

MiTek USA, Inc.

250 Klug Circle Corona, CA 92880 951-245-9525

Re: 213564-A SE Madison

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Trus-way Inc.

Pages or sheets covered by this seal: K9780478 thru K9780498

My license renewal date for the state of Oregon is December 31, 2021.

June 14,2021

Baxter, David

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Matrix-P

В

0.00

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

360

Structural wood sheathing directly applied or 1-0-0 oc purlins.

н	IIMBED.	

BCLL

BCDL

TOP CHORD 2x4 DF No.1&Btr G BOT CHORD 2x4 DF No 1&Btr G

0.0

10.0

REACTIONS. (size) B=1-0-0, D=1-0-0, C=Mechanical

Max Horz B=12(LC 14)

Max Uplift B=-35(LC 14), C=-47(LC 18)

Max Grav B=144(LC 18), D=13(LC 7), C=5(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2018/TPI2014

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 4 degree rotation about its center.
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) A plate rating reduction of 20% has been applied for the green lumber members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B and C. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 4 lb

FT = 8%

RENEWAL DATE: 12-31-2021 June 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITP/I Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.02 BC 0.00 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) G G B	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2018/1PI2014	Matrix-MP	vvind(LL)	0.00	G	>999	360	vveight: 4 ib	F1 = 8%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 DF No.1&Btr G BOT CHORD 2x4 DF No.1&Btr G

REACTIONS. (size) B=0-5-8, D=Mechanical, C=Mechanical

Max Horz B=14(LC 14)

Max Uplift B=-16(LC 14), C=-5(LC 14)

Max Grav B=90(LC 19), D=16(LC 7), C=25(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.

- 5) Plates checked for a plus or minus 4 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Refer to girder(s) for truss to truss connections.
- 11) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B and C. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

RENEWAL DATE: 12-31-2021 June 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12-0-0 12-0-0

[B:0-3-6,0-2-0], [C:0-1-0,0-2-4], [D:0-0-15,0-2-4], [E:0-1-0,0-2-4], [F:0-0-15,0-2-4], [H:0-1-0,0-2-4], [I:0-1-0,0-2-4], [J:0-1-0,0-2-4], [K:0-1-0,0-2-4], [L:0-3-6], Plate Offsets (X,Y)--

,0-2-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.02 WB 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 M -0.00 M 0.00 L	l/defl L/d n/r 120 n/r 90 n/a n/a	PLATES MT20	GRIP 220/195
BCDL 10.0	Code IRC2016/1912014	Matrix-P				weight: 99 b	FI = 6%
LUMBER-		BRA	CING-			÷	
TOP CHORD 2x4 DF No.1&Btr	G	TOF	CHORD S	Structural wood	sheathing direct	tly applied or 6-0-0 oc purlin	IS.
BOT CHORD 2x4 DF No.1&Btr	G	BOT	CHORD F	Rigid ceiling dire	ctly applied or	10-0-0 oc bracing.	

BOT CHORD 2x4 DF No.1&Btr G OTHERS 2x4 DF Stud/Std G

REACTIONS. All bearings 12-0-0.

(lb) -Max Horz B=-130(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) B, L, S, T, U, P, O, N Max Grav All reactions 250 lb or less at joint(s) B, L, R, S, T, U, Q, P, O, N

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 3-0-0, Corner(3R) 3-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 10-0-0, Corner(3E) 10-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.

- 6) All plates are 4x6 MT20 unless otherwise indicated.
- 7) Plates checked for a plus or minus 4 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 1-4-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 12) A plate rating reduction of 20% has been applied for the green lumber members.

13) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B, L, S, T, U, P, O, and N. This connection is for uplift only and does not consider lateral forces.

14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) L.

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

RENEWAL DATE: 12-31-2021 June 14.2021

MiTek 250 Klug Circle Corona, CA 92880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

250 Klug Circle Corona, CA 92880

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 04110 1 1,202

MiTek° 250 Klug Circle Corona, CA 92880

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	B04	ROOF SPECIAL GIRDER	1	3	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	In 22021 MiTek Industries,	ndProjectum 20-12/204404D202-01Page 2
NOTES		ID:zTADz_	_v4LJ?zCl	JljuQ0obZz	7OdB-bMm5UvLL_mU2nOl	C3FHI7I9GWUHpVgI_58tb5Lz7MVH

NOTES-

13) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) I and B. This connection is for uplift only and does not consider lateral forces.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 9-11-4 to connect truss(es) to front face of bottom chord.
- 17) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 12-0-12 from the left end to connect truss(es) to back face of bottom chord. 18) Fill all nail holes where hanger is in contact with lumber.
- 19) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: A-D=-56, D-F=-56, F-H=-56, I-O=-20

Concentrated Loads (lb)

Vert: M=-146(F) H=13 S=-12(B) T=-22(B) U=-22(B) V=-146(F) W=-146(F) X=-227(F) Y=-227(F) Z=-2124(F=-1749, B=-376) AA=-1841(F=-1835, B=-6) AB=-1841(F=-1835, B=-6)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.02 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.00 -0.00 -0.00	(loc) A A D	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20	GRIP 220/195
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 13 lb	FT = 8%
		BI							

LUMBER-

TOP CHORD2x4 DF No.1&Btr GBOT CHORD2x4 DF No.1&Btr GWEBS2x4 DF Stud/Std G

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-7-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) G=2-7-2, D=2-7-2, F=2-7-2, E=2-7-2 Max Horz G=42(LC 11) Max Uplift G=-51(LC 10), D=-24(LC 19), F=-13(LC 18), E=-57(LC 7)

Max Grav G=207(LC 19), D=55(LC 18), F=172(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-3-6, Exterior(2N) 2-3-6 to 2-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 4 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) A plate rating reduction of 20% has been applied for the green lumber members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D.
- 14) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) G, E, and F. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) E=0-5-8, C=Mechanical, D=Mechanical

Max Horz E=40(LC 14)

Max Uplift E=-44(LC 10), C=-15(LC 10)

Max Grav E=227(LC 19), C=71(LC 19), D=49(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 4 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) A plate rating reduction of 20% has been applied for the green lumber members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and C. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

RENEWAL DATE: 12-31-2021 June 14,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANS/ITP/I Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.10 BC 0.12 WB 0.01 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.01 -0.00 0.00	(loc) D-E D-E C D-E	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 15 lb	GRIP 220/195 FT = 8%
LUMBER- BRACING-									

 TOP CHORD
 2x4 DF No.1&Btr G

 BOT CHORD
 2x6 DF SS G

 WEBS
 2x4 DF Stud/Std G

 TOP CHORD
 Structural wood sheathing directly applied or 2-7-2 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) E=0-5-8, D=Mechanical, C=Mechanical Max Horz E=37(LC 12) Max Uplift E=-51(LC 8), D=-25(LC 12), C=-9(LC 8) Max Grav E=318(LC 17), D=404(LC 32), C=74(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 4 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) A plate rating reduction of 20% has been applied for the green lumber members.
- 10) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C.
 One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) E and D. This connection is for
- uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Use USP MUS26 (With 6-10d nails into Girder & 6-10d nails into Truss) or equivalent at 2-0-12 from the left end to connect truss(es) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Most/TPHI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENEWAL DATE: 12-31-2021 June 14,2021

