Development Services

From Concept to Construction

Phone: 503-823-7300 Email: bds@portlandoregon.gov 1900 SW 4th Ave, Portland, OR 97201 More Contact Info (http://www.portlandoregon.gov//bds/article/519984)

Status: Decision Rendered - Reconsideration	n of ID 14658
Appeal ID: 14748	Project Address: 1177 SE Stark St
Hearing Date: 3/8/17	Appellant Name: Bill Lanning
Case No.: B-006	Appellant Phone: 503-416-8014
Appeal Type: Building	Plans Examiner/Inspector: John Stelzenmueller, Peter Drake
Project Type: commercial	Stories: 4 Occupancy: R-2 Construction Type: V-A
Building/Business Name:	Fire Sprinklers: Yes - throughout
Appeal Involves: Erection of a new structure, Reconsideration of appeal	LUR or Permit Application No.: 15-243243-CO
Plan Submitted Option: pdf [File 1]	Proposed use: Multi-family residential
APPEAL INFORMATION SHEET	
Appeal item 1	
Code Section OSSC 1009.16	

Requires	In buildings four or more stories above grade plane, one stairway shall extend to the roof surface, unless the roof has a slope steeper than four units vertical in 12 units horizontal (33-percent slope). In buildings without an occupied roof, access to the roof from the top story shall be permitted to be by an alternating tread device or a ship stair or ladder that is constructed of steel, is a minimum 30 inches (762 mm) between handrails, has a rise and run of the stair or ladder of 12 inches (304.8) maximum and 4 inches (101.6 mm) minimum respectively and has handrails provided on both sides of the stair or ladder.
Proposed Design	This project provides ship ladders to the roof at each protected stair enclosure for a total of three locations. The 2014 OSSC does not stipulate the width of the treads for the application of a ships ladder under section 1009.16; Stairway to Roof. We are requesting confirmation that a tread width of 24" clear with a width of 30" clear between handrails is acceptable. The proposed design will meet the requirements of OSSC 1009.16, except the ship ladder will be constructed out of aluminum instead of steel.
Reason for alternative	St. Francis Park has three ship ladders provided for access to the unoccupied roof. OSSC 1009.16 requires the ship ladder to be 30 inches minimum between handrails. The design proposes to provide a ships ladder with 24 inch wide treads and 30 inches clear width to the roof. Handrails will be provided outside of the tread edge to allow 30 inches between the handrails from the floor up to the roof structure. Both handrails will be continued above the bottom of roof

Appeals | The City of Portland, Oregon

Appeal of Denial: The 2014 OSSC does not indicate a required width of tread for a ship ladder when used for roof access as allowed in 1009.16. The typical requirement for ship ladders is a 20" minimum. In reviewing the denial of the 24" wide treads with Fire Inspector Kari Schimel it is our understanding that the reason for the increase to a 30" width between the rails is to facilitate the transport of equipment carried on a fire fighters back and waist. It was discussed that a 24" wide tread would not impede this movement. Because of this we request that the appeal board reconsider the denial this item.

The ship ladders will be fabricated of NFPA 13 rated 6061 T6 Aluminum which is industrial grade, NFPA, ANSI and OSHA rated for loading. Our understanding of the requirement to use steel construction is due to the lower temperature that aluminum loses strength compared to steel. OSSC section 1009.16 does not indicate that ship ladder access to the roof be provided in a rated enclosure which could leave it exposed to fire depending upon where it is located. The ship ladders at St. Francis Park are all contained within two hour rated exit enclosures which are protected from the ground floor to the roof. The roof assembly at the stair enclosure is also two hour rated. In addition the stair assembly is protected with an NFPA 13 fire sprinkler system which activates at 155 degrees if heat build-up was to occur within the exit enclosure. Due to these reasons we believed that the ship ladders are better protected than required by code and the exposure of the aluminum construction to fire is greatly reduced, meeting the intent of the 2014 OSSC 1009.16 and request approval.

Appeal of Denial: It was our initial understanding in discussing this requirement with Plans Examiner Peter Drake that the requirement for the use of steel was due to the higher melting point of the material as compared to aluminum. In reviewing the denial of the aluminum material with Fire Inspector Kari Schimel it is our understanding that the reason for this is due to concerns about strength of material for general loading and use. It was discussed that a structural analysis comparing the current aluminum design with a standard steel ship ladder would be a way to show strength comparability. A structural analysis was completed and indicates that there is less than a 3 percent difference in strength between the two systems.

