10	09/29/10	KWG1010160	
Endosulfan I	ND U	0.50	0.25	1	09/20/10	09/29/10	KWG1010160	
alpha-Chlordane	ND U	0.50	0.27	1	09/20/10	09/29/10	KWG1010160	
Dieldrin	ND U	0.50	0.37	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDE	ND U	0.50	0.19	1	09/20/10	09/29/10	KWG1010160	
Endrin	ND U	0.50	0.49	1	09/20/10	09/29/10	KWG1010160	***************************************
Endosulfan II	ND Ui	0.50	0.44	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDD	ND U	0.50	0.21	1	09/20/10	09/29/10	KWG1010160	
Endrin Aldehyde	ND U	0.50	0.21	1	09/20/10	09/29/10	KWG1010160	
Endosulfan Sulfate	ND U	0.50	0.28	1	09/20/10	09/29/10	KWG1010160	
4,4'-DDT	ND U	0.50	0.17	1	09/20/10	09/29/10	KWG1010160	
Endrin Ketone	ND U	0,50	0.32	1	09/20/10	09/29/10	KWG1010160	***************************************
Methoxychlor	ND U	0.50	0.28	1	09/20/10	09/29/10	KWG1010160	
Toxaphene	ND Ui	25	25	. 1	09/20/10	09/29/10	KWG1010160	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	86	20-102	09/29/10	Acceptable	
Decachlorobiphenyl	74	35-128	09/29/10	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 09/29/2010 16:48:23 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page

I of 1

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Water

Service Request: K1010183

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method:

EPA 3535A

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name Lab Code Sur1 Sur2 96 73 FO 105898 K1010183-009 74 Method Blank KWG1010160-3 86 Lab Control Sample KWG1010160-1 80 77 **Duplicate Lab Control Sample** 82 80 KWG1010160-2

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 20-102 Sur2 = Decachlorobiphenyl 35-128

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/29/2010 16:48:27

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic 26

RR120339

SuperSet Reference:

Page 1 of 1

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor Inline Samp

Sample Matrix:

Water

Service Request: K1010183

Date Extracted: 09/20/2010 **Date Analyzed:** 09/29/2010

Lab Control Spike/Duplicate Lab Control Spike Summary **Organochlorine Pesticides**

Extraction Method: EPA 3535A

Analysis Method:

8081A

Units: ng/L

Basis: NA Level: Low

Extraction Lot: KWG1010160

Lab Control Sample KWG1010160-1

Duplicate Lab Control Sample KWG1010160-2

Analyte Name	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	9.19	10.0	92	8.55	10,0	86	36-122	7	30
beta-BHC	8,55	10.0	86	8.78	10.0	88	42-125	3	30
gamma-BHC (Lindane)	9.01	10.0	90	8.53	10.0	85	44-117	5	30
delta-BHC	9.39	10,0	94	8.94	10.0	89	48-123	5	30
Heptachlor	7.76	10.0	78	7.29	10.0	73	40-115	6	30
Aldrin	8.12	10,0	81	7.71	10.0	77	10-102	5	30
Heptachlor Epoxide	8.27	10.0	83	7.96	10.0	80	49-109	4	30
gamma-Chlordane	7.96	10.0	80	7.66	10.0	77	47-113	4	30
Endosulfan I	8.16	10.0	82	7.75	10.0	77	35-115	5	30
alpha-Chlordane	7.77	10.0	78	7.54	10.0	75	45-115	3	30
Dieldrin	8.25	10.0	82	7.97	10.0	80	50-115	3	30
4,4'-DDE	8.95	10.0	89	8.53	10.0	85	41-116	5	30
Endrin	7.89	10.0	79	7.48	10.0	75	48-126	5	30
Endosulfan II	7.80	10.0	78	7.52	10.0	75	28-128	4	30
4,4'-DDD	7.81	10.0	78	7.25	10.0	73	33-132	7	30
Endrin Aldehyde	6.13	10,0	61	6.01	10.0	60	27-104	2	30
Endosulfan Sulfate	6.73	10.0	67	6.44	10.0	64	38-118	4	30
4,4'-DDT	8.05	10.0	81	7.79	10.0	78	42-143	3	30
Endrin Ketone	7.78	10.0	78	7.32	10.0	73	30-124	6	30
Methoxychlor	7.49	10.0	75	7.47	10.0	75	43-143	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10138174

Sample Receipt Date: 09/16/2010

Client Project #: PTI0491 Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

October 14, 2010

Scott Unze, Project Manager (612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 12, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 37-135%. With three exceptions, flagged "R" on the QC results tables, the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained. Also, in some cases, small amounts of congeners 15 and 144 eluted outside of the acquisition window. This resulted in slightly reduced concentrations for these congeners. However, these congeners represented a very small contribution to the overall PCB level determined.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks be free of PCB congeners at the reporting limits. This indicates that the sample preparation procedures did not significantly contribute to the levels determined for the field samples.

Laboratory spike samples were also prepared with each sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 88-136% with relative percent differences of 0.0-13.2%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the samples.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER FestAmerica Portland PTI0491

1130 10138174

SENDIN	G LAB	ORAT	ORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

Released Been No.....10138174 Part 6689

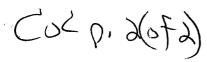
RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON


Receipt Temperature:

Ice: Y / N

Date/Time Page 5agf 92f 2

	requested amess specific (lue date is requested. => Due Date:	Initials:
Analysis	Units	Expires	Comments
	1-01 (FO105890 - Soil)	Sampled: 09/14/10 09:4	2
1668 Coplanar PC	:Bs - SUB ug/l	03/13/11 09:42	coplanars only, sub to PACE
Containers Supplie			00
4 oz. jar Amber (A)		
Sample ID: PTI049	1-02 (FO105891 - Soil)	Sampled: 00/44/40 40 04	•
1668 Coplanar PC	Bs - SUB ug/l	Sampled: 09/14/10 10:04 03/13/11 10:04	coplanars only, sub to PACE
Containers Supplie	d:		
4 oz. jar Amber (/	A)		ODS
Sample ID: PTI0491	I-03 (FO105892 - Soil)		
1668 Coplanar PCE		Sampled: 09/14/10 10:41 03/13/11 10:41	
Containers Supplied	J	00/10/11 10:41	coplanars only, sub to PACE
4 oz. jar Amber (A			003
Sample ID: PTI0491	-04 (FO105893 - Soil)		
1668 Coplanar PCE		Sampled: 09/14/10 11:18	
Containers Supplied	· ·	03/13/11 11:18	coplanars only, sub to PACE
4 oz. jar Amber (A			400
•			
	-05 (FO105894 - Soil)	Sampled: 09/14/10 13:20	
1668 Coplanar PCB	Ss - SUB ug/l	03/13/11 13:20	coplanars only, sub to PACE
Containers Supplied			902
4 oz. jar Amber (A	s)		
ample ID: PTI0491-	-06 (FO105895 - Soil)	Sampled: 09/14/10 14:11	
1668 Coplanar PCB	s - SUB ug/l	03/13/11 14:11	coplanars only, sub to PACE
Containers Supplied:			400
4 oz. jar Amber (A))	1.	

Received By

SUBCONTRACT ORDER TestAmerica Portland

138174

Analysis	Units	Expires	Comments
Sample ID: PTI04	91-07 (FO105896 - Soil)	Sampled: 09/14/10 13:5	4
1668 Coplanar Po	CBs - SUB ug/l	03/13/11 13:51	coplanars only, sub to PACE
Containers Suppli 4 oz. jar Amber			00
Sample ID: PTI049	91-08 (FO105897 - Soil)	Sampled: 09/14/10 14:53	3
1668 Coplanar Po	CBs - SUB ug/l	03/13/11 14:53	coplanars only, sub to PACE
Containers Suppli 4 oz. jar Amber			goog
Sample ID: PTI049	91-09 (FO105899 - Soil)	Sampled: 09/14/10 00:0 0	1
1668 Coplanar PC	CBs - SUB ug/l	03/13/11 00:00	coplanars only, sub to PACE

Sa	mple	Cor	altio	n Upon Receipt		1761	n (
Pace Analytical Client Name	. 7	١.	(A		Project #_	101501	17
Client Name)	1250	- /	merica	Project #_	, w	
Courier: Ted Ex UPS USPS Cili	ont [Com	marais	T Page Other			
Tracking #: 4 176 75 26 1930	9131 1	COIII	HIGICIA	La Face Offier		onal Due Date	
Custody Seal on Cooler/Box Present: yes	• 🗆	no	Seal	s intact: 🔯 yes 🔲	no	Name	
Packing Material: Bubble Wrap Bubbl	e Bags		None	Other	Temp Blank:	Yes V	No
Thermometer Used 80344042 or 79425	Туре	of los	: (We	Blue None	· ·	cooling process	************
Cooler Temperature 2.0	Biolo	ogical	Tissu	is Frozen: Yes No	Date and in	itials of person	
Temp should be above freezing to 6°C	/			Comments:	contents:	11.0110	NOW
Chain of Custody Present:	Ľ Y /es	□No	□N/A	1.			
Chain of Custody Filled Out:		□No	□NA	2.			
Chain of Custody Relinquished:	LY/es	. □Nø		3.			
Sampler Name & Signature on COC:	□Yeş	(D)No	□N/A	4.			
Samples Arrived within Hold Time:	Ū√es	□Ng		5.			
Short Hold Time Analysis (<72hr):	□Yes	D2N/o	□n/a	6.			
Rush Turn Around Time Requested:	□Yeş	DZNo.	□N⁄A	7.			
Sufficient Volume:	EJ/res	□No	□n/a	8.			
Correct Containers Used:	DY98	□No	□N⁄A	9.			*****************
-Pace Containers Used:	∐Yeş	∕□No	□N/A				
Containers Intact:	[]Xes	□No	DNA	10.		······································	
Filtered volume received for Dissolved tests	□Yes	□No	ENVA				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sample Labels match COC:	LTY 63	□No	[]N/A			· · · · · · · · · · · · · · · · · · ·	******
-includes date/time/ID/Analysis Matrix:	51						
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	(SJAVZA	13. 🗀 HNO:	H2SO4	□ NaOH	□ HCI
All containers needing preservation are found to be in	r-1, .	—		Samp #			
compliance with EPA recommendation.	□Yes	LJNo	™ N/A			······································	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (wate	_r □Yes	DJN0		Initial when completed	Lot # of added preservative		
Samples checked for dechlorination:	□Yes	□No	DINA	14.			
leadspace in VOA Vials (>6mm):	□Yes		CONYA	15.			
Frip Blank Present:	□Yes	□No	DN/A	16.			
Frip Blank Custody Seals Present	□Yes	□No	EN/A				"
Pace Trip Blank Lot # (if purchased):	_						
Client Notification/ Resolution:							
	18(1)		Date/1	1ma 0/12/106	Field Data Requir	ed? Y /	N
Person Contacted: 1) a (12) (7) Comments/ Resolution:	MAT.		Date/ I	me. Strifton	<u>201.22</u>		
- 166 P- 210	٦.	01/0	> _	Ha inster	in tr	~ C (\)	~.
0 000	, (,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	YIT	·	1 WK NEW			·
		···					
							
				:			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read Abalytical SEMMS, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value

Sace Analytical

- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0491-01 (FO105890)
Lab Sample ID 10138174001
Filename P101001B_06
Injected By CVS
Total Amount Extracted 11.9 g

Total Amount Extracted11.9 gMatrixSolid% Moisture3.8Dilution5Dry Weight Extracted11.4 gCollected09/14/2010 09:42

 ICAL ID
 P101001B02
 Received
 09/16/2010
 09:57

 CCal Filename(s)
 P101001B_01
 Extracted
 09/29/2010
 14:40

 Method Blank ID
 BLANK-26482
 Analyzed
 10/01/2010
 21:52

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.061	2.78	2.0	0.739	37
13C-4-MoCB	3	12.512	2.87	2.0	0.835	42
13C-2,2'-DiCB	4	12.847	1.75	2.0	0.924	46
13C-4,4'-DiCB	15	21.030	1.56	2.0	0.888	44
13C-2,2',6-TrCB	19	17.316	1.11	2.0	0.863	43
13C-3,4,4'-TrCB	37	29.342	1.05	2.0	1.15	57
13C-2,2',6,6'-TeCB	54	21.327	0.79	2.0	0.968	48
13C-3,4,4',5-TeCB	81	36.636	0.79	2.0	1.14	57
13C-3,3',4,4'-TeCB	77	37.223	0.79	2.0	1.15	58
13C-2,2',4,6,6'-PeCB	104	27.883	1.59	2.0	1.03	51
13C-2,3,3',4,4'-PeCB	105	40.812	1.58	2.0	0.974	49
13C-2,3,4,4',5-PeCB	114	40.124	1.58	2.0	1.01	51
13C-2,3',4,4',5-PeCB	118	39.588	1.64	2.0	0.954	48
13C-2,3',4,4',5'-PeCB	123	39.252	1.55	2.0	0.992	50
13C-3,3',4,4',5-PeCB	126	43.998	1.52	2.0	0.964	48
13C-2,2',4,4',6,6'-HxCB	155	34.104	1.22	2.0	1.36	68
13C-HxCB (156/157)	156/157	47.033	1.24	4.0	2.01	50
13C-2,3',4,4',5,5'-HxCB	167	45.842	1.23	2.0	1.11	56
13C-3,3',4,4',5,5'-HxCB	169	50.370	1.29	2.0	1.04	52
13C-2,2',3,4',5,6,6'-HpCB	188	40.057	1.04	2.0	1.37	69
13C-2,3,3',4,4',5,5'-HpCB	189	52.918	1.04	2.0	1.14	57
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.507	0.89	2.0	1.33	66
13C-2,3,3',4,4',5,5',6-OcCB	205	55.914	0.93	2.0	1.20	60
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.220	0.78	2.0	1.32	66
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.315	0.81	2.0	1.29	64
13CDeCB	209	60.720	0.63	2.0	1.15	58
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.731	1.06	2.0	1.62	81
13C-2,3,3',5,5'-PeCB	111	37.223	1.55	2.0	1.74	87
13C-2,2',3,3',5,5',6-HpCB	178	43.193	1.08	2.0	1.99	100
Recovery Standards						
13C-2,5-DiCB	9	15.758	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.843	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.372	1.57	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.757	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.246	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-01 (FO105890) 10138174001 P101001B_06

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.097	2.85	22.9		21.9
2		12.260	3.38	28.7		21.9
3		12.512	3.01	26.7		21.9
4		12.871	1.81	37.8		21.9
5		12.071		ND		21.9
6		16.334	1.48	23.9		21.9
7			1. 4 0	ND		21.9
8		16.945	1.46	82.0		21.9
9		10.943	1.40	ND		21.9
10				ND		21.9
11		20.251	1.54	1570		131
12	12/13	20.231	1.54	ND		43.8
13	12/13			ND ND		43.8
13	12/13			ND ND		43.6 21.9
15		21.054	1.35	165		21.9
16		20.934	1.35	109		
17		20.934	1.11	115		21.9 21.9
	18/30	19.832				
18	16/30		1.10	286		43.8
19	20/20	17.316	1.18	40.5		21.9
20	20/28	24.747	1.03	515		43.8
21	21/33	25.016	1.02	235		43.8
22		25.485	1.01	178		21.9
23				ND		21.9
24			4.00	ND		21.9
25	00/00	24.026	1.06	38.1		21.9
26	26/29	23.741	1.03	75.6		43.8
27	00/00	20.622	0.98	32.6		21.9
28	20/28	24.747	1.03	(515)		43.8
29	26/29	23.741	1.03	(75.6)		43.8
30	18/30	19.832	1.10	(286)		43.8
31		24.395	1.04	514		21.9
32		21.612	1.03	123		21.9
33	21/33	25.016	1.02	(235)		43.8
34				ND		21.9
35		28.906	0.97	44.3		21.9
36				ND		21.9
37		29.375	1.02	338		21.9
38				ND		21.9
39				ND		21.9
40	40/41/71	29.124	0.77	1610		131
41	40/41/71	29.124	0.77	(1610)		131
42		28.571	0.78	613		43.8
43	43/73			ND		87.5
44	44/47/65	27.984	0.77	3070		131
45	45/51	24.815	0.79	471		87.5
46		25.167	0.80	179		43.8
47	44/47/65	27.984	0.77	(3070)		131
48		27.715	0.77	295		43.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion
X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-01 (FO105890) 10138174001 P101001B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.414	0.78	1690		87.5
50	50/53	24.026	0.77	420		87.5
51	45/51	24.815	0.79	(471)		87.5
52		26.860	0.78	6540		43.8
53	50/53	24.026	0.77	(420)		87.5
54				NĎ		43.8
55				ND		43.8
56		33.283	0.78	1140		43.8
57				ND		43.8
58				ND		43.8
59	59/62/75	28.353	0.76	235		131
60		33.501	0.80	459		43.8
61	61/70/74/76	32.209	0.78	5070		175
62	59/62/75	28.353	0.76	(235)		131
63	00/02//0	31.857	0.79	73.3		43.8
64		29.375	0.78	1150		43.8
65	44/47/65	27.984	0.77	(3070)		131
66	11/1/700	32.562	0.79	2500		43.8
67		31.555	0.73	52.0		43.8
68			0.73	ND		43.8
69	49/69	27.414	0.78	(1690)		87.5
70	61/70/74/76	32.209	0.78	(5070)		175
70 71	40/41/71	29.124	0.76			131
7 1 72	40/41/71			(1610)		43.8
	40/70			ND		
73	43/73			ND (5070)		87.5
74	61/70/74/76	32.209	0.78	(5070)		175
75	59/62/75	28.353	0.76	(235)		131
76	61/70/74/76	32.209	0.78	(5070)		175
77		37.240	0.79	608		43.8
78		36.301	0.76	104		43.8
79		35.647	0.73	406		43.8
80				ND		43.8
81				ND		43.8
82		36.804	1.54	2180		43.8
83		34.876	1.52	912		43.8
84		32.394	1.57	4440		43.8
85	85/116/117	36.301	1.55	2570		131
86	86/87/97/108/119/125	35.630	1.56	10100		263
87	86/87/97/108/119/125	35.630	1.56	(10100)		263
88	88/91	32.159	1.54	2130		87.5
89		32.897	1.53	220		43.8
90	90/101/113	34.389	1.56	13200		131
91	88/91	32.159	1.54	(2130)		87.5
92		33.769	1.55	2680		43.8
93	93/98/100/102	31.606	1.54	496		175
94	55,00,.00,102	30.717	1.52	75.8		43.8
95		31.220	1.57	12400		43.8
96		28.319	1.56	102		43.8
50		20.010	1.00	102		₹0.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0491-01 (FO105890)
Lab Sample ID 10138174001
Filename P101001B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.630	1.56	(10100)		263
98	93/98/100/102	31.606	1.54	(496)		175
99		35.010	1.58	541 Ó		43.8
100	93/98/100/102	31.606	1.54	(496)		175
101	90/101/113	34.389	1.56	(13200)		131
102	93/98/100/102	31.606	1.54	(496)		175
103		30.499	1.51	63.0		43.8
104				ND		43.8
105		40.828	1.60	5050		43.8
106				ND		43.8
107	107/124	38.900	1.50	605		87.5
108	86/87/97/108/119/125	35.630	1.56	(10100)		263
109	00/01/01/100/110/120	39.152	1.49	814		43.8
110	110/115	36.485	1.56	18100		87.5
111	110/110			ND		43.8
112				ND		43.8
113	90/101/113	34.389	1.56	(13200)		131
114	33, 13 1, 113	40.158	1.40	253		43.8
115	110/115	36.485	1.56	(18100)		87.5
116	85/116/117	36.301	1.55	(2570)		131
117	85/116/117	36.301	1.55	(2570)		131
118	09/110/117	39.621	1.59	11100		43.8
119	86/87/97/108/119/125	35.630	1.56	(10100)		263
120	00/07/37/100/113/123			ND		43.8
121				ND		43.8
122		39.956	1.59	223		43.8
123		39.269	1.46	287		43.8
124	107/124	38.900	1.50	(605)		87.5
125	86/87/97/108/119/125	35.630	1.56	(10100)		263
126	00/07/37/100/113/123	44.065	1.53	289		43.8
127		42.371	1.12 I		73.3	43.8
128	128/166	44.065	1.24	3090	75.5	87.5
129	129/138/163	42.774	1.25	18500		131
130	129/130/103	42.120	1.27	1190		43.8
131		39.219	1.20	281		43.8
132		39.688	1.25	6230		43.8
133		40.208	1.24	215		43.8
134	134/143	38.581	1.28	1040		87.5
135	135/151	37.424	1.25	4730		87.5
136	133/131	34.892	1.25	2040		43.8
137		42.337	1.24	995		43.8
138	129/138/163	42.774	1.25	(18500)		131
139	139/140	39.001	1.25	330		87.5
140	139/140	39.001	1.25	(330)		87.5
140	103/140	41.700	1.23	2910		43.8
141		41.700	1.27	ND		43.8
142	134/143	38.581	1.28	(1040)		43.6 87.5
143	134/143	38.011	1.26	(1040) 781		43.8
144		30.011	1.20	101		43.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-01 (FO105890) 10138174001 P101001B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		43.8
146		40.862	1.25	2160		43.8
147	147/149	38.380	1.25	12300		87.5
148				ND		43.8
149	147/149	38.380	1.25	(12300)		87.5
150				` NĎ		43.8
151	135/151	37.424	1.25	(4730)		87.5
152				` NĎ		43.8
153	153/168	41.499	1.26	12300		87.5
154		37.642	1.20	128		43.8
155				ND		43.8
156	156/157	47.016	1.25	2310		87.5
157	156/157	47.016	1.25	(2310)		87.5
158		43.176	1.25	`175Ó		43.8
159		45.004	1.13	163		43.8
160				ND		43.8
161				ND		43.8
162		45.440	1.24	149		43.8
163	129/138/163	42.774	1.25	(18500)		131
164		42.472	1.25	902		43.8
165				ND		43.8
166	128/166	44.065	1.24	(3090)		87.5
167		45.859	1.25	776		43.8
168	153/168	41.499	1.26	(12300)		87.5
169				ND		43.8
170		49.699	1.04	3430		43.8
171	171/173	46.077	1.04	1040		87.5
172		47.737	1.06	619		43.8
173	171/173	46.077	1.04	(1040)		87.5
174		44.987	1.05	2950		43.8
175		43.847	1.07	156		43.8
176		41.315	1.06	421		43.8
177		45.440	1.05	1840		43.8
178		43.209	1.04	613		43.8
179		40.426	1.05	1270		43.8
180	180/193	48.408	1.05	6840		87.5
181				ND		43.8
182				ND		43.8
183	183/185	44.752	1.04	2250		87.5
184				ND		43.8
185	183/185	44.752	1.04	(2250)		87.5
186				` NĎ		43.8
187		44.132	1.05	3500		43.8
188				ND		43.8
189		52.918	1.10	154		43.8
190		50.252	1.06	691		43.8
191		48.760	1.11	145		43.8
192				ND		43.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-01 (FO105890) 10138174001 P101001B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.408	1.05	(6840)		87.5
194		55.310	0.88	`145Ó		65.6
195		52.638	0.89	603		65.6
196		51.040	0.89	866		65.6
197	197/200	47.485	0.90	264		131
198	198/199	50.386	0.89	1670		131
199	198/199	50.386	0.89	(1670)		131
200	197/200	47.485	0.90	(264)		131
201		46.479	0.88	`203		65.6
202		45.540	0.88	281		65.6
203		51.258	0.89	987		65.6
204				ND		65.6
205		55.914	0.83	89.7		65.6
206		58.263	0.78	541		65.6
207		53.306	0.77	78.2		65.6
208		52.315	0.74	126		65.6
209		60.720	0.72	176		65.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-01 (FO105890) 10138174001 P101001B_06

Congener Group	Concentration ng/Kg	
Congener Group	ng/Ng	
Total Monochloro Biphenyls	78.3	
Total Dichloro Biphenyls	1880	
Total Trichloro Biphenyls	2640	
Total Tetrachloro Biphenyls	26700	
Total Pentachloro Biphenyls	93700	
Total Hexachloro Biphenyls	75300	
Total Heptachloro Biphenyls	25900	
Total Octachloro Biphenyls	6410	
Total Nonachloro Biphenyls	745	
Decachloro Biphenyls	176	
Total PCBs	234000	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0491-02 (FO105891)
Lab Sample ID 10138174002
Filename P101001B_07
Injected By CVS

Total Amount Extracted10.6 gMatrixSolid% Moisture1.9Dilution5Dry Weight Extracted10.4 gCollected09/14/2010 10:04

 ICAL ID
 P101001B02
 Received
 09/16/2010 09:57

 CCal Filename(s)
 P101001B_01
 Extracted
 09/29/2010 14:40

 Method Blank ID
 BLANK-26482
 Analyzed
 10/01/2010 22:58

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.073	3.02	2.0	1.08	54
13C-4-MoCB	3	12.511	3.09	2.0	1.24	62
13C-2,2'-DiCB	4	12.846	1.67	2.0	1.31	66
13C-4,4'-DiCB	15	21.030	1.66	2.0	1.26	63
13C-2,2',6-TrCB	19	17.303	1.02	2.0	1.31	66
13C-3,4,4'-TrCB	37	29.343	1.07	2.0	1.59	80
13C-2,2',6,6'-TeCB	54	21.327	0.79	2.0	1.34	67
13C-3,4,4',5-TeCB	81	36.637	0.77	2.0	1.61	80
13C-3,3',4,4'-TeCB	77	37.207	0.78	2.0	1.65	83
13C-2,2',4,6,6'-PeCB	104	27.867	1.68	2.0	1.44	72
13C-2,3,3',4,4'-PeCB	105	40.813	1.57	2.0	1.40	70
13C-2,3,4,4',5-PeCB	114	40.125	1.56	2.0	1.42	71
13C-2,3',4,4',5-PeCB	118	39.588	1.56	2.0	1.37	68
13C-2,3',4,4',5'-PeCB	123	39.253	1.51	2.0	1.38	69
13C-3,3',4,4',5-PeCB	126	43.998	1.51	2.0	1.38	69
13C-2,2',4,4',6,6'-HxCB	155	34.088	1.23	2.0	1.70	85
13C-HxCB (156/157)	156/157	47.034	1.26	4.0	2.67	67
13C-2,3',4,4',5,5'-HxCB	167	45.809	1.23	2.0	1.36	68
13C-3,3',4,4',5,5'-HxCB	169	50.354 40.041	1.30	2.0	1.43	72 02
13C-2,2',3,4',5,6,6'-HpCB 13C-2,3,3',4,4',5,5'-HpCB	188 189		1.08	2.0	1.86 1.59	93 79
	202	52.919 45.491	1.01 0.90	2.0 2.0	1.79	79 90
13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,3,3',4,4',5,5',6-OcCB	205	55.872	0.90	2.0	1.65	83
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.222	0.90	2.0	1.77	88
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.316	0.78	2.0	1.70	85
13CDeCB	209	60.679	0.69	2.0	1.64	82
	200	00.073	0.00	2.0	1.04	02
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.731	1.05	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	37.207	1.58	2.0	1.76	.88
13C-2,2',3,3',5,5',6-HpCB	178	43.177	0.99	2.0	2.03	102
Recovery Standards						
13C-2,5-DiCB	9	15.758	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.827	0.76	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.373	1.52	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.758	1.21	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.269	0.91	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-02 (FO105891) 10138174002 P101001B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.0
2				ND		24.0
2 3		12.523	3.40	25.0		24.0
4		12.858	1.56	32.1		24.0
5				ND		24.0
4 5 6				ND		24.0
7				ND		24.0
8		16.944	1.34	78.8		24.0
9				ND		24.0
10				ND		24.0
11		20.251	1.53	1500		144
12	12/13			ND		47.9
13	12/13			ND		47.9
14				ND		24.0
15		21.042	1.36	116		24.0
16		20.934	1.00	65.6		24.0
17		20.359	1.10	71.5		24.0
18	18/30	19.844	1.06	168		47.9
19		17.315	1.16	26.1		24.0
20	20/28	24.748	1.03	341		47.9
21	21/33	25.016	1.03	157		47.9
22		25.469	1.08	116		24.0
23				ND		24.0
24				ND		24.0
25		24.027	1.05	27.8		24.0
26	26/29	23.742	1.01	51.0		47.9
27				ND		24.0
28	20/28	24.748	1.03	(341)		47.9
29	26/29	23.742	1.01	(51.0)		47.9
30	18/30	19.844	1.06	(168)		47.9
31		24.413	1.00	`313		24.0
32		21.612	1.05	74.9		24.0
33	21/33	25.016	1.03	(157)		47.9
34				NĎ		24.0
35		28.924	0.95	36.8		24.0
36				ND		24.0
37		29.360	1.00	248		24.0
38				ND		24.0
39				ND		24.0
40	40/41/71	29.125	0.78	1070		144
41	40/41/71	29.125	0.78	(1070)		144
42	10/70	28.571	0.80	448		47.9
43	43/73			ND		95.9
44	44/47/65	27.985	0.77	2800		144
45	45/51	24.798	0.76	298		95.9
46	44/47/05	25.167	0.79	112		47.9
47	44/47/65	27.985	0.77	(2800)		144
48		27.733	0.80	190		47.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-02 (FO105891) 10138174002 P101001B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
					119/119	
49	49/69	27.414	0.77	1450		95.9
50	50/53	24.027	0.79	293		95.9
51	45/51	24.798	0.76	(298)		95.9
52		26.861	0.78	683Ó		47.9
53	50/53	24.027	0.79	(293)		95.9
54				` NĎ		47.9
55				ND		47.9
56		33.267	0.78	927		47.9
57				ND		47.9
58				ND		47.9
59	59/62/75	28.353	0.78	149		144
60		33.502	0.78	327		47.9
61	61/70/74/76	32.194	0.79	4860		192
62	59/62/75	28.353	0.78	(149)		144
63	00/02/70	31.841	0.77	58.2		47.9
64		29.376	0.78	912		47.9
65	44/47/65	27.985	0.77	(2800)		144
66	44/4//00	32.563	0.79	2080		47.9
67			0.73	ND		47.9
68				ND ND		47.9
69	49/69	27.414	0.77	(1450)		95.9
70		32.194	0.77	(4860)		192
	61/70/74/76	32.194				
71	40/41/71	29.125	0.78	(1070)		144
72	40/70			ND		47.9
73	43/73			ND (4000)		95.9
74	61/70/74/76	32.194	0.79	(4860)		192
75	59/62/75	28.353	0.78	(149)		144
76	61/70/74/76	32.194	0.79	(4860)		192
77		37.241	0.79	460		47.9
78				ND		47.9
79		35.531	0.77	147		47.9
80				ND		47.9
81				ND		47.9
82		36.805	1.55	2040		47.9
83		34.877	1.58	956		47.9
84		32.395	1.56	4460		47.9
85	85/116/117	36.302	1.72	2490		144
86	86/87/97/108/119/125	35.631	1.56	10500		288
87	86/87/97/108/119/125	35.631	1.56	(10500)		288
88	88/91	32.160	1.56	²⁰⁶⁰		95.9
89		32.915	1.59	171		47.9
90	90/101/113	34.390	1.57	14100		144
91	88/91	32.160	1.56	(2060)		95.9
92		33.770	1.56	2840		47.9
93	93/98/100/102	31.607	1.61	457		192
94		30.735	1.59	71.3		47.9
95		31.221	1.57	13100		47.9
96		28.320	1.61	89.9		47.9
		_0.5_0		55.0		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

PTI0491-02 (FO105891) 10138174002 P101001B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.631	1.56	(10500)		288
98	93/98/100/102	31.607	1.61	` (457)		192
99		35.011	1.56	5 56Ó		47.9
100	93/98/100/102	31.607	1.61	(457)		192
101	90/101/113	34.390	1.57	(14100)		144
102	93/98/100/102	31.607	1.61	(457)		192
103		30.500	1.53	62.4		47.9
104				ND		47.9
105		40.829	1.55	5260		47.9
106				ND		47.9
107	107/124	38.901	1.50	631		95.9
108	86/87/97/108/119/125	35.631	1.56	(10500)		288
109	00/01/01/100/110/120	39.152	1.50	855		47.9
110	110/115	36.470	1.55	18900		95.9
111	110/110			ND		47.9
112				ND		47.9
113	90/101/113	34.390	1.57	(14100)		144
114	30, 13 1, 113	40.175	1.36	282		47.9
115	110/115	36.470	1.55	(18900)		95.9
116	85/116/117	36.302	1.72	(2490)		144
117	85/116/117	36.302	1.72	(2490)		144
118	03/110/117	39.605	1.55	12200		47.9
119	86/87/97/108/119/125	35.631	1.56	(10500)		288
120	00/07/37/100/119/129			ND		47.9
121				ND		47.9
122		39.957	1.49	215		47.9
123		39.270	1.58	273		47.9
124	107/124	38.901	1.50	(631)		95.9
125	86/87/97/108/119/125	35.631	1.56	(10500)		288
126	00/07/37/100/119/129	44.066	1.56	272		47.9
127				ND		47.9
128	128/166	44.066	1.35	3230		95.9
129	129/138/163	42.774	1.26	19800		144
130	129/130/103	42.120	1.24	1300		47.9
131		39.203	1.23	323		47.9
132		39.689	1.25	6770		47.9
133		40.209	1.25	230		47.9
134	134/143	38.582	1.25	1140		95.9
135	135/151	37.442	1.23	5090		95.9 95.9
136	133/131	34.893	1.26	2230		47.9
137		42.338	1.22	1170		47.9 47.9
138	129/138/163	42.774	1.26	(19800)		144
139	139/140	39.002	1.26	367		95.9
140	139/140	39.002	1.26	(367)		95.9 95.9
140	139/140	41.701	1.26	2980		95.9 47.9
141		41.701	1.26	2980 ND		47.9 47.9
142	134/143					
143	134/143	38.582	1.25	(1140)		95.9 47.9
144		38.012	1.25	822		47.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-02 (FO105891) 10138174002 P101001B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		47.9
146		40.863	1.24	2270		47.9
147	147/149	38.381	1.25	13100		95.9
148				ND		47.9
149	147/149	38.381	1.25	(13100)		95.9
150				` NĎ		47.9
151	135/151	37.442	1.27	(5090)		95.9
152				` NĎ		47.9
153	153/168	41.500	1.25	13000		95.9
154		37.677	1.25	118		47.9
155				ND		47.9
156	156/157	47.017	1.25	2500		95.9
157	156/157	47.017	1.25	(2500)		95.9
158		43.177	1.24	`190Ó		47.9
159				ND		47.9
160				ND		47.9
161				ND		47.9
162				ND		47.9
163	129/138/163	42.774	1.26	(19800)		144
164		42.456	1.24	1170		47.9
165				ND		47.9
166	128/166	44.066	1.35	(3230)		95.9
167		45.860	1.24	869		47.9
168	153/168	41.500	1.25	(13000)		95.9
169				ND		47.9
170		49.700	1.05	3200		47.9
171	171/173	46.078	1.01	978		95.9
172	474470	47.738	1.03	542		47.9
173	171/173	46.078	1.01	(978)		95.9
174		44.988	1.00	2690		47.9
175		43.848	1.02	139		47.9
176		41.332	1.06	387		47.9
177		45.440	1.03	1660		47.9
178		43.210	1.02	552		47.9
179	400/400	40.427	1.05	1150		47.9
180	180/193	48.409	1.03	6110 ND		95.9
181				ND ND		47.9 47.0
182 183	183/185	 44.736	1.06	2050		47.9 05.0
184	163/165	44.730	1.06	ND		95.9 47.0
185	183/185	44.736	1.06			47.9 95.9
186	103/103	44.730	1.06	(2050) ND		95.9 47.9
187		44.116	1.02	3050		47.9 47.9
		44.116	1.02	ND		
188 189		52.919	1.02	144		47.9 47.0
189		52.919	1.02	622		47.9 47.9
190		48.761	1.05	134		47.9 47.9
191		40.701	1.03	ND		47.9 47.9
134				IND		41.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-02 (FO105891) 10138174002 P101001B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.409	1.03	(6110)		95.9
194		55.312	0.89	`127Ó		71.9
195		52.617	0.88	533		71.9
196		51.041	0.89	757		71.9
197	197/200	47.503	0.89	235		144
198	198/199	50.371	0.91	1510		144
199	198/199	50.371	0.91	(1510)		144
200	197/200	47.503	0.89	(235)		144
201		46.463	0.93	`179́		71.9
202		45.524	0.89	254		71.9
203		51.243	0.90	930		71.9
204				ND		71.9
205		55.937	0.90	78.8		71.9
206		58.243	0.78	614		71.9
207		53.329	0.79	82.6		71.9
208		52.337	0.79	152		71.9
209		60.722	0.69	196		71.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Page 22 of 92

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-02 (FO105891) 10138174002 P101001B_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	25.0	
Total Dichloro Biphenyls	1730	
Total Trichloro Biphenyls	1700	
Total Tetrachloro Biphenyls	23400	
Total Pentachloro Biphenyls	97800	
Total Hexachloro Biphenyls	80400	
Total Heptachloro Biphenyls	23400	
Total Octachloro Biphenyls	5750	
Total Nonachloro Biphenyls	849	
Decachloro Biphenyls	196	
Total PCBs	235000	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

 Client's Sample ID
 PTI0491-03 (FO105892)

 Lab Sample ID
 10138174003

 Filename
 P101001B_08

 Injected By
 CVS

Total Amount Extracted 11.0 g Matrix Solid % Moisture 7.7 Dilution 5
Dry Weight Extracted 10.1 g Collected 09/14

 Dry Weight Extracted
 10.1 g
 Collected
 09/14/2010 10:41

 ICAL ID
 P101001B02
 Received
 09/16/2010 09:57

 CCal Filename(s)
 P101001B_01
 Extracted
 09/29/2010 14:40

 Method Blank ID
 BLANK-26482
 Analyzed
 10/02/2010 00:03

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.061	3.19	2.0	0.888	44
13C-4-MoCB	3	12.487	2.89	2.0	1.03	52
13C-2,2'-DiCB	4	12.835	1.62	2.0	1.12	56
13C-4,4'-DiCB	15	21.018	1.62	2.0	1.07	54
13C-2,2',6-TrCB	19	17.292	1.15	2.0	1.03	52
13C-3,4,4'-TrCB	37	29.326	1.10	2.0	1.47	74
13C-2,2 ['] ,6,6'-TeCB	54	21.311	0.82	2.0	1.18	59
13C-3,4,4',5-TeCB	81	36.603	0.81	2.0	1.41	71
13C-3,3',4,4'-TeCB	77	37.190	0.80	2.0	1.47	74
13C-2,2',4,6,6'-PeCB	104	27.850	1.46	2.0	1.21	61
13C-2,3,3',4,4'-PeCB	105	40.778	1.53	2.0	1.22	61
13C-2,3,4,4',5-PeCB	114	40.124	1.56	2.0	1.24	62
13C-2,3',4,4',5-PeCB	118	39.571	1.59	2.0	1.24	62
13C-2,3',4,4',5'-PeCB	123	39.236	1.55	2.0	1.23	61
13C-3,3',4,4',5-PeCB	126	43.981	1.49	2.0	1.28	64
13C-2,2',4,4',6,6'-HxCB	155	34.071	1.25	2.0	1.50	75
13C-HxCB (156/157)	156/157	46.999	1.28	4.0	2.53	63
13C-2,3',4,4 ['] ,5,5'-HxĆB	167	45.825	1.24	2.0	1.27	63
13C-3,3',4,4',5,5'-HxCB	169	50.336	1.26	2.0	1.30	65
13C-2,2',3,4',5,6,6'-HpCB	188	40.024	1.05	2.0	1.60	80
13C-2,3,3',4,4',5,5'-HpCB	189	52.897	1.03	2.0	1.38	69
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.490	0.88	2.0	1.48	74
13C-2,3,3',4,4',5,5',6-OcCB	205	55.871	0.92	2.0	1.44	72
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.199	0.84	2.0	1.56	78
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.293	0.84	2.0	1.47	74
13CDeCB	209	60.634	0.72	2.0	1.32	66
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.698	1.06	2.0	1.57	79
13C-2,3,3',5,5'-PeCB	111	37.190	1.57	2.0	1.71	85
13C-2,2 ['] ,3,3 ['] ,5,5 ['] ,6-HpCB	178	43.176	1.04	2.0	1.95	97
Recovery Standards						
13C-2,5-DiCB	9	15.746	1.53	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.827	0.77	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.356	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.723	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.246	0.91	2.0	NA	NA
		·				