					City of Portland
Job Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A C03	Jack-Open Girder	1	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver, WA - 98661,	ID:zT	ADz v4LJ	8.430 s Ju zCUljuQ0	un 2 2021 MiTek Industries,)obZz7OdB-?xRE6xODHhsd	ndPr 5jeduth 20-12/204407/2022-01Pag e 2 erCnINrSIwnyfhVoiDUQn66Figz7MVE

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: A-B=-56, B-C=-56, D-E=-20

Concentrated Loads (lb) Vert: F=-436(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u> </u>		4	6-6-0					
Plate Offsets (X Y) [B:0-3-9]	Edge] [0:0-1-4 Edge] [Y:0-1-4 Edge] [4 	6-6-0 4 0-0-91 [RI:0-2-4	0-0-91				
Loading (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.06 WB 0.10 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 AL 0.00 AM 0.00 AM	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 369 lb	GRIP 220/195 FT = 8%
BCDL 10.0 LUMBER- BRACING- TOP CHORD 2x4 DF No.1&Btr G BOT CHORD 2x4 DF No.1&Btr G OTHERS 2x4 DF Stud/Std G								
REACTIONS. All bearings 46 (lb) - Max Horz B=85 Max Uplift All u BA, 4 Max Grav All r BC, f	5-6-0. j(LC 13) uplift 100 lb or less at joint(s) AL, BE, Bł AZ, AY, AX, AV, AU, AT, AS, AR, AQ, A 'eactions 250 lb or less at joint(s) AL, Bl 3B, BA, AZ, AY, AX, AV, AU, AT, AS, A	F, BG, BH, BI, BK, BL, BN P, AO, AN, B D, BE, BF, BG, BH, BI, BH R, AQ, AP, AO, B except	I, BN, BO, BP, BQ K, BL, BM, BN, BO BS=316(LC 32), A	, BR, BS, BB , BP, BQ, BR N=316(LC 33	, 3)			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=47ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 3-11-0, Exterior(2N) 3-11-0 to 18-6-15, Corner(3R) 18-6-15 to 27-11-1, Exterior(2N) 27-11-1 to 42-7-1, Corner(3E) 42-7-1 to 47-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 3x10 MT20 unless otherwise indicated.
- 8) Plates checked for a plus or minus 4 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 1-4-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) A plate rating reduction of 20% has been applied for the green lumber members.
- 14) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) AL, BE, BF, BG, BH, BI, BK, BL, BM, BN, BO, BP, BQ, BR, BS, BB, BA, AZ, AY, AX, AV, AU, AT, AS, AR, AQ, AP, AO, AN, and B. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENEWAL DATE: 12-31-2021 June 14,2021

Scale = 1:78.7

7-11-10	15-7-5	23-3-0	30-10-11		38-6-6 7-7-11	46-6-0	
Plate Offsets (X,Y) [B:Edge,	0-3-9], [E:0-2-12,0-3-8], [G:0-2-12,0-3-8	3], [J:Edge,0-3-9]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.61 BC 0.92 WB 0.78 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) 1/0 -0.52 N-O >9 -1.17 N-O >4 0.33 J 0.22 N >9	defl L/d 999 240 176 180 n/a n/a 999 360	PLATES MT20 Weight: 224 lb	GRIP 220/195 FT = 8%
LUMBER- TOP CHORD 2x4 DF No.1&B BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Std WEDGE Left: 2x4 DF Stud/Std -G , Right REACTIONS. (size) B=0- Max Horz B=-2 Max Uplift B=-1 Max Grav B=2	r G r G I G : 2x4 DF Stud/Std -G :5-8, J=0-5-8 :7(LC 12) 26(LC 14), J=-126(LC 14) 110(LC 28), J=2110(LC 28)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she Rigid ceiling directly 1 Row at midpt	eathing directly ap v applied or 2-2-0 E-N, G-N	pplied or 2-5-1 oc purlins oc bracing. N	
 FORCES. (lb) - Max. Comp./M TOP CHORD B-C=-5203/67 G-H=-4287/60 BOT CHORD B-P=-574/490 J-L=-574/482 WEBS C-P=-290/122 G-N=-1073/18 NOTES- Unbalanced roof live loads hat Wind: ASCE 7-16; Vult=120n II; Exp B; Enclosed; MWFRS 27-10-13, Interior(1) 27-10-13 right exposed; C-C for member 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C: Unbalanced snow loads have This truss has been designed non-concurrent with other live 6) Plates checked for a plus or r This truss has been designed will fit between the bottom ch 9) A plate rating reduction of 20 Provide mechanical connec B=126, J=126. 	ax. Ten All forces 250 (lb) or less exc 5, C-D=-5036/640, D-E=-4287/604, E-F 4, H-I=-5036/640, I-J=-5203/675 3, O-P=-498/4431, N-O=-394/3781, M-N 2, D-P=0/509, D-O=-644/145, E-O=-17/8 6, G-M=-17/804, H-M=-644/145, H-L=0 ive been considered for this design. uph (3-second gust) Vasd=95mph; TCD (directional) and C-C Exterior(2E) -1-0- b to 42-10-3, Exterior(2E) 42-10-3 to 47- irs and forces & MWFRS for reactions s sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1 been considered for this design. I for greater of min roof live load of 12.0 b loads. ninus 4 degree rotation about its center for a live load of 20.0psf on the bottoi ord and any other members, with BCDL % has been applied for the green lumbe tion (by others) of truss to bearing plate cordance with the 2018 International Re PI 1.	ept when shown. =-3297/530, F-G=-3297 N=-394/3781, L-M=-498 i04, E-N=-1073/186, F-f /509, I-L=-290/122 L=4.2psf; BCDL=6.0psi 0 to 3-7-13, Interior(1) 5 -6-0 zone; cantilever lef hown; Lumber DOL=1. 1.15); Pg=30.0 psf; Pf= .10 psf or 2.00 times flat ro - onconcurrent with any com m chord in all areas who = 10.0psf. er members. capable of withstanding sidential Code sections	7/530, 8/4427, N=-177/1770, f; h=25ft; B=45ft; L 3-7-13 to 18-7-3, E t and right exposed 60 plate grip DOL 20.8 psf (Lum	=47ft; eave=6ft; Cat. xterior(2R) 18-7-3 to 1; end vertical left an 1:60 .=1.15 Plate on overhangs 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) 302.10.2 and	d Contraction of the second se	RED PROFESS ENGINEESS 89200PE 99200PE	SOMAL HU -2021
WARNING - Verify design parame Design valid for use only with MiTel a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and the fabrication, storage, delivery, erecti Safety Information available from	ters and READ NOTES ON THIS AND INCLUDED ® connectors. This design is based only upon par fing designer must verify the applicability of design s to prevent buckling of individual truss web and/or p prevent collapse with possible personal injury an an and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	MITEK REFERENCE PAGE M ameters shown, and is for an n parameters and properly inc r chord members only. Additia d property damage. For gene ANSI/TPI Quality C 203 Waldorf, MD 20601	III-7473 rev. 5/19/2020 B individual building comp iorporate this design into onal temporary and perr aral guidance regarding Criteria, DSB-89 and Bo	EFORE USE. boonent, not the overall nanent bracing the CSI Building Component		XIII NITEK 250 Klug Circle Corona, CA 92880	

