

To:	North Suttle Road Property Owners	Date:	August 16, 2017
From:	Jacob Faust, PE	Project:	0106.24.01

RE: North Suttle Road Engineering Study

Maul Foster and Alongi, Inc. (MFA) has prepared this engineering study on behalf of the property owners located along North Suttle Road in Portland, Oregon. The study is in response to the City of Portland's (City's) proposal to form a Local Improvement District (LID) to reconstruct North Suttle Road to modern roadway standards, at a City-estimated cost of \$9.6 million. A significant portion of that cost would be funded through an assessment against the respective properties based upon the total number of square feet of land in each parcel on a *pro rata* basis. The owners of many of the properties identified for inclusion within the LID are of the opinion that proposed *pro rata* assessment costs, over the LID's 20-year repayment period, are unsustainable and may cause many of these small businesses to close. Further, the LID assessments become liens against these properties, which may significantly diminish their fair market value during the repayment period. The purpose of this study is to identify options for the roadway's replacement that reduce the overall project's cost relative to the City's current proposal.

The City's current proposal calls for a 32-foot wide asphalt roadway with curbs and a detached sidewalk. The proposed roadway section design requires nine inches of asphalt pavement over eight inches of compacted base gravel. Stormwater would be collected and conveyed to a to-be-constructed stormwater infrastructure that drains to the North Portland Harbor. Per discussion with the City, this is a typical design for freight districts in the City, except for the reduced pavement width, which is

R:\0106.24 James C. Brown & Associates\Document\01_2017.08.16 Engineering Study Report\Mf-N Suttle Road Engineering Study.docx

typically 36 feet (curb to curb). The preliminary City design is considered to be conservative, and data collected for this study shows that the design parameters can be reduced and still meet design requirements for the road's usage. Conclusions and recommendations for the design are described at the end of this document.

MFA has coordinated with the property owners, their representatives, and the City to identify feasible cost saving measures to potentially incorporate into the final roadway design. This engineering study utilizes results of a traffic study, geotechnical engineering study, and stormwater study, as well as input from the property owners and City to develop concepts for inclusion within the LID. This study does not include a final engineering design.

EXISTING CONDITIONS

North Suttle Road extends approximately 3,000 feet west from North Portland Road to where it dead ends at the BNSF railroad track right of way. The roadway cross section currently consists of an approximately 20 feet wide asphalt section with gravel shoulders. There are currently no pedestrian facilities along the road, and no formal stormwater management system. A railroad spur runs along the road alignment, approximately 20 feet south of the pavement edge; three side spurs also cross North Suttle Road serving properties to the north of the study area. Utilities in the road consist of water and sanitary sewer only. An overhead utility line also runs along the south edge of the road, approximately six feet from the edge of pavement.

The City Transportation System Plan (TSP) classifies North Suttle Road as a *local service traffic street*, which serves 12 properties predominately comprised of industrial businesses. Based upon roadway usage, of the seven roadway types set forth in the TSP for North Portland, a *local service traffic street* is the least used street; whereas North Marine Drive and North Portland Road are classified as *major city traffic streets*. According to the landowners, the North Suttle Road was originally constructed as a Multnomah County road, which was later annexed into the City. Maintenance of the road has historically been completed by the landowners, with some support from the City.

The roadway and surrounding properties are located entirely within the Federal Emergency Management Agency's (FEMA) 100-year flood plain. Construction work within the 100-year flood plain is subject to the City of Portland development code, which requires cut and fill balance (i.e., no net fill). Special consideration should be given to this factor as all material imported to the site to construct the new roadway will require and equal amount of offsite disposal of existing materials, unless the City grants a variance from this regulation.

The landowners concur with the City's position that portions of the road are in poor condition and in need of replacement, particularly the eastern third of the roadway. Due to lack of maintenance, stormwater drainage has become increasingly problematic due to decreased infiltration; standing stormwater following rain events has caused significant degradation of the road (e.g., potholes and pavement cracking). Minor repair efforts have been completed periodically; however, major

modifications are required to ensure continued long-term accessibility to the properties along this industrial corridor.

TRAFFIC STUDY

Kittelson and Associates, Inc. (KAI) performed a traffic study to define current uses and conditions of North Suttle Road. The traffic analysis included a site visit to inventory existing conditions (land configurations, signage, markings, sight distances, pedestrian facilities, traffic characteristics); review of available recent traffic studies or other background information; review of the TSP, Comprehensive Plan, and other applicable planning/policy documents for the study corridor; conducting a 24-hour tube count to collect data on daily traffic volumes, speeds, and vehicle classification; and review of historical crash data.

The TSP classifies North Suttle Road as a *local service access street*. Of the seven street usage classifications set forth in the Portland TSP, in the North District, a *local service traffic street* has the least usage, see Map 6.35.1. In contrast to N Portland Road and N. Marine Drive which are classified as *major city traffic streets*, with the third most usage. Suttle Road is located in an industrial zoned area (IH), and is also located in the City's aircraft landing overlay zone. Traffic volumes were measured at 1,890 trips per day, with 44% of the traffic consisting of heavy trucks. There were no geometric or safety concerns identified in the traffic study. The traffic study is included as Attachment 1.

GEOTECHNICAL ENGINEERING STUDY

Hart Crowser, Inc. (Hart Crowser) performed a geotechnical engineering study of North Suttle Road to evaluate pavement design, infiltration characteristics of site soils, and general geotechnical construction and design considerations. The study included review of available subsurface soil and groundwater information; a subsurface exploration to characterize pavement, base aggregate, and soil subgrade conditions; in-situ infiltration testing; laboratory testing of soil samples for physical characteristics; and recommendations regarding pavement design and earthwork practices.

The site explorations revealed variable pavement and base rock sections throughout the study area. The existing asphalt pavement thickness was generally around 6 inches, but ranged from 4.5 inches to as much as 8 inches. Base rock thickness was also variable, ranging from non-existent to 17 inches. Two borings on the west end of the study area revealed a 6-inch thick concrete slab, which was paved over with 5.5 inches of asphalt. Subsurface soils consist of silty-sand dredge spoils.

Test results indicated infiltration rates typically ranging from 12 to 50 inches per hour. The subsurface soils are generally well suited for infiltration. There was one exception, with an infiltration rate of 0.1 inches per hour, which was determined to be an anomaly as the soil characteristics immediately adjacent to the test location were consistent with soils at the other boring location. The test location may have been performed over an isolated deposit of clay, which is not uncommon in dredge spoil fill material. The geotechnical engineering study is included as Attachment 2.

STORMWATER STUDY

MFA conducted a stormwater study to identify options for stormwater collection and disposal. Results of infiltration testing performed through the geotechnical engineering study were used to size conceptual stormwater infiltration facilities to dispose of roadway runoff. The stormwater model divided the street into two basins to calculate stormwater runoff for the 100-year, 24-hour design storm. The runoff volumes were then modeled with a City stormwater planter design to determine the size of conceptual facilities necessary to infiltrate all runoff. The study indicates that stormwater infiltration is feasible and is included as Attachment 3.

RESULTS AND RECOMMENDATIONS

MFA used the results of the three engineering studies to develop a conceptual typical cross section and to provide additional recommendations for further consideration during final road design. The results of the engineering study are described below.

Stormwater Infiltration

Infiltration testing and runoff calculations showed that infiltration is a viable option for stormwater disposal. The geotechnical analysis determined that site soils generally consist of sandy to silty dredge spoils with measured infiltration rates ranging from 12 to 50 inches per hour. Calculations prepared by MFA show that a two-foot wide infiltration facility would be required along 1,100 feet (approximately one-third) of the road frontage to dispose of all stormwater runoff under the 100-year design storm scenario. The facilities could be modified dimensionally to reduce cost (i.e., utilize side slopes rather than vertical walls), as well as a wider facility to reduce overall length of facility required. Eliminating the need for catchments, subsurface piping, and connection to the City's stormwater conveyance system or constructing a new outfall to the Columbia River, will create efficiencies in construction and reduce the overall cost of the roadway replacement.

Additional information may be required to design infiltration facilities, including: chemical site characterization of the soils in the area of the proposed facilities; additional infiltration testing; and, if needed, characterization of groundwater elevations and flow direction.

Reduced Pavement Thickness

The geotechnical engineering report recommends a pavement section of 7.5 inches of minor warm mix asphalt concrete (MWMAC) pavement over 8 inches of compacted base gravel. This section reduces the amount of asphalt by 1.5 inches, and provides adequate structural stability for the heavy truck traffic on North Suttle Road. A reduced pavement thickness will provide a direct cost savings by a reduction in materials, as well as reducing the amount of material requiring offsite disposal to comply with flood plain cut/fill balance condition.

Project No. 0106.24.01

North Suttle Road Property Owners August 16, 2017 Page 5

MFA understands that the City desires to incorporate Perpetual Pavement Design¹ standards to the roadway design. If this design standard is used, the pavement section as summarized in the geotechnical engineering report would be 9 inches of MWMAC over 8 inches of base aggregate, which is consistent with the City's original preliminary design section.

Additionally, the City has proposed an option to construct a Portland cement concrete (PCC) roadway surfacing in place of the asphalt section. According to calculations summarized in the geotechnical engineering report (and utilizing a 50-year design life), the design section for a PCC roadway would be 9.1 inches of PCC over 6 inches of base aggregate. This option, according to the MFA cost opinion (attached) could potentially present a cost savings of approximately \$122,000. The City cost opinion shows a significant increase in cost compared to MWMAC surfacing; therefore, MFA recommends additional cost analysis be performed by the City to select the most cost effective roadway surfacing for the project.

Reduced Driveway Widths/Shared Driveways

The conceptual City design assumes a standard 30-foot wide driveway width to replace all property access points in the study area. This width is assumed to accommodate large truck movements which may not be necessary for all access points. Additionally, some properties may have the opportunity to combine access points; therefore, reducing the total number of driveways to be constructed. Further discussion with the property owners, additional traffic data collection, and analysis of vehicle turning movement analysis is recommended to determine appropriate driveway widths for each access point. MFA anticipates that several of the access widths may be reduced, which would present additional cost savings to the project.

Reduced Pavement Width

A pavement width of 36 feet was proposed in the City's August 8, 2016 preliminary design drawings. MFA understands that the City has since reduced the pavement width to 32 feet to reduce the overall cost on the project. The TSP identifies North Suttle Road as a *local access traffic street* (map 6.35.1). Table 6.12 of the TSP defines the minimum pavement width for a *local access traffic street* as 28 feet, when the street is not in a pedestrian district and no additional bicycle lanes are required—North Suttle Road meets both of these exemptive criteria. Reduction of the roadway width to the minimum 28-foot requirement will reduce construction costs, as well as the impervious area, which in turn also reduces stormwater runoff and the associated stormwater management facilities. Therefore, a reduced pavement width will reduce costs not only for the road surface construction, but also for stormwater facility construction. A pavement width of 28 feet is recommended.

It is understood that reducing the pavement width may require increase of driveway widths to accommodate large truck turning movements. MFA recommends value engineering the pavement

¹ Perpetual Pavement design standard is defined as "an asphalt pavement designed and built to last longer than 50 years without requiring major structural rehabilitation or reconstruction, and needing only periodic surface renewal in response to distresses confined to the top of the pavement" (American Pavement Alliance (APA). 2002. Perpetual Pavements: A Synthesis. APA 101, Lanham, Maryland.)

width and driveway dimensions to define a geometrically efficient but cost effective final design. Additionally, although the majority of the properties have adequate on-site parking for their site uses, certain properties currently rely on the right of way for employee parking. Each property should be addressed accordingly during the final design to ensure no loss of parking necessary for operation.

Utilize Grind and Inlay for Pavement Sections

Some portions of the project may only require asphalt grind and inlay rather than full depth replacement. The average pavement thickness in the study area is approximately 6 inches, while as much as 8 inches of asphalt is present in certain areas. Additional study of the roadway surface should be completed to identify suitable locations for grind and inlay. These areas should then be compared to the vertical and horizontal geometry of the proposed roadway surface to determine if a reconstruction cost savings is achievable.

Remove Separated Pedestrian Connection Between North Suttle Road and Marine Drive

The preliminary City plan includes a north/south pedestrian connection between North Suttle Road and Marine Drive. The TSP does not identify North Suttle Road as being located within a pedestrian district; therefore, the pedestrian connection does not appear to be warranted. Installing a sidewalk along the north side of the road should adequately address pedestrian needs.

MFA understands that if stormwater infiltration is incorporated into the street design, the need for a stormwater outfall will be eliminated, thus the right of way would not be acquired that was also planned for the pedestrian connection. If the right of way is still deemed necessary as part of the project (for stormwater conveyance), MFA recommends alternate surfacing (e.g., gravel) be used to reduce project cost but still provide desired access to the right of way.

CONCLUSIONS

The recommendations in this study were developed using a limited, but suitable set of data pertaining to the existing conditions in the study area. Additional information is required to better assess project applicability; however, if the recommendations in this document are implemented, a significant cost savings could be achieved for this project while maintaining the functionality of the roadway facility. A conceptual cross section utilizing the recommendations described above is shown in the attached figure. Based upon the information considered in this report and the *local service street* nature of North Suttle Road, MFA's **Engineer's Preliminary Opinion of Probable Cost** found that an acceptable roadway can be rebuilt for \$4,006,115. The PCC roadway surfacing option could be constructed at a cost of \$3,883,382, presenting an overall cost savings of approximately 3% compared to MWMAC. Both cost opinions include a 30% contingency and are attached.

MFA appreciates the positive input received to-date from both the landowners and the City, and looks forward to working toward a successful outcome.

FIGURE

ENGINEER'S PRELIMINARY OPINION OF PROBABLE COST

ENGINEER'S PRELIMINARY OPINION OF PROBABLE COST

Title:	N Suttle Road Replacement (MWMAC O	otion)				
Project:	N. Suttle Road Engineering Study					
Client:	Jim Brown & Associates		MAUL	FOSTEI	RALONG	
Project #/Task:						
Prepared By:	J. Faust		Ро	rtland, OR	97209	
Checked By:	J. Clary			71.544.2139		
Date:	8/15/2017			971.544.2140	.,	
Revision #.:	1		WW	w.maulfoste	er.com	
Cost Estimate S	ummary - Feasibility Level					
Schedule '	A' - General			\$	619,495	
Schedule 'I	3' - Street Construction			\$	1,549,809	
Schedule '	C' - Stormwater Construction			\$	140,175	
Schedule '	D' - Soft Costs			\$	1,696,636	
			Total:	\$	4,006,115	
Assumptions:						
1. Roadv	vay surfacing is Minor Warm Mix Asphalt Con	crete (MWMAC) p	pavement, meeting	the City's		
desire	d Perpetual Pavement Design standard.					
2. Unit c	osts based on local public bid tabs, constructi	on contracts, and	internal records.			
3. Opinio	on excludes property acquisition for additionation	l right of way.				
4. Quant	ities are based on field measurements and as	sumed street sect	tion.			
5. Street	lighting and traffic signal lighting (at N Portla	nd Rd. intersectio	n) is excluded.			
1						

ENGINEER'S PRELIMINARY OPINION OF PROBABLE COST

Schee	dule 'A' - General					
Desci	ription	Quantity	Unit		Unit Cost	Total Cost
A.1	Temporary Traffic Control	18	WK	\$	6,500.00	\$ 117,000.00
A.2	Temporary Erosion Control	1	LS	\$	30,000.00	\$ 30,000.00
A.3	Clearing and Grubbing	2	AC	\$	8,000.00	\$ 16,800.00
A.4	Demo and Remove Existing AC Pavement	1,333	Ton	\$	35.00	\$ 46,666.67
A.5	Excavate Excess Soil and Dispose Offsite (assumes clean soil)	3,454	СҮ	\$	75.00	\$ 259,027.78
A.6	Miscellaneous Demolition	1	LS	\$	150,000.00	\$ 150,000.00
Subtotal Schedule 'A':					\$ 619,495	

Sched	Schedule 'B' - Street Construction						
Descr	iption	Quantity	Unit		Unit Cost		Total Cost
B.1	General Grading	5,556	CY	\$	30.00	\$	166,666.67
B.2	Subgrade Preparation	99,000	SF	\$	0.50	\$	49,500.00
B.3	Subgrade Geotextile	99,000	SF	\$	0.20	\$	19,800.00
B.4	Aggregate Base, 8 inches thick	2,148	CY	\$	45.00	\$	96,666.67
B.5	Process and Reuse Existing Base Material (Structural Fill)	1,800	CY	\$	30.00	\$	54,000.00
B.6	Level 3, 1/2 Inch Dense MWMAC, 9 inches thick	4,568	Ton	\$	90.00	\$	411,075.00
B.7	Concrete Curb and Gutter	6,000	LF	\$	25.00	\$	150,000.00
B.8	Concrete Sidewalk	18,000	SF	\$	6.70	\$	120,600.00
B.9	Reinforced Concrete Driveways	5,400	SF	\$	10.00	\$	54,000.00
B.10	Reinforced Concrete Driveways (w/RR Grade)	4,200	SF	\$	15.00	\$	63,000.00
B.11	Thermoplastic Pavement Striping	6,000	LF	\$	1.50	\$	9,000.00
B.12	Street Signage	1	LS	\$	8,000.00	\$	8,000.00
B.13	Concrete Railroad Crossing Panels	2,400	SF	\$	75.00	\$	180,000.00
B.14	Miscellaneous Utility Relocation	1	LS	\$	150,000.00	\$	150,000.00
B.15	Street Trees	50	EA	\$	350.00	\$	17,500.00
	l						

Subtotal Schedule 'B': \$ 1,549,809

Sched	chedule 'C' - Stormwater Construction						
Descri	ption	Quantity	Unit		Unit Cost		Total Cost
C.1	Stormwater Planting Medium	135	CY	\$	65.00	\$	8,775.00
C.2	Concrete Planter Wall	2,430	LF	\$	35.00	\$	85,050.00
C.3	Stormwater Facility Planting	270	SY	\$	55.00	\$	14,850.00
C.4	Culvert Piping Under Driveways	100	LF	\$	35.00	\$	3,500.00
C.5	Conveyance Ditches	1,000	LF	\$	8.00	\$	8,000.00
C.6	Misc. Planter Components	1	LS	\$	20,000.00	\$	20,000.00
				Subto	otal Schedule 'C':	\$	140,175

Schedule 'D' - Soft Cost Description Quantity Unit Unit Cost Total Cost Mobilization D.1 \$ 346,421.85 PCT 15% 1 D.2 Contingency \$ 692,843.70 1 PCT 30% D.3 Phase 2 Site Characterization 80,000 \$ 80,000.00 1 LS \$ D.4 Design, Permitting, Contracting, Admin. LS \$ 577,369.75 25% 1 1,696,636

Subtotal Schedule 'F': \$

R:\0106.24 James C. Brown & Associates\Document\01_2017.08.16 Engineering Study Report\2_Table - Cost Opinion\Tf-Cost Estimate-Asphalt.xlsx

ENGINEER'S PRELIMINARY OPINION OF PROBABLE COST

Title:	N Suttle Road Replacement (PCC Option)						
Project:	N. Suttle Road Engineering Study						
Client:	Jim Brown & Associates		MAUL FOSTER ALONG				
Project #/Task	x: 0106.24.01 Ini	tial 2001 NW 19th Avenue, Suite 200					
Prepared By:	J. Faust	F	Portland, OR				
Checked By:	J. Clary		971.544.2139 971.544.214	4 <i>i</i>			
Date:	8/15/2017		ww.maulfoste	• •			
Revision #.:	0						
Cost Estimate	Summary - Feasibility Level						
Schedule	'A' - General		\$	581,231			
Schedule	B' - Street Construction		\$	1,515,877			
Schedule	C' - Stormwater Construction		\$	140,175			
Schedule	'D' - Soft Costs		\$	1,646,099			
		Total:	\$	3,883,382			
Assumptions	:						
1. Roady	way surfacing is Portland Cement Concrete (PCC) paveme	nt, meeting a 50-year d	esign life.				
	costs based on local public bid tabs, construction contract		-				
	on excludes property acquisition for additional right of w						
	tities are based on field measurements and assumed stre	•					
	t Lighting and traffic signal lighting (at N. Portland Rd. Inte						
		,					

ENGINEER'S PRELIMINARY OPINION OF PROBABLE COST Maul, Foster Alongi, Inc.