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-03 (FO105892) 10138174003 P101001B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.7
2		12.247	3.02	26.4		24.7
2 3		12.523	2.96	28.0		24.7
4		12.859	1.60	51.3		24.7
5				ND		24.7
4 5 6				ND		24.7
7				ND		24.7
8		16.944	1.58	94.3		24.7
9				ND		24.7
10				ND		24.7
11		20.227	1.51	1890		148
12	12/13			ND		49.4
13	12/13			ND		49.4
14				ND		24.7
15		21.042	1.55	180		24.7
16		20.934	1.01	105		24.7
17		20.335	1.05	113		24.7
18	18/30	19.820	1.04	265		49.4
19		17.316	1.11	43.8		24.7
20	20/28	24.731	1.03	547		49.4
21	21/33	24.999	1.09	230		49.4
22		25.469	1.04	185		24.7
23				ND		24.7
24				ND		24.7
25		24.010	1.04	40.7		24.7
26	26/29	23.708	0.99	79.9		49.4
27		20.611	1.06	31.3		24.7
28	20/28	24.731	1.03	(547)		49.4
29	26/29	23.708	0.99	(79.9)		49.4
30	18/30	19.820	1.04	(265)		49.4
31		24.379	1.05	523		24.7
32		21.596	1.02	148		24.7
33	21/33	24.999	1.09	(230)		49.4
34				NĎ		24.7
35		28.873	1.10	48.6		24.7
36				ND		24.7
37		29.342	1.03	393		24.7
38				ND		24.7
39				ND		24.7
40	40/41/71	29.124	0.78	2540		148
41	40/41/71	29.124	0.78	(2540)		148
42		28.571	0.78	1050		49.4
43	43/73			ND		98.8
44	44/47/65	27.967	0.78	5260		148
45	45/51	24.798	0.79	552		98.8
46		25.184	0.80	198		49.4
47	44/47/65	27.967	0.78	(5260)		148
48		27.699	0.76	399		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-03 (FO105892) 10138174003 P101001B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
					119/119	
49	49/69	27.414	0.79	2750		98.8
50	50/53	24.010	0.78	485		98.8
51	45/51	24.798	0.79	(552)		98.8
52		26.844	0.78	11600		49.4
53	50/53	24.010	0.78	(485)		98.8
54				NĎ		49.4
55				ND		49.4
56		33.266	0.79	2090		49.4
57				ND		49.4
58				ND		49.4
59	59/62/75	28.336	0.79	336		148
60		33.501	0.78	589		49.4
61	61/70/74/76	32.176	0.78	8750		198
62	59/62/75	28.336	0.79	(336)		148
63		31.841	0.77	109		49.4
64		29.359	0.78	2230		49.4
65	44/47/65	27.967	0.78	(5260)		148
66		32.545	0.78	4320		49.4
67		31.556	0.73	71.9		49.4
68				ND		49.4
69	49/69	27.414	0.79	(2750)		98.8
70	61/70/74/76	32.176	0.78	(8750)		198
71	40/41/71	29.124	0.78	(2540)		148
72	40/41/11			ND		49.4
73	43/73			ND ND		98.8
73 74	61/70/74/76	32.176	0.78	(8750)		198
7 4 75	59/62/75	28.336	0.79	(336)		148
75 76	61/70/74/76	32.176	0.78	(8750)		198
70 77	01/70/74/70	37.223	0.78	826		49.4
7 <i>7</i> 78		36.301	0.77	180		49.4 49.4
76 79		35.614	0.75	681		49.4 49.4
		35.014	0.75	ND		49.4 49.4
80				ND ND		
81			 4 55			49.4
82		36.787	1.55	3610 1470		49.4
83		34.859	1.69	1470		49.4
84	05/440/447	32.377	1.56	7030		49.4
85	85/116/117	36.284	1.55	4480		148
86	86/87/97/108/119/125	35.630	1.56	17300		296
87	86/87/97/108/119/125	35.630	1.56	(17300)		296
88	88/91	32.143	1.57	3570		98.8
89		32.897	1.60	303		49.4
90	90/101/113	34.373	1.57	22800		148
91	88/91	32.143	1.57	(3570)		98.8
92		33.752	1.57	4630		49.4
93	93/98/100/102	31.589	1.57	817		198
94		30.717	1.58	118		49.4
95		31.204	1.57	20200		49.4
96		28.303	1.53	179		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0491-03 (FO105892)
Lab Sample ID 10138174003
Filename P101001B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.630	1.56	(17300)		296
98	93/98/100/102	31.589	1.57	(817)		198
99		34.993	1.57	9760		49.4
100	93/98/100/102	31.589	1.57	(817)		198
101	90/101/113	34.373	1.57	(22800)		148
102	93/98/100/102	31.589	1.57	(817)		198
103	30,00,100,10=	30.483	1.56	96.0		49.4
104				ND		49.4
105		40.812	1.55	9100		49.4
106				ND		49.4
107	107/124	38.883	1.53	1030		98.8
108	86/87/97/108/119/125	35.630	1.56	(17300)		296
109	00/01/01/100/110/120	39.135	1.55	1320		49.4
110	110/115	36.469	1.57	31200		98.8
111				ND		49.4
112				ND		49.4
113	90/101/113	34.373	1.57	(22800)		148
114	30, 10 1, 110	40.141	1.47	409		49.4
115	110/115	36.469	1.57	(31200)		98.8
116	85/116/117	36.284	1.55	(4480)		148
117	85/116/117	36.284	1.55	(4480)		148
118	30, 110, 111	39.604	1.55	19700		49.4
119	86/87/97/108/119/125	35.630	1.56	(17300)		296
120	30,01,01,100,110,120			ND		49.4
121				ND		49.4
122		39.940	1.54	374		49.4
123		39.252	1.52	605		49.4
124	107/124	38.883	1.53	(1030)		98.8
125	86/87/97/108/119/125	35.630	1.56	(17300)		296
126	30,01,01,100,110,120	43.981	1.82 I		75.9	49.4
127		42.338	1.30 I		61.2	49.4
128	128/166	44.048	1.25	4870		98.8
129	129/138/163	42.757	1.26	30000		148
130		42.103	1.24	1880		49.4
131		39.202	1.25	458		49.4
132		39.671	1.25	10100		49.4
133		40.191	1.26	329		49.4
134	134/143	38.565	1.25	1700		98.8
135	135/151	37.408	1.26	7990		98.8
136		34.876	1.27	3450		49.4
137		42.304	1.25	1360		49.4
138	129/138/163	42.757	1.26	(30000)		148
139	139/140	38.984	1.23	520		98.8
140	139/140	38.984	1.23	(520)		98.8
141		41.684	1.26	4790		49.4
142				ND		49.4
143	134/143	38.565	1.25	(1700)		98.8
144		37.995	1.27	`129Ó		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses Results reported on a total weight basis NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-03 (FO105892) 10138174003 P101001B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.4
146		40.862	1.26	3450		49.4
147	147/149	38.364	1.26	20200		98.8
148				ND		49.4
149	147/149	38.364	1.26	(20200)		98.8
150				` NĎ		49.4
151	135/151	37.408	1.26	(7990)		98.8
152				` NĎ		49.4
153	153/168	41.482	1.26	20700		98.8
154		37.659	1.30	171		49.4
155				ND		49.4
156	156/157	46.999	1.26	3640		98.8
157	156/157	46.999	1.26	(3640)		98.8
158		43.159	1.26	`286Ó		49.4
159				ND		49.4
160				ND		49.4
161				ND		49.4
162		45.322	1.21	67.7		49.4
163	129/138/163	42.757	1.26	(30000)		148
164		42.455	1.27	1900		49.4
165				ND		49.4
166	128/166	44.048	1.25	(4870)		98.8
167		45.842	1.24	`126Ó		49.4
168	153/168	41.482	1.26	(20700)		98.8
169				ND		49.4
170		49.682	1.04	5220		49.4
171	171/173	46.060	1.03	1630		98.8
172		47.720	1.03	909		49.4
173	171/173	46.060	1.03	(1630)		98.8
174		44.970	1.03	`460Ó		49.4
175		43.830	1.06	236		49.4
176		41.315	1.07	683		49.4
177		45.423	1.03	2830		49.4
178		43.193	1.05	949		49.4
179		40.409	1.05	2040		49.4
180	180/193	48.391	1.05	10400		98.8
181		45.842	1.08	52.6		49.4
182				ND		49.4
183	183/185	44.735	1.04	3620		98.8
184				ND		49.4
185	183/185	44.735	1.04	(3620)		98.8
186				` NĎ		49.4
187		44.115	1.05	5240		49.4
188				ND		49.4
189		52.897	1.07	234		49.4
190		50.219	1.03	1040		49.4
191		48.760	1.03	227		49.4
192				ND		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-03 (FO105892) 10138174003 P101001B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.391	1.05	(10400)		98.8
194		55.268	0.89	` 220Ó		74.1
195		52.617	0.90	947		74.1
196		51.024	0.91	1280		74.1
197	197/200	47.486	0.90	414		148
198	198/199	50.370	0.90	2530		148
199	198/199	50.370	0.90	(2530)		148
200	197/200	47.486	0.90	(414)		148
201		46.446	0.91	`317		74.1
202		45.524	0.92	444		74.1
203		51.225	0.90	1570		74.1
204				ND		74.1
205		55.893	0.93	131		74.1
206		58.220	0.79	902		74.1
207		53.306	0.77	139		74.1
208		52.315	0.73	231		74.1
209		60.677	0.66	419		74.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-03 (FO105892) 10138174003 P101001B_08

Congener Group	Concentration ng/Kg	
Congener Group	ng/kg	
Total Monochloro Biphenyls	54.4	
Total Dichloro Biphenyls	2220	
Total Trichloro Biphenyls	2750	
Total Tetrachloro Biphenyls	45000	
Total Pentachloro Biphenyls	160000	
Total Hexachloro Biphenyls	123000	
Total Heptachloro Biphenyls	39900	
Total Octachloro Biphenyls	9830	
Total Nonachloro Biphenyls	1270	
Decachloro Biphenyls	419	
Total PCBs	385000	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

PTI0491-04 (FO105893) Client's Sample ID Lab Sample ID 10138174004 P101001B_09 Filename Injected By **CVS** Solid Total Amount Extracted 11.8 g Matrix Dilution % Moisture 11.0 10.5 g Dry Weight Extracted Collected 09/14/2010 11:18 **ICAL ID** P101001B02 Received 09/16/2010 09:57 09/29/2010 14:40 CCal Filename(s) P101001B 01 Extracted Method Blank ID BLANK-26482 Analyzed 10/02/2010 01:09

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.073	3.02	2.0	0.940	47
13C-4-MoCB	3	12.499	3.06	2.0	1.07	54
13C-2,2'-DiCB	4	12.835	1.62	2.0	1.13	56
13C-4,4'-DiCB	15	21.029	1.55	2.0	1.07	54
13C-2,2',6-TrCB	19	17.303	1.02	2.0	1.01	50
13C-3,4,4'-TrCB	37	29.341	1.15	2.0	1.30	65
13C-2,2',6,6'-TeCB	54	21.326	0.83	2.0	1.15	57
13C-3,4,4',5-TeCB	<u>81</u>	36.619	0.80	2.0	1.33	66
13C-3,3',4,4'-TeCB	77	37.189	0.79	2.0	1.39	70
13C-2,2',4,6,6'-PeCB	104	27.866	1.62	2.0	1.19	59
13C-2,3,3',4,4'-PeCB	105	40.795	1.53	2.0	1.22	61
13C-2,3,4,4,5-PeCB	114 118	40.124 39.587	1.65 1.49	2.0 2.0	1.21 1.21	60
13C-2,3 ¹ ,4,4 ¹ ,5-PeCB	123	39.567 39.235	1.49	2.0	1.21	61 61
13C-2,3',4,4',5'-PeCB 13C-3,3',4,4',5-PeCB	126	43.964	1.57	2.0	1.23	61
13C-2,2',4,4',6,6'-HxCB	155	34.070	1.22	2.0	1.46	73
13C-HxCB (156/157)	156/157	46.999	1.23	4.0	2.39	60
13C-2,3',4,4',5,5'-HxCB	167	45.825	1.28	2.0	1.22	61
13C-3,3',4,4',5,5'-HxCB	169	50.335	1.26	2.0	1.19	59
13C-2,2',3,4',5,6,6'-HpCB	188	40.040	1.05	2.0	1.63	82
13C-2,3,3',4,4',5,5'-HpCB	189	52.896	1.04	2.0	1.39	69
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.490	0.91	2.0	1.49	75
13C-2,3,3',4,4',5,5',6-OcCB	205	55.849	0.87	2.0	1.41	71
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.198	0.77	2.0	1.43	71
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.271	0.78	2.0	1.43	71
13CDeCB	209	60.634	0.71	2.0	1.27	64
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.713	1.10	2.0	1.54	77
13C-2,3,3',5,5'-PeCB	111	37.189	1.54	2.0	1.79	89
13C-2,2 ¹ ,3,3 ¹ ,5,5 ¹ ,6-HpCB	178	43.176	1.02	2.0	1.94	97
Recovery Standards						
13C-2,5-DiCB	9	15.746	1.54	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.826	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.355	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.723	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.245	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Page 31 of 92

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-04 (FO105893) 10138174004 P101001B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OO CIGUIOTIS				119/119	
1				ND		23.9
2		12.236	2.82	24.8		23.9
3		12.511	2.88	25.1		23.9
4		12.870	1.63	32.9		23.9
5				ND		23.9
6				ND		23.9
7				ND		23.9
8		16.932	1.37	68.5		23.9
9				ND		23.9
10				ND		23.9
11		20.238	1.53	1100		143
12	12/13			ND		47.8
13	12/13			ND		47.8
14				ND		23.9
15		21.041	1.42	122		23.9
16		20.933	1.16	57.4		23.9
17		20.346	1.10	67.4		23.9
18	18/30	19.819	1.08	155		47.8
19				ND		23.9
20	20/28	24.730	1.07	278		47.8
21	21/33	24.998	1.03	136		47.8
22	21,700	25.485	1.06	98.8		23.9
23				ND		23.9
24				ND		23.9
25				ND		23.9
26	26/29			ND		47.8
27	20/29			ND		23.9
28	20/28	24.730	1.07	(278)		47.8
29	26/29	24.730		ND		47.8
30	18/30	19.819	1.08	(155)		47.8
31	10/30	24.395	1.08	266		23.9
32		24.393	1.02	69.3		23.9
33	21/33	24.998	1.03	(136)		23.9 47.8
	21/33	24.990	1.03			
34 35				ND		23.9
		28.889	1.20	28.3		23.9
36			4.04	ND		23.9
37		29.358	1.04	178		23.9
38				ND		23.9
39	40/44/74			ND		23.9
40	40/41/71	29.123	0.78	703		143
41	40/41/71	29.123	0.78	(703)		143
42	10/70	28.570	0.79	306		47.8
43	43/73			ND		95.5
44	44/47/65	27.966	0.79	2110		143
45	45/51	24.797	0.80	184		95.5
46		25.183	0.74	69.8		47.8
47	44/47/65	27.966	0.79	(2110)		143
48		27.715	0.77	129		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-04 (FO105893) 10138174004 P101001B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.413	0.77	1090		95.5
50	50/53	24.009	0.80	201		95.5
51	45/51	24.797	0.80	(184)		95.5
52		26.860	0.78	Š41Ó		47.8
53	50/53	24.009	0.80	(201)		95.5
54				` NĎ		47.8
55				ND		47.8
56		33.265	0.79	633		47.8
57				ND		47.8
58				ND		47.8
59	59/62/75			ND		143
60	00/02/10	33.500	0.79	231		47.8
61	61/70/74/76	32.192	0.79	3540		191
62	59/62/75			ND		143
63	00/02/10			ND		47.8
64		29.375	0.78	686		47.8
65	44/47/65	27.966	0.79	(2110)		143
66	11/1/00	32.544	0.78	1430		47.8
67				ND		47.8
68				ND		47.8
69	49/69	27.413	0.77	(1090)		95.5
70	61/70/74/76	32.192	0.79	(3540)		191
71	40/41/71	29.123	0.78	(703)		143
72	40/41/71			ND		47.8
73	43/73			ND		95.5
74 74	61/70/74/76	32.192	0.79	(3540)		191
7 5	59/62/75		0.73	ND		143
76	61/70/74/76	32.192	0.79	(3540)		191
77 77	01/10/1-1/10	37.223	0.78	283		47.8
78		36.284	0.78	85.9		47.8
79		35.512	0.72	97.8		47.8
80				ND		47.8
81				ND		47.8
82		36.787	1.55	1530		47.8
83		34.858	1.45	601		47.8
84		32.393	1.57	3240		47.8
85	85/116/117	36.300	1.58	1980		143
86	86/87/97/108/119/125	35.630	1.57	8040		287
87	86/87/97/108/119/125	35.630	1.57	(8040)		287
88	88/91	32.159	1.57	1550		95.5
89	00/91	32.139	1.57	122		95.5 47.8
90	90/101/113	34.389	1.57	10700		143
91	88/91	32.159	1.57	(1550)		95.5
91	00/31	32.159	1.56	2100		95.5 47.8
92 93	93/98/100/102	33.766 31.588	1.64	327		47.8 191
93 94	33/30/100/10Z	30.700	1.64			47.8
				53.3		47.8 47.8
95 96		31.220	1.56	9660 73.7		
90		28.285	1.56	73.7		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0491-04 (FO105893)
Lab Sample ID 10138174004
Filename P101001B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.630	1.57	(8040)		287
98	93/98/100/102	31.588	1.64	`(327)		191
99		34.993	1.56	`446Ó		47.8
100	93/98/100/102	31.588	1.64	(327)		191
101	90/101/113	34.389	1.57	(10700)		143
102	93/98/100/102	31.588	1.64	(327)		191
103				NĎ		47.8
104				ND		47.8
105		40.811	1.54	4310		47.8
106				ND		47.8
107	107/124	38.883	1.55	464		95.5
108	86/87/97/108/119/125	35.630	1.57	(8040)		287
109	33,31,31,133,113,123	39.134	1.59	601		47.8
110	110/115	36.468	1.55	14900		95.5
111	110,110			ND		47.8
112				ND		47.8
113	90/101/113	34.389	1.57	(10700)		143
114	33, 13 1, 113	40.157	1.47	201		47.8
115	110/115	36.468	1.55	(14900)		95.5
116	85/116/117	36.300	1.58	(1980)		143
117	85/116/117	36.300	1.58	(1980)		143
118	33/113/117	39.604	1.57	9630		47.8
119	86/87/97/108/119/125	35.630	1.57	(8040)		287
120	00/01/01/100/110/120			ND		47.8
121				ND		47.8
122		39.956	1.64	164		47.8
123		39.235	1.58	264		47.8
124	107/124	38.883	1.55	(464)		95.5
125	86/87/97/108/119/125	35.630	1.57	(8040)		287
126	00/01/01/100/110/120	43.997	1.48	66.3		47.8
127				ND		47.8
128	128/166	44.048	1.26	2570		95.5
129	129/138/163	42.756	1.25	15700		143
130	120/100/100	42.102	1.25	976		47.8
131		39.185	1.24	235		47.8
132		39.671	1.26	5220		47.8
133		40.191	1.26	174		47.8
134	134/143	38.581	1.28	783		95.5
135	135/151	37.424	1.24	3920		95.5
136	100/101	34.875	1.23	1750		47.8
137		42.320	1.27	866		47.8
138	129/138/163	42.756	1.25	(15700)		143
139	139/140	38.984	1.27	273		95.5
140	139/140	38.984	1.27	(273)		95.5
141	100,110	41.683	1.26	2320		47.8
142				ND		47.8
143	134/143	38.581	1.28	(783)		95.5
144	. 5 ., 1 . 15	37.994	1.23	619		47.8
		000.	0	0.0		17.10

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-04 (FO105893) 10138174004 P101001B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		47.8
146		40.845	1.26	1770		47.8
147	147/149	38.363	1.25	10300		95.5
148	,			ND		47.8
149	147/149	38.363	1.25	(10300)		95.5
150	,			ND		47.8
151	135/151	37.424	1.24	(3920)		95.5
152				ND		47.8
153	153/168	41.482	1.26	10200		95.5
154		37.659	1.43	88.7		47.8
155				ND		47.8
156	156/157	46.999	1.23	1930		95.5
157	156/157	46.999	1.23	(1930)		95.5
158	100/101	43.159	1.24	1480		47.8
159		44.987	1.20	121		47.8
160				ND		47.8
161				ND		47.8
162		45.422	1.22	110		47.8
163	129/138/163	42.756	1.25	(15700)		143
164	. = 0, . 0 0, . 0 0	42.438	1.26	927		47.8
165				ND		47.8
166	128/166	44.048	1.26	(2570)		95.5
167	. = 0, . 00	45.842	1.23	660		47.8
168	153/168	41.482	1.26	(10200)		95.5
169				ND		47.8
170		49.682	1.03	2550		47.8
171	171/173	46.060	1.07	787		95.5
172		47.720	1.05	444		47.8
173	171/173	46.060	1.07	(787)		95.5
174		44.970	1.06	2180		47.8
175		43.830	1.02	110		47.8
176		41.314	1.03	317		47.8
177		45.422	1.06	1340		47.8
178		43.192	1.08	452		47.8
179		40.409	1.06	961		47.8
180	180/193	48.390	1.05	5020		95.5
181				ND		47.8
182				ND		47.8
183	183/185	44.735	1.05	1740		95.5
184				ND		47.8
185	183/185	44.735	1.05	(1740)		95.5
186				` NĎ		47.8
187		44.115	1.05	2540		47.8
188				ND		47.8
189		52.896	1.03	117		47.8
190		50.235	1.01	501		47.8
191		48.743	1.08	113		47.8
192				ND		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-04 (FO105893) 10138174004 P101001B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.390	1.05	(5020)		95.5
194		55.267	0.90	`104Ó		71.7
195		52.616	0.91	440		71.7
196		51.023	0.91	599		71.7
197	197/200	47.485	0.88	207		143
198	198/199	50.352	0.92	1210		143
199	198/199	50.352	0.92	(1210)		143
200	197/200	47.485	0.88	`(207)		143
201		46.462	0.92	`15 6		71.7
202		45.506	0.92	221		71.7
203		51.241	0.88	742		71.7
204				ND		71.7
205				ND		71.7
206		58.220	0.75	444		71.7
207				ND		71.7
208		52.314	0.81	107		71.7
209		60.720	0.64	263		71.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-04 (FO105893) 10138174004 P101001B_09

Congener Group	Concentration ng/Kg	
- Congenier Croup	99	
Total Monochloro Biphenyls	49.9	
Total Dichloro Biphenyls	1320	
Total Trichloro Biphenyls	1330	
Total Tetrachloro Biphenyls	17200	
Total Pentachloro Biphenyls	75000	
Total Hexachloro Biphenyls	63000	
Total Heptachloro Biphenyls	19200	
Total Octachloro Biphenyls	4620	
Total Nonachloro Biphenyls	551	
Decachloro Biphenyls	263	
Total PCBs	183000	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID Lab Sample ID Filename

Injected By
Total Amount Extracted

% Moisture
Dry Weight Extracted
ICAL ID

CCal Filename(s)
Method Blank ID

PTI0491-05 (FO105894)

10138174005 P101001B_10

CVS 10.9 g 6.5 10.2 g P101001B02 P101001B_01 BLANK-26482

Matrix Solid Dilution 5

Collected 09/14/2010 13:20
Received 09/16/2010 09:57
Extracted 09/29/2010 14:40
Analyzed 10/02/2010 02:15

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.049	2.85	2.0	0.809	40
13C-4-MoCB	3	12.475	2.97	2.0	0.958	48
13C-2,2'-DiCB	4	12.834	1.58	2.0	1.00	50
13C-4,4'-DiCB	15	21.005	1.63	2.0	0.991	50
13C-2,2',6-TrCB	19	17.279	1.06	2.0	0.930	47
13C-3,4,4'-TrCB	37	29.324	1.16	2.0	1.16	58
13C-2,2',6,6'-TeCB	54	21.309	0.82	2.0	0.969	48
13C-3,4,4',5-TeCB	81	36.617	0.76	2.0	1.12	56
13C-3,3',4,4'-TeCB	77	37.187	0.81	2.0	1.15	58
13C-2,2',4,6,6'-PeCB	104	27.848	1.55	2.0	1.15	57
13C-2,3,3',4,4'-PeCB	105	40.792	1.61	2.0	1.03	52
13C-2,3,4,4',5-PeCB	114	40.105	1.57	2.0	1.06	53
13C-2,3',4,4',5-PeCB	118	39.568	1.63	2.0	1.06	53
13C-2,3',4,4',5'-PeCB	123	39.233	1.56	2.0	1.04	52
13C-3,3',4,4',5-PeCB	126	43.995	1.61	2.0	1.08	54
13C-2,2',4,4',6,6'-HxCB	155	34.069	1.31	2.0	1.20	60
13C-HxCB (156/157)	156/157	46.996	1.27	4.0	2.03	51 52
13C-2,3',4,4',5,5'-HxCB	167 169	45.823 50.350	1.30 1.18	2.0 2.0	1.05 1.15	52 58
13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB	188	40.038	0.99	2.0 2.0	1.19	59
13C-2,3,3',4,4',5,5'-HpCB	189	52.915	1.04	2.0	1.09	55
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.504	0.84	2.0	1.18	59
13C-2,3,3',4,4',5,5',6-OcCB	205	55.867	0.89	2.0	1.18	59 59
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.217	0.79	2.0	1.29	64
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.311	0.78	2.0	1.19	60
13CDeCB	209	60.674	0.73	2.0	1.09	55
.00 2002	200	00.07	0.70	2.0	1.00	00
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.696	1.02	2.0	1.62	81
13C-2,3,3',5,5'-PeCB	111	37.204	1.57	2.0	1.80	90
13C-2,2 ['] ,3,3 ['] ,5,5 ['] ,6-HpCB	178	43.173	1.00	2.0	1.88	94
Recovery Standards						
13C-2,5-DiCB	9	15.745	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.825	0.78	2.0	ŇA	NA
13C-2,2',4,5,5'-PeCB	101	34.354	1.59	2.0	ŇA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.754	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.286	0.87	2.0	NA	NA
. , , , , , ,						

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-05 (FO105894) 10138174005 P101001B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.5
2				ND		24.5
3				ND		24.5
4		12.870	1.45	73.8		24.5
5				ND		24.5
6				ND		24.5
7				ND		24.5
8		16.919	1.51	72.6		24.5
9				ND		24.5
10				ND		24.5
11		20.226	1.44	522		147
12	12/13			ND		49.0
13	12/13			ND		49.0
14				ND		24.5
15		21.029	1.47	194		24.5
16		20.909	1.07	175		24.5
17		20.334	1.09	166		24.5
18	18/30	19.819	1.08	420		49.0
19		17.303	1.11	171		24.5
20	20/28	24.729	1.01	459		49.0
21	21/33	24.981	1.07	230		49.0
22		25.467	1.04	163		24.5
23				ND		24.5
24			4.07	ND		24.5
25	00/00	23.992	1.07	40.8		24.5
26	26/29	23.707	1.00	65.2		49.0
27	20/20	20.609	1.16 1.01	59.1		24.5
28	20/28	24.729 23.707	1.01	(459)		49.0 49.0
29 30	26/29 18/30	19.819	1.00	(65.2) (420)		49.0 49.0
31	16/30	24.377	1.08	(420) 425		24.5
32		24.577	1.07	158		24.5
33	21/33	24.981	1.07	(230)		49.0
34	21/33	24.901	1.07	ND		24.5
35		28.888	1.11	24.9		24.5
36		20.000		ND		24.5
37		29.357	1.04	218		24.5
38		20.007		ND		24.5
39				ND		24.5
40	40/41/71	29.106	0.76	974		147
41	40/41/71	29.106	0.76	(974)		147
42	10/ 11/11	28.552	0.77	448		49.0
43	43/73			ND		98.0
44	44/47/65	27.965	0.77	2270		147
45	45/51	24.797	0.78	719		98.0
46	·	25.165	0.78	290		49.0
47	44/47/65	27.965	0.77	(2270)		147
48		27.714	0.81	245		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-05 (FO105894) 10138174005 P101001B_10

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML
IUPAC	Co-elutions	KI	Ralio	ng/Kg	ng/Kg	ng/Kg
49	49/69	27.395	0.77	1250		98.0
50	50/53	24.008	0.79	633		98.0
51	45/51	24.797	0.78	(719)		98.0
52		26.842	0.78	5 08Ó		49.0
53	50/53	24.008	0.79	(633)		98.0
54				NĎ		49.0
55				ND		49.0
56		33.264	0.80	540		49.0
57				ND		49.0
58				ND		49.0
59	59/62/75	28.334	0.80	152		147
60		33.499	0.78	210		49.0
61	61/70/74/76	32.174	0.77	2980		196
62	59/62/75	28.334	0.80	(152)		147
63				` NĎ		49.0
64		29.357	0.79	663		49.0
65	44/47/65	27.965	0.77	(2270)		147
66		32.543	0.78	`124Ó		49.0
67				ND		49.0
68				ND		49.0
69	49/69	27.395	0.77	(1250)		98.0
70	61/70/74/76	32.174	0.77	(2980)		196
71	40/41/71	29.106	0.76	(974)		147
72				` NĎ		49.0
73	43/73			ND		98.0
74	61/70/74/76	32.174	0.77	(2980)		196
75	59/62/75	28.334	0.80	`(152)		147
76	61/70/74/76	32.174	0.77	(2980)		196
77		37.221	0.80	` 27 8		49.0
78				ND		49.0
79		35.511	0.71	80.6		49.0
80				ND		49.0
81				ND		49.0
82		36.785	1.60	1300		49.0
83		34.857	1.65	572		49.0
84		32.375	1.56	2940		49.0
85	85/116/117	36.282	1.56	1460		147
86	86/87/97/108/119/125	35.611	1.56	6730		294
87	86/87/97/108/119/125	35.611	1.56	(6730)		294
88	88/91	32.141	1.54	1300		98.0
89		32.895	1.57	121		49.0
90	90/101/113	34.387	1.56	8960		147
91	88/91	32.141	1.54	(1300)		98.0
92		33.750	1.59	`174Ó		49.0
93	93/98/100/102	31.587	1.54	282		196
94				ND		49.0
95		31.202	1.56	8550		49.0
96		28.301	1.51	72.5		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0491-05 (FO105894)
Lab Sample ID 10138174005
Filename P101001B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.611	1.56	(6730)		294
98	93/98/100/102	31.587	1.54	(282)		196
99		34.991	1.57	3280		49.0
100	93/98/100/102	31.587	1.54	(282)		196
101	90/101/113	34.387	1.56	(8960)		147
102	93/98/100/102	31.587	1.54	(282)		196
103				ND		49.0
104				ND		49.0
105		40.826	1.58	3710		49.0
106				ND		49.0
107	107/124	38.881	1.58	401		98.0
108	86/87/97/108/119/125	35.611	1.56	(6730)		294
109	30,01,01,100,110,120	39.132	1.58	555		49.0
110	110/115	36.466	1.56	12400		98.0
111	110/110			ND		49.0
112				ND		49.0
113	90/101/113	34.387	1.56	(8960)		147
114	30, 10 1, 110	40.138	1.56	172		49.0
115	110/115	36.466	1.56	(12400)		98.0
116	85/116/117	36.282	1.56	(1460)		147
117	85/116/117	36.282	1.56	(1460)		147
118	33/113/111	39.602	1.57	7750		49.0
119	86/87/97/108/119/125	35.611	1.56	(6730)		294
120	00/01/01/100/110/120			ND		49.0
121				ND		49.0
122		39.954	1.69	126		49.0
123		39.250	1.52	160		49.0
124	107/124	38.881	1.58	(401)		98.0
125	86/87/97/108/119/125	35.611	1.56	(6730)		294
126	30,01,01,100,110,120	43.995	1.53	72.9		49.0
127				ND		49.0
128	128/166	44.062	1.25	2690		98.0
129	129/138/163	42.771	1.25	16000		147
130		42.100	1.25	1020		49.0
131		39.199	1.20	236		49.0
132		39.669	1.26	5020		49.0
133		40.189	1.21	176		49.0
134	134/143	38.579	1.26	836		98.0
135	135/151	37.422	1.24	3770		98.0
136		34.874	1.29	1540		49.0
137		42.318	1.23	792		49.0
138	129/138/163	42.771	1.25	(16000)		147
139	139/140	38.981	1.35	240		98.0
140	139/140	38.981	1.35	(240)		98.0
141	-	41.681	1.25	2510		49.0
142				ND		49.0
143	134/143	38.579	1.26	(836)		98.0
144		37.992	1.20	605		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-05 (FO105894) 10138174005 P101001B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.0
146		40.859	1.26	1790		49.0
147	147/149	38.361	1.25	9690		98.0
148				ND		49.0
149	147/149	38.361	1.25	(9690)		98.0
150				` NĎ		49.0
151	135/151	37.422	1.24	(3770)		98.0
152				ND		49.0
153	153/168	41.480	1.25	10400		98.0
154		37.674	1.22	93.0		49.0
155				ND		49.0
156	156/157	47.013	1.23	2160		98.0
157	156/157	47.013	1.23	(2160)		98.0
158		43.173	1.24	`152Ó		49.0
159				ND		49.0
160				ND		49.0
161				ND		49.0
162				ND		49.0
163	129/138/163	42.771	1.25	(16000)		147
164		42.452	1.26	986		49.0
165				ND		49.0
166	128/166	44.062	1.25	(2690)		98.0
167		45.839	1.23	` 71 3		49.0
168	153/168	41.480	1.25	(10400)		98.0
169				` NĎ		49.0
170		49.696	1.03	3110		49.0
171	171/173	46.057	1.02	893		98.0
172		47.734	1.06	536		49.0
173	171/173	46.057	1.02	(893)		98.0
174		44.984	1.05	251Ó		49.0
175		43.844	1.04	126		49.0
176		41.329	1.02	330		49.0
177		45.437	1.04	1560		49.0
178		43.190	1.04	521		49.0
179		40.407	1.03	997		49.0
180	180/193	48.388	1.04	6060		98.0
181				ND		49.0
182				ND		49.0
183	183/185	44.733	1.05	1870		98.0
184				ND		49.0
185	183/185	44.733	1.05	(1870)		98.0
186				` NĎ		49.0
187		44.112	1.04	3000		49.0
188				ND		49.0
189		52.915	1.02	141		49.0
190		50.232	1.02	619		49.0
191		48.774	1.11	127		49.0
192				ND		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-05 (FO105894) 10138174005 P101001B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.388	1.04	(6060)		98.0
194		55.307	0.90	`130Ó		73.5
195		52.635	0.91	519		73.5
196		51.037	0.89	721		73.5
197	197/200	47.499	0.91	228		147
198	198/199	50.366	0.90	1570		147
199	198/199	50.366	0.90	(1570)		147
200	197/200	47.499	0.91	`(228)		147
201		46.460	0.90	`18Ź		73.5
202		45.521	0.95	292		73.5
203		51.255	0.88	965		73.5
204				ND		73.5
205				ND		73.5
206		58.281	0.76	739		73.5
207		53.303	0.76	97.5		73.5
208		52.333	0.76	204		73.5
209		60.760	0.72	366		73.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-05 (FO105894) 10138174005 P101001B_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	862	
Total Trichloro Biphenyls	2780	
Total Tetrachloro Biphenyls	18100	
Total Pentachloro Biphenyls	62700	
Total Hexachloro Biphenyls	62800	
Total Heptachloro Biphenyls	22400	
Total Octachloro Biphenyls	5780	
Total Nonachloro Biphenyls	1040	
Decachloro Biphenyls	366	
Total PCBs	177000	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0491-06 (FO105895)
Lab Sample ID 10138174006
Filename P101009A_08
Injected By BAL
Total Amount Extracted 15.9 g
% Moisture 36.3
Dry Weight Extracted 10.1 g

ICÁL ID P101009A02 CCal Filename(s) P101009A_01 Method Blank ID BLANK-26574 Matrix Solid Dilution 5

Collected 09/14/2010 14:11 Received 09/16/2010 09:57 Extracted 10/06/2010 16:40 Analyzed 10/09/2010 08:33

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.402	2.95	2.0	1.38	69
13C-4-MoCB	3	11.744	2.68	2.0	1.62	81
13C-2,2'-DiCB	4	12.092	1.64	2.0	1.50	75
13C-4,4'-DiCB	15	20.166	1.54	2.0	1.20	60
13C-2,2',6-TrCB	19	16.488	1.08	2.0	1.51	76
13C-3,4,4'-TrCB	37	28.476	1.08	2.0	1.66	83
13C-2,2 ['] ,6,6'-TeCB	54	20.478	0.81	2.0	1.64	82
13C-3,4,4',5-TeCB	81	35.787	0.84	2.0	1.37	68
13C-3,3',4,4'-TeCB	77	36.374	0.78	2.0	1.36	68
13C-2,2',4,6,6'-PeCB	104	27.017	1.67	2.0	1.78	89
13C-2,3,3',4,4'-PeCB	105	39.980	1.54	2.0	1.31	66
13C-2,3,4,4',5-PeCB	114	39.309	1.54	2.0	1.33	66
13C-2,3',4,4',5-PeCB	118	38.739	1.58	2.0	1.32	66
13C-2,3',4,4',5'-PeCB	123	38.437	1.60	2.0	1.36	68
13C-3,3',4,4',5-PeCB	126	43.182	1.60	2.0	1.25	63
13C-2,2',4,4',6,6'-HxCB	155	33.239	1.28	2.0	1.96	98
13C-HxCB (156/157)	156/157	46.217	1.28	4.0	2.92	73
13C-2,3',4,4`,5,5'-HxĆB	167	45.044	1.33	2.0	1.47	74
13C-3,3',4,4',5,5'-HxCB	169	49.571	1.28	2.0	1.42	71
13C-2,2',3,4',5,6,6'-HpCB	188	39.208	1.06	2.0	2.03	101
13C-2,3,3',4,4',5,5'-HpCB	189	52.134	1.09	2.0	1.74	87
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.692	0.93	2.0	1.93	97
13C-2,3,3',4,4',5,5',6-OcCB	205	54.957	0.85	2.0	1.61	80
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.220	0.84	2.0	1.92	96
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.487	0.84	2.0	1.65	83
13CDeCB	209	59.462	0.73	2.0	1.35	68
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.848	1.12	2.0	1.85	93
13C-2,3,3',5,5'-PeCB	111	36.391	1.57	2.0	1.36	68
13C-2,2',3,3',5,5',6-HpCB	178	42.378	1.07	2.0	1.62	81
·						•
Recovery Standards	•	44.055	4.04	0.0	N 10	A1A
13C-2,5-DiCB	9	14.955	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.995	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.524	1.58	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.942	1.30	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.375	0.95	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.7
2				ND		24.7
2 3				ND		24.7
4		12.104	1.47	28.6		24.7
5				ND		24.7
5 6				ND		24.7
7				ND		24.7
8		16.117	1.54	77.8		24.7
9				ND		24.7
10				ND		24.7
11		19.400	1.55	950		148
12	12/13			ND		49.4
13	12/13			ND		49.4
14				ND		24.7
15		20.190	1.61	200		24.7
16		20.082	1.12	58.2		24.7
17		19.531	1.08	54.9		24.7
18	18/30	18.968	1.02	96.5		49.4
19		16.500	1.12	29.3		24.7
20	20/28	23.882	1.01	323		49.4
21	21/33	24.133	1.07	135		49.4
22		24.620	1.09	102		24.7
23				ND		24.7
24				ND		24.7
25				ND		24.7
26	26/29			ND		49.4
27	_0,_0	19.795	1.08	29.1		24.7
28	20/28	23.882	1.01	(323)		49.4
29	26/29			ND		49.4
30	18/30	18.968	1.02	(96.5)		49.4
31	. 0, 00	23.530	1.04	244		24.7
32		20.763	1.09	85.2		24.7
33	21/33	24.133	1.07	(135)		49.4
34	21,00			ND		24.7
35		28.024	0.99	43.9		24.7
36				ND		24.7
37		28.493	1.03	274		24.7
38				ND		24.7
39				ND		24.7
40	40/41/71	28.258	0.77	560		148
41	40/41/71	28.258	0.77	(560)		148
42		27.705	0.78	209		49.4
43	43/73			ND		98.7
44	44/47/65	27.101	0.78	869		148
45	45/51	23.932	0.76	194		98.7
46		24.301	0.73	73.0		49.4
47	44/47/65	27.101	0.78	(869)		148
48		26.866	0.79	104		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