7-11-10	15-7-5	21-3-0 23-3-0 25	-3-0 30-10-11	38-6-6	46-6-0					
/-11-10 Plate Offsets (X V) [B:Edge	/-/-11 D-3-01 [E:0-2-12 0-3-41 [I:0-2-12 0-3-41	5-7-11 2-0-0 2 [I]:Edge 0-3-9] [O:0-7-0	0-0' 5-7-11 0-3-01 [S·0-7-0 0-3-0]	/-/-11	7-11-10					
	0-3-3]; [Ľ.0-2-12,0-3-4]; [1.0-2-12,0-3-4];	, [L.Luge,0-0-9], [O.0-7-0,	0-3-0], [3.0-7-0,0-3-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Ben Stress Incr. NO	CSI. TC 0.74 BC 0.97 WB 0.89	DEFL. Vert(LL) -0.4 Vert(CT) -1.2 Horz(CT) 0	in (loc) l/defl 58 O-P >957 20 R-S >463	L/d PLATES GRIP 240 MT20 220/195 180 MT20HS 165/146					
BCLL 0.0 *	Code IRC2018/TPI2014	Matrix-MS	Wind(LL) 0.2	23 Q >999	360 Weight: 242 lb FT = 8%					
LUMBER- TOP CHORD 2x4 DF No.1&B BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/Std WEDGE Left: 2x4 DF Stud/Std -G , Right	r G r G I G : 2x4 DF Stud/Std -G	BI TC BC W	RACING- DP CHORD Struc DT CHORD Rigid EBS 1 Rov	tural wood sheathing o ceiling directly applied w at midpt	lirectly applied or 2-4-5 oc purlins. I or 8-5-9 oc bracing. F-H					
REACTIONS. (size) L=0- Max Horz B=-8 Max Uplift L=-1 Max Grav L=21	5-8, B=0-5-8 7(LC 12) 30(LC 14), B=-130(LC 14) 13(LC 2), B=2113(LC 2)									
FORCES. (lb) - Max. Comp./M TOP CHORD B-C=-5216/72 G-H=-1095/23 G-H=-1095/23 BOT CHORD B-T=-623/488	ax. Ten All forces 250 (lb) or less exc 7, C-D=-5007/693, D-E=-4303/662, E-F 1, H-I=-3626/623, I-J=-4303/662, J-K=- 3, S-T=-555/4458, R-S=-443/3824, Q-R	ept when shown. =-3626/623, F-G=-1095/2 5007/693, K-L=-5216/727 =-366/3369, P-Q=-366/33	31, 69,							
O-P=-443/3824, N-O=-555/4458, L-N=-623/4883 WEBS C-T=-281/118, D-T=0/417, D-S=-643/150, E-S=-30/715, E-R=-1020/145, I-P=-1020/145, I-O=-30/715, G-U=-87/520, J-O=-643/150, R-V=-81/843, F-V=-91/903, J-N=0/417, K-N=-281/118, P-W=-81/843, H-W=-91/903, F-U=-2407/407, H-U=-2407/407										
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=120m II; Exp B; Enclosed; MWFRS 27-10-13, Interior(1) 27-10-13 right exposed; C-C for membe 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15; Is=1.0; Rough C; 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) All plates are MT20 plates un 7) Plates checked for a plus orr 8) This truss has been designed will fit between the bottom ch 10) A plate rating reduction of 20 11) Provide mechanical connect L=130, B=130. 12) This truss designed in acc 	ave been considered for this design. up (3-second gust) Vasd=95mph; TCD (directional) and C-C Exterior(2E) -1-0- to 42-10-3, Exterior(2E) 42-10-3 to 47- rs and forces & MWFRS for reactions s sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1 been considered for this design. for greater of min roof live load of 12.0 loads. less otherwise indicated. ninus 4 degree rotation about its center for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the bottor ord and any other members. 2% has been applied for the green lumb tion (by others) of truss to bearing plate cordance with the 2018 International Re Pl 1.	L=4.2psf; BCDL=6.0psf; 1 0 to 3-7-13, Interior(1) 3-7 6-0 zone; cantilever left a shown; Lumber DOL=1.60 1.15); Pg=30.0 psf; Pf=20 .10 psf or 2.00 times flat roof onconcurrent with any oth m chord in all areas where per members. capable of withstanding 7 sidential Code sections R	n=25ft; B=45ft; L=47ft; i-13 to 18-7-3, Exterior nd right exposed ; end plate grip DOL=1.60 .8 psf (Lum DOL=1.15 load of 20.8 psf on ove er live loads. a rectangle 3-6-0 tall 00 lb uplift at joint(s) e 502.11.1 and R802.10	eave=6ft; Cat. (2R) 18-7-3 to vertical left and Plate erhangs by 2-0-0 wide except (jt=lb)	RENEWAL DATE: 12-31-2021 June 14,2021					
WARNING - Verify design parame Design valid for use only with MiTek a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and to fabrication, storage, delivery, erectit Safety Information available from	ters and READ NOTES ON THIS AND INCLUDED © connectors. This design is based only upon par fing designer must verify the applicability of design s to prevent buckling of individual truss web and/or o prevent collapse with possible personal injury an on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	MITEK REFERENCE PAGE MII- ameters shown, and is for an inc parameters and properly incorp chord members only. Additiona d property damage. For general ANSI/TPI1 Quality Crit 203 Waldorf, MD 20601	1473 rev. 5/19/2020 BEFORE vidual building component, orate this design into the ove I temporary and permanent I guidance regarding the erria, DSB-89 and BCSI Buil	USE. not erall bracing Iding Component	250 Klug Circle Corona, CA 92880					

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
	5.00					K9780489
213564-A	D03	ATTIC	2	1	lah Dafanana (antianal)	Date: 07/29/21
					Job Reference (optional)	
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	un 2 2021 MiTek Industries,	ndProjectum 20-12/20446502/02-01Prage 2
		ID:zTADz	v4LJ?zCL	JliuQ0obZz	70dB-mUwGoaUF09sVb4a	D3 K4c7Agw0KaeebdL2g Cz7MV6
NOTES-				.j		