Sche	Schedule 'A' - General						
Desc	ription	Quantity	Unit		Unit Cost		Total Cost
A.1	Temporary Traffic Control	18	WK	\$	6,500.00	\$	117,000.00
A.2	Temporary Erosion Control	1	LS	\$	30,000.00	\$	30,000.00
A.3	Clearing and Grubbing	2	AC	\$	8,000.00	\$	16,800.00
A.4	Demo and Remove Existing AC Pavement	1,333	Ton	\$	35.00	\$	46,666.67
A.5	Excavate Excess Soil and Dispose Offsite (assumes clean soil)	2,944	СҮ	\$	75.00	\$	220,763.89
A.6	Miscellaneous Demolition	1	LS	\$	150,000.00	\$	150,000.00
<u> </u>			S.	btot	al Schedule 'A'·	¢	581 231

Subtotal Schedule 'A': \$ 581,231

Scheo	dule 'B' - Street Construction						
Descr	iption	Quantity	Unit		Unit Cost		Total Cost
B.1	General Grading	5,556	CY	\$	30.00	\$	166,666.67
B.2	Subgrade Preparation	99,000	SF	\$	0.50	\$	49,500.00
B.3	Subgrade Geotextile	99,000	SF	\$	0.20	\$	19,800.00
B.4	Aggregate Base, 8 inches thick	1,611	CY	\$	45.00	\$	72,500.00
B.5	Process and Reuse Existing Base Material (Structural Fill)	1,800	CY	\$	30.00	\$	54,000.00
B.6	Portland Cement Concrete Surfacing, 9.1 inches thick	2,359	CY	\$	170.10	\$	401,310.00
B.7	Concrete Curb and Gutter	6,000	LF	\$	25.00	\$	150,000.00
B.8	Concrete Sidewalk	18,000	SF	\$	6.70	\$	120,600.00
B.9	Reinforced Concrete Driveways	5,400	SF	\$	10.00	\$	54,000.00
B.10	Reinforced Concrete Driveways (w/RR Grade)	4,200	SF	\$	15.00	\$	63,000.00
B.11	Thermoplastic Pavement Striping	6,000	LF	\$	1.50	\$	9,000.00
B.12	Street Signage	1	LS	\$	8,000.00	\$	8,000.00
B.13	Concrete Railroad Crossing Panels	2,400	SF	\$	75.00	\$	180,000.00
B.14	Miscellaneous Utility Relocation	1	LS	\$	150,000.00	\$	150,000.00
B.15	Street Trees	50	EA	\$	350.00	\$	17,500.00
							1 515 077

Subtotal Schedule 'B': \$ 1,515,877

Schedule 'C' - Stormwater Construction						
Desci	iption	Quantity	Unit		Unit Cost	Total Cost
C.1	Stormwater Planting Medium	135	CY	\$	65.00	\$ 8,775.00
C.2	Concrete Planter Wall	2,430	LF	\$	35.00	\$ 85,050.00
C.3	Stormwater Facility Planting	270	SY	\$	55.00	\$ 14,850.00
C.4	Culvert Piping Under Driveways	100	LF	\$	35.00	\$ 3,500.00
C.5	Conveyance Ditches	1,000	LF	\$	8.00	\$ 8,000.00
C.6	Misc. Planter Components	1	LS	\$	20,000.00	\$ 20,000.00
			SL	btota	al Schedule 'C':	\$ 140,175

Sched	Schedule 'D' - Soft Cost						
Descr	Description		Unit	Unit Cost		Total Cost	
D.1	Mobilization	1	PCT	15%	\$	335,592.45	
D.2	Contingency	1	PCT	30%	\$	671,184.90	
D.3	Phase 2 Site Characterization	1	LS	\$ 80,000	\$	80,000.00	
D.4	Design, Permitting, Contracting, Admin.	1	LS	25%	\$	559,320.75	
	Subtotal Schedule 'F':						

R:\0106.24 James C. Brown & Associates\Document\01_2017.08.16 Engineering Study Report\2_Table - Cost Opinion\Tf-Cost Estimate-PCC.xlsx

ATTACHMENT 1 TRAFFIC STUDY

TECHNICAL MEMORANDUM

N Suttle Road Local Improvement

Portland, Oregon Traffic Data Summary

Date:August 16, 2017To:Jacob Faust, P.E., Maul Foster AlongiFrom:Wade Scarbrough, P.E., and Caitlin Mildner

Project #:21564

Kittelson & Associates (KAI) collected and reviewed traffic data to support the development of a roadway improvement design for N Suttle Road in the City of Portland. This technical memorandum summarizes the traffic volumes, crash history, and design considerations for the project corridor.

PROJECT BACKGROUND

Property owners on N Suttle Road are proposing to pave and improve N Suttle Road to City of Portland standards from N Portland Road to the western end of N Suttle Road. The project will also include new curb and sidewalk, in addition to other utility and drainage improvements, as needed.

EXISTING CONDITIONS

The existing conditions analysis identifies field conditions and the current operational, traffic control, and geometric characteristics of roadways and other transportation facilities within the study area. KAI visited the project area and inventoried the existing transportation system to identify lane configurations, traffic control devices, bicycle and pedestrian facilities, transit stops, geometric features, sight distances, and adjacent land uses. Traffic flow during the peak hours was observed to identify existing operational issues.

Site Conditions and Adjacent Land Uses

The study corridor is approximately 0.6 miles in length. N Suttle Road is located in an area occupied predominately by industrial uses. The land use around the study area is zoned Heavy Industrial (IH) per City of Portland zoning designation. Given the corridor's proximity to Portland International Airport, N Suttle Road is within Portland's Aircraft Landing overlay zone, which limits the height of structures and vegetation.

Roadway Facilities

The City of Portland's *Transportation System Plan* (Reference 1) identifies seven different functional classifications for roadways ranging from *Local Service Streets* to *Regional Trafficways*. These roadway classifications have varying roles with respect to their level of access and mobility. N Suttle Road is classified by the City as a Local Service Street and provides local access between N Portland Road and the surrounding industrial developments.

The existing roadway cross-section for N Suttle Road consists of a two-lane section with no curbs or sidewalks. N Suttle Road begins at N Portland Road and continues 0.6 miles to a dead end. The intersection of N Suttle Road and N Portland Road is stop-controlled on the eastbound (N Suttle Road) approach. The paved roadway surface widens at the intersection to accommodate turning heavy vehicle movements.

Table 1 summarizes the existing roadway characteristics.

Roadway	Classification ¹	Cross-Section	Posted Speed	Sidewalks?	Bicycle Lanes?	On-Street Parking?
N Suttle Road	Local	2 Lanes	30 mph	No	No	No
N Portland Road	Maior City Traffic Street	2 Lanes	45 mph	Partial	Multi-Use Path	No

Table 1: Existing Transportation Roadway Facilities and Roadway Designations

¹ Classifications are based on the City of Portland's *Transportation System Plan*

Pedestrian and Bicycle Facilities

No sidewalks or bike lanes currently exist along N Suttle Road. The Peninsula Crossing Trail is an existing multi-use path that is situated separate from, and roughly parallel to, the east side of N Portland Road. The trail is a regional facility extending as far north as the north side of N Marine Drive, south to the Columbia Slough and to points east.

Existing Traffic Volumes

In June 2017, KAI commissioned a 24-hour bi-directional roadway tube count on N Suttle Road at a point approximately 150 feet west of N Portland Road. The count recorded traffic volumes and vehicle classifications along the roadway at hourly intervals by direction. Table 2 summarizes the existing conditions traffic data. *Appendix "A" and "B" contain the tube count data for volumes and vehicle classifications, respectively.*

Table 2: Existing Traffic Characteristics

Location	150 feet West of N Portland Road
Average Daily Traffic Volume	1,890 vehicles
AM Peak Hour Volumes (8-9 AM)	130 vehicles
Midday Peak Hour Volumes (1-2 PM)	150 vehicles
PM Peak Hour (3-4 PM)	130 vehicles
Truck Percentage (%) – Daily	44%

As shown in Table 2, the roadway currently carries approximately 1,890 vehicles per day with the peak hour of traffic occurring from 1:00 to 2:00 p.m. Heavy vehicles comprise approximately 44% of the overall daily volume of traffic. A more detailed breakdown of vehicle classifications is provided in the appendix.

Crash History Review

The reported crash histories along the study corridor were reviewed in an effort to identify potential segment and/or intersection safety issues. Crash records were obtained from the Oregon Department of Transportation (ODOT) for the five-year period from January 1, 2011 through December 31, 2015. *Appendix "C" includes the crash data worksheets.*

Intersection Crash Observations

Both intersection and segment crash were reviewed along the N Suttle Road corridor from N Portland Road to the end of N Suttle Road. Per the ODOT database, there were no reported crashes along the N Suttle Road corridor from January 1, 2011 through December 31, 2015.

A summary of the reported intersection crashes is provided in Table 3 including the severity and types of crashes over the five-year analysis period at the study intersections.

Table 3: Summary of Reported Crashes at Study Intersections (2011-2015)

	Number of		Crash T	уре		Crash S	Severity
Intersection	Crashes	Rear-End	Turning	Angle	Other	PDO	Injury
N Suttle Road/N Portland Road	2	1	1	-	-	2	-
N Suttle Road Corridor	0	-	-	-	-	-	-

As shown in the table, there were two reported crashes at the intersection of N Suttle Road and N Portland Road. A rear end crash involved four vehicles heading south on N Portland Road and reportedly resulted from one vehicle following too closely and rear-ending a stopped queue of three vehicles. The other reported crash involved two vehicles turning right from N Suttle Road onto N Portland Road, heading south. The vehicles were heading in the same direction and the crash was attributed to improper overtaking. Neither crash resulted in injuries.

No apparent crash patterns were identified through review of the crash data.

Intersection Sight Distance

The available intersection sight distances were evaluated at the intersection of N Suttle Road and N Portland Road and found to be adequate. Based on the 2011 AASHTO publication *A Policy on Geometric Design of Highways and Streets* (Reference 2), the desirable intersection sight distance is 500 feet for the design speed of 45 mph on N Portland Road. In accordance with the AASHTO methodology, KAI reviewed intersection sight distances from a point 14.5 feet back from the major street traffic lane and found that the available sight distance is sufficient in both directions.

Intersection Design Considerations

Given the heavy vehicle traffic at the intersection of N Suttle Road and N Portland Road, we recommend that the intersection be designed to accommodate full-size highway semi-trailers (AASHTO WB-67 vehicles) as well as dual-trailer fuel delivery trucks making all turning movements at the intersection. During preliminary design, the designers should evaluate truck turning needs and develop appropriate intersection geometry (including curb radii and channelization) accordingly.

REFERENCES

- 1. City of Portland. 2007 Transportation System Plan.
- 2. Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, 6th Edition. 2011.

APPENDICES

- A. Tube Count Data Volumes
- B. Tube Count Data Vehicle Classification
- C. Crash Data

Appendix A Tube Count Data - Volumes

SPECIFIC LC	CATION:	N Suttle F	t of Portland R Rd 150' west of		b					QC JOB #: 14451001 DIRECTION: EB
CITY/STATE:			Wed	Thu	Fri		0-1	0		Jun 21 2017 - Jun 21 201 Average Week Profile
Start Time	Mon	Tue	vvea 21-Jun-17	Thu	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average week From
12:00 AM			9			9			9	
1:00 AM			9 5			5			5	
2:00 AM			5 14			14			14	
2:00 AM 3:00 AM			26			26			26	
4:00 AM			18			18			18	
5:00 AM			53			53			53	
6:00 AM			51			51			51	
7:00 AM			52			52			52	
8:00 AM			67			67			67	
9:00 AM			58			58			58	
10:00 AM			59			59			59	
11:00 AM			68			68			68	
12:00 PM			65			65			65	
1:00 PM			76			76			76	
2:00 PM			70			70	$\pm v$		70	
3:00 PM			81			81	LY		81	
4:00 PM			64			64			64	
5:00 PM			57			57			57	
6:00 PM			27			27			27	
7:00 PM			16			16			16	
8:00 PM			12			12			12	
9:00 PM			13			13			13	
10:00 PM			16			16			16	
11:00 PM			14			14			14	
Day Total			991			991			991	
% Weekday										
Average			100.0%							
% Week										
Average			100.0%			100.0%				
AM Peak			11:00 AM			11:00 AM			11:00 AM	
Volume			68			68			68	
PM Peak			3:00 PM			3:00 PM			3:00 PM	
Volume			81			81			81	
Comments:										

	CATION:	N Suttle F	t of Portland R Rd 150' west of		d				DATE	QC JOB #: 1445100 DIRECTION: WB : Jun 21 2017 - Jun 21 201
	Mon	Tue	Wed	Thu	Fri	Average Weekday	Sat	Sun	Average Week	Average Week Profil
Start Time			21-Jun-17			Hourly Traffic			Hourly Traffic	
12:00 AM			8			8			8	
1:00 AM			13			13			13	
2:00 AM			16			16			16	
3:00 AM			16			16			16	
4:00 AM			48			48			48	
5:00 AM			51			51			51	
6:00 AM			68			68			68	
7:00 AM			65			65			65	
8:00 AM			63			63			63	
9:00 AM			72			72			72	
10:00 AM			54			54			54	
11:00 AM			66			66			66	
12:00 PM			52			52			52	
1:00 PM			71			71			71	
2:00 PM			58			58			58	
3:00 PM			50			50	~ 7		50	
4:00 PM			31			31			31	
5:00 PM			18		2	18			18	
6:00 PM			23			23			23	
7:00 PM			8			8			8	
8:00 PM			14			14			14	
9:00 PM			14			14			14	
10:00 PM			15			15			15	
11:00 PM			6			6			6	
Day Total			900			900			900	
6 Weekday										
Average			100.0%							
% Week										
Average			100.0%			100.0%				
AM Peak			9:00 AM			9:00 AM			9:00 AM	
Volume			72			72			72	
PM Peak			1:00 PM			1:00 PM			1:00 PM	
Volume			71			71			71	
Comments:										

			t of Portland R Rd 150' west of		۶d					QC JOB #: 14451001 DIRECTION: EB/WB
CITY/STATE:				i ortiaria i	(u				DATE	: Jun 21 2017 - Jun 21 201
	Mon	Tue	Wed	Thu	Fri	Average Weekday	Sat	Sun	Average Week	Average Week Profil
Start Time			21-Jun-17			Hourly Traffic			Hourly Traffic	
12:00 AM			17			17			17	
1:00 AM			18			18			18	
2:00 AM			30			30			30	
3:00 AM			42			42			42	
4:00 AM			66			66			66	
5:00 AM			104			104			104	
6:00 AM			119			119			119	
7:00 AM			117			117			117	
8:00 AM			130			130			130	
9:00 AM			130			130			130	
10:00 AM			113			113			113	
11:00 AM			134			134			134	
12:00 PM			117			117			117	
1:00 PM			147			147			147	
2:00 PM			128			128			128	
3:00 PM			131			131	~y		131	
4:00 PM			95			95			95	
5:00 PM			75			75			75	
6:00 PM			50			50			50	
7:00 PM			24			24			24	
8:00 PM			26			26			26	
9:00 PM			27			27			27	
10:00 PM			31			31			31	
11:00 PM			20			20			20	
Day Total			1891			1891			1891	
% Weekday										
Average			100.0%							
% Week										
Average			100.0%			100.0%				
AM Peak			11:00 AM			11:00 AM			11:00 AM	
Volume			134			134			134	
PM Peak			1:00 PM			1:00 PM			1:00 PM	
Volume			147			147			147	
Comments:										