HIDAC	Co alutiono	DT	Datia	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	26.565	0.79	446		98.7
50	50/53	23.144	0.82	156		98.7
51	45/51	23.932	0.76	(194)		98.7
52		26.011	0.78	1630		49.4
53	50/53	23.144	0.82	(156)		98.7
54				NĎ		49.4
55				ND		49.4
56		32.400	0.76	428		49.4
57				ND		49.4
58				ND		49.4
59	59/62/75			ND		148
60	30, 32, 13	32.652	0.74	203		49.4
61	61/70/74/76	31.344	0.78	1640		197
62	59/62/75			ND		148
63	00/02/10			ND		49.4
64		28.510	0.80	514		49.4
65	44/47/65	27.101	0.78	(869)		148
66	11/11/00	31.713	0.78	877		49.4
67				ND		49.4
68				ND		49.4
69	49/69	26.565	0.79	(446)		98.7
70	61/70/74/76	31.344	0.78	(1640)		197
71	40/41/71	28.258	0.77	(560)		148
72	40/41/71			ND		49.4
73	43/73			ND ND		98.7
73 74	61/70/74/76	31.344	0.78	(1640)		197
7 4 75	59/62/75	31.344	0.76	(1040) ND		148
76	61/70/74/76	31.344	0.78	(1640)		197
70 77	01/70/74/70	36.391	0.78	272		49.4
7 <i>7</i> 78		30.391	0.76	ND		49.4
78 79				ND ND		49.4
80				ND ND		49.4
81				ND		49.4
82		35.938	1.56	470		49.4
83		34.010	1.50	264		49.4
84		31.511	1.58	1190		49.4
85	85/116/117	35.452	1.55	540		49.4 148
86	86/87/97/108/119/125	34.781	1.62	2970		296
87	86/87/97/108/119/125	34.781	1.62	(2970)		296 296
88	88/91	34.761	1.62			98.7
89	00/91	31.293	1.62	562 54.3		96.7 49.4
	90/101/113					
90		33.557	1.58	4490		148
91	88/91	31.293	1.59	(562)		98.7
92	02/09/400/402	32.937	1.57	805 ND		49.4
93	93/98/100/102			ND		197
94		 20 274	 1	ND		49.4
95		30.371	1.57	3710		49.4
96				ND		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.781	1.62	(2970)		296
98	93/98/100/102			NĎ		197
99		34.178	1.56	1410		49.4
100	93/98/100/102			ND		197
101	90/101/113	33.557	1.58	(4490)		148
102	93/98/100/102			` NĎ		197
103				ND		49.4
104				ND		49.4
105		39.996	1.57	1610		49.4
106				ND		49.4
107	107/124	38.068	1.54	152		98.7
108	86/87/97/108/119/125	34.781	1.62	(2970)		296
109	00/01/01/100/110/120	38.320	1.53	186		49.4
110	110/115	35.637	1.58	4410		98.7
111	110/110			ND		49.4
112				ND		49.4
113	90/101/113	33.557	1.58	(4490)		148
114	30/101/113	39.326	1.56	77.7		49.4
115	110/115	35.637	1.58	(4410)		98.7
116	85/116/117	35.452	1.55	(540)		148
117	85/116/117	35.452	1.55	(540)		148
117	03/110/117	38.789	1.57	3490		49.4
119	86/87/97/108/119/125	34.781	1.62	(2970)		49.4 296
120	00/07/97/100/119/125	34.701 	1.02	(2970) ND		49.4
120				ND ND		49.4 49.4
121				ND ND		49.4 49.4
122		38.420	1.51	101		49.4 49.4
123	107/124	38.068	1.51			49.4 98.7
			1.62	(152)		96.7 296
125	86/87/97/108/119/125	34.781	1.62	(2970)		
126		43.216		109		49.4
127	400/400	40.000	4.04	ND		49.4
128	128/166	43.233	1.24	906		98.7
129	129/138/163	41.958	1.24	6420		148
130		41.304	1.26	378		49.4
131		38.370	1.41	85.2		49.4
132		38.839	1.27	2000		49.4
133	10.1/1.10	39.393	1.24	74.3		49.4
134	134/143	37.733	1.24	272		98.7
135	135/151	36.592	1.25	1800		98.7
136		34.027	1.22	912		49.4
137		41.522	1.19	336		49.4
138	129/138/163	41.958	1.24	(6420)		148
139	139/140			ND		98.7
140	139/140			ND		98.7
141		40.868	1.25	1100		49.4
142				ND		49.4
143	134/143	37.733	1.24	(272)		98.7
144		37.129	1.28	112		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.4
146		40.063	1.21	777		49.4
147	147/149	37.548	1.23	4130		98.7
148				ND		49.4
149	147/149	37.548	1.23	(4130)		98.7
150				ND		49.4
151	135/151	36.592	1.25	(1800)		98.7
152				ND		49.4
153	153/168	40.701	1.24	4810		98.7
154				ND		49.4
155				ND		49.4
156	156/157	46.201	1.25	879		98.7
157	156/157	46.201	1.25	(879)		98.7
158		42.361	1.24	594		49.4
159				ND		49.4
160				ND		49.4
161		44.000		ND 53.5		49.4
162	400/400/400	44.608	1.31	57.5		49.4
163	129/138/163	41.958	1.24	(6420)		148
164		41.656	1.22	361		49.4
165	128/166	 43.233	 1.24	ND (006)		49.4 98.7
166 167	126/100	45.233 45.060	1.24	(906) 324		96.7 49.4
168	153/168	40.701	1.23	(4810)		98.7
169	155/100	40.701	1.24	(4610) ND		49.4
170		48.900	1.04	1740		49.4
171	171/173	45.262	1.04	523		98.7
172	17 17173	46.955	1.01	324		49.4
173	171/173	45.262	1.04	(523)		98.7
174	17 17 17 0	44.172	1.02	1590		49.4
175		43.031	1.16	71.7		49.4
176		40.483	1.05	206		49.4
177		44.624	1.03	974		49.4
178		42.394	1.05	319		49.4
179		39.577	1.02	641		49.4
180	180/193	47.609	1.05	3720		98.7
181				ND		49.4
182				ND		49.4
183	183/185	43.954	1.06	1210		98.7
184				ND		49.4
185	183/185	43.954	1.06	(1210)		98.7
186				` NĎ		49.4
187		43.317	1.04	1790		49.4
188				ND		49.4
189		52.155	1.01	77.7		49.4
190		49.470	1.03	353		49.4
191		47.978	1.06	72.2		49.4
192				ND		49.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.609	1.05	(3720)		98.7
194		54.418	0.92	909		74.0
195		51.810	0.89	357		74.0
196		50.258	0.89	479		74.0
197	197/200			ND		148
198	198/199	49.588	0.91	956		148
199	198/199	49.588	0.91	(956)		148
200	197/200			NĎ		148
201		45.647	0.86	125		74.0
202		44.708	0.90	208		74.0
203		50.460	0.89	600		74.0
204				ND		74.0
205				ND		74.0
206		57.199	0.80	353		74.0
207				ND		74.0
208		51.530	0.81	112		74.0
209		59.527	0.63	161		74.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-06 (FO105895) 10138174006 P101009A_08

Congener Group	Concentration ng/Kg	
- Congener Group	ng/itg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	1260	
Total Trichloro Biphenyls	1480	
Total Tetrachloro Biphenyls	8180	
Total Pentachloro Biphenyls	26600	
Total Hexachloro Biphenyls	26300	
Total Heptachloro Biphenyls	13600	
Total Octachloro Biphenyls	3630	
Total Nonachloro Biphenyls	465	
Decachloro Biphenyls	161	
Total PCBs	81700	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0491-07 (FO105896) Lab Sample ID 10138174007 P101009A_09 Filename Injected By BAL Total Amount Extracted 16.4 g % Moisture 36.2

10.5 g Dry Weight Extracted **ICAL ID** P101009A02 CCal Filename(s) P101009A 01 Method Blank ID BLANK-26574

Solid Matrix Dilution Collected 09/14/2010 13:51

Received 09/16/2010 09:57 Extracted 10/06/2010 16:40 Analyzed 10/09/2010 09:37

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.438	3.41	2.0	1.26	63
13C-4-MoCB	3	11.793	2.98	2.0	1.45	73
13C-2,2'-DiCB	4	12.116	1.57	2.0	1.40	70
13C-4,4'-DiCB	15	20.169	1.63	2.0	0.933	47
13C-2,2',6-TrCB	19	16.514	1.01	2.0	1.34	67
13C-3,4,4'-TrCB	37	28.496	1.10	2.0	1.66	83
13C-2,2',6,6'-TeCB	54	20.497	0.79	2.0	1.23	62
13C-3,4,4',5-TeCB	81	35.807	0.81	2.0	1.36	68
13C-3,3',4,4'-TeCB	77	36.411	0.84	2.0	1.41	70
13C-2,2',4,6,6'-PeCB	104	27.020	1.58	2.0	1.50	75
13C-2,3,3',4,4'-PeCB	105	40.000	1.63	2.0	1.15	57
13C-2,3,4,4',5-PeCB	114	39.346	1.56	2.0	1.16	58
13C-2,3',4,4',5-PeCB	118	38.809	1.60	2.0	1.20	60
13C-2,3',4,4',5'-PeCB	123	38.440	1.54	2.0	1.22	61
13C-3,3',4,4',5-PeCB	126	43.219	1.53	2.0	1.09	54
13C-2,2',4,4',6,6'-HxCB	155	33.258	1.29	2.0	2.07	104
13C-HxCB (156/157)	156/157	46.255	1.27	4.0	2.59	65
13C-2,3',4,4 5,5'-HxĆB	167	45.064	1.24	2.0	1.38	69
13C-3,3',4,4',5,5'-HxCB	169	49.642	1.26	2.0	1.19	60
13C-2,2',3,4',5,6,6'-HpCB	188	39.245	1.05	2.0	2.26	113
13C-2,3,3',4,4',5,5'-HpCB	189	52.143	1.07	2.0	1.51	75
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.712	0.91	2.0	1.96	98
13C-2,3,3',4,4',5,5',6-OcCB	205	54.988	0.94	2.0	1.60	80
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.187	0.81	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.539	0.79	2.0	1.43	71
13CDeCB	209	59.536	0.73	2.0	1.24	62
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.885	1.13	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	36.428	1.59	2.0	1.39	69
13C-2,3,3,3,5,1 eCB 13C-2,2',3,3',5,5',6-HpCB	178	42.415	1.02	2.0	1.62	81
130-2,2 ,3,3 ,3,3 ,0-1 IPOD	170	72.710	1.02	2.0	1.02	01
Recovery Standards	_					
13C-2,5-DiCB	_9	15.004	1.60	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.014	0.83	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.560	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.979	1.33	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.406	0.91	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-07 (FO105896) 10138174007 P101009A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		23.9
2				ND		23.9
2 3				ND		23.9
4 5		12.152	1.74	26.3		23.9
5				ND		23.9
6				ND		23.9
7				ND		23.9
8		16.167	1.43	75.6		23.9
9				ND		23.9
10				ND		23.9
11		19.450	1.57	5820		143
12	12/13			ND		47.8
13	12/13			ND		47.8
14				ND		23.9
15		20.181	1.51	144		23.9
16		20.109	1.08	55.4		23.9
17		19.558	1.12	50.9		23.9
18	18/30	19.031	1.09	87.2		47.8
19	. 3, 3 3	16.550	1.17	26.2		23.9
20	20/28	23.901	1.03	336		47.8
21	21/33	24.170	1.01	166		47.8
22	21,00	24.639	1.08	124		23.9
23				ND		23.9
24				ND		23.9
25		23.180	1.05	25.6		23.9
26	26/29	20.100		ND		47.8
27	20/20			ND		23.9
28	20/28	23.901	1.03	(336)		47.8
29	26/29	20.001		ND		47.8
30	18/30	19.031	1.09	(87.2)		47.8
31	10,00	23.549	1.06	261		23.9
32		20.782	1.00	51.0		23.9
33	21/33	24.170	1.01	(166)		47.8
34	21/00			ND		23.9
35		28.060	0.98	85.1		23.9
36		26.500	1.06	36.7		23.9
37		28.530	1.06	274		23.9
38		20.550		ND		23.9
39				ND		23.9
40	40/41/71	28.278	0.76	521		143
41	40/41/71	28.278	0.76	(521)		143
42	40/41/71	27.725	0.78	203		47.8
43	43/73			ND		47.8
44	44/47/65	27.138	0.80	944		143
44 45	45/51	23.985	0.80	159		95.6
46	70/01	24.304	0.76	58.9		47.8
47	44/47/65	27.138	0.76	(944)		143
48		26.886	0.80	106		47.8
40		20.000	0.13	100		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0491-07 (FO105896) 10138174007 P101009A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.584	0.79	509		95.6
50	50/53	23.180	0.77	129		95.6
51	45/51	23.985	0.81	(159)		95.6
52	10/01	26.031	0.79	1850		47.8
53	50/53	23.180	0.77	(129)		95.6
54	00/00			ND		47.8
55				ND		47.8
56		32.437	0.77	404		47.8
57				ND		47.8
58				ND		47.8
59	59/62/75			ND		143
60	33/02/13	32.655	0.82	178		47.8
61	61/70/74/76	31.364	0.78	1810		191
62	59/62/75		0.76	ND		143
63	39/02/13			ND ND		47.8
64		28.530	0.79	387		47.8 47.8
65	44/47/65	27.138	0.80	(944)		143
66	44/47/03	31.732	0.80	866		47.8
67		31.732		ND		47.8
68				ND ND		47.8
69	49/69	26.584	0.79	(509)		95.6
70	61/70/74/76	31.364	0.79	(1810)		191
70 71	40/41/71		0.76			143
7 1 72	40/41/71	28.278	0.76	(521) ND		47.8
73	43/73			ND ND		
73 74						47.8
74 75	61/70/74/76 59/62/75	31.364 	0.78	(1810) ND		191 143
75 76	61/70/74/76	31.364	0.78	(1810)		191
76 77	01/70/74/76					
		36.428	0.77	218 ND		47.8
78 70				ND ND		47.8
79				ND ND		47.8
80				ND ND		47.8
81 82			 1.58	500		47.8
		35.958 34.030	1.49	244		47.8 47.8
83		34.030				
84	05/440/447	31.548	1.56	1350		47.8
85	85/116/117	35.472	1.53	630		143
86	86/87/97/108/119/125	34.801	1.55	3510		287
87	86/87/97/108/119/125	34.801	1.55	(3510)		287
88	88/91	31.313	1.62	598		95.6
89	00/101/112	32.051	1.48 1.57	52.8 54.70		47.8
90	90/101/113	33.577		5170		143
91	88/91	31.313	1.62	(598)		95.6
92	02/00/400/402	32.957	1.59	930		47.8
93	93/98/100/102			ND ND		191
94			4.50	ND		47.8
95		30.374	1.59	4180		47.8
96				ND		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated * = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-07 (FO105896) 10138174007 P101009A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.801	1.55	(3510)		287
98	93/98/100/102			` NĎ		191
99		34.181	1.58	1690		47.8
100	93/98/100/102			ND		191
101	90/101/113	33.577	1.57	(5170)		143
102	93/98/100/102			NĎ		191
103				ND		47.8
104				ND		47.8
105		40.033	1.55	1550		47.8
106				ND		47.8
107	107/124	38.088	1.64	151		95.6
108	86/87/97/108/119/125	34.801	1.55	(3510)		287
109	00/01/01/100/110/120	38.356	1.57	196		47.8
110	110/115	35.656	1.60	4820		95.6
111	110/110			ND		47.8
112				ND		47.8
113	90/101/113	33.577	1.57	(5170)		143
114	30/101/113	39.362	1.45	74.8		47.8
115	110/115	35.656	1.60	(4820)		95.6
116	85/116/117	35.472	1.53	(630)		143
117	85/116/117	35.472	1.53	(630)		143
118	03/110/117	38.826	1.56	3410		47.8
119	86/87/97/108/119/125	34.801	1.55	(3510)		287
120	80/87/97/100/119/123	34.001	1.55	(3310) ND		47.8
121				ND ND		47.8 47.8
121		39.161	1.67	48.7		47.8
122		38.457	1.74	46.7 85.5		47.8
123	107/124	38.088	1.74	(151)		95.6
125	86/87/97/108/119/125	34.801	1.55	(3510)		287
125	00/07/97/100/119/125	43.270	1.46	103		47.8
120		43.270	1.40	ND		47.8
127	128/166	43.270	1.25	936		95.6
120	129/138/163	41.995	1.25	6450		143
130	129/130/103	41.325	1.25	393		47.8
			1.32			
131 132		38.390 38.859	1.26	85.8 1990		47.8 47.8
			1.20			
133	404/440	39.430	1.18	74.4		47.8
134	134/143	37.753	1.39	278		95.6
135	135/151	36.612	1.23	2000		95.6
136		34.047	1.29	977		47.8
137	120/120/162	41.543	1.28	246		47.8
138	129/138/163	41.995	1.25	(6450)		143
139	139/140			ND		95.6
140	139/140	40.005	4.07	ND		95.6
141		40.905	1.27	1070		47.8
142	40.4/4.40			ND (070)		47.8
143	134/143	37.753	1.39	(278)		95.6
144		37.216	1.23	186		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-07 (FO105896) 10138174007 P101009A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		47.8
146		40.084	1.23	810		47.8
147	147/149	37.568	1.25	4330		95.6
148				ND		47.8
149	147/149	37.568	1.25	(4330)		95.6
150				NĎ		47.8
151	135/151	36.612	1.23	(2000)		95.6
152				` NĎ		47.8
153	153/168	40.721	1.25	4860		95.6
154				ND		47.8
155				ND		47.8
156	156/157	46.255	1.23	856		95.6
157	156/157	46.255	1.23	(856)		95.6
158		42.381	1.27	`60Ź		47.8
159				ND		47.8
160				ND		47.8
161				ND		47.8
162		44.645	1.20	59.1		47.8
163	129/138/163	41.995	1.25	(6450)		143
164		41.677	1.24	` 408		47.8
165				ND		47.8
166	128/166	43.270	1.25	(936)		95.6
167		45.097	1.32	`331		47.8
168	153/168	40.721	1.25	(4860)		95.6
169				NĎ		47.8
170		48.938	1.07	1650		47.8
171	171/173	45.299	1.03	523		95.6
172		46.976	1.07	322		47.8
173	171/173	45.299	1.03	(523)		95.6
174		44.192	1.00	170Ó		47.8
175		43.069	1.04	79.9		47.8
176		40.503	1.04	217		47.8
177		44.645	1.05	1010		47.8
178		42.431	1.17	444		47.8
179		39.614	1.05	700		47.8
180	180/193	47.646	1.04	3630		95.6
181				ND		47.8
182				ND		47.8
183	183/185	43.974	1.10	1170		95.6
184				ND		47.8
185	183/185	43.974	1.10	(1170)		95.6
186				NĎ		47.8
187		43.354	1.05	1850		47.8
188				ND		47.8
189		52.164	1.20	86.9		47.8
190		49.491	1.05	330		47.8
191		48.032	1.10	68.8		47.8
192				ND		47.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-07 (FO105896) 10138174007 P101009A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.646	1.04	(3630)		95.6
194		54.428	0.88	` 89Ó		71.7
195		51.863	0.95	323		71.7
196		50.279	0.89	421		71.7
197	197/200			ND		143
198	198/199	49.625	0.90	861		143
199	198/199	49.625	0.90	(861)		143
200	197/200			` NĎ		143
201		45.684	0.93	119		71.7
202		44.745	0.90	208		71.7
203		50.480	0.85	525		71.7
204				ND		71.7
205				ND		71.7
206		57.230	0.79	377		71.7
207				ND		71.7
208		51.561	0.82	108		71.7
209		59.514	0.69	162		71.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-07 (FO105896) 10138174007 P101009A_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	6070	
Total Trichloro Biphenyls	1580	
Total Tetrachloro Biphenyls	8340	
Total Pentachloro Biphenyls	29300	
Total Hexachloro Biphenyls	26900	
Total Heptachloro Biphenyls	13800	
Total Octachloro Biphenyls	3350	
Total Nonachloro Biphenyls	485	
Decachloro Biphenyls	162	
Total PCBs	90000	

ND = Not Detected
Results reported on a total weight basis

Solid

09/14/2010 14:53

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0491-08 (FO105897) Lab Sample ID 10138174008 Filename P101009A_10 Injected By BAL Total Amount Extracted 17.2 g Matrix 41.3 Dilution % Moisture 10.1 g Dry Weight Extracted Collected **ICAL ID** P101009A02

 ICÁL ID
 P101009A02
 Received
 09/16/2010 09:57

 CCal Filename(s)
 P101009A_01
 Extracted
 10/06/2010 16:40

 Method Blank ID
 BLANK-26574
 Analyzed
 10/09/2010 10:42

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.414	3.43	2.0	1.17	58
13C-4-MoCB	3	11.769	3.04	2.0	1.41	71
13C-2,2'-DiCB	4	12.105	1.43	2.0	1.32	66
13C-4,4'-DiCB	15	20.168	1.61	2.0	0.931	47
13C-2,2',6-TrCB	19	16.514	1.06	2.0	1.33	67
13C-3,4,4'-TrCB	37	28.512	1.07	2.0	1.70	85
13C-2,2',6,6'-TeCB	54	20.497	0.77	2.0	1.26	63
13C-3,4,4',5-TeCB	81	35.823	0.79	2.0	1.29	65
13C-3,3',4,4'-TeCB	77	36.393	0.78	2.0	1.35	68
13C-2,2',4,6,6'-PeCB	104	27.020	1.65	2.0	1.71	85
13C-2,3,3',4,4'-PeCB	105	40.015	1.58	2.0	1.26	63
13C-2,3,4,4',5-PeCB	114	39.328	1.58	2.0	1.31	66
13C-2,3',4,4',5-PeCB	118	38.791	1.53	2.0	1.29	64
13C-2,3',4,4',5'-PeCB	123	38.439	1.60	2.0	1.36	68
13C-3,3',4,4',5-PeCB	126	43.235	1.52	2.0	1.17	58
13C-2,2',4,4',6,6'-HxCB	155	33.274	1.20	2.0	2.09	104
13C-HxCB (156/157)	156/157	46.253	1.23	4.0	2.22	56
13C-2,3',4,4',5,5'-HxCB	167	45.063	1.27	2.0	1.17	58
13C-3,3',4,4',5,5'-HxCB	169	49.624	1.23	2.0	1.07	54
13C-2,2',3,4',5,6,6'-HpCB	188	39.244	1.05	2.0	2.69	135
13C-2,3,3',4,4',5,5'-HpCB	189	52.136	1.02	2.0	1.58	79
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.710	0.89	2.0	1.91	96
13C-2,3,3',4,4',5,5',6-OcCB	205	54.960	0.92	2.0	1.62	81
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.201	0.84	2.0	1.88	94
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.533	0.83	2.0	1.55	78
13CDeCB	209	59.486	0.63	2.0	1.28	64
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.884	0.97	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	36.427	1.57	2.0	1.52	76
13C-2,2',3,3',5,5',6-HpCB	178	42.396	1.08	2.0	1.65	83
Recovery Standards						
13C-2,5-DiCB	9	14.992	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.013	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.559	1.67	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.960	1.30	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.378	0.87	2.0	NA	NA
		0	0.07	=.0		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.8
2				ND		24.8
3		11.781	3.09	32.5		24.8
4		12.117	1.49	29.5		24.8
5				ND		24.8
6				ND		24.8
7				ND		24.8
8		16.167	1.57	88.9		24.8
9				ND		24.8
10				ND		24.8
11		19.438	1.56	2370		149
12	12/13	19.833	1.59	50.0		49.6
13	12/13	19.833	1.59	(50.0)		49.6
14	,			ND		24.8
15		20.180	1.56	172		24.8
16		20.097	1.06	54.4		24.8
17		19.545	1.04	51.2		24.8
18	18/30	19.006	1.04	85.2		49.6
19		16.538	1.20	27.6		24.8
20	20/28	23.917	1.04	385		49.6
21	21/33	24.186	1.04	173		49.6
22		24.638	1.05	132		24.8
23				ND		24.8
24				ND		24.8
25		23.196	1.02	28.3		24.8
26	26/29	22.894	1.10	59.1		49.6
27				ND		24.8
28	20/28	23.917	1.04	(385)		49.6
29	26/29	22.894	1.10	(59.1)		49.6
30	18/30	19.006	1.04	(85.2)		49.6
31		23.548	1.03	` 291		24.8
32		20.782	1.05	71.6		24.8
33	21/33	24.186	1.04	(173)		49.6
34				NĎ		24.8
35		28.076	0.98	50.7		24.8
36				ND		24.8
37		28.529	1.02	288		24.8
38				ND		24.8
39				ND		24.8
40	40/41/71	28.277	0.81	535		149
41	40/41/71	28.277	0.81	(535)		149
42		27.724	0.79	204		49.6
43	43/73			ND		99.2
44	44/47/65	27.137	0.78	897		149
45	45/51	23.968	0.77	173		99.2
46		24.337	0.78	66.4		49.6
47	44/47/65	27.137	0.78	(897)		149
48		26.885	0.82	115		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated
* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	26.584	0.79	464		99.2
50	50/53	23.196	0.77	147		99.2
51	45/51	23.968	0.77	(173)		99.2
52		26.030	0.80	1900		49.6
53	50/53	23.196	0.77	(147)		99.2
54	30,00			ND		49.6
55				ND		49.6
56		32.436	0.78	452		49.6
57				ND		49.6
58				ND		49.6
59	59/62/75			ND		149
60	33/02/13	32.687	0.79	213		49.6
61	61/70/74/76	31.379	0.79	1860		198
62	59/62/75			ND		149
63	39/02/13			ND ND		49.6
64		28.545	0.79	520		49.6
65	44/47/65	27.137	0.78	(897)		149
66	44/47/05	31.732	0.78	907		49.6
67		31.732	0.76	ND		49.6
68				ND ND		49.6 49.6
69	49/69	26.584	0.79			99.2
70		31.379	0.79	(464)		
	61/70/74/76			(1 ⁸⁶⁰)		198
71 72	40/41/71	28.277	0.81	(535)		149
	40/70			NĎ		49.6
73	43/73			ND (4000)		99.2
74 75	61/70/74/76	31.379	0.79	(1860)		198
75 70	59/62/75			NĎ		149
<u>76</u>	61/70/74/76	31.379	0.79	(1860)		198
77 70		36.427	0.78	247		49.6
78				ND		49.6
79				ND		49.6
80				ND		49.6
81				ND		49.6
82		35.974	1.60	543		49.6
83		34.046	1.55	292		49.6
84		31.547	1.61	1520		49.6
85	85/116/117	35.471	1.55	598		149
86	86/87/97/108/119/125	34.800	1.56	3640		297
87	86/87/97/108/119/125	34.800	1.56	(3640)		297
88	88/91	31.329	1.60	640		99.2
89		32.067	1.48	56.2		49.6
90	90/101/113	33.576	1.57	5470		149
91	88/91	31.329	1.60	(640)		99.2
92		32.956	1.58	1010		49.6
93	93/98/100/102			ND		198
94				ND		49.6
95		30.390	1.57	4600		49.6
96				ND		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.800	1.56	(3640)		297
98	93/98/100/102			` NĎ		198
99		34.196	1.54	1690		49.6
100	93/98/100/102			ND		198
101	90/101/113	33.576	1.57	(5470)		149
102	93/98/100/102			NĎ		198
103				ND		49.6
104				ND		49.6
105		40.032	1.58	1780		49.6
106				ND		49.6
107	107/124	38.104	1.61	177		99.2
108	86/87/97/108/119/125	34.800	1.56	(3640)		297
109	33,31,31,133,113,123	38.355	1.56	253		49.6
110	110/115	35.655	1.60	5440		99.2
111	110,110			ND		49.6
112				ND		49.6
113	90/101/113	33.576	1.57	(5470)		149
114	33, 13 1, 113	39.378	1.69	86.5		49.6
115	110/115	35.655	1.60	(5440)		99.2
116	85/116/117	35.471	1.55	(598)		149
117	85/116/117	35.471	1.55	(598)		149
118	00/110/11/	38.825	1.57	4040		49.6
119	86/87/97/108/119/125	34.800	1.56	(3640)		297
120	00/07/37/100/113/129			ND		49.6
121				ND		49.6
122				ND		49.6
123		38.489	1.53	71.6		49.6
124	107/124	38.104	1.61	(177)		99.2
125	86/87/97/108/119/125	34.800	1.56	(3640)		297
126	00/07/37/100/113/129			ND		49.6
127				ND		49.6
128	128/166	43.285	1.26	1150		99.2
129	129/138/163	41.994	1.25	7760		149
130	120/100/100	41.340	1.19	472		49.6
131		38.389	1.11	103		49.6
132		38.858	1.26	2430		49.6
133		39.412	1.24	85.4		49.6
134	134/143	37.785	1.05	346		99.2
135	135/151	36.611	1.28	2180		99.2
136	100/101	34.046	1.23	1110		49.6
137		41.541	1.31	360		49.6
138	129/138/163	41.994	1.25	(7760)		149
139	139/140	38.204	1.27	106		99.2
140	139/140	38.204	1.27	(106)		99.2
141	100/170	40.904	1.27	1260		49.6
142			1.27	ND		49.6
143	134/143	37.785	1.05	(346)		99.2
144	10 1/ 170	37.131	1.19	61.5		49.6
			0	50		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.6
146		40.082	1.23	901		49.6
147	147/149	37.567	1.31	5010		99.2
148				ND		49.6
149	147/149	37.567	1.31	(5010)		99.2
150				NĎ		49.6
151	135/151	36.611	1.28	(2180)		99.2
152				ND		49.6
153	153/168	40.719	1.25	5680		99.2
154				ND		49.6
155				ND		49.6
156	156/157	46.253	1.26	970		99.2
157	156/157	46.253	1.26	(970)		99.2
158		42.396	1.26	` 737		49.6
159				ND		49.6
160				ND		49.6
161				ND		49.6
162				ND		49.6
163	129/138/163	41.994	1.25	(7760)		149
164		41.675	1.27	` 45Ó		49.6
165				ND		49.6
166	128/166	43.285	1.26	(1150)		99.2
167		45.096	1.22	` 343		49.6
168	153/168	40.719	1.25	(5680)		99.2
169				` NĎ		49.6
170		48.919	1.03	1410		49.6
171	171/173	45.297	0.99	438		99.2
172		46.974	1.04	265		49.6
173	171/173	45.297	0.99	(438)		99.2
174		44.207	1.02	Ì41Ó		49.6
175		43.067	1.08	73.6		49.6
176		40.518	1.02	230		49.6
177		44.643	1.05	820		49.6
178		42.430	1.12	359		49.6
179		39.613	1.05	702		49.6
180	180/193	47.628	1.05	3090		99.2
181				ND		49.6
182				ND		49.6
183	183/185	43.973	1.11	1010		99.2
184				ND		49.6
185	183/185	43.973	1.11	(1010)		99.2
186				` NĎ		49.6
187		43.352	1.03	1820		49.6
188				ND		49.6
189		52.179	1.12	80.6		49.6
190		49.490	1.08	290		49.6
191		47.997	1.02	59.9		49.6
192				ND		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.628	1.05	(3090)		99.2
194		54.421	0.89	` 86 4		74.4
195		51.856	0.94	335		74.4
196		50.278	0.93	442		74.4
197	197/200			ND		149
198	198/199	49.607	0.90	919		149
199	198/199	49.607	0.90	(919)		149
200	197/200			` NĎ		149
201		45.683	0.89	122		74.4
202		44.744	0.93	208		74.4
203		50.479	0.93	552		74.4
204				ND		74.4
205				ND		74.4
206		57.201	0.81	358		74.4
207				ND		74.4
208		51.554	0.84	115		74.4
209		59.572	0.73	189		74.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-08 (FO105897) 10138174008 P101009A_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	32.5	
Total Dichloro Biphenyls	2710	
Total Trichloro Biphenyls	1700	
Total Tetrachloro Biphenyls	8700	
Total Pentachloro Biphenyls	31900	
Total Hexachloro Biphenyls	31500	
Total Heptachloro Biphenyls	12100	
Total Octachloro Biphenyls	3440	
Total Nonachloro Biphenyls	473	
Decachloro Biphenyls	189	
Total PCBs	92700	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID F Lab Sample ID 1 Filename F

Filename Injected By

Total Amount Extracted % Moisture

Dry Weight Extracted ICAL ID

CCal Filename(s) Method Blank ID PTI0491-09 (FO105899)

10138174009 P101001B_11

CVS 10.5 g 3.7

10.1 g P101001B02 P101001B_01 BLANK-26482 Matrix Solid Dilution 5

Collected 09/14/2010 Received 09/16/2010 09:57

Extracted 09/29/2010 14:40 Analyzed 10/02/2010 03:20

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.072	3.07	2.0	0.927	46
13C-4-MoCB	3 4	12.499	2.88	2.0	1.06	53
13C-2,2'-DiCB	4	12.846	1.54	2.0	1.08	54
13C-4,4'-DiCB	15	21.017	1.57	2.0	1.10	55
13C-2,2',6-TrCB	19	17.303	1.01	2.0	1.11	55
13C-3,4,4'-TrCB	37	29.341	1.10	2.0	1.34	67
13C-2,2',6,6'-TeCB	54	21.326	0.80	2.0	1.11	56
13C-3,4,4',5-TeCB	81	36.619	0.77	2.0	1.36	68
13C-3,3',4,4'-TeCB	77	37.222	0.78	2.0	1.38	69
13C-2,2',4,6,6'-PeCB	104	27.866	1.61	2.0	1.28	64
13C-2,3,3',4,4'-PeCB	105	40.811	1.55	2.0	1.16	58
13C-2,3,4,4',5-PeCB	114	40.123	1.59	2.0	1.17	59
13C-2,3',4,4',5-PeCB	118	39.587	1.54	2.0	1.15	58
13C-2,3',4,4',5'-PeCB	123	39.235	1.54	2.0	1.19	59
13C-3,3',4,4',5-PeCB	126	43.980	1.50	2.0	1.20	60
13C-2,2',4,4',6,6'-HxCB	155	34.087	1.27	2.0	1.47	74
13C-HxCB (156/157)	156/157	47.015	1.27	4.0	2.42	60
13C-2,3',4,4',5,5'-HxCB	167	45.808	1.24	2.0	1.25	62
13C-3,3',4,4',5,5'-HxCB	169	50.351	1.29	2.0	1.22	61
13C-2,2',3,4',5,6,6'-HpCB	188	40.039	1.06	2.0	1.48	74
13C-2,3,3',4,4',5,5'-HpCB	189	52.895	1.01	2.0	1.29	64
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.506	0.86	2.0	1.40	70
13C-2,3,3',4,4',5,5',6-OcCB	205	55.891	0.87	2.0	1.38	69
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.218	0.79	2.0	1.43	71
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.291	0.81	2.0	1.39	70
13CDeCB	209	60.675	0.69	2.0	1.33	66
	200	00.070	0.00	2.0	1.00	00
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.713	1.05	2.0	1.58	79
13C-2,3,3',5,5'-PeCB	111	37.206	1.55	2.0	1.72	86
13C-2,2',3,3',5,5',6-HpCB	178	43.175	1.07	2.0	1.94	97
Recovery Standards						
13C-2,5-DiCB	9	15.757	1.53	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.826	0.80	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	34.372	1.57	2.0	NA NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	42.739	1.26	2.0	NA NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.244	0.90	2.0	NA NA	NA NA
100 2,2,0,0,7,7,0,0-0000	137	55.277	0.30	2.0	14/7	INA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-09 (FO105899) 10138174009 P101001B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.084	3.14	28.2		24.7
2		12.235	3.19	31.6		24.7
3		12.511	2.97	31.2		24.7
4		12.882	1.41	41.0		24.7
5				ND		24.7
6				ND		24.7
7				ND		24.7
8		16.932	1.34	90.6		24.7
9				ND		24.7
10				ND		24.7
11		20.238	1.51	1710		148
12	12/13			ND		49.3
13	12/13			ND		49.3
14				ND		24.7
15		21.041	1.34	151		24.7
16		20.921	0.91	79.9		24.7
17		20.358	1.07	92.6		24.7
18	18/30	19.819	1.05	214		49.3
19		17.351	1.17	39.0		24.7
20	20/28	24.730	1.02	492		49.3
21	21/33	24.998	1.03	198		49.3
22		25.485	1.07	160		24.7
23				ND		24.7
24				ND		24.7
25	00/00	24.026	1.05	36.2		24.7
26	26/29	23.724	1.05	71.4		49.3
27	00/00	20.621	0.98 1.02	25.1		24.7
28	20/28	24.730	1.02	(492)		49.3
29	26/29 18/30	23.724	1.05	(71.4)		49.3
30 31	10/30	19.819 24.395	1.05	(214) 424		49.3 24.7
32		24.393	1.05	105		24.7 24.7
33	21/33	24.998	1.03	(198)		49.3
33 34	21/33	24.990	1.03	ND		24.7
35		28.889	1.08	46.2		24.7
36		20.009	1.00	ND		24.7
37		29.375	1.04	342		24.7
38		29.373		ND		24.7
39				ND		24.7
40	40/41/71	29.123	0.79	1440		148
41	40/41/71	29.123	0.79	(1440)		148
42	. •	28.553	0.76	563		49.3
43	43/73			ND		98.6
44	44/47/65	27.966	0.79	3070		148
45	45/51	24.797	0.79	434		98.6
46	·	25.183	0.78	160		49.3
47	44/47/65	27.966	0.79	(3070)		148
48		27.715	0.81	238		49.3

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-09 (FO105899) 10138174009 P101001B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.413	0.78	1670		98.6
50	50/53	24.026	0.78	403		98.6
51	45/51	24.797	0.79	(434)		98.6
52		26.860	0.77	6910		49.3
53	50/53	24.026	0.78	(403)		98.6
54				` NĎ		49.3
55				ND		49.3
56		33.265	0.80	1050		49.3
57				ND		49.3
58				ND		49.3
59	59/62/75	28.352	0.81	213		148
60	00/02/10	33.500	0.78	388		49.3
61	61/70/74/76	32.192	0.78	5040		197
62	59/62/75	28.352	0.81	(213)		148
63	33/02/13	31.840	0.76	62.4		49.3
64		29.375	0.79	1070		49.3
65	44/47/65	27.966	0.79	(3070)		148
66	44/47/03	32.561	0.77	2400		49.3
67			0.77	ND		49.3
68				ND ND		49.3
69	49/69	27.413	0.78	(1670)		98.6
70	61/70/74/76	32.192	0.78	(5040)		197
70 71	40/41/71	29.123	0.78	(1440)		148
72	40/41/71	29.123	0.79	(1440) ND		49.3
73	43/73			ND ND		98.6
73 74						197
74 75	61/70/74/76 59/62/75	32.192	0.78	(5040)		148
		28.352	0.81	(213)		
76 77	61/70/74/76	32.192	0.78	(5040)		197
77 70		37.239	0.78	584		49.3
78 70		36.300	0.71	115		49.3
79		35.512	0.88	106		49.3
80				ND		49.3
81			4.50	ND		49.3
82		36.803	1.56	2300		49.3
83		34.875	1.56	1060		49.3
84	05/440/447	32.393	1.56	4700		49.3
85	85/116/117	36.300	1.55	2600		148
86	86/87/97/108/119/125	35.629	1.56	10100		296
87	86/87/97/108/119/125	35.629	1.56	(10100)		296
88	88/91	32.158	1.57	2260		98.6
89	00/404/440	32.896	1.54	221		49.3
90	90/101/113	34.389	1.56	14100		148
91	88/91	32.158	1.57	(2260)		98.6
92	00/00/400/400	33.768	1.56	2840		49.3
93	93/98/100/102	31.605	1.57	519		197
94		30.716	1.46	75.7		49.3
95		31.219	1.57	13300		49.3
96		28.318	1.66	109		49.3

