

March 17, 2021

Blue Raven Solar
1403 North Research Way, Building J
Orem, UT. 84097

Subject: Certification Letter Espinor Residence 5119 SE 46th Ave. Portland, OR. 97206

20-217819 REV 01 RS

To Whom It May Concern,

A jobsite observation of the condition of the existing framing system was performed by an audit team of Blue Raven Solar as a request from Domus Structural Engineering. All review is based on these observations and the design criteria listed below and only deemed valid if provided information is true and accurate.

On the above referenced project, the roof structural framing has been reviewed for additional loading due to the installation of the solar PV addition to the roof. The structural review only applies to the section of the roof that is directly supporting the solar PV system and its supporting elements. The observed roof framing is described below. If field conditions differ, contractor to notify engineer prior to starting construction.

The roof structure of (MP1) consists of composition shingle on roof plywood that is supported by 2x4 rafters @ 24"o.c. paired with 2x6 ceiling joists @ 16"o.c.. The rafters have a max projected horizontal span of 8'-6", with a slope of 35 degrees. The rafters are connected at the ridge to a ridge board and are supported at the eave by a load bearing wall.

The roof structures of (MP2&3) consist of composition shingle on roof plywood that is supported by nominal 2x4 rafters @ 24"o.c. paired with 2x8 ceiling joists @ 16"o.c.. The rafters have a max projected horizontal span of 8'-0", with a slope of 35 degrees. The rafters are connected at the ridge to a ridge board and are supported at the eave by a load bearing wall.

The existing roof framing system of (MP1) is judged to be inadequate to withstand the loading imposed by the installation of the solar panels. Structural reinforcement is required. Sister upgrade is required for (MP1) on all rafters that directly support solar PV. Stitch new 2x4 DF#2 (min) to existing member with Simpson SDW 22300 screws @ 16"o.c. or 10d nails @ 6"o.c.. Lap as needed with 4'-0" minimum lap per attached detail. In addition, install (2) py 2x4 collar tie at approx. exisiting collar tie height. If collar tie already exisits install second ply per the Section 1 Details.

The existing roof framing systems of (MP2&3) are judged to be inadequate to withstand the loading imposed by the installation of the solar panels. Structural reinforcement is required. Sister upgrade is required for (MP2&3) on all rafters that directly support solar PV. Stitch new 2x4 DF#2 (min) to existing member with Simpson SDW 22300 screws @ 16"o.c. or 10d nails @ 6"o.c.. Lap as needed with 4'-0" lap per attached detail.

The spacing of the solar standoffs should be kept at 48" o.c. for landscape and 48" o.c. for portrait orientation, with a staggered pattern to ensure proper distribution of loads.

The scope of this report is strictly limited to an evaluation of the fastener attachment, underlying framing and supporting structure only. The attachment's to the existing structure are required to be in a staggered pattern to ensure proper distribution of loading. All panels, racking and hardware shall be installed per manufacturer specifications and within specified design limitations. All waterproofing shall be provided by the manufacturer. Domus Structural Engineering assumes no responsibility for misuse or improper installation of the solar PV panels or racking.

Domus Structural Engineering, LLC P.O. Box 6986 Broomfield, CO 80021 530-864-7055 Domusstructural@gmail.com

Note: Seismic check is required since Ss>.4g and Seismic Design Category (SDC) > B

Design Criteria:

- Applicable Codes = 2019 OSISC & 2017 ORSC, ASCE 7-16
- Roof Dead Load = 8 psf (MP1) -- 8 psf (MP2&3)
- Roof Live Load = 20 psf
- Wind Speed = 120 mph (Vult), Exposure C
- Ground Snow Load = 25 psf Roof Snow Load = 20 psf
- Attachments: 1 5/16" dia. lag screw with 2.5 inch min embedment depth, at spacing shown above.

Please contact me with any further questions or concerns regarding this project.

Sincerely,

John Calvert, P.E. Project Engineer

Digitally signed by John A. Calvert Date: 2021.03.17 14:33:38 -06'00'

Exp: 12/31/21

Espinor Residence, Portland OR 2

Domus Structural Engineering llc

Gravity Loading

Roof Snow Load Calculations		
p _g = Ground Snow Load =	25 psf	-
$p_{f} = 0.7 C_{e} C_{t} I p_{g}$		(ASCE7 - Eq 7-1)
C _e = Exposure Factor =	1	(ASCE7 - Table 7-2)
C _t = Thermal Factor =	1	(ASCE7 - Table 7-3)
I = Importance Factor =	1	
p _f = Flat Roof Snow Load =	20.0 psf	
$p_s = C_s p_f$		(ASCE7 - Eq 7-2)
Cs = Slope Factor =	1	
p _s = Sloped Roof Snow Load =	20.0 psf	
Point Load portrait	220 lb	
Point Load Landscape	140 lb	
PV Dead Load = 3 psf (Per Blue Raven S	olar)	
DL Adjusted to 35 Degree Slope	3.66 psf	_
PV System Weight		

Weight of PV System (Per Blue Raven Solar	r) 3.0 psf
X Standoff Spacing =	4.00 ft
Y Standoff Spacing =	2.75 ft
Standoff Tributary Area =	11.00 sft
Point Loads of Standoffs- Portrait	33 lb
Point Loads of Standoffs- Landscape	21 lb

Note: PV standoffs are staggered to ensure proper distribution of loading

Roof Live Load = 20 psf

Note: Roof live load is removed in area's covered by PV array.

Roof Dead Load (MP1)		
Composition Shingle	4.00	-
Roof Plywood	2.00	
Double 2x4 Rafters @ 24"o.c.	1.46	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.54	
Total Roof DL (MP1)	8.0 psf	
DL Adjusted to 35 Degree Slope	9.8 psf	
Roof Dead Load (MP2&3)		
Composition Shingle	4.00	_
Roof Plywood	2.00	
Double 2x4 Rafters @ 24"o.c.	1.46	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.54	
Total Roof DL (MP2&3)	8.0 psf	

