

City of Portland, Oregon - Bureau of Development Services

1900 SW Fourth Avenue • Portland, Oregon 97201 | 503-823-7300 | www.portland.gov/bds

Deferred Submittal Requirements and Application

Minimum Submittal Requirements (check all boxes and sign below):

For a full list of deferred submittal guidelines, please visit our website.

- Plans stamped and signed by a Design Engineer or Architect registered in Oregon. One PDF copy of plans for electronic submittals or three copies for paper submittals.
- Calculations and product information. One PDF copy for electronic submittals or two copies for paper submittals.
- Prior to submitting the deferred submittal, the Engineer of Record and/or Architect of Record responsible for the building shall review the deferred submittal plans and supporting materials and add a notation indicating that the deferred submittal documents have been reviewed and found to be in general conformance with the design of the building. The notation shall be made on the deferred submittal drawings. Review stamps on letters of transmission are not acceptable.
 Exception: the notation is not required on deferred submittals for fire spinklers or roof trusses in residential construction when an Engineer or Architect of Record is not involved with the design of the building.
- Plan views and elevations identifying the location(s) as approved by the Engineer and/or Architect of Record must be submitted as appropriate but are required when the deferred submittal items include exterior elements.

I certify this deferred submittal application meets the minimum submittal requirements as outlined above.

Applicant Signature:			Date:
Applicant Submittal Information:			
Applicant name:			
Address:			
City:		State:	Zip Code:
Phone:	Email:		
Value of deferred submittal: \$		Issued main building	g permit #:
Job Site Address:			
Description/Scope of work:			
Contractor Name:		CCB:	
Engineer/Architect of Record for the construction when an Engineer or Arch	building inform hitect of Record is	nation (Not required not involved with the	for roof trusses in residential e design of the building)
Name:		Phone:	
Design Engineer for the deffered ite	ms		
Nama		Dhana:	

DEFERRED SUBMITTAL REQUIREMENTS AND APPLICATION

continued on reverse

Fees

An invoice with permit fees will be sent to the applicant once minimum submittal requirements have been verified. Deferred submittal (DFS) fees are collected in addition to the standard building review fee paid on the main building permit. DFS fees cover the cost of the additional processing and review time associated with the design build element. The DFS fee for processing and reviewing deferred plan submittals is 10 percent of the building permit fee calculated using the value of the deferred portion of the project with a minimum fee of \$195 for 1 & 2 family dwelling projects or \$510 for commercial and all other projects.

The Bureau of Development Services (BDS) fee schedule is also available on the BDS website.

Helpful Information

Bureau of Development Services 1900 SW 4th Avenue, Portland, OR 97201

Submit your plans to:

Development Services Center (DSC), First Floor, For Hours Call 503-823-7310 | Select option 1 or visit www.portland.gov/bds

Important Telephone Numbers

BDS main number	503-823-7300
DSC automated information line	503-823-7310
Building code information	503-823-1456
BDS 24 hour inspection request line	503-823-7000
Residential information for	
one and two family dwellings	503-823-7388
City of Portland TTY	503-823-6868

Information is subject to change.

DEFERRED SUBMITTAL REQUIREMENTS AND APPLICATION

20-168148 DFS 0

RE: 2829964 2829964 - Habitat for Humanity - Building 6,7,8,14

Site Information:

Customer: Project Name: 2829964 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IBC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 49.8 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 120 mph Floor Load: N/A psf

This package includes 17 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	K9948577	A01	8/2/2021
2	K9948578	A02	8/2/2021
3	K9948579	A03	8/2/2021
4	K9948580	A04	8/2/2021
5	K9948581	A05	8/2/2021
6	K9948582	B01	8/2/2021
7	K9948583	B02	8/2/2021
8	K9948584	B03	8/2/2021
9	K9948585	B04	8/2/2021
10	K9948586	B05	8/2/2021
11	K9948587	BP01	8/2/2021
12	K9948588	BP02	8/2/2021
13	K9948589	BP03	8/2/2021
14	K9948590	BP04	8/2/2021
15	K9948591	BP05	8/2/2021
16	K9948592	BP06	8/2/2021
17	K9948593	BP07	8/2/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by Builders FirstSource (Beaverton, OR). Truss Design Engineer's Name: Baxter, David My license renewal date for the state of Oregon is December 31, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 1

Baxter, David

MiTek USA, Inc.

