

910 W. 11th ST. SUITE #A VANCOUVER, WA 98660 OFF: (800) 810-7666 FAX: (360) 699-6476

E-MAIL: INFO@GLOBALSOLARIUMS.COM WEB: WWW.GLOBALSOLARIUMS.COM

PRO-ALUMARAIL 100 SERIES 200 SERIES

w/ TOP-MOUNT POST-BASE IN RESIDENTIAL APPLICATIONS w/ 3 ft TALL RAIL POSTS

CODE COMPLIANCE 2012 INTERNATIONAL RESIDENTIAL CODE 2014 OREGON RESIDENTIAL SPECIALTY CODE 2013 CALIFORNIA BUILDING CODE

Checking is only for conformance with the design concept of the Project and compliance with the information given in the Contract Documents. Contractor is responsible for dimensions to be confirmed and correlated at the job site, for information that pertains solely to the thorication processes or to techniques of construction and for coordination of the work of all trades.

By ZJB

STRUCTURAL DEPT

10.29.21

Date

*

STRUCTURAL CALCULATIONS

FOR GUARDRAIL, POST, POST BASE & BASE ANCHORS

EXPIRES 3/21/18

 \star

EXPIRES 12/31/18

EXPIRES 6/30/18

DESIGN OF (CONCRETE OR WOOD) DECK/STAIRS TO RESIST HORIZONTAL, VERTICAL, AND MOMENT FORCES AT THE BASE OF THE GUARDRAIL POSTS. INCLUDING DECKING, RIM JOIST, DECK JOISTS, AND ANY BLOCKING REOD FOR LAG SCREW ANCHORAGE. IS OUTSIDE THE SCOPE OF THIS ANALYSIS AND MUST BE EVALUATED ON A CASE-BY-CASE BASIS BY A QUALIFIED STRUCTURAL ENGINEER. FOR CONCRETE DECKS THE MINIMUM 28 DAY CONC.COMPRESSIVE STRENGTH, fc = 2,500 psi

(SEE PAGE 5 & 6 FOR BASE PL ANCHOR REQ'TS)

INCLUDES 200 Ib HORIZ. PT LOAD AT MIDSPAN & 412 Ib COMPRESSION LOAD FROM CABLE TENSION

CLEAR SPAN = 5.83 ft

POST-TO-POST SPACING = 6 ft

BENDING MOMENT = 292 lb-ft

COMPRESSION LOAD = 412 lb

TOP OF RAIL **100S 200S** - 80 lb - 80 lb 80 lb - 80 lb Ftu = 38 ksi Ftu = 38 ksi 80 lb Fy = 35 Fy = 35ksi ksi 36" - 80 lb $Sy = 0.228 \text{ in}^3$ $Sy = 0.824 \text{ in}^3$ - 80 lb Ix = 0.201 in⁴ $Ix = 0.249 in^{4}$ - 80 lb $Iy = 0.228 \text{ in}^4$ $Iy = 1.442 in^{4}$ 80 lb E = 10,100 ksi E = 10,100 ksi $r_{\rm V} = 0.608$ in $r_V = 0.545$ in $A = 0.839 \text{ in}^2$ $A = 0.543 \text{ in}^2$ 308 lb HORIZ. LOAD CONTROLS FOR BENDING STRESS DUE TO ABSENCE OF LOAD SHARING w/ BOT. RAIL

Bending Stress, fb = 15.3 ksi < Fb = 19.50 ksi allowable

Axial Stress, fc =	0.8	ksi <	Fc =	6.40	ksi	OK
				allowa	able	

 $\frac{fb}{Fb} + \frac{fc}{Fc} = 0.79 + 0.12 = 0.91 < 1$ OK

- 412 lb

CALCS BASED ON THE HIGHEST

STRESSED CONFIGURATION INVOLVING THE 100S HAND RAIL

w/ CABLE INFILL, WHICH INCLUDES AXIAL COMPRESSION. THE 200S IS OK BY INSPECTION OF IT'S

STRONGER SECTION PROPERTIES.

HAND RAIL POST - RESIDENTIAL (# 13503)

HEIGHT = 3.00 ft

PT LOAD AT TOP = 200 Ib

Ftu =	38	ksi
Fy =	35	ksi
Sx =	0.726	in^3
Sy =	0.801	in^3
Ix =	0.863	in^4
ly =	0.863	in^4
E =	10,100	ksi

TOP OF RAIL

200 lb

100 & 200 SERIES POST-TO-BASE PL CONNECTION

ULTIMATE SCREW TENSILE CAP. = 6,440 lb DESIGN CAP. = 6,440 / 3 = 2,147 lb > 1,694 lb REQ'D - OK

100 & 200 SERIES POST BASE PL & ANCHORAGE TO WOOD DECK w/ 3/8" DIA. LAG SCREWS

100 & 200 SERIES POST BASE PL & ANCHORAGE TO CONCRETE DECK

SEE PAGE 6 FOR BASE PL BENDING ANALYSIS THAT ALSO APPLIES TO THIS CONDITION. SEE NEXT 8 PAGES FOR ANCHOR CALCULATIONS.