The aluminum treads do have a greater deflection than the steel however based upon the current design that deflection is less than 1/32 of an inch. We believe that due to the location of the ship ladders in the 2 hour rated enclosure they are well protected against damage from heat and fire. We also believe that the structural property difference between the designed aluminum ship ladder and a typical steel ship ladder is equivalent based upon the intended use and requirements. Because of this we request that the appeal board reconsider the denial of this item.

APPEAL DECISION

Allowance of aluminum ship ladder to roof in lieu of steel: Granted as proposed.

The Administrative Appeal Board finds that the information submitted by the appellant demonstrates that the approved modifications or alternate methods are consistent with the intent of the code; do not lessen health, safety, accessibility, life, fire safety or structural requirements; and that special conditions unique to this project make strict application of those code sections impractical.

Pursuant to City Code Chapter 24.10, you may appeal this decision to the Building Code Board of Appeal within 180 calendar days of the date this decision is published. For information on the appeals process and costs, including forms, appeal fee, payment methods and fee waivers, go to www.portlandoregon.gov/bds/appealsinfo, call (503) 823-7300 or come in to the Development Services Center.

Job No. St. Francis - Ladders Designed by Se Date Feb, 2017 Sheet description Aluminum Vs. Steel Loading and aluminum checks from approved Deferred Submittal; 05500. B.7 Approved on 10/13/16 Stringer ! Aluminum = C8 × 0.250 × 2.290 6061-T6 Material Props: Fy = 35165 E= 10,1 MST $Steel = C8 \times 11.5 + 36 \pm 0.22'' = 2.26''$ Material props: Fy=361cs= E=29.0MST Aluminum shape is slightly bigger: ±10,25"> 0,22" /OK (12% greater) b: z, z9" > z, z6" Voic (1,31% greater) Strength Design: (If shapes were equal) HTeld stress vatio 35105 = 0.972 => Aluminum is max 2.78 % weaker Self weight ! Aluminum = 170pcf (Lighter) Steel = 490pcf Percent diff. in weight = 65,3% Deflection: Aluminum Will deflect more Aluminum: $EI = 10.1 \text{ m} \text{sr}(25.9895 \text{ m}) = 262.5 \text{ m} \text{sr}^2$ Steel! $E = 29.0 ms^{-}(32.5 tot) = 942.5 min$ Percent diff. = 72% X However, design aluminum deflection (see next Fage => 0.0301" < /32" VOK

Project St, Francis - Ladders Client Location Job No 14114 $\wedge H H$ Designed by Date F-cb, 2017 STRUCTURAL ENGINE Sheet description Aluminum VS, Steel Check pipe handrail; Aluminum = Pipe 114, Sched 40 6061-TG Steel = Pipe 1/4, Sched 40 ASTM A53 GRB => Fyrai = Fystal = 35 KST ~ Same VOK Same shape & gield stress Strength Checks OK by Inspection Check Deflection! I = 0,18471 hmax = 18 $\Delta_{max} = \frac{0.201(19(18'))}{3(10,11952(0.18t))^2} = 0.209''$ => 0.209" 2 Y4" VOK Check Treads: From prev. Submittel (See last (Tread/grating Capacity taken from Catalog, not calculated) DCR = Demand Capacity Ratio Tread DCR = 259987 = 0,253 VOK Landing DCR = 1007 4/632 pst = 0.158 VOK Synopsis: Strengthwise, aluminum is close to, or just as, the same as steel (max percent weaker = 2,78%) Due to the much lighter self-wt, and the slightly larger shape, We feel that aluminum is adequate Deflections are greater w/aluminum. However, due to the small overall deflections, we feel atuminum TS acceptable we did not perform any heat analysis/comparisons