250 Klug Circle Corona, CA 92880 951-245-9525

- REACTIONS. All bearings 28-8-0.
 - (lb) Max Horz 40=-152(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 34, 40, 36, 37, 38, 39, 32, 31, 30, 28, 27, 26, 25 except 35=-111(LC 9), 24=-479(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 34, 40, 35, 37, 39, 33, 32, 31, 30, 28, 27, 26, 25, 24 except 23=521(LC 18), 36=259(LC 19), 38=258(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 21-23=-508/104

NOTES-

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-8-12, Exterior(2E) 9-7-0 to 12-7-0, Interior(1) 12-7-0 to 27-7-0, Exterior(2E) 27-7-0 to 30-8-0 zone; cantilever left and right exposed ; end

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 40, 36, 37, 38, 39, 32, 31, 30, 28, 27, 26, 25 except (jt=lb) 35=111, 24=479.

13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENEWAL DATE: 12-31-2021 July 14,2021

	5-3-8	10-7-0	18-4-11	26-2-5	28-8-0
Plate Offsets (X,Y) [2	<u>5-3-6</u> 2:0-2-14,0-2-8], [4:0-6-4,0-2-4	<u>5-3-0</u> 4], [13:0-3-8,0-1-8], [15:0)-5-4,0-3-4], [17:0-3-0,0-1-12]	7-9-11	2-3-11
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL 7.0 BCLL 0.0 * BCDL 12.9	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPl2	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 2014 Matrix	DEFL. in 0.66 Vert(LL) -0.10 0.47 Vert(CT) -0.22 0.91 Horz(CT) 0.05 k-S Wind(LL) 0.06	(loc) l/defl L/d 16 >999 360 14-16 >999 240 12 n/a n/a 16 >999 240	PLATES GRIP MT20 220/195
LUMBER- TOP CHORD 2x4 DF N BOT CHORD 2x4 DF N WEBS 2x4 DF S	No.1&Btr No.1&Btr Std		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly a except end verticals. Except: 6-0-0 oc bracing: 4-6 Rigid ceiling directly applied or 10-1 6-0-0 oc bracing: 12-13	pheviewert - Portrand Date: 10/21/21 -08eienheing, 1482,486,9,FS-01-RS
REACTIONS. (size)	18=0-5-8 12=0-5-8		WEBS	1 Row at midpt 4-14, 4	7

TIONS.	(size)	18=0-5-8, 12=0-5-8
	Max Horz	18=-157(LC 9)
	Max Uplift	18=-112(LC 8), 12=-123(LC 13)
	Max Grav	18=1390(LC 1), 12=1440(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2489/394, 3-4=-2335/446, 4-16=0/359, 4-6=-279/217, 7-9=-1672/222, 9-10=-948/124, 2-18=-1311/293, 10-12=-1451/231
- BOT CHORD 17-18=-46/308, 16-17=-236/2310, 14-16=-235/2156, 13-14=-58/893 WEBS 7-14=0/437, 3-16=-439/95, 9-14=-43/678, 2-17=-278/2054, 10-13=-79/1352, 9-13=-830/161, 4-14=-756/232, 4-7=-1524/308

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-8-12, Exterior(2E) 9-7-0 to 12-7-0, Interior(1) 12-7-0 to 27-8-0, Exterior(2E) 27-8-0 to 30-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=112, 12=123.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

RENEWAL DATE: 12-31-2021 July 14,2021

Plate Offsets (X,Y) [3:0-0-13,0-1-8]					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) 7.0 TCDL 7.0 BCLL 0.0 BCDL 12.9	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.84 BC 0.14 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/d 0.00 1 0.00 1 0.00 4 r	defi L/d n/r 90 n/r 120 n/a n/a	PLATES GRIP MT20 220/195
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF OTHERS 2x4 DF	lo.1&Btr Jo.1&Btr Std Std		BRACING- TOP CHORD BOT CHORD	Structural wo except end v Rigid ceiling	ood sheathing direc verticals. directly applied or	tty phile in the second

REACTIONS. All bearings 5-9-8.