9.77

DL Adjusted to 35 Degree Slope

Wind Calculations Per ASCE 7-16 Components and Cladding

Input Variable					
	S				
Wind Speed	120 mph	-			
Exposure Category	С				
Roof Shape	Gable Roof				
Roof Slope	35 degrees				
Mean Roof Height	20 ft				
Effective Wind Area	19.3 ft				
Ground Elevation	0 ft				
Design Wir	nd Pressure Calc	ulations			
qh = 0.00256 * Kz '	* Kzt * Kd * Ke * V	^2	(Eq. 26.10-1)		
Kz (Expo	sure Coefficient) =	= 0.90	(Table 30.3-1)		
Kzt (top	ographic factor) =	1.00	(Fig. 26.8-1)		
Kd (Wind Direc	tionality Factor) =	0.85	(Table 26.6-1)		
Ke (Ground E	levation Factor) =	1.00	(5) 00 5 (4)		
V (Desi	gn Wind Speed) =	= 120 mph	(Fig. 26.5-1A)		
	Risk Category =	=	(Iable 1.5-1)		
	qh =	28.26			
Stor	doff Unlift Colou	lationa Dartra	.14		
Stall	Zono 1	Zono 2	Zono 3	Positivo	
v =	0.70	0.70	0.80	0.70	
ya -	1.76	1.07	0.00	0.75	(Eig. 20.2)
Unlift Prossure -	-1.70	-1.97	-2.05	0.00	(Fig. 30.3) (Fa. 20.4.7)
	-39.1 psi	-43.7 psi	-59.4 psi	19.0 psi	11/0. 27.4-/1
AOD Opinit i lessure -	-4J.T USI	//3 / / 35.1	35.7 pcf	11.8 pcf	(
X Standoff Spacing =	4.00	-20.2 psi	-35.7 psf	11.8 psf	(-1)
X Standoff Spacing =	4.00	4.00 2.75	-35.7 psf 2.67 2.75	11.8 psf	(-1)
X Standoff Spacing = Y Standoff Spacing =	4.00 2.75	4.00 2.75	-35.7 psf 2.67 2.75 7.33	11.8 psf	(-1)
X Standoff Spacing = Y Standoff Spacing = Tributary Area =	4.00 2.75 11.00 33.lb	4.00 2.75 11.00	-35.7 psf 2.67 2.75 7.33 22 lb	11.8 psf	(
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment =	4.00 2.75 11.00 33 lb	4.00 2.75 11.00 33 lb	-35.7 psf 2.67 2.75 7.33 22 lb	11.8 psf	(
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) =	4.00 2.75 11.00 33 lb -225 lb	4.00 2.75 11.00 33 lb -256 lb	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb	11.8 psf	(
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1	4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape	11.8 psf	
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80	Positive 0.80	(=+)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCn =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2 83	11.8 psf 11.8 psf Positive 0.80 0.90	(Eig. 30.3)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Unlift Pressure =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45.2 psf	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63 9 psf	11.8 psf Positive 0.80 0.90 20.3 psf	(Fig. 30.3) (Fig. 29.4-7)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Uplift Pressure = ASD Uplift Pressure (0.6W)=	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf -24.4 psf	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45.2 psf -27 l psf	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63.9 psf -38.4 psf	11.8 psf Positive 0.80 0.90 20.3 psf 12.2 psf	(Fig. 30.3) (Eq. 29.4-7)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Uplift Pressure = ASD Uplift Pressure (0.6W)= X Standoff Snacing =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf -24.4 psf 4.00	-26:2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45:2 psf -27.1 psf 4 00	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63.9 psf -38.4 psf 2.67	11.8 psf Positive 0.80 0.90 20.3 psf 12.2 psf	(Fig. 30.3) (Eq. 29.4-7)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Uplift Pressure = ASD Uplift Pressure (0.6W)= X Standoff Spacing = Y Standoff Spacing =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf -24.4 psf 4.00 1 75	-26:2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45.2 psf -27.1 psf 4.00 175	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63.9 psf -38.4 psf 2.67 1.75	11.8 psf Positive 0.80 0.90 20.3 psf 12.2 psf	(Fig. 30.3) (Eq. 29.4-7)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Uplift Pressure = ASD Uplift Pressure (0.6W)= X Standoff Spacing = Y Standoff Spacing = Tributary Area =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf -24.4 psf 4.00 1.75 7 00	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45.2 psf -27.1 psf 4.00 1.75 7.00	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63.9 psf -38.4 psf 2.67 1.75 4.67	11.8 psf Positive 0.80 0.90 20.3 psf 12.2 psf	(Fig. 30.3) (Eq. 29.4-7)
X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment = Footing Uplift (0.6D+0.6W) = Stand Y _a = GCp = Uplift Pressure = ASD Uplift Pressure (0.6W)= X Standoff Spacing = Y Standoff Spacing = Tributary Area = Dead Load on attachment =	4.00 2.75 11.00 33 lb -225 lb off Uplift Calcula Zone 1 0.80 -1.80 -40.7 psf -24.4 psf 4.00 1.75 7.00 21 00	-26.2 psr 4.00 2.75 11.00 33 lb -256 lb tions-Landsc Zone 2 0.80 -2.00 -45.2 psf -27.1 psf 4.00 1.75 7.00 21.00	-35.7 psf 2.67 2.75 7.33 22 lb -240 lb ape Zone 3 0.80 -2.83 -63.9 psf -38.4 psf 2.67 1.75 4.67 14.00	11.8 psf Positive 0.80 0.90 20.3 psf 12.2 psf	(Fig. 30.3) (Eq. 29.4-7)

Standoff Uplift Check

Maximum Design Uplift = -256 lb

Standoff Uplift Capacity = 450 lb 450 lb capacity > 256 lb demand **Therefore, OK**

Fastener Capacity Check					
Fastener = 1 - 5/16" dia Lag					
Number of Fasteners = 1					
Embedment Depth = 2.5					
Pullout Capacity Per Inch = 250 lb					
Fastener Capacity = 625 lb					
w/ F.S. of 1.5 & DOL of 1.6= 667 lb					
667.2 lb capacity > 256 lb demand Therefore, OK					

Existing Weight of Effected Building				
Level	Area	Weight (psf)	Weight (lb)	
Roof	2200 sf	9.8 psf	21486 lb	
Ceiling	2200 sf	6.0 psf	13200 lb	
Wood Siding	100 ft	5.0 psf	2000 lb	(8'-0" Wall Heig
Int. Walls	100 ft	6.4 psf	2560 lb	
Existing W	eight of Effected Bui	lding	39246 lb	

 Proposed Weight of PV System

 Weight of PV System (Per Blue Raven Solar)
 3.0 psf

 Approx. Area of Proposed PV System
 366 sf

 Approximate Total Weight of PV System
 1098 lb

10% Comparison				
10% of Existing Building Weight (Allowed)	3925 lb			
Approximate Weight of PV System (Actual)	1098 lb			
Percent Increase	2.8%			
3925 lb > 1098 lb, Therefore OK				