Table 3.3-1 MINIMUM MECHANICAL PROPERTIES FOR ALUMINUM ALLOYS

5052-O -H32		RANGE in.	F _{tu} ksi	F _{ty} ksi	F _{cy} ksi	<i>F_{su}</i> ksi	MODULUS OF ELASTICITY ²
-H32	Sheet & Plate	0.006 to 3.000	25	9.5	9.5	16	10,200
1101	/Sheet & Plate	All	31	23	21	19	10,200
-H34	Cold Fin Bod & Bar	All	34	26	24	20	10,200
-H36	Drawn Tube	7	•		0.000	1000	
1100	Sheet	0.006 to 0.162	37	29	26	22	10,200
5083-0	Extrusions	up thru 5.000	39	16	16	24	10,400
-H111	Extrusions	up thru 0.500	40	24	21	24	10,400
-H111	Extrusions	0.501 to 5.000	40	24	21	23	10,400
-0	Sheet & Plate	0.051 to 1.500	40	18	18	25	10,400
-H116	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H32, H321	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H116	Plate	1.501 to 3.000	41	29	24	24	10,400
-H32 H321	Plate	1.501 to 3.000	41	29	24	24	10,400
5086-0	Extrusions	up thru 5.000	35	14	14	21	10,400
-H111	Extrusions	up thru 0.500	36	21	18	21	10,400
-H111	Extrusions	0.501 to 5.000	36	21	18	21	10,400
-0	Sheet & Plate	0.020 to 2.000	35	14	14	21	10,400
-H112	Plate	0.025 to 0.499	36	18	17	22	10,400
-H112	Plate	0.500 to 1.000	35	16	16	21	10,400
-H112	Plate	1.001 to 2.000	35	14	15	21	10,400
-H112	Plate	2.001 to 3.000	34	14	15	21	10,400
-H116	Sheet & Plate	All	40	28	26	24	10,400
-H32	Sheet & Plate	All	40	28	26	24	10,400
102	Drawn Tube	1.00					246 10 200
-434	Sheet & Plate	All	44	34	32	26	10,400
-1154	Drawn Tube	7.41		01	02		
5154-H38	Sheet	0.006 to 0.128	45	35	33	24	10,300
5454-0	Extrusions	up thru 5.000	31	12	12	19	10,400
-H111	Extrusions	up thru 0.500	33	19	16	20	10,400
-H111	Extrusions	0.501 to 5.000	33	19	16	19	10,400
-H112	Extrusions	up thru 5.000	31	12	13	19	10,400
-0	Sheet & Plate	0.020 to 3.000	31	12	12	19	10,400
-H32	Sheet & Plate	0.020 to 2.000	36	26	24	21	10,400
-H34	Sheet & Plate	0.020 to 1.000	39	29	27	23	10,400
5456-0	Sheet & Plate	0.051 to 1.500	42	19	19	26	10,400
-H116	Sheet & Plate	0.188 to 1.250	46	33	27	27	10,400
-H32 H321	Sheet & Plate	0 188 to 1 250	46	33	27	27	10,400
-H116	Plate	1.251 to 1.500	44	31	25	25	10,400
-H32 H321	Plate	1.251 to 1.500	44	31	25	25	10.400
-H116	Plate	1.501 to 3.000	41	29	25	25	10.400
-H32 H321	Plate	1.501 to 3.000	41	29	25	25	10.400
6005-T5	Extrusions	up thru 1.000	38	35	35	24	10.100
6061-T6 T651	Sheet & Plate	0.010 to 4.000	42	35	35	27	10,100
-T6 T6510 T6511	Extrusions	All	38	35	35	24	10,100
-16, 16510, 16511	Cold Fin. Bod & Bar	up thru 8 000	42	35	35	25	10,100
-16, 1051	Drawn Tube	0.025 to 0.500	42	35	35	27	10,100
-T6	Pine	All	38	35	35	24	10,100
	Extrusions	up thru 0 500	22	16	16	13	10,100
SOG2 TE	Extrusions	up thru 1 000	22	16	16	13	10,100
6063-T5, -T52	Extrusions	0.500 to 1.000	21	15	15	12	10 100
6063-T5, -T52 -T5	LAUGOUIO		30	25	25	19	10 100
6063-T5, -T52 -T5 -T6	Extrucione & Dino		00	20	20		10,100
6063-T5, -T52 -T5 -T6	Extrusions & Pipe	Δ11	50	45	45	27	10 100
6063-T5, -T52 -T5 -T6 -066-T6, T6510, T6511	Extrusions & Pipe Extrusions	All	50 48	45	45	27	10,100
6063-T5, -T52 -T5 -T6 <u>5066-T6, T6510, T6511</u> <u>5070-T6, T62</u> <u>5105-T5</u>	Extrusions & Pipe Extrusions Extrusions	All up thru 2.999	50 48 38	45 45 35	45 45 35	27 29 24	10,100 10,100 10 100
6063-T5, -T52 -T5 -T6 5066-T6, T6510, T6511 5070-T6, T62 5105-T5 5261 T5	Extrusions & Pipe Extrusions Extrusions Extrusions	All up thru 2.999 up thru 0.500 up thru 1.000	50 48 38	45 45 35 35	45 45 35 35	27 29 24 24	10,100 10,100 10,100 10,100
6063-T5, -T52 -T5 -T6 3066-T6, T6510, T6511 3070-T6, T62 3105-T5 3351-T5 3251 T5	Extrusions & Pipe Extrusions Extrusions Extrusions Extrusions	All up thru 2.999 up thru 0.500 up thru 1.000 up thru 0.750	50 48 38 38 42	45 45 35 35 37	45 45 35 35 37	27 29 24 24 27	10,100 10,100 10,100 10,100 10,100
6063-T5, -T52 -T5 -T6 5066-T6, T6510, T6511 5070-T6, T62 5105-T5 5351-T5 5351-T6 5462 T6	Extrusions & Pipe Extrusions Extrusions Extrusions Extrusions Extrusions Extrusions	All up thru 2.999 up thru 0.500 up thru 1.000 up thru 0.750	50 48 38 38 42 30	45 45 35 35 37 25	45 45 35 35 37 25	27 29 24 24 27 19	10,100 10,100 10,100 10,100 10,100 10,100