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0491-09 (FO105899)
Lab Sample ID 10138174009
Filename P101001B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.629	1.56	(10100)		296
98	93/98/100/102	31.605	1.57	` (519 [°])		197
99		35.009	1.55	564 Ó		49.3
100	93/98/100/102	31.605	1.57	(519)		197
101	90/101/113	34.389	1.56	(14100)		148
102	93/98/100/102	31.605	1.57	(519)		197
103		30.482	1.59	`69. 8		49.3
104				ND		49.3
105		40.828	1.61	5640		49.3
106				ND		49.3
107	107/124	38.899	1.55	665		98.6
108	86/87/97/108/119/125	35.629	1.56	(10100)		296
109	00/01/01/100/110/120	39.134	1.54	848		49.3
110	110/115	36.468	1.56	19500		98.6
111	110/110			ND		49.3
112				ND		49.3
113	90/101/113	34.389	1.56	(14100)		148
114	90/101/113	40.157	1.38	289		49.3
115	110/115	36.468	1.56	(19500)		98.6
116	85/116/117	36.300	1.55	(2600)		148
117	85/116/117	36.300	1.55	(2600)		148
117	65/116/117	39.603	1.55	12300		49.3
119	86/87/97/108/119/125	35.629	1.56	(10100)		49.3 296
120	00/07/97/100/119/125	33.029	1.56	(10100) ND		49.3
120				ND ND		49.3
121		39.939	1.63	245		49.3
122		39.939 39.268	1.53	368		49.3 49.3
123	107/124		1.57	(665)		49.3 98.6
		38.899	1.55	(000)		296
125	86/87/97/108/119/125	35.629 43.980	1.56 1.53	(10100)		49.3
126				58.4		
127	400/400		4.04	ND		49.3
128	128/166	44.064	1.24	3430		98.6
129	129/138/163	42.773	1.27	20600		148
130		42.119	1.26	1350		49.3
131		39.201	1.25	315		49.3
132		39.687	1.26	6870		49.3
133	10.1/1.10	40.190	1.23	235		49.3
134	134/143	38.581	1.27	1100		98.6
135	135/151	37.424	1.26	5250		98.6
136		34.875	1.28	2210		49.3
137		42.337	1.24	1240		49.3
138	129/138/163	42.773	1.27	(20600)		148
139	139/140	38.983	1.25	363		98.6
140	139/140	38.983	1.25	(363)		98.6
141		41.700	1.26	3370		49.3
142				ND		49.3
143	134/143	38.581	1.27	(1100)		98.6
144		38.010	1.25	851		49.3

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable

NC = Not Calculated
* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-09 (FO105899) 10138174009 P101001B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.3
146		40.861	1.25	2390		49.3
147	147/149	38.379	1.25	13400		98.6
148				ND		49.3
149	147/149	38.379	1.25	(13400)		98.6
150				` NĎ		49.3
151	135/151	37.424	1.26	(5250)		98.6
152				` NĎ		49.3
153	153/168	41.498	1.25	13600		98.6
154		37.675	1.29	124		49.3
155				ND		49.3
156	156/157	47.015	1.24	2540		98.6
157	156/157	47.015	1.24	(2540)		98.6
158		43.175	1.28	`197Ó		49.3
159		44.986	1.25	162		49.3
160				ND		49.3
161				ND		49.3
162		45.439	1.24	156		49.3
163	129/138/163	42.773	1.27	(20600)		148
164		42.454	1.26	1190		49.3
165				ND		49.3
166	128/166	44.064	1.24	(3430)		98.6
167		45.841	1.24	910		49.3
168	153/168	41.498	1.25	(13600)		98.6
169				NĎ		49.3
170		49.698	1.05	3680		49.3
171	171/173	46.076	1.02	1110		98.6
172	474/470	47.736	1.05	651		49.3
173	171/173	46.076	1.02	(1110)		98.6
174		44.986	1.04	`312Ó		49.3
175		43.846	1.06	163		49.3
176		41.314	1.05	439		49.3
177		45.439	1.04	1920		49.3
178		43.209	1.16 1.04	678		49.3
179	400/400	40.425	1.04	1290		49.3
180	180/193	48.390	1.02	7160 ND		98.6 49.3
181 182				ND ND		49.3 49.3
183	183/185	 44.735	1.04	2310		49.3 98.6
184	103/103	44.733	1.04	ND		49.3
185	183/185	44.735	1.04	(2310)		98.6
186	103/103	44.733	1.04	(2310) ND		49.3
187		44.114	1.06	3550		49.3
188		44.114	1.00	ND		49.3
189		52.916	1.00	172		49.3
190		50.251	1.06	734		49.3
191		48.775	1.00	157		49.3
192		40.773	1.02	ND		49.3
132				ND	===	70.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a total weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
Y = Outside OC Limits

ND = Not Detected

X = Outside QC LimitsRT = Retention TimeI = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-09 (FO105899) 10138174009 P101001B_11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.390	1.02	(7160)		98.6
194		55.309	0.91	`151Ó		74.0
195		52.615	0.89	627		74.0
196		51.039	0.94	849		74.0
197	197/200	47.501	0.93	275		148
198	198/199	50.368	0.90	1690		148
199	198/199	50.368	0.90	(1690)		148
200	197/200	47.501	0.93	`(275)		148
201		46.478	0.90	207		74.0
202		45.523	0.90	297		74.0
203		51.240	0.88	1010		74.0
204				ND		74.0
205		55.934	0.89	90.1		74.0
206		58.261	0.79	572		74.0
207		53.326	0.79	84.6		74.0
208		52.335	0.79	135		74.0
209		60.718	0.69	171		74.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a total weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0491-09 (FO105899) 10138174009 P101001B_11

Congener Group	Concentration ng/Kg	
- Congenier Group	ng/ng	
Total Monochloro Biphenyls	91.0	
Total Dichloro Biphenyls	1990	
Total Trichloro Biphenyls	2330	
Total Tetrachloro Biphenyls	25900	
Total Pentachloro Biphenyls	99800	
Total Hexachloro Biphenyls	83600	
Total Heptachloro Biphenyls	27100	
Total Octachloro Biphenyls	6560	
Total Nonachloro Biphenyls	792	
Decachloro Biphenyls	171	
Total PCBs	248000	

ND = Not Detected
Results reported on a total weight basis

Solid

Matrix

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-26482 Filename P100930B 09 Injected By BAL

Total Amount Extracted 10.4 g Extracted 09/29/2010 14:40 ICAL ID P100930B02 Analyzed 09/30/2010 22:55

CCal Filename(s)	P100930B	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.061	3.18	2.0	1.30	65
13C-4-MoCB	3	12.487	3.06	2.0	1.42	71
13C-2,2'-DiCB	4	12.834	1.59	2.0	1.62	81
13C-4,4'-DiCB	15	21.006	1.54	2.0	1.43	71
13C-2,2',6-TrCB	19	17.279	1.08	2.0	1.67	83
13C-3,4,4'-TrCB	37	29.359	1.06	2.0	1.49	74
13C-2,2',6,6'-TeCB	54	21.310	0.79	2.0	1.54	77
13C-3,4,4',5-TeCB	81	36.837	0.82	2.0	0.553	28
13C-3,3',4,4'-TeCB	77	37.441	0.80	2.0	0.540	27
13C-2,2',4,6,6'-PeCB	104	27.883	1.58	2.0	4.44	222 R
13C-2,3,3',4,4'-PeCB	105	41.046	1.60	2.0	1.43	71
13C-2,3,4,4',5-PeCB	114	40.375	1.56	2.0	1.37	68
13C-2,3',4,4',5-PeCB	118	39.839	1.66	2.0	1.26	63
13C-2,3',4,4',5'-PeCB	123	39.504	1.52	2.0	1.29	65
13C-3,3',4,4',5-PeCB	126	44.165	1.49	2.0	2.07	103
13C-2,2',4,4',6,6'-HxCB	155	34.255	1.23	2.0	1.58	.79
13C-HxCB (156/157)	156/157	47.116	1.26	4.0	5.41	135
13C-2,3',4,4',5,5'-HxCB	167	45.959	1.24	2.0	2.45	122
13C-3,3',4,4',5,5'-HxCB	169	50.386	1.26	2.0	2.90	145
13C-2,2',3,4',5,6,6'-HpCB	188	40.275	1.09	2.0	0.770	38
13C-2,3,3',4,4',5,5'-HpCB	189	52.896	1.06	2.0	1.77	89
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.641	0.91	2.0	1.58	79
13C-2,3,3',4,4',5,5',6-OcCB	205	55.827	0.90	2.0	1.82	91
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.177	0.77	2.0	1.88	94
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.314	0.79	2.0	1.85	92
13CDeCB	209	60.634	0.69	2.0	1.77	88
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.714	1.05	2.0	1.65	83
13C-2,3,3',5,5'-PeCB	111	37.458	1.60	2.0	1.34	67
13C-2,2',3,3',5,5',6-HpCB	178	43.377	1.08	2.0	2.06	103
Recovery Standards						
13C-2,5-DiCB	9	15.734	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.844	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.523	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.941	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.224	0.91	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.1
2				ND		24.1
3				ND		24.1
4				ND		24.1
4 5 6 7				ND		24.1
6				ND		24.1
7				ND		24.1
8				ND		24.1
9				ND		24.1
10				ND		24.1
11				ND		144
12	12/13			ND		48.1
13	12/13			ND		48.1
14	,			ND		24.1
15				ND		24.1
16				ND		24.1
17				ND		24.1
18	18/30			ND		48.1
19	. 0, 00			ND		24.1
20	20/28			ND		48.1
21	21/33			ND		48.1
22	, 00			ND		24.1
23				ND		24.1
24				ND		24.1
25				ND		24.1
26	26/29			ND		48.1
27				ND		24.1
28	20/28			ND		48.1
29	26/29			ND		48.1
30	18/30			ND		48.1
31				ND		24.1
32				ND		24.1
33	21/33			ND		48.1
34				ND		24.1
34 35				ND		24.1
36				ND		24.1
37				ND		24.1
38				ND		24.1
39				ND		24.1
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.1
43	43/73			ND		96.2
44	44/47/65			ND		144
45	45/51			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.1
47	44/47/65			ND		144
48	,,			ND		48.1
49	49/69			ND		96.2
50	50/53			ND		96.2
51	45/51			ND		96.2
52				ND		48.1
53	50/53			ND		96.2
54				ND		48.1
55				ND		48.1
56				ND		48.1
57				ND		48.1
58	-0/00/			ND		48.1
59	59/62/75			ND		144
60	04/70/74/70			ND		48.1
61	61/70/74/76			ND		192
62 63	59/62/75			ND ND		144
63 64				ND ND		48.1 48.1
65	44/47/65			ND ND		46.1 144
66	44/47/05			ND ND		48.1
67				ND ND		48.1
68				ND		48.1
69	49/69			ND		96.2
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72				ND		48.1
73	43/73			ND		96.2
74	61/70/74/76			ND		192
75	59/62/75			ND		144
76	61/70/74/76			ND		192
77				ND		48.1
78				ND		48.1
79				ND		48.1
80				ND		48.1
81				ND		48.1
82				ND		48.1
83				ND		48.1
84 85	95/116/117			ND ND		48.1
85 86	85/116/117 86/87/97/108/119/125			ND ND		144
86 87	86/87/97/108/119/125			ND ND		289 289
88	88/91			ND ND		96.2
89	00/31			ND ND		96.∠ 48.1
90	90/101/113			ND ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.2
92				ND		48.1
93	93/98/100/102			ND		192
94				ND		48.1
95				ND		48.1
96				ND		48.1
97	86/87/97/108/119/125			ND		289
98	93/98/100/102			ND		192
99	00,00,100,100			ND		48.1
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	00/00/100/102			ND		48.1
103				ND		48.1
105				ND		48.1
106				ND ND		48.1
107	107/124			ND ND		96.2
107	86/87/97/108/119/125			ND ND		289
108	00/07/97/100/119/123			ND ND		48.1
1109	110/115			ND ND		96.2
110	110/115			ND ND		
						48.1
112	00/404/440			ND		48.1
113	90/101/113			ND		144
114	440/445			ND		48.1
115	110/115			ND		96.2
116	85/116/117			ND		144
117	85/116/117			ND		144
118	00/07/07/400/440/407			ND		48.1
119	86/87/97/108/119/125			ND		289
120				ND		48.1
121				ND		48.1
122				ND		48.1
123				ND		48.1
124	107/124			ND		96.2
125	86/87/97/108/119/125			ND		289
126				ND		48.1
127				ND		48.1
128	128/166			ND		96.2
129	129/138/163			ND		144
130				ND		48.1
131				ND		48.1
132				ND		48.1
133				ND		48.1
134	134/143			ND		96.2
135	135/151			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.1
137				ND		48.1
138	129/138/163			ND		144
139	139/140			ND		96.2
140	139/140			ND		96.2
141	100/110			ND		48.1
142				ND		48.1
143	134/143			ND		96.2
144				ND		48.1
145				ND		48.1
146				ND		48.1
147	147/149			ND		96.2
148				ND		48.1
149	147/149			ND		96.2
150				ND		48.1
151	135/151			ND		96.2
152				ND		48.1
153	153/168			ND		96.2
154				ND		48.1
155				ND		48.1
156	156/157			ND		96.2
157	156/157			ND		96.2
158				ND		48.1
159				ND		48.1
160				ND		48.1
161				ND		48.1
162				ND		48.1
163	129/138/163			ND		144
164				ND		48.1
165				ND		48.1
166	128/166			ND		96.2
167				ND		48.1
168	153/168			ND		96.2
169				ND		48.1
170				ND		48.1
171	171/173			ND		96.2
172				ND		48.1
173	171/173			ND		96.2
174				ND		48.1
175				ND		48.1
176				ND		48.1
177				ND		48.1
178				ND		48.1
179				ND		48.1
180	180/193			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
IUFAC	CO- c iulions	ΝI	Natio	lig/Kg	ilg/Kg	ilg/rkg
181				ND		48.1
182				ND		48.1
183	183/185			ND		96.2
184				ND		48.1
185	183/185			ND		96.2
186				ND		48.1
187				ND		48.1
188				ND		48.1
189				ND		48.1
190				ND		48.1
191				ND		48.1
192				ND		48.1
193	180/193			ND		96.2
194				ND		72.2
195				ND		72.2
196				ND		72.2
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.2
202				ND		72.2
203				ND		72.2
204				ND		72.2
205				ND		72.2
206				ND		72.2
207				ND		72.2
208				ND		72.2
209				ND		72.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKNV BLANK-26482 P100930B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26574
Filename P101008A_04

Injected By BAL Matrix Solid

Total Amount Extracted 10.4 g Extracted 10/06/2010 16:40 ICAL ID P101008A02 Analyzed 10/08/2010 16:25

CCal Filename(s) P101008A_01 Dilution NA

CCai Fileriairie(S)	F TO TOOOA	_01		Dilution	INA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.390	3.12	2.0	1.32	66
13C-4-MoCB	3	11.733	3.11	2.0	1.46	73
13C-2,2'-DiCB	4	12.057	1.58	2.0	1.45	73
13C-4,4'-DiCB	15	20.109	1.54	2.0	1.32	66
13C-2,2',6-TrCB	19	16.442	1.04	2.0	1.49	75
13C-3,4,4'-TrCB	37	28.412	1.11	2.0	1.40	70
13C-2,2',6,6'-TeCB	54	20.413	0.79	2.0	1.56	78
13C-3,4,4',5-TeCB	81	35.823	0.83	2.0	0.787	39
13C-3,3',4,4'-TeCB	77	36.410	0.79	2.0	0.808	40
13C-2,2',4,6,6'-PeCB	104	26.953	1.59	2.0	2.87	144
13C-2,3,3',4,4'-PeCB	105	39.999	1.61	2.0	1.42	71
13C-2,3,4,4',5-PeCB	114	39.345	1.57	2.0	1.43	72
13C-2,3',4,4',5-PeCB	118	38.792	1.62	2.0	1.36	68
13C-2,3',4,4',5'-PeCB	123	38.473	1.61	2.0	1.40	70
13C-3,3',4,4',5-PeCB	126	43.118	1.54	2.0	1.79	90
13C-2,2',4,4',6,6'-HxCB	155	33.274	1.22	2.0	1.55	77
13C-HxCB (156/157)	156/157	46.086	1.27	4.0	4.10	103
13C-2,3',4,4`,5,5'-HxĆB	167	44.929	1.24	2.0	1.94	97
13C-3,3',4,4',5,5'-HxCB	169	49.339	1.26	2.0	2.36	118
13C-2,2',3,4',5,6,6'-HpCB	188	39.261	1.07	2.0	0.960	48
13C-2,3,3',4,4',5,5'-HpCB	189	51.835	1.06	2.0	1.64	82
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.627	0.92	2.0	1.37	68
13C-2,3,3',4,4',5,5',6-OcCB	205	54.594	0.87	2.0	1.73	87
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.749	0.80	2.0	1.59	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.275	0.80	2.0	1.63	82
13CDeCB	209	59.013	0.70	2.0	1.44	72
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.784	1.03	2.0	1.61	80
13C-2,3,3',5,5'-PeCB	111	36.461	1.57	2.0	1.39	69
13C-2,2',3,3',5,5',6-HpCB	178	42.363	1.02	2.0	1.80	90
Recovery Standards						
13C-2,5-DiCB	9	14.968	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.913	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.543	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.927	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.034	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

II IDAO	On abothers	DT	D-C-	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1				ND		24.0
2				ND		24.0
3				ND		24.0
4				ND		24.0
5				ND		24.0
5 6				ND		24.0
7				ND		24.0
8				ND		24.0
9				ND		24.0
10				ND		24.0
11				ND		144
12	12/13			ND		48.0
13	12/13			ND		48.0
14				ND		24.0
15				ND		24.0
16				ND		24.0
17				ND		24.0
18	18/30			ND		48.0
19				ND		24.0
20	20/28			ND		48.0
21	21/33			ND		48.0
22				ND		24.0
23				ND		24.0
24				ND		24.0
25				ND		24.0
26	26/29			ND		48.0
27				ND		24.0
28	20/28			ND		48.0
29	26/29			ND		48.0
30	18/30			ND		48.0
31				ND		24.0
32				ND		24.0
33	21/33			ND		48.0
34				ND		24.0
35				ND		24.0
36				ND		24.0
37				ND		24.0
38				ND		24.0
39				ND		24.0
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.0
43	43/73			ND		96.1
44	44/47/65			ND		144
45	45/51			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.0
47	44/47/65			ND		144
48	11/11/00			ND		48.0
49	49/69			ND		96.1
50	50/53			ND		96.1
51	45/51			ND		96.1
52				ND		48.0
53	50/53			ND		96.1
54				ND		48.0
55				ND		48.0
56				ND		48.0
57				ND		48.0
58				ND		48.0
59	59/62/75			ND		144
60				ND		48.0
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63				ND		48.0
64				ND		48.0
65	44/47/65			ND		144
66				ND		48.0
67				ND		48.0
68				ND		48.0
69	49/69			ND		96.1
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72				ND		48.0
73	43/73			ND		96.1
74	61/70/74/76			ND		192
75	59/62/75			ND		144
76	61/70/74/76			ND		192
77				ND		48.0
78				ND		48.0
79				ND		48.0
80				ND		48.0
81				ND		48.0
82				ND		48.0
83 84				ND ND		48.0 48.0
85	85/116/117			ND ND		
86				ND ND		144
86 87	86/87/97/108/119/125 86/87/97/108/119/125			ND ND		288 288
88	88/91			ND ND		200 96.1
88 89	00/31			ND ND		48.0
90	90/101/113			ND ND		46.0 144
90	30/101/113			חאו		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.1
92				ND		48.0
93	93/98/100/102			ND		192
94	33,33,133,132			ND		48.0
95				ND		48.0
96				ND		48.0
97	86/87/97/108/119/125			ND		288
98	93/98/100/102			ND		192
99	33,33,133,132			ND		48.0
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	30/30/100/102			ND		48.0
104				ND		48.0
105				ND		48.0
106				ND		48.0
107	107/124			ND		96.1
108	86/87/97/108/119/125			ND		288
109	00/01/91/100/119/123			ND ND		48.0
110	110/115			ND ND		96.1
111	110/113			ND ND		48.0
112				ND ND		48.0
113	90/101/113			ND ND		144
114	90/101/113			ND ND		48.0
115	110/115			ND ND		96.1
116	85/116/117			ND ND		144
117	85/116/117			ND ND		144
117	03/110/117			ND ND		48.0
119	86/87/97/108/119/125			ND ND		288
120	00/07/97/100/119/125			ND ND		48.0
120				ND ND		48.0 48.0
121				ND ND		48.0
122				ND ND		48.0
123	107/124			ND ND		46.0 96.1
124	86/87/97/108/119/125			ND ND		288
125	00/07/97/100/119/125			ND ND		48.0
126				ND ND		
	128/166					48.0
128				ND ND		96.1
129	129/138/163					144
130				ND		48.0
131				ND		48.0
132				ND		48.0
133	404/440			ND		48.0
134	134/143			ND		96.1
135	135/151			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.0
137	400/400/400			ND		48.0
138	129/138/163			ND		144
139	139/140			ND		96.1
140	139/140			ND ND		96.1 48.0
141				ND ND		
142	134/143					48.0 96.1
143	134/143			ND		
144				ND		48.0
145				ND		48.0
146	4.47/4.40			ND		48.0
147	147/149			ND		96.1
148	4.47/4.40			ND		48.0
149	147/149			ND		96.1
150				ND		48.0
151	135/151			ND		96.1
152				ND		48.0
153	153/168			ND		96.1
154				ND		48.0
155				ND		48.0
156	156/157			ND		96.1
157	156/157			ND		96.1
158				ND		48.0
159				ND		48.0
160				ND		48.0
161				ND		48.0
162				ND		48.0
163	129/138/163			ND		144
164				ND		48.0
165				ND		48.0
166	128/166			ND		96.1
167				ND		48.0
168	153/168			ND		96.1
169				ND		48.0
170				ND		48.0
171	171/173			ND		96.1
172				ND		48.0
173	171/173			ND		96.1
174				ND		48.0
175				ND		48.0
176				ND		48.0
177				ND		48.0
178				ND		48.0
179				ND		48.0
180	180/193			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A_04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
181				ND		48.0
182				ND		48.0
183	183/185			ND		96.1
184				ND		48.0
185	183/185			ND		96.1
186				ND		48.0
187				ND		48.0
188				ND		48.0
189				ND		48.0
190				ND		48.0
191				ND		48.0
192				ND		48.0
193	180/193			ND		96.1
194				ND		72.0
195				ND		72.0
196				ND		72.0
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.0
202				ND		72.0
203				ND		72.0
204				ND		72.0
205				ND		72.0
206				ND		72.0
207				ND		72.0
208				ND		72.0
209				ND		72.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKOO BLANK-26574 P101008A_04

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s)

Method Blank ID

LCS-26483 P100930B_10

10.2 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 00:01

Injected By BAL

	1	Native Analy	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	 y
1	1.0	0.990	99	2.0	1.47	73	
3	1.0	1.06	106	2.0	1.54	77	
4	1.0	0.979	98	2.0	1.72	86	
15	1.0	1.14	114	2.0	1.41	70	
19	1.0	0.876	88	2.0	1.66	83	
37	1.0	0.992	99	2.0	1.52	76	
54	1.0	0.962	96	2.0	1.59	79	
81	1.0	1.06	106	2.0	0.680	34	
77	1.0	0.953	95	2.0	0.663	33	
104	1.0	0.955	96	2.0	3.37	169	R
105	1.0	1.02	102	2.0	1.39	69	
114	1.0	1.09	109	2.0	1.31	66	
118	1.0	1.14	114	2.0	1.24	62	
123	1.0	1.06	106	2.0	1.22	61	
126	1.0	1.01	101	2.0	1.95	97	
155	1.0	0.955	96	2.0	1.66	83	
156/157	2.0	2.11	105	4.0	4.28	107	
167	1.0	1.06	106	2.0	2.11	106	
169	1.0	1.05	105	2.0	2.24	112	
188	1.0	1.02	102	2.0	0.939	47	
189	1.0	1.06	106	2.0	1.66	83	
202	1.0	0.970	97	2.0	1.79	90	
205	1.0	1.01	101	2.0	1.75	88	
206	1.0	0.978	98	2.0	1.80	90	
208	1.0	1.03	103	2.0	1.73	86	
209	1.0	1.32	132	2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

LCS-26575 P101009A_04

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 04:14

Injected By BAL

	N	Native Analy	tes	La	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.11	111	2.0	1.34	67
3	1.0	1.13	113	2.0	1.52	76
4	1.0	0.992	99	2.0	1.45	72
15	1.0	1.13	113	2.0	1.71	85
19	1.0	1.01	101	2.0	1.36	68
37	1.0	1.07	107	2.0	1.71	85
54	1.0	0.983	98	2.0	1.67	83
81	1.0	1.04	104	2.0	1.01	51
77	1.0	1.01	101	2.0	1.05	53
104	1.0	1.02	102	2.0	2.13	107
105	1.0	1.10	110	2.0	1.42	71
114	1.0	1.03	103	2.0	1.39	69
118	1.0	1.24	124	2.0	1.32	66
123	1.0	1.10	110	2.0	1.36	68
126	1.0	1.04	104	2.0	1.72	86
155	1.0	1.00	100	2.0	1.62	81
156/157	2.0	2.17	109	4.0	3.40	85
167	1.0	1.10	110	2.0	1.70	85
169	1.0	1.03	103	2.0	1.70	85
188	1.0	1.00	100	2.0	1.45	73
189	1.0	1.08	108	2.0	1.70	85
202	1.0	0.979	98	2.0	1.92	96
205	1.0	1.05	105	2.0	1.66	83
206	1.0	1.02	102	2.0	1.77	89
208	1.0	0.983	98	2.0	1.65	82
209	1.0	1.21	121	2.0	1.63	81

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCSD-26484 P100930B_11 10.4 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 01:06

Injected By BAL

	1	Native Analy	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1	1.0	1.04	104	2.0	1.42	71	
3	1.0	1.05	105	2.0	1.53	76	
4	1.0	1.06	106	2.0	1.71	85	
15	1.0	1.11	111	2.0	1.44	72	
19	1.0	0.977	98	2.0	1.58	79	
37	1.0	1.02	102	2.0	1.60	80	
54	1.0	0.984	98	2.0	1.62	81	
81	1.0	1.07	107	2.0	0.736	37	
77	1.0	0.989	99	2.0	0.698	35	
104	1.0	0.943	94	2.0	3.48	174	R
105	1.0	1.09	109	2.0	1.46	73	
114	1.0	1.07	107	2.0	1.37	68	
118	1.0	1.14	114	2.0	1.29	64	
123	1.0	1.09	109	2.0	1.30	65	
126	1.0	1.01	101	2.0	2.02	101	
155	1.0	1.01	101	2.0	1.64	82	
156/157	2.0	2.18	109	4.0	4.30	108	
167	1.0	1.10	110	2.0	2.13	107	
169	1.0	1.06	106	2.0	2.31	115	
188	1.0	1.05	105	2.0	0.981	49	
189	1.0	1.07	107	2.0	1.81	90	
202	1.0	0.960	96	2.0	1.96	98	
205	1.0	1.01	101	2.0	1.86	93	
206	1.0	0.990	99	2.0	1.95	97	
208	1.0	0.976	98	2.0	1.88	94	
209	1.0	1.36	136	2.0	1.78	89	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCSD-26576 P101009A_05

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

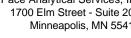
Extracted 10/06/2010 16:40 Analyzed 10/09/2010 05:19

Injected By BAL

	ı	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.14	114	2.0	1.45	73
3	1.0	1.19	119	2.0	1.59	79
4	1.0	1.02	102	2.0	1.53	77
15	1.0	0.991	99	2.0	1.48	74
19	1.0	1.01	101	2.0	1.43	72
37	1.0	1.09	109	2.0	1.62	81
54	1.0	1.01	101	2.0	1.26	63
81	1.0	1.05	105	2.0	0.925	46
77	1.0	1.02	102	2.0	0.957	48
104	1.0	1.01	101	2.0	2.54	127
105	1.0	1.11	111	2.0	1.24	62
114	1.0	1.08	108	2.0	1.34	67
118	1.0	1.19	119	2.0	1.34	67
123	1.0	1.15	115	2.0	1.33	66
126	1.0	1.07	107	2.0	1.26	63
155	1.0	1.01	101	2.0	2.04	102
156/157	2.0	2.21	111	4.0	3.64	91
167	1.0	1.11	111	2.0	1.76	88
169	1.0	1.09	109	2.0	2.14	107
188	1.0	0.994	99	2.0	1.36	68
189	1.0	1.07	107	2.0	1.68	84
202	1.0	1.03	103	2.0	1.23	61
205	1.0	0.997	100	2.0	1.71	85
206	1.0	0.979	98	2.0	1.71	85
208	1.0	1.04	104	2.0	1.56	78
209	1.0	1.28	128	2.0	1.84	92

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis


ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client **Test America**

Spike 1 ID LCS-26483 Spike 2 ID LCSD-26484 Spike 1 Filename Spike 2 Filename P100930B_10 P100930B_11

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	99	104	4.9	
4-MoCB	3	106	105	0.9	
2,2'-DiCB	4	98	106	7.8	
4,4'-DiCB	15	114	111	2.7	
2,2',6-TrCB	19	88	98	10.8	
3,4,4'-TrCB	37	99	102	3.0	
2,2',6,6'-TeCB	54	96	98	2.1	
3,3',4,4'-TeCB	77	95	99	4.1	
3,4,4',5-TeCB	81	106	107	0.9	
2,2',4,6,6'-PeCB	104	96	94	2.1	
2,3,3',4,4'-PeCB	105	102	109	6.6	
2,3,4,4',5-PeCB	114	109	107	1.9	
2,3',4,4',5-PeCB	118	114	114	0.0	
2,3',4,4',5'-PeCB	123	106	109	2.8	
3,3',4,4',5-PeCB	126	101	101	0.0	
2,2',4,4',6,6'-HxCB	155	96	101	5.1	
(156/157)	156/157	105	109	3.7	
2,3',4,4',5,5'-HxCB	167	106	110	3.7	
3,3',4,4',5,5'-HxCB	169	105	106	0.9	
2,2',3,4',5,6,6'-HpCB	188	102	105	2.9	
2,3,3',4,4',5,5'-HpCB	189	106	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	97	96	1.0	
2,3,3',4,4',5,5',6-OcCB	205	101	101	0.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	99	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	103	98	5.0	
Decachlorobiphenyl	209	132	136	3.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26575
 Spike 2 ID
 LCSD-26576

 Spike 1 Filename
 P101009A_04
 Spike 2 Filename
 P101009A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	111	114	2.7	
4-MoCB	3	113	119	5.2	
2,2'-DiCB	4	99	102	3.0	
4,4'-DiCB	15	113	99	13.2	
2,2',6-TrCB	19	101	101	0.0	
3,4,4'-TrCB	37	107	109	1.9	
2,2',6,6'-TeCB	54	98	101	3.0	
3,3',4,4'-TeCB	77	101	102	1.0	
3,4,4',5-TeCB	81	104	105	1.0	
2,2',4,6,6'-PeCB	104	102	101	1.0	
2,3,3',4,4'-PeCB	105	110	111	0.9	
2,3,4,4',5-PeCB	114	103	108	4.7	
2,3',4,4',5-PeCB	118	124	119	4.1	
2,3',4,4',5'-PeCB	123	110	115	4.4	
3,3',4,4',5-PeCB	126	104	107	2.8	
2,2',4,4',6,6'-HxCB	155	100	101	1.0	
(156/157)	156/157	109	111	1.8	
2,3',4,4',5,5'-HxCB	167	110	111	0.9	
3,3',4,4',5,5'-HxCB	169	103	109	5.7	
2,2',3,4',5,6,6'-HpCB	188	100	99	1.0	
2,3,3',4,4',5,5'-HpCB	189	108	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	98	103	5.0	
2,3,3',4,4',5,5',6-OcCB	205	105	100	4.9	
2,2',3,3',4,4',5,5',6-NoCB	206	102	98	4.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	98	104	5.9	
Decachlorobiphenyl	209	121	128	5.6	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

October 06, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor Inline

Enclosed are the results of analyses for samples received by the laboratory on 09/15/10 13:20. The following list is a summary of the Work Orders contained in this report, generated on 10/06/10 15:22.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTI0491	Portland Harbor Inline	30001516

TestAmerica Portland

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: 30001516 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 10/06/10 15:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO105890	PTI0491-01	Soil	09/14/10 09:42	09/15/10 13:20
FO105891	PTI0491-02	Soil	09/14/10 10:04	09/15/10 13:20
FO105892	PTI0491-03	Soil	09/14/10 10:41	09/15/10 13:20
FO105893	PTI0491-04	Soil	09/14/10 11:18	09/15/10 13:20
FO105894	PTI0491-05	Soil	09/14/10 13:20	09/15/10 13:20
FO105895	PTI0491-06	Soil	09/14/10 14:11	09/15/10 13:20
FO105896	PTI0491-07	Soil	09/14/10 13:51	09/15/10 13:20
FO105897	PTI0491-08	Soil	09/14/10 14:53	09/15/10 13:20
FO105899	PTI0491-09	Soil	09/14/10 00:00	09/15/10 13:20

TestAmerica Portland

Onell W. Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: 30001516 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 10/06/10 15:22

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTI0491-01	(FO105890)			Soil			Sam	pled: 09/14	/10 09:42		
Total Organic O Duplicates	Carbon -	9060	11100	30.0	100	mg/Kg	1x	43025	09/22/10 13:18	09/22/10 13:18	
PTI0491-02	(FO105891)			Soil			Sam	pled: 09/14	/10 10:04		
Total Organic O Duplicates	Carbon -	9060	8520	30.0	100	mg/Kg	1x	43025	09/22/10 13:32	09/22/10 13:32	
PTI0491-03	(FO105892)			Soil			Sam	pled: 09/14	/10 10:41		
Total Organic O Duplicates	Carbon -	9060	12600	30.0	100	mg/Kg	1x	43025	09/22/10 13:45	09/22/10 13:45	
PTI0491-04	(FO105893)			Soil			Sam	pled: 09/14	/10 11:18		
Total Organic O Duplicates	Carbon -	9060	20200	30.0	100	mg/Kg	1x	43025	09/22/10 13:58	09/22/10 13:58	
PTI0491-05	(FO105894)			Soil			Sampled: 09/14/10 13:20				
Total Organic Carbon - Duplicates		9060	40300	30.0	100	mg/Kg	1x	43025	09/22/10 14:46	09/22/10 14:46	
PTI0491-06	(FO105895)			Soil			Sampled: 09/14/10 14:11				
Total Organic O Duplicates	Carbon -	9060	102000	30.0	100	mg/Kg	1x	43025	09/22/10 15:00	09/22/10 15:00	
PTI0491-07	(FO105896)			Soil			Sam	pled: 09/14	/10 13:51		
Total Organic (Duplicates	Carbon -	9060	84000	30.0	100	mg/Kg	1x	43025	09/22/10 15:15	09/22/10 15:15	
PTI0491-08	(FO105897)			Soil			Sam	pled: 09/14	/10 14:53		
Total Organic (Duplicates	Carbon -	9060	111000	30.0	100	mg/Kg	1x	43025	09/22/10 15:29	09/22/10 15:29	
PTI0491-09	(FO105899)			Soil			Sam	pled: 09/14	/10 00:00		
Total Organic (Duplicates	Carbon -	9060	9930	30.0	100	mg/Kg	1x	43025	09/22/10 16:04	09/22/10 16:04	

TestAmerica Portland

Charle W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

9060

ND

30.0

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave.

Project Number: 30001516 Report Created:

Portland, OR 97203 Project Manager: Jennifer Shackelford 10/06/10 15:22

Organic Carbon, Total (TOC) - Laboratory Quality Control Results TestAmerica Connecticut QC Batch: 43025 **Soil Preparation Method:** NA Spike % (Limits) % RPD MDL* MRL Source Analyte Method Result Units Dil (Limits) Analyzed Notes Result QC Source: PTI0491-04 Matrix Spike Dup (133434D) Extracted: 09/22/10 14:39 Total Organic Carbon - Duplicates 9060 127000 30.0 100 mg/Kg 1x 20200 110000 98% (75-125) 3% (20) 09/22/10 14:39 QC Source: PTI0491-04 Extracted: 09/22/10 14:29 Matrix Spike (133434S) Total Organic Carbon - Duplicates 9060 131400 30.0 100 mg/Kg 1x 20200 114000 98% (75-125) 09/22/10 14:29 QC Source: Extracted: 09/22/10 13:05 LCS (220-43025-5) Total Organic Carbon - Duplicates 9060 5238 30.0 100 mg/Kg 1x 4110 127% (28-172) 09/22/10 13:05 Blank (220-43025-6) QC Source: Extracted: 09/22/10 13:11

100

mg/Kg

1x

TestAmerica Portland

Total Organic Carbon - Duplicates

Onnell W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

09/22/10 13:11

Portland Harbor Inline

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory

Project Name: 6543 N. Burlington Ave. Project Number: 30001516 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 10/06/10 15:22

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

and W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

CERTIFICATION SUMMARY

Subcontracted Laboratories

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 - Minneapolis, MN 55414

Analysis Performed: 1668 PCB 209 Congeners - SUB

Samples: PTI0491-01, PTI0491-02, PTI0491-03, PTI0491-04, PTI0491-05, PTI0491-06, PTI0491-07, PTI0491-08,

PTI0491-09

TestAmerica Connecticut

128 Long Hill Cross Road - Shelton, CT 06484

Method Performed: 9060

Samples: PTI0491-01, PTI0491-02, PTI0491-03, PTI0491-04, PTI0491-05, PTI0491-06, PTI0491-07, PTI0491-08,

PTI0491-09

TestAmerica Portland

Darrell Assail Draigat Managar

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

FestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 509-924-9200 FAX 924-9290

THE LEADER IN ENVIRONMENTAL TESTING	TAL TESTIN	უ	ر	HAINOF	CTSIL	CHAIN OF CISTONY REPORT	RT.		MY and	, # 50 P	PHOHO	_
			د	IIAII OF	01000				WOFK	Work Oraer #:		_
CLIENT: (Lty o) Vorthand				INVOICE TO:						TUKNAK	TUKNAKOUND KEQUESI	
OLLAGORAL OL.	·			<		£ = = = = = = = = = = = = = = = = = = =		•		a ii B	in Business Days *	
ADDRESS: TEMMITER STACKED TOFF	となって			<u>\$</u>	Joans of 110				` <u></u>	Organic & Is 7 5 7	Organic & Inorganic Analyses	7
•				P.O. NUMBER:	36138					Petroleum F	Petroleum Hydrocarbon Analyses	
PROTECT NAME: 0 11 A 11 A		5.	(4)			PRESERVATIVE				4	3 2 1 <1	
		191							~ [TD.		
PROJECT NUMBER: Inline Samp		0.0	(b		REQUESTE	REQUESTED ANALYSES				OTHER	Specify:	
SAMPLED BY:			DZ						* Turnarou	nd Requests less	* Turnaround Requests less than standard may incur Rush Charges.	ush Charges.
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	LING	10T	77 V) 828						MATRIX (W, S, O)	X # OF () CONT.	LOCATION/ COMMENTS	TA WO ID
F0105890 9/14/10	0942	×	×						5	7		
168	1001	X	X			-			5	2		
897	104)	×	×						CJ	7		
\$ 612	11/8	×	\ .\ ×						Cs	7		
	(320	×	1 ×						5	7		
	1411	×	. ×						5	7		
968	1351	×	×						5	И		
7 7 8 9 7	1453	×	×		-			·	S	7)		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	X	X						S	N		-
>	-					· · · · · · · · · · · · · · · · · · ·		(,
RELEASED BY: WORTH KING	HRW.	4	Portland	DATE: 9/	01/51	RECEIVED BY: PRINT NAME:	Tool		H	FIRM: TOF	DATE: 9	1/5//
met and a		8		DATE: 9/	15/10 3:20	RECEIVED BY:		"ia 1th	A	FIRM:	DATE: 0	15/16 250 250 250 250
ADDITIONAL REMARKS:	to PA(4CE	Jar	The	209	Congeners	ે જે	Thalks	•	•	PAGE	(OF)
)	•						1	-			H	TAL-1000(0408)

TestAmerica Portland

Sample Receiving Checklist

	c Ord nt Nan	er #: PT10401 Date/Time Received: 91510 1320 me and Project: COP							
Time ED	Zone; T/EST	CDT/CST MDT/MST PDT/PST AK OTHER							
Coo	oler #(eratur								
N/A	Yes	No Initials M							
		1. If ESI client, were temp blanks received? If no, document on NOD.							
		2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.							
		3. Chain of Custody present? If no, document on NOD.							
		4. Bottles received intact? If no, document on NOD.							
		5. Sample is not multiphasic? If no, document on NOD.							
	Z	6. Proper Container and preservatives used? If no, document on NOD.							
		7. pH of all samples checked and meet requirements? If no, document on NOD.							
		8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.							
		9. HF Dilution required?							
		 10. Sufficient volume provided for all analysis? If no, document on NOD and consult PM before proceeding. 11. Did chain of custody agree with samples received? If no, document on NOD. 							
		11. But chain of custody agree with samples received: If no, described on Nob.							
		13. Were VOA/Oil Syringe samples without headspace?							
		14. Were VOA vials preserved? HCl Sodium Thiosulfate Ascorbic Acid							
الحا		15. Did samples require preservation with sodium thiosulfate?							
		16. If yes to #15, was the residual chlorine test negative? If no, document on NOD.							
		17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.							
		18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? If							
		no, document on NOD and contact PM before proceeding. 19. Are analyses with short holding times received in hold?							
		☐ 20. Was Standard Turn Around (TAT) requested?							
		21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.							