13) Attic room checked for L/360 deflection.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: A-G=-56, G-M=-56, Y-AB=-20, V-W=-40(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7-11-10	15-7-5	<u>21-3-0</u> 23- 5-7-11 2-0	<u>3-0 25-3-0 30-</u>	<u>10-11 31-6-0</u> 7-11 0-7-5	38-6-6 7-0-6	46-6-0	
Plate Offsets (X,Y) [B:Edge	0-3-9], [E:0-2-12,0-3-4], [P:0-4-8,0-3-4],	[T:0-7-0,0-3-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.74 BC 0.97 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.56 S-T -1.13 P-Q) 0.33 N) 0.21 R	l/defi L/d >999 240 >493 180 n/a n/a >999 360	PLATES GRIP MT20 220/19 MT20HS 165/14 Weight: 257 lb FT =	95 46 = 8%
LUMBER- TOP CHORD 2x4 DF No.1&B BOT CHORD 2x4 DF No.1&B WEBS 2x4 DF Stud/St WEDGE Left: 2x4 DF Stud/Std -G REACTIONS. (size) B=0 Max Horz B=1 Max Uplift B=- Max Grav B=2	tr G tr G 1 G -5-8, N=0-5-8 06(LC 13) 130(LC 14), N=-101(LC 14) 107(LC 2), N=2042(LC 2)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except end vert Rigid ceiling dir 1 Row at midpt 2 Rows at 1/3 p	I sheathing directly ap icals. ectly applied or 8-3-15 F-H ts L-N	plied or 2-4-6 oc purlins, 5 oc bracing.	
FORCES. (lb) - Max. Comp./l TOP CHORD B-C=-5200/72 G-H=-1082/22 BOT CHORD BOT CHORD B-U=-643/486 P-Q=-461/375 WEBS C-U=-282/118 E-S=-1007/14 H-W=-80/877 L-N=-3885/54	lax. Ten All forces 250 (lb) or less exc 7, C-D=-4991/693, D-E=-4285/662, E-F /8, H-I=-3603/620, I-J=-4290/686, J-K= 7, T-U=-574/4441, S-T=-463/3807, R-S: 11, O-P=-521/4127, N-O=-477/3617 /5, D-U=0/418, D-T=-643/150, J-P=-448/5 5, I-Q=-975/142, I-P=-70/762, S-V=-82// , F-Y=-2405/411, H-Y=-2405/411, G-Y=- 1	ept when shown. =-3608/623, F-G=-108 4220/652, K-L=-4055// =-386/3353, Q-R=-386 97, K-P=-294/101, E-T 840, F-V=-93/898, Q-V -88/520, K-O=-365/95,	31/226, 589 5/3353, =-30/716, V=-69/820, L-O=0/501,				
NOTES- 1) Unbalanced roof live loads h: 2) Wind: ASCE 7-16; Vult=120r II; Exp B; Enclosed; MWFRS 27-10-13, Interior(1) 27-10-1: right exposed; C-C for member 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) All plates are MT20 plates un 7) Plates checked for a plus or 18) This truss has been designed will fit between the bottom ch 10) A plate rating reduction of 2 11) One RT7 USP connectors r uplift only and does not con Continued on page 2	ave been considered for this design. 1ph (3-second gust) Vasd=95mph; TCD (directional) and C-C Exterior(2E) -1-0-1 3 to 41-8-7, Exterior(2E) 41-8-7 to 46-4-4 srs and forces & MWFRS for reactions s s (roof LL: Lum DOL=1.15 Plate DOL=1 at B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1. been considered for this design. I for greater of min roof live load of 12.0 a loads. less otherwise indicated. minus 4 degree rotation about its center. I for a 10.0 psf bottom chord live load on ad for a live load of 20.0psf on the bottol ord and any other members. 0% has been applied for the green lumt ecommended to connect truss to bearin sider lateral forces.	L=4.2psf; BCDL=6.0p: 0 to 3-7-13, Interior(1) 4 zone; cantilever left : hown; Lumber DOL=1 1.15); Pg=30.0 psf; Pf .10 psf or 2.00 times flat r onconcurrent with any m chord in all areas will ber members. g walls due to UPLIFT	sf; h=25ft; B=45ft; L 3-7-13 to 18-7-3, E and right exposed ; .60 plate grip DOL =20.8 psf (Lum DOI oof load of 20.8 psf other live loads. here a rectangle 3-6	=47ft; eave=6ft; xterior(2R) 18-7- end vertical left a =1.60 L=1.15 Plate 5 on overhangs 6-0 tall by 2-0-0 v his connection is	Cat. 3 to and Vide for	ERED PROFESSION 89200PE OREGON MAY 14, 201 MERRILL EWAL DATE: 12-31-2021 June 14,2021	27
WARNING - Verify design param Design valid for use only with MiTe a truss system. Before use, the bui building design. Bracing indicated is always required for stability and fabrication, storage, delivery, erecti Safety Information available from	vaters and READ NOTES ON THIS AND INCLUDED (® connectors. This design is based only upon par- ding designer must verify the applicability of design s to prevent buckling of individual truss web and/on o prevent collapse with possible personal injury an on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	MITEK REFERENCE PAGE ameters shown, and is for ai n parameters and properly in r chord members only. Addi d property damage. For ger <i>ANSUTPI1 Quality</i> 203 Waldorf, MD 20601	MII-7473 rev. 5/19/2020 E in individual building com corporate this design inti tional temporary and per teral guidance regarding <i>Criteria, DSB-89 and B</i>	BEFORE USE. ponent, not o the overall manent bracing the CSI Building Compo	onent	250 Klug Circle Corona, CA 92880	

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	D04	ATTIC	1	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	un 2 2021 MiTek Industries,	ndProjectum 20-12/20446702/02-01 Page 2
NOTES-		ID:zTAD	z_v4LJ?z	CUljuQ0ob	Zz7OdB-js20DLVVwm6CqO	tiKU0o91CWEjhs2XRu4fXn35z7MV4