1. F_{tw} and F_{ty} are minimum specified values (except F_{ty} for 1100-H12, H14 Cold Finished Rod and Bar and Drawn Tube, Alclad 3003-H18 Sheet and 5050-H32, H34 Cold Finished Rod and Bar which are minimum expected values); other strength properties are corresponding minimum expected values.

2. Typical values. For deflection calculations an average modulus of elasticity is used; this is 100 ksi lower than values in this column.

			FRO	m
			SUBM	Tal
			b/t <s1 s1<b="" s2<b="" t<="" t<s2="" td=""><td></td></s1>	
			27576 N/A N/A	
			F = 27576 psi, stong axis	
			F = 19487 psi, weak axis	
Compression	n: P = [0	Jus	Compression in Columns: (3.4.7)	
			Slenderness Limitations: (kL/r)	
Gr	oss Area Check:	7	<u>S1</u> <u>S2</u>	
	Lb = 12.00 k = 1	in, strong axis bracing	Stresses, psi:	
Slenderr	ness, kL/r = 19		kL/r <s1 r<="" r<s2="" s1<kl="" s2<kl="" td=""><td></td></s1>	
	Fc = 17835	_psi, from 3.4.7	N/A 17835 N/A Compression in Column Elements: (3.4.8)	
Co	olumn Element Check:		Slenderness Limitations: (b/t)	
	b = 7.50	lin	<u>S1</u> <u>S2</u>	
Slender	rness, b/t = 30 Fc = 5132	nsi from 3.4.8	2 10 Stresses, psi:	
	Fc = 2184	psi, from 3.4.8.1	b/t <s1 s1<b="" s2<b="" t<="" t<s2="" td=""><td></td></s1>	
	Fc = 15695	psi, from 3.4.9	N/A N/A 5132	
	FC - 2104	psi, sect. 5.4.6.1 controls element check	Slenderness Limitations: (b/t)	
4.7	7.4, effect of local buckling	on column strength:	<u>S1</u> <u>S2</u>	
	Fcr = 43265	_psi = 3.14^2*10100/(1.6*30)^2*1000 psi > 2184, does not control	Z 12 Stresses, psi:	
	Frc = 41156	psi	b/t <s1 s1<b="" s2<b="" t<="" t<s2="" td=""><td></td></s1>	
	Ec.= 2194		N/A N/A 2184	
	fc = 0	psi = 0/3.02	Slenderness Limitations: (b/t)	
	0.00%		<u>S1</u> <u>S2</u>	
			8 33 Stresses psi	
			b/t <s1 s1<b="" s2<b="" t<="" t<s2="" td=""><td></td></s1>	
Shoor			N/A 15695 N/A	
Shear.	rong Axis:	_		
	V _y = 464	lb	Shear in Elements: (3.4.20)	
Slender	h = 7.5	in = 8-2*0.25	Sienderness Limitations: (h/t)	
	Fvy = 24268	psi	36 64	
	fv _y = 232]psi = 464/2	Strong Axis:	
10/	0.96%		Strassas pei:	
	$V_{\star} = 0$	Ль	h/t <s1 s1<h="" s2<h="" t<="" t<s2="" td=""><td></td></s1>	
	h = 1.79	in = 2.29-2*0.25	24268 N/A N/A	
Slende	rness, $h/t = 7.2$		Weak Axis:	
	$f_{x} = 24200$	psi osi = 0/1 15	h/t <s1 s1<h="" s2<h="" t<="" t<s2="" td=""><td></td></s1>	
	0.00%		24268 N/A N/A	
Combined Fo	prces:	- 1.00.01/		
	0.07	< 1.00 OK		
Us	se 6061-T6 2.29x8 aluminu	im channel		
h				
		St Francis Dark An	artments Shins Ladder Design	111
	9570 SW Barbur Blvd Suite One Hundred	Project Name St Francis Park Ap	arments Ships Ladder Design Project # 161	+11
$ \rightarrow $	Portland, OR 97219	Location 1136 SE Oak Street.	Portland, Oregon	
			· · · · · · · · · · · · · · · · · · ·	
		Client A 2 FABRICATIONS		
ILLER	Phone 503.246.1250		14/0/40 5-445	
NSULTING	Fax 503.246.1395 www.miller-se.com	By <u>EWA</u> Ck'd <u>LYJ</u> Da	te Page	
GINEERS				