(lb) - Max Horz 8=78(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 4, 5, 7 except 8=-108(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 5, 6, 7 except 8=519(LC 19), 4=300(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-8=-506/398

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -2-0-0 to 1-0-0, Exterior(2N) 1-0-0 to 2-7-12, Corner(3E) 2-7-12 to 5-7-12 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 7 except (it=lb) 8=108.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

July 14,2021

	L	5-3-8		10-7-0	1	18-4-11	1		26-2	-5			34-0-0	
		5-3-8	1	5-3-8	1	7-9-11			7-9-1	1	1		7-9-11	
Plate Offsets (X	(,Y) [2	:0-3-0,0-2-0], [4	:0-6-4,0-2	-12], [10:0-3-0,	0-2-0], [12:1	Edge,0-1-8], [1	3:0-3-8,0-2-0], [1	17:0-3-	8,0-2-0]					
LOADING (psf TCLL 2 (Roof Snow=25 TCDL BCLL) 25.0 5.0) 7.0 0.0 *	SPACIN Plate G Lumber Rep Str Code IE	NG- rip DOL DOL ess Incr 3C2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.87 0.54 0.69 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	ir -0.17 -0.36 0.08 0.10	(loc) 15-16 15-16 12 12 13-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240		PLATES MT20	GRIP 220/195
BCDL	12.9						()						City	of Portland
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 DF N 2x4 DF N 2x4 DF S	o.1&Btr o.1&Btr td *Except*					BRACING- TOP CHORE)	Structur except e 6-0-0 oc	al wood s and vertic bracing:	sheathing c als. Excep 4-6	lirectly a ot:	pplied of 3-4-2 Date: 10/21/2	for code compliance
	2-17,10-1	3: 2x4 DF No.1	l&Btr				BOT CHORE)	Rigid ce 6-0-0 oc 1 Row a	iling dire bracing: t midpt	ctly applied 12-13.	l or 10-0 4-7, 4-1	-0'661999a&ing	102X00ptirS-01-RS
REACTIONS.	(size)	18=0-5-8, 12	=0-5-8											

CHONS.	(size)	18=0-5-8, 12=0-5-8
	Max Horz	18=-235(LC 9)
	Max Uplift	18=-109(LC 8), 12=-148(LC 9)
	Max Grav	18=1634(LC 1), 12=1674(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3024/443, 3-4=-2986/504, 4-16=0/343, 4-6=-280/222, 7-9=-2467/289,

9-10=-3069/264, 2-18=-1554/317, 10-12=-1575/304

 BOT CHORD
 17-18=-40/363, 16-17=-275/2817, 15-16=-281/2777, 13-15=-137/2835, 12-13=-47/414

 WEBS
 3-17=-263/132, 3-16=-398/163, 4-7=-2290/371, 4-15=-685/222, 7-15=-9/725, 9-15=-631/100, 2-17=-325/2569, 10-13=-190/2433

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-4-13, Interior(1) 2-4-13 to 10-8-12, Exterior(2E) 9-7-0 to 12-11-13, Interior(1) 12-11-13 to 32-7-3, Exterior(2E) 32-7-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=109, 12=148.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

PROF =**N** GI 9200P C OREGON ERRI

RENEWAL DATE: 12-31-2021 July 14,2021

	-					
Job	Truss	Truss Type	Qty	Ply	2829964 - Habitat for Humanity - Building 6,7,8,14	
			1		,	10040504
						K9948581
2829964	A05	GABLE	1	1		
2023304	700	OADEE	11			
					Job Reference (optional)	
Builders FirstSource (Beave	ton OR) Beaverton OR	- 97005		3 430 s. Jur	2 2021 MiTek Industries Inc. Wed Jul 14 14:46:23 2021 F	Page 2
Ballacio i libicodiloc (Beavel		01000,				ugo z
		חו	•6su6l3ms	I MTCTB ₇	9\/h8\Chrz6Ke1_a28Xv45fux9xXX.lt3v0INatkecHi7lkcSC5Ynv	ww6xk
		IB IB				.,,

NOTES-

7) All plates are 2x4 MT20 unless otherwise indicated.

- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 40, 41, 42, 37, 36, 35, 34, 33, 31, 30, 29, 28 except (jt=lb) 38=1028, 44=2352, 25=573, 39=198, 43=1538, 27=3939, 26=5195.
- 14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 15) This truss has been designed for a total drag load of 255 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 34-0-0 for 255.0 plf.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

City of Portland

Reviewed for code compliance

```
Date: 10/21/21
Project #: 20-168148-DFS-01-RS
```


		<u> </u>						28-0-0 17-5-0					
LOADING (psf) TCLL 2 (Roof Snow=25. TCDL BCLL BCDL 1	5.0 0) 7.0 0.0 * 2.9	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC BC WB Matu	0.37 0.07 0.07 rix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.00 0.01	(loc) 21 20 22	l/defl n/r n/r n/a	L/d 90 120 n/a		PLATES MT20 Weight: 148 lb	GRIP 220/195 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 DF No 2x4 DF No 2x4 DF Stc 2x4 DF Stc	.1&Btr .1&Btr I			BRACING- TOP CHORI BOT CHORI JOINTS	D S 6 D F 1	Structura except e S-0-0 oc Rigid ce Brace	al wood s and vertic bracing: iling dire at Jt(s): l	sheathing dire als. Except: 8-10 ctly applied or 8	ctly a	City of pplied or 6-0-0 oc Reviewed for Date: 10/21/21 oc bracing. Project #: 20-168	f Portland	nce
REACTIONS.	All bearin	las 28-0-0											

(lb) - Max Horz 38=-143(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 32, 33, 34, 35, 36, 37, 30, 29, 28, 27, 25, 24, 23 Max Grav All reactions 250 lb or less at joint(s) 32, 38, 33, 35, 37, 31, 30, 29, 28, 27, 25, 24, 23 except 22=406(LC 18), 34=257(LC 19), 36=254(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 20-22=-356/49

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-8-12, Exterior(2E) 9-7-0 to 12-7-0, Interior(1) 12-7-0 to 27-0-0, Exterior(2E) 27-0-0 to 30-0-0 zone; cantilever left and right exposed; end
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 22) Design a sector of the sector
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 33, 34, 35, 36, 37, 30, 29, 28, 27, 25, 24, 23.
- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

RENEWAL DATE: 12-31-2021 July 14,2021

	5-3-8	3	10-7-0			19-3-8	28				28	28-0-0	
	5-3-8	3 '	5-3-8	1		8-8-8					8-	-8-8	
Plate Offsets (X,	Y) [2:0-2-14,	0-2-8], [4:0-6-4,0-	2-4], [16:0-3-0,0-1-	-12]									
LOADING (psf) TCLL 2 (Roof Snow=25. TCDL BCLL PCDL 1	5.0 0) 7.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.61 0.56 0.88 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	ir -0.12 -0.29 0.06 0.06	n (loc) 2 14-15 9 14-15 9 14-15 9 12 9 14-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240		PLATES MT20	GRIP 220/195
	2.9										-	City e	of Portland
LUMBER-						BRACING-						Poviowod f	or code compliance
TOP CHORD	2x4 DF No.1&Btr					TOP CHORE)	Structura	al wood s	heathing dire	ectly a	pplied or 4-0-10	oc purlins,
BOT CHORD	2x4 DF No.1&Btr 2x4 DF Std							except e 6-0-0 oc	nd vertic bracing:	als. Except: 4-6		Date: 10/21/21	
						BOT CHORE)	Rigid ce	iling direc	tly applied o	r 10-(-0Poeleratin29-10	68148-DFS-01-RS
						WEBS		1 Row a	t midpt	4-	-7, 4-	4, 9-12	
REACTIONS.	(size) 17=0-	-5-8, 12=0-5-8											