TestAmerica Portland

Sample Receiving Checklist

Work Order #: Login Checks: N/A Yes 22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM. 23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If no, document on NOD and contact PM. 24. Did the chain of custody include "received by" and "relinquished by" signatures, dates and times? 25. Were special log in instructions read and followed? 26. Were tests logged checked against the COC? 27. Were rush notices printed and delivered? 28. Were short hold notices printed and delivered? 29. Were subcontract COCs printed? 30. Was HF dilution logged? Labeling and Storage Checks: N/A Yes No 31. Were the subcontracted samples/containers put in Sx fridge? 32. Were sample bottles and COC double checked for dissolved/filtered metals? 33. Did the sample ID, Date, and Time from label match what was logged? 34. Were Foreign sample stickers affixed to each container and containers stored in foreign fridge? 35. Were HF stickers affixed to each container, and containers stored in Sx fridge? 36. Was an NOD for created for noted discrepancies and placed in folder?

Document any problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

form (NOD).

APPENDIX D

Outfall Basin 18 East-Central Subbasin 2011 Sediment Trap and Inline Solids Investigation Data Summary Report

Appendix D

Outfall Basin 18 East-Central Subbasin 2011 Sediment Trap and Inline Solids Investigation Data Summary Report

Introduction

This report summarizes the results of the City of Portland 2010 - 2011 sediment trap and inline solids investigation in the east-central subbasin of Outfall Basin 18. This subbasin was identified as having upland sources of polychlorinated biphenyls (PCBs), pesticides, and metals based on results of sediment trap and inline solids samples collected between 2007 and 2009 (BES, 2010a; BES, 2012a). In response to these detections, the City cleaned the stormwater main lines of the east-central branch along and near NW 35th Avenue (between manholes AAX374 and AAX261) in summer 2010 (BES, 2012b). Following completion of line cleaning activities and implementation of source controls at a known source to this branch¹, the City conducted this investigation to determine whether there are ongoing sources of PCBs, pesticides, and metals in the upper portion of the east-central subbasin.

Between December 2000 and June 2011, the City deployed two sediment traps in the upper portion of the east-central subbasin, upstream and downstream of the Columbia American Plating connection. At the time of sediment trap removal, inline solids samples were collected from accumulated solids at the two sediment trap locations and one additional location to supplement the investigation.

This inline solids investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement between DEQ and the City. The data collected under this investigation support ongoing work by DEQ and the City to characterize and control discharges to the stormwater pathway from sites within Basin 18.

Sampling Activities and Analytical Approach

2010-2011 Sediment Trap Deployment. The City sediment trap sampling activities were completed in accordance with the Sampling and Analysis Plan (SAP) submitted to DEQ in December 2010 (BES, 2010b). The sediment trap locations were selected to investigate potential current sources of PCBs, pesticides, and metals in areas upstream and downstream of the former Columbia American Plating site (an identified upland source of PCBs and metals) following removal of legacy stormwater solids from this site and from the City conveyance system in 2010; see Figure D-1).

MAY 2012 PAGE D-1

_

¹ The Columbia American Plating site cleaned out the onsite stormwater system, replaced onsite catch basins and associated stormwater lines, installed stormwater treatment, paved the site, and consolidated site connection to NW 35th Avenue into one new connection in 2009 – early 2011 (O'Gara, 2009; Wohlers, 2011).

The City deployed two Screened Inline flow-Through (SIFT©)² flow-through sediment traps on December 21, 2010, at the locations shown on Figure D-1 and summarized below.

Station Identification	Manhole	Description
ST6	AAX318	Installed downstream of manhole in 24-inch main line
ST7	AAX278	Installed upstream of manhole in 30-inch main line

The sediment traps were inspected monthly to assess the volume of trapped solids, note general conditions, and remove any debris that might be obstructing the openings of the trap chambers. Accumulated solids were removed as needed during the monthly field inspections and archived. Photographs of the sediment traps in their installed locations are provided in Attachment D-1. Field notes taken during sediment trap installation, monitoring and removal activities are provided in Attachment D-2.

The sediment traps were removed and accumulated solids collected on June 9, 2011. The accumulated solids from each trap were combined with the previously archived solids from that trap and homogenized in the laboratory. Collection and processing procedures are described in detail in the field notes (Attachment D-2).

The samples collected from ST6 and ST7 were analyzed for PCB Aroclors, organochlorine pesticides, metals, total organic carbon (TOC), and total solids (TS), as proposed in the SAP.

June 2011 Inline Solids Sampling. In conjunction with removal of the sediment traps on June 9, 2011, field personnel also collected inline solids samples from the manholes where the sediment traps were located. In addition, an inline solids sample was collected from manhole AAX376, which is just upstream of manhole AAX318 (ST 6 sampling manhole). The inline solids sampling locations are shown on Figure D-1 and summarized below.

Sampling Location	Description
Manhole AAX376	Sample was collected at the manhole.
Manhole AAX318	The samples was collected in the 15-inch main line downstream of the manhole.
Manhole AAX278	Sample was collected in 30-inch main line downstream of manhole.

Sample collection and handling procedures were conducted using the applicable standard operating procedures (SOPs)³ included in the City's *Amended Programmatic Sampling and Analysis Plan* for collection of water and solids samples for the City of Portland Outfalls Project (BES,

MAY 2012 PAGE D-2

² 2009 City of Portland. Proprietary and patent pending. These traps were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

³ The SOPs were established by the City's Field Operations section to standardize the data collection methodologies for a wide range of monitoring activities and thereby maintain comparability and representativeness of the data produced.

2007a) and in accordance with the *Amended Programmatic Quality Assurance Project Plan* for the project (BES, 2007b). Photographs taken during the inline solids sampling activities are provided in Attachment D-1. Field notes taken during the sampling activities are provided in Attachment D-2.

The inline solids samples were submitted with the sediment trap samples for laboratory analysis of PCB Aroclors, pesticides, metals, TOC and TS.

Summary of Results

The analytical results indicate pesticides and metals are present in solids upstream and downstream of the CAP site and that PCBs are present at the downstream location.

PCBs were detected in the inline solids sample from manhole AAX278 but were not detected in the sediment trap sample from this location (ST7) or in the other sediment trap or inline solids samples. Pesticides and metals were detected in all of the sediment trap and inline solids samples. Table D-1 summarizes the laboratory analytical results for the 2011 sediment trap and inline solids samples and includes the JSCS SLVs for reference. The laboratory reports and data review memoranda for the samples are provided in Attachment D-3.

References

- BES. 2007a. Amended Programmatic Quality Assurance Project Plan, City of Portland Outfalls Project, Revision to Programmatic Source Control Remedial Investigation Work Plan Appendix D. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2010a. Technical Memorandum No. OF18-2, Outfall Basin 18 Inline Solids Investigation. July 20, 2010.
- BES. 2010b. Subject: City of Portland Outfall Project, Source Investigations for Basins 18, 43, 53A, S-1, S-2, and S-6, Winter 2010-11 Sampling and Analysis Plan. Letter to K. Tarnow (DEQ) from L. Scheffler (BES). December 6, 2010.
- BES. 2012a. Outfall Basin 18 East-Central Subbasin, Fall 2009 Inline Solids Sampling, Data Summary Report. Appendix A to Outfall Basin 18, East-Central Subbasin Source Investigation Report. May 2012.
- BES. 2012b. NW 35th Ave. Line Cleaning Spoils Management CSA# 1120. Memorandum from J. O'Donovan (BES Coordinated Site Analysis Program) to L. Scheffler (BES). October 18, 2010. Appendix B to Outfall Basin 18, East-Central Subbasin Source Investigation Report. May 2012.
- DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Final, dated December 2005 (updated July 2007).

MAY 2012 PAGE D-3

O'Gara. 2009. Re: On-site stormwater sewer cleanout, former Columbia American Plating site. Letter report submitted to DEQ. Prepared by Tim O'Gara, R.G., Consulting Hydrogeologist. September 29, 2009.

Wohlers. 2011. Stormwater Assessment Workplan, Former Columbia American Plating Facility, 3003 N.W. 35th Avenue, Portland, Oregon. Prepared for 3003 NW 35th LLC (c/o Carson Oil Company) by Wohlers Environmental Services. July 22, 2011.

Table

Table D-1 - Basin 18 East-Central Subbasin 2011 Inline Solids Results

Figure

Figure D-1 – Basin 18 2011 Sediment Trap and Inline Solids Sampling Locations

Attachments

Attachment D-1 – *Field Photographs*

Attachment D-2 - Field Data Sheets

Attachment D-3 – Laboratory Results

MAY 2012 PAGE D-4

Table D-1 Basin 18 East-Central Subbasin 2011 Inline Solids Results

		Manhole	AAX278	Manhole AAX318		Manhole AAX376		
		Sediment Trap	Inline Solids	Sediment Trap	Inline Solids	Inline Solids Within Manhole W11F059-03		
		Downstream of Manhole in 30" Line ST7: W11F059-04	Downstream of Manhole in 30" Line W11F059-05	Downstream of Manhole in 15" Line ST6: W11F059-01	Downstream of		JSCS ⁽¹⁾ Screening Level Value	
Class Analyte	Units	6/9/2011	6/9/2011	6/9/2011	6/9/2011	6/9/2011	Toxicity	Bioaccumulation
'otal Organic Carbon (ASTM D2216-80)								
TOC	mg/Kg	96,000	23,000	72,000	12,000	30,000		
otal Solids (SM 2540G)								
TS	%	43.8	75.7	57.9	83.3	72.5		
Grain Size (ASTM D421/422)								
Gravel (>4750 um)	Fract %	NA	NA	NA	22.6	1.4		
Coarse Sand (4750-2000 um)	Fract %	NA	NA	NA	30.1	5.4		
Medium Sand (2000-425 um)	Fract %	NA	NA	NA	31.3	33.7		
Fine Sand (425-75 um)	Fract %	NA	NA	NA	9.9	30.9		
Silt (75-3.2 um)	Fract %	NA NA	NA NA	NA NA	4.9	25.8		
Clay (<3.2 um)	Fract %	NA	NA	NA	1.4	2.6		
Metals (EPA 6020)								
Arsenic	mg/Kg	4.65	2.91	3.91	1.14	3.97	33	7
Cadmium	mg/Kg	3.02	6.08	2.01	0.524	1.22	4.98	1
Chromium	mg/Kg	93.6	100 92.7	106 110	52.4 33.7	554 149	111	
Copper	mg/Kg	134 175	92.7 252	110 160	23.7	149	149 128	 17
Lead Mercury	mg/Kg mg/Kg	0.169	0.405	0.111	0.0154	0.0520	1.06	0.07
Nickel	mg/Kg	47.7	53.8	45.5	16.9	124.0	48.6	
Silver	mg/Kg	0.609	1.28	0.261	0.100 U	0.234	5	-
Zinc	mg/Kg	730	478	558	131	343	459	
Organochlorine Pesticides (EPA 8081A) 4.4'-DDD	/// -	4.1	26	2.5	0.86	1177	20	0.33
4,4-DDE 4.4'-DDE	μg/Kg μg/Kg	4.1	36 43	2.0	1.0	1.1 U 0.98	28 31.3	0.33
4,4'-DDT	µg/Кд	23 U	18 U	8.6 U	2.0 U	5.7 U	62.9	0.33
Estimated Total DI		8.6	79	4.5	1.9	0.98		0.33
Aldrin	μg/Kg	1.5 J	8.5	0.98 U	0.60 U	0.76 U	40	0.33
alpha-BHC (α-BHC)	μg/Kg	2.5 U	0.72 U	0.98 U	0.60 U	0.76 U		-
beta-BHC (β-BHC)	μg/Kg	2.5 U	0.72 U	3.6 U	0.60 U	0.91 U		
delta-BHC (δ-BHC)	μg/Kg	2.5 U	2.7 U	0.98 U	0.60 U	0.76 U		
gamma-BHC (γ-BHC, Lindane)	μg/Kg	7.6 U	2.0 U	0.98 U	0.60 U	1.8 U	4.99	
alpha-Chlordane ⁽³⁾	μg/Kg	6.1	4.9	3.7	0.47 J	0.98		
beta-Chlordane ⁽³⁾	μg/Kg	11 U	11	6.4	0.85	2.1		
Total Chlorda		6.1	16	10	1.3	3.1	17.6	0.37
Dieldrin	μg/Kg	3.8 U	4.9 U	3.6 U	0.37 J	1.9 U	61.8	0.0081
Endosulfan I Endosulfan II	μg/Kg	2.5 U 5.5 U	3.8 5.9 U	0.98 U 2.1 U	0.17 J 0.33 J	0.76 U 0.76 U		
Endosulfan II Endosulfan sulfate	μg/Kg μg/Kg	24 U	0.72 U	1.5	0.60 U	0.76 U		
Endrin	μg/Kg μg/Kg	2.5 U	1.2 U	0.98 U	0.60 U	0.76 U	207	
Endrin aldehyde	μg/Kg	1.3 J	0.72 U	0.98 U	0.60 U	0.76 U		
Endrin ketone	μg/Kg	1.5 J	0.54 J	0.97 J	0.60 U	0.34 J		
Heptachlor	μg/Kg	2.5 U	0.72 U	0.98 U	0.60 U	0.86 U	10	
Heptachlor epoxide	μg/Kg	2.5 U	0.72 U	0.98 U	0.60 U	0.76 U	16	
Methoxychlor	μg/Kg	2.5 U 390 U	3.8 U 240 U	1.2 U 350 U	0.60 U 30 U	2.4 U 330 U		
Toxaphene	μg/Kg	390 U	240 U	330 U	30 U	330 U		
olychlorinated Biphenyls (PCBs) (EPA 8082								
Aroclor 1016	μg/Kg	22.8 U	10.0 U	17.3 U	10.0 U	10.0 U	530	
Aroclor 1221	μg/Kg	45.7 U	20.0 U	34.5 U	20.0 U	20.0 U		
Aroclor 1232 Aroclor 1242	μg/Kg	22.8 U 22.8 U	10.0 U 10.0 U	17.3 U 17.3 U	10.0 U 10.0 U	10.0 U 10.0 U		
Aroclor 1242 Aroclor 1248	μg/Kg μg/Kg	22.8 U	365	17.3 U	10.0 U	10.0 U	1500	
Aroclor 1254	μg/Kg μg/Kg	22.8 U	10.0 U	17.3 U	10.0 U	10.0 U	300	
Aroclor 1260	μg/Kg μg/Kg	22.8 U	69.4 ⁽⁵⁾	17.3 U	10.0 U	10.0 U	200	
Aroclor 1260 Aroclor 1262	μg/Kg μg/Kg	22.8 U	10.0 U	17.3 U 17.3 U	10.0 U	10.0 U	200	
Aroclor 1262 Aroclor 1268	μg/Kg μg/Kg	22.8 U	10.0 U	17.3 U	10.0 U	10.0 U		

MAY 2012 PAGE 1 OF 1

J = The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

U = The analyte was not detected above the reported sample quantification limit.

 $NA = not \ analyzed.$

ND = not detected.

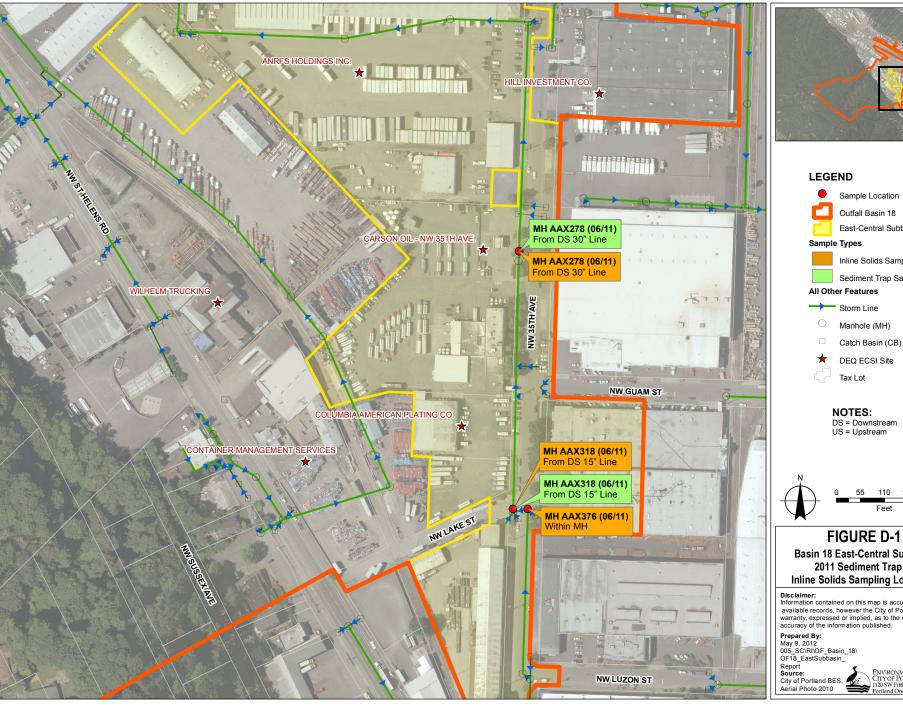
⁻⁻ No JSCS screening level available.

 $[\]mu g/Kg = micrograms \ per \ kilogram.$

mg/Kg = milligrams per kilogram.

(1) JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007).

 $^{^{\}left(2\right) }$ Estimated Total DDx is the sum of DDE, DDD, and DDT.


⁽³⁾ Alpha-chlordane is also known as cis-Chlordane. Beta-Chlordane is also known as trans-chlordane and gamma-chlordane.

⁽⁴⁾ Total Chlordane is the sum of alpha- and beta-isomers. ⁽⁵⁾ The analytical laboratory reports that the Aroclor 1260 detection may include some Aroclor 1254.

⁶ Total PCBs are calculated by assigning "0" to undetected constituents.

⁼ concentration exceeds JSCS Toxicity Screening Level Value.

bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

Sample Location

Outfall Basin 18 East-Central Subbasin

Inline Solids Sample

Sediment Trap Sample

All Other Features

Manhole (MH)

DEQ ECSI Site

Tax Lot

NOTES:

DS = Downstream US = Upstream

FIGURE D-1

Basin 18 East-Central Subbasin 2011 Sediment Trap & Inline Solids Sampling Locations

Information contained on this map is accurate according to available records, however the City of Portland makes no warranty, expressed or implied, as to the completeness or accuracy of the information published.

Attachment D-1 Field Photographs

2010-2011 Sediment Trap Deployment and Sampling

Photo 1 (December 21, 2010). Manhole AAX318 (ST6) and surrounding area at time of sediment trap deployment.

Photo 2 (December 21, 2010). Deployed SIFT© sediment trap at sampling location ST6 (Manhole AAX318).

MAY 2012 PAGE D1-1

Photo 3 (January 26, 2011). Primary trap chamber and accumulated solids at time of first monthly field check.

Photo 4 (January 26, 2011). Secondary trap chamber and accumulated solids at time of first monthly field check.

Photo 5 (June 9, 2011). ST6 sediment trap in place at time of removal.

Photo 6 (December 21, 2010). Manhole AAX278 (ST7) and surrounding area at time of sediment trap deployment.

Photo 7 (December 21, 2010). Deployed SIFT© sediment trap in the outgoing 30-inch line at Manhole AAX278 (ST7).

Photo 8 (May 23, 2011). Secondary trap chamber and accumulated solids during monthly field check at sample location ST7 (Manhole AAX278).

June 2011 Inline Solids Sampling

Photo 9 (June 9, 2011). Sampling setup at Manhole AAX318.

Photo 10 (June 9, 2011). Solids at bottom of Manhole AAX318 before sampling.

Photo 11 (June 9, 2011). Final composited inline solids sample from manhole AAX318.

Photo 12 (June 9, 2011). Sampling setup at Manhole AAX376.

Photo 13 (June 9, 2011). Solids at the bottom of Manhole AAX376 before sampling.

Photo 14 (June 9, 2011). Final homogenized sample from Manhole AAX376.

Photo 15 (June 9, 2011). Sampling setup at Manhole AAX278.

Photo 16 (June 9, 2011). Solids in outgoing 30-inch line from Manhole AAX278 before sampling.

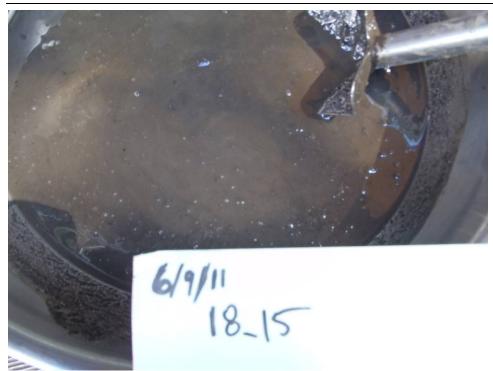


Photo 17 (June 9, 2011). Final composited inline solids sample from Manhole AAX278.

Attachment D-2 Field Notes

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696

General Lab: (503) 823-5681

City of Portland Chain-of-Custody

Date: 6/1/11

Work Order#: いい下の5句

Collected By: MJS, PTB, PHA

Bureau of Environmental Services

	Client Name:	Director's	Office		,					•						Mati	ix:		Sedin	nent]		
	Project Name:	Portland I	Harbor																						•
									<u> </u>	R	equ	est	ted	Analy	ses									٠	
	Basin 18 Sedime	nt Traps			· · ·										, !						ľ] .			
	* WPCL - Care should	be taken during T	'S analysis to a	retain sample volu	me for other	analyses.			s, Cd, Cr, Cu	Zu)	PCB Aroclors (low-level)	-level)													
nuper									tals (A	ii, Ag, i	clors (ss (low	g												•
Lab Number	Location ID	Install Date	Install Time	Sample Date	Sample Time	Sample Type	<u>1</u>	T0C	Total Metals (As, Cd,	Pb, Hg, Ni, Ag, Zn)	PCB Aro	Pesticides (low-level)	Grain Size		. :							# of Containers		Remarks	·
01	18_ST6	12/21/2010	1315	6/9/2011	1130	С	•	•	•		•	•										12	ST- 280.0	18-AAX318 g Total We	-0611 Weight
02 :-	18_13		·	6/9/2011	1205		•	•	. •	•	•	•	•									6	IL-18	3-AAX318	3-0611
03	18_14			6/9/2011	1105	С	•	•	•	•	•	•	•						. :		} [6	IL-18	3-AAX376	5-0611
04	18_ST7	12/21/2010	1335	6/9/2011	1005	С	•	•	•		•	•						İ				+2		18-AAX278 Total Wet	
05	18_15			6/9/2011	1030	C	•	•	•) ·	• 1	•	•									6	IL-18	3-AAX278	3-0611
					777				. : :															· ·	
									:					į.			-					~			
					·			The state of the s										-							
	· · · · · · · · · · · · · · · · · · ·						-		:			ļ				:								-	.,
								·			• • •	•	-		:	† :									
	Relinquished By: Signature:	my 5	V *****	*6/9/11 s	eceived By gnature:	MI	5	:			Date:	19	ų	Relinquisi Signature:	ied By:		· · · · · ·		Date:		Rece Signati	ived By: ire:		Date:	
ľ	Printed Name: Peter	Byar		1440	inted Name:	Jenzi	c 7	7,	K.		Time:	44	2	Printed Name:					Time:		Printed	Name:		Time:	<u> </u>
	Portland Harbor	r - 🖳 / 18 Sed T	Trap COC (5-2	23-11).xis				1			•	. <	ا الرسيب										 ⊃aoe	of	À.

Page of
Project POLTLAND HARBOR Project No Location BASIN 18. Date 12/21/10 Subject Low Flow Dam & SIFT INSTALUS By MJS, PTR
1030 Arrive on-site AAX318. MH is buried by growel. Located MH and dug it out. Set up for entry to evaluate fire conditions to install dam.
1055 Entrait observes setiment in line 1.3" max deep and average of 1" leep across lift chamber-floor. Standing water in file is 1. Bir
head end. Us line him mix of the transe Spoks extend 3' of in their line. Solls extend as for as can be seen in US line. Thore is a say in this line.
Outlet gipp is 24" in dimmeter/highlet line is 12" diameter OCB inlet is 9.5" diameter/HDE talet he from W is 10" concrete.
Entrant confirmed MH chamber floor is 12" above line invert. CR inlet from 5 is 22" above line invert. 1245 Decision usual per conversation with PHA + LAS to install
SIFTS in both AAX318 + AAX278 and give them a check after the pext big storm to make size invadation occurred and sediment was captured.
1315 Installed SIFT 26 in. ds of EOP
1335 Arrive on-Gite AAX278. Assembled SIFT I band textuant observes no inputs into MH chamber. Flowing water of 0.25 in 5 0.5 Fps. Say in pipe de of MH chamber. Sels present 6ft de of EOP as 184 75 champer 3 in wide.
In its pipe depth of water's 1.5 in with a max dyoth of Zind No water yelocity observed in its line. Installed SIFT 36" its of center of mode

	Pageof
Project Postland Harbor SIFT Location Basin 18 Subject Daily Field notes	Project No.
11151 Acrive on site for first the	ck of site/18-576/
Good accumulation of files in	secondary, Oil"in
primary. No seds collected &	From SIFT. Reinstalled
as before check	
Note that Manhole Lid is a gravel at this site,	Iways covered by
gravel at this site	
[조현 회장 기업 등 경험 기업	는 것 같아 보니 하는 것 같아 (Property 그리고 말라면 그 등록 수 있는 것 같다.)
IVA / I TIA FIRST OF T	
1150 Arrive at [18-ST7] for f	isst monthly Clark
Some flowing wester in fine. of debris Small amounts in 60	1 1 is tree and elear
(also invert and sorean) but not	Side woll-
Did not take seds for are	hive
Re installed SIFT at as	Gefore
- 15	
. 이 마스 전에 가는 마음이 되었다. 그는 사람들은 사람들이 되었다. 그는 그를 보는 것이 되었다. 그는 그들은 그들이 되었다. 그는 사람들은 사람들이 되었다. 그는 사람들이 되었다. 그는 그들은 그들은 그는 사람들이 되었다. 그는 사람들이 되었다.	
Attachmente	
	一个一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大

	Page of
Project PORTLAUD IMRBON	Project No.
Location BAGIN 190	Date 3-7-11
Subject SIFT CHRU(By WCR PTD
1210 ARRIVE @ 18_STG, 4W.	LAKKE () S-I.
- LUTS OX CARREC ON MIT	210
- LUTS OK GRAVEC OU MIH - MH CHMBER! FHE SAUD 2046 IN 14 VERT	N 2" DEEP 12" WIDE 14"
2046-14 INVERT	
- EUIDRUCE OF SURCHARING	
- WITTE SAUN IN PLACES AROUN	17: BELIKATII LATIERAL
COMPLE KROM HWG.)	
- 14 MANLI UPSTREAM PIPE THER	15 ADUT 13/4 KILLE MUCH
- 14 MAILL UPSTREM PIPE THER - RELUSTALL SIRT, 40 COLLECTIONS	Ox SEDS
1250 DEMRI	
보다 하는 사람들은 사람들은 사람들이 되었다. 그런 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 	
	경기하면 하시다. 그런 이 보고 있는 것으로 통해 이 것은 것은 말을 살았다.
교통하면 하다 그를 하는데 하는 것이 된다. 아니라는 말로 사고 하는 것은 사람이 되었다. 교육을 했다면 불통한 사람들이 되었다면 하면 보다 되어 보고 있다. 그 등에 모두 보기 되었다면 것	한 경기 (1. 1707년 17일본 경기 등 1. 17일본 전체 10일본 12일본 기급을 받았다. 19 2011년 1월 1일 - Nath Salt (2. 17일본 2일본 2일본 17일본 17일본 17일본 17일본
- 발생 경영 발생 경영	[10] [16] - [16] 전 10 (16) [16] (16) (16) (16) (16) (16) (16) (16) (16)
- 이 프로그램 (1986년 - 1982년) 전 1982년 (1984년) - 1982년 (1984년) - 1982년 (1984년) - 1982년 - 1982년 (1984년)	
	마이 마이에 가장이 보이는 사람들은 물로 보고 있다. 그런 모든 것이 되었다. 마이에 마이트를 했다면서 보는 사람들은 기를 보고 있다.
Attachments	

<u> </u>	0
Location 18_572 3/25 4/40 Date 3-7	~/) 2/P7B
1248 AM @ 18-ST7, 3125 UW 35	
1248 AM @ 18-ST7, 3125 UW 35= -TRICKLE OX XLOW, SOME SUDS 14	1 140
- TARE PHOTOS	
- PKIUSTALL SIKT	
	19 - 10 15 - 15 - 15 15 15 15 15 15 15 15 15 15 15 15 15
1313 - DEPART	기 : 소설보관 현황병학 1일 현황철 한 교육의 경기원 대학 교육원학 1일
logi Podrija koja i se se programa koja i koja i koja i se se programa koja i se se i podrija koja i koja i se Podrija i se se programa koja i se programa koja i se se se programa koja i se se se programa koja i se se se	
kang mengangan penggalah di diberang kaliban penggangan diberangan beberapan bisang bisangan penggan bilangan Banggan diberikan bisanggan penggangan banggan diberangan penggan penggan bisanggan bisanggan beberapan bisang	
Attachments	

	Page of
Location BASIN 18	Project No. Date 4/8/1/ By 13M, 17B
1315 Arrive on-site 18-576. Althoused graces gravel as seen before at this site. MH chan Sed accommunitions in dead end, us line and	mber has similar
1347 Collected seds into Archive just 1352 Deput site	
1354 Atmire on-site 18-ST7. 1415 Collected seds into Archive jar. 1422 Deputed site	
Attachments	

Project Portland Narbor Sed Imps	Project No.
Location Bush 18	Date 5/23/11
subject Manthly therk	By PTB
1006	
1220 arrived on site at NW Lake 7 35th	
1225 Entry made to remove trap for sedin	ment collection.
photos taken.	
a upstream of sift; gravel and sand 14",	
immediatly downstream of sifts gravel and	to a manufacturate to the contract of the cont
Main your happy stone sediment 2" with Hyo	/ 11U 4 4 4 4 3 C 1
· Manhely chander dead end? fines + sands with som	e gravel 2 m deep X 12 wide x mo long.
1937 Tarp town	
leaf build up around the base of Sit	
1238 Trap removed and sediments collected	
seds placed in jars. 1250 trap put back in place.	
1255 Departed Site	
1305 Arrival on side - 3125 NW 35th Ave	/ 18_ST 7
1369 Eintry made to remove trap for Schmont	
Standing water 2" deep at SIPT, no flo	
water flowing 2.5' upstream of sift at	a vale of 0.5 fps.
· trace this seds along invest of pipe, in	psorran of sift
"Immedially downsteam of sitt : trace fine sed!	and deepens 1.5 downstram to 1.5" deep
	(CONTH SANT)
1318 Trap removed and sidiments placed in Jav.	
1327 Trap put back in place	
1340 Departed Site.	
Attachments	경기에 가장하다 하는 이번 그리고 있는 것이 되었다. 그는 것은 함께 되었다. 그는 것은 발생들은 생각이 되고 있다면 말하지 않는 것이 없는 것이 없다.
T ANGUNINENIS	医马克氏氏 化二氯甲基磺基酚 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基

DAILY FIELD REPORT

10年度

Page Project Parsons HARREOR Project No. _ Date 6/9/11 Location Basin 18 subject SIFT Removal + Inline Sampling BY MIS, PTB 0940 Arrive on-ste AAX278. Removed SIFT. 1005 Collected seeks from SIFT into archive for and homogenized seeks using spatula. Given Point Code 18-577. 1020 Collected inline seds downstream of SIFT location and MH chamber. 1030 Homogenized simple and filled jars. Used point code 18-15. 1045 Arrive on-site AARS76. 1055 Collected inline seds from MH chamber of AAX376. Homogenized sample and filled jus. Used point code 18-14. Arrive on-site AAX318. Removed SIFT. 1130 collected seds from SIFT into archive in and homogenized seds using spatole. Given point code 18-576 1155 Collected inline seds from MH chamber and ~ 2' ds of MH chamber of AAK318 1205 Homogenized sample and filled fars. Used point code 18-13. **Attachments**

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Project Name: PORTLAND HARBOR Sample ID: WIIF059-02 Point Code: Sampling Team: Date: Arrival Time: Node: AAX318 Address: NW 35TH & LAKE ST Current weather: Sun Date and time of last known rainfall: SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = ___ __ in Rate of flow = _ ☐ Hydrocarbon ☐ Brown Does river back up to this location? Yes or No If river is backed up: ☐ Grey □ Sanitary Water Color Water Odor ☐ Clear ☐ Other Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? (es)or No Avg Depth of seds = 1 1/4 in Sed Depth Range = 3/4 If sediments present: Éstimated dimensions of sediment deposit: in. by _____ in. OR 💢 As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations. From CB Now whole NW 35TH ALE

Date: 6/9/((SECT	ION 2 - S	SAMPLE	OLLECTION REF	ORT	Node:	Point Code:
Sampling Equipment: Stainless steel	utensil & st	tainless steel	receptacle Other	(Describe)	TH (NOTE)	10-1 <u>0</u>
Equipment Decontamination process:	r Per SOP	 7.01a □ D	eviations (Describe)	····		
Sample date: Sample time:	Sample lo		Code (IL-XX-NNNNNN) -AAX318 - 06			
Sample location: X From MH chamber	From I		om line, segment is Fi	· · · · · · · · · · · · · · · · · · ·	14/318 TO NO	de
Sample collection technique: Per SOP5	.01e	□ Deviations	(describe below)			
☐ Visual and olfactory observations: ☐ ☐	Odor Sheen Discolora	ation	Color of sample		(describe)	
Sample composition/particle size Si distribution (estimated percentages):	lt/Clay <u>5</u> ∋composed	Sand <u>[</u>] d Organics	Fine Gravel <u>20</u> Other (describe)	Coarse G	ravel 65 D	ebris
If present, type of debris in sample □	Wood Metal Organics	Large roc □ Plastic □ Paper	Removed debris?	Yes (Ty	ype & Amoun	el removed
Compositing notes			, Citor archive)			
Sample Jars Collected (number, size, full o	partial)?	5 Full 1	tozjas I ful	1802	John	
f not enough sample to fill all of the jars, list collected and related analytes sampled (as panalyte priority list in work order).	jars per	Jar Size	Amount Full		Γarget Analy	ses
W11F059-02						
Portland Harbor						
18_13 Sampled: 06/09/11 12:05						
Field Data Sheet			le collected? Y/(10)	···		
Duplicate sample identification # on COC:		p ID Heie		·		
SEC	TION 3	- PHOTO	OGRAPH LOG			
Overview of node showing drainage area		Filena	me(s): Yes.			
Plan view of sediments inline			me: Yes.	······································		
Homogenized sample (sediment in bowl)			me: Yes. Befored	After	Exclusion	۸.
cher?		Filena				

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLIN	E SEDIMENT S	SAMPLING FIELD	DATA SHEET	
Project Name: PARTLAND	HARBOR		Sample ID: WILFO	59 03
Sampling Team: MJS,	Date: 6/a/11	Arrival Time: lo45	Point Code: (8 -	14
Basin: 18	Node: 44 x371		Address:	
Current weather: Sunny			 	
Date and time of last known rainf	all:			
SECTION	ON1- PRE-SAM	PLING VISUAL OBS	ERVATION REPOR	T
Is there water inline Yes or No	If present, water is:	Flowing or Standing Dep	h of water = 2 in R	ate of flow = fps
Does river back up to this location?	es of No If river is ba	icked up: Water Color - I	□ Brown □ Grey Water Odor □ Clear	☐ Hydrocarbon☐ Sanitary☐ Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of see	diments present in the line?	Yes or No
If sediments present: Avg Depth	of seds = 2 ir	n Sed Depth Range =	in. toin.	
stimated dimensions of sediment de	eposit: 10 in. b	yin. OR 🛵 A	s far as can be seen	
SITE DIAGRAM: Include street is and extent of solids accumulation Q A A A A B A A B A A B A A	ntersections/main lin as well as subsampl	e locations.	H's/pipe sizes/ flow direction	ction/ driveways cuts
	 	108	enemana de la la companya de de la companya de la c	And the second of the second o
				•

Date: 6/9/11	SE	ECTION	2 - SAMI	PLE CO	LECTION REI	PORT	Node: AAL37.6	Point Code:			
Sampling Equipment	Stainless st	teel utensil	& stainles	s steel red	eptacle □ Other	(Describe)					
Equipment Decontan	nination process:	№ Per S	SOP7.01a	□ Devi	ations (Describe)						
Sample date:	Sample time:	Sam	ple Identifi [cation Cod	le (IL-XX-NNNNNI L376 - 06[l	N-mmyy)					
Sample location:	From MH chami	per □ Fr	rom line	If from	line, segment is F	rom Node	To N	ode			
Sample collection tec	hnique: Per S	OP5.01e	□ Devi	iations (de	scribe below)						
Visual and olfactory	observations:		or en coloration		Color of sampl		n (describe) _	`			
Sample composition distribution (estimate			20 Sa posed Orga		Fine Gravel Other (describe)	_ Coarse	Gravel <u>5</u> I	Debris			
If present, type of de	bris in sample	□ Wood □ Metal ⊠ ≺Organ	□ Pla		Removed debris?	Yes (Type & Amou	unt) 🗆 No			
<i></i>	Per SOP5.01			·	1 Complete						
Sample Jars Collected					I for orchive)	foll B.	oz. jar				
If not enough sample to collected and related a analyte priority list in w	nalytes sampled	, list jars (as per	Jar	Size	Amount Full		Target Anal	yses			
W11F059	, , , , , , , , , , , , , , , , , , ,										
Portland Harb 18 14	:	ŵ.c						<u> </u>			
Sampled: 06/09/12 Field Data Sh			Duplicate	uplicate sample collected? Y/N							
Duplicate sample ident	tification # on CO	C:	Dup 101 h								
						•					
	9	FCTIO	N 3 DI	-IOTOC	RAPH LOG						
Overview of node show			14 J - F I								
Overview of node show	<u> </u>	;d 			e(s): 4e5						
Homogenized sample		-IX		Filename: Yes							
	(seament III DOW	1)	· · · · · · · · · · · · · · · · · · ·	Filename: Ves							
ther?		Filename(s):									