Wood Material Properties

	Label	Туре	Database	Species	Grade	Cm	Emod	Nu	Ther	Dens[k
1	DF	Solid S	. Visually Graded	Douglas Fir-Larch	No.2		1	.3	.3	.035
2	DF1	Solid S	Visually Graded	Douglas Fir-Larch	No.1		1	.3	.3	.035

Wood Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	A [in2]	I (90,270	I (0,180)
1	R1	2X4	Beam	Rectangular	DF	Typical	5.25	.984	5.359
2	R2	2-2X4	Beam	Rectangular Double	DF	Typical	10.5	7.875	10.719
3	Wall	2X4	Column	Rectangular	DF	Typical	5.25	.984	5.359
4	CJ	2X6	Beam	Rectangular	DF	Typical	8.25	1.547	20.797
5	СТ	2X4	Beam	Rectangular	DF	Typical	5.25	.984	5.359

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Temp [F]
1	N1	-1.658075	-1.118386	0
2	N2	6.079609	4.100748	0
3	N3	6.079609	0	0
4	N4	0	0	0
5	N5	27.496413	0	0
6	N6	21.416804	4.100748	0
7	N7	21.416804	0	0
8	N8	29.154488	-1.118386	0
9	N9	13.748206	9.273282	0
10	N10	11.177012	7.53899	0
11	N11	16.319401	7.53899	0
12	N12	-1.658075	10.881614	0
13	N13	6.079609	16.100748	0
14	N14	6.079609	12	0
15	N15	0	12	0
16	N16	27.496413	12	0
17	N17	21.416804	16.100748	0
18	N18	21.416804	12	0
19	N19	29.154488	10.881614	0
20	N20	13.748206	21.273282	0
21	N21	11.177012	19.53899	0
22	N22	16.319401	19.53899	0
23	N23	13.748206	12	0
24	N24	13.748206	0	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Rotation[k-ft/rad]
1	N4	Reaction	Reaction	
2	N15	Reaction	Reaction	
3	N16		Reaction	
4	N5		Reaction	
5	N23		Reaction	
6	N24		Reaction	

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N9		R1	Beam	Rectangular	DF	Typical
2	M2	N2	N3		Wall	Column	Rectangular	DF	Typical
3	M3	N4	N5		CJ	Beam	Rectangular	DF	Typical
4	M4	N6	N7		Wall	Column	Rectangular	DF	Typical
5	M5	N8	N9		R1	Beam	Rectangular	DF	Typical
6	M6	N10	N11		СТ	Beam	Rectangular	DF	Typical
7	M7	N12	N20		R2	Beam	Rectangular D	DF	Typical
8	M8	N13	N14		Wall	Column	Rectangular	DF	Typical
9	M9	N15	N16		CJ	Beam	Rectangular	DF	Typical
10	M10	N17	N18		Wall	Column	Rectangular	DF	Typical
11	M11	N19	N20		R2	Beam	Rectangular D	DF	Typical
12	M12	N21	N22		CT	Beam	Rectangular	DF	Typical

Wood Design Parameters

	Label	Shape	Leng	Le-out[ft]	Le-in[ft]	le-bend top	le-bend	K-out	K-in	CV	Cr	Out s	.In sw
1	M1	R1	18.583	1	Segment	1	Segment				Yes		
2	M2	Wall	4.101			Lb out							
3	M3	CJ	27.496	1	Segment	1	1				Yes		
4	M4	Wall	4.101			Lb out							
5	M5	R1	18.583	1	Segment	1	Segment				Yes		
6	M6	СТ	5.142			Lb out							
7	M7	R2	18.583	1	Segment	1	Segment				Yes		
8	M8	Wall	4.101			Lb out							
9	M9	CJ	27.496	1	Segment	1	1				Yes		
10	M10	Wall	4.101			Lb out							
11	M11	R2	18.583	1	Segment	1	Segment				Yes		
12	M12	СТ	5.142			Lb out							

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^
	No Data to Print		

Member Distributed Loads (BLC 1 : Dead)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[ft
1	M7	Y	-16	-16	0	0
2	M11	Y	-16	-16	0	0
3	M1	Y	-16	-16	0	0
4	M5	Y	-16	-16	0	0
5	M9	Y	-18	-18	0	0
6	M3	Y	-18	-18	0	0

Member Distributed Loads (BLC 2 : Snow)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[ft
1	M7	Y	-40	-40	0	6
2	M11	Y	-40	-40	0	0
3	M1	Y	-40	-40	0	0
4	M5	Y	-40	-40	0	0
5	M7	Y	-40	-40	16.5	0

Member Distributed Loads (BLC 3 : Live Load)

Member Distributed Loads (BLC 3 : Live Load) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	.End Location[ft
1	M3	Y	-30	-30	6.1	21.5
2	M9	Y	-30	-30	6.1	21.5

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M7	Y	-21	6.75
2	M7	Y	-11	8.7
3	M7	Y	-21	10.25
4	M7	Y	-11	12.083
5	M7	Y	-21	13.75
6	M7	Y	-11	15.8

Member Point Loads (BLC 2 : Snow)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M7	Y	-140	6.75
2	M7	Y	-70	8.7
3	M7	Y	-140	10.25
4	M7	Y	-70	12.083
5	M7	Y	-140	13.75
6	M7	Y	-70	15.8

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Dead	DĽ				6	6
2	Snow	SL				6	5
3	Live Load	LL					2

Load Combinations

	Descripti	Solve	PDelta	SRSS	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	IBC 16-8	Yes			DL	1																		
2	IBC 16-9	Yes			DL	1	LL	1	LLS	1														
3	IBC 16-1	Yes			DL	1	RLL	1																
4	IBC 16-1	Yes			DL	1	SL	1	S	1														
5	IBC 16-1	Yes			DL	1	RL	1																
6	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	SL	.75	S	.75										
8	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	RL	.75												

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	Shear[lb]	LC	Moment[lb-ft]	LC
1	M1	1	max	0	8	0	1	0	1
2			min	0	1	0	1	0	1
3		2	max	797.361	4	66.065	4	-87.035	1
4			min	264.693	1	25.377	1	-244.415	4
5		3	max	651.878	4	-28.881	2	-50.314	4
6			min	223.126	1	-149.623	4	-115.502	2
7		4	max	662.886	4	-53.148	1	88.244	7
8			min	211.726	1	-133.303	4	43.841	1
9		5	max	-37.26	5	46.825	7	0	1
10			min	-69.257	7	25.132	1	0	1