Max Horz 17=-146(LC 9) Max Uplift 17=-108(LC 8), 12=-140(LC 9) Max Grav 17=1359(LC 1), 12=1410(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2420/374, 3-4=-2249/417, 4-15=0/380, 7-9=-2257/230, 9-10=-340/53, 2-17=-1279/283, 10-12=-424/173

- BOT CHORD 16-17=-41/301, 15-16=-211/2244, 14-15=-194/2080, 12-14=-142/2150
- WEBS 3-15=-447/100, 4-7=-1792/327, 4-14=-487/132, 7-14=0/559, 2-16=-264/1990, 9-12=-2084/290

NOTES-

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-8-12, Exterior(2E) 9-7-0 to 12-7-0, Interior(1) 12-7-0 to 27-0-0, Exterior(2E) 27-0-0 to 30-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=108, 12=140.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

B9200PE PEL OREGON MERRILL BAT

RENEWAL DATE: 12-31-2021 July 14,2021

		5-3-8	10-	7-0	1	18-3-8			19-3-	8	26	6-0-0	
		5-3-8	5-3	3-8		7-8-8			1-0-0) '	6	6-8-8	
Plate Offsets (2	X,Y) [4:0	0-5-8,0-3-4], [15:0-3-0,0)-2-0]										
LOADING (ps TCLL (Roof Snow=25 TCDL BCLL BCDL	f) 25.0 5.0) 7.0 0.0 * 12.9	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/	2-0-0 1.15 1.15 YES IPI2014	CSI. TC 0 BC 0 WB 0 Matrix-S	.58 .48 .85	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.26 0.05 0.05	(loc) 13-14 13-14 11 14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	F	PLATES MT20 Weight: 144 ID	GRIP 220/195
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 DF Nc 2x4 DF Nc 2x4 DF Sto (size)	0.1&Btr 0.1&Btr d 16=0-5-8, 11=0-5-8				BRACING- TOP CHORE BOT CHORE WEBS		Structura except e 6-0-0 oc Rigid cei 1 Row a	al wood si and vertica bracing: iling direc t midpt	heathing dire als. Except: 4-6 tly applied o 4-	ectly ; pp 1 r 10-(0 13	City of Reviewed for Date: 10/21/21 Preierating:168	FPORTIANC
	Max Horz	16=-117(LC 9)											

Max Horz 16--117 (LC 9) Max Uplift 16=-109(LC 8), 11=-130(LC 9) Max Grav 16=1267(LC 1), 11=1323(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2219/358, 3-4=-2006/395, 4-14=0/397, 7-8=-1724/190, 2-16=-1189/276, 9-11=-292/172
- BOT CHORD 15-16=-43/277, 14-15=-197/2054, 13-14=-173/1850, 11-13=-82/1366
- WEBS 3-14=-475/100, 4-7=-1422/302, 4-13=-599/135, 2-15=-250/1811, 8-11=-1685/175, 8-13=0/310, 7-13=0/403

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-8-12, Exterior(2E) 9-7-0 to 12-7-0, Interior(1) 12-7-0 to 25-0-0, Exterior(2E) 25-0-0 to 28-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=109, 11=130.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

RENEWAL DATE: 12-31-2021 July 14,2021

			-	-			
Job	Truss	Truss Type	Qty	Ply	2829964 - Habitat for Humanity - Building 6,7,8,14		
						K9948585	
2829964	B04	GABLE	1	1			
					Job Reference (optional)		
Builders FirstSource (Beaver	rton, OR), Beaverton, OR	- 97005,	6	3.430 s Jur	2 2021 MiTek Industries, Inc. Wed Jul 14 14:46:31 2021	Page 2	
		ID:6su	ID:6su6I3msLMTCTBz9Vh8Qprz6Ke1-RXdYdpBa0QApUIwPXd9AiWC4Ur3t?PtnIS1z3Tvv6xc				