Appendix B Tube Count Data – Vehicle Classifications

PECIFIC L	OCATION	N Suttle	est of Portla Rd 150' w		land Rd								D	C JOB #: 1 IRECTION: ATE: Jun 2	EB
Start Time	Motor- cycles	Cars & Trailer	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi	Not Classified	Total
12:00 AM	3	2	1	0	0	3	0	0	0	0	0	0	0	0	9
1:00 AM	0	2	2	0	0	0	0	0	1	0	0	0	0	0	5
2:00 AM	1	3	2	0	1	1	0	2	0	0	1	0	2	1	14
3:00 AM	0	4	2	0	7	4	0	1	0	0	0	0	1	7	26
4:00 AM	3	0	3	0	3	5	0	1	2	0	0	0	0	1	18
5:00 AM	4	11	0	0	2	8	0	2	4	1	0	1	1	19	53
6:00 AM	11	3	3	1	5	15	0	3	2	0	0	0	0	8	51
7:00 AM	7	9	5	4	8	4	0	3	4	0	0	0	1	7	52
8:00 AM	11	12	9	2	11	12	0	0	4	1	0	0	0	5	67
9:00 AM	8	5	7	1	13	5	0	2	1	1	0	0	1	14	58
10:00 AM	5	7	12	5	3	11	0	3	4	2	0	0	4	3	59
11:00 AM	7	12	14	2	11	7	0	0	1	0	0	0	1	13	68
12:00 PM	4	14	14	0	15	7	0	4	1	0	0	0	0	6	65
1:00 PM	4	21	11	2	11	8	1	6	2	0	0	0	0	10	76
2:00 PM	5	19	14	2	9	10	0	5	1	1	0	0	0	4	70
3:00 PM	4	33	13	3	11	2	0	1	1	0	0	0	0	13	81
4:00 PM	4	31	8	1	9	2	0	1	- 1	0	0	0	0	7	64
5:00 PM	3	30	11	0	3	4	0	0	1	0	0	erle.	1	3	57
6:00 PM	2	9	6	0	2	5	0	0		0	0	0	0	2	27
7:00 PM	2	7	0	0	3	1	0	1	0	0	0	0	0	2	16
8:00 PM	1	6	1	0	1	2	0	0	0	0	0	0	0	1	12
9:00 PM	1	5	3	0	2	1	0	0	1	0	0	0	0	0	13
10:00 PM	1	10	1	0	2	2	0	0	0	0	0	0	0	0	16
11:00 PM	0	7	3	0	2	1	0	0	0	0	0	0	0	1	14
Day Total Percent	91 9.2%	262 26.4%	145 14.6%	23 2.3%	134 13.5%	120 12.1%	1 0.1%	35 3.5%	32 3.2%	6 0.6%	1 0.1%	2 0.2%	12 1.2%	127 12.8%	991
ADT 991															
AM Peak	6:00 AM	8:00 AM	11:00 AM	10:00 AM	9:00 AM	6:00 AM		6:00 AM	5:00 AM	10:00 AM	2:00 AM	5:00 AM	10:00 AM	5:00 AM	11:00 A
Volume	11	12	14	5	13	15		3	4	2	1	1	4	19	68
PM Peak Volume	2:00 PM 5	3:00 PM 33	12:00 PM 14	3:00 PM 3	12:00 PM 15	2:00 PM 10	1:00 PM 1	1:00 PM 6	1:00 PM 2	2:00 PM 1		5:00 PM 1	5:00 PM 1	3:00 PM 13	3:00 PI 81

CITY/STATE		I, OR	Rd 150' w										D	IRECTION: ATE: Jun 2	
Start Time	Motor- cycles	Cars & Trailer	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi	Not Classified	Total
12:00 AM	2	0	0	0	2	2	0	0	1	0	0	0	0	1	8
1:00 AM	0	1	2	0	3	1	0	1	1	0	0	0	2	2	13
2:00 AM	1	2	2	0	5	3	0	1	0	0	0	0	1	1	16
3:00 AM	0	7	1	0	3	0	0	2	0	0	1	0	2	0	16
4:00 AM	0	22	15	0	5	0	0	2	1	0	0	1	2	0	48
5:00 AM	1	29	4	0	4	5	0	1	0	1	0	0	1	5	51
6:00 AM	3	35	12	1	4	5	0	3	0	0	0	1	0	4	68
7:00 AM	7	27	9	2	8	2	1	4	1	1	0	0	2	1	65
8:00 AM	5	19	11	1	11	4	0	2	2	1	0	0	0	7	63
9:00 AM	4	16	12	1	9	7	0	11	1	2	0	0	4	5	72
10:00 AM	3	8	9	4	7	5	0	5	4	1	0	0	0	8	54
11:00 AM	3	11	12	4	13	6	0	5	4	1	0	0	1	6	66
12:00 PM	1	13	10	3	5	6	0	6	3	1	0	0	1	3	52
1:00 PM	3	23	10	3	7	7	0	9	1	2	0	1	0	5	71
2:00 PM	2	10	7	4	13	6	0	5	3	3	0	0	0	5	58
3:00 PM	3	6	5	1	12	5	0	7	3	0	0	0	1	7	50
4:00 PM	1	7	5	0	4	3	0	3	2	0	2	0	0	4	31
5:00 PM	1	5	2	0	2	2	0	3	1	0	0	0	ы 1.	1	18
6:00 PM	0	4	4	0	4	6	0	4	0	0	0	0	0	1	23
7:00 PM	1	2	3	0	1	1	0	0	0	0	0	0	0	0	8
8:00 PM	0	4	1	0	1	4	0	3	1	0	0	0	0	0	14
9:00 PM	0	6	1	0	2	4	0	1	0	0	0	0	0	0	14
10:00 PM	2	5	1	0	0	3	0	3	1	0	0	0	0	0	15
11:00 PM	2	0	2	0	0	1	0	0	0	0	0	0	0	1	6
Day Total	45	262	140	24	125	88	1	81	30	13	3	3	18	67	900
Percent	5.0%	29.1%	15.6%	2.7%	13.9%	9.8%	0.1%	9.0%	3.3%	1.4%	0.3%	0.3%	2.0%	7.4%	
ADT 900															
AM Peak Volume	7:00 AM 7	6:00 AM 35	4:00 AM 15	10:00 AM 4	11:00 AM 13	9:00 AM 7	7:00 AM 1	9:00 AM 11	10:00 AM 4	9:00 AM 2	3:00 AM 1	4:00 AM 1	9:00 AM 4	10:00 AM 8	9:00 AN 72
PM Peak Volume	1:00 PM 3	1:00 PM 23	12:00 PM 10	2:00 PM 4	2:00 PM 13	1:00 PM 7		1:00 PM 9	12:00 PM 3	2:00 PM 3	4:00 PM 2	1:00 PM 1	12:00 PM 1	3:00 PM 7	1:00 PM 71

Type of report: Tube Count - Vehicle Classification Data

Page 1 of 2

CITY/STATE														ATE: Jun 2	1 2017
Start Time	Motor- cycles	Cars & Trailer	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi	Not Classified	Total
12:00 AM	5	2	1	0	2	5	0	0	1	0	0	0	0	1	17
1:00 AM	0	3	4	0	3	1	0	1	2	0	0	0	2	2	18
2:00 AM	2	5	4	0	6	4	0	3	0	0	1	0	3	2	30
3:00 AM	0	11	3	0	10	4	0	3	0	0	1	0	3	7	42
4:00 AM	3	22	18	0	8	5	0	3	3	0	0	1	2	1	66
5:00 AM	5	40	4	0	6	13	0	3	4	2	0	1	2	24	104
6:00 AM	14	38	15	2	9	20	0	6	2	0	0	1	0	12	119
7:00 AM	14	36	14	6	16	6	1	7	5	1	0	0	3	8	117
8:00 AM	16	31	20	3	22	16	0	2	6	2	0	0	0	12	130
9:00 AM	12	21	19	2	22	12	0	13	2	3	0	0	5	19	130
10:00 AM	8	15	21	9	10	16	0	8	8	3	0	0	4	11	113
11:00 AM	10	23	26	6	24	13	0	5	5	1	0	0	2	19	134
12:00 PM	5	27	24	3	20	13	0	10	4	1	0	0	1	9	117
1:00 PM	7	44	21	5	18	15	1	15	3	2	0	1	0	15	147
2:00 PM	7	29	21	6	22	16	0	10	4	4	0	0	0	9	128
3:00 PM	7	39	18	4	23	7	0	8	4	0	0	0	1	20	131
4:00 PM	5	38	13	1	13	5	0	4	3	0	2	0	0	11	95
5:00 PM	4	35	13	0	5	6	0	3	2	0	0	erlo	2	4	75
6:00 PM	2	13	10	0	6	11	0	4	1	0	0	0	0	3	50
7:00 PM	3	9	3	0	4	2	0	1	0	0	0	0	0	2	24
8:00 PM	1	10	2	0	2	6	0	3	1	0	0	0	0	1	26
9:00 PM	1	11	4	0	4	5	0	1	1	0	0	0	0	0	27
10:00 PM	3	15	2	0	2	5	0	3	1	0	0	0	0	0	31
11:00 PM	2	7	5	0	2	2	0	0	0	0	0	0	0	2	20
Day Total	136	524	285	47	259	208	2	116	62	19	4	5	30	194	1891
Percent	7.2%	27.7%	15.1%	2.5%	13.7%	11.0%	0.1%	6.1%	3.3%	1.0%	0.2%	0.3%	1.6%	10.3%	
ADT 1891															
AM Peak Volume	8:00 AM 16	5:00 AM 40	11:00 AM 26	10:00 AM 9	11:00 AM 24	6:00 AM 20	7:00 AM 1	9:00 AM 13	10:00 AM 8	9:00 AM 3	2:00 AM 1	4:00 AM 1	9:00 AM 5	5:00 AM 24	11:00 A 134
PM Peak Volume	1:00 PM 7	1:00 PM 44	12:00 PM 24	2:00 PM 6	3:00 PM 23	2:00 PM 16	1:00 PM 1	1:00 PM 15	12:00 PM 4	2:00 PM 4	4:00 PM 2	1:00 PM 1	5:00 PM 2	3:00 PM 20	1:00 PM 147

Type of report: Tube Count - Vehicle Classification Data

Page 1 of 2

Appendix C Crash Data

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

N Suttle Rd & N Portland Rd January 1, 2011 through December 31, 2015

	FATAL	FATAL	PROPERTY DAMAGE	TOTAL	PEOPLE	PEOPLE		DRY	WET			INTER-	INTER- SECTION	OFF-
COLLISION TYPE	CRASHES	CRASHES	ONLY	CRASHES	KILLED	INJURED	TRUCKS	SURF	SURF	DAY	DARK	SECTION	RELATED	ROAD
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	0	1	0	1	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	2	2	0	0	0	1	1	1	1	2	0	0
FINAL TOTAL	0	0	2	2	0	0	0	1	1	1	1	2	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

N Suttle Rd to the Northwest of N Portland Rd (intersection excluded)

January 1, 2011 through December 31, 2015

		NON-	PROPERTY										INTER-	
	FATAL	FATAL	DAMAGE	TOTAL	PEOPLE	PEOPLE		DRY	WET			INTER-	SECTION	OFF-
COLLISION TYPE	CRASHES	CRASHES	ONLY	CRASHES	KILLED	INJURED	TRUCKS	SURF	SURF	DAY	DARK	SECTION	RELATED	ROAD

YEAR:

TOTAL

FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT URBAN NON-SYSTEM CRASH LISTING

CITY OF PORTLAND N, MULTNOMAH COUNTY

N Suttle Rd & N Portland Rd January 1, 2011 through December 31, 2015

								2								
S D P R S W SER# E A U C O I INVEST E L G H R I UNLOC? D C S L K 2	DAY/TIME H	FC	CITY STREET FIRST STREET SECOND STREET INTERSECTION SEQ #	RD CHAR DIRECT LOCTN	LEGS		OBT SURF		SPCL USE TRLR QTY OWNER V# VEH TYPE	MOVE FROM TO			A S G E LICNS TY E X RES	PED LOC ERROR	ACTN EVENT	CAUSE
11672 N N N	10/31/2013 1	16	N PORTLAND RD	INTER	CROSS	N	N RAIN	S-1STOP	01 NONE 0	STRGHT					013	07
			N SUTTLE RD	NE		TRF SIGNAL		REAR	PRVTE	NE SW					000	00
No 45 36 44.53	-122 42 18.0	0	1	06	0		N DLIT	PDO	PSNGR CAR		01 DH	RVR NON	54 М ОТН-У	026	000	07
													N-RES			
									02 NONE 0	STOP						
									PRVTE	NE SW					011 013	0.0
									PSNGR CAR		01 01	RVR NON	5 45 F OTH-Y	000	000	00
													N-RES			
									0.0 10175 0							
									03 NONE 0 PRVTE	NE SW					022 013	00
									PSNGR CAR		01 DI		E 40 M ОТН-У	000	000	00
									FONGR CAR		UT DI	RVR NOM	N-RES	000	000	00
													N KES			
									04 NONE 0							
									PRVTE	NE SW					011	00
									PSNGR CAR		01 DI	RVR NON	E 56 F OTH-Y	000	000	00
													N-RES			
06482 N N N 0	06/28/2013 1	6	N PORTLAND RD	INTER	3-LEG	N	N CLR	S-OTHER	01 NONE 1	TURN-R						06
NO RPT I	Fri 3P	0	N SUTTLE RD	CN		STOP SIGN	N DRY	TURN	PRVTE	NW SW					000	00
No 45 36 44.53	-122 42 18.0	0	1	03	0		N DAY	PDO	PSNGR CAR		01 DH	RVR NON	E 38 M OR-Y	000	000	00
													OR>25			
									02 NONE 0	TURN-R						
									PRVTE	NW SW					031	00
									PSNGR CAR		01 DH	RVR NON	E 60 F OR-Y	031	000	06
													OR>25			

ACTION CODE	SHORT DESCRIPTION	LONG DESCRIPTION
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SKIDDED
002	ON/OFF V	GETTING ON OR OFF STOPPED OR PARKED VEHICLE
003	LOAD OVR	OVERHANGING LOAD STRUCK ANOTHER VEHICLE, ETC.
006	SLOW DN	SLOWED DOWN
007	AVOIDING	AVOIDING MANEUVER
008	PAR PARK	PARALLEL PARKING
009	ANG PARK	ANGLE PARKING
010	INTERFERE	PASSENGER INTERFERING WITH DRIVER
011	STOPPED	STOPPED IN TRAFFIC NOT WAITING TO MAKE A LEFT TURN
012	STP/L TRN	STOPPED BECAUSE OF LEFT TURN SIGNAL OR WAITING, ETC.
013	STP TURN	STOPPED WHILE EXECUTING A TURN
014	EMR V PKD	EMERGENCY VEHICLE LEGALLY PARKED IN THE ROADWAY
015	GO A/STOP	PROCEED AFTER STOPPING FOR A STOP SIGN/FLASHING RED.
016	TRN A/RED	TURNED ON RED AFTER STOPPING
017	LOSTCTRL	LOST CONTROL OF VEHICLE
018	EXIT DWY	ENTERING STREET OR HIGHWAY FROM ALLEY OR DRIVEWAY
019	ENTR DWY	ENTERING ALLEY OR DRIVEWAY FROM STREET OR HIGHWAY
020	STR ENTR	BEFORE ENTERING ROADWAY, STRUCK PEDESTRIAN, ETC. ON SIDEWALK OR SHOULDER
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	STRUCK, OR WAS STRUCK BY, VEHICLE OR PEDESTRIAN IN PRIOR COLLISION BEFORE ACC. STABILIZED
023 024	STALLED	VEHICLE STALLED OR DISABLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FATIGUE	FATIGUED, SLEEPY, ASLEEP
020	SUN HDLGHTS	DRIVER BLINDED BY SUN
028	ILLNESS	DRIVER BLINDED BY HEADLIGHTS PHYSICALLY ILL
029	THRU MED	VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATTEMPTING TO STOP A VEHICLE
031	PASSING	PASSING SITUATION
032	PRKOFFRD	VEHICLE PARKED BEYOND CURB OR SHOULDER
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	X N/SGNL	CROSSING AT INTERSECTION - NO TRAFFIC SIGNAL PRESENT
035	X W/ SGNL	CROSSING AT INTERSECTION - TRAFFIC SIGNAL PRESENT
036	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S ATTENTION DISTRACTED
039	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
040	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
041	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
042	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
043	PLAYINRD	PLAYING IN STREET OR ROAD
044	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
045	WORK ON	WORKING IN ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WITH TRAFFIC
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC
050	LAY ON RD	STANDING OR LYING IN ROADWAY
051	ENT OFFRD	ENTERING / STARTING IN TRAFFIC LANE FROM OFF ROAD
052	MERGING	MERGING
055	SPRAY	BLINDED BY WATER SPRAY