Mar 17, 2021 2:04 PM Checked By:___

Envelope Member Section Forces (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member	Sec		Axial[lb]	LC	Shear[lb]	LC	Moment[lb-ft]	LC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	M2	1	max	279.852	4	0	1	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12			min	24.243	2	0	1	0	1
	13		2	max	279.852	4	0	1	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14			min	24,243	2	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		3	max	279 852	4	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16			min	24 243	2	0	1	0	1
18 1 0 1 0 1 0 1 19 5 max 279.852 4 0 1 0 1 20 min 22.4243 2 0 1 0 1 21 M3 1 max -205.249 5 199.186 4 0 1 22 min -204.2099 4 -204.4 4 -728.231 7 24 min -204.44 4 -728.231 7 26 -31.0663 1 24 min -205.249 5 204.397 4 -310.083 1 26 min -205.249 5 204.397 4 -310.083 1 30 min -205.249 5 -133.325 1 0 1 31 M4 min 279.464 4 0 1 0 1 32 min 226.249	17		1	may	270 852	1	0	1	0	1
	10			min	213.002	2	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		E	max	24.243	<u> </u>	0	1	0	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19		5	max	279.002	4	0	4	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	140	4	min	24.243	2	0		0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	IVI3	1	max	-205.249	5	199.186	4	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22			min	-624.099	4	113.326	1	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23		2	max	-205.249	5	-38.796	2	-310.868	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24			min	-624.099	4	-204.4	4	-728.231	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25		3	max	-205.249	5	429.462	7	1261.266	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26			min	-624.099	4	-328.134	4	556.796	1
28 min 624.099 4 39.921 2 -734.017 7 29 5 max -205.249 5 -113.325 1 0 1 30 min 624.099 4 199.183 4 0 1 31 M4 1 max 279.846 4 0 1 0 1 32 min 23.694 2 0 1 0 1 34 min 23.694 2 0 1 0 1 35 3 max 279.846 4 0 1 0 1 36 min 23.694 2 0 1 0 1 39 5 max 279.846 4 0 1 0 1 40 min 23.694 2 0 1 0 1 41 M5 1 max	27		4	max	-205.249	5	204.397	4	-310.863	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28			min	-624.099	4	39.921	2	-734.017	7
30min -624.099 4 -199.183 40131M41max279.8464010132max279.84640101332max279.8464010134min23.69420101353max279.8464010136min23.69420101374max279.8464010138min23.69420101395max279.8464010140min23.6942010140min23.6942010141M51max0801042min010101432max651.884149.624117.363246min22.126128.627250.3344474max662.8844133.054-43.838148min21.1726153.1491-87.537750min69.07294010151M61min <td>29</td> <td></td> <td>5</td> <td>max</td> <td>-205 249</td> <td>5</td> <td>-113 325</td> <td>1</td> <td>0</td> <td>1</td>	29		5	max	-205 249	5	-113 325	1	0	1
31 M4 1 max 279.246 4 0 1 0 1 32 1 min 279.246 4 0 1 0 1 33 2 max 279.846 4 0 1 0 1 34 min 23.694 2 0 1 0 1 35 3 max 279.846 4 0 1 0 1 36 min 23.694 2 0 1 0 1 37 4 max 279.846 4 0 1 0 1 38 min 23.694 2 0 1 0 1 0 1 4 max 279.846 4 0 1 0 1 1 1 40 min 0 8 0 1 0 1 1 1 1 1 </td <td>30</td> <td></td> <td></td> <td>min</td> <td>-624 099</td> <td>4</td> <td>-199 183</td> <td>4</td> <td>Ŭ Ŭ</td> <td>1</td>	30			min	-624 099	4	-199 183	4	Ŭ Ŭ	1
31 max 1 max 23.694 2 0 1 0 1 33 2 max 279.846 4 0 1 0 1 34 min 23.694 2 0 1 0 1 35 3 max 279.846 4 0 1 0 1 36 min 23.694 2 0 1 0 1 37 4 max 279.846 4 0 1 0 1 39 5 max 279.846 4 0 1 0 1 40 min 23.694 2 0 1 0 1 41 M5 1 max 0 8 0 1 0 1 42 min 24.683 1 -66.068 4 87.037 1 44 min 211.726 1	31	MA	1	may	270 8/6	4	0	1	0	1
33 2 min 23094 2 0 1 0 1 34 min 23.694 2 0 1 0 1 35 3 max 279.846 4 0 1 0 1 36 min 23.694 2 0 1 0 1 37 4 max 279.846 4 0 1 0 1 38 min 23.694 2 0 1 0 1 1 40 min 23.694 2 0 1 0 1 1 41 M5 1 max 0 8 0 1 0 1 42 min 0.364 -25.378 1 244.422 4 44 min 264.693 1 -66.088 4 87.037 1 45 3 max 651.88 4	22			min	22 604	2	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		2	max	23.094	<u> </u>	0	1	0	1
34 min $23,094$ 2 0 1 0 1 35 3 max $279,846$ 4 0 1 0 1 37 4 max $279,846$ 4 0 1 0 1 38 min $23,694$ 2 0 1 0 1 39 5 max $279,846$ 4 0 1 0 1 40 min $23,694$ 2 0 1 0 1 40 min $23,694$ 2 0 1 0 1 40 min $23,694$ 2 0 1 0 1 41 M5 1 max 0 1 0 1 42 min $21,693$ 1 $66,608$ 4 $87,037$ 1 44	33		2	max	279.040	4	0	1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		-	min	23.694	2	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35		3	max	279.846	4	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36			min	23.694	2	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37		4	max	279.846	4	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38			min	23.694	2	0	1	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39		5	max	279.846	4	0	1	0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40			min	23.694	2	0	1	0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	M5	1	max	0	8	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42			min	0	1	0	1	0	1
44min 264.693 1 -66.068 4 87.037 1 45 3max 651.88 4 149.62 4 117.353 2 46 min 223.126 1 28.627 2 50.334 4 47 4max 662.884 4 133.005 4 -43.838 1 48 min 211.726 1 53.149 1 -87.537 7 49 5max -37.26 5 -25.132 101 50 min -69.36 7 -46.673 701 50 min -59.36 7 -46.673 701 51 M61max 690.729 40101 52 min 250.193 101011 53 2max 690.729 40101 54 min 250.193 101011 54 min 250.193 101011 56 min 250.193 101011 59 5 max 690.729 40101 59 5 max 690.729 40101 60 min 250.193 10101 60 min 250.193 1010<	43		2	max	797 363	4	-25 378	1	244 422	4