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Attic room checked for L/360 deflection.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-G=-56, G-J=-56, J-M=-56, N-Z=-20, V-W=-40(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u>⊢7-11-10</u> 7-11-10	<u> </u>	21-3-0 5-7-11	23-3-0 25-3-0	31-6-0 6-3-0	<u>38-6-6</u> 7-0-6	<u>38-10-3</u> <u>46-6-0</u> 0-3-13 7-7-13			
Plate Offsets (X,Y) [B:0-2-4,	Edge], [B:0-0-0,0-1-5], [E:0-2-12,0-3-4],	[R:0-4-8,0-3-4]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.90 BC 0.96 WB 1.00 Matrix-MS	DEFL. Vert(LL) Vert(CT Horz(C1 Wind(LL	in (loc) -0.56 U-V -1.12 U-V -1.12 P 0.32 P .) 0.21 T	l/defl L/d >998 240 >495 180 n/a n/a >999 360	PLATES MT20 Weight: 25	GRIP 220/195 6 lb FT = 8%		
LUMBER- TOP CHORD 2x4 DF No.1&Btr G BRACING- TOP CHORD BOT CHORD 2x4 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 2-4-9 oc purlins, except end verticals. WEBS 2x4 DF Stud/Std G BOT CHORD Rigid ceiling directly applied or 8-4-8 oc bracing. WEDGE Eft: 2x4 DF Stud/Std -G BOT CHORD Rigid ceiling directly applied or 8-4-8 oc bracing. REACTIONS. (size) P=Mechanical, B=0-5-8 Max Horz B=107(LC 13) Max Uplift P=-106(LC 14), B=-130(LC 14) Max Grav P=2062(LC 2), B=2099(LC 2) Figure 4									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD B-C=-5178/724, C-D=-4969/690, D-E=-4262/659, E-F=-3584/619, F-G=-1073/225, G-H=-1076/227, H-I=-3576/616, I-J=-4243/680, J-K=-4175/646, K-L=-3960/578, L-M=-260/67, M-P=-274/97 BOT CHORD B-W=-637/4847, V-W=-568/4420, U-V=-457/3786, T-U=-379/3329, S-T=-379/3329, R-S=-453/3746, Q-R=-511/4069, P-Q=-457/3510 WEBS C-W=-282/118, D-W=0/418, K-R=-275/115, J-R=-442/96, E-U=-1010/146, D-V=-643/150, E-V=-307/17, I-S=-955/138, U-Y=-82/839, F-Y=-93/897, I-R=-66/742, S-Z=-67/806, H-Z=-78/862, F-X=-2387/409, H-X=-2387/409, K-Q=-413/101, L-Q=0/532, L-P=-3717/520, G-X=-88/516									
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25f; B=45ft; L=47ft; eave=6ft; Cat. I; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-7-13, Interior(1) 3-7-13 to 18-7-3, Exterior(2R) 18-7-3 to 27-10-13, Interior(1) 27-10-13 to 41-10-3, Exterior(2E) 41-10-3 to 46-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads. 6) Plates checked for a plus or minus 4 degree rotation about its center. 7) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) A plate rating reduction of 20% has been applied for the green lumber members. 9) A plate rating reduction of 20% has been applied for the green lumber members. 10) Refer to girder(s) for truss to truss connections. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 									
Continue all the system of the system of the system of the system. Before use, the building design. Bracing indicated is always required for stability and tabirication, storage, delivery, erecti Safety Information available from	ters and READ NOTES ON THIS AND INCLUDED I (® connectors. This design is based only upon para ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or p prevent collapse with possible personal injury and an and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	MITEK REFERENCE PAG imeters shown, and is fo parameters and propert chord members only. A property damage. For ANS//TP11 Qual 03 Waldorf, MD 20601	GE MII-7473 rev. 5/19/2020 or an individual building con y incorporate this design in dditional temporary and pe general guidance regarding <i>lity Criteria</i> , DSB-89 and B	BEFORE USE. nponent, not to the overall ormanent bracing g the BCSI Building Compo	onent	250 Klug Circle Corona, CA 92880			

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	D05	ATTIC	2	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	un 2 2021 MiTek Industries,	ndProjectum 20-12/2046902702-01Frage 2
NOTES-		ID:zTADz_	v4LJ?zCU	ljuQ0obZzi	/OdB-tFAme1XISNNw4h745	/2GESHp8XNOWP2BXz0u7_z7MV2

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Attic room checked for L/360 deflection.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-G=-56, G-J=-56, J-M=-56, M-N=-56, O-AB=-20, Y-Z=-40(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL	10.0							····g···· _··	
LUMBER-			BF	RACING-					
TOP CHORD	2x4 DF No.1&B	tr G	TC	OP CHORD S	Structural wood	sheathing	g directly app	lied or 2-5-6 oc purlins	3,
BOT CHORD	2x4 DF No.1&B	tr G		e	except end verti	cals.			
WEBS	2x4 DF Stud/Sto	dG	BC	OT CHORD F	Rigid ceiling dire	ectly applie	ed or 8-8-9 c	oc bracing.	
WEDGE			W	EBS 1	1 Row at midpt		E-Q, G-Q,	J-N	
LAR DUADE C									

Left: 2x4 DF Stud/Std -G

- REACTIONS. (size) N=Mechanical, B=0-5-8 Max Horz B=107(LC 13) Max Uplift N=-101(LC 14), B=-125(LC 14) Max Grav N=2076(LC 28), B=2097(LC 28)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown. TOP CHORD B-C=-5168/672 C-D=-5001/637 D-F=-4247/602 E-F=-3263/527 F-G=-32
- TOP CHORD
 B-C=-5168/672, C-D=-5001/637, D-E=-4247/602, E-F=-3263/527, F-G=-3262/526, G-H=-4231/612, H-I=-4169/587, I-J=-3974/535, J-K=-291/65, K-N=-272/97

 BOT CHORD
 B-S=-588/4876, R-S=-512/4403, Q-R=-408/3757, P-Q=-408/3718, O-P=-460/4067, N-O=-421/3507
- WEBS C-S=-290/122, D-S=0/512, F-Q=-174/1746, H-P=-381/66, I-P=-305/94, E-Q=-1059/187, D-R=-645/144, E-R=-18/798, G-Q=-1019/188, G-P=-33/843, I-O=-364/86, J-O=0/602, J-N=-3677/482

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=47ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-7-13, Interior(1) 3-7-13 to 18-7-3, Exterior(2R) 18-7-3 to 27-10-13, Interior(1) 27-10-13 to 41-10-3, Exterior(2E) 41-10-3 to 46-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) Plates checked for a plus or minus 4 degree rotation about its center.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) A plate rating reduction of 20% has been applied for the green lumber members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) N=101.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component
Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENEWAL DATE: 12-31-2021 June 14,2021

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	D06	ROOF SPECIAL	1	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	in 2 2021 MiTek Industries,	ndProjectum 20-12/205404D2052-01Prage 2
NOTES-			D:zTADz_v4LJ?	zCUljuQ0o 	bZz7OdB-belX2jZ?_?deJ?H	TZK5kJtNBqK4e_JqU?HV?Csz7MV0

One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B. This connection is for uplift only and does not consider lateral forces.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

R

3x10 =

AF

30-10-11

AG

0

6x10 =

Р

3x4

34-8-834-8-12 38-6-6 3-2-8 0-0-4 3-9-10

0

3x6 =

40-5-9

Μ Ν

3x10 =

GRIP 220/195

FT = 8%

46-6-0

6-0-7

Plate Offsets (X,Y) [E:0	-2-12,0-3-8], [I:0-4-0,0-1-8], [Q:0-4-0,0-3-0],	[S:0-4-0,0-3-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.58 BC 0.70 WB 0.93 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.21 S-T -0.51 S-T 0.09 F 0.09 S-T	l/defl >999 >810 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 243 lb
LUMBER- TOP CHORD 2x4 DF No BOT CHORD 2x4 DF No WEBS 2x4 DF No 2x4 DF No 2x4 DF Str Max Horz Max Horz Max Grav	.1&Btr G .1&Btr G id/Std G N=Mechanical, B=0-5-8, P=0-5-8 B=107(LC 13) N=-226(LC 40), B=-91(LC 14), P=-138(LC 1 N=227(LC 39), B=1417(LC 26), P=2791(LC	14) - 28)	BRACING- TOP CHORD BOT CHORD WEBS	Structural woo except end ver Rigid ceiling di 1 Row at midp	d sheathir rticals. rectly app t	ng directly app lied or 5-3-8 o E-R, G-Q	plied or 3-5-6 oc purlins oc bracing.
FORCES. (Ib) - Max. Co TOP CHORD B-C=-32 G-H=-16 BOT CHORD B-T=-35 O-P=-13 WEBS C-T=-33 F==10	np./Max. Ten All forces 250 (lb) or less exc 24/420, C-D=-3019/378, D-E=-2132/330, E-F 300, H-I=-41/290, I-J=-89/900 /3062, S-T=-256/2467, R-S=-150/1773, Q-R 22/239, N-O=-654/97 //139, D-T=-3/600, F-R=-1/402, I-Q=-218/20 2/191 C-R=-54/97 C-D=-1458/256 I-Q=-	cept when shown. =-1125/252, F-G=-112 R=0/469, P-Q=-1448/25 92, D-S=-667/147, E-S 74/857 L-D=-551/173	3/252, 0, =-21/818, N=_87/837				