ACTION CODE TRANSLATION LIST

ACTION	SHORT	
CODE	DESCRIPTION	LONG DESCRIPTION
088 099	OTHER UNK	OTHER ACTION UNKNOWN ACTION

CAUSE CODE TRANSLATION LIST

COLLISION TYPE CODE TRANSLATION LIST

I O-1STOP FROM OPPOSITE DIRECTION - ONE STOPPED

FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING

J O-OTHER

CAUSE CODE	SHORT DESCRIPTION	LONG DESCRIPTION	COLL CODE	SHORT DESCRIPTION	LONG DESCRIPTION
00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL	<u>ــــــــــــــــــــــــــــــــــــ</u>	OTH	MISCELLANEOUS
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED	-	BACK	BACKING
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY	0	PED	PEDESTRIAN
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER	1	ANGL	ANGLE
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL	2	HEAD	HEAD-ON
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING	3	REAR	REAR-END
06	IMP-OVER	IMPROPER OVERTAKING	4	SS-M	SIDESWIPE - MEETING
07	TOO-CLOS	FOLLOWED TOO CLOSELY	5	SS-0	SIDESWIPE - OVERTAKING
08	IMP-TURN	MADE IMPROPER TURN	6	TURN	TURNING MOVEMENT
09	DRINKING	ALCOHOL OR DRUG INVOLVED	7	PARK	PARKING MANEUVER
10	OTHR-IMP	OTHER IMPROPER DRIVING	8	NCOL	NON-COLLISION
11	MECH-DEF	MECHANICAL DEFECT	9	FIX	FIXED OBJECT OR OTHER OBJECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)			
13	IMP LN C	IMPROPER CHANGE OF TRAFFIC LANES			
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE			
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED RO			
16	FATIGUE	DRIVER DROWSY/FATIGUED/SLEEPY			
17	ILLNESS	PHYSICAL ILLNESS			
18	IN RDWY	NON-MOTORIST ILLEGALLY IN ROADWAY			
19	NT VISBL	NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN			
20	IMP PKNG	VEHICLE IMPROPERLY PARKED		~~~~	
20 21	IMP PKNG DEF STER	VEHICLE IMPROPERLY PARKED DEFECTIVE STEERING MECHANISM		CRASH TY	PE CODE TRANSLATION LIST
			CRASH	CRASH TY	PE CODE TRANSLATION LIST
21	DEF STER	DEFECTIVE STEERING MECHANISM	CRASH TYPE	SHORT	PE CODE TRANSLATION LIST
21 22	DEF STER DEF BRKE	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES	TYPE	SHORT DESCRIPTION	LONG DESCRIPTION
21 22 24	DEF STER DEF BRKE LOADSHFT	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED	TYPE &	SHORT DESCRIPTION OVERTURN	LONG DESCRIPTION OVERTURNED
21 22 24 25	DEF STER DEF BRKE LOADSHFT TIREFAIL	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE	TYPE & 0	SHORT DESCRIPTION OVERTURN NON-COLL	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION
21 22 24 25 26	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE	TYPE & 0 1	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY
21 22 24 25 26 27	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION	TYPE & 0 1 2	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE
21 22 24 25 26 27 28	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION	TYPE & 0 1 2 3	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN
21 22 24 25 26 27 28 29	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD	TYPE & 0 1 2 3 4	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN
21 22 24 25 26 27 28 29 30	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED	TYPE & 0 1 2 3 4 6	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST
21 22 24 25 26 27 28 29 30 31	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR)	TYPE & 0 1 2 3 4 6 7	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL
21 22 24 25 26 27 28 29 30 31 32	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR)	TYPE & 0 1 2 3 4 6 7 8	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT
21 22 24 25 26 27 28 29 30 31 32 33	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR)	TYPE & 0 1 2 3 4 6 7 8 9	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT
21 22 24 25 26 27 28 29 30 31 32 33 34	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR)	TYPE & 0 1 2 3 4 6 7 8 9 A	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT ENTERING AT ANGLE - ONE VEHICLE STOPPED
21 22 24 25 26 27 28 29 30 31 32 33 34 35	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR) ROAD RAGE (PER PAR)	TYPE & 0 1 2 3 4 6 7 8 9 A B	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT ENTERING AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS
21 22 24 25 26 27 28 29 30 31 32 33 34 35 40	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE VIEW OBS	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR) ROAD RAGE (PER PAR) VIEW OBSCURED	TYPE & 0 1 2 3 4 6 7 8 9 A B C	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH S-STRGHT	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER NG AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS FROM SAME DIRECTION - BOTH GOING STRAIGHT
21 22 24 25 26 27 28 29 30 31 32 33 34 35 40 50	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE VIEW OBS USED MDN	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) ROAD RAGE (PER PAR) VIEW OBSCURED IMPROPER USE OF MEDIAN OR SHOULDER	TYPE & 0 1 2 3 4 6 7 8 9 A B C D	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH S-STRGHT S-1TURN	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT ENTERING AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS FROM SAME DIRECTION - BOTH GOING STRAIGHT FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT
21 22 24 25 26 27 28 29 30 31 32 33 34 35 40 50 51	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE VIEW OBS USED MDN FAIL LN	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR) ROAD RAGE (PER PAR) VIEW OBSCURED IMPROPER USE OF MEDIAN OR SHOULDER FAILED TO MAINTAIN LANE	TYPE & 0 1 2 3 4 6 7 8 9 A B C D E	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH S-STRGHT S-1TURN S-1STOP	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT ENTERING AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS FROM SAME DIRECTION - BOTH GOING STRAIGHT FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT FROM SAME DIRECTION - ONE STOPPED
21 22 24 25 26 27 28 29 30 31 32 33 34 35 40 50 51	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE VIEW OBS USED MDN FAIL LN	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR) ROAD RAGE (PER PAR) VIEW OBSCURED IMPROPER USE OF MEDIAN OR SHOULDER FAILED TO MAINTAIN LANE	TYPE & 0 1 2 3 4 6 7 8 9 A B C D E F	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH S-STRGHT S-1TURN S-1STOP S-OTHER	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER NG AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS FROM SAME DIRECTION - DNE TURN, ONE STRAIGHT FROM SAME DIRECTION - ONE STOPPED FROM SAME DIRECTION - ONE STOPPED
21 22 24 25 26 27 28 29 30 31 32 33 34 35 40 50 51	DEF STER DEF BRKE LOADSHFT TIREFAIL PHANTOM INATTENT NM INATT F AVOID SPEED RACING CARELESS RECKLESS AGGRESV RD RAGE VIEW OBS USED MDN FAIL LN	DEFECTIVE STEERING MECHANISM INADEQUATE OR NO BRAKES VEHICLE LOST LOAD OR LOAD SHIFTED TIRE FAILURE PHANTOM / NON-CONTACT VEHICLE INATTENTION NON-MOTORIST INATTENTION FAILED TO AVOID VEHICLE AHEAD DRIVING IN EXCESS OF POSTED SPEED SPEED RACING (PER PAR) CARELESS DRIVING (PER PAR) RECKLESS DRIVING (PER PAR) AGGRESSIVE DRIVING (PER PAR) ROAD RAGE (PER PAR) VIEW OBSCURED IMPROPER USE OF MEDIAN OR SHOULDER FAILED TO MAINTAIN LANE	TYPE & 0 1 2 3 4 6 7 8 9 A B C D E	SHORT DESCRIPTION OVERTURN NON-COLL OTH RDWY PRKD MV PED TRAIN BIKE ANIMAL FIX OBJ OTH OBJ ANGL-STP ANGL-OTH S-STRGHT S-1TURN S-1STOP	LONG DESCRIPTION OVERTURNED OTHER NON-COLLISION MOTOR VEHICLE ON OTHER ROADWAY PARKED MOTOR VEHICLE PEDESTRIAN RAILWAY TRAIN PEDALCYCLIST ANIMAL FIXED OBJECT OTHER OBJECT ENTERING AT ANGLE - ONE VEHICLE STOPPED ENTERING AT ANGLE - ALL OTHERS FROM SAME DIRECTION - BOTH GOING STRAIGHT FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT FROM SAME DIRECTION - ONE STOPPED
DRIVER LICENSE CODE TRANSLATION LIST

DRIVER RESIDENCE CODE TRANSLATION LIST

LIC	SHORT		RES	SHORT	
CODE	DESC	LONG DESCRIPTION	CODE	DESC	LONG DESCRIPTION
0 1 2 3	NONE OR-Y OTH-Y SUSP	NOT LICENSED (HAD NEVER BEEN LICENSED) VALID OREGON LICENSE VALID LICENSE, OTHER STATE OR COUNTRY SUSPENDED/REVOKED	1 2 3 4 9	OR<25 OR>25 OR-? N-RES UNK	OREGON RESIDENT WITHIN 25 MILE OF HOME OREGON RESIDENT 25 OR MORE MILES FROM HOME OREGON RESIDENT - UNKNOWN DISTANCE FROM HOME NON-RESIDENT UNKNOWN IF OREGON RESIDENT

ERROR CODE TRANSLATION LIST

ERROR	SHORT
LKKOK	SHORT

ERROR	SHORT	
CODE	DESCRIPTION	FULL DESCRIPTION
000	NONE	NO ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	LEFT TURN IN FRONT OF ONCOMING TRAFFIC
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRNG	TURNED FROM WRONG LANE
007	TO WRONG	TURNED INTO WRONG LANE
008	ILLEG U	U-TURNED ILLEGALLY
009	IMP STOP	IMPROPERLY STOPPED IN TRAFFIC LANE
010	IMP SIG	IMPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	IMPROPERLY PARKED
013	UNPARK	IMPROPER START LEAVING PARKED POSITION
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)
016	INATTENT	INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	OTH PARK	ENTERING/EXITING PARKED POSITION W/ INSUFFICIENT CLEARANCE; OTHER IMPROPER PARKING MANEUVER
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	DISREGARDED TRAFFIC SIGNAL
021	RAN STOP	DISREGARDED STOP SIGN OR FLASHING RED
022	DIS SIGN	DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER
023	DIS OFCR	DISREGARDED FOLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILED TO AVOID STOPPED OR PARKED VEHICLE AHEAD OTHER THAN SCHOOL BUS
027	BIKE ROW	DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST
028	NO ROW	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILED TO YIELD RIGHT-OF-WAY TO PEDESTRIAN
030	PAS CURV	PASSING ON A CURVE
031	PAS WRNG	PASSING ON THE WRONG SIDE
032	PAS TANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X-WK	PASSED VEHICLE STOPPED AT CROSSWALK FOR PEDESTRIAN
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST OF HILL
036	N/PAS ZN	PASSING IN "NO PASSING" ZONE
037	PAS TRAF	PASSING IN FRONT OF ONCOMING TRAFFIC
038	CUT-IN	CUTTING IN (TWO LANES - TWO WAY ONLY)
039	WRNGSIDE	DRIVING ON WRONG SIDE OF THE ROAD (2-WAY UNDIVIDED ROADWAYS)
040	THRU MED	DRIVING THROUGH SAFETY ZONE OR OVER ISLAND
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS

ERROR CODE	SHORT DESCRIPTION	FULL DESCRIPTION
042	F/SLO MV	FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE
043	TOO CLOSE	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	STRADDLING OR DRIVING ON WRONG LANES
045	IMP CHG	IMPROPER CHANGE OF TRAFFIC LANES
046	WRNG WAY	WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	IMPEDING	IMPEDING TRAFFIC
050	SPEED	DRIVING IN EXCESS OF POSTED SPEED
051	RECKLESS	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACING	SPEED RACING (PER PAR)
054	X N/SGNL	CROSSING AT INTERSECTION, NO TRAFFIC SIGNAL PRESENT
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
061	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
062	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
063	PLAYINRD	PLAYING IN STREET OR ROAD
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WORK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAY ON RD	STANDING OR LYING IN ROADWAY
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	ELUDING	ELUDING / ATTEMPT TO ELUDE
079	F NEG CURV	FAILED TO NEGOTIATE A CURVE
080	FAIL LN	FAILED TO MAINTAIN LANE
081	OFF RD	RAN OFF ROAD
082	NO CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGERS
097	UNA DIS TC	UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

097 UNA DIS TC UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

EVENT SHORT

EVENT CODE	SHORT DESCRIPTION	LONG DESCRIPTION
001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE
002	INTERFER	PASSENGER INTERFERED WITH DRIVER
003	BUG INTF	ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHIKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	ON/OFF V	GETTING ON/OFF STOPPED/PARKED VEHICLE (OCCUPANTS ONLY; MUST HAVE PHYSICAL CONTACT W/ VEHIC
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT
011	MV PUSHD	VEHICLE BEING PUSHED
012	MV TOWED	VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE
013	FORCED	VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN
014	SET MOTN	VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)
015	RR ROW	AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)
016	LT RL ROW	AT OR ON LIGHT-RAIL RIGHT-OF-WAY
017	RR HIT V	TRAIN STRUCK VEHICLE
018	V HIT RR	VEHICLE STRUCK TRAIN
019	HIT RR CAR	VEHICLE STRUCK RAILROAD CAR ON ROADWAY
020 021	JACKNIFE	JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE
021	TRL OTRN CN BROKE	TRAILER OR TOWED VEHICLE OVERTURNED TRAILER CONNECTION BROKE
022	DETACH TRL	DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT
023	V DOOR OPN	VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE
024	WHEELOFF	WHEEL CAME OFF
026	HOOD UP	HOOD FLEW UP
028	LOAD SHIFT	LOST LOAD, LOAD MOVED OR SHIFTED
029	TIREFAIL	TIRE FAILURE
030	PET	PET: CAT, DOG AND SIMILAR
031	LVSTOCK	STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.
032	HORSE	HORSE, MULE, OR DONKEY
033	HRSE&RID	HORSE AND RIDER
034	GAME	WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)
035	DEER ELK	DEER OR ELK, WAPITI
036	ANML VEH	ANIMAL-DRAWN VEHICLE
037	CULVERT	CULVERT, OPEN LOW OR HIGH MANHOLE
038	ATENUATN	IMPACT ATTENUATOR
039	PK METER	PARKING METER
040	CURB	CURB (ALSO NARROW SIDEWALKS ON BRIDGES)
041	JIGGLE	JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION
042	GDRL END	LEADING EDGE OF GUARDRAIL
043	GARDRAIL	GUARD RAIL (NOT METAL MEDIAN BARRIER)
044	BARRIER	MEDIAN BARRIER (RAISED OR METAL)
045	WALL	RETAINING WALL OR TUNNEL WALL
046	BR RAIL	BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)
047		BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)
048	BR COLMN	BRIDGE PILLAR OR COLUMN
049	BR GIRDR	BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)
050	ISLAND	TRAFFIC RAISED ISLAND
051 052	GORE	GORE
	POLE UNK	POLE - TYPE UNKNOWN
053 054	POLE UTL ST LIGHT	POLE - POWER OR TELEPHONE POLE - STREET LIGHT ONLY
054	TRF SGNL	POLE - STREET LIGHT ONLY POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY
055		POLE - IRAFFIC SIGNAL AND PED SIGNAL ONLY POLE - SIGN BRIDGE
058	SGN BRDG	STOP OR YIELD SIGN
058	STOPSIGN OTH SIGN	OTHER SIGN, INCLUDING STREET SIGNS
059	HYDRANT	HYDRANT
600	111 DIVUNT	

EVENT SHORT DESCRIPTION LONG DESCRIPTION CODE 060 MARKER DELINEATOR OR MARKER (REFLECTOR POSTS) 061 MAILBOX MAILBOX 062 TREE TREE, STUMP OR SHRUBS 063 VEG OHED TREE BRANCH OR OTHER VEGETATION OVERHEAD, ETC. 064 WIRE/CBL WIRE OR CABLE ACROSS OR OVER THE ROAD 065 TEMP SGN TEMPORARY SIGN OR BARRICADE IN ROAD, ETC. 066 PERM SGN PERMANENT SIGN OR BARRICADE IN/OFF ROAD 067 SLIDE SLIDES, FALLEN OR FALLING ROCKS 068 FRGN OBJ FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL) 069 EQP WORK EQUIPMENT WORKING IN/OFF ROAD 070 OTH EOP OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT) 071 MAIN EQP WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT 072 OTHER WALL ROCK, BRICK OR OTHER SOLID WALL 073 IRRGL PVMT OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR) 074 OVERHD OBJ OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE 075 CAVE IN BRIDGE OR ROAD CAVE IN 076 HI WATER HIGH WATER 077 SNO BANK SNOW BANK 078 LO-HI EDGE LOW OR HIGH SHOULDER AT PAVEMENT EDGE 079 DITCH CUT SLOPE OR DITCH EMBANKMENT 080 OBJ FRM MV STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS) 081 FLY-OBJ STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE) 082 VEH HID VEHICLE OBSCURED VIEW 083 VEG HID VEGETATION OBSCURED VIEW 084 BLDG HID VIEW OBSCURED BY FENCE, SIGN, PHONE BOOTH, ETC. 085 WIND GUST WIND GUST 086 IMMERSED VEHICLE IMMERSED IN BODY OF WATER 087 FIRE/EXP FIRE OR EXPLOSION FENCE OR BUILDING, ETC. 088 FENC/BLD 089 OTHR CRASH CRASH RELATED TO ANOTHER SEPARATE CRASH 090 TO 1 SIDE TWO-WAY TRAFFIC ON DIVIDED ROADWAY ALL ROUTED TO ONE SIDE 091 BUILDING BUILDING OR OTHER STRUCTURE 092 PHANTOM OTHER (PHANTOM) NON-CONTACT VEHICLE 093 CELL PHONE CELL PHONE (ON PAR OR DRIVER IN USE) 094 VIOL GDL TEENAGE DRIVER IN VIOLATION OF GRADUATED LICENSE PGM 095 GUY WIRE GUY WIRE 096 BERM BERM (EARTHEN OR GRAVEL MOUND) 097 GRAVEL GRAVEL IN ROADWAY 098 ABR EDGE ABRUPT EDGE 099 CELL WTNSD CELL PHONE USE WITNESSED BY OTHER PARTICIPANT 100 UNK FIXD FIXED OBJECT, UNKNOWN TYPE. 101 OTHER OBJ NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE 102 TEXTING TEXTING 103 WZ WORKER WORK ZONE WORKER 104 ON VEHICLE PASSENGER RIDING ON VEHICLE EXTERIOR 105 PEDAL PSGR PASSENGER RIDING ON PEDALCYCLE 106 MAN WHLCHR PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR 107 MTR WHLCHR PEDESTRIAN IN MOTORIZED WHEELCHAIR 108 OFFICER LAW ENFORCEMENT / POLICE OFFICER 109 SUB-BIKE "SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC. 110 N-MTR NON-MOTORIST STRUCK VEHICLE 111 S CAR VS V STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM) STRUCK VEHICLE 112 V VS S CAR VEHICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM) 113 S CAR ROW AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY 114 RR EQUIP VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS 115 DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE DSTRCT GPS 116 DSTRCT OTH DISTRACTED BY OTHER ELECTRONIC DEVICE

117 RR GATE RAIL CROSSING DROP-ARM GATE

EVENT SHORT

CODE	DESCRIPTION	LONG DESCRIPTION
118	EXPNSN JNT	EXPANSION JOINT
119	JERSEY BAR	JERSEY BARRIER
120	WIRE BAR	WIRE OR CABLE MEDIAN BARRIER
121	FENCE	FENCE
123	OBJ IN VEH	LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT
124	SLIPPERY	SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)
125	SHLDR	SHOULDER GAVE WAY
126	BOULDER	ROCK(S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)
127	LAND SLIDE	ROCK SLIDE OR LAND SLIDE
128	CURVE INV	CURVE PRESENT AT CRASH LOCATION
129	HILL INV	VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION
130	CURVE HID	VIEW OBSCURED BY CURVE
131	HILL HID	VIEW OBSCURED BY VERTICAL GRADE / HILL
132	WINDOW HID	VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS
133	SPRAY HID	VIEW OBSCURED BY WATER SPRAY

HIGHWAY COMPONENT TRANSLATION LIST

FUNC

CLASS DESCRIPTION

- 01 RURAL PRINCIPAL ARTERIAL INTERSTATE
- 02 RURAL PRINCIPAL ARTERIAL OTHER
- 06 RURAL MINOR ARTERIAL
- 07 RURAL MAJOR COLLECTOR
- 08 RURAL MINOR COLLECTOR
- 09 RURAL LOCAL
- 11 URBAN PRINCIPAL ARTERIAL INTERSTATE
- 12 URBAN PRINCIPAL ARTERIAL OTHER FREEWAYS AND EXP
- 14 URBAN PRINCIPAL ARTERIAL OTHER
- 16 URBAN MINOR ARTERIAL
- 17 URBAN MAJOR COLLECTOR
- 18 URBAN MINOR COLLECTOR
- 19 URBAN LOCAL
- 78 UNKNOWN RURAL SYSTEM
- 79 UNKNOWN RURAL NON-SYSTEM
- 98 UNKNOWN URBAN SYSTEM
- 99 UNKNOWN URBAN NON-SYSTEM

CODE DESCRIPTION

- 0 MAINLINE STATE HIGHWAY
- 1 COUPLET
- 3 FRONTAGE ROAD
- 6 CONNECTION
- 8 HIGHWAY OTHER

INJURY SEVERITY CODE TRANSLATION LIST

SHORT LONG DESCRIPTION CODE DESC 1 KILL FATAL INJURY 2 INJA INCAPACITATING INJURY - BLEEDING, BROKEN BONES 3 INJB NON-INCAPACITATING INJURY 4 INJC POSSIBLE INJURY - COMPLAINT OF PAIN 5 PRI DIED PRIOR TO CRASH 7 NO<5 NO INJURY - 0 TO 4 YEARS OF AGE