45 3 max 651.88 4 149.62 4 117.353 2 46 min 223.126 1 28.627 2 50.334 4 47 4 max 662.884 4 133.305 4 -43.838 1 48 min 211.726 1 53.149 1 -87.537 7 49 5 max -37.26 5 -25.132 1 0 1 50 min -69.36 7 -46.673 7 0 1 51 M6 1 max 690.729 4 0 1 0 1 52 min 250.193 1 0 1 0 1 54 min 250.193 1 0 1 0 1 55 3 max 690.729 4 0 <td>44</td> <td></td> <td></td> <td>min</td> <td>264 693</td> <td>1</td> <td>-66.068</td> <td>4</td> <td>87.037</td> <td>1</td>	44			min	264 693	1	-66.068	4	87.037	1
46min $23,126$ 1 $28,627$ 2 $50,334$ 4 47 4 max $662,884$ 4 $133,305$ 4 $-43,838$ 1 48 min $211,726$ 1 $53,149$ 1 $-87,537$ 7 49 5 max $-37,26$ 5 $-25,132$ 1 0 1 50 min $-69,36$ 7 $-46,673$ 7 0 1 51 M6 1 max $690,729$ 4 0 1 0 1 52 min $250,193$ 1 0 1 0 1 53 2 max $690,729$ 4 0 1 0 1 54 min $250,193$ 1 0 1 0 1 54 min $250,193$ 1 0 1 0 1 55 3 max $690,729$ 4 0 1 0 1 56 min $250,193$ 1 0 1 0 1 57 4 max $690,729$ 4 0 1 0 1 59 5 max $690,729$ 4 0 1 0 1 60 min $250,193$ 1 0 1 0 1 60 min $250,193$ 1 0 1 0 1 60 min $250,193$ 1 0 1 0 1 <	45		3	max	651.88	1	1/0.62	4	117 353	2
401123.120123.027230.3344474max662.8844133.3054-43.8381481min211.726153.1491-87.5377495max-37.265-25.132101501min-69.367-46.67370151M61max690.72940101521101011532max690.72940101541101011553max690.729401015611250.19310101574max690.72940101581250.19310101595max690.72940101601101011161M71max0801016211010101163211010111641108.4944125.3424-139.841 </td <td>45</td> <td></td> <td>5</td> <td>min</td> <td>222 126</td> <td>4</td> <td>28 627</td> <td>2</td> <td>50 224</td> <td></td>	45		5	min	222 126	4	28 627	2	50 224	
474Indx 602.634 4 133.305 4 -43.636 1 48 min211.7261 53.149 1 -87.537 7 49 5max -37.26 5 -25.132 101 50 min -69.36 7 -46.673 701 51 M61max 690.729 40101 52 min 250.193 10101 53 2max 690.729 40101 54 min 250.193 10101 56 3max 690.729 40101 56 min 250.193 10101 56 min 250.193 10101 57 4max 690.729 40101 58 min 250.193 10101 59 5max 690.729 40101 60 min 250.193 10101 60 min 250.193 10101 61 M71max080101 62 min 0 1010101 63 2max $1069.$	40		4	max	223.120	4	122.021	2	42.020	4
48Imin 211.726 1 53.149 1 -87.537 7 49 5max -37.26 5 -25.132 101 50 min -69.36 7 -46.673 701 51 M61max 690.729 40101 52 min 250.193 101011 53 2max 690.729 40101 54 min 250.193 10101 54 min 250.193 10101 56 3max 690.729 40101 56 min 250.193 10101 57 4max 690.729 40101 57 4max 690.729 40101 58 min 250.193 10101 60 min 250.193 10101 60 min 250.193 10101 61 M71max08010 62 min 250.193 10101 63 2 max 1069.494 4 125.342 4 -139.841 1 64 min 370.627 1	47		4	max	002.004	4	133.305	4	-43.030	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48			min	211.720	1	53.149		-87.537	(
50min -69.36 7 -46.673 70151M61max 690.729 4010152min250.19310101532max 690.729 4010154min250.19310101553max 690.729 4010156min250.19310101574max 690.729 4010158min250.19310101595max 690.729 4010160min250.1931010161M71max08010162min0101011632max1069.4944125.3424-139.841164min370.627145.3351-401.2524653max862.3134-31.2312-157.666166min311.1661-181.8164-315.227674max789.4614-98.038176.7812	49		5	max	-37.26	5	-25.132	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50			min	-69.36	7	-46.673	7	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	M6	1	max	690.729	4	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52			min	250.193	1	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53		2	max	690.729	4	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54			min	250.193	1	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55		3	max	690.729	4	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56			min	250.193	1	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57		4	max	690,729	4	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58			min	250,193	1	0	1	Õ	1
60 min 250.125 1 0 1 0 1 60 min 250.193 1 0 1 0 1 0 1 61 M7 1 max 0 8 0 1 0 1 62 min 0 1 0 1 0 1 0 1 63 2 max 1069.494 4 125.342 4 -139.841 1 64 min 370.627 1 45.335 1 -401.252 4 65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	59		5	max	690 729	4	0	1	0	1
61 M7 1 max 0 8 0 1 0 1 62 min 0 1 0 1 0 1 0 1 63 2 max 1069.494 4 125.342 4 -139.841 1 64 min 370.627 1 45.335 1 -401.252 4 65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	60			min	250 103	1	0	1	0	1
61 min 0 1 0	61	M7	1	max	0	2	0	1	0	1
62 1 0 1 0 1 0 1 0 1 63 2 max 1069.494 4 125.342 4 -139.841 1 64 min 370.627 1 45.335 1 -401.252 4 65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	60	IV17		Xbiii	0	0	0	1	0	
b3 2 max 1069.494 4 125.342 4 -139.841 1 64 min 370.627 1 45.335 1 -401.252 4 65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	02			min	1000 101	4	105.040	4		
64 min 3/0.62/ 1 45.335 1 -401.252 4 65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	63		2	max	1069.494	4	125.342	4	-139.841	1
65 3 max 862.313 4 -31.231 2 -157.666 1 66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	64			min	370.627	1	45.335	1	-401.252	4
66 min 311.166 1 -181.816 4 -315.22 7 67 4 max 789.461 4 -98.038 1 76.781 2	65		3	max	862.313	4	-31.231	2	-157.666	1
67 4 max 789.461 4 -98.038 1 76.781 2	66			min	311.166	1	-181.816	4	-315.22	7
	67		4	max	789.461	4	-98.038	1	76.781	2