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

		SAMPLING FIELD	DATA SHEET
Project Name: POLTLAN	> HAPBOR		Sample ID: WIIF059-05
Sampling Team: M15, PTB	Date: 6/1/11	Arrival Time: 0940	Point Code: 18_15
Basin: 18	Node: AAX27	8	Address: 3125 NW 35TH AVE
Current weather: Sunny			
Date and time of last known rainfa	all:		
SECTIO	ON 1 - PRE-SAMI	PLING VISUAL OBSE	RVATION REPORT
Is there water inline? Yes or No			of water = 1 in Rate of flow = 0 fps
Does river back up to this location? Y	'es or No If river is bac	cked up: Water Color □	Brown ☐ Hydrocarbon Grey Water Odor ☐ Sanitary Clear ☐ Other
Are sediments observed in the line?	(Yes) or No Are r	recoverable quantities of sedi	iments present in the line? (Yes) or No
If sediments present: Avg Depth	of seds = 1,5 in	Sed Depth Range =	in. to <u>1.5</u> in.
stimated dimensions of sediment de			
SITE DIAGRAM: Include street in	ntersections/main line	es/laterals/catch basins/MH	d's/pipe sizes/ flow direction/ driveways cuts
and extent of solids accumulation	as well as subsample	- locations	N -7
			ast of
			0" concrete SAMPLE LOCATION
$Q \rightarrow /$		3	D SALEA 13
	\	*	125'-10"
		7	1-1.5" deep seds
	\		

Date: 6/9/11	SECTION	2 - SAMP	MPLE COLLECTION REPORT Node: AAX 178 Point Code: 18 - 15							
Sampling Equipment: 🛪 Sta	ainless steel utensi	il & stainless	steel red	eptacle Other	(Describe)		0-,0			
Equipment Decontamination p	process: Per	SOP7.01a	□ Devi	ations (Describe)						
Sample date: Sample	time: Sam	nple Identifica	ation Cod	de (IL-XX-NNNNN 78 - 061	l-mmyy)	-				
Sample location: □ From M	H chamber ⊵ ∢F	rom line	If from	line, segment is F	rom Node <u>/</u>	144278 To No	ode			
Sample collection technique:	EXPer SOP5.01e	□ Devia	tions (de	scribe below)						
Visual and olfactory observat		or een coloration		Color of sample		(describe)				
Sample composition/particl distribution (estimated percer		y <u>[0</u> Sar posed Orgar	nd <u>90</u> nics	Fine GravelOther (describe)	Coarse G	Gravel	Debris			
If present, type of debris in sa	•			Removed debris?	□ Yes (T	ype & Amou	nt) X No			
Compositing notes (Per S	SOP5.01e □ Devi	iations (desc	ribe)			19	·			
Sample Jars Collected (number	r, size, full or parti	al)? 5 🛴	oll Yoz	. jers (I for	Archive	1 1 511	802 jar.			
If not enough sample to fill all o collected and related analytes s analyte priority list in work order	ampled (as per	Jar S	Size	Amount Full		Target Analy	yses			
W11F059-05										
Portland Harbor 18_15						-				
Sampled: 06/09/11 10:30 Field Data Sheet		Duplicate	sample o	collected? (N)						
Duplicate sample identification	# on COC:	Dup 10 He	жо .							
	SECTIO	N 3 - PH	ОТОС	RAPH LOG	. · · · · · · · · · · · · · · · · · · ·					
Overview of node showing drai	nage area		Filename	e(s): Yes.						
Plan view of sediments inline			Filename	Yes.						
Homogenized sample (sedimer	nt in bowl)		Filename	· Vos.						
ther?		Filename(s):								

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET Project Name: Portland Harbor Date: 12/21/10 Personnel: MS 5, PTB Point Code: 18-36 Site Address: Basin: 18 Hansen ID: 44x319

SECTION 1 - INSTA	LLATION INFORMATION
Traffic control and/or site access concerns: MIT is located near curb on gravel road new interesti	Flowing water: Y or (N) Standing water: (Y)or N
with NW 35 Th Ave Park vehicle on NW	
take and cone around MH and remide allowing room for traffic to get on and off Mu Lake.	If flowing: Depth of flow = in. Rate of flow = <u>NA</u> fps
is traffic to get on and off mod cake.	Does river appear to back up to this location: Y or N
Are sediments present inline? (v) or N If Yes, Avg Depth of	· · · · · · · · · · · · · · · · · · ·
Estimated dimensions of sediment deposit: $\frac{59}{270}$ in. by $\frac{20}{2}$	in. OR 🖾 As far as can be seen
	tream side of MH (circle one) 2-25 ft from center of MH node
etch map of the lateral(s) and layout of manhole, showing approx sed, trans	o location, manhole elevation and inline sediment if present. Orient drawing
using the top of the page as north):	+oe
sing the top of the page as north): SIFT installed at 5° angle with 3.5.1. from	invest floor to tellow of well,
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IFT installation location y" oncrete 12" HOPE MAIN INLET FROM AAN 376
POPTO DEAD ENTO PROCESAN	-9.5" HDPE

Pt. Code: N 576	SECTION 2 - MONTHLY	Y FIELD CHECK INFORMATION	Hansen ID: AAX318
Date:	Average sed. depth per chamber:	Sediments removed? Yes or No	
1-26-11	Primary = $O.1$ in Secondary = 0.25 in	If Yes, from Primary / Secondary	Archived ID:
By:	Final Removal? Yes or No	Face occluded? Yes or No	
Housing: Gra	Status Observations 1.5" standing water rels accumulated around base the gravel road where manhole	of SIFT, harger gravels are	Holding Sticker
Primary Chamb	er: Primary has 0.1" inch accumula	ited seds, 2" wide in invert.	
Secondary Chai	mber: Secondary Chamber has 0.2 od fines accumulation. SEF	5" depth of fines 3" wide along T was reinstalled as before its cleck	
Photos Taken?(DN1 overview, 1 primary, 1:	secondary. No seds collected for Archive	
Date:	Average sed. depth per chamber:	Sediments removed? Yes or No	Date:
3-7-11	Primary = $\frac{1/4}{1}$ in Secondary = $\frac{1/4}{1}$ in	If Yes, from Primary / Secondary	
///	Final Removal? Yes or No	Face occluded? Yes or No	
Sediment Trap S	Status Observations N 1 1/2 " SED. PAR AS 44W BL SEEM WES ISUNT UP ARCOUD TRAP.	S ARACIO 131SE, EXTEUDIUL	Holding Sticker
Secondary Char	er: 14" ox skomkut, 142 1/2" BALL nber: No APPANEUT ADDIT'L ACCUMUL 1 14" Ox skos, 3"WIDK @ KUKAT	STILL LESS PHON LAST UISIT, BREAFILLES.	
Photos Taken?	IN SEPTIMENT IN MH CHAMISER	TRAP PRIMARY CHAMBER,	
Describe:			
Date: 4/18/11	Average sed. depth per chamber: Primary = 0.25 in Secondary = 0.5 in	Sediments removed? Yes or No If Yes, from Primary Secondary	Date:
BA: 77W	Final Removal? Yes or No	Face occluded? Yes or No	
Housing: Grave	itatus Observations I tseds accommented around loase in delth.	of SIFT. (similar to last time).	Holding Sticker
Primary Chambe	ir /4" accomplation of fines of me	els in 25 wide band along invert	
Secondary Cham back Sc	ober: 0.6" at screen-side adjacent to reen in 3" wide bund Consisting	primary sloping to 0.4" toward	
tos Taken? (v) Describe:	IN 14-situ primy & Seondon	1	

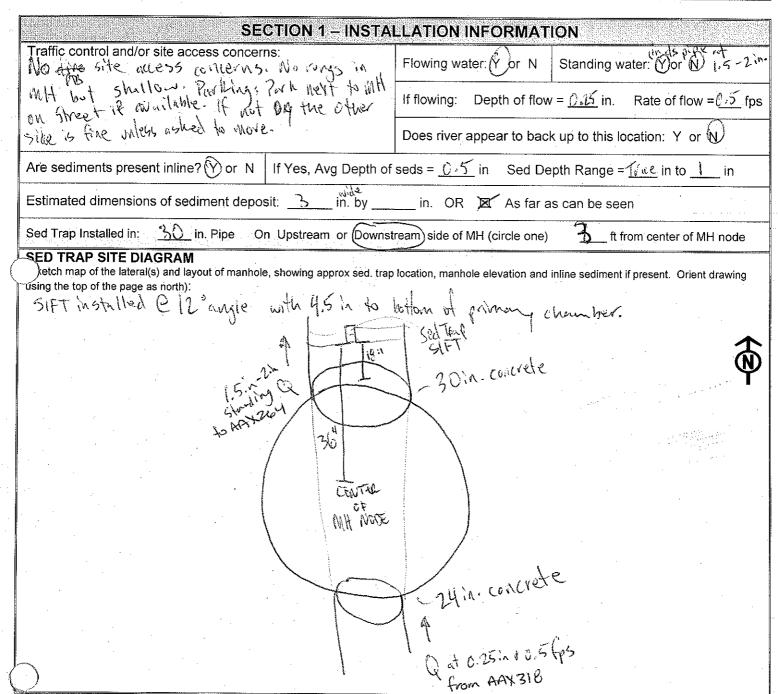
Pt. Code 516	SECTION 2 – MONTHLY	FIELD CHECK INFORMATION	Hansen ID: AAC3 19		
Date:	Estimated sed. depth per chamber:	Sediments removed? (Yes) or No	Date:		
) 5/23/11	Primary = 0.25 in Secondary = 0.3^{-0} in	If Yes, from Primary / Secondary			
By: PTB	Final Removal? Yes or No	Face occluded? Yes or No			
Sediment Trap S	Status Observations:				
Housing: 18a	build up around housing at base	of sift.	Holding Sticker		
Primary Chambo	er: My" depth of sediment x 3" wide while public and small plustic	, consisting of times			
Secondary Char	ober: depth sloping to 0.75" at face of some of some of some of times.	screen x 3" wide.			
Photos Taken?(
Describe:	Downstream, upstream, manhole	Chamber, primary Sift chamber, Secondary Sift chamber			
I	Estimated sed, depth per chamber:	Sediments removed? Yes or No	Date:		
<u> </u>	Primary = $\frac{1/3}{3}$ in Secondary = $\frac{1}{3}$ in	If Yes, from Primary / Secondary			
By: M 15 PTB	Final Removal? (es) r No	Face occluded? Yes o No			
Sediment Trap S	Status Observations: Reg covering 85	% of SITT face Sed doth			
Sediment Trap Status Observations: Rog covering 85% of SIFT face. Sed depth Housing: at SIFT is 134" on werage. No water.					
Primary Chamber: 2" wide bund of 18" of fine sediments of little places of organts					
Secondary Chamber: 1/5 accombation of five sets along insert of chamber					
Photos Taken? BINGIFT in Sit, Primy chamber, Secondary chamber.					
Describe:					

	SECTION 3 - COMPOSIT	ESAMPLE
Sample ID: W11F059-01	Duplicate sample collected at this site? YN	DUPLICATE ID:
Portland Harbor 18_ST6 Sampled: 06/09/11 11:30 Field Data Sheet	Any deviations from standard of Describe:	pperating procedures? YN
Comments: All orchived solid	Is were homogenized in 4 last collection.	he orchive ju at the

S:\FIELDOPS\FORMS\Inline SIFT FDS.doc

Portland Harbor SIFT Sediment Trap Sediment Accumulation Tracking Sheet Basin Basin Site 18-5元/み代ろ18

DATE	TOTAL WEIGHT SEDS + JAR + LID (g)	TARE WEIGHT OF JAR + LID (g)	TOTAL COLLECTED WEIGHT (g)	WEIGHT OF PREVIOUSLY COLLECTED SEDS (g)	DEPLOYMENT'S SED ACCUMULATION (g)	
4/18/11	330.3	- 208.0	= 122.3	NA	= 122.3	
5/23/11	452.7	- 208.0	=244.7	- 122.3	= 122.4	
6/9/11	488.0	- 208-0	=280.0	- 244.7	= 35.3	
		-		-	=	
			=	-	=	
Homoge	nization Procedure:	In a Single Jar	OR In a Bo	wl from Multiple Jars (then parce	led out into new clean jars)	
Total We	ght Seds + Jar + Lid	after homogenization	Tare Weight of Jar + Lid	Sed Weight After Homogenizati	on (At Submittal)	
	=		_			
COC Time (time composite jar is capped): \\'30			Number of Sample Jars Collected (size & fullness): 🛴 🖁 💈 🖟			
Visual Description of Final Composite Sample: Brown consisting primarily of fine seds						
II	Sample ID: W11F059 _ 01			Duplicate Collected? Y / (N) Dup ID:		
Total Solids (%) per Lab Analysis = Total Weight Available for Analysis =						
Commer	Comments: Sample homogenized in join at time of last collection					



ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET Project Name: Portland Harbor Date: 2/21/10 Personnel: MJS, PTB Point Code: 18 - ST 7 Site Address: 3125 NW 35TH AVE Basin: 18 Hansen ID: AAX 278

Pt Code W.51	SECTION 2 - MONTHLY	FIELD CHECK INFORMATION	Hansen ID: AAX279	
Date:	Average sed. depth per chamber:	Sediments removed? Yes or No	Archived ID:	
()1-26-11	Primary = Truce in Secondary = 1/ace in	If Yes, from Primary / Secondary	Alcilived 1D.	
By: PTB AJA	Final Removal? Yes or No	Face occluded? Yes or No		
Sediment Trap	Status Observations		(Holding Sticker	
Housing: 1-10-45	ing is free and clear. Flowing want	er present in pipe, 1.25" deep		
	er. Small area of trace fines in	latande for action	,,	
Full inum	mber: Fines accumulated on screen dution. This layer.	and invert and top, Suggesting		
Photos Taken?	VN 1. Overview 2. Secondary 3.	primary		
Describe:				
Date:	Average sed. depth per chamber:	Sediments removed? Yes or No	Date:	
3-7-11	Primary = $\frac{1}{0}$ in Secondary = $\frac{1}{8}$ in	If Yes, from Primary / Secondary		
By: WCR/PTB	Final Removal? Yes or No	Face occluded? Yes or No		
Sediment Trap S	Status Observations SUDS IN FLOW, (TRICRUES N 1/41/SEC. 11/4"	Holding Sticker	
() [Primary Chambe	er. TRACE SEOS OU SCREEU, A	40 IN KIWERT SOTTOM	•	
Secondary Char	mber: BIT MORE SEOS THALLAND	UISIT IN 178 11 1/16 " OU TUP,		
Photos Taken	DIN PRIMARY I SECOUDARY CHA.	MBENS		
Describe:			e e	
Date:	Average sed. depth per chamber:	Sediments removed? (Fes or No	Date:	
4/18/11	Primary = 0.1 in Secondary = 0.25 in	If Yes, from Primary > Secondary		
By:	Final Removal? Yes or No	Face occluded? Yes or No		
Sediment Trap S	Status Observations STANDING WATER (1/4" in depth		
Housing: No abstructions. Trace fines up stoleram of SIFT. 2'ds of SIFT geds accumulated to 1" in depth +6" wide extending as the as can be seen Primary Chamber: Standing water observed in -situleven though water level is well below significant water observed in situleven though water level is well below secondary Chamber: 14" along invert top of chamber of a face on the screen. Secondary Chamber: 14" along invert top of chamber of a face on the screen.				
Secondary Chan	nber: 1/4" along invertit top of chambe	r of a face on the screen.		
	ON PRYMARY, SECONDARY CHAMI			
Describe: DH	to of SEBS OS of SIFT			

Pt. Code: 18-517	SECTIO	N 2 – MONTHLY	/ FIELD CI	HECK INFORMATION	Hansen ID: AAX278
Date:	Estimated sed, depth per	01		removed? (Yes) or No	Date:
5/23/11	Primary = O.\ in Seco	ondary = O. T in	If Yes, from	Primary / Secondary	
By: PTB CJK	Final Removal? Yes or (1	A CONTRACTOR OF THE CONTRACTOR	
ediment Trap (Status Observations: while	SIFT INSITU Was	ter in prin	nany chamber even though	
loüsing; No	debris around housing.	10.00 DI			Holding Sticker
rimary Chambe	er: Eurodence remains o	f last times s I'llong x 2" wid			
econdary Char	nber: 0.1" due to 0,2	s? deep at scree	~ , trace se	elihant in this as sifet	
hotos Taken?	IN insitu SIFT , P	rimany Chamber,	Secondary	chamber, Sediment downship	ion.
escribe:				.	
Date:	Estimated sed, depth per	chamber:	Sediments	removed? (Fig. or No	Date
6911	Primary = \(\infty \alpha \lambda \lambda \) in Seco	ndary = <mark>/</mark> gin	If Yes, from	Primary / Secondary	
3y: MS51	Final Removal? Yes or N	lo	Face occlud	ded? Yes or No	
ediment Trap Ş	Status Observations: 5044	e delon's anovi	rel hors	ing including leves	
ousing: and	some times. Wate	- level at SIF	-1" de	ep and stagnon t	(Holding Sticker
ノ rimary Chambe	er: Evidence remains	of last sempin	4. Trace s	eds accomulation.	
	nber: 18 of accomb	- '	V		
6	1 1 0				
notos Taken?()	ON SIFT in-situ, Pa	I rung Chamber, "	Secondary o	bumber	
escribe:		•			
		SECTION 3 – C	OMPOSIT	E SAMPLE	
Sample ID:		Duplicate sample of	collected at	DUPLICATE ID:	
W11	F059-04	this site? Y/N		· ·	
	and Harbor 8_ST7	Any deviations from	n standard o	perating procedures? Y(N)	
	0 6 /09/11 10:05 Data Sheet	Describe:			
Comments: 🛕	All enclosed solids o	vere homogen	.zel .h 3	the achive jor at t	he time
(F	of the last	collection,		the achibe jor at t	
).					
	4				

Portland Harbor SIFT Sediment Trap Sediment Accumulation Tracking Sheet Basin 18 Site 8-517/AAX 27

		Bas	sin 1 <u>8</u> s	ite <u>18-517/</u> AAX 278	
DATE	TOTAL WEIGHT SEDS + JAR + LID (g)	TARE WEIGHT OF JAR + LID (g)	TOTAL COLLECTED WEIGHT (g)	WEIGHT OF PREVIOUSLY COLLECTED SEDS (g)	DEPLOYMENT'S SED ACCUMULATION (g)
4/18/11		- 208.3	= 33.5	NA	= 33.5
5/23/11	268.1	- 208-3	= 59.8	- 33.5	= 26.3
6/9/11	274.7	- 208.3	= 66.4	- 59,8	= 6.6
	:	-	_	-	=
			_		=-
Homoge	enization Procedure:	(In a Single Jap	OR In a Bo	wl from Multiple Jars (then parce	eled out into new clean jars)
Total Weight Seds + Jar + Lid after homogenization Tare Weight of Jar + Lid Sed Weight After Homogenization (At Submittal)					
COC Time (time composite jar is capped): 1335 Number of Sample Jars Collected (size & fullness): half full & oZ. jar					
Visual Description of Final Composite Sample: Grown consisting primarily of fine seds					
Sample ID: U11F059_04			Duplicate Collected? Y / (N) Dup ID:		
Total Solids (%) per Lab Analysis =			Total Weight Available for Analysis = —		
Comments: Sample homogenized in jor out time of last collection.					

Attachment D-3

Laboratory Reports and Data Review Memoranda (on CD only)

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Sediment Trap and Inline Solids Sampling Outfall Basin 18 East-Central Subbasin

To: File

From: Andrew Davidson, GSI Water Solutions, Inc.

Date: September 27, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a sampling event conducted by the City of Portland (City) in the east-central subbasin of Outfall (OF) Basin 18. Two sediment traps were deployed on December 21, 2010. Sediment trap samples (W11F059-01 and W11F059-04) and three inline solids samples (W11F059-02, W11F059-03, and W11F059-05) were collected on June 9, 2011 and submitted for analyses.

The laboratory analyses for these solids samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed below:

- BES WPCL
 - o Total Solids (TS) SM 2540G
 - o Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Analytical Resources, Inc.
 - o Grain Size Distribution ASTM D422
- Columbia Analytical Services (CAS)
 - o Pesticides EPA 8081B

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached.

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratories. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within accuracy control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits

The results from the QA/QC review of the available information in the laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Method blanks were processed during WPCL's analyses of metals and PCB Aroclors and during the subcontracted laboratory analyses of TOC and organochlorine pesticides. Low concentrations of copper and nickel were detected in the method blank processed with the two sediment trap samples. However, concentrations of copper and nickel in the sediment trap samples were greater than ten times the concentrations detected in the method blank and the data are not qualified further. No analytes were detected in any of the remaining method blanks.

Surrogate Recoveries

Surrogate chemicals were analyzed during the analysis of PCB Aroclors and organochlorine pesticides. All surrogate recoveries were within acceptance limits.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS samples were processed during the analyses of metals, PCB Aroclors, TOC, and organochlorine pesticides. MSD samples also were processed during the analyses of PCB Aroclors and organochlorine pesticides. The MS sample recovery for the TOC analysis was below laboratory control limits. However, LC sample recoveries during the TOC analysis were within acceptance limits, and the data are not qualified further. MS/MSD results for 4,4'-DDT in the organochlorine pesticide analysis are not applicable due to possible contributions from nontarget background constituents. However, the magnitude of these constituents appears to be minimal and the data are not qualified further. All other MS/MSD sample recoveries were within laboratory control limits. Relative percent differences (RPDs) between MS/MSD samples processed during the PCB Aroclor and organochlorine analysis were within acceptance criteria.

Laboratory Control/Laboratory Control Duplicate Sample (LC/LCD)

LC samples were processed during the laboratory analyses of metals, TOC, and organochlorine pesticides. All LC sample recoveries were within laboratory control limits. WPCL comments that LC sample recovery data are not available for the PCB Aroclor analysis, and that the MS/MSD samples demonstrate accuracy and precision for the analysis.

Laboratory Duplicate Samples

Laboratory duplicate samples were processed during the analyses of TS, metals, and TOC. RPDs for all laboratory duplicate samples were within laboratory control limits.

Other

WPCL reports that the Aroclor 1260 concentration in sample W11F059-05 may include some Aroclor 1254. Additionally, WPCL reports that reporting limits were elevated in the PCB Aroclor analysis of samples W11F059-01 and W11F059-04 due to a low solids percentage.

CAS reports that sample W11F059-05 required dilution due to the presence of elevated levels of target analyte. Reporting limits were adjusted to reflect the dilution. For several target analytes in the pesticide analysis, CAS reports that results from the primary and verification columns varied by more than 40 percent; the lower of the two values was reported and the data are not qualified further. Additionally, CAS reports that some analytes were recovered at levels greater than the method detection limit but less than the method reporting limit. These values are qualified as estimates ("J").

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

July 12, 2011 Linda Scheffler

Director's Office

Work Order

Project

W11F059

Portland Harbor

Received 06/09/11 14:40

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

Renee Chauvin

Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Client:

LABORATORY ANALYSIS REPORT

Project: Portland Harbor

Work Order: W11F059

Received: 6/9/11 14:40

WQDB #: Janus329

Project Mgr: Linda Scheffler

Director's Office

				Sample Collection Date						
<u>Sample</u>	Laboratory ID	<u>Matrix</u>	<u>Type</u>	<u>Start</u>	<u>End</u>	Qualifier				
18_ST6	W11F059-01	Sediment	Composite	12/21/10 13:15	06/09/11 11:30					
18_13	W11F059-02	Sediment	Composite	06/09/11 12:05	06/09/11 12:05					
18_14	W11F059-03	Sediment	Composite	06/09/11 11:05	06/09/11 11:05					
18_ST7	W11F059-04	Sediment	Composite	12/21/10 13:35	06/09/11 10:05					
18_15	W11F059-05	Sediment	Composite	06/09/11 10:30	06/09/11 10:30					

Case Narrative

PCB Aroclor analysis QC:

LCS recovery data not available. The MS and MSD demonstrate accuracy and precision for the analysis.

Sample -05, PCB Aroclor analysis:

Submitted By: Field Operations

PCB quantified as Aroclor 1260 may include some Aroclor 1254.

Analyte	Result	Units	MRL	Dilution	Batch	Prepared	Analyzed	Method	Qualifier
General Chemistry									
Total Solids									
18_ST6 : W11F059-01 Total solids	57.9	% W/W	0.01		B11F151	06/09/11	06/10/11	SM 2540G	
18_13 : W11F059-02 Total solids	83.3	% W/W	0.01		B11F151	06/09/11	06/10/11	SM 2540G	
18_14 : W11F059-03 Total solids	72.5	% W/W	0.01		B11F151	06/09/11	06/10/11	SM 2540G	
18_ST7 : W11F059-04 Total solids	43.8	% W/W	0.01		B11F151	06/09/11	06/10/11	SM 2540G	
18_15 : W11F059-05 Total solids	75.7	% W/W	0.01		B11F151	06/09/11	06/10/11	SM 2540G	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11F059 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

otal Metals by ICPMS								
18_ST6 : W11F059-01								
Arsenic	3.91	mg/kg dry	0.500	20	B11F234	06/15/11	06/16/11	EPA 6020
Cadmium	2.01	mg/kg dry	0.100	20	B11F234	06/15/11	06/16/11	EPA 6020
Chromium	106	mg/kg dry	0.500	80	B11F234	06/15/11	06/16/11	EPA 6020
Copper	110	mg/kg dry	0.200	20	B11F234	06/15/11	06/16/11	EPA 6020
Lead	160	mg/kg dry	0.100	80	B11F234	06/15/11	06/16/11	EPA 6020
Mercury	0.111	mg/kg dry	0.0100	20	B11F234	06/15/11	06/16/11	EPA 6020
Nickel	45.5	mg/kg dry	0.200	20	B11F234	06/15/11	06/16/11	EPA 6020
Silver	0.261	mg/kg dry	0.100	20	B11F234	06/15/11	06/16/11	EPA 6020
Zinc	558	mg/kg dry	0.500	80	B11F234	06/15/11	06/16/11	EPA 6020
18_13 : W11F059-02								
Arsenic	1.14	mg/kg dry	0.500	20	B11F160	06/10/11	06/15/11	EPA 6020
Cadmium	0.524	mg/kg dry	0.100	20	B11F160	06/10/11	06/15/11	EPA 6020
Chromium	52.4	mg/kg dry	0.500	40	B11F160	06/10/11	06/15/11	EPA 6020
Copper	33.7	mg/kg dry	0.200	20	B11F160	06/10/11	06/15/11	EPA 6020
Lead	23.7	mg/kg dry	0.100	20	B11F160	06/10/11	06/15/11	EPA 6020
Mercury	0.0154	mg/kg dry	0.0100	20	B11F160	06/10/11	06/15/11	EPA 6020
Nickel	16.9	mg/kg dry	0.200	20	B11F160	06/10/11	06/15/11	EPA 6020
Silver	ND	mg/kg dry	0.100	20	B11F160	06/10/11	06/15/11	EPA 6020
Zinc	131	mg/kg dry	0.500	20	B11F160	06/10/11	06/15/11	EPA 6020
18_14 : W11F059-03								
Arsenic	3.97	mg/kg dry	0.500	20	B11F160	06/10/11	06/15/11	EPA 6020
Cadmium	1.22	mg/kg dry	0.100	20	B11F160	06/10/11	06/15/11	EPA 6020
Chromium	554	mg/kg dry	0.500	300	B11F160	06/10/11	06/15/11	EPA 6020
Copper	149	mg/kg dry	0.200	60	B11F160	06/10/11	06/15/11	EPA 6020
Lead	100	mg/kg dry	0.100	60	B11F160	06/10/11	06/15/11	EPA 6020
Mercury	0.0520	mg/kg dry	0.0100	20	B11F160	06/10/11	06/15/11	EPA 6020
Nickel	124	mg/kg dry	0.200	60	B11F160	06/10/11	06/15/11	EPA 6020
Silver	0.234	mg/kg dry	0.100	20	B11F160	06/10/11	06/15/11	EPA 6020
Zinc	343	mg/kg dry	0.500	60	B11F160	06/10/11	06/15/11	EPA 6020
18_ST7 : W11F059-04								
Arsenic	4.65	mg/kg dry	0.500	20	B11F234	06/15/11	06/16/11	EPA 6020
Cadmium	3.02	mg/kg dry	0.100	20	B11F234	06/15/11	06/16/11	EPA 6020
Chromium	93.6	mg/kg dry	0.500	80	B11F234	06/15/11	06/16/11	EPA 6020
Copper	134	mg/kg dry	0.200	20	B11F234	06/15/11	06/16/11	EPA 6020
Lead	175	mg/kg dry	0.100	80	B11F234	06/15/11	06/16/11	EPA 6020
Mercury	0.169	mg/kg dry	0.0100	20	B11F234	06/15/11	06/16/11	EPA 6020
Nickel	47.7	mg/kg dry	0.200	20	B11F234	06/15/11	06/16/11	EPA 6020
Silver	0.609	mg/kg dry	0.100	20	B11F234	06/15/11	06/16/11	EPA 6020
Zinc	730	mg/kg dry	0.500	80	B11F234	06/15/11	06/16/11	EPA 6020

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Nickel

Silver

Zinc

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11F059 Project Mgr: Linda Scheffler

53.8

1.28

478

mg/kg dry

mg/kg dry

mg/kg dry

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Total Metals Total Metals by ICPMS 18_15: W11F059-05 Arsenic EPA 6020 2.91 0.500 20 B11F160 06/10/11 06/15/11 mg/kg dry Cadmium 6.08 0.100 20 B11F160 06/10/11 06/15/11 EPA 6020 mg/kg dry Chromium 0.500 80 B11F160 06/10/11 06/15/11 EPA 6020 100 mg/kg dry Copper 0.200 80 B11F160 06/10/11 06/15/11 EPA 6020 92.7 mg/kg dry Lead 252 0.100 80 B11F160 06/10/11 06/15/11 EPA 6020 mg/kg dry 0.0100 20 B11F160 06/10/11 06/15/11 EPA 6020 Mercury 0.405 mg/kg dry

0.200

0.100

0.500

20

20

80

B11F160

B11F160

B11F160

06/10/11

06/10/11

06/10/11

06/15/11

06/15/11

06/15/11

EPA 6020

EPA 6020

EPA 6020

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Client: Director's Office **Portland Harbor** Project Mgr: Work Order: W11F059 Linda Scheffler

Units MRL Dilution Analyte Result Batch Prepared Analyzed Method Qualifier

<u>POI</u>	<u>/cni</u>	<u>orına</u>	<u>tea</u>	BI	<u>onen</u>	yıs	(PCBS	L
	۸	ما مسمام			<u> </u>			

Polychlorinated Biphenyls	(PCBs)									
PCB Aroclors by GC-ECD										
18_ST6: W11F059-01										Z0
Aroclor 1016/1242	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		34.	5 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		17.3	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1260	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		17.	3 1	B11F198	06/13/11	06/16/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	15.9		16.3	98%	62.5-132	B11F198	06/13/11	06/16/11	EPA 8082	
Decachlorobiphenyl	15.1		16.3	93%	43.5-150	B11F198	06/13/11	06/16/11	EPA 8082	
18_13 : W11F059-02										
Aroclor 1016/1242	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1260	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	10.6		11.4	93%	62.5-132	B11F198	06/13/11	06/16/11	EPA 8082	
Decachlorobiphenyl	11.0		11.4	96%	43.5-150	B11F198	06/13/11	06/16/11	EPA 8082	
18_14 : W11F059-03										
Aroclor 1016/1242	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1260	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		10.0	0 1	B11F198	06/13/11	06/16/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	13.0		13.1	99%	62.5-132	B11F198	06/13/11	06/16/11	EPA 8082	
Decachlorobiphenyl	12.7		13.1	97%	43.5-150	B11F198	06/13/11	06/16/11	EPA 8082	
18_ST7 : W11F059-04										Z0
Aroclor 1016/1242	ND	ug/kg dry		22.8	8 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		45.	7 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		22.8	8 1	B11F198	06/13/11	06/21/11	EPA 8082	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11F059 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Polychlorinated Biphenyls (PCBs)

i organiormatea Dipriengis	(1 ODS)									
PCB Aroclors by GC-ECD										
18_ST7: W11F059-04										Z0
Aroclor 1248	ND	ug/kg dry		22.8	3 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		22.8	3 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1260	ND	ug/kg dry		22.8	3 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		22.8	3 1	B11F198	06/13/11	06/21/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		22.8	3 1	B11F198	06/13/11	06/21/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	20.7		21.6	96%	62.5-132	B11F198	06/13/11	06/21/11	EPA 8082	
Decachlorobiphenyl	21.5		21.6	100%	43.5-150	B11F198	06/13/11	06/21/11	EPA 8082	
18_15 : W11F059-05										N
Aroclor 1016/1242	ND	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1248	365	ug/kg dry		50.0	5	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1260	69.4	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1262	ND	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Aroclor 1268	ND	ug/kg dry		10.0) 1	B11F198	06/13/11	06/16/11	EPA 8082	
Surrogate	Result		Expected	%Rec	Limits(%	5)				
Tetrachloro-m-xylene	10.7		12.2	87%	62.5-132	B11F198	06/13/11	06/16/11	EPA 8082	
Decachlorobiphenyl	12.5		12.2	102%	43.5-150	B11F198	06/13/11	06/16/11	EPA 8082	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11F059 Project Mgr: Linda Scheffler

Quality Control Report

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Solids - Batch B11F151									
Duplicate (B11F151-DUP1)			Source: W11F059-05						
Total solids	77.0	% W/W	0.01		75.7		2 (20)	06/09/11 :06/10/11	

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Total Metals by ICPMS						(=e)			
•	- Dalcii Di ir 100								
Blank (B11F160-BLK1)									
Arsenic	ND	mg/kg wet	0.500					06/10/11 :06/15/11	
Cadmium	ND	mg/kg wet	0.100					06/10/11 :06/15/11	
Chromium	ND	mg/kg wet	0.500					06/10/11 :06/15/11	
Copper	ND	mg/kg wet	0.200					06/10/11 :06/15/11	
Lead	ND	mg/kg wet	0.100					06/10/11 :06/15/11	
Mercury	ND	mg/kg wet	0.0100					06/10/11 :06/15/11	
Nickel	ND	mg/kg wet	0.200					06/10/11 :06/15/11	
Silver	ND	mg/kg wet	0.100					06/10/11 :06/15/11	
Zinc	ND	mg/kg wet	0.500					06/10/11 :06/15/11	
Standard Reference Mate	erial (B11F160-SRM1)								
Arsenic	197	mg/kg wet	0.500	225		88 (75-125)		06/10/11 :06/15/11	
Cadmium	67.7	mg/kg wet	0.100	69.1		98 (75-125)		06/10/11 :06/15/11	
Chromium	128	mg/kg wet	0.500	124		103 (75-125)		06/10/11 :06/15/11	
Copper	70.1	mg/kg wet	0.200	78.8		89 (75-125)		06/10/11 :06/15/11	
Lead	240	mg/kg wet	0.100	223		107 (75-125)		06/10/11 :06/15/11	
Mercury	4.962	mg/kg wet	0.0100	5.15		96 (75-125)		06/10/11 :06/15/11	
Nickel	173	mg/kg wet	0.200	172		101 (75-125)		06/10/11 :06/15/11	
Silver	35.1	mg/kg wet	0.100	35.2		100 (75-125)		06/10/11 :06/15/11	
Zinc	387	mg/kg wet	0.500	349		111 (75-125)		06/10/11 :06/15/11	
Duplicate (B11F160-DUP	1)	s	ource: W11F043-01						
Arsenic	4.52	mg/kg dry	0.500		4.49		0.7 (20)	06/10/11 :06/15/11	
Cadmium	2.81	mg/kg dry	0.100		2.75		2 (20)	06/10/11 :06/15/11	
Chromium	64.3	mg/kg dry	0.500		63.6		1 (20)	06/10/11 :06/15/11	
Copper	363	mg/kg dry	0.200		366		0.7 (20)	06/10/11 :06/15/11	
Lead	114	mg/kg dry	0.100		116		1 (20)	06/10/11 :06/15/11	
Mercury	0.8964	mg/kg dry	0.0100		0.8140		10 (20)	06/10/11 :06/15/11	
Nickel	50.3	mg/kg dry	0.200		48.5		4 (20)	06/10/11 :06/15/11	
Silver	13.1	mg/kg dry	0.100		13.2		0.8 (20)	06/10/11 :06/15/11	
Zinc	1060	mg/kg dry	0.500		1070		1 (20)	06/10/11 :06/15/11	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11F059 Project Mgr: Linda Scheffler

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Total Metals by ICPMS - I	Batch B11F160								
Matrix Spike (B11F160-MS	1)		Source: W11F043-01						
Arsenic	63.1	mg/kg dry	0.500	58.4	4.49	101 (75-125)		06/10/11 :06/15/11	
Cadmium	59.5	mg/kg dry	0.100	58.4	2.75	97 (75-125)		06/10/11 :06/15/11	
Chromium	234	mg/kg dry	0.500	175	63.6	97 (75-125)		06/10/11 :06/15/11	
Copper	677	mg/kg dry	0.200	292	366	106 (75-125)		06/10/11 :06/15/11	
Lead	411	mg/kg dry	0.100	292	116	101 (75-125)		06/10/11 :06/15/11	
Mercury	3.945	mg/kg dry	0.0100	2.92	0.8140	107 (75-125)		06/10/11 :06/15/11	
Nickel	335	mg/kg dry	0.200	292	48.5	98 (75-125)		06/10/11 :06/15/11	
Silver	69.2	mg/kg dry	0.100	58.4	13.2	96 (75-125)		06/10/11 :06/15/11	
Zinc	1390	mg/kg dry	0.500	292	1070	110 (75-125)		06/10/11 :06/15/11	
Total Metals by ICPMS - I	Batch B11F234								
Blank (B11F234-BLK1)									
Arsenic	ND	mg/kg wet	0.500					06/15/11 :06/16/11	
Cadmium	ND	mg/kg wet	0.100					06/15/11 :06/16/11	
Chromium	ND	mg/kg wet	0.500					06/15/11 :06/16/11	
Copper	0.202	mg/kg wet	0.200					06/15/11 :06/16/11	B2
Lead	ND	mg/kg wet	0.100					06/15/11 :06/16/11	D2
Mercury	ND	mg/kg wet	0.0100					06/15/11 :06/16/11	
Nickel	0.233	mg/kg wet	0.200					06/15/11 :06/16/11	B2
Silver	0.233 ND	mg/kg wet	0.100					06/15/11 :06/16/11	DZ
Zinc	ND	mg/kg wet	0.500					06/15/11 :06/16/11	
Standard Reference Materi			0.300					00/13/11 .00/10/11	
		<u> </u>	0.500	225		06 (75 425)		06/45/44 +06/46/44	
Arsenic	215	mg/kg wet	0.500	225		96 (75-125)		06/15/11 :06/16/11	
Cadmium	70.6	mg/kg wet	0.100	69.1		102 (75-125)		06/15/11 :06/16/11	
Chromium	143	mg/kg wet	0.500	124		115 (75-125)		06/15/11 :06/16/11	
Copper	70.9	mg/kg wet	0.200	78.8		90 (75-125)		06/15/11 :06/16/11	
Lead	245	mg/kg wet	0.100	223		110 (75-125)		06/15/11 :06/16/11	
Mercury	5.110	mg/kg wet	0.0100	5.15		99 (75-125)		06/15/11 :06/16/11	
Nickel	179	mg/kg wet	0.200	172		104 (75-125)		06/15/11 :06/16/11	
Silver	38.6	mg/kg wet	0.100	35.2		110 (75-125)		06/15/11 :06/16/11	
Zinc	383	mg/kg wet	0.500	349		110 (75-125)		06/15/11 :06/16/11	
Duplicate (B11F234-DUP1)			Source: W11F059-01						
Arsenic		mg/kg dry	0.500		3.91		3 (20)	06/15/11 :06/16/11	
Cadmium		mg/kg dry	0.100		2.01		2 (20)	06/15/11 :06/16/11	
Chromium		mg/kg dry	0.500		106		4 (20)	06/15/11 :06/16/11	
Copper	111		0.200		110		1 (20)	06/15/11 :06/16/11	
Lead	161	mg/kg dry	0.100		160		0.7 (20)	06/15/11 :06/16/11	
Mercury	0.1191	mg/kg dry	0.0100		0.1111		7 (20)	06/15/11 :06/16/11	
Nickel	45.3	mg/kg dry	0.200		45.5		0.3 (20)	06/15/11 :06/16/11	
Silver	0.291	mg/kg dry	0.100		0.261		11 (20)	06/15/11 :06/16/11	
Zinc	546	mg/kg dry	0.500		558		2 (20)	06/15/11 :06/16/11	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11F059 Project Mgr: Linda Scheffler

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch	B11F234								ĺ
Matrix Spike (B11F234-MS1)			Source: W11F059-01						
Arsenic	38.2	mg/kg dry	0.500	33.5	3.91	102 (75-125)		06/15/11 :06/16/11	
Cadmium	35.4	mg/kg dry	0.100	33.5	2.01	100 (75-125)		06/15/11 :06/16/11	
Chromium	213	mg/kg dry	0.500	101	106	107 (75-125)		06/15/11 :06/16/11	
Copper	277	mg/kg dry	0.200	168	110	100 (75-125)		06/15/11 :06/16/11	
Lead	333	mg/kg dry	0.100	168	160	103 (75-125)		06/15/11 :06/16/11	
Mercury	1.010	mg/kg dry	0.0100	0.838	0.1111	107 (75-125)		06/15/11 :06/16/11	
Nickel	212	mg/kg dry	0.200	168	45.5	99 (75-125)		06/15/11 :06/16/11	
Silver	33.3	mg/kg dry	0.100	33.5	0.261	98 (75-125)		06/15/11 :06/16/11	
Zinc	731	mg/kg dry	0.500	168	558	103 (75-125)		06/15/11 :06/16/11	

Polychlorinated Biphenyls (PCBs) - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
PCB Aroclors by GC-ECD - Batcl	n B11F198								
Blank (B11F198-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1221	ND	ug/kg wet	20.0					06/13/11 :06/16/11	
Aroclor 1232	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1248	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1254	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1260	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1262	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Aroclor 1268	ND	ug/kg wet	10.0					06/13/11 :06/16/11	
Surrogate									
Tetrachloro-m-xylene	9.78		ug/kg wet	10.0		98		06/13/11 :06/16/11	
Decachlorobiphenyl	10.7		ug/kg wet	10.0		107		06/13/11 :06/16/11	
Matrix Spike (B11F198-MS1)			Source: W11F059-03						N
Aroclor 1016/1242	125.3	ug/kg dry	10.0	131	ND	95 (55.2-135.4)		06/13/11 :06/16/11	
Aroclor 1260	160.6	ug/kg dry	10.0	131	ND	122 (19.6-166.5		06/13/11 :06/16/11	
Surrogate									
Tetrachloro-m-xylene	12.7		ug/kg dry	13.1		96 (62.5-132)		06/13/11 :06/16/11	
Decachlorobiphenyl	13.0		ug/kg dry	13.1		99 (43.5-150)		06/13/11 :06/16/11	
Matrix Spike Dup (B11F198-MSD1)			Source: W11F059-03						
Aroclor 1016/1242	137.1	ug/kg dry	10.0	131	ND	105 (55.2-135.4	9 (20)	06/13/11 :06/16/11	
Aroclor 1260	137.2	ug/kg dry	10.0	131	ND	105 (19.6-166.5	16 (20)	06/13/11 :06/16/11	
Surrogate									
Tetrachloro-m-xylene	12.1		ug/kg dry	13.1		92 (62.5-132)		06/13/11 :06/16/11	
Decachlorobiphenyl	11.6		ug/kg dry	13.1		88 (43.5-150)		06/13/11 :06/16/11	

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11F059 Project Mgr: Linda Scheffler

Qualifiers

B2 Analyte was detected in the Method Blank, but at a concentration less than one tenth the amount	nount in the sample(s).
--	-------------------------

N Refer to case narrative.