NOTES-

9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 32, 33, 28, 27, 26, 25, 24 except (jt=lb) 29=497, 35=2369, 20=343, 30=180, 34=1546, 22=3937, 21=4744.
- 14) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 15) This truss has been designed for a total drag load of 255 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0
- to 26-0-0 for 255.0 plf.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

City of Portland

Reviewed for code compliance

```
Date: 10/21/21
Project #: 20-168148-DFS-01-RS
```


		1					
LOADING (psf) TCLL 25.0 (Roof Snow=25.0) TCDL TCDL 7.0 BCLL 0.0 * BCDL 12.9	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.41 BC 0.06 WB 0.00 Matrix-R	DEFL. Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) -0.0	in (loc) l/defl)1 1 n/r)0 1 n/r)0 4 n/a	L/d 90 120 n/a	PLATES MT20 Weight: 12 lb	GRIP 220/195 FT = 20%
LUMBER- TOP CHORD 2x4 DF No.1&Btr BOT CHORD 2x4 DF No.1&Btr WEBS 2x4 DF Std			BRACING- TOP CHORD BOT CHORD	Structural wood except end ver Rigid ceiling dir	I sheathing directl icals. ectly applied or 6-	City applied or 2-5-8 Reviewed 1 0-0 ocabracingh/2+/2-	of Portland oc purlins, for code compliance
REACTIONS. (size) Max Horz Max Uplif Max Grav				Project #: 20-1	168148-DFS-01-RS		

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-388/334

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=7.7psf; h=25ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 1-4-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

RENEWAL DATE: 12-31-2021 July 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