Project:

Ву:	Date:	Check	ed:		Date:	Page:
Description:						
Ship's Lado Load Case 2	der channel					
Units: Englis	sh					
Properties - X = 0; E =	X = feet, E = 10100; I = 25.	ksi, I = in^4 988;				
Moment Releas	ses - X = feet					
Supports - X X = 0; Disp X = 7.67; D	= feet, Displa = 0; Disp = 0;	cement = inches, Ro	otation :	= radians		
Springs - X =	feet, VSpring	= kip/inch, RSprin	ng = kip	in/rad		
Point Loads - X = .5; PLo X = 2.8333; X = 4.67; P	X = feet, PLo oad =125; PLoad =125 PLoad =125;	ad = kips, Moment = ;	= kip ft			
Uniform Loads XStart = 0; XStart = 5.	- XStart & XE XEnd = 5.17; 17; XEnd = 7.6	nd = feet, UStart ; UStart =01875; ; 7; UStart =144;	& UEnd = UEnd = - UEnd = -	kip/ft .01875; 144;		
Analysis Da	ita:					
Beam Lengt Number of Number of Number of	h = 7.67 feet Nodes = 201 Elements = 200 Degrees of Fre	edom = 402				
Reactions:						
X feet	Vert kips	Rot kip ft				
0 7.670	0.367505 0.464432					
Equilibrium	::					
	Force	Reaction Dif:	E			
Vert Rot	-0.831937 3.562	0.831938 0.000) kips) kip ft			
<u>Min & Max v</u>	alues:					
Min Shear Max Shear Min Moment Max Moment Min Rotati Max Rotati Min Deflec Max Deflec	= -0.464 $= 0.367$ $= -1.534e$ $= 0.760$ on = -0.001 on = 0.001 tion = -0.030 tion =	432 kips at 505 kips at 014 kip ft at 953 kip ft at 094 radians at 011 radians at 133 in at 0 in at	7.670 0 4.670 7.670 0 3.943 0	feet feet feet feet feet feet feet		

8 of 15

Project:

Shear - kips

CHELK LADDER TREADS APPLIED LOAD: 250 LA PL. LOAD (OSHA 1926,1053] $1^{h_{1}^{n}} \times 3/16^{n}$ ALDATAINAN SERRATED BAR GRATING: SPAN: 2'-0" AULOWARLE = 987 L3 > 250 L3 OK - SEE FREF 1 FOR ALLOWARLE. $\frac{1}{2} \cdot 0^{n}$ USE $1^{h_{1}^{n}} \times 3/16^{n}$ SERRATED BAR ALLOWARLY (RATING FOR TREADS CHECK LANDSING AT TOP OF LADDER $\frac{1}{2} \cdot 0^{n}$ (ANDEND AT TOP OF LADDER APPLIED LOAD: 100 PSF	KI TAI
APPLIED LOAD: 250 LG PI. LOAD (OSHA 1926,1053] $1^{1/4} \times 3/16^{1}$ ALWATHING SERRATED BAR GAATING: $5PAN: 2^{1}0^{11}$ ALLOWARLE = 987 LG > 250 LG OK - SEE REF 1. FOR ALLOWARLE. $\frac{1}{2} \cdot 0^{11} = 1^{1/4} \times 3/16^{11} SERRATED BAR ALUMEANING GRATIFIE FOR THEADS HELK LANDING AT TOP OF LADDER 1^{1/4} \cdot 3/16^{11} (odd) - Th ALMANDING AT TOP OF LADDER 4 - 2^{1}6^{11} - 4APPLIED LOAD: 100 PSF$	
$I^{h_{1}} \times 3/16^{\prime\prime} AU_{MITAJUM} SERRATEO BAR GRATIJOS:$ $SPAN: 2^{\prime}0^{\prime\prime}$ $AULONJARLE = 987 R_{5} > 250 R_{5} GK - SEE REF 1 FOR ALIGNARLE.$ $\boxed{"** USE I^{h_{1}} \times 3/16^{\prime\prime} SERRATEO BAR AUMEANM GRATIJOS FOR TREADS}$ $HECK LANDING AF TOP OF LADDER$ $\boxed{I \\ R^{\prime} GATED}$ $\frac{I^{\prime}(n', 3/16'' Gold - 7b}{RAR GRATED}$	
ALLOWARLE = 987 L& > 250 L& OK - SEE REF 1 FOR ALLOWARLE. \vec{v}_{e} USE 1 ^b u ⁴ × 3/ ^b ⁴ SERATICO BAR ALLOWEDOWN GRATING FOR TREADS HELK LANDING AT TOP OF LADDER \vec{v}_{e} USE 1 ^b u ⁴ × 3/ ^b ⁴ SERATICO BAR ALLOWEDOWN GRATING ALLOWARDER SERATICO BAR GRATEND \vec{v}_{e} 2 ² 0 ⁶ APPLIEO LOADE 100 PSF	
HELK LANDING AT TOP OF LADDER $\int_{a}^{a} USE I^{b} u^{a} \times 3/b^{a} SERRATED BAR ALUMEAN GRATIALS FOR TREADS HELK LANDING AT TOP OF LADDER \int_{a}^{b} U^{a} u^{a} \times 3/b^{a} Gold TB ALUMATION SERRITED SAR GRATEND \int_{a}^{b} U^{a} u^{a} = 2^{-b} u^{a} APPLIED LOAD: 100 PSF$	
HELK LANDING AT TOP OF LADDER $ \int_{1}^{1} \int_$	
$\int_{a}^{1} \frac{1}{2^{2}0^{a}} \int_{a}^{1} \frac{1}{2^{2}6^{a}} \int_{a}^{1} \frac{1}{2^{2$	
$ \begin{array}{c} $	
$\frac{1}{2^{2}-0^{\prime\prime}} = \frac{1}{2^{2}-0^{\prime\prime}} = \frac{1}{2^{2}-1^{\prime\prime}} = \frac{1}{2^$	
$z'-o'' \qquad \downarrow \qquad$	
$\frac{1}{\mu} = \frac{1}{\mu} = \frac{1}$	
$k = \frac{1}{2^{-6}} = \frac{1}{4}$ $k = \frac{2^{-6}}{4}$ $k = \frac{1}{100} \text{ PSF}$	
4	
APPLIED LOAD = 100 PSF	
ALLED LOAD. 100 ME	
ALLOW AGLE :	
MAY SPAN . Z'-6"	
ALLOW = 632 PSF > 100 PSF	
" USE 1/4" > 3/16" SERRATED BAR GOGHTG AUMENUM GRATENG FOR LANDI	NG
Ot Francis Dark Anartmanta China Laddar Darian	164444
9570 SW Barbur Blvd Suite One Hundred Portland OB 97219	#_101411
Location136 SE Oak Street, Portland, Oregon	
Client A 2 FABRICATIONS	
MILLER Phone 503 246 1250	