Z0 Reporting limits are raised for this sample due to low % solids.

Definitions

DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 07/12/11 13:42

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Date: 6/9/11

Work Order #: WILFOSO

MJS, PTB, PHA

Collected By:

Sediment

Matrix:

Requested Analyses

Project Name: Portland Harbor

Director's Office

Client Name:

Water Pollution Control Laboratory

6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Bureau of Environmental Services

	Γ	T		1			-	· · · · ·	 <u> </u>	1		1
	Remarks	ST-18-AAX318-0611 280.0g Total Wet Weight	IL-18-AAX318-0611	IL-18-AAX376-0611	ST-18-AAX278-0611 66.4g Total Wet Weight	IL-18-AAX278-0611				Date:	Time:	Pageof
	# of Containers	42	ၒ	9	4	9				Received By: Signature:	Printed Name:	Q.
										Date:	Time:	
	370 III00									Relinguished By: Signature:	Printed Name:	
- (low-level)	Pb, Hg, Ni, Ag PCB Aroclors Pesticides (Ic Grain Size	•	•	•	•	•				Date 6/9/11	Time: 1440	
(As, Cd, Cr, Cu	\$1 00T	•	•	•	•	•		}			SIGH	
ofher analyses.	Sample Sample Time Type	1130 C)5 C		ပ တ				ad By.	Mackenzin	
Basin 18 Sediment Traps * WPCL - Care should be taken during TS analysis to retain sample volume for other analyses.	Sample Date Time	6/9/2011 11	6/9/2011 1205	6/9/2011 1105	6/9/2011 1005	6/9/2011 1030				Date: 6 4 11 Signature:	Time: 1440 Printed Name	3-11).xls
S analysis to r	Install Time	1315			1335					Date	: .	rap COC (5-2
ent Traps Id be taken during TS	Install Date	12/21/2010	Wall of		12/21/2010	100				Bus	Brant	Portland Harbor - Basin 18 Sed Trap COC (5-23-11).xls
Basin 18 Sediment Traps *WPCL - Care should be taken do	Location ID	18_ST6	18_13	18_14	18_ST7	18_15		and the second s		Page 1	1 of 6	
	дшпу дет	0	8	03	90	02				aye	1 01 (J <u>C</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503) 906-9200

TestAmerica Job ID: PUF0461

Client Project/Site: W11F059

Client Project Description: Portland Harbor

For:

City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

Attn: Renee Chauvin

Authorized for release his

Authorized for release by: 06/28/2011 11:04:14 AM

Darrell Auvil Project Manager

darrell.auvil@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Sample Summary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
PUF0461-01	W11F059-01 (18_ST6)	Sediment	06/09/11 11:30	06/13/11 14:45
PUF0461-02	W11F059-02 (18_13)	Sediment	06/09/11 12:05	06/13/11 14:45
PUF0461-03	W11F059-03 (18_14)	Sediment	06/09/11 11:05	06/13/11 14:45
PUF0461-04	W11F059-04 (18_ST7)	Sediment	06/09/11 10:05	06/13/11 14:45
PUF0461-05	W11F059-05 (18_15)	Sediment	06/09/11 10:30	06/13/11 14:45

3456

Definitions/Glossary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

4

3

Qualifiers

General Chemistry

 Qualifier
 Qualifier Description

 F
 MS or MSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis.
EPA	United States Environmental Protection Agency
ND	Not Detected above the reporting level.
MDL	Method Detection Limit
RL	Reporting Limit
RE, RE1 (etc.)	Indicates a Re-extraction or Reanalysis of the sample.
%R	Percent Recovery
RPD	Relative Percent Difference, a measure of the relative difference between two points

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

Client Sample ID: W11F059-01 (18_ST6)

Lab Sample ID: PUF0461-01

Date Collected: 06/09/11 11:30 Matrix: Sediment

Date Received: 06/13/11 14:45

 General Chemistry
 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Organic Carbon
 72000
 2000
 mg/Kg
 06/22/11 16:12
 1

 Total Organic Carbon
 72000
 2000
 mg/Kg
 06/22/11 16:12

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 % Solids
 57.9
 0.0100
 % by Weight
 06/13/11 16:39
 06/13/11 16:40
 1.00

Page 4 of 11

2

3

4

5

6

Client: City of Portland Water Pollution Laboratory

Client Sample ID: W11F059-02 (18_13)

Project/Site: W11F059

TestAmerica Job ID: PUF0461

Lab Sample ID: PUF0461-02

Date Collected: 06/09/11 12:05 Matrix: Sediment

Date Received: 06/13/11 14:45

 Analyte
 Result Total Organic Carbon
 Qualifier Qualifier
 RL Qualifier RL Qualifier
 MDL Unit mg/Kg
 D Prepared Departed Manalyzed Prepared Manalyzed Dil Fac Mg/Kg
 D Dil Fac Mg/Kg

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

 Analyte
 Result % Solids
 Qualifier
 RL NDL % Solids
 MDL % by Weight
 Unit % by Weight
 D 06/13/11 17:43
 Analyzed Manalyzed (Manalyzed Model) (Ma

_

3

_

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

Client Sample ID: W11F059-03 (18_14)

Lab Sample ID: PUF0461-03

Date Collected: 06/09/11 11:05 Matrix: Sediment

Date Received: 06/13/11 14:45

 Analyte
 Result Total Organic Carbon
 Qualifier Qualifier
 RL Qualifier RL Qualifier RL MDL mit mg/Kg
 Unit mg/Kg
 D Prepared Defended Manalyzed Dil Fac Defended

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 % Solids
 60.2
 0.0100
 % by Weight
 06/13/11 17:43
 06/14/11 07:30
 1.00

3

4

Ð

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

3

Client Sample ID: W11F059-04 (18_ST7)

Lab Sample ID: PUF0461-04

Date Collected: 06/09/11 10:05 Matrix: Sediment

Date Received: 06/13/11 14:45

General Chemistry

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Total Organic Carbon 2000 mg/Kg 106/22/11 16:12 1

 Total Organic Carbon
 96000
 2000
 mg/Kg
 06/22/11 16:12

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 % Solids
 43.8
 0.0100
 % by Weight
 06/13/11 16:39
 06/13/11 16:40
 1.00

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

TestAmerica Job ID: PUF0461

Lab Sample ID: PUF0461-05 Client Sample ID: W11F059-05 (18_15)

Date Collected: 06/09/11 10:30 **Matrix: Sediment**

Date Received: 06/13/11 14:45

General Chemistry Analyte MDL Unit Dil Fac Result Qualifier Prepared Analyzed **Total Organic Carbon** 23000 2000 mg/Kg 06/23/11 14:10

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

MDL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.0100 % Solids 69.2 06/13/11 17:43 06/14/11 07:30

3

Prep Type: Total/NA

Client Sample ID: PUF0461-01

Prep Type: Total/NA

Prep Type: Total/NA

3

Client: City of Portland Water Pollution Laboratory

Project/Site: W11F059

Method: 9060	- Organic (Carbon, '	Total ((TOC
--------------	-------------	-----------	---------	------

Lab Sample ID: MB 580-88604/17 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 88604

Analyte RL MDL Result Qualifier Unit Prepared Analyzed Dil Fac Total Organic Carbon ND 2000 mg/Kg 06/22/11 16:12

MB MB

Lab Sample ID: MB 580-88604/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 88604

мв мв MDL Dil Fac Result Qualifier RL Unit Prepared Analyzed Total Organic Carbon ND 2000 06/22/11 16:12 mg/Kg

Lab Sample ID: LCS 580-88604/18 Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 88604

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Total Organic Carbon 2720 4200 mg/Kg 154 34 - 166

Lab Sample ID: LCS 580-88604/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 88604

LCS LCS Spike % Rec. Analyte Added Limits Result Qualifier Unit D % Rec Total Organic Carbon 2720 4200 154 34 - 166 mg/Kg

Lab Sample ID: 580-26836-1 MS

Matrix: Solid

Analysis Batch: 88604

Sample Sample Spike MS MS % Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit % Rec 19800 Total Organic Carbon 72000 80600 F 76 - 128 mg/Kg

Lab Sample ID: 580-26836-1 DU Client Sample ID: PUF0461-01

Matrix: Solid

Analysis Batch: 88604

DU DU RPD Sample Sample RPD Result Qualifier Result Qualifier Unit D Limit **Total Organic Carbon** 72000 66700 mg/Kg 50

Method: ASTM D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

Lab Sample ID: 11F0414-DUP1 Client Sample ID: Duplicate **Matrix: Soil Prep Type: Total** Analysis Batch: 11F0414 Prep Batch: 11F0414 P

Duplicate Duplicate RPD Sample Sample Analyte Result Qualifier Result Qualifier RPD Limit Unit % Solids 93.2 93.3 % by 0.121 20

Weight

SUBCONTRACT ORDER

Puf0461

City of Portland Water Pollution Control Lab W11F059

-0461

SENDING LABORATORY:

City of Portland Water Pollution Control Lab

6543 N. Burlington Ave Portland, OR 97203 Phone: 503-823-5600 **RECEIVING LABORATORY:**

TestAmerica

9405 SW Nimbus Ave Beaverton, OR 97008

Fax: 503-823-5656 Invoice To: Charles Lytle using	P.O.# 30001516	Phone :(503) 906 Fax: (503) 906-92	
WPCL Project Name			TURNAROUND REQUEST
Portland Harbor		X Standard	d The Market of
		Rush _ d	day(s)
Analysis	Due	Expires	Laboratory ID Comments
Sample ID: W11F059-01		Sampled:06/09/11 11:30	
Out-TOC Solid	06/23/11 17:00	06/23/11 11:30	limited volume, do not use for QC. Use our TS result
Containers Supplied:			
G jar 4 oz (B)			total Solids = 57.990
Sample ID: W11F059-02	Solid	Sampled:06/09/11 12:05	
Out-TOC Solid	06/23/11 17:00	06/23/11 12:05	
Out-Grain Size ASTM (ARI)	06/23/11 17:00	06/23/11 12:05	
Containers Supplied:			
G jar amber 8 oz (A)			
Sample ID: W11F059-03	Solid S	Sampled:06/09/11 11:05	
Out-TOC Solid	06/23/11 17:00	06/23/11 11:05	
Out-Grain Size ASTM (ARI)	06/23/11 17:00	06/23/11 11:05	
Containers Supplied:			
G jar amber 8 oz (A)			
_			
Sample ID: W11F059-04	Solid S	Sampled:06/09/11 10:05	
Out-TOC Solid	06/23/11 17:00	06/23/11 10:05	limited volume, do not use for
Containers Supplied:		and the second	QC. Use our TS result
G jar 4 oz (B)			total Solids = 43,890
	Sight .		10120125-101078
Sample ID: W11F059-05		ampled:06/09/11 10:30	
Out-TOC Solid	06/23/11 17:00	06/23/11 10:30	
Containers Supplied:			
G jar amber 8 oz (A)			• 45
1000	013109	5	
LX T	6/13/11	1 16-00	1/0/0
Released By	Date	Received By	6/13/11 @ 13:05
3.16		f or C	Date 1985
Released By	Ce/13/11@14:4	5 A KAKE	1 WILSON 6-13-11 -HIS.
reieaseu by	Date /	Received By-	Date

Page 2 of 2

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Portland Sample Control Checklist

or tiand Sample Control Checkist
Work Order #: Puf 04 (1 Date/Time Received: 6-13-11 1445
Client Name: CITY OF PORTCAND
Time Zone: PORTIANS HARBOR WIF 059
□EDT/EST □CDT/CST □MDT/MST □PDT/PST □AK □HI □OTHER
Unpacking Checks: Temperature out of Range:
Cooler (s):
Temperature (s): 25, 7
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
Raytek Other:
Ice used: (circle one) GEL LOOSE BLUE NONE OTHER: Initials:
N/A Yes No
☐ 1. If ESI client, were temp blanks received? If no, document on NOD.
☐ 2. Cooler Seals intact? (N/A if hand delivered) if no and ESI client, document on NOD.
3. Chain of Custody present? If no, document on NOD. Along with "received by" &
"relinquished by" signatures with date & time? 4. Bottles received intact? If no, document on NOD.
☐ ☐ 6. Sampler name/signature documented on COC?
7. Proper Container and preservatives used? If no, document on NOD.
□ 8. pH for HN03/ESI samples checked and meet requirements? If no, document on NOD.
☑ ☐ 9. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
☐ ☐ 10. HF Dilution required?
11. Sufficient volume provided for all analysis and requested MS/MSD? If no,
document on NOD and consult PM before proceeding. 12. Did chain of custody agree with samples received? If no, document on NOD.
☐ ☐ 13. Were VOA samples received without headspace?
14. Did samples require preservation with sodium thiosulfate?
☐ 15. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
□ 16. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
☐ ☐ 17. Are analyses with short holding times received in hold?
18. Were special log- in instructions read and followed?
Checklist Reviewed: Log-in initials: Labeler initials:

9405 SW Nimbus Ave, Beaverton OR 97008 tel 503.906.9200 fax 503.906.9210 www.testamericainc.com

23 June 2011

Darrell Auvil Test America 9405 SW Nimbus Ave. Beaverton, OR 97008

RE: Project: PUF0461 ARI Job No. TA66

Dear Darrell:

Please find enclosed the original Chain-of-Custody record and the final results for the samples from the project referenced above. Analytical Resources, Inc. accepted two sediment samples on June 15, 2011. The samples were analyzed for grain size as requested.

A copy of these reports will remain on file at ARI. Should you have any questions regarding these results, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file TA66

MDH/bc

Subcontract Order - TestAmerica Portland (PUF0461)

	-	١. ،	
SENDING LABORATORY:	<u> </u>	RECEIVING LAR	BORATORY:
TestAmerica Portland	•	Analytical Res	ources, Inc. (ARI)
		•	Place, Suite 100
9405 SW Nimbus Ave.		Tukwilla, WA 9	·
Beaverton, OR 97008		•	
Phone: (503) 906-9200		Phone :(206) 6 Fax: 206-621-	
Fax: (503) 906-9210 Project Manager: Darrell	Auszil	Project Location	
Project Manager. Danten.	Auvii	Receipt Temper	•
Analysis	Units	due date is requested. => Due Date Expires	:: <u>(123 11</u> Initials: (11)
Sample ID: PUF0461-02 (V	V44E050 02 /18 /		
		Sampled, 06/09/11	
Grain Size (ASTM) - SUB	ug/l	12/06/11 12:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:			
8 oz. jar (A)			
Sample ID: PUF0461-03 (V	V11F059-03 (18_	14) - Sediment) Sampled: 06/09/11	11:05
Grain Size (ASTM) - SUB	ug/l	12/06/11 11:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:			
8 oz. jar (A)			

Released By Date/Time Received By Date/Time

Released By Date/Time

Received By

Date/Tim Page 24 of 62

Cooler Receipt Form

ARI Client: 1657 An	1erica	Project Name:		
COC No(s):			ourier Hand Delivered Othe	
Assigned ARI Job No: TAU	10		74.93374	
Preliminary Examination Phase:	4	Tracking No. 42.47	4.2.3314	NA
•		in the contract of the contract	(VEC)	NO
Were intact, properly signed and de	•		(YES.)	NO
Were custody papers included with	the cooler?		YES.	NO
Were custody papers properly filled	I out (ink, signed, etc.)		YES	NO
Temperature of Cooler(s) (°C) (reco	ommended 2.0-6.0 °C for che	emistry) <u>3.C</u>		
If cooler temperature is out of comp	oliance fill out form 00070F		Temp Gun ID#: 27	411019
Cooler Accepted by:	AV	Date: <u>\(\sigma / 19(1)</u> Ti	ime: <u>/////</u>	
	Complete custody forms	and attach all shipping documen	•	
Log-In Phase:				
Was a temperature blank included	in the cooler?		YES	(NO)
What kind of packing material wa		p Wet Ice Gel Packs Baggies Foa		
Was sufficient ice used (if appropria			NA YES	NO
Were all bottles sealed in individual			Publi YES	NO
Did all bottles arrive in good conditi	, ,		YES	NO
			YES	NO
·	•	nber of containers received?		NO
				NO
Were all bottles used correct for the			(YES)	NO
	•	reservation sheet, excluding VOCs)		NO
Were all VOC vials free of air bubbl	. , , , , , , , , , , , , , , , , , , ,	,	NA YES	NO
Was sufficient amount of sample se			YES	NO
,				,,,0
Was Sample Split by ARI: (NA)		Equipment:	Split by:	
	,	. 1. 1.	-4	
Samples Logged by:	Date	e: <u>(1) 5</u> Time	::ICIC	
	** Notify Project Manag	er of discrepancies or concerns *	*	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on Co	oc
Additional Notes, Discrepancies,	& Resolutions:			
_				
By: Date Small Air Bubbles Peabubbles		Small N 4 2		
-2mm 2-4 mm	LARGE Air Bubbles > 4 mm	Small → "sm"		
	• • • •	Peabubbles → "pb" Large → "lg"		
	Access of the second se	Headspace → "hs"		
		Alcauspace / 113		

0016F 3/2/10 Cooler Receipt Form

Revision 014

Page 25 of 62

Client: Test America, Inc.

ARI Job No.: TA66

Client Project No.: PUF0461

Case Narrative

1. Two samples were submitted for analysis on June 15, 2011, and were in good condition.

2. The samples were submitted for grain size distribution according to ASTM D422. The samples were prepared according to ASTM D421.

3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.

4. A standard milkshake mixer type device was used to disperse the fine fraction sample.

5. One sample from another job was chosen for triplicate analysis. The triplicate data can be found on the QA summary table.

6. One sample required curve fitting between the sand and silt fractions. Due to the sandy nature of the sample, there was not enough fine material to acquire accurate hydrometer readings.

7. The data is provided in summary tables and plots.

8. There were no further anomalies in the samples or test method.

Approved by:

Technician

Date: June 23,2011

Sample ID Cross Reference Report

ARI Job No: TA66
Client: Test America, Inc.
Project Event: PUF0461
Project Name: N/A

Sample ID	ARI Lab ID	ARI LIMS ID Matrix	Sample Date/Time	VTSR
1. PUF0461-02	TA66A	11-12986 Sediment		06/15/11 10:00
2. PUF0461-03	TA66B	11-12987 Sediment		06/15/11 10:00

Printed 06/15/11

Page 27 of 62

Test America, Inc. PUF0461

Percent Finer (Passing) Than the Indicated Size

Sieve Size (microns)	3,	2	1 1/2" 1"	-	3/4"	1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100	#200	32	22	13	o,	7	3.2	1.3
	100.0	100.0	100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	6.66	99.2	98.5	97.9	97.4	95.7	79.0	68.6	54.7	49.5	38.2	21.7	13.0
SW21G	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	6.66	8.86	6.76	97.3	96.8	94.7	78.0	9.99	53.5	43.0	34.2	19.3	10.5
	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	8.66	99.0	98.2	97.6	97.1	94.7	76.4	62.9	52.9	44.3	34.7	19.1	11.3
PUF0461-02	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	95.0	77.4	47.3	26.8	16.1	10.5	7.9	6.2	6.1	5.0	4.4	3.9	1.7	1.4	0.0
PUF0461-03	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	100.0	98.6	93.2	6.97	59.4	44.1	35.8	28.5	22.5	17.2	15.9	11.9	5.3	2.6	0.0

Testing performed according to ASTM D421/D422

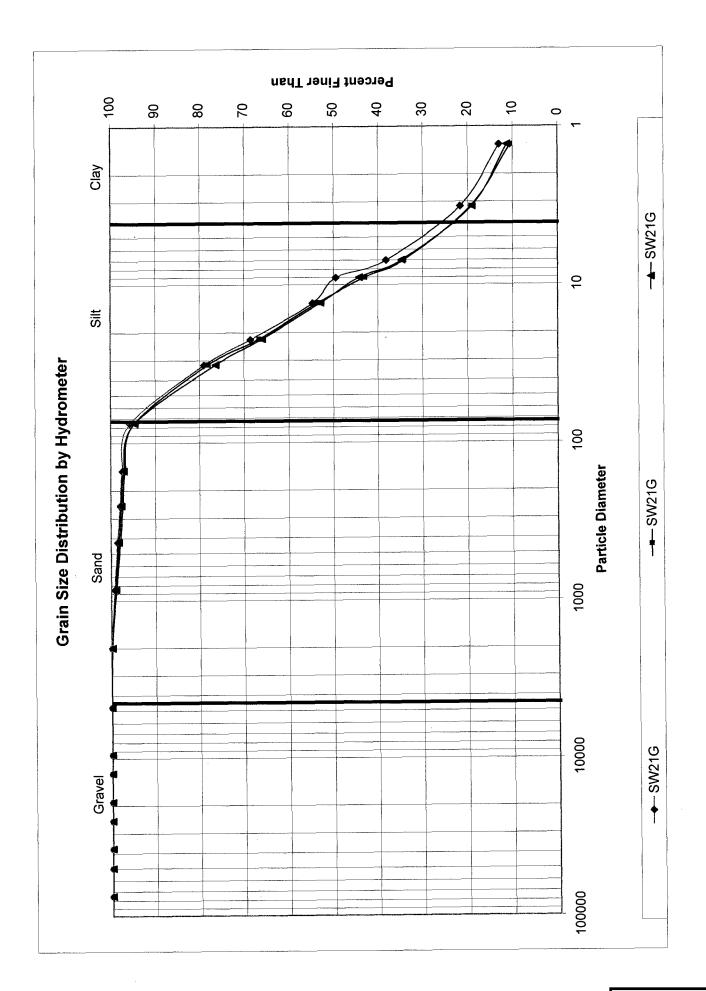
Page 28 of 62

Test America, Inc. PUF0461

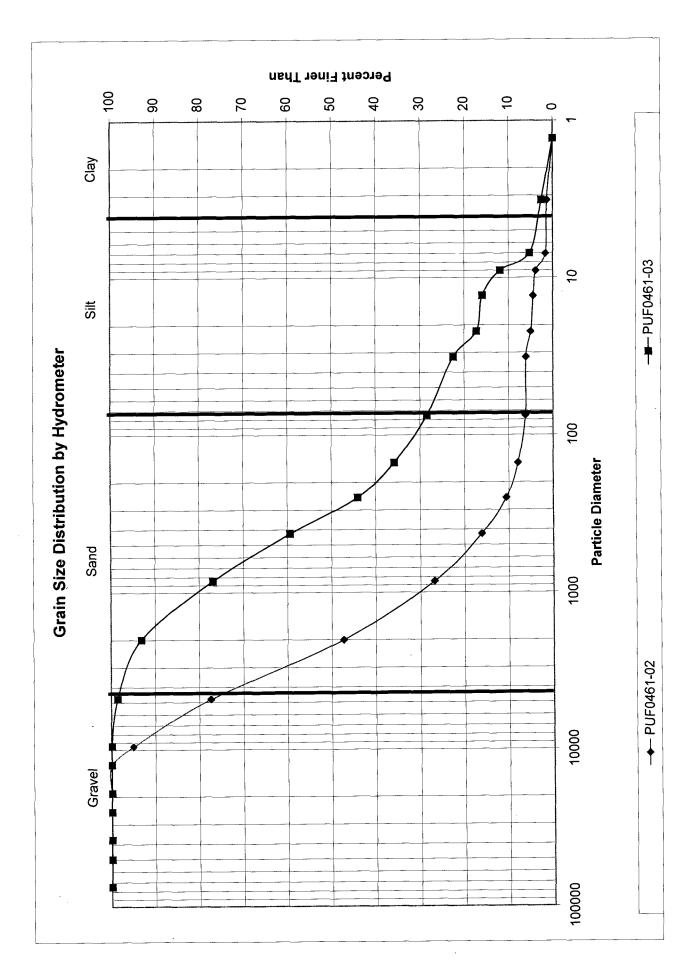
% Clay 19.3 19.1 2.6 % Very Fine Silt 7-3.2 16.5 14.9 15.6 0.3 % Fine Silt 11.3 8.8 9.5 6-7 % Fine Silt 5.2 13-9 8.7 9.0 4.0 Medium Silt 22-13 13.0 13.2 £. % Very % Coarse Coarse Silt 32-22 11.4 10.4 10.4 7 5.3 75-32 18.3 9.0 16.7 150-75 7.3 1.7 2.1 % Fine Sand 425-250 250-150 2.6 89 33 0.5 0.5 0.5 15.3 9.0 9.0 5.6 Percent Retained in Each Size Fraction 2000-850 850-425 17.5 10.8 % Medium Sand 0.9 20.5 16.2 0.9 7 0.7 % Coarse Sand 4750-2000 30.1 5.4 0.1 0.5 0.7 1/2-3/8" 3/8"-4750 17.6 0.0 0.0 0.0 4. % Gravel 0.0 0.0 0.0 5.0 0 3/4-1/2" 0.0 0.0 0.0 0.0 0.0 1-3/4" 0.0 0.0 000 8 1 1/2"-1" 0.0 0.0 8 8 **%Coarse Gravel** 0.0 2-1 1/2" 0.0 0.0 0.0 00 0.0 3-2 00 Particle Size (microns) PUF0461-02 PUF0461-03 Description SW21G

Test America, Inc. PUF0461 LIMS data entry

Particle Size (microns)	2" (50K)	1.5" (37.5K)	1" (25K)	3/4" (19000)	1/2" (12500)	3/8"	(4750)	(2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	13	6	۷	3.2	1.3	۸-13
	8	00	0.0	0.0	0.0	0.0	0.0	1.0	0.7	2.0	9.0	0.5	1.8	18.7	10.4	13.9	5.2	11.3	16.5	8.7	13.0
SW21G	0:	0.0	0.0	0.0	0.0	0.0	0.0	0.1	£	6.0	9.0	0.5	2.1	16.7	11.4	13.2	10.5	8.8	14.9	8.8	10.5
•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	6.0	7.0	9.0	0.5	2.4	18.3	10.4	13.0	8.7	9.5	15.6	7.8	11.3
PUF0461-02	0.0	0.0	0.0	00	0.0	5.0	17.6	30.1	20.5	10.8	5.6	2.6	1.7	0.1	1.1	9.0	9.0	2.2	0.3	4.4	0.0
PUF0461-03	0.0	0:0	0.0	0.0	0.0	0.0	1.4	5.4	16.2	17.5	15.3	8.3	7.3	6.0	5.3	1.3	4.0	6.6	2.6	2.6	8


1465:

Page 30 of 62


					Client	-	Test America, Inc.	<u>1</u>		e	Project No.:		<u>.</u>	PUF0461							
				AR! Trip	AR! Triplicate Sample ID:		SW21G			ä	Batch No.:		TA66-01								
											Page:	ţ	1 of 1								
								E	elative Star	ndard Devia	Relative Standard Deviation, By Size										
ample ID	75000	20000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	32	22	13	6	7	3.2	1.3
SW216	100.0	1000	1000	100.0	100.0	100.0	100.0	100.0	6.66	99.2	98.5	6.79	97.4	95.7	0.62	9.89	54.7	49.5	38.2	21.7	13.0
SW21G	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	6.66	8.8	97.9	97.3	8.98	94.7	78.0	9.99	53.5	43.0	34.2	19.3	10.5
SW21G	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	8.66	0.66	98.2	97.6	97.1	94.7	76.4	62.9	52.9	44.3	34.7	19.1	11.3
AVE	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.89	99.01	98.22	97.59	97.12	95.01	77.79	67.05	53.70	45.56	35.70	20.03	11.61
STDEV	000	000	00.0	0.00	0.00	0.00	0.00	0.00	0.04	0.20	0.32	0.31	0.32	0.58	1.33	1.36	0.89	3.44	2.17	1.45	1.28
%RSD	0.00	80	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.21	0.32	0.32	0.33	0.61	1.71	2.02	1.66	7.56	80.9	7.25	11.03

Samples
Following
홑
Containing
Batch
ŧ
₽
applies
Triplicate
This

Sample ID	Date Sampled		Date Started	Date Complete	Data Qualifiers
	3/11/2011		5/19/2011	5/23/2011	
SW21G	3/11/2011		5/19/2011	5/23/2011	
	3/11/2011	5/17/2011	5/19/2011	5/23/2011	
PUF0461-02	6/2/2011	6/3/2011	6/4/2011	6/5/2011	
PUF0461-03	6/2/2011	6/3/2011	6/4/2011	6/5/2011	

Page 32 of 62

6 July 2011

Darrell Auvil Test America 9405 SW Nimbus Ave. Beaverton, OR 97008

RE: Project: PUF0461 ARI Job No. TB12

Dear Darrell:

Please find enclosed the original Chain-of-Custody record and the final results for the sample from the project referenced above. Analytical Resources, Inc. accepted one sediment sample on June 17, 2011. The sample was analyzed for grain size as requested.

A copy of these reports will remain on file at ARI. Should you have any questions regarding these results, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris
Project Manager
206/695-6210
markh@arilabs.com

Enclosures

cc: file TB12

MDH/bc

Subcontract Order - TestAmerica Portland (PUF0461)

SENDING LABORATORY:		RECEIVING LABO	RATORY:
TestAmerica Portland		Analytical Resou	ırces, Inc. (ARI)
9405 SW Nimbus Ave.		4611 S 134th Pla	ace, Suite 100
Beaverton, OR 97008		Tukwilla, WA 98 ⁻	
Phone: (503) 906-9200		Phone :(206) 62	1-6490
Fax: (503) 906-9210		Fax: 206-621-75	23
Project Manager: Darrell	Auvil	Project Location:	
		Receipt Temperati	ure:°C
W11F059 Autolog from WPCL 0	06/13/11 15:44		
Standard TAT is requeste	d unless specific	due date is requested. => Due Date: _	Initials:
Analysis	Units	Expires	Comments
Sample ID: PUF0461-02 (W Grain Size (ASTM) - SUB	ug/l	3) - Sediment) Sampled: 06/09/11 12: 12/06/11 12:05	sub to Analytical Resources Inc (ARI)
Containers Supplied: 8 oz. jar (A)			
Sample ID: PUF0461-03 (W	11F059-03 (18_1	4) - Sediment) Sampled: 06/09/11 11:	
Grain Size (ASTM) - SUB	ug/l	12/06/11 11:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:			
8 oz. jar (A)			
Sample ID: PUF0461-05 (W	/11F059-05 (18_1	5) - Sediment) Sampled: 06/09/11 10:	30
Grain Size (ASTM) - SUB	ug/l	12/06/11 10:30	sub to Analytical Resources Inc (ARI)
Containers Supplied:			

Released By

Date/Time

Date/Time

Date/Time

Received By

Date/Time

Date/Time

Date/Time

Date/Time

Date/Time

Date/Time

Page 1 of 1

Page 35 of 62

Subcontract Order - TestAmerica Portland (PUF0461)

	<u>:</u>	RECEIVING LA	
TestAmerica Portland		Analytical Res	ources, Inc. (ARI)
9405 SW Nimbus Ave.		4611 S 134th	Place, Suite 100
Beaverton, OR 97008		Tukwilla, WA 9	
Phone: (503) 906-9200		Phone :(206) 6	
Fax: (503) 906-9210		Fax: 206-621-	
Project Manager: Darrell	Auvil	Project Location	
•		Receipt Temper	
MAA FOEO Autolog from MOOL	06/12/11 15:44		
W11F059 Autolog from WPCL	06/13/11 15.44		
Standard TAT is requeste	ed unless specific d	ue date is requested. => Due Date	: Initials:
Analysis	Units	Expires	Comments
D. BUE0464 60 (4	M44E0E0 02 (49 42)	(Cadimont)	
Sample ID: PUF0461-02 (W		Sampled: 06/09/11	12:05 sub to Analytical Resources Inc (ARI)
Grain Size (ASTM) - SUB	ug/l	12/06/11 12:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:			
8 oz. jar (A)			
Sample ID: PUF0461-03 (V	V11F059-03 (18_14)	- Sediment) Sampled: 06/09/11	
Grain Size (ASTM) - SUB	ug/l	12/06/11 11:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:			
8 oz. jar (A)			
8 oz. jar (A)			
	V11F059-05 (18_15)	- Sediment) Sampled: 06/09/11	10:30
		Sampled: 06/09/11 12/06/11 10:30	10:30 sub to Analytical Resources Inc (ARI)
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Sample ID: PUF0461-05 (V		Sampled, 00/09/11	
Grain Size (ASTM) - SUB		Sampled, 00/09/11	
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Gample ID: PUF0461-05 (V		Sampled, 00/09/11	
Grain Size (ASTM) - SUB		Sampled, 00/09/11	
Sample ID: PUF0461-05 (V		Sampled, 00/09/11	
Sample ID: PUF0461-05 (V		Sampled, 00/09/11	
Grain Size (ASTM) - SUB		Sampled, 00/09/11	
Grain Size (ASTM) - SUB		Sampled, 00/09/11	sub to Analytical Resources Inc (ARI)

Released By Date/Time Received By Date/Time Page 1 of 1

Page 36 of 62

Analytical Chemist		Cooler Dee	aint Ea		
	s and Consultants	Cooler Rec	eipt Fo	orm	
ARI Client: Lest AM	evica	Project Name:			
COC No(s):	NA	Delivered by: Fed-Ex UPS Cou	rier Hand Delive	red Other	
	B12	Tracking No:			NA
Preliminary Examination Phase:		Tracking No	CO COL	·····	NA
Were intact, properly signed and d	ated custody social attached to th	a outside of to applied?	4	a a	NO
			Ç	2	NO
Were custody papers included with			Ψ.	256	NO
Were custody papers properly fille		(/)	E.	ES	NO
Temperature of Cooler(s) (°C) (rec		stry)		स्वरूप (czni
If cooler temperature is out of com	pliance fill out form 00070F	1.7/11	Temp Gun ID#:		614.
Cooler Accepted by:		Date: 6 7 7 Time	<u> </u>	0	
	Complete custody forms and	d attach all shipping documents			
Log-In Phase:					
Was a temperature blank included	in the applor?			(ES)	NO
What kind of packing material wa		Vet Ice Gel Packs (Baggies) Foam	Block Boner Ot		NO
Was sufficient ice used (if appropri			NA NA		NO.
			NA	YES	NO NO
Were all bottles sealed in individual Did all bottles arrive in good condit	· ·			(YES)	NO
Were all bottle labels complete and				(YES)	NO NO
Did the number of containers listed	-			TED	NO 7
Did all bottle labels and tags agree				F	₩ / 100 /
Were all bottles used correct for th				(YES)	NO
Do any of the analyses (bottles) re		(NA	YES		
Were all VOC vials free of air bubb	·				NO
			(NA)	YES	NO
Was sufficient amount of sample s Date VOC Trip Blank was made at			(G)	(YES)	NO
Was Sample Split by ARI: NA	}	Facilities	(NA)	0-14-5	
was Sample Split by ARI: WA		Equipment:		Split by:	
Samples Logged by:	Date.	6-17-11 Time:	1450		
		of discrepancies or concerns **			
				·	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
Campio 15 on Bottle	Jampie ID On COC	Sample ID On Dottle	Sample	יוט טוו כטכ	
			 		
				 -	

		Jampio ID OII GGG	Campie in Cit Bettie	Odinpic ID On OOO
Additional Notes, D	iscrepancies, & Re	esolutions:	3	#- 11 ⁻¹²
on 14	1 of 3	gan ples	recieved	a at (16.15)
- /	Sample	puf 04	recieved 61-05 [WIIF05	4-05 (18" 1)
ву:	Date:	6-28-11		
Small Air Butbbles	Peabubbles'	LARGE Air Bubbles	Small → "sm"	
- Zhan	2-4 mm	> 4 mm	Peabubbles → "pb"	
	• • •	9 9 9	Large → "lg"	
	The second secon	' (Headspace → "hs"	

0016F 3/2/10 Cooler Receipt Form

Revision 014

Sample ID Cross Reference Report

ARI Job No: TB12 Client: Test America, Inc. Project Event: PUF0461

Project Name: N/A

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	PUF0461-03(W11F059-02)	(1TB12A	11-13381	Sediment	06/09/11 10:30	06/17/11 06:40

Printed 06/17/11

Page 38 of 62

Client: Test America, Inc.