AE

s AD

5x8 =

Т

3x6 =

15-7-5

NOTES-

0-9-0

5x6 =

7-11-10

7-11-10

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=47ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-7-13, Interior(1) 3-7-13 to 18-7-3, Exterior(2R) 18-7-3 to 27-10-13, Interior(1) 27-10-13 to 41-10-3, Exterior(2E) 41-10-3 to 46-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 4 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) A plate rating reduction of 20% has been applied for the green lumber members.
- 10) Refer to girder(s) for truss to truss connections.

I-P=-2739/359

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) N=226
- 12) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) B and P. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RENEWAL DATE: 12-31-2021 June 14.2021

			46-6-0							
Plate Offsets (X,Y) [B:0-3-9,	Edge], [O:0-1-4,Edge], [Y:0-1-4,Edge], [AL:0-3-9,Edge], [AV:0-2-4	4,0-0-9], [BH:0-2-	4,0-0-9]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.06 BC 0.06 WB 0.10 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.00	(loc) A A AL	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 368 lb	GRIP 220/195 FT = 8%	
BCDL 10.0 Horse Harden and the formation										
FORCES.(lb) - Max. Comp./NWEBSAK-AM=-252/8	iax. Ten All forces 250 (lb) or less exce 39	ept when shown.								
 WEBS AK-AM=-252/89 NOTES- Wind: ASCE 7-16; VulE=120mph (3-second gust) Vasd=95mph; TOL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=47ft; eave=2ft; Cat. Exp (2 = 0.0000 (2 = 0.00000000 (2 = 0.000000 (2 = 0.000000 (2 = 0.0000000 (2 = 0.00000000 (2 = 0.000000000 (2 = 0.0000000000000000000000000000000000									-2021 D21	
WARNING - Verify design parame Design valid for use only with MITel a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and the fabrication, storage, delivery, erecti- Safety Information available from	ters and READ NOTES ON THIS AND INCLUDED I @ connectors. This design is based only upon para ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or prevent collapse with possible personal injury anc on and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Hidphava, Suite 2	MITEK REFERENCE PAGE MII- ameters shown, and is for an ind parameters and properly incorp chord members only. Addition d property damage. For general ANS/JTP1 Quality Crit 30 Waldorf, MD 20601	7473 rev. 5/19/2020 BE ividual building comprised this design into al temporary and perm guidance regarding the reria, DSB-89 and BC	EFORE USE. onent, not the overall nanent bracir he SI Building	ng Compone	ent		250 Klug Circle Corona. CA 92880		

				1			City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison		Reviewed for code compliance
213564-A	E01	Flat Supported Gable	3	1	Job Reference (o	ptional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,		ID:zTADz v4LJ	8.430 s J zCUljuQ0	un 22021 MiTek l lobZz7OdB-qMKw	ndustries, koffsmlMu	ndPr 5jeclu#t 20-12/2054002/02-01Fag e 1 TCbjirAnEnSzMGbSup3BBz?rz7MUt
		<u>- 1-10-6</u> 1-10-6 А в ^{8x8} =	в 8 С 2х4]]				Scale = 1:26.7
		H G	FE				
		3x6 8x8 1-10-6	8 =				
LOADING (psf)		1-10-8	8 '				
TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 CSI. 1.15 TC 0.51 1.15 BC 0.05 YES WB 0.73 TPI2014 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a) -0.07	(loc) l/defl - n/a - n/a H n/a	L/d 999 999 n/a	PLATES GRIP MT20 220/195 Weight: 22 lb FT = 8%
LUMBER- TOP CHORD 2x4 DF No. BOT CHORD 2x4 DF No. WEBS 2x4 DF Stu	1&Btr G 1&Btr G d/Std G	В Т В	BRACING- TOP CHORD BOT CHORD	2-0-0 oc Rigid ce	purlins: A-D, ex iling directly appl	cept end v ed or 6-0-	erticals. 0 oc bracing.
REACTIONS. All bearin (lb) - Max Horz Max Uplift Max Grav	gs 1-10-8. A=-120(LC 10) All uplift 100 lb or less at jc F=-1488(LC 31) All reactions 250 lb or less	int(s) H, E except G=-836(LC 32), A=-78 at joint(s) D except G=866(LC 35), A=78	95(LC 32), D=-13 33(LC 35), F=151	3(LC 31), 8(LC 36)		RECO	STENGINEER OF
FORCES. (lb) - Max. Con TOP CHORD B-G=-843 BOT CHORD F-G=-437 WEBS B-F=-191	np./Max. Ten All forces 25 /850, B-C=-437/432, C-F=-(/432 7/1917	0 (Ib) or less except when shown. 69/376				E III	OREGON
NOTES- 1) Wind: ASCE 7-16; Vult= II; Exp B; Enclosed; MW exposed;C-C for membe 2) Truss designed for wind	120mph (3-second gust) Va FRS (directional) and C-C C rs and forces & MWFRS for loads in the plane of the trus	sd=95mph; TCDL=4.2psf; BCDL=6.0psf; orner(3) zone; cantilever left and right ex reactions shown; Lumber DOL=1.60 pla ss only. For studs exposed to wind (norm	h=25ft; B=45ft; L posed ; end verti te grip DOL=1.60 nal to the face), s	=24ft; ea cal left ar ee Stand	ve=2ft; Cat. nd right ard Industry	RE	MERRILL BAT
 Gable End Details as ap 3) TCLL: ASCE 7-16; Pr=2: DOL=1.15); Is=1.0; Roug 4) Provide adequate draina 5) Plates checked for a plus 6) Gable requires continuou 7) Terrise to be fully about to be a fully about to be	plicable, or consult qualified 5.0 psf (roof LL: Lum DOL=1 hf Cat B; Fully Exp.; Ce=0.9 ge to prevent water ponding s or minus 4 degree rotation us bottom chord bearing.	building designer as per ANSI/TP11. .15 Plate DOL=1.15); Pg=30.0 psf; Pf=2; Cs=1.00; Ct=1.10, Lu=50-0-0 about its center.	0.8 psf (Lum DO	L=1.15 PI	ate		
 a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (-4-0 oc. gned for a 10.0 psf bottom c esigned for a live load of 20 om chord and any other mer	hord live load nonconcurrent with any oth Opsf on the bottom chord in all areas when hoers.	her live loads. ere a rectangle 3	-6-0 tall b	y 2-0-0 wide		
 11) A plate failing feddcioth 12) Provide mechanical con A=785, D=133, F=1486 13) Two RT7 USP connect only and does not cons 	on 20% has been applied to nection (by others) of truss b. ors recommended to connect ider lateral forces.	to bearing plate capable of withstanding to truss to bearing walls due to UPLIFT at	100 lb uplift at jo t jt(s) G. This con	int(s) H e nection is	xcept (jt=lb) s for uplift		
14) One RT7 USP connect and does not consider	ors recommended to connect ateral forces.	t truss to bearing walls due to UPLIFT at	t jt(s) E. This con	nection is	for uplift only		
 15) This truss is designed i referenced standard At 16) This truss has been designed better 	n accordance with the 2018 NSI/TPI 1. signed for a total drag load o n chord from 0-0-0 to 1-10-8	International Residential Code sections F f 250 plf. Lumber DOL=(1.33) Plate grip for 250.0 plf.	R502.11.1 and R	802.10.2 nnect trus	and s to resist		June 14,2021
Continued on page of the sign page of the sign valid for use only with a truss system. Before use, the building design. Bracing inditing design. Bracing inditing design, storage, delivery, Safety Information available	arameters and READ NOTES ON TI MITek® connectors. This design is e building designer must verify the ated is to prevent buckling of indivi and to prevent collapse with possis erection and bracing of trusses and from Truss Plate Institute, 2670 CI	HIS AND INCLUDED MITEK REFERENCE PAGE MII based only upon parameters shown, and is for an in applicability of design parameters and properly incor lual truss web and/or chord members only. Addition le personal injury and property damage. For genera truss systems, see <u>ANSI/TPI1 Quality Cri</u> ain Highway, Suite 203 Waldorf, MD 20601	-7473 rev. 5/19/2020 E Idividual building com rporate this design int nal temporary and per al guidance regarding iteria, DSB-89 and B	BEFORE US ponent, not o the overal manent brac the CSI Buildin	E. L cing g Component		250 Klug Circle Corona, CA 92880