Mar 17, 2021 2:04 PM Checked By:___

Envelope Member Section Forces (Continued)

	Member	Sec	_	Axial[lb]	LC	Shear[lb]	LC	Moment[lb-ft]	LC
68			min	273.92	1	-289.825	4	21.636	4
69		5	max	-89.767	5	93.125	7	0	1
70			min	-194.066	7	44.341	1	0	1
71	M8	1	max	347.051	4	0	1	0	1
72			min	14.059	2	0	1	0	1
73		2	max	347.051	4	0	1	0	1
74			min	14.059	2	0	1	0	1
75		3	max	347.051	4	0	1	0	1
76			min	14.059	2	0	1	0	1
77		4	max	347.051	4	0	1	0	1
78			min	14.059	2	0	1	0	1
79		5	max	347.051	4	0	1	0	1
80			min	14.059	2	0	1	0	1
81	M9	1	max	-281.912	5	240.888	4	0	1
82			min	-816.561	4	120.876	1	0	1
83		2	max	-281.912	5	-27.475	2	-357.386	1
84			min	-816.561	4	-229.897	4	-954.876	4
85		3	max	-281.912	5	-187.318	1	1173.372	7
86			min	-816.561	4	-439.638	7	504.976	1
87		4	max	-281,912	5	149,465	4	-187.222	1
88			min	-816.561	4	3.677	2	-439.575	7
89		5	max	-281,912	5	-89.652	1	0	1
90			min	-816.561	4	-139,434	4	0	1
91	M10	1	max	165 165	4	0	1	0	1
92			min	-42 849	2	0	1	0	1
93		2	max	165 165	4	0	1	0	1
94			min	-42 849	2	0	1	0	1
95		3	max	165 165	4	0	1	0	1
96			min	-42 849	2	0	1	0	1
97		4	max	165 165	4	0	1	0	1
98			min	-42 849	2	0	1	0	1
99		5	max	165 165	4	0	1	0	1
100			min	-42 849	2	0	1	0	1
101	M11	1	max	0	8	0	1	0	1
102			min	0	1	0	1	0	1
102		2	max	1042.01	4	-34 435	1	293 44	4
104		~	min	363 275	1	-84 594	4	111 001	1
105		3	max	896 526	4	131 094	4	236 752	7
106			min	321 708	1	15 171	2	127 831	1
107		1	may	8/3/02	1	200.853	1	-123 508	1
107			min	282 796	1	84 879	1	-294 175	4
100		5	may	_7/ 730	5	-66.62	1	0	1
110			min	-159 043	7	-145 208	4	0	1
111	M12	1	may	1020 666	Λ	0	1	0	1
112		- 1	min	381 128	1	0	1	0	1
112		2	may	1020 666	1	0	1	0	1
11/		2	min	381 128	1	0	1	0	1
114		2	max	1020 666	1	0	1	0	1
110		3	min	291 100	4	0	1	0	1
117		Λ	max	1020 666	1	0	1	0	1
110		4	min	381 129	4	0	1	0	1
110		E	may	1020 666	1	0	1	0	1
120		5	min	201 102	4	0	1	0	1
120				JOI.120		U		U	

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Moment [lb-ft]	LC
1	N4	max	0	8	960.002	4	0	8
2		min	0	1	356.712	1	0	1
3	N15	max	0	8	1203.022	4	0	8
4		min	0	1	440.046	1	0	1
5	N16	max	0	8	1052.417	4	0	8
6		min	0	1	395.674	1	0	1
7	N5	max	0	8	960.002	4	0	8
8		min	0	1	356.712	1	0	1
9	N23	max	0	8	813.481	7	0	8
10		min	0	1	349.882	1	0	1
11	N24	max	0	8	858.083	7	0	8
12		min	0	1	376.178	1	0	1
13	Totals:	max	0	8	5458.538	4		
14		min	0	1	2275.204	1		

Envelope Wood Code Checks

	Memb	Shape	Code Check	Loc[ft]	LC	She	Loc	.LC	Fc' [ksi]	Fť [k	.Fb' [Fv' [RB	CL	CP	Eqn
1	M1	2X4	.836	6.001	4	.271	15	4	.677	.992	1.781	.207	4.32	.998	.379	3.9-3
2	M2	2X4	.127	0	4	.000	0	8	.421	.992	1.537	.207	8.749	.99	.236	3.6.3
3	M3	2X6	1.370	13.748	7	.377	13	7	1.183	.86	1.542	.207	5.416	.997	.693	3.9-1
4	M4	2X4	.127	0	4	.000	0	8	.421	.992	1.537	.207	8.749	.99	.236	3.6.3
5	M5	2X4	.854	6.001	4	.271	15	4	.677	.992	1.741	.207	11.7	.975	.379	3.9-3
6	M6	2X4	.480	0	4	.000	0	8	.274	.992	1.532	.207	9.798	.987	.153	3.6.3
7	M7	2-2X4	.730	6.775	4	.212	15	4	.677	.992	1.784	.207	2.16	.999	.379	3.9-3
8	M8	2X4	.157	0	4	.000	0	8	.421	.992	1.537	.207	8.749	.99	.236	3.6.3
9	M9	2X6	1.305	13.748	7	.386	13	7	1.183	.86	1.542	.207	5.416	.997	.693	3.9-1
10	M10	2X4	.075	0	4	.000	0	8	.421	.992	1.537	.207	8.749	.99	.236	3.6.3
11	M11	2-2X4	.743	15.486	4	.199	15	4	1.594	.992	1.784	.207	2.16	.999	.893	3.9-1
12	M12	2X4	.710	0	4	.000	0	8	.274	.992	1.532	.207	9.798	.987	.153	3.6.3

M3 and M9 are at 16" not 24" o.c.. Therefore a reduction in stress of 16/24 = 0.67 should be applied. 1.37*.67 = 0.92 therefore ok as is.