7 of 10

Anchor Designer™ Software

Version 2.5.6163.6

Company:	Date:	6/14/2015
Engineer:	Page:	1/4
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375Nominal Embedment depth (inch): 3.250Effective Embedment depth, h_{ef} (inch): 2.400Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 5.00c_{ac} (inch): 3.63C_{min} (inch): 1.75S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Appendix C Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Project description: POST ANCHORAGE Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 5.00 x 5.00 x 0.38 Yield stress: 35000 psi

Profile type/size: HSS2-1/2X2-1/2X1/8

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

8 of 10

Anchor Designer™ Software Version 2.5.6163.6

Company:	Date:	6/14/2015
Engineer:	Page:	2/4
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Recommended Anchor

Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713

SIMPSON	Anchor Designer™	Company:	Date:	6/14/2015
		Engineer:	Page:	3/4
Strong-Tie	Software	Project:		
	Version 2.5.6163.6	Address:		
		Phone:		
		E-mail:		

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	1556.9	0.0	85.0	85.0
2	0.0	0.0	85.0	85.0
3	0.0	0.0	85.0	85.0
4	1556.9	0.0	85.0	85.0
Sum	3113.8	0.0	340.0	340.0

Maximum concrete compression strain (‰): 0.19 Maximum concrete compression stress (psi): 814 Resultant tension force (lb): 3114

Resultant compression force (lb): 3114 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
10890	0.70	7623

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

$N_b = k_c \lambda_a \sqrt{f}$	<i>ch_{ef}^{1.5}</i> (Eq. D-6°	5)		•					
Kc	λa	f'c (psi)	hef (in)	Nb (I	lb)				
17.0	1.00	2500	2.400	316	0				
$\phi N_{cbg} = \phi (A$	Nc / А№со) Ψес,N	$\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N$	(Sec. D.4.1 &	Eq. D-4)					
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (lb)
79.78	51.84	6.88	1.000	1.000	1.00	1.000	3160	0.75	3648
6. Pullout	Strength of A	Anchor in Ten	sion (Sec. D.	5. <u>3)</u>					
$\phi N_{pn} = \phi \Psi_{c,}$	_P λaNp(f ² c / 2,50	0) ⁿ (Sec. D.4.1	, Eq. D-13 & C	ode Report)					
W -	2	M. (lb)	f' (nei)	n	4		4N/ (lb)		

$\Psi_{c,P}$	λa	N _p (lb)	f'c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	2700	2500	0.50	0.75	2025

10 of 10

 ϕV_{cpg} (lb)

5044

6/14/2015 Date: 4/4 Page: E-mail:

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V _{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{grout} \phi V_{sa}$ (II	b)				
4460	1.0	0.65	2899					
9. Concret	e Breakout Str	ength of And	hor in Shear (S	<u>ec. D.6.2)</u>				
Shear perp	pendicular to e	edge in y-dire	ction:					
$V_{by} = \min[7($	$(I_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{d_a\lambda_a}$	Fc c a1 ^{1.5} ; 9λa√fc	<i>c</i> a1 ^{1.5} ∣ (Eq. D-33 &	& Eq. D-34)				
<i>l</i> e (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
2.40	0.375	1.00	2500	3.00	1614			
$\phi V_{cbgy} = \phi (A$	A _{Vc} / A _{Vco}) <i>Y</i> ec, v <i>Y</i>	Ved, V $\Psi_{c,V} \Psi_{h,V} V_{by}$	(Sec. D.4.1 & Ec	д. D-31)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	Ψc,v	Ψh,V	V _{by} (lb)	ϕ	ϕV_{cbgy} (
57.96	40.50	1.000	1.000	1.000	1.000	1614	0.75	1733

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi k_{cp} N_{cbg} = \phi k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b (\text{Sec. D.4.1 \& Eq. D-41})$									
<i>K</i> _{cp}	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N_b (lb)	ϕ	
1.0	116.12	51.84	1.000	0.950	1.000	1.000	3160	0.75	

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

	· · /			
Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1557	7623	0.20	Pass
Concrete breakout	3114	3648	0.85	Pass (Governs)
Pullout	1557	2025	0.77	Pass
Shear	Factored Load, V _{ua} (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	85	2899	0.03	Pass
T Concrete breakout y+	- 170	1733	0.10	Pass (Governs)
Pryout	340	5044	0.07	Pass
Interaction check Nua	/øNn Vua/øVn	Combined Ratio	p Permissible	Status
Sec. D.7.1 0.8	5 0.00	85.4 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.