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	E01	Flat Supported Gable	3	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	In 2 2021 MiTek Industries,	ndPr 6jeiclu# 20-12/205401D2/02-01Fag e 2
NOTES-		ID:zTAC	z_v4LJ?z	CUljuQ0ob	Zz7OdB-IZuJ98gHd3tDWX2	D9QG4j_nyCMiVKv7yIrwWXHz7MUs

17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

18) Double installations of RT7 require the two hurricane ties to be installed on opposite sides of top plate to avoid nail interference in single ply truss.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[]	.				City of Portland
Job	Truss	Truss Type	Qty Ply	SE Madison	Reviewed for code compliance
213564-A	E02	Flat Supported Gable	2	1 Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,		8.430 s ID:zTADz v4LJ?zCUljuQ	Jun 22021 MiTek Industries, 0obZz7OdB-nIShMUhvON?48h	ndPr 5jedu# 20-12/054022/03-01Fag e 1 Jai7nJGCK8bm2k3N95XVg44jz7MUr
		<u>1-10</u> 	1-8 1-8		
		6x6 =			Scale = 1:25.2
		A B	C D		
					CRED PROFFO
					NGINEES
		е е		E.	E. Y E
		4			89200PE
					JAR.
				0	Ling
				Z	OREGON
					0 44 14, 20 AT
			*****		ERRILL
		"G 3ve II e	F E	BE	NEWAL DATE: 12-31-2021
		3,0 11 0.		112	
	2.0.0.2.41	1-10 	-8 -8		
LOADING (psf)	-3-0,0-3-4]				
TCLL (roof) 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.47	DEFL. Vert(LL) n	in (loc) l/defl L/d /a - n/a 999	PLATES GRIP MT20 220/195
TCDL 7.0	Lumber DOL Rep Stress Incr	1.15 BC 0.05 YES WB 0.68	Vert(CT) n. Horz(CT) -0.0	/a - n/a 999)6 H n/a n/a	
BCLL 0.0 * BCDL 10.0	Code IRC2018/	TPI2014 Matrix-P			Weight: 21 lb FT = 8%
	18 Ptr C		BRACING-		verticale
BOT CHORD 2x4 DF No.	1&Btr G		BOT CHORD 2-0-0 Rigid	ceiling directly applied or 6-0-	0 oc bracing.
WEBS 2x4 DF Stu	d/Std G				
(lb) - Max Horz	gs 1-10-8. A=-112(LC 10)				
Max Uplift	All uplift 100 lb or less at jo	pint(s) H, E except G=-800(LC 32), A=-7	07(LC 32), D=-129(LC 31),	
Max Grav	All reactions 250 lb or less	at joint(s) D except G=829(LC 35), A=7	'05(LC 35), F=1407(LC 3	6)	
FORCES. (Ib) - Max. Com	np./Max. Ten All forces 25	0 (lb) or less except when shown.			
BOT CHORD B-G=-807 BOT CHORD F-G=-434	//814, B-C=-434/429, C-F=-3 //429	345/352			
WEBS B-F=-178	6/1786				
NOTES- 1) Wind: ASCE 7-16: Vult=:	120mph (3-second qust) Va	sd=95mph; TCDI =4 2nsf; BCDI =6 0ns	f [,] h=25ft [,] B=45ft [,] I =24ft [,]	ave=2ft. Cat	
II; Exp B; Enclosed; MWI	FRS (directional) and C-C C	Corner(3) zone; cantilever left and right e	exposed ; end vertical left	and right	
2) Truss designed for wind	loads in the plane of the true	ss only. For studs exposed to wind (not	mal to the face), see Star	ndard Industry	
Gable End Details as ap 3) TCLL: ASCE 7-16; Pr=25	plicable, or consult qualified 5.0 psf (roof LL: Lum DOL= [.]	building designer as per ANSI/TPI 1. 1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=	20.8 psf (Lum DOL=1.15	Plate	
DOL=1.15); Is=1.0; Roug 4) Provide adequate draina	gh Cat B; Fully Exp.; Ce=0.9 ge to prevent water ponding	9; Cs=1.00; Ct=1.10, Lu=50-0-0 g.			
5) Plates checked for a plus6) Gable requires continuou	s or minus 4 degree rotation	about its center.			
7) Truss to be fully sheathe	d from one face or securely	braced against lateral movement (i.e. d	iagonal web).		
9) This truss has been desi	gned for a 10.0 psf bottom of	chord live load nonconcurrent with any c	ther live loads.		
10) * This truss has been de will fit between the botto	esigned for a live load of 20 om chord and any other me	.0psf on the bottom chord in all areas w mbers.	here a rectangle 3-6-0 tal	l by 2-0-0 wide	
 A plate rating reduction Provide mechanical cor 	of 20% has been applied for nection (by others) of truss	or the green lumber members. to bearing plate capable of withstandin	g 100 lb uplift at ioint(s) H	except (it=lb)	
A=707, D=129, F=1377	ors recommended to conne	ct truss to bearing walls due to LIPLIET	at it(s) G This connection	is for uplift	
only and does not cons	ider lateral forces.	et truce to begring welle due to UDUET	$t_{i}(z) \in This connection$	is for uplift only	
and does not consider I	lateral forces.				
referenced standard AN	n accordance with the 2018 NSI/TPI 1.	international Residential Code sections	KOU2.11.1 and R802.10.	∠ ano	June 14,2021
Continued on page 2				IISE	
Design valid for use only with a truss system. Before use. th	MiTek® connectors. This design is the building designer must verify the	based only upon parameters shown, and is for an applicability of design parameters and properly inc	individual building component, n orporate this design into the ove	ot rall	
building design. Bracing indic is always required for stability	ated is to prevent buckling of indivi and to prevent collapse with possit	dual truss web and/or chord members only. Additional property damage. For generation	onal temporary and permanent b ral guidance regarding the	oracing	
safety Information available	erection and bracing of trusses and e from Truss Plate Institute, 2670 C	rain Highway, Suite 203 Waldorf, MD 20601	riteria, USB-89 and BCSI Build	aing Component	250 Klug Circle Corona, CA 92880