LIGHT CONDITION CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	DAY	DAYLIGHT
2	DLIT	DARKNESS - WITH STREET LIGHTS
3	DARK	DARKNESS - NO STREET LIGHTS
4	DAWN	DAWN (TWILIGHT)
5	DUSK	DUSK (TWILIGHT)

MEDIAN TYPE CODE TRANSLATION LIST

MILEAGE TYPE CODE TRANSLATION LIST

LONG DESCRIPTION

REGULAR MILEAGE

TEMPORARY

OVERLAPPING

SPUR

CODE

0

Т

Υ

Ζ

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NO MEDIAN
1	RSDMD	SOLID MEDIAN BARRIER
2	DIVMD	EARTH, GRASS OR PAVED MEDIAN

MOVEMENT TYPE CODE TRANSLATION LIST

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TURNING LEFT
4	U-TURN	MAKING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPERLY

PARTICIPANT TYPE CODE TRANSLATION LIST

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	OCC	UNKNOWN OCCUPANT TYPE
1	DRVR	DRIVER
2	PSNG	PASSENGER
3	PED	PEDESTRIAN
4	CONV	PEDESTRIAN USING A PEDESTRIAN CONVEYA
5	PTOW	PEDESTRIAN TOWING OR TRAILERING AN OB
6	BIKE	PEDALCYCLIST
7	BTOW	PEDALCYCLIST TOWING OR TRAILERING AN (
8	PRKD	OCCUPANT OF A PARKED MOTOR VEHICLE
9	UNK	UNKNOWN TYPE OF NON-MOTORIST

PEDESTRIAN LOCATION CODE TRANSLATION LIST

CODE LONG DESCRIPTION

00	AT INTERSECTION - NOT IN ROADWAY
01	AT INTERSECTION - INSIDE CROSSWALK
02	AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK
03	AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN
04	NOT AT INTERSECTION - IN ROADWAY
05	NOT AT INTERSECTION - ON SHOULDER
06	NOT AT INTERSECTION - ON MEDIAN
07	NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY
08	NOT AT INTERSECTION - IN BIKE PATH OR PARKING LANE
09	NOT-AT INTERSECTION - ON SIDEWALK
10	OUTSIDE TRAFFICWAY BOUNDARIES
13	AT INTERSECTION - IN BIKE LANE
14	NOT AT INTERSECTION - IN BIKE LANE
15	NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK
16	NOT AT INTERSECTION - IN PARKING LANE

ROAD CHARACTER CODE TRANSLATION LIST

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	INTER	INTERSECTION
2	ALLEY	DRIVEWAY OR ALLEY
3	STRGHT	STRAIGHT ROADWAY
4	TRANS	TRANSITION
5	CURVE	CURVE (HORIZONTAL CURVE)
6	OPENAC	OPEN ACCESS OR TURNOUT
7	GRADE	GRADE (VERTICAL CURVE)
8	BRIDGE	BRIDGE STRUCTURE
9	TUNNEL	TUNNEL

TRAFFIC CONTROL DEVICE CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRF SIGNAL	TRAFFIC SIGNALS
		FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCR/FLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDG-GATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATION
017	MEDIAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGWAG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMPS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING

095BUS STPSGNBUS STOP SIGN AND RED LIGHTS099UNKNOWNUNKNOWN OR NOT DEFINITE

VEHICLE TYPE CODE TRANSLATION LIST

CODE SHORT DESC LONG DESCRIPTION

WEATHER CONDITION CODE TRANSLATION LIST

CLEAR

CLOUDY

RAIN

SLEET

FOG SNOW

DUST

SMOKE

ASH

CODE	SHORT DESC	LONG DESCRIPTION
0	IINK	UNKNOWN

CLR

CLD

SLT

FOG

SNOW DUST

SMOK

ASH

RAIN

00	PDO	NOT COLLECTED FOR PDO CRASHES	0
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.	1
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)	2
03	FARM TRCTR		3
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW	4
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.	5
05	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE	6
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)	7
07		OTHER BUS	8
	OTH BUS		9
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE	
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.	
11	MOTRHOME	MOTORHOME	
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)	
13	ATV	ATV	
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)	
15	CNOWMODITE	CNOMMODITE	

15 SNOWMOBILE SNOWMOBILE

99 UNKNOWN UNKNOWN VEHICLE TYPE

ATTACHMENT 2 GEOTECHNICAL ENGINEERING REPORT

Limited Geotechnical Design Study

North Suttle Road Improvements North Suttle Road Portland, Oregon

Prepared for Maul Foster & Alongi, Inc.

August 15, 2017 15941-04

Limited Geotechnical Design Study

North Suttle Road Improvements North Suttle Road Portland, Oregon

Prepared for Maul Foster & Alongi, Inc.

August 15, 2017 15941-04

Prepared by Hart Crowser, Inc.

Daniel J. Trisler, PE, GE Senior Associate, Geotechnical Engineer

J. ... rell

Timothy W. Blackwood, PE, GE, CEG Principal, Geotechnical Engineer

6420 Macadam Avenue, Suite 100 Portland, OR 97239-3517 Tel 503.620.7284

Contents

1.0 INTRODUCTION AND PROJECT DESCRIPTION	1
2.0 SCOPE OF SERVICES	1
 3.0 SITE CONDITIONS 3.1 Geologic, Soils, and Groundwater Mapping 3.2 Surface Conditions 3.3 Subsurface Conditions 3.3.1 General 3.3.2 Pavement 3.3.3 Soil 3.3.4 Groundwater 	2 3 3 4 5 5
4.0 INFILTRATION TESTING	6
5.0 CONCLUSIONS	6
6.0 EARTHWORK RECOMMENDATIONS 6.1 Site Preparation 6.1.1 General 6.1.2 Demolition 6.1.3 Stripping 6.1.4 Subgrade Preparation 6.2 Structural Fill and Backfill 6.2.1 On-Site Soils 6.2.2 Recycled AC, PCC, and Aggregate Base 6.2.3 Aggregate Base 6.2.4 Trench Backfill 6.2.5 Imported Select Structural Fill 6.3 Fill Placement and Compaction 6.4 Excavation 6.4.1 General	7 7 7 8 8 8 8 9 9 9 9 9 9 10 10
6.4.2 Temporary Cut Stability 6.5 Dewatering and Temporary Drainage	11 12
7.0 INFILTRATION SYSTEM DESIGN RECOMMENDATIONS	12
8.0 PAVEMENT DESIGN AND CONSIDERATIONS 8.1 General 8.2 Roadway Traffic 8.3 Design Parameters	12 12 13 14

ii Contents

8.4 Pavement Sections	14
8.4.1 General	14
8.5 Pavement Materials and Construction	15
8.5.1 HMAC	15
8.5.2 PCC	16
8.5.3 Aggregate Base	16
8.5.4 AC Grinding	16
9.0 CONSTRUCTION OBSERVATIONS	16
10.0 LIMITATIONS	16
11.0 REFERENCES	17

TABLES

1	USDA Index Properties	3
2	North Suttle Road Pavement Cores	4
3	Infiltration Test Data	6
4	Guidelines for Uncompacted Lift Thickness	10
5	Vehicle Distribution	13
6	ESAL Values	13
7	New HMAC Pavement Sections	15
8	Rehabilitated HMAC Pavement Sections	15
9	New PCC Pavement Sections	15

FIGURES

- 1 Vicinity Map
- 2 Exploration Location Map

APPENDIX A Field Explorations

APPENDIX B Laboratory Testing

APPENDIX C

Pavement Core Photographs and DCP Data Correlations

North Suttle Road Improvements North Suttle Road Portland, Oregon

1.0 INTRODUCTION AND PROJECT DESCRIPTION

Hart Crowser, Inc. is pleased to present this report to Maul Foster & Alongi, Inc. (MFA) outlining our geotechnical engineering findings, conclusions and pavement design recommendations related to the proposed improvements to North Suttle Road. Our work was performed in general accordance with our subconsultant agreement with MFA, dated May 31, 2017.

The proposed North Suttle Road improvements include approximately 3,100 linear feet of roadway between the Union Pacific railway tracks at the northwest end and North Portland Road at the southeast end. The proposed improvements include widening and reconstruction of the existing roadway with the addition of curbs, gutters, and sidewalks. Low impact drainage improvements, such as infiltration, will likely be incorporated into the project.

The location of the site is shown on Figure 1. The existing site layout and exploration locations are shown on Figure 2.

2.0 SCOPE OF SERVICES

The purpose of our work was to evaluate existing pavement and subsurface conditions along the proposed project alignment and to provide geotechnical engineering services for the design of specific project elements. Our complete scope of work is summarized below.

- Reviewed relevant, readily available geologic maps and regional soil mapping.
- Conducted field explorations including:
 - Completing eight pavement cores to determine existing pavement section thicknesses;
 - Advancing eight Dynamic Cone Penetrometer (DCP) probes to depths ranging from approximately 0.7 to 4 feet below ground surface (bgs) at the locations of each pavement core;
 - Drilling eight hand-augered soil borings to depths ranging between approximately 1 and 4 feet bgs at the locations of each pavement core, and maintaining a log of the encountered materials and collected samples for laboratory testing; and
 - Drilling three hand-augered soil borings to depths of 8 to 9 feet bgs, and conducting *in situ* infiltration tests adjacent to three of the borings at depths ranging between approximately 2.75 and 3.5 feet bgs.
- Conducted a limited program of laboratory testing on select soil samples.

- 2 North Suttle Road Improvements
- Conducted engineering analyses to evaluate pavement design alternatives, infiltration system design, and earthwork construction guidelines.
- Prepared a draft report (dated August 2, 2017) for review by the project team.
- Prepared this final report outlining our findings and recommendations, including information related to the following:
 - Site and exploration locations,
 - Description of subsurface conditions,
 - Pavement design parameters and alternatives,
 - Infiltration design parameters,
 - Earthwork recommendations and guidelines, and
 - Other pertinent geotechnical design and construction considerations.
- Provided project management and support services, including coordinating staff and subcontractors and conducting telephone consultations and email communications with the design team.

3.0 SITE CONDITIONS

3.1 Geologic, Soils, and Groundwater Mapping

The geology of the site is mapped by Trimble (1963) as Quaternary-age alluvial deposits and by Beeson, et al (1991) as artificial fill. Our subsurface investigation suggests that the site soils consist of dredge sand fill, as mapped by Beeson, et al.

Groundwater is mapped by Snyder (2008) at a depth of approximately 8 feet bgs or approximate elevation 19 to 20 feet above mean sea level (MSL).

The U.S. Department of Agriculture (USDA) has mapped the near-surface soils in the vicinity of the project as "Pilchuck-Urban land complex, 0 to 3 percent slopes" and "Sauvie-Rafton-Urban land complex, 0 to 3 percent slopes." The site is primarily underlain by the Pilchuck soil unit, with approximately 125 feet of the eastern end of the alignment mapped as the Sauvie-Rafton soil unit.

The Pilchuck soil unit is described as sand and extends to depths in excess of 60 inches bgs. The Sauvie-Rafton soil unit is described as silt loam from 0 to 15 inches, followed by silty clay loam down to depths of 39 inches, followed by very fine sandy loam to depths in excess of 60 inches bgs.

The USDA indicates the following index properties for the mapped soil unit.

Soil Unit	Clay (percent)	Silt (percent)	Sand (percent)	Liquid Limit	Plasticity Index	Hydrologic Group	Estimated Hydraulic Conductivity (inches/hour)
Pilchuck	2.5	1.5	96.0	5	0	А	6 to 20
Sauvie-Rafton	23.4	50.7	25.9	33	8	С	0.2 to 0.6

Table 1 - USDA Index Properties

* Estimated hydraulic conductivity as reported for the "most limiting layer to transmit water."

3.2 Surface Conditions

The project site begins at North Portland Road and extends approximately 3,100 linear feet northwest towards the Union Pacific Railway.

North Suttle Road consists of an approximate 20-foot-wide pavement section and traverses through an industrial area comprised of warehouse, laboratory, and construction facilities. The site is generally flat with existing surface elevations varying from approximately 28 feet MSL near the Union Pacific Railway to approximately 31 feet MSL at North Portland Road. Sidewalks, curbs, and gutters are generally not present through the existing alignment.

The roadway, particularly the eastern third, has potholes and fatigue cracking (or alligator cracking), as well as weathering and raveling along the alignment. The pavement distress appears to have been caused by a combination of the progressive deterioration of the asphalt from the surface downwards; water intrusion into cracks from poor drainage; and an apparent general lack of regular maintenance of pavement distress, such as pot holes, fatigue cracking, and raveling.

The roadway itself is gently crowned to drain stormwater off the pavement to both north and south sides; however, both sides of the roadway are generally relatively flat and not well drained. We understand that water will pond adjacent to the roadway during rainy weather, particulary in the eastern portion of the alignment.

Refer to Figure 2 for the approximate extent of the project alignment.

3.3 Subsurface Conditions

3.3.1 General

Soil conditions interpreted from geologic maps and our explorations, in conjunction with soil properties inferred from field observations and laboratory tests, formed the basis for the conclusions and recommendations contained within this report. Appendix A describes our field exploration procedures and presents field data and boring logs. Appendix B describes our laboratory soil testing procedures and results. Appendix C presents photographs of the pavement cores and DCP probe data correlations.

We completed eight pavement cores to evaluate existing asphalt and base rock thicknesses, and then performed eight DCP probes below the cored sections to evaluate the strength of the pavement

4 North Suttle Road Improvements

subgrade. We further explored subsurface soil conditions by excavating eight soil borings, designated HC-1 through HC-8, and three infiltration tests borings, designated IT-1 through IT-3. The soil borings were advanced to depths ranging from approximately 1 to 9 feet bgs. The adjacent *in situ* infiltration tests were completed to depths ranging between approximately 2.75 and 3.5 feet bgs. DCP probes were generally advanced between 0.7 and 4 feet bgs. Locations of the borings and infiltration tests are shown on Figure 2.

The project alignment is mantled by a surficial layer of asphalt concrete (AC), typically underlain by base rock; however, two of our explorations (HC-1 and HC-2) performed on the western end of the alignment encountered Portland cement concrete (PCC) pavement beneath the AC section.

The pavement sections at the site were mostly underlain by dredge fill sand deposits extending to the depths explored (1 to 9 feet bgs). In general, the dredge fill deposits consisted of poorly graded sand with varying amounts of gravel and silt; though one of our explorations encountered interbedded silty sand with variable gravel content.

Descriptions of the units discussed above are provided in detail below.

3.3.2 Pavement

Pavement sections were evaluated by completing eight pavement cores (HC-1 through HC-8), with associated DCP probes at each core location.

In general, the AC thickness varied between approximately 4.5 and 8 inches, with an average thickness of approximately 6.2 inches. Typically, the AC appeared to have been placed in one or two lifts, though in some cases we could not differentiate lifts when the AC certainly would have been placed in at least two lifts. The underlying base typically consisted of a well-graded gravel with sand containing subrounded to subangular gravel up to 2 inches in diameter. The base thickness varied from approximately 0 to 17+ inches. Additionally, in HC-1 and HC-2, the AC was underlain by approximately 6 to 6.5 inches of PCC pavement.

Table 2 below summarizes the dimensions of the pavement cores.

Core Location	AC Thickness (inches)	PCC Thickness (inches)	Base Condition
HC-1	5.5	6.5	Not present.
HC-2	5.5	6	Not present.
HC-3	7.0	0	5+ inches of gravel fill
HC-4	8.0	0	12+ inches of gravel fill
HC-5	5.75	0	14 inches of gravel fill
HC-6	4.5	0	17+ inches of gravel fill
HC-7	6.5	0	5 inches of angular base rock
HC-8	6.0	0	12 inches of gravel fill

Table 2 - North Suttle Road Pavement Cores

Pavement along the project alignment is in a generally poor to fair condition. Distress in the pavement is present throughout the roadway alignment, though is most pronounced in the eastern approximately third of the road. We estimate the pavement condition index (PCI) for the roadway to be between 60 and 75, though the eastern end has lower values. Surficial cracking and potholes are evident along most of the road. The cracking mostly consists of block and fatigue cracking. Block cracking is typically characterized by a pattern of cracks that divides the pavement into approximately square or rectangular pieces. Fatigue cracking is generally caused by fatigue failure in the AC section resulting from prolonged traffic loading. Block sizes can range from approximately 1 square foot to 30 square feet, and fatigue cracks are mostly less than 2 feet on the longest side. Large potholes are present, particularly along the unbound edges of the pavement.

The DCP testing indicates that the base and subgrade beneath the pavement typically have resilient modulus values ranging from approximately 2,000 to 25,000 pound per square inch (psi). More typical values are 6,000 to 9,000 psi.

3.3.3 Soil

We advanced eight soil borings (HC-1 through HC-8) and three infiltration test borings (IT-1 through IT-3) along the project alignment. HC-1 through HC-8 were cores within the pavement, while IT-1 through IT-3 were advanced in unpaved shoulder areas.

The three infiltration test borings encountered approximately 2 feet of gravel fill that typically contained gravel up to 3 inches in diameter and trace amounts of concrete and asphalt debris. Beneath this surficial fill and the pavement sections noted above, our explorations generally encountered dry to moist, light brown to brown, poorly graded sand with variable amounts of gravel and silt below the observed pavement sections. Occasional "nodules" of silt were found in the sand. In IT-2 a layer of silt with sand was encountered at 8 feet bgs. We judge these materials to be "dredge sand" fill.

Laboratory results on select soil samples indicated that *in-situ* moisture contents of the sandy soils encountered during our field explorations typically ranged from approximately 2 to 26 percent, with an average value closer to 9 to 10 percent. The one sample of silt had a moisture content of 32 percent. Grain size analyses determined that the fines content (percentage finer than the #200 sieve) of the sand deposits varies between approximately 1 and 13 percent, with one deeper sample from IT-3 having a fines content of 32 percent. The silt sample had a fines content of 80 percent.

3.3.4 Groundwater

Groundwater was not encountered in any of our explorations to the shallow depths explored, though moisture content increased at depths of approximately 7 to 8 feet bgs. As noted above, the mapped groundwater level is 8 feet bgs. The depth to groundwater will vary throughout the year, depending on rainfall, river levels and other factors.