250 Klug Circle Corona, CA 92880

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

RENEWAL DATE: 12-31-2021 July 14,2021

Job	Truss	Truss Type	Qty	Ply	2829964 - Habitat for Huma	nity - Building 6,7,8,14					
2829964	BP03 Blocking Supported			1 1 K99							
Builders FirstSource (Beave	ers FirstSource (Beaverton, OR), Beaverton, OR - 97005,			Job Reterence (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Wed Jul 14 14:46:40 2021 Page 1							
			ID:6su6l3msLl 1-4-0	MTCTBz9Vh	8Qprz6Ke1-gGfyWulJu9IX3	868Z0qHZP4nkTDBcZ16MLjxtRyy6xT					
			1-4-0								
		1 2 ^{5xi}	6 = 3 4			Scale = 1:17.1					
			2x4								
					A	RCH: PLS.					
		ĥ			V						
					S						
					C A						
					Ľ						
		6	5								
		2x4	5x6 —								
		L	1-4-0								
Plate Offsets (X,Y) [2:0)-3-0,0-2-12], [5:0-3-0,0-3-0]	Y	1-4-0 '								
LOADING (psf)	SPACING- 2-	D-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES GRIP					
(Roof Snow=25.0)	Plate Grip DOL 1	.15 TC 0.16	Vert(LL)	n/a -	n/a 999	MT20 220/195					
TCDL 7.0 BCLL 0.0 *	Rep Stress Incr Y	ES WB 0.29	Horz(CT) -0	.01 6	n/a n/a						
BCDL 12.9	Code IBC2018/TPI20	14 Matrix-P				City of Portland					
LUMBER- TOP CHORD 2x4 DF No	.1&Btr		BRACING- TOP CHORD	2-0-0 oc	purlins: 1-4, except end v	Reviewed for code compliance					
BOT CHORD 2x4 DF No WEBS 2x4 DF St	.1&Btr 1		BOT CHORD	Rigid ce	iling directly applied or 6-0-	0 ec.bracing1/21					
	- age 1-4-0					Project #: 20-168148-DFS-01-RS					
(lb) - Max Horz	1=-187(LC 26)		000/1 0 00) 5 507/1	0.07)							
Max Uplift Max Grav	All uplift 100 lb or less at jo All reactions 250 lb or less	int(s) 4 except 6=-266(LC 28), 1=- at joint(s) 4 except 6=271(LC 31),	366(LC 28), 5=-597(L 1=358(LC 31), 5=601	LC 27) 1(LC 32)							
FORCES. (Ib) - Max. Co	np./Max. Ten All forces 25) (lb) or less except when shown.									
TOP CHORD 2-6=-259)/273, 2-3=-303/297 0/769										
1) Wind: ASCE 7-16; Vult=	120mph (3-second gust) Va	sd=95mph; TCDL=4.2psf; BCDL=7	7.7psf; h=25ft; Cat. II;	Exp B; Enc	losed;						
MWFRS (envelope) gat exposed;C-C for member	ole end zone and C-C Corner ers and forces & MWFRS for	(3) zone; cantilever left and right e reactions shown; Lumber DOL=1.	xposed ; end vertical 60 plate grip DOL=1.6	left and righ 60	it						
 Truss designed for wine Gable End Details as an 	d loads in the plane of the tru oplicable, or consult qualified	ss only. For studs exposed to win building designer as per ANSI/TP	d (normal to the face) 1.), see Stand	ard Industry						
3) TCLL: ASCE 7-16; Pf=2	5.0 psf (Lum DOL=1.15 Plate	e DOL=1.15); Is=1.0; Rough Cat B	; Fully Exp.; Ce=0.9;	Cs=1.00; C	t=1.10						
5) Gable requires continue	 4) Provide adequate drainage to prevent water ponding. 5) Gable requires continuous bottom chord bearing. 										
6) Truss to be fully sheath7) Gable studs spaced at ²	ed from one face or securely 1-4-0 oc.	braced against lateral movement (i.e. diagonal web).			PENGINEER					
8) This truss has been des9) * This truss has been des	igned for a 10.0 psf bottom o signed for a live load of 20.0	hord live load nonconcurrent with psf on the bottom chord in all area	any other live loads. s where a rectangle 3	3-6-0 tall by	2-0-0 wide	80200PE					
will fit between the botto	m chord and any other mem	bers. to bearing plate canable of withsta	unding 100 lb unlift at	ioint(s) 4 ev	cept (it=lb)						
6=266, 1=366, 5=597.		International Duilding Code of the	a 2206 1 and reference			4. Out					
1.	in accordance with the 2018	memational Building Code section	1∠300.1 and referend	Jeu standar		OREGON					
12) This truss has been de drag loads along botto	esigned for a total drag load on m chord from 0-0-0 to 1-4-0 t	f 250 plf. Lumber DOL=(1.33) Plat or 250.1 plf.	e grip DOL=(1.33) C	onnect trus	s to resist	MAY IN ONLY					
13) Graphical purlin repres	sentation does not depict the	size or the orientation of the purlin	along the top and/or	bottom cho	rd.	MEDDIN BP					
					- La	NAKILY					
					RE	NEWAL DATE: 12-31-2021 July 14,2021					