ARI Job No.: TB12

Client Project: PUF0461

Case Narrative

- 1. One sample was submitted for grain size analysis on June 17, 2011, and was in good condition.
- 2. The sample was submitted for grain size distribution according to ASTM D422. The sample was prepared according to ASTM D421.
- 3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.
- 4. A standard milkshake mixer type device was used to disperse the fine fraction sample.
- 5. One sample from another job was chosen for triplicate analysis. The triplicate data can be found on the QA summary table.
- 6. The data is provided in summary tables and plots.
- 7. There were no further anomalies in the samples or test method.

Approved by:

Geotechnical Laboratory Manager

Date:

Test America, Inc. PUF0461

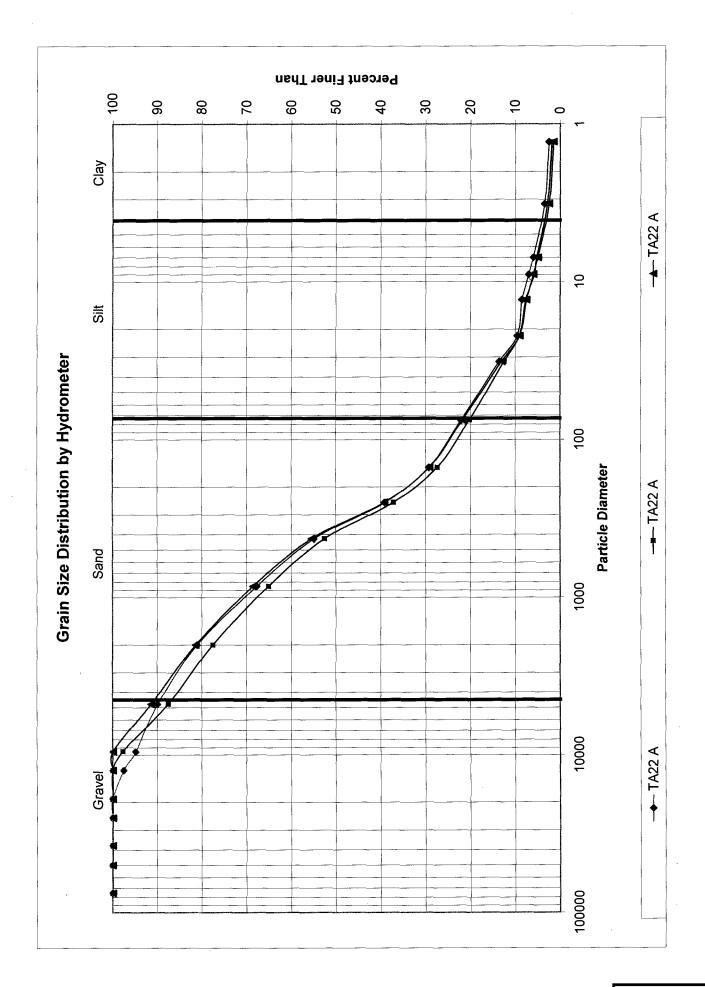
Percent Finer (Passing) Than the Indicated Size

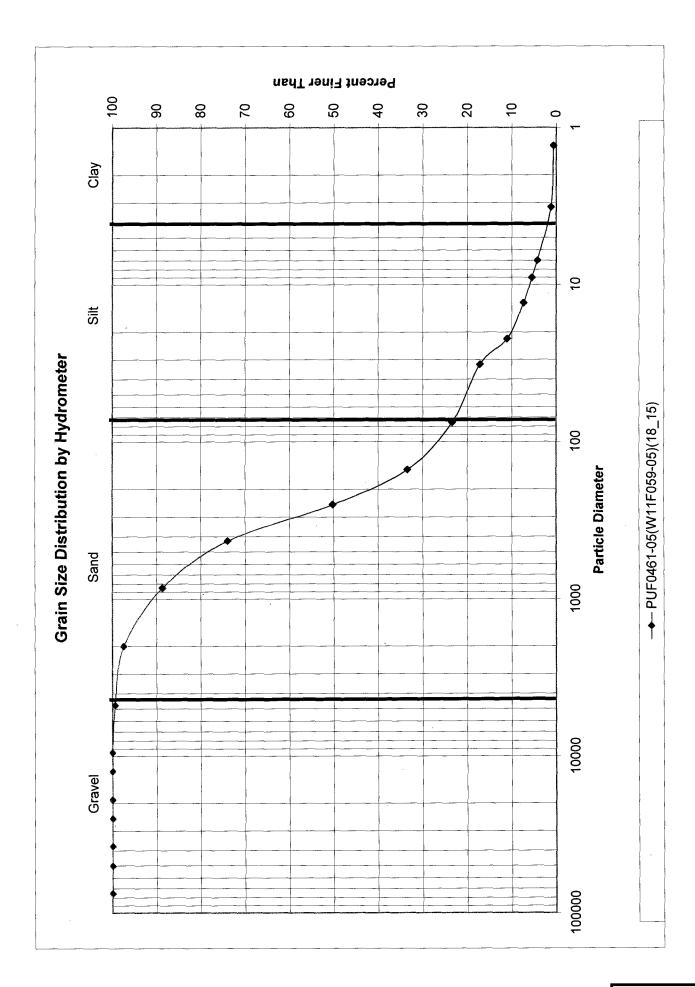
Sieve Size (microns)	ę.	2"	3" 2" 1 1/2" 1" 3/4"	ŧ.		1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	€	o	7	3.2	1.3
	100.0	100.0	100.0	100.0	100.0 100.0 100.0 100.0 100.0	97.5	94.9	89.9	81.1	67.7	54.9	39.1	29.2	22.1	13.6	9.6	9.6	7.0	6.0	3.5	2.5
TA22 A	100.0	100.0	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100	100.0	8.76	87.5	77.5	65.1	52.6	37.1	27.4	20.3	12.5	9.1	7.7	5.8	5.3	2.9	1.9
	100.0	100.0	100.0	100.0	100.0 100.0 100.0 100.0 100.0 100	100.0	100.0	91.4	81.4	9:89	55.5	39.2	29.2	21.9	13.0	0.6	7.5	6.0	5.0	2.5	1.5
PUF0461-05(W11F059- 05)(18_15)	100.0	100.0	100.0	100.0	100.0 100.0 100.0 100.0 100.0		100.0	99.4	97.4	88.8	74.0	50.2	33.4	23.4	17.1	11.0	7.3	5.5	4.3	1.2	9.0

Testing performed according to ASTM D421/D422

Test America, Inc. PUF0461

Percent Retained in Each Size Fraction


% Clay <3.2 3.5 2.9 2.5 1,2 % Very Fine Silt 7-3.2 2.5 £. % Fine Silt 0.5 1.0 0. 7. 2-6 % Fine Silt 13-9 1.9 1.5 5. 8. % Medium Silt 22-13 1.0 4. 1.5 3.7 % Very Coarse Coarse Silt 32-22 4.0 3.4 4.0 6.1 75-32 8.6 7.8 8.8 6.3 150-75 10.0 7.3 7.1 7.1 % Fine Sand 250-150 10.0 16.8 9.8 9.7 425-250 15.9 15.4 16.2 23.8 850-425 % Medium Sand 12.8 12.6 13.1 14.8 2000-850 13.3 12.4 12.8 8.7 % Coarse Sand 4750-2000 10.0 10.0 8.9 2.0 3/8"-4750 10.3 9. 8.6 9.0 % Gravel 1/2-3/8" 2.2 0.0 0.0 3/4-1/2" 0.0 0.0 1-3/4" 0.0 0.0 8 0.0 1 1/2"-1" **%Coarse Gravel** 0.0 8 0.0 0.0 2-1 1/2" 0.0 0.0 3-2" 0000 0.0 PUF0461-05(W11F059-05)(18_15) Particle Size (microns) Description TA22 A


PUF0461	TB12-01	1 of 1
Project No.: PUF0461	Batch No.:	Page:
Test America, Inc.	D: TA22 A	
Client:	ARI Triplicate Sample ID:	

\mathbb{H}	10000																
100.0	_	12500	9500	4750	2000	850	425	250	150	75	32	22	13	6	2	3.2	1.3
١	0.001	97.5	94.9	89.9	81.1	2.79	54.9	39.1	29.5	22.1	13.6	9.6	8.6	7.0	6.0	3.5	2.5
10000	H	100.0	87.8	87.5	5.77	65.1	52.6	37.1	27.4	20.3	12.5	9.1	7.7	5.8	5.3	2.9	1.9
┡	H	100.0	100.0	914	81.4	68.6	55.5	39.2	29.2	21.9	13.0	9.0	7.5	6.0	5.0	2.5	1.5
100.00	100.00	99.18	92.76	89.62	79.99	67.15	54.31	38.47	28.61	21.43	13.04	9.24	7.92	6.28	5.45	2.97	1.98
-	00.0	1.42	2.57	1.94	2.13	1.82	1.55	1.15	1.03	1.00	0.55	0.28	0.55	0.68	0.53	0.51	0.51
0.00 0.00 0.00	00.00	1.43	2.64	2.17	2.66	2.72	2.85	5.99	3.62	4.64	4.19	3.03	96.9	10.77	9.70	17.24	25.63

Samples
Following
ŧ
Containing
Batch
Ę,
٥
applies
Triplicate
This

Sample ID	Date Sampled	Date Set up	Date Started	Date Complete	Data Qualifiers
	6/8/2011	6/15/2011	6/22/2011	6/24/2011	
TA22 A	6/8/2011	6/15/2011	6/22/2011	6/24/2011	
	6/8/2011	6/15/2011	6/22/2011	6/24/2011	
IF0461-05(W11F059-05)(18 15	6/9/2011	6/27/2011	6/30/2011	115/2011	

July 8, 2011

Analytical Report for Service Request No: K1105301

Jennifer Shackelford Portland, City of 6543 N. Burlington Ave Portland, OR 97203

RE: Portland Harbor

Dear Jennifer

Enclosed are the results of the samples submitted to our laboratory on June 13, 2011. For your reference, these analyses have been assigned our service request number K1105301.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at HHolmes@caslab.com.

Respectfully submitted,

Columbia Apalytical Services, Inc.

Howard Holmes

Project Chemist

HH/ln

Page 1 of <u>18</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 - DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Agency	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	· -
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DEQ	WA100010
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

City of Portland

Project:

Sample Matrix:

Portland Harbor

Sediment

Service Request No.: Date Received:

K1105301

6/13/11

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Five sediment samples were received for analysis at Columbia Analytical Services on 6/13/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organochlorine Pesticides by EPA Method 8081A

Elevated Detection Limits:

Sample W11F059-05 required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Confirmation Notes:

The confirmation comparison criterion of 40% difference for some analyte was exceeded in all samples. The lower of the two values was reported because of an apparent interference on the alternate column that produced the higher value.

Matrix Spike Recovery Exceptions:

The control criteria for the matrix spike recovery of 4,4'-DDT for sample W11F059-02 were not applicable. The chromatogram indicated non-target matrix background components contributed to the reported matrix spike concentrations. Thus, the reported recoveries contained a high bias. Based on the magnitude of background contribution, the interference appeared to be minimal.

No other anomalies associated with the analysis of these samples were observed.

Approved by

Date / - L

Page 49 of 62

RCOC #1 07/09		DODODILO PROPI PICO PRIPE PRIPERIO DE GUARDO CONCORDO CONCORDO DE SERVIDO DE CONTROLO DE SERVIDO DE CONTROLO D		ere instrumente en	HALLES HER STANDARD S				THE COLUMN TWO IS NOT THE COLUMN TO THE COLUMN TWO IS NOT THE COLUMN TO THE COLUMN TWO IS NOT THE COLUMN TWO I
Firm	Printed Name	FIRM	Division America			Arisky Jame	Firm Corrections	- Pan	Printed Name
Date/Time	Signature	Date/hupe	Signature			/Signature	>° [Date/Time	Signature
RECEIVED BY:	143/	RELINQUISHED BY:	THE IN	30 R	RECEIVED BY:	THE RE	2	RELINQUISHED BY:	7, RELINQU
	RECORDING TO THE PARTY OF THE P	The second state of the second				Requested Report Date	Reques	erenne og men seren system en men skaleder fold Mellen en seren	MINISTER OF THE PROPERTY OF TH
	1 simples	c tor two	Section of the sectio	CMC		- 757 - 1000050	LOVICE		
			· •	•		Provide EAX Results	Drovida	ole Report	IV. CLP Deliverable Report
2	1	Person place	7	T Se Se	Δ	_5 Day _Standard (10-15 working days)	5 Day	n Report aw data)	III. Data Validation Report (includes all raw data)
	•		CMINITIAL O.	OF ECTAL INSTRUCTIONS/COMMENTS	-	48 hr.	24 hr.		
(CINCLE ONE)	NORTHWEST OTHER.	EDURE: AK CA WI	S	NUICATE STATE HYDROCARBON PROC)	TIIBNABOIIND BEOLIBEMENTS	TIIBNABOII	MS, MSD as	II. Report Dup., MS, MSD as
	Style in the Civil English			A AS SD Ba	DISSOIVED MEIDIS. AI AS			i i	required
s Se Sr TI Sn V Zn Ha				5				ate. as	Blank Surrogate as
Se Sr Tl Sn V Zn Hg	Mg Mn Mo Ni K Ag Na	Or Cu Fe Pb	Be B Ca Cd Co	: Al As Sb Ba	Total Metals:		BE TO	rt: Method	Routine Report: Method
·			yzed:	Circle which metals are to be analyzed:	Circle which m	NEORMATION	INVOICE	EMENTS	REPORT REQUIREMENTS
							The second secon		REMINERAL STREET, STRE
									AN MALAN BYLAND GRANNAN PROMISSION AND MALANTHAN PROMISSION OF PROPERTY AND
-			Z				- - - - - - -	(₹ -05
73:43.8			X				1005		-04
			K				1105		- 03
			×				705		-07
3=57.0			X			Z.	130	2 2 2	WILE 059 -01
111.000	1		/ F			I.D. MATRIX /	TIME LAB	DATE	SAMPLE I.D.
BEMARKS	PH, CO NO3, IH3-N DOC	letals lee lis)il & G 166 PCR's	Fue	Gemive 625				SAMPLER'S SIGNATURE
	Pnd. BOL CO	Tota t belo	reas 4 HE	Fin	Platile		FAX#		PHONE #
	CI, S. T.S. D. T.	al or Dw)	SCI E/TR	ns (° Diese	F CO			MANAGEMENT OF WATER WICKSHIP OF THE POPULATION O	E-MAIL ADDRESS
	04, S, T,	SII Diss	int (i een IPH	see ,	1 DNT.	namenomenopogy į irpęšiikkini karalikini kalaininininini kalainininininininininininininininininini	A THE PARTY OF THE	THE TAXABLE PROPERTY OF THE PARTY OF THE PAR	CITY/STATE/ZIP
	PO PO DS	N □	FIQ)	J21 belo	AINE	NESTRIALISES PROPERTY SECTIONS AND SECTIONS	* * * * * *	_ I.	
\ \ \	m / F	nd -		~	J RS		N 1-	4	COMPANY/ADDRESS
	NO ₂ NO _C ,	_	SGT (MS BTE		ar a		14. V	B
ige 5		I AU		Contract of the last of the la			TARPOR	land	PROJECT NAME
COC #	OF	0) 636-1068 PAGE	• FA	· (800) 695-7222x07	• (360) 577-7222	e. • Kelso, WA 98626	1317 South 13th Ave.	13	
K 1105301	SR#:		CUSTODY			0	R	\$. \$ \$ \$ \$	Columbia Columbia
to the case of the)			O THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Client / Project: Service Request K11 Received: 10 Unloaded: **UPS** Samples were received via? Mail Fed Ex DHLCourier Hand Delivered Samples were received in: (circle) Other Cooler Box Envelope NA Were custody seals on coolers? NA Y N If yes, how many and where? Y If present, were custody seals intact? N Y If present, were they signed and dated? N Cooler/COC Cooler Thermometer Temp NA **Tracking Number** NA Temp °C Blank °C ID ID Filed Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other NOW Y. Were custody papers properly filled out (ink, signed, etc.)? NA N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA Ν 10. Were all sample labels complete (i.e analysis, preservation, etc.)? NA N 11. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N 12. Were appropriate bottles/containers and volumes received for the tests indicated? NA N 13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below (NA) Y N 14. Were VOA vials received without headspace? *Indicate in the table below*. Y N 15. Was C12/Res negative? (NA Y N Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Out of Head-Volume Reagent Lot **Bottle Type** Sample ID Temp | space | Broke Ηα Reagent added Number Initials Time Notes, Discrepancies, & Resolutions:

Analytical Results

Client:

Portland, City of

Project:

Portland Harbor

Sample Matrix:

Sediment

Total Solids

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Units: PERCENT

Basis: Wet

Service Request: K1105301

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
W11F059-01	K1105301-001	06/09/2011	06/13/2011	06/14/2011	57.9	
W11F059-02	K1105301-002	06/09/2011	06/13/2011	06/14/2011	83.5	
W11F059-03	K1105301-003	06/09/2011	06/13/2011	06/14/2011	65.9	
W11F059-04	K1105301-004	06/09/2011	06/13/2011	06/14/2011	43.8	
W11F059-05	K1105301-005	06/09/2011	06/13/2011	06/14/2011	70.0	

Printed: 07/12/2011 11:21

u:\Stealth\Crystal.rpt\Solids.rpt

Page 1 of 1 SuperSet Reference: W110536

8

QA/QC Report

Client: Project:

Portland, City of Portland Harbor

Sample Matrix:

Sediment

Service Request: K1105301

Date Collected: 06/09/2011 Date Received: 06/13/2011

Date Analyzed: 06/14/2011

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Basis: Wet

Test Notes:

Analysis Method: 160.3M

Relative

Duplicate Sample Percent Sample Result Result Difference Lab Code Result Notes Average Sample Name 83.2 83.4 <1 K1105301-002 83.5 W11F059-02

Printed: 07/12/2011 11:21

 $u:\Stealth\Crystal.rpt\Solids.rpt$

Page SuperSet Reference: W110536

Page 53 of 62

1 of 1

Analytical Results

Client: **Project:** Portland, City of Portland Harbor

Sample Matrix:

Sediment

Service Request: K1105301 **Date Collected:** 06/09/2011

Date Received: 06/13/2011

Organochlorine Pesticides

Sample Name:

W11F059-01

Lab Code:

K1105301-001

Extraction Method:

EPA 3541

Basis: Dry

Units: ug/Kg

Analysis Method:

8081B

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND		0.98	0.34	1	06/14/11	06/30/11	KWG1105513	
beta-BHC			3.6	3.6	1	06/14/11	06/30/11	KWG1105513	
gamma-BHC (Lindane)	ND		0.98	0.080	1	06/14/11	06/30/11	KWG1105513	
delta-BHC	ND	U	0.98	0.074	1	06/14/11	06/30/11	KWG1105513	
Heptachlor	ND	Ui	0.98	0.98	1	06/14/11	06/30/11	KWG1105513	
Aldrin	ND	Ui	0.98	0.43	1	06/14/11	06/30/11	KWG1105513	
Heptachlor Epoxide	ND	Ui	0.98	0.34	1	06/14/11	06/30/11	KWG1105513	
gamma-Chlordane†	6.4		0.98	0.090	1	06/14/11	06/30/11	KWG1105513	
Endosulfan I	ND	Ui	0.98	0.98	1	06/14/11	06/30/11	KWG1105513	
alpha-Chlordane	3.7		0.98	0.10	1	06/14/11	06/30/11	KWG1105513	
Dieldrin	ND	Ui	3.6	3.6	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDE	2.0		0.98	0.11	1	06/14/11	06/30/11	KWG1105513	
Endrin	ND	Ui	0.98	0.98	1	06/14/11	06/30/11	KWG1105513	
Endosulfan II	ND	Ui	2.1	2.1	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDD	2.5		0.98	0.11	1	06/14/11	06/30/11	KWG1105513	
Endrin Aldehyde	ND	Ui	0.98	0.98	1	06/14/11	06/30/11	KWG1105513	
Endosulfan Sulfate	1.5	P	0.98	0.11	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDT	ND	Ui	8.6	8.6	1	06/14/11	06/30/11	KWG1105513	
Endrin Ketone	0.97	J	0.98	0.093	1	06/14/11	06/30/11	KWG1105513	
Methoxychlor	ND	Ui	1.2	1.2	1	06/14/11	06/30/11	KWG1105513	
Toxaphene	ND	Ui	350	350	1	06/14/11	06/30/11	KWG1105513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	57	21-112	06/30/11	Acceptable	
Decachlorobiphenyl	101	15-130	06/30/11	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:33:50 $u:\Stealth\Crystal.rpt\Form\1mNew.rpt$

Merged

Form 1A - Organic 10

SuperSet Reference:

RR130: Page 54 of 62

Analytical Results

Client:

Portland, City of Portland Harbor

Project: **Sample Matrix:**

Sediment

Service Request: K1105301 **Date Collected:** 06/09/2011

Date Received: 06/13/2011

Organochlorine Pesticides

Sample Name:

W11F059-02

Lab Code:

K1105301-002

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Analysis Method:

8081B

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.60	0.11	1	06/14/11	06/30/11	KWG1105513	
beta-BHC	ND	Ui	0.60	0.60	1	06/14/11	06/30/11	KWG1105513	
gamma-BHC (Lindane)	ND	Ui	0.60	0.093	1	06/14/11	06/30/11	KWG1105513	
delta-BHC	ND	U	0.60	0.074	1	06/14/11	06/30/11	KWG1105513	
Heptachlor	ND	U	0.60	0.12	1	06/14/11	06/30/11	KWG1105513	
Aldrin	ND	Ui	0.60	0.29	1	06/14/11	06/30/11	KWG1105513	
Heptachlor Epoxide	ND	Ui	0.60	0.60	1	06/14/11	06/30/11	KWG1105513	
gamma-Chlordane†	0.85		0.60	0.090	1	06/14/11	06/30/11	KWG1105513	
Endosulfan I	0.17	JP	0.60	0.063	1	06/14/11	06/30/11	KWG1105513	
alpha-Chlordane	0.47	J	0.60	0.10	1	06/14/11	06/30/11	KWG1105513	
Dieldrin	0.37	J	0.60	0.14	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDE	1.0		0.60	0.11	1	06/14/11	06/30/11	KWG1105513	
Endrin	ND	U	0.60	0.094	1	06/14/11	06/30/11	KWG1105513	
Endosulfan II	0.33	JР	0.60	0.14	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDD	0.86		0.60	0.11	1	06/14/11	06/30/11	KWG1105513	
Endrin Aldehyde	ND	Ui	0.60	0.60	1	06/14/11	06/30/11	KWG1105513	
Endosulfan Sulfate	ND	U	0.60	0.11	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDT	ND	Ui	2.0	2.0	1	06/14/11	06/30/11	KWG1105513	
Endrin Ketone	ND	U	0.60	0.093	1	06/14/11	06/30/11	KWG1105513	
Methoxychlor	ND	U	0.60	0.19	1	06/14/11	06/30/11	KWG1105513	
Toxaphene	ND	Ui	30	30	1	06/14/11	06/30/11	KWG1105513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene Decachlorobiphenyl	53 54	21-112 15-130	06/30/11 06/30/11	Acceptable Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:33:56

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Form 1A - Organic 11

SuperSet Reference:

Page 1 of

RR1305 Page 55 of 62

Analytical Results

Client: Project: Portland, City of Portland Harbor

Sample Matrix:

Sediment

Service Request: K1105301

Date Collected: 06/09/2011 **Date Received:** 06/13/2011

Organochlorine Pesticides

Sample Name:

W11F059-03

Lab Code:

K1105301-003

Extraction Method:

EPA 3541

Units: ug/Kg

Basis: Dry

Level: Low

Analysis Method: 8081B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
				ractor				
alpha-BHC	ND Ui	0.76	0.18	i	06/14/11	06/30/11	KWG1105513	
beta-BHC	ND Ui	0.91	0.91	1	06/14/11	06/30/11	KWG1105513	
gamma-BHC (Lindane)	ND Ui	1.8	1.8	1	06/14/11	06/30/11	KWG1105513	
delta-BHC	ND U	0.76	0.074	1	06/14/11	06/30/11	KWG1105513	
Heptachlor	ND Ui	0.86	0.86	1	06/14/11	06/30/11	KWG1105513	
Aldrin	ND Ui	0.76	0.26	1	06/14/11	06/30/11	KWG1105513	
Heptachlor Epoxide	ND Ui	0.76	0.29	1	06/14/11	06/30/11	KWG1105513	
gamma-Chlordane†	2.1	0.76	0.090	1	06/14/11	06/30/11	KWG1105513	
Endosulfan I	ND Ui	0.76	0.76	1	06/14/11	06/30/11	KWG1105513	
alpha-Chlordane	0.98	0,76	0.10	1	06/14/11	06/30/11	KWG1105513	
Dieldrin	ND Ui	1.9	1.9	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDE	0.98 P	0.76	0.11	1	06/14/11	06/30/11	KWG1105513	
Endrin	ND Ui	0.76	0.76	1	06/14/11	06/30/11	KWG1105513	
Endosulfan II	ND Ui	0.76	0.76	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDD	ND Ui	1.1	1.1	1	06/14/11	06/30/11	KWG1105513	
Endrin Aldehyde	ND Ui	0.76	0.76	1	06/14/11	06/30/11	KWG1105513	
Endosulfan Sulfate	ND Ui	0.76	0.33	1	06/14/11	06/30/11	KWG1105513	
4,4' - DDT	ND Ui	5.7	5.7	1	06/14/11	06/30/11	KWG1105513	
Endrin Ketone	0.34 ЈР	0.76	0.093	1	06/14/11	06/30/11	KWG1105513	
Methoxychlor	ND Ui	2.4	2.4	1	06/14/11	06/30/11	KWG1105513	
Toxaphene	ND Ui	330	330	1	06/14/11	06/30/11	KWG1105513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	49	21-112	06/30/11	Acceptable	
Decachlorobiphenyl	62	15-130	06/30/11	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:34:01 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Merged

Form 1A - Organic

Page 1 of RR1305 Page 56 of 62

Analytical Results

Client:

Portland, City of Portland Harbor

Project: Sample Matrix:

Sediment

narytical ixesuits

Service Request: K1105301 **Date Collected:** 06/09/2011

Date Received: 06/13/2011

Organochlorine Pesticides

Sample Name:

W11F059-04

Lab Code:

K1105301-004

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8081B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND Ui	2.5	0.65	1	06/14/11	06/30/11	KWG1105513	
beta-BHC	ND U	2.5	0.45	1	06/14/11	06/30/11	KWG1105513	
gamma-BHC (Lindane)	ND Ui	7.6	7.6	1	06/14/11	06/30/11	KWG1105513	
delta-BHC	ND Ui	2.5	0.43	1	06/14/11	06/30/11	KWG1105513	
Heptachlor	ND Ui	2.5	2.5	1	06/14/11	06/30/11	KWG1105513	
Aldrin	1.5 J	2.5	0.40	1	06/14/11	06/30/11	KWG1105513	
Heptachlor Epoxide	ND Ui	2.5	0.60	1	06/14/11	06/30/11	KWG1105513	
gamma-Chlordane†	ND Ui	11	11	1	06/14/11	06/30/11	KWG1105513	
Endosulfan I	ND Ui	2.5	2.5	1	06/14/11	06/30/11	KWG1105513	
alpha-Chlordane	6.1	2.5	0.25	1	06/14/11	06/30/11	KWG1105513	
Dieldrin	ND Ui	3.8	3.8	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDE	4.5	2.5	0.28	1	06/14/11	06/30/11	KWG1105513	
Endrin	ND U	2.5	0.24	1	06/14/11	06/30/11	KWG1105513	
Endosulfan II	ND Ui	5.5	5.5	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDD	4.1	2.5	0.28	1	06/14/11	06/30/11	KWG1105513	
Endrin Aldehyde	1.3 JP	2.5	0.30	1	06/14/11	06/30/11	KWG1105513	
Endosulfan Sulfate	ND Ui	24	24	1	06/14/11	06/30/11	KWG1105513	
4,4' - DDT	ND Ui	23	23	1	06/14/11	06/30/11	KWG1105513	
Endrin Ketone	1.5 JP	2.5	0.23	1	06/14/11	06/30/11	KWG1105513	
Methoxychlor	ND Ui	2.5	0.53	1	06/14/11	06/30/11	KWG1105513	
Toxaphene	ND Ui	390	390	1	06/14/11	06/30/11	KWG1105513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	47	21-112	06/30/11	Acceptable	
Decachlorobiphenyl	72	15-130	06/30/11	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:34:06 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic 13

SuperSet Reference:

Page 1 of 1

RR130 Page 57 of 62

Analytical Results

Client:

Portland, City of Portland Harbor

Project: Sample Matrix:

Sediment

Service Request: K1105301 **Date Collected:** 06/09/2011

Date Received: 06/13/2011

Organochlorine Pesticides

Sample Name: Lab Code:

W11F059-05 K1105301-005

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

8081B **Analysis Method:**

Analyte Name	Result (Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	Ui	0.72	0.65	1	06/14/11	06/30/11	KWG1105513	
beta-BHC	ND U	Ui	0.72	0.72	1	06/14/11	06/30/11	KWG1105513	
gamma-BHC (Lindane)	ND U	Ui	2.0	2.0	1	06/14/11	06/30/11	KWG1105513	
delta-BHC	ND U	Ui	2.7	2.7	1	06/14/11	06/30/11	KWG1105513	
Heptachlor	ND U	Ui	0.72	0.72	1	06/14/11	06/30/11	KWG1105513	
Aldrin	8.5 I	P	0.72	0.16	1	06/14/11	06/30/11	KWG1105513	
Heptachlor Epoxide	ND I	Ui	0.72	0.72	1	06/14/11	06/30/11	KWG1105513	
gamma-Chlordane†	11 I	P	0.72	0.090	1	06/14/11	06/30/11	KWG1105513	
Endosulfan I	3.8 I	P	0.72	0.063	1	06/14/11	06/30/11	KWG1105513	
alpha-Chlordane	4.9		0.72	0.10	1	06/14/11	06/30/11	KWG1105513	
Dieldrin	ND U	Ui	4.9	4.9	5	06/14/11	07/01/11	KWG1105513	
4,4'-DDE	43 I	D	3.6	0.55	5	06/14/11	07/01/11	KWG1105513	
Endrin	ND I	Ui	1.2	1.2	1	06/14/11	06/30/11	KWG1105513	
Endosulfan II	ND U	Ui	5.9	5.9	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDD	36 I	D	3.6	0.55	5	06/14/11	07/01/11	KWG1105513	
Endrin Aldehyde	ND U	Ui	0.72	0.72	1	06/14/11	06/30/11	KWG1105513	
Endosulfan Sulfate	ND U	Ui	0.72	0.72	1	06/14/11	06/30/11	KWG1105513	
4,4'-DDT	ND U	Ui	18	18	1	06/14/11	06/30/11	KWG1105513	
Endrin Ketone	0.54	JP	0.72	0.093	1	06/14/11	06/30/11	KWG1105513	
Methoxychlor	ND I	Ui	3.8	3.8	1	06/14/11	06/30/11	KWG1105513	
Toxaphene	ND I	Ui	240	240	1	06/14/11	06/30/11	KWG1105513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	96	21-112	06/30/11	Acceptable Acceptable
Decachlorobiphenyl	51	15-130	06/30/11	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:54:13 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 14

SuperSet Reference:

Page RR130 Page 58 of 62

Analytical Results

Client:

Portland, City of Portland Harbor

Project: Sample Matrix:

Sediment

Service Request: K1105301

Date Collected: NA Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG1105513-4

Extraction Method:

EPA 3541

Analysis Method:

8081B

Units: ug/Kg Basis: Dry

Level: Low

Dilution Date Date Extraction Result O **MRL** MDL Factor Extracted Analyzed Lot Note **Analyte Name** 06/14/11 06/30/11 KWG1105513 0.50 0.11 alpha-BHC ND U KWG1105513 0.18 1 06/14/11 06/30/11 ND U 0.50 beta-BHC KWG1105513 gamma-BHC (Lindane) ND U 0.50 0.080 1 06/14/11 06/30/11 KWG1105513 0.074 1 06/30/11 ND U 0.50 06/14/11 delta-BHC Heptachlor ND U 0.50 0.121 06/14/11 06/30/11 KWG1105513 KWG1105513 0.50 0.16 1 06/14/11 06/30/11 Aldrin ND U 0.50 0.084 1 06/14/11 06/30/11 KWG1105513 ND U Heptachlor Epoxide KWG1105513 ND U 0.50 0.090 1 06/14/11 06/30/11 gamma-Chlordane† KWG1105513 ND U 0.50 0.063 1 06/14/11 06/30/11 Endosulfan I KWG1105513 0.10 1 06/14/11 06/30/11 ND U 0.50 alpha-Chlordane KWG1105513 Dieldrin ND U 0.50 0.141 06/14/11 06/30/11 ND U 0.500.11 1 06/14/11 06/30/11 KWG1105513 4,4'-DDE 0.50 0.094 1 06/14/11 06/30/11 KWG1105513 Endrin ND U KWG1105513 ND U 0.50 0.14 1 06/14/11 06/30/11 Endosulfan II 0.11 06/14/11 06/30/11 KWG1105513 4,4'-DDD ND U 0.50 1 KWG1105513 1 Endrin Aldehyde 0.50 0.12 06/14/11 06/30/11 ND U 0.50 0.11 1 06/14/11 06/30/11 KWG1105513 ND U Endosulfan Sulfate KWG1105513 4,4'-DDT ND U 0.50 0.17 1 06/14/11 06/30/11 KWG1105513 Endrin Ketone ND U 0.50 0.093 1 06/14/11 06/30/11 ND U 0.50 0.19 1 06/14/11 06/30/11 KWG1105513 Methoxychlor KWG1105513 25 4.8 1 06/14/11 06/30/11 Toxaphene ND U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	66	21-112	06/30/11	Acceptable
Decachlorobiphenyl	68	15-130	06/30/11	Acceptable

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/08/2011 10:34:16

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic 15

Page 1 of RR130:

QA/QC Report

Client:

Portland, City of

Project:

Portland Harbor

Sample Matrix:

Sediment

Service Request: K1105301

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method: EPA 3541 **Analysis Method:**

8081B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
W11F059-01	K1105301-001	57	101
W11F059-02	K1105301-002	53	54
W11F059-03	K1105301-003	49	62
W11F059-04	K1105301-004	47	72
W11F059-05	K1105301-005	96	51
Method Blank	KWG1105513-4	66	68
W11F059-02MS	KWG1105513-1	56	57
W11F059-02DMS	KWG1105513-2	51	54
Lab Control Sample	KWG1105513-3	63	68

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 21-112 Sur2 = Decachlorobiphenyl 15-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/08/2011 10:34:24

Form 2A - Organic

SuperSet Reference:

Page 1 of RR130 Page 60 of 62

QA/QC Report

Client: Project:

Portland, City of Portland Harbor

Sample Matrix:

Sediment

Service Request: K1105301

Date Extracted: 06/14/2011 **Date Analyzed:** 06/30/2011

Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides

Sample Name: Lab Code: W11F059-02 K1105301-002

Extraction Method:

EPA 3541

Analysis Method:

8081B

Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1105513

W11F059-02MS KWG1105513-1 W11F059-02DMS KWG1105513-2

	Sample		WG1105513- Matrix Spike	1		cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	7.42	12.0	62	6.97	11.9	58	23-133	6	40
beta-BHC	ND	6.83	12.0	57	6.43	11.9	54	22-142	6	40
gamma-BHC (Lindane)	ND	7.90	12.0	66	7.77	11.9	65	26-135	2	40
delta-BHC	ND	7.87	12.0	66	7.38	11.9	62	25-148	7	40
Heptachlor	ND	8.10	12.0	68	7.73	11.9	65	21-136	5	40
Aldrin	ND	7.46	12.0	62	7.02	11.9	59	22-135	6	40
Heptachlor Epoxide	ND	7.71	12.0	64	7.28	11.9	61	25-129	6	40
gamma-Chlordane	0.85	7.77	12.0	58	7.47	11.9	55	24-133	4	40
Endosulfan I	0.17	6.14	12.0	50	6.06	11.9	49	15-119	1	40
alpha-Chlordane	0.47	7.30	12.0	57	7.04	11.9	55	24-132	4	40
Dieldrin	0.37	7.56	12.0	60	7.53	11.9	60	26-133	0	40
4,4'-DDE	1.0	8.56	12.0	63	8.27	11.9	61	22-142	3	40
Endrin	ND	7.60	12.0	64	7.26	11.9	61	22-145	5	40
Endosulfan II	0.33	6.76	12.0	54	6.75	11.9	54	13-129	0	40
4,4'-DDD	0.86	8.38	12.0	63	7.88	11.9	59	19-143	6	40
Endrin Aldehyde	ND	7.01	12.0	. 59	6.33	11.9	53	10-129	10	40
Endosulfan Sulfate	ND	7.04	12.0	59	6.37	11.9	53	20-134	10	40
4,4'-DDT	ND	10.0	12.0	84 #	10.1	11.9	85 #	19-154	1	40
Endrin Ketone	ND	7.57	12.0	63	7.28	11.9	61	19-139	4	40
Methoxychlor	ND	8.77	12.0	73	8.23	11.9	69	24-151	6	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{lll} Printed: & 07/08/2011 & 10:34:30 \\ u:\Stealth\Crystal.rpt\Form3DMS.rpt & \end{array}$

Form 3A - Organic

SuperSet Reference:

RR130

Page 1 of 1

QA/QC Report

Client:

Portland, City of Portland Harbor

Project: Sample Matrix:

Sediment

Service Request: K1105301 **Date Extracted:** 06/14/2011 **Date Analyzed:** 06/30/2011

Lab Control Spike Summary Organochlorine Pesticides

Extraction Method: EPA 3541 **Analysis Method:**

8081B

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1105513

Lab Control Sample KWG1105513-3 Lab Control Spike

	Lau	Control Spik	<u> </u>	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
alpha-BHC	13.6	20.0	68	36-139	
beta-BHC	12.8	20.0	64	38-142	
gamma-BHC (Lindane)	13.7	20.0	68	40-142	
delta-BHC	14.3	20.0	72	48-145	
Heptachlor	13.9	20.0	70	39-135	
Aldrin	12.6	20.0	63	37-134	
Heptachlor Epoxide	14.2	20.0	71	45-118	
gamma-Chlordane	13.4	20.0	67	41-135	
Endosulfan I	12.0	20.0	60	35-121	
alpha-Chlordane	13.2	20.0	66	41-134	
Dieldrin	13.9	20.0	70	46-136	
4,4'-DDE	13.6	20.0	68	46-141	
Endrin	14.1	20.0	70	40-152	
Endosulfan II	12.8	20.0	64	39-128	
4,4'-DDD	14.5	20.0	73	46-146	
Endrin Aldehyde	13.3	20.0	67	32-132	
Endosulfan Sulfate	14.1	20.0	70	43-138	
4,4'-DDT	16.0	20.0	80	46-151	
Endrin Ketone	15.5	20.0	78	47-135	
Methoxychlor	15.2	20.0	76	42-147	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/08/2011 10:34:36