4.0 INFILTRATION TESTING

We performed three falling head field infiltration tests (IT-1 through IT-3) at the locations shown on Figure 2. The field infiltration tests were conducted in general accordance with the methodologies outlined in Chapter 2, Section 2.3.6 of Portland's *Stormwater Management Manual* (SWMM) (Portland 2016) for "falling head encased borehole" tests. However, a formal "depth to groundwater study" was not completed, and the number of infiltration tests completed is not sufficient for final design; therefore, the following data should be considered preliminary in nature. The field test methods are briefly described in Appendix A of this report.

A summary of the field testing results is provided below in Table 3. The field-measured infiltration rates represent the vertical drop in the water level with time.

Infiltration Test No.	Approximate Test Depth (feet)	Measured Infiltration Rate (inches/hour)	Fines Content (%) at Test Depth
IT-1	3.5	12.5	0.5
IT-2	2.75	50	1.1
IT-3	3.5	0.1	7.1

Table 3 - Infiltration Test Data

As shown in Table 3, the infiltration rate at IT-3 in the east end of North Suttle Road was quite low; however, the fines content of the soil was not particularly high. It is possible that a thin silt layer was present within the soil "plug" at the base of the test casing. Such a layer could have impeded infiltration. Our test exploration at this location (IT-3) did not reveal such a layer, and we would expect the infiltration at this location to be similar to the other two tests (e.g., at least several inches per hour). Prior to final design of any stormwater infiltration systems, we recommend supplemental testing.

The designer should refer to *Section 7.0 – Infiltration System Design Recommendations* of this report for further discussion on the infiltration results.

5.0 CONCLUSIONS

Based on our explorations, testing, and analyses, the subsurface soil conditions are relatively uniform throughout the improvement area. The *in situ* site soils will generally provide good support for new pavement sections and are suitable for stormwater infiltration. Following is a summary of our key findings.

- The condition of the existing AC pavement in the project alignment is generally poor to fair. Much of the distress noted appears to be due to lack of maintenance, no edge of pavement confinement (e.g., no curb or gutters), and poor drainage gradients allowing ponding water.
- The *in situ* base and subgrade materials generally consist of a layer of gravelly fill underlain by sandy dredge fill. These soils are suitable for support of new pavements.

- The soils are generally sandy in nature and suitable for infiltration of stormwater. We note that our three infiltration tests resulted in unfactored infiltration rates of 12.5, 50, and 0.1 inches/hour. We believe the 0.1 inches/hour rate is not representative of general site conditions and can be ignored for preliminary design and planning. However, supplemental infiltration testing should be completed as part of final design.
- Our explorations, which extended as deep as 9 feet bgs, did not encounter groundwater, though it is mapped as being approximately 8 feet bgs. We recommend the groundwater level be monitored to verify an appropriate design elevation for the seasonal high groundwater.

The following sections present our recommendations for geotechnical aspects of roadway design and related development. Our geotechnical investigation and engineering analyses have been performed in accordance with generally accepted geotechnical practices. We have developed our conclusions and recommendations based on our current understanding of the project. If the nature of the project or the location of specific project elements are altered from those described in this report, Hart Crowser should be notified so we can confirm or modify our recommendations.

6.0 EARTHWORK RECOMMENDATIONS

Based on available information, we estimate mass grading for the proposed project will be limited, with shallow cuts and fills required for fine grading and to accommodate new aggregate base sections. All earthwork activities should be conducted in accordance with the City of Portland's *Standard Construction Specifications* (SCS) (Portland 2010), in particular section SCS 00330 – Earthwork, and the *Oregon Standard Specifications* (OSS) (ODOT 2015), including OSS 00330 – Earthwork, OSS 00400 – Drainage and Sewers, and OSS 02600 – Aggregates, depending on the application.

6.1 Site Preparation

6.1.1 General

Most of the near-surface site soils are granular and generally well drained; therefore, the soils are not significantly susceptible to moisture-related disturbance. However, we recommend working from existing pavement and base material wherever possible to reduce the potential for construction related disturbance.

6.1.2 Demolition

Demolition should include complete removal of existing site improvements within areas to receive new pavements, curbs, or sidewalks. Underground utility lines, vaults, or tanks that are to be abandoned should be completely removed or grouted full if left in place.

Voids resulting from removal of below grade structures or loose soil in utility lines should be backfilled with compacted fill, as discussed in *Section 6.2 - Structural Fill and Backfill*. The bases of such excavations should be completed to a firm subgrade before filling, and their sides sloped slightly to allow for more uniform compaction at the edges of the excavations.

8 North Suttle Road Improvements

Debris generated during demolition of existing improvements generally will not be suitable for reuse as fill. However, asphalt, concrete, and base material may be crushed and recycled for use as fill, provided it meets the appropriate specifications for the intended usage as outlined in OSSC, SCS and *Section 6.2 - Structural Fill and Backfill*.

6.1.3 Stripping

We anticipate limited stripping of organic materials will be required, except for in some localized landscaped areas at the edges of the roadway. Generally, visible organic material (sod, roots larger than 1/4-inch diameter, and/or other plant material), debris, and other unsuitable materials should be removed from the subgrade areas. Such material will not be suitable for use as structural fill and should be hauled off site as designated by the City.

6.1.4 Subgrade Preparation

Wherever possible, the contractor should work from existing paved surfaces and limit trafficking onto exposed soil subgrades. Following subgrade excavation, the suitability of the subgrade should be evaluated by Hart Crowser. Our explorations generally did not encounter loose or soft materials; therefore, proof rolling with a fully loaded dump truck or similar heavy rubber-tired construction equipment should be suitable for the site. If excessively loose or soft zones are identified during the evaluation, then additional subgrade excavation may be required. Otherwise, the subgrade should be compacted with a smooth-drummed vibratory roller to create a smooth, dense, unyielding surface.

6.2 Structural Fill and Backfill

Structural fill is considered to be any fill or trench backfill placed within the roadway alignment, including beneath sidewalks, curbs, gutters, and similar improvements. Stuctural fill should only be placed over a subgrade that has been prepared in accordance with *Section 6.1 - Site Preparation* of this report. A variety of soils may be used as structural fill, provided they are free of debris, clay balls, roots, organic matter, frozen soil, man-made contaminants, particles exceeding 4 inches in size, and other deleterious material. Structural fill should meet the appropriate specifications provided in SCS/OSSC 00330.12 – Borrow Material, 00330.13 – Selected General Backfill, or 00330.14 – Selected Granular Backfill.

Fill and backfill material should be placed and compacted in lifts with maximum uncompacted thicknesses and relative densities as recommended in the tables that follow in *Section 6.3 – Fill Placement and Compaction*.

6.2.1 On-Site Soils

In general, the *in situ* materials that may be excavated and reused as structural fill consist of gravelly and sandy soils, which should be suitable for use as structural fill. Additionally, the asphalt and aggregate base can be reused as aggregate base or structural fill, as noted below, provided it adheres to the fill requirements provided in this report, SCS and OSSC.

6.2.2 Recycled AC, PCC, and Aggregate Base

Existing AC, PCC, and aggregate base from the site can be used in general structural fill, provided they are thoroughly and uniformly crushed with no particles greater than 3 inches. If used as trench backfill, this material should not be used within the pipe zone. The recycled materials should meet the specifications provided in SCS/OSSC 00330.13 – Selected General Backfill.

6.2.3 Aggregate Base

Imported granular material used as aggregate base beneath pavements or slabs should be clean, crushed rock or crushed gravel and sand that is fairly well graded between coarse and fine. The base aggregate should meet the specifications provided in SCS/OSSC 02630.10 – Dense-Graded Base Aggregate, depending upon application. For use beneath sidewalks we generally recommend the rock have a maximum particle size of 0.75 or 1 inch.

6.2.4 Trench Backfill

Trench backfill placed beneath, adjacent to, and for at least 12 inches above utility lines (i.e., the pipe zone) should meet City and Oregon Department of Transportation (ODOT) specifications and consist of well-graded granular material with a maximum particle size of 3/4 inch and less than 10 percent by dry weight passing the U.S. Standard No. 200 Sieve, and should meet the specifications provided in SCS/OSSC 00405.13 – Pipe Zone Material.

Within roadway alignments, the remainder of the trench backfill up to the subgrade elevation should consist of well-graded granular material with a maximum particle size of 3 inches, have less than 10 percent by dry weight passing the U.S. Standard No. 200 Sieve, and meet the specifications provided in SCS/OSSC 00405.14 – Trench Backfill, Class A, B, or D.

6.2.5 Imported Select Structural Fill

Imported granular material used as structural fill during periods of wet weather should be pit or quarry run rock, crushed rock, or crushed gravel and sand and should meet the specifications provided in SCS/OSSC 00330.14 – Selected Granular Backfill, 00330.15 – Selected Stone Backfill, or 00330.16 – Selected Stone Embankment Material. The imported granular material should also be angular, relatively well graded between coarse and fine material, clean (indicating less than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve), and have at least two mechanically fractured faces.

6.3 Fill Placement and Compaction

Structural fill should be placed and compacted in accordance with SCS/OSSC 00330.43 – Earthwork Compaction requirements and the following guidelines.

- Place fill and backfill on a prepared subgrade that consists of firm, inorganic native soils prepared per Section 6.1 – Site Preparation, or approved structural fill.
- Place fill or backfill in uniform horizontal lifts with a thickness appropriate for the material type and compaction equipment. Table 4 provides general guidance for uncompacted lift thicknesses.

	Guidelines for Uncompacted Lift Thickness (inches)				
Compaction Equipment	Native Soils	Granular and Crushed Rock Maximum Particle Size <u><</u> 1½ inch	Crushed Rock Maximum Particle Size > 1½ inch		
Plate Compactors and Jumping Jacks	4 – 8	4 – 8	Not Recommended		
Rubber-Tire Equipment	6 – 8	10 – 12	6 – 8		
Light Roller	8 – 10	10 – 12	8 – 10		
Heavy Roller	10 – 12	12 – 18	12 – 16		
Hoe Pack Equipment	12 – 16	18 – 24	12 – 16		

Table 4 - Guidelines for Uncompacted Lift Thickness

Note: The above table is based on our experience, is intended to serve as a guideline, and should not be included in the project specifications.

Do not place fill and backfill until the required tests and evaluation of the underlying materials have been made and the appropriate approvals have been obtained.

- Limit the maximum particle size within the fill to two-thirds of the loose lift thickness.
- Control the moisture content of the fill to within 3 percent of the optimum moisture content based on laboratory Proctor tests. The optimum moisture content corresponds to the moisture content at the maximum attainable Proctor dry density.
- Perform a representative number of in-place density tests on structural fill in the field to verify adequate compaction.

During structural fill placement and compaction, a sufficient number of in-place density tests should be completed by Hart Crowser to verify that the specified degree of compaction is being achieved. For structural fill with more than 30 percent retained on the 3/4-inch sieve, proper compaction should be verified with a proof roll or other performance methods.

6.4 Excavation

6.4.1 General

Site soils within expected excavation depths generally consist of a sand and gravel with variable silt content. In our opinion, conventional earthmoving equipment in proper working condition should be capable of making necessary general excavations for utilities and other earthwork. Our explorations did not encounter cobbles or boulders within the maximum depths explored; therefore, we do not anticipate these materials to be present within excavation depths. However, some debris was present in the gravelly fill, so unknown materials could be present. The earthwork contractor should be responsible for providing equipment and following procedures as needed to excavate the site soils, as described in this report, while protecting the subgrade.

6.4.2 Temporary Cut Stability

Because of the variables involved, actual slope angles required for stability in temporary cut areas can only be estimated before construction. We recommend that stability of the temporary slopes used for construction be the responsibility of the contractor, since the contractor is in control of the construction operation and is continuously at the site to observe the nature and condition of the subsurface.

All temporary soil cuts associated with site excavations (greater than 4 feet in depth) should be adequately sloped back to prevent sloughing and collapse, in accordance with Occupational Safety and Health Administration (OSHA) guidelines. The stability and safety of cut slopes depend on a number of factors, including:

- The type and density of the soil;
- The presence and amount of any seepage;
- Depth of cut;
- Proximity and magnitude of the cut to any surcharge loads, such as stockpiled material, traffic loads, or structures;
- Duration of the open excavation; and
- Care and methods used by the contractor.

All excavations should be made in accordance with all local, state, and federal safety requirements. According to OSHA guidelines, we expect that the existing site sandy soils would be considered Type C.

If excavations deeper than approximately 7 feet are required, then groundwater may be encountered. Excavations below the groundwater table will run and slough, and will need to be shored.

It is the responsibility of the contractor to ensure that the excavation is properly sloped or braced for worker protection in accordance with OSHA guidelines. To assist with this effort, for planning purposes only, we make the following recommendations regarding temporary excavations.

- Protect excavations from erosion with plastic sheeting for the duration of the excavation to minimize surface erosion and raveling;
- Limit the maximum duration of the open excavation to the shortest time possible; and
- Place no surcharge loads (equipment, materials, etc.) within 10 feet of the top of excavations.

More restrictive requirements may apply depending on specific site conditions, which should be continuously assessed by the contractor.

If temporary sloping is not feasible, based on site spatial constraints, excavations could be supported by internally braced shoring systems, such as a trench box or other temporary shoring. There are a variety of options available. We recommend that the contractor be responsible for selecting the type of shoring system to apply. We note that box shoring is a safety feature used to protect workers and

12 North Suttle Road Improvements

does not prevent caving. If the excavations are left open for extended periods of time, then caving of the sidewalls may occur. The presence of caved material will limit the ability to properly backfill and compact the trenches. The voids between the box shoring and the sidewalls of the trenches should be filled with sand or gravel before caving occurs.

6.5 Dewatering and Temporary Drainage

While our explorations did not encounter groundwater, it is expected to be present at approximately 8 feet bgs. Utility excavations which extend this deep will require dewatering. Refer to *Section 3.3.4 - Groundwater* for a discussion of groundwater conditions at the site. Dewatering is typically the responsibility of the contractor. We anticipate that excavations below the water table will require well point dewatering. Failure to dewater can result in issues, such as base heave, sidewall caving and sloughing, increased backfill and haul off requirements, and project delays.

During grading at the site, the contractor should be made responsible for temporary drainage of surface water as necessary to prevent standing water and/or erosion of the working surface. During rough and finished grading of the roadway alignment, the contractor should keep subgrades free of water.

7.0 INFILTRATION SYSTEM DESIGN RECOMMENDATIONS

Our investigation and analysis indicates that the site soils are generally suitable for infiltration.

As discussed above, we found variable infiltration rates during our field testing. However, we believe that the 0.1 inch/hour rate found at IT-3 can reasonably be ignored for preliminary design and planning. We anticipate that the low rate was a local anomaly, possibly due to a thin silt layer within the test casing, as we found similar sandy soils adjacent to the exploration at this location.

As a reasonable basis for design of infiltration systems, we recommend the use of an unfactored infiltration rate of 12.5 inches/hour. We recommend that a factor of safety of 2 be applied to this value. Therefore, a preliminary design infiltration rate of 6.25 inches/hour may be assumed. We recommend the performance of supplemental field infiltration testing prior to construction to verify actual infiltration rates at the proposed system locations.

We also recommend groundwater levels be monitored to verify the seasonal high groundwater level.

8.0 PAVEMENT DESIGN AND CONSIDERATIONS

8.1 General

Paving for the project includes new and possibly rehabilitated pavements. We evaluated flexible hotmixed asphaltic concrete (HMAC) and rigid Portland cement concrete (PCC) pavements. Pavements should be constructed in accordance with SCS/OSSC 00744 – Asphalt Concrete Pavement and 00756 – Plain Concrete Pavement.

8.2 Roadway Traffic

The following traffic loading criteria for the pavement design were based on guidelines found in the *ODOT Pavement Design Guide* (ODOT 2011), our engineering assumptions, and traffic data provided by Kittleson & Associates.

- Alternative design lifes of 20 and 50 years for new and rebuilt HMAC sections, and a 15-year design life for rehabilitated HMAC sections
- Alternative design lifes of 30 and 50 years for new PCC sections
- Annual traffic growth values of 0 percent and 2 percent (Both values are provided, as we are unsure of the appropriate growth rate.)
- Average daily traffic (ADT) values of 1,891 vehicles per day (two-way traffic)
- Vehicle distribution and equivalent single axle load (ESAL) annual factors, as shown in Table 5

FLIMA Classification	Demonstration of ADT	ODOT Annua	I ESAL Factor
FHWA Classification	Percentage of ADT	HMAC	PCC
Туре 1, 2, 3	50%	0	0
Type 4	2.5%	246	269
Type 5	13.7%	104	99
Туре 6	11.0%	284	417
Туре 7	0.1%	757	1199
Туре 8	6.1%	253	277
Туре 9	3.3%	466	715
Type 10	1.0%	561	912
Type 11	0.2%	603	606
Type 12	C.3%	546	663
Type 13	1.6%	1037	1660
Unclassified	10.3%	n/a	n/a

Table 5 - Vehicle Distribution

Notes: Unclassified vehicles were re-distributed on a proportional basis.

Based on the data in Table 5, we calculated the ESAL values summarized in Table 6.

Table 6 - ESAL Values

Annual Growth	Rehabilitated HMAC	New HMAC ESAL		New PCC ESAL	
Rate (%)	15-year ESAL	20-year	50-year	30-year	50-year
0	1,693,418	2,257,891	5,644,727	4,590,682	7,651,137
2	2,279,118	3,355,107	15,193,281	8,315,385	20,593,708

8.3 Design Parameters

The following pavement design parameters were based on guidelines found in ODOT (2011) and American Association of State Highway and Transportation Officials (AASHTO) *Guide for Design of Pavement Structures* (AASHTO 1993).

- Average resilient modulus of 6,000 psi for *in situ* soil and fill subgrade
- A resilient modulus of 20,000 psi for base rock
- Initial serviceability indices of 4.2 and 4.5 for HMAC and PCC, respectively
- Terminal serviceability index of 2.5 for both HMAC and PCC
- Standard deviations of 0.49 and 0.39 for HMAC and PCC, respectively
- Reliability of 75 percent based on the roadway's classification as a Local Access Road
- Structural coefficients of 0.42 and 0.10 for new HMAC and base rock layers, respectively
- Structural coefficient of 0.25 for existing HMAC layers
- Modulus of rupture of 575 psi and elastic modulus of 3,600,000 psi for PCC layers
- An effective modulus of subgrade reaction with a 6-inch aggregate base layer of 350 psi/inch.

If these assumptions are incorrect, then we should be contacted to re-evaluate our recommendations.