250 Klug Circle Corona, CA 92880

Job	Truss	Truss Type	Qty	Ply	2829964 - Habitat for Hur	manity - Building 6,7,8,14	K0048500		
2829964	BP04	Blocking Supported					K9940590		
Builders FirstSource (Beaver	rton, OR), Beaverton, OR	 - 97005,	8	3.430 s Jun	2 2021 MiTek Industries	, Inc. Wed Jul 14 14:46:44 202	21 Page 1		
		ID:6s 1-10-8	u6l3msLMT	CTBz9Vh8	Qprz6Ke1-Z1vTMFLqyNo	zYIQvosuDkFESI4avYNuiHzh	90Cyy6xP		
		1-10-8							
		1 2 ^{5x6} =	3 4				Scale = 1:17.0		
			2x4						
						SHOULD BE 2'-8			
							-0		
		0-1-0	0-1+0						
		6	5						
		2x4 5x6 =							
		1-10-8							
Plate Offsets (X,Y) [2:0	-3-0.0-2-12]. [5:0-3-0.0-2-12]	1-10-8							
LOADING (psf)				n (la a)	1/1-51 1/1				
TCLL 25.0 (Roof Spow=25.0)	Plate Grip DOL 1.	.15 TC 0.19 Vert(I LL) n/a	n (loc) a -	n/a 999	MT20 220/195			
TCDL 7.0	Lumber DOL 1. Rep Stress Incr Y	.15 BC 0.04 Vert(ES WB 0.30 Horz	CT) n/2 (CT) -0.0	a - 1 6	n/a 999 n/a n/a				
BCLL 0.0 * BCDL 12.9	Code IBC2018/TPI201	I4 Matrix-P				Vieignt: 14 ID FT =			
LUMBER-		BRAC	NG-			Reviewed for code	compliance		
TOP CHORD 2x4 DF No. BOT CHORD 2x4 DF No.	.1&Btr .1&Btr	TOP C BOT C	HORD HORD	2-0-0 oc Rigid cei	purlins: 1-4, except end ling directly applied or 6	-0.D oc bracing 101	compliance		
WEBS 2x4 DF Std	I			,		Project #: 20-168148-DFS	-01-RS		
REACTIONS. All bearin	igs 1-10-8.								
(Ib) - Max Horz Max Uplift	All uplift 100 lb or less at jo	int(s) 4 except 6=-332(LC 28), 1=-305(LC 32),	5=-575(LC	27)					
Max Grav	All reactions 250 lb or less	at joint(s) 4 except 6=332(LC 31), 1=305(LC 2	27), 5=575(L	_C 32)					
FORCES. (lb) - Max. Con	np./Max. Ten All forces 250	0 (lb) or less except when shown.							
BOT CHORD 5-6=-313	/343, 2-3=-439/432 /339								
WEBS 2-5=-789	/789								
NOTES-									
1) Wind: ASCE 7-16; Vult= MWFRS (envelope) gab	le end zone and C-C Corner	(3) zone; cantilever left and right exposed ; en	t; Cat. II; Ex d vertical lef	xp B; Encl ft and righ	osed; t				
exposed;C-C for member 2) Truss designed for wind	ers and forces & MWFRS for I loads in the plane of the true	reactions shown; Lumber DOL=1.60 plate grip ss only For studs exposed to wind (normal to	DOL=1.60	see Standa	ard Industry				
Gable End Details as ap	plicable, or consult qualified	building designer as per ANSI/TPI 1.		-1 00. 01	-1.10				
 4) Provide adequate draina 	age to prevent water ponding	$\frac{1}{2}$ DOL=1.15); is=1.0; Rough Cat B; Fully Exp.;	Ce=0.9; Cs	s=1.00; Ct	=1.10	FRED PROFES			
5) Gable requires continuor6) Truss to be fully sheather	us bottom chord bearing.	braced against lateral movement (i.e. diagona	web)		ж.	SENGINEED	0		
7) Gable studs spaced at 1	-4-0 oc.		- leede		4		12		
 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 									
will fit between the botto 10) Provide mechanical co	m chord and any other meml nnection (by others) of truss	bers. to bearing plate capable of withstanding 100 ll	o uplift at ioi	int(s) 4 ex	cept (it=lb)	1 CR			
6=332, 1=305, 5=575.	in accordance with the 2019		d roforonos	d standa		the company of the second seco			
		international building Code section 2500.1 an		น จเสทนสกับ		OREGON	121		
 This truss has been de drag loads along bottor 	signed for a total drag load o m chord from 0-0-0 to 1-10-8	<pre>f 250 plf. Lumber DOL=(1.33) Plate grip DOL= for 250.0 plf.</pre>	(1.33) Cor	nnect truss	s to resist	D Y 14,20	*		
13) Graphical purlin repres	entation does not depict the	size or the orientation of the purlin along the to	op and/or bo	ottom chor	d.	MERBILL			
					~		10.00		
					F	ENEWAL DATE: 12-31	2021 21		
						July 14,20	<u> </u>		
WARNING - Verify design p	parameters and READ NOTES ON TH	HIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 r	ev. 5/19/2020 B	BEFORE USE	L.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

250 Klug Circle Corona, CA 92880

- 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 1, 4, 5. 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

RENEWAL DATE: 12-31-2021 July 14,2021

> MiTek 250 Klug Circle Corona, CA 92880

- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 1, 4, 5.
 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a total drag load of 250 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-1-0 for 250.1 plf.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

RENEWAL DATE: 12-31-2021 July 14,2021