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	E02	Flat Supported Gable	2	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver,	WA - 98661,			8.430 s Ju	un 2 2021 MiTek Industries,	ndPr 5jeclu# 20-12/2054020203-01Pag e 2
NOTES-		ID:zTAI	Dz_v4LJ?z	CUljuQ0ol	oZz7OdB-nlShMUhvON?48h	lai7nJGCK8bm2k3N95XVg44jz7MUr

16) This truss has been designed for a total drag load of 250 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 1-10-8 for 250.0 plf.

TO Graphical purities representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Double installations of RT7 require the two hurricane ties to be installed on opposite sides of top plate to avoid nail interference in single ply truss.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						City of Portland		
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance		
213564-A	203	Flat Supported Gable	1	1	Job Reference (optional)	Date: 07/29/21		
Trus-Way, Vancouver, V	VA - 98661,	II	D:zTADz_v4L	8.430 s Ju J?zCUljuQ(ın 22021 MiTek Industries, DobZz7OdB-Fx03apiX9h7xlr	ndPr 5jedu# 20-12/254032703-01Fag e 1 InGrJYoPsLCAOlouDFl9PdcAz7MUq		
		$\begin{array}{c} 1.9-0\\ 1.9-0\\ A B^{6x6} = C\\ \hline 2 \end{array}$	D 4 1			Scale = 1:25.2		
		$H_{3x6} H = 6x6 =$						
		1-9-0						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.8/30.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 CSI. 1.15 TC 0.35 1.15 BC 0.03 YES WB 0.44 TPI2014 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT	in n/a n/a) -0.04	(loc) l/defl L/d - n/a 999 - n/a 999 H n/a n/a	PLATES GRIP MT20 220/195 Weight: 20 lb FT = 8%		
LUMBER- TOP CHORD 2x4 DF No.1 BOT CHORD 2x4 DF No.1 WEBS 2x4 DF Stud REACTIONS. All bearing (lb) - Max Horz A Max Uplift Max Grav	&Btr G &Btr G //Std G s 1-9-0. A=-112(LC 10) All uplift 100 lb or less at jo All reactions 250 lb or less	BRA TOP BOT int(s) D, H, E except G=-493(LC 32), A=-472 at joint(s) D except G=519(LC 35), A=470(L	CING- CHORD CHORD 2(LC 32), F=- C 35), F=916	2-0-0 oc Rigid cei 890(LC 31 5(LC 36)	purlins: A-D, except end v ling directly applied or 6-0-	erticals. 0 oc bracing. 5 FERED PROFESSION FINGINEER 89200PE		
TOP CHORD B-G=-499/ WEBS B-F=-1148 NOTES- 1) Wind: ASCE 7-16; Vult=1 II; Exp B; Enclosed; MWF exposed;C-C for member	20mph (3-second gust) Va RS (directional) and C-C C s and forces & MWFRS for	sd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=2 orner(3) zone; cantilever left and right expos reactions shown; Lumber DOL=1.60 plate g	25ft; B=45ft; I ed ; end verf rip DOL=1.6	.=24ft; eav ical left and)	re=2ft; Cat. d right	OREGON AT AND A THE AND A		
 2) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Provide adequate drainage to prevent water ponding. 5) Plates checked for a plus or minus 4 degree rotation about its center. 6) Gable requires continuous bottom chord bearing. 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 8) Gable study spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) A plate rating reduction of 20% has been applied for the green lumber members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D except (jt=lb) A=472 								
 13) One RT7 USP connecto for uplift only and does r 14) Two RT7 USP connecto and does not consider I& 15) This truss is designed in referenced standard AN 16) This truss has been des drag loads along bottom 17) Graphical purific representation 	 13) One RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) G, H, and E. This connection is for uplift only and does not consider lateral forces. 14) Two RT7 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) F. This connection is for uplift only and does not consider lateral forces. 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 16) This truss has been designed for a total drag load of 250 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 1-9-0 for 142.9 plf. 							
Continued on page 2 WARNING - Verify design pa Design valid for use only with M a truss system. Before use, the building design. Bracing indice is always required for stability a fabrication, storage, delivery, e Safety Information available	rameters and READ NOTES ON TH ITRN® connectors. This design is building designer must verify the ted is to prevent buckling of indivic and to prevent collapse with possib rection and bracing of trusses and from Truss Plate Institute, 2670 Cr	IIS AND INCLUDED MITEK REFERENCE PAGE MII-747. based only upon parameters shown, and is for an individ applicability of design parameters and properly incorpora lual truss web and/or chord members only. Additional te le personal injury and properly damage. For general gui truss systems, see ANSI/TPI1 Quality Criteria ain Highway, Suite 203 Waldorf, MD 20601	B rev. 5/19/2020 ual building com te this design in mporary and pe dance regarding , DSB-89 and E	BEFORE USE ponent, not o the overall manent braci- the cCSI Building	E. ing g Component	MITEK [®] 250 Klug Circle Corona, CA 92880		

						City of Portland
Job	Truss	Truss Type	Qty	Ply	SE Madison	Reviewed for code compliance
213564-A	E03	Flat Supported Gable	1	1	Job Reference (optional)	Date: 07/29/21
Trus-Way, Vancouver, WA - 98661, 8.430 s Jun 2 2021 MiTek Industries,						nd?r6jredu#r 20-12/205404D2/02-01F1age 2
ID:zTADz_v4LJ?zCUljuQ0obZz7OdB-j8aRn9j9w_FoN?n						qYqnLdPWyakXXLTO_p9B8cz7MUp
NOTES-						
18) Double installations of RT7 require the two hurricane ties to be installed on opposite sides of top plate to avoid nail interference in single ply truss.						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