Γ, Ι	
- 1863 m	
Nito	N15
The second s	
-186.9 TI Walder Walder Market	The second se
	- Hard Has
Look TEC 1, Deed Envelope Only Solution	SK Dood 2
	SN - Deau Z
	IVIAL 17, ZUZ LALZ Z PIVI

Wood Material Properties

	Label	Туре	Database	Species	Grade	Cm	Emod	Nu	Ther	Dens[k
1	DF	Solid S	Visually Graded	Douglas Fir-Larch	No.2		1	.3	.3	.035

Wood Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	A [in2]	I (90,270	.l (0,180)
1	R1	2X4	Beam	Rectangular	DF	Typical	5.25	.984	5.359
2	R2	2-2X4	Beam	Rectangular	DF	Typical	10.5	7.875	10.719
3	Wall	2X4	Column	Rectangular	DF	Typical	5.25	.984	5.359
4	CJ	2X8	Beam	Rectangular	DF	Typical	10.875	2.039	47.635

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Temp [F]
1	N1	-2.232933	-1.506132	0
2	N2	0	0	0
3	N3	16.443923	0.	0
4	N4	3.454323	2.32997	0
5	N5	3.454323	0	0
6	N6	18.676856	-1.506132	0
7	N7	8.221961	5.545783	0
8	N8	12.9896	2.32997	0
9	N9	12.9896	1.895e-14	0
10	N10	-2.232933	8.493868	0
11	N11	0	10	0
12	N12	16.443923	10	0
13	N13	3.454323	12.32997	0
14	N14	3.454323	10	0
15	N15	18.676856	8.493868	0
16	N16	8.221961	15.545783	0
17	N17	12.9896	12.32997	0
18	N18	12.9896	10	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Rotation[k-ft/rad]
1	N2	Reaction	Reaction	
2	N3		Reaction	
3	N11	Reaction	Reaction	
4	N12		Reaction	

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N7		R2	Beam	Rectangular	DF	Typical
2	M2	N2	N3		CJ	Beam	Rectangular	DF	Typical
3	M3	N4	N5		Wall	Column	Rectangular	DF	Typical
4	M4	N6	N7		R2	Beam	Rectangular	DF	Typical
5	M5	N8	N9		Wall	Column	Rectangular	DF	Typical
6	M6	N10	N16		R1	Beam	Rectangular	DF	Typical
7	M7	N11	N12		CJ	Beam	Rectangular	DF	Typical
8	M8	N13	N14		Wall	Column	Rectangular	DF	Typical
9	M9	N15	N16		R1	Beam	Rectangular	DF	Typical
10	M10	N17	N18		Wall	Column	Rectangular	DF	Typical

Wood Design Parameters

	Label	Shape	Leng	Le-out[ft]	Le-in[ft]	le-bend top.	.le-bend	K-out	K-in	CV	Cr	Out s	.In sw
1	M1	R2	12.611	1	Segment	1	Segment				Yes		
2	M2	CJ	16.444	1	Segment	Lb out					Yes		
3	M3	Wall	2.33			Lb out							
4	M4	R2	12.611	1	Segment	1	Segment				Yes		
5	M5	Wall	2.33		Ŭ	Lb out							
6	M6	R1	12.611	1	Segment	1	Segment				Yes		
7	M7	CJ	16.444	1	Segment	Lb out					Yes		
8	M8	Wall	2.33			Lb out							
9	M9	R1	12.611	1	Segment	1	Segment				Yes		
10	M10	Wall	2.33			Lb out							

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^
	No Data to Print		

Member Distributed Loads (BLC 1 : Dead)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[ft
1	M1	Y	-18	-18	0	0
2	M4	Y	-18	-18	0	0
3	M2	Y	-14	-14	0	0
4	M6	Y	-18	-18	0	0
5	M7	Y	-14	-14	0	0
6	M9	Y	-18	-18	0	0

Member Distributed Loads (BLC 2 : Snow)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	.End Location[ft
1	M1	Y	-40	-40	0	.75
2	M4	Y	-40	-40	0	.75
3	M6	Y	-40	-40	0	0
4	M9	Y	-40	-40	0	0
5	M1	Y	-40	-40	11.67	0
6	M4	Y	-40	-40	11.67	0

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M1	Y	-11	2
2	M1	Y	-21	3.83
3	M1	Y	-11	5.5
4	M1	Y	-21	7.33
5	M1	Y	-11	9
6	M1	Y	-21	10.83
7	M4	Y	-11	2
8	M4	Y	-21	3.83
9	M4	Y	-11	5.5
10	M4	Y	-21	7.33
11	M4	Y	-11	9
12	M4	Y	-21	10.83

Member Point Loads (BLC 2 : Snow)

Member Point Loads (BLC 2 : Snow) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M1	Y	-70	2
2	M1	Y	-140	3.83
3	M1	Y	-70	5.5
4	M1	Y	-140	7.33
5	M1	Y	-70	9
6	M1	Y	-140	10.83
7	M4	Y	-70	2
8	M4	Y	-140	3.83
9	M4	Y	-70	5.5
10	M4	Y	-140	7.33
11	M4	Y	-70	9
12	M4	Y	-140	10.83

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Dead	DĹ	-	-1		12	6
2	Snow	SL				12	6

Load Combinations

	Descripti	Solve	PDelta	SRSS	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	IBC 16-8	Yes			DL	1																		
2	IBC 16-9	Yes			DL	1	LL	1	LLS	1														
3	IBC 16-1	Yes			DL	1	RLL	1																
4	IBC 16-1	Yes			DL	1	SL	1	S	1														
5	IBC 16-1	Yes			DL	1	RL	1																
6	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	SL	.75	S	.75										
8	IBC 16-1	Yes			DL	1	LL	.75	LLS	.75	RL	.75												

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	Shear[lb]	LC	Moment[Ib-ft]	LC
1	M1	1	max	0	8	0	1	0	1
2			min	0	1	0	1	0	1
3		2	max	835.751	4	305.497	4	23.914	4
4			min	323.432	1	122.759	1	9.947	1
5		3	max	664.193	4	51.152	4	-241.96	1
6			min	269.305	1	42.513	1	-470.059	4
7		4	max	580.114	4	-40.419	1	-243.104	1
8			min	213.368	1	-73.5	4	-568.776	4
9		5	max	432.806	4	-111.546	1	0	1
10			min	165.392	1	-291.893	4	0	1
11	M2	1	max	-199.492	8	296.219	4	0	1
12			min	-522.037	4	136.565	1	0	1
13		2	max	-199.492	8	68.41	1	-420.933	1
14			min	-522.037	4	68.388	4	-972.417	4
15		3	max	-199.492	8	01	1	-561.548	1
16			min	-522.037	4	032	4	-1112.943	4
17		4	max	-199.492	8	-68.43	1	-420.851	1
18			min	-522.037	4	-68.452	4	-972.157	4
19		5	max	-199.492	8	-136.537	1	0	1
20			min	-522.037	4	-296.132	4	0	1
21	M3	1	max	156.438	4	0	1	0	1