8.4 Pavement Sections

8.4.1 General

The following section describes options for new and rebuilt pavements. Based on the scope of the project and existing site conditions, we anticipate that either full-depth HMAC reclamation or new PCC will be the likely choice for the new roadway. However, it may be feasible to use grind-and-inlay techniques if the roadway geometries allow this approach. Per ODOT (2011), new HMAC pavement sections have a minimum 20-year design life, new PCC sections have a minimum 30-year design life, while rehabilitated (e.g., grind and overlay) HMAC pavements have a 15-year design life. Additionally, the City is also considering using a 50-year design life. We have evaluated all of these design life options below.

For grind-and-inlay sections, we have assumed the existing pavement section is 5.5 inches thick, which is slightly less than the actual average AC thickness. It should be understood that if grind-and-inlay is used over the existing pavement sections, cracks may develop where underlying joints are present at widened sections. Where existing potholes or severe distress is present in the existing pavement, those areas of distress will need to be repaired prior to grind-and-inlay activities.

Tables 7 and 8 summarize section options for new and rehabilitated HMAC pavements, respectively. For new pavement sections, we evaluated 0 and 2 percent growth rates, and also provided pavement sections that match the City's standard 8-inch aggregate base section and alternative sections that have thinner HMAC layers and thicker aggregate base layer. Additionally, 20- and 50-year design life alternatives are provided.

Design Life	Annual Growth Rate	HMAC (inches)	Aggregate Base (inches)	Subgrade
20 years	0 percent	6.0	14.5	Compacted <i>in</i> <i>situ</i> soil.
		7.5	8.0	
	2 percent	6.5	15.0	
		8.0	8.0	
50 years	0 percent	7.0	16.0	
		9.0	8.0	
	2 percent	8.5	17.0	
		10.5	8.0	

Table 7 - New HMAC Pavement Sections

Table 8 - Rehabilitated HMAC Pavement Sections

Design Life	Annual Growth Rate	Grind Depth (inches)	Overlay Thickness (inches)	Subgrade
15 years	0 percent	2.0	7.0	Existing HMAC
	2 percent	2.0	7.5	and base.

Table 9 summarizes section options for new PCC pavements.

Table 9 - New PCC Pavement Sections

Design Life	Annual Growth Rate	PCC (inches)	Aggregate Base (inches)	Subgrade
30 years	0 percent	8.3	6.0	Compacted <i>in</i> <i>situ</i> soil.
	2 percent	9.2		
50 years	0 percent	9.1		
	2 percent	10.7		

8.5 Pavement Materials and Construction

8.5.1 HMAC

The HMAC should consist of 1/2-inch dense-graded, Level 3, PG 64-22 material meeting the specifications of OSSC 00744 – Asphalt Concrete Pavement. The HMAC should be placed in lifts with minimum and maximum lift thickness of 2 and 3 inches, respectively, and be compacted to a minimum 92 percent of Rice Density of the mix, as determined in accordance with American Society for Testing and Materials (ASTM) D 2041.

8.5.2 PCC

PCC used should meet the specifications provided in SCS/OSSC 00756 – Plain Concrete Pavement. The installed concrete should be Class 4000 1-1/2-inch paving concrete per SCS/OSSC 02001 - Concrete. The PCC should be constructed with a maximum joint spacing of 15 feet. The slabs shall be interlocked at contraction joints (e.g., continuous slab with no dowels). However, dowels should be used at construction and expansion joints. Dowels should be smooth, round, 1.25-inch-diameter bars that are greased on one end. The dowels should be at least 18 inches long or twice the PCC thickness, which ever is greater. PCC joints and downs should be constructed in accordance with SCS/OSS 00756.48 – Joints and OSS 00756.43 – Placing Dowels Bars.

8.5.3 Aggregate Base

Imported granular material used as aggregate base (base rock) beneath conventional AC pavement should meet the criteria specified in *Section 6.2 - Structural Fill and Backfill*.

8.5.4 AC Grinding

Grinding of existing AC should be completed in conformance with SCS/OSSC 620 – Cold Plane Pavement Removal.

9.0 CONSTRUCTION OBSERVATIONS

Satisfactory pavement and earthwork performance depends to a large degree on quality of construction. Sufficient monitoring of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. Subsurface conditions observed during construction should be compared with those encountered during subsurface explorations. Recognition of changed conditions often requires experience; therefore, Hart Crowser or their representative should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated.

We recommend that Hart Crowser be retained to monitor construction at the site to confirm that subsurface conditions are consistent with the site explorations and to confirm that the intent of project plans and specifications relating to earthwork, infiltration, and paving are being met. In particular, we recommend that subgrade preparation, as well as placement and compaction of structural backfill, aggregate base, and asphalt pavement, and infiltration system installation be observed and/or tested by Hart Crowser.

10.0 LIMITATIONS

We have prepared this report for the exclusive use of MFA and their authorized agents for the proposed North Suttle Road Improvements project in Portland, Oregon in accordance with our subconsultant agreement. Our report is intended to provide our opinion of geotechnical parameters for design and construction of the proposed project based on exploration locations that are believed to be representative of site conditions. However, conditions can vary significantly between

exploration locations and our conclusions should not be construed as a warranty or guarantee of subsurface conditions or future site performance.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty, express or implied, should be understood.

Any electronic form, facsimile, or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by Hart Crowser and will serve as the official document of record.

11.0 REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO) 1993. AASHTO Guide for Design of Pavement Structures, 1993.
- Beeson, M.H., et al 1991. *Geologic Map of the Portland Quadrangle, Multnomah and Washington Counties, Oregon and Clark County, Washington*, Oregon Department of Geology and Mineral Industries, GMS-75, scale 1:24,000.
- Occupational Safety and Health Administration (OSHA) Technical Manual Section V: Chapter 2, Excavations: Hazard Recognition in Trenching and Shoring: <u>http://www.osha.gov/dts/osta/otm/otm_v/otm_v_2.html</u>.
- Oregon Department of Transportation (ODOT) 2015. Oregon Standard Specifications for Construction (OSSC).
- ODOT 2011. ODOT Pavement Design Guide.
- Portland 2016. Stormwater Management Manual, City of Portland, Oregon.
- Portland 2010. Standard Construction Specifications, City of Portland, 2010.
- Snyder, D.T. 2008. *Estimated Depth to Ground Water in The Portland, Oregon Area,* U.S. Geological Survey Scientific Investigations Report 2008-5059.
- Trimble, D.E. 1963. *Geology of Portland, Oregon and Adjacent Areas*, U.S. Geological Survey Bulletin 1119, scale 1:62,500.

F:\Notebooks\1594104_N Suttle Road Improvements\Deliverables\Report-Geotech-FINAL 08-15-17\N Suttle Road-Geotech Report.docx

Document Path: \\pdxsrv\data\Notebooks\1594104_N Suttle Road Improvements\GIS\1594104_VM.mxd Date: 8/2/2017 User Name: melissaschweitzer

APPENDIX A Field Explorations

APPENDIX A

Field Explorations

This appendix documents the processes Hart Crowser used to determine the nature (and quality) of the soil and groundwater underlying the project site addressed by this report. The discussion includes information on the following subjects:

- Explorations and Their Locations,
- Pavement Cores,
- Borings, and
- DCP Testing.

Explorations and Their Locations

Members of our engineering and geologic staff completed subsurface explorations for this project that included eight pavement cores, soil borings, and DCP probes, separately, and three field infiltration tests. The exploration logs in this appendix show our interpretation of the explorations, sampling, and testing data. The logs indicate the depths where the soils change. Note that soil changes may be gradual. In the field, we classified the samples taken from the explorations according to the methods presented on the *Key to Exploration Logs*. This key also provides a legend explaining the symbols and abbreviations used in the logs.

Figure 2 of the report illustrates the locations of the explorations. Exploration locations were estimated in the field based on existing landmarks.

Pavement Cores

Asphalt cores were obtained using a pavement coring machine operated by Hart Crowser field representatives. The asphalt concrete cores were collected and delivered to our laboratory. The core information is included in the main body of the report and photographs of the cores are presented in Appendix C.

Borings

The borings were manually advanced using a hand auger. The auger was approximately 3 inches in diameter and the auger was advanced by a geotechnical staff member from Hart Crowser. Disturbed samples were collected from the drill spoils at discrete depths noted on the logs. Samples from all borings were placed in watertight bags and delivered to Hart Crowser's laboratory.

DCP Testing

The DCP consists of a steel extension shaft assembly with a 60-degree hardened steel cone tip attached to one end, which is driven into the subgrade by means of a sliding dual mass hammer. Testing was conducted in accordance with ASTM D 6951/D 6951M-09. Testing provides an evaluation of in-place California Bearing Ratio and Resilient Modulus values for the subgrade. DCP testing was conducted by member of Hart Crowser's geotechnical engineering and geologic staff.

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. ASTM D 2488 visual-manual identification methods were used as a guide. Major divisions are not necessarily an indicator of soil behavior, which is a function of fines content activity and loading rate.

Figure A-1 1 of 1 Sheet

Grab Grab

Cuttings

<5

-

-

-

10

25

45

5

15

30

Sample Data Depth to								r Drop He	eight (i nated: : <u>NA</u>	inches) NA	: <u>NA</u>		
Elevation (feet) Depth (feet)		Length (inches)		Graphic Log		Material Description		10	2	₩C ● 0 3	0 4	0	Depth (feet)
- 0.0	-			1 4 4 4 1 4 4 4	Asphalt (5.5-inch thick) Portland Cement Concrete (6.5-inc	h thick)							-0.0
		6	<u>S-1</u> WC		Dry, light brown, POORLY GRADE	D SAND (SP), fine sand, few	 / gravel.	•	• • • • • • •				
2.5	-	6	<u>S-2</u> WC		grades to no gravel								-2.5
			WC		Bottom c	of Borehole at 4.0 feet.							 _
2.5	-												- -5.0 - -
Gener 1. Refe 2. Mat unita 3. USC 4. Gro	-												- -7.5 -
	-												_
Gener 1. Ref 2. Mat unit: 3. USC 4. Gro	er to erial s. D CS d	Fig des ash esig	ure A-1 for scriptions ar ed stratum l jnations are	nd stra lines i base	nation of descriptions and symbols. Itum lines are interpretive and actual change ndicate gradual or approximate change betw d on visual-manual identification (ASTM D 24 d, is at time of drilling/excavation (ATD) or fo	een material strata or geologic unit 488) unless otherwise supported by	s. / laboratory testing (ASTM			erial str	rata or g	geologi	ic
	1		RO WSE		Project: North Suttle Road Impro Location: Portland, Oregon Project No.: 15941-04		Hand-Auger HC-1	Log		Figur Shee		A- 2 1 of	

Logged by: A. Chavez Location: N: 718,312.47 E: 7,6 Ground Surface Elevation: Horizontal Datum: OR State Pla Vertical Datum:	Date Completed: <u>6/30/17</u> Checked by: <u>J. Robinson</u> 335,729.61 ane N, NAD 83, ft.	Drilling Method: Hand Auge Rig Model/Type:	Pr NA Hammer D asured: <u>NA</u> Casing Dia	Drop Height ((inches): NA	NA	
Elevation (feet) Type Length (inches) Craphic Log Graphic Log		Material Description		10 2	WC • 20 30	0 40	Depth (feet)
	Asphalt (5.5-inch thick) Portland Cement Concrete (6-inch f Dry, light brown, POORLY GRADE		-) 			0.0
	Bottom o	of Borehole at 4.0 feet.		•			
							5.0 - - -
General Notes: 1. Refer to Figure A-1 for expla 2. Material descriptions and stratum lines 3. USCS designations are base 4. Groundwater level, if indicate HARTCROWSER							7.5 - - -
General Notes: 1. Refer to Figure A-1 for expla 2. Material descriptions and str units. Dashed stratum lines 3. USCS designations are base 4. Groundwater level, if indicate	nation of descriptions and symbols. atum lines are interpretive and actual changes indicate gradual or approximate change betwe ad on visual-manual identification (ASTM D 24 ed, is at time of drilling/excavation (ATD) or fo	reen material strata or geologic units. 488) unless otherwise supported by lak	poratory testing (ASTM D		iterial stra	ata or g	eologic
HARTCROWSER	Project: North Suttle Road Impro Location: Portland, Oregon Project No.: 15941-04		Hand-Auger Lo	g	Figure Shee		A-3 1 of 1

Lo Lo Gi	Date Started: 6/30/17 Date Completed: 6/30/17 Logged by: A. Chavez Checked by: J. Robinson Location: N: 718,103.66 E: 7,636,103.81 Ground Surface Elevation:							Drilling N Rig Mod Hammer	lethod: <u>Hanc</u> el/Type: Type:			er Drop Height	(inches): NA		
Ve	ertical D	atum:						Hammer Auger Di	Efficiency (%	b): Measured: ches	NA Casing		1: <u>NA</u>		
Elevation (feet)	O O Depth (feet)	Graphic Log	Asphalt (7-ii	nch thick)				Mate Descri	rial		Deput		er. <u>Not identi</u>		O Depth (feet)
	_		Dry, gray ar	d brown, W	ELL-GRAD	DED GRAV		SAND (G ⁾ Refusal at		nded to suba	 angular gra	vel, up to 2-i	nch diamete	 er.	-
EXPLORATIONS.GPJ	- 2.5 —														- 2.5
IMPROVEMENTS\FIELD DATA\PERM_GINT\1594104_EXPLORATIONS.GPJ	-														-
EMENTS/FIELD DATA/F	- 5.0 —														- -5.0
	-														-
300KS\1594104_N SU	- 7.5 —														- -7.5
HC BORING LOG - F:\GINTHC_LIBRARY.GLB - 7/24/17 13:45 - F:\NOTEBOOKS\1594104_N SUTTLE ROAD	-														_
LIBRARY.GLB - 7/2	- Seneral	Notes													_
LOG - F:/GINT/HC	. Refer 2. Mater units. 3. USCS	to Figu ial des Dashe desig	ure A-1 for expla criptions and stra ed stratum lines nations are base r level, if indicate	atum lines are indicate gradu ed on visual-m	interpretive a ual or approximanual identific of drilling/exca	and actual ch mate change cation (ASTM avation (ATD)	between ma 1 D 2488) ur) or for date	aterial strata nless otherw specified. L	or geologic u ise supported	inits. by laboratory			aterial strata o	r geologi	c
HC BORING	E Har	TCR	OWSER	Project: Location: Project No	North Sut Portland, o.: 15941-04		nproveme	ents		F	land-Auger HC-3		Figure Sheet	A-4 1 of	

						6/30/17		Drilling Contra						
			<mark>⊺risler</mark> 7,932.90 E: 7,6					Drilling Metho Rig Model/Typ						
Gro	ound S	urface	Elevation:					Hammer Type	e:					
			n: OR State Pla								_ Hammer Drop Heigh	· · · ·		
Ver	tical D	atum:								leasured: <u>NA</u> s		d: <u>NA</u>		
		.s						Total Depth:		5	_ Depth to Ground Wa			
														—
et)														
Elevation (feet)	eet)	bo						Material						set)
atio	Depth (feet)	hic						Descriptio	n					Depth (feet)
Ele	Dep	Graphic Log												Dep
F	0.0	0	Asphalt (8-ir	nch thick)										+0.0-
				,										
	_			d brown W		ED GRAVEL	WITHS		angular gr					-
	_		Bry, gray an	la bronni, m				, and (on), c	angalar gr					-
2	-	•												-
5.0							R	efusal at 1.7	feet.					1
ATIO														Γ
LOR	2.5 -													-2.5
94104	-													-
11155														
20	_													_
ERM	_													
ATAF														
	_													-
STE														
ENT	5.0 -													-5.0
IMPROVEMENTS/FIELD DATAPERM_GINIV1584104_EXPLORATIONS.GPJ														
ИРКС	_													
	_													_
Ч														
	-													-
z														
94104	-													-
S/15	7.5 —													-7.5
Ď	1.5													1.5
	_													-
Ž.														
3:45 -	-													-
/17.1														
- 7/24	-													Ē
GLB	_													
ARY.														
	eneral	Notes:												<u> </u>
0HL 2			re A-1 for expla				aes may be	a aradual Solid	t stratum ling	as indicata dist	inct contact between m	aterial strata o	r aqologi	ic
	units.	Dashe	d stratum lines	indicate gradu	ual or approxir	mate change be	etween mat	erial strata or ge	eologic units	i.		atonai su ata U	, acologi	5
ມ 3. ປີ 4.			nations are base level, if indicate								ng (ASTM D 2487).			
				Project:		ttle Road Imp								
				Location:	Portland,						l-Auger Log	Figure	A-{	
ម្ពី អ	I AR	TCR	OWSER	Project No	o.: 15941-04						HC-4	Sheet	1 of	1

Logged Locatio Ground Horizon Vertical	by: Surf Ital D Datu ents:	<u>D.</u> I: 71 face Datur	17,711.63 E e Elevation: m: <u>OR Sta</u>	E: 7,63 te Plai	Checked by: J. Robinson Drilling Method: Hand 6,781.45 Rig Model/Type: Hammer Type: Hammer Type: N NAD 83, ft. Hammer Weight (pound	Auger ds): <u>NA</u> Hammer Drop H : Measured: <u>NA</u> Estin	eight (inches): <u>N</u> nated: <u>NA</u> : <u>NA</u>	IA	
Elevation (feet) Depth (feet)		th (inches)	Number	Graphic Log	Material Description		WC ●		Depth (feet)
- 0.0		L.	Tests	5	Asphalt (5.75-inch thick) Moist, brown, WELL-GRADED GRAVEL WITH SAND (GW), . diameter.	5 to 1.25-inch	20 30	40	-0.0
2.5		6	<u>S-1</u> WC		Moist, brown, POORLY GRADED SAND WITH SILT (SP-SM) nodules.	fine sand with silt	•		
		6	<u>S-2</u> WC		Moist, light brown, POORLY GRADED SAND (SP), fine sand.	•			
2.5 6.0 7.5 7.5 7.5 7.5 7.5 7.5									-
51 / FREI 1000-1000-1- 67-61 -	-								- -7.5 - -
Gener 1. Ref 2. Mat 2. Mat 3. USC 4. Gro	er to erial s. D CS d	Fig des ash esig	ure A-1 for scriptions ar ed stratum l jnations are	ind stra lines in based	ation of descriptions and symbols. tum lines are interpretive and actual changes may be gradual. Solid stratum idicate gradual or approximate change between material strata or geologic u on visual-manual identification (ASTM D 2488) unless otherwise supported I, is at time of drilling/excavation (ATD) or for date specified. Level may vary	hits. by laboratory testing (ASTM D 2487)		or geologic	
	1		RO WSE	_	Project: North Suttle Road Improvements Location: Portland, Oregon Project No.: 15941-04	Hand-Auger Log HC-5	Figure Sheet	A-6 1 of ²	