Mar 17, 2021 2:24 PM Checked By:___

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	Shear[lb]	LC	Moment[lb-ft]	LC
22			min	-3.238	1	0	1	0	1
23		2	max	157.181	4	0	1	0	1
24			min	-2.495	1	0	1	0	1
25		3	max	157.924	4	0	1	0	1
26			min	-1.752	1	0	1	0	1
27		4	max	158.667	4	0	1	0	1
28			min	-1.008	1	0	1	0	1
29		5	max	159.411	4	0	1	0	1
30			min	265	1	0	1	0	1
31	M4	1	max	0	8	0	1	0	1
32			min	0	1	0	1	0	1
33		2	max	835.799	4	-122.782	1	-9.936	1
34			min	323.448	1	-305.569	4	-23.881	4
35		3	max	664.242	4	-42.536	1	470.32	4
36			min	269 321	1	-51 225	4	242 043	1
37		4	max	580 079	4	73 552	4	568.941	4
38			min	213 356	1	40.435	1	243 157	1
30		5	max	432 771	4	201 045	4	0	1
40			min	165 38	1	111 563	1	0	1
40	M5	1	max	156 297	1	0	1	0	1
41	IVIO		min	2 286	4	0	1	0	1
42		2	mox	157 021	1	0	1	0	1
43		2	min	2 5 4 2	4	0	1	0	1
44			min	-2.543	4	0		0	
45		3	max	157.774	4	0		0	
46		4	min	-1.8	1	0	1	0	1
47		4	max	158.517	4	0	1	0	1
48		_	min	-1.056	1	0	1	0	1
49		5	max	159.26	4	0	1	0	1
50			min	313	1	0	1	0	1
51	M6	1	max	0	8	0	1	0	1
52			min	0	1	0	1	0	1
53		2	max	499.147	4	172.476	4	93.855	4
54			min	200.781	1	73.279	1	22.625	1
55		3	max	394.644	4	22.896	1	-128.983	1
56			min	166.798	1	17.545	4	-205.689	4
57		4	max	367.621	4	-19.778	1	-141.769	1
58			min	138.013	1	-22.518	4	-315.2	4
59		5	max	263.119	4	-70.161	1	0	1
60			min	104.03	1	-177.449	4	0	1
61	M7	1	max	-125.478	8	278.347	4	0	1
62			min	-317.364	4	149.103	1	0	1
63		2	max	-125.478	8	68.413	1	-464.246	1
64			min	-317.364	4	68,398	4	-910.688	4
65		3	max	-125,478	8	007	1	-604.872	1
66			min	-317 364	4	- 022	4	-1051 253	4
67		4	max	-125 478	8	-68 427	1	-464 186	1
68			min	-317 364	4	-68 442	4	-910 506	4
60		5	max	-125 478	8	-149 083	1	0	1
70			min	-317 364	4	-278 286	4	0	1
70	MR	1	may	138 556	1	0	1	0	1
72	IVIO		min	9 207	1	0	1	0	1
72		2	max	130.2	1	0	1	0	1
73		2	min	10.04	4	0	1	0	1
74		0	may	140.042	1	0	1	0	1
10		3	max	140.043	4	0		0	
70		A		10.784	4	0	4	U	1
11		4	max	140.780	4	0		U	
78			min	11.527		0		0	

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	Shear[lb]	LC	Moment[Ib-ft]	LC
79		5	max	141.53	4	0	1	0	1
80			min	12.27	1	0	1	0	1
81	M9	1	max	0	8	0	1	0	1
82			min	0	1	0	1	0	1
83		2	max	499.181	4	-73.295	1	-22.617	1
84			min	200.792	1	-172.526	4	-93.832	4
85		3	max	394.678	4	-17.595	4	205.871	4
86			min	166.809	1	-22.913	1	129.042	1
87		4	max	367.597	4	22.555	4	315.316	4
88			min	138.005	1	19.79	1	141.807	1
89		5	max	263.094	4	177.486	4	0	1
90			min	104.022	1	70.172	1	0	1
91	M10	1	max	138.451	4	0	1	0	1
92			min	9.263	1	0	1	0	1
93		2	max	139.194	4	0	1	0	1
94			min	10.006	1	0	1	0	1
95		3	max	139.938	4	0	1	0	1
96			min	10.749	1	0	1	0	1
97		4	max	140.681	4	0	1	0	1
98			min	11.493	1	0	1	0	1
99		5	max	141.424	4	0	1	0	1
100			min	12.236	1	0	1	0	1

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Moment [lb-ft]	LC
1	N2	max	0 -	8	1192.628	4	0	8
2		min	0	1	494.993	1	0	1
3	N3	max	0	8	1192.628	4	0	8
4		min	0	1	494.993	1	0	1
5	N11	max	0	8	887.336	4	0	8
6		min	0	1	382.901	1	0	1
7	N12	max	0	8	887.336	4	0	8
8		min	0	1	382.901	1	0	1
9	Totals:	max	0	8	4159.929	4		
10		min	0	1	1755.788	1		

Envelope Wood Code Checks

	Memb	.Shape	Code Check	Loc[ft]	LC	She	Loc.	.LC	Fc' [ksi]	Fť [k	.Fb' [RB	CL	CP	Eqn
1	M1	2-2X4	.697	8.933	4	.215	2.7	4	.99	.992	1.784	.207	2.16	.999	.554	3.9-3
2	M2	2X8	.772	8.222	4	.197	0	4	1.216	.793	1.422	.207	6.218	.996	.746	3.9-1
3	M3	2X4	.028	2.33	4	.000	0	8	1.066	.992	1.544	.207	6.595	.995	.597	3.6.3
4	M4	2-2X4	.699	8.933	4	.216	2.7	4	.99	.992	1.779	.207	5.18	.996	.554	3.9-3
5	M5	2X4	.028	2.33	4	.000	0	8	1.066	.992	1.544	.207	6.595	.995	.597	3.6.3
6	M6	2X4	.755	8.933	4	.265	2.7	4	.99	.992	1.781	.207	4.32	.998	.554	3.9-3
7	M7	2X8	.709	8.222	4	.185	0	4	1.216	.793	1.422	.207	6.218	.996	.746	3.9-1
8	M8	2X4	.025	2.33	4	.000	0	8	1.066	.992	1.544	.207	6.595	.995	.597	3.6.3
9	M9	2X4	.767	8.933	4	.265	2.7	4	.99	.992	1.753	.207	10.3	.982	.554	3.9-3
10	M10	2X4	.025	2.33	4	.000	0	8	1.066	.992	1.544	.207	6.595	.995	.597	3.6.3