C BORING L	E Har	TCR	OWSER	Project: Location: Project No	Portland	uttle Road Ir , Oregon)4	mprovemer	its			d-Auger Log HC-6	Figure Sheet	A-7 1 of 1	
OG - F:\GINT\HC	1. Refer 2. Mater units. 3. USCS	to Figu ial dese Dashe desigi	re A-1 for expla criptions and stra ed stratum lines nations are base	atum lines are indicate gradu ed on visual-ma	interpretive al or approxi anual identifi	and actual ch imate change ication (ASTM	between mat /I D 2488) unl	erial strata or geol	logic units. ported by l	aboratory test	inct contact between m ing (ASTM D 2487).	aterial strata or	geologic	
LIBRARY.GLB - 7/24/17 1	- General	Notes											_	
HC BORING LOG - F:\GINTHC_LIBRARY.GLB - 7/24/17 13:45 - F.\NOTEBOOKS\1594104_N SUTTLE ROAD	7.5 — - -	-											-7	7.5
	-	-											_	
MPROVEMENTS/FIELD DATA/PERM_GINT/1594104_EXPLORATIONS.GPJ	- 5.0 —	-											5	5.0
PERM_GINT\1594104_EX	-	-											-	
PLORATIONS.G	- 2.5 -						R	efusal at 1.8 fe	et.				-2	2.5
٦c	-		Dry, brown, fragments.		DED GRA	ĀVĒL WITH	SAND (GV	V), rounded gra	ivel, .5-in	ich to 2-inch	i diameter gravel, fe	w brick		
L Eleviation (feet)	O Depth (feet)	Graphic Log	Asphalt (4.5	-inch thick)				Material Description						O Depth (feet)
V	ertical D)atum:						Hammer Efficien Auger Diameter: Total Depth: <u>1.8</u>	ncy (%): M : <u>4 inches</u>	easured: <u>N</u> A	Estimated	4: <u>NA</u>		- - -
L G	ocation: round S	<u>N: 71</u> Surface	Trisler 7,520.37 E: 7,6 Elevation: n: OR State Pla	Chec 37,120.85	ked by: <u>J. F</u>	Robinson		Hammer Type:	·		Hammer Drop Height			-
	ate Star				Completed:			Drilling Contracto	-					_

Logged Locatior Ground Horizont Vertical	by: <u>N</u> Surf tal D Datu	D. Trisler : 717,149.67 ace Elevation atum: <u>OR St</u> .m:	<u>E: 7,63</u> : ate Pla	Date Completed: 7/1/17 Checked by: J. Robinson 37,752.99 ne N, NAD 83, ft.	Drilling Method: Hand Au Rig Model/Type:	uger): <u>NA</u> Hamme Measured: <u>NA</u> 25 Casing I	r Drop Height Estimated Diameter: <u>N</u> /	(inches): <u>NA</u> : <u>NA</u>		
Elevation (feet)		Sample Data (iuches) Number Tests	Graphic Log		<u>7 total Depth:</u> <u>2 feet</u>	Depth to	0 Ground Wat	WC 20 30	40	Depth (feet)
- 0.0 ·	-	6 <u>S-1</u> WC		Asphalt (6-inch thick) Moist, brown, WELL-GRADED GRA .5-inch to 2-inch diameter gravel. Moist, light brown, POORLY GRADI diameter gravel.		-				
IONS: C		WC		grades to with cobbles	fusal at 2.0 feet.					+
2.5.	-			ι κει						-2.5
104_N SUTTLE KOAD IMPROVEMENT SIFIEL 0.5										-5.0
0. 5. 5. Signing: LIBKARY.GLB - 7/24/17 13:45 - F.:NOTEBOOKS/1564104_N SUTTLE ROAD IMPROVEMENTS/FIELD DATAPERM_GINI/1564104_EXPLORATIONS.GPJ 0. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.										-7.5
Genera JHU 2. Mate 2. Mate units 3. USC 4. Grou	er to erial s. Da CS de	Figure A-1 for descriptions a ashed stratum esignations ar	ind stra lines i e base	nation of descriptions and symbols. Itum lines are interpretive and actual changes dicate gradual or approximate change betwe d on visual-manual identification (ASTM D 244 d, is at time of drilling/excavation (ATD) or for	een material strata or geologic units 88) unless otherwise supported by	s. laboratory testing (ASTM		aterial strata c	or geologi	ic,
	R T (CRO W SI	ER	Project: North Suttle Road Improv Location: Portland, Oregon Project No.: 15941-04	vements	Hand-Auger HC-8	Log	Figure Sheet	A- 9 1 of	

Date Started: 6/30/17 Date Completed: 7/1/17 Drilling Contractor/Crew: Hart Crowser Logged by: A. Chavez Checked by: J. Robinson Drilling Method: Hand Auger Location: N: 718,374.36 E: 7,635,581.88 Rig Model/Type: Hammer Type: Ground Surface Elevation: Horizontal Datum: OR State Plane N, NAD 83, ft. Hammer Weight (pounds): NA Vertical Datum: OR State Plane N, NAD 83, ft. Hammer Efficiency (%): Measured: NA Estimated: NA Comments:													
					T	otal Depth: <u>9 feet</u>	Depth to	Groun	d Wate	r: <u>Not</u>	Identifie	ed	
Elevation (feet) Depth (feet)		Length (inches)	<u>Number</u> Tests	Graphic Log	Mater Descrip					WC ercent F		0	Depth (feet)
— 0.0 ·	_				Dry, gray-brown, WELL-GRADED GRAVEL angular gravel, up to 3 inch gravel, trace cor	WITH SAND (GW), su acrete debris.	ubangular to						0.
2.5 -	-				Moist, light brown, POORLY GRADED SAN gravel.	D (SP), fine sand, trac	e rounded						 2.8
	6 S-1 GS, WC					. See text for additiona	al details.	1					
5.0 -	-												 5.
	_												
7.5 -	-				grades to gray-brown			······					 7.
	-	6	<u>S-2</u> GS, WC		grades to moist to wet			1	•				
	8		63, WC		Bottom of Boreho	le at 9.0 feet.		1					+
2. Mate units 3. USC	er to erial 5. Da S de	Figur desci asheo esign	riptions and d stratum li ations are	d stra nes ir based	ation of descriptions and symbols. tum lines are interpretive and actual changes may be g dicate gradual or approximate change between materi- l on visual-manual identification (ASTM D 2488) unless d, is at time of drilling/excavation (ATD) or for date spec	radual. Solid stratum lines al strata or geologic units. otherwise supported by la	boratory testing (ASTM			erial str	rata or (geologi	c
				_	Project: North Suttle Road Improvements Location: Portland, Oregon Project No.: 15941-04		Hand-Auger	Log		Figur Shee		A-1 1 of	

Date Start					itractor/Crew: <u>Hart Crowser</u> hod: Hand Auger							
ocation:	N: 1	17,826.22	E: 7,63	36,603.64 Rig Model/	Гуре:							
					/pe:		D	1-:				
					ficiency (%): Measured: NA	Hammer I						
						Casing Di						_
	· _			Total Depth		Depth to (Identifie	ed	_
	ŝ	mple Data										Ŧ
<u>-</u>												
Elevation (leet) Depth (feet)		es)	D	Material					WC			
Elevation (le Depth (feet)		Number Tests	Graphic Log	Description					•			
epth	a		aphi					X Pe	ercent F	ines		
ш — 0.0 —	ź	Tests	ō				1	0 2	0 3	0 4	0	
0.0				Dry, gray-brown, POORLY GRADED GRAVEL WITH angular gravel, gravel to 3 inches, trace concrete and	H SILT (GP-GM), subangu	lar to						
_			Pat	angular graver, graver to 5 mones, trace concrete and	a asphalt deblis.							
			٥Ŷ									
_			5 H									
			.0									
_			КФ									
			Hلامح •	Dry, brown, WELL-GRADED SAND WITH GRAVEL	(SW), fine sand, angular							
_			•	gravel.		.		• • • • • • • •				
2.5 -		6		Moist, light brown, POORLY GRADED SAND (SP), f	ine sand trace red mottle		1					
	31	<u>S-1</u> GS, WC		Infiltration test conducted at 2.75 feet. See te								
-	엑											
-						ļ.		• • • • • • • •				
-										• • • • • • • •		
						ł						
-	8	6 S-2				1	1			• • • • • • • •		
	8	<u>S-2</u> GS, WC										
5.0 -												
_												
_												
_												
						ļ						
_		6		grades to red-brown		.	 2					
	31	<u>S-3</u> GS, WC					ĸ		•			
7.5 -	엑					F						-
-	3	6 5-1	TIT	Moist to wet, red-brown, SILT WITH SAND (ML), Iow	plasticity, fine.	<u> </u> .		• • • • • • • •				
		<u>S-4</u> GS, WC				ļ				•		2
f	1					·		• • • • • • • •	• • • • • • • •	•••••		
				Bottom of Borehole at 9.0	feet.							1
eneral . Refer			explar	nation of descriptions and symbols.								
. Materi	al de	scriptions a	nd stra	tum lines are interpretive and actual changes may be gradual. So		ict contact	betwe	en mat	erial str	ata or g	geolog	ļio
USCS	des	gnations ar	e base	ndicate gradual or approximate change between material strata on d on visual-manual identification (ASTM D 2488) unless otherwise	supported by laboratory testin	g (ASTM I	D 2487	7).				
				d, is at time of drilling/excavation (ATD) or for date specified. Leve								_
				Project: North Suttle Road Improvements	Hand	Auger Lo	na		Figur	e	A- 1	
				Location: Portland, Oregon			ร		-			
HAR	TC	ROWSI	ER	Project No.: 15941-04		T-2			Shee	et.	1 of	1

								Hart Crowser						
							rilling Method: <u>Hand Au</u>	ger						—
G	round	Surf	ace	Elevation:	7,00									
н	orizon	tal D	atun	n: OR Stat	e Pla	ne N, NAD 83, ft. Ha	ammer Weight (pounds)	: <u>NA</u> Hamme	r Drop H					
							ammer Efficiency (%): M uger Diameter: <u>4 inches</u>	leasured: <u>NA</u>						
	JIIIIIE	:i ii.5.					otal Depth: 8 feet							
			Sam	ple Data										—
()	-			pio Dala										
Elevation (feet)	et)		(inches)		bo	Materia					WC			set)
atior	Depth (feet)				lic L	Descript	ion			X Pe	ercent F	ines		Depth (feet)
Elev	Dep	ype	Length	<u>Number</u> Tests	Graphic Log									Dep
F	0.0	-	-	10313	٥ ۲	Dry, light brown, SILTY GRAVEL (GM), suba	ingular to angular gra	avel, up to 3-inch	1	0 2	0 3	0 4	0	-0.0
					ЫÇ	diameter gravel.		, - p -						
		-			60									· -
					КС						- 			
					6									Γ
		_			[0C									
GPJ					[4]									
ONS			6			Moist, red-brown, POORLY GRADED SAND plasticity, trace subrounded to rounded grave	에 이미 이미 (아이아)	i), line, low						÷
RATI				S-1										
(PLO	2.5	-												-2.5
4 1														
9410		\boxtimes	6	S-2					7					+
AT/16				<u>S-2</u> GS, WC					X	•				L
d GI						Infiltration test conducted at 3.6 feet.	See text for addition	nal details.						Γ
PERV														
ATA/F														
D D		-												. -
S/FIE														
ENT	5.0	-				Moist, gray, SILTY SAND WITH GRAVEL (S	M), subrounded to re	ounded gravel, up						-5.0
NEM						to 3-inch diameter gravel.								
IPRO														T
AD IN														L
C RO		\bigotimes	6	<u>S-3</u> GS, WC						13 X •				
Ē				GS, WC										. _
N SL														
104		-												+
\1594														
OKS	7.5	X	6	S_4								32		-7.5
TEBC				<u>S-4</u> GS, WC						•		X		
ON.		T				Bottom of Borehol	e at 8.0 feet.							Γ
45 - F		_												F
7 13:														
/24/1		-												-
-B-7														
₹Y.GI		-												F
BRAF														
	Gener			re Δ-1 for e	ynlar	ation of descriptions and symbols.								
	2. Mat	erial	desc	riptions an	d stra	tum lines are interpretive and actual changes may be gr			ct betwe	en mat	erial st	rata or g	geologi	с
	3. USO	CS d	esigr	nations are	base	ndicate gradual or approximate change between materia d on visual-manual identification (ASTM D 2488) unless	otherwise supported by	laboratory testing (ASTN	I D 248	7).				
g L	I. Gro	undv	vater	level, if ind	licate	d, is at time of drilling/excavation (ATD) or for date spec	ified. Level may vary with	h time.						
SING						Project: North Suttle Road Improvements		Hand-Auger I	_og	T	Figur	e	A-1	2
		RT	(P	owse	R	Location: Portland, Oregon Project No.: 15941-04		IT-3	-		Shee		1 of	
Ξ Γ	1/.	~ /'		~**3Ľ	n	FT0ject NO. 10941-04					_		-	

APPENDIX B Laboratory Testing

APPENDIX B

Laboratory Testing

A limited geotechnical laboratory testing program was performed for this study to evaluate the basic index and geotechnical engineering properties of the site soils. Testing was completed at our in-house laboratory in our Portland, Oregon office. The tests performed and the procedures followed are outlined below.

Soil Classification

Soil samples were visually classified in our laboratory to verify the field classifications in a relatively controlled laboratory environment. Classifications were made in general accordance with the Unified Soil Classification System (USCS) and ASTM Test Method D 2487.

Water Content Determinations

Water contents were determined for select samples recovered in the explorations in general accordance with ASTM Test Method D 2216. The test results are shown on the appropriate exploration logs included in Appendix A and shown on Figure B-1 in this appendix.

Fines Content Analyses

Fines content analyses were performed to determine the percentage of soils finer than the No. 200 sieve—the boundary between sand and silt size particles. The tests were performed in general accordance with ASTM Test Method D 1140. The test results are indicated on the appropriate exploration log included in Appendix A and on Figure B-1 in this appendix.

Sieve Analyses

Sieve analysis tests were performed on selected samples to determine the quantitative distribution of particle sizes in the original sample. The tests were performed in general accordance with ASTM Test Method D 6913-04. The test results are indicated on the exploration logs included in Appendix A and on Figure B-2 in this appendix.

Exploration	Depth	Water Content (%)	Dry Density (pcf)	Maximum Size (mm)	%<#200 Sieve	Liquid Limit	Plastic Limit	Plasticity Index	Pocket Pen (tsf)	Torvane (tsf)
HC-1	1.5	3.2								
HC-1	3.0	3.6								
HC-2	2.0	1.9								
HC-2	3.5	3.0								
HC-5	2.0	14.7								
HC-5	3.0	9.6								
HC-7	1.5	7.3								
HC-7	3.0	11.4								
HC-8	1.5	9.7								
IT-1	3.5	9.7		4.75	1					
IT-1	9.0	11.7		1.18	1					
IT-2	2.5	7.4		9.5	1					
IT-2	4.5	7.7		0.075	1					
IT-2	7.0	25.9		9.5	2					
IT-2	8.0	31.5		0.075	80					
IT-3	3.0	13.9		25	7					
IT-3	6.0	17.9		9.5	13					
IT-2 IT-3 IT-3 IT-3	7.5	16.8		0.075	32					

			North Suttle Road Improvements Portland, Oregon	Summary of Laboratory Results	Figure Sheet	B-1 1 of 1
2	HARTCROWSER	Project No	.: 15941-04	Laboratory Results	Sheet	1 Of 1

APPENDIX C Pavement Core Photographs and DCP Data Correlations

APPENDIX C

Pavement Core Photographs and DCP Data Correlations

The appendix contains photographs of the pavement cores collected at the site, as well as DCP data correlations.

Photograph C-1: Pavement Core HC-1

Photograph C-2: Pavement Core HC-2

Photograph C-3: Pavement Core HC-3

Photograph C-4: Pavement Core HC-4

Photograph C-5: Pavement Core HC-5

C-6 | North Suttle Road Improvements

Photograph C-6: Pavement Core HC-6

Photograph C-7: Pavement Core HC-7

Photograph C-8: Pavement Core HC-8

Figure C-1. HC-1 DCP Correlations

Figure C-7. HC-7 DCP Correlations

ATTACHMENT 3 STORMWATER STUDY

To:	Suttle Road Property Owners	Date:	August 16, 2017
From:	Ada Banasik, PE	Project:	0106.24.01

RE: Conceptual Stormwater Study for Proposed North Suttle Road Improvements

Maul Foster & Alongi, Inc. (MFA) has prepared this memorandum to outline the conceptual design of a stormwater management system to manage runoff from the proposed North Suttle Road pavement and sidewalk improvement project. The conceptual stormwater system design includes conveyance features and infiltration planters designed consistent with the City of Portland (the City) 2016 Stormwater Management Manual (SWMM). The design assumes that all runoff will be managed through infiltration with the project area to avoid overflow into the municipal storm sewer or receiving waters. The design assumes, based on the results of three in-situ infiltration tests, that stormwater will be infiltrated along the central and western sections of the road. The eastern section was considered unsuitable for infiltration, although this assumption should be further evaluated during final design.

HYDROLOGIC MODEL

The hydrologic conditions for the drainage basins were modeled using HydroCAD® hydrologic software, version 10.0. Consistent with the SWMM requirements, stormwater runoff volumes and peak flows were estimated using the Santa Barbara Urban Hydrograph method and utilized the Natural Resource Conservation Service Type IA hydrograph. The HydroCAD output report is attached to this memorandum.

2001 NW 19th Avenue, Suite 200, Portland, OR 97209 WWW.MAULFOSTER.COM

R:\0106.24 James C. Brown & Associates\Document\01_2017.08.16 Stormwater Study\ATT 3_Stormwater Study Memo.docx

Suttle Road Property Owners August 16, 2017 Page 2

DESIGN STORM

The infiltration planters were designed to infiltrate 100 percent of runoff (under a 100-year, 24-hour design storm scenario) to manage all runoff without the need for an overflow system. The 100-year design storm equates to 4.40 inches of rainfall over a 24-hour period.

HYDROLOGIC DESIGN FACTORS

The proposed area was modeled as two drainage areas (Drainage Area 1 and Drainage Area 2). The drainage basins were modeled using a hydrologic curve number of 98, which is based on the soil conditions observed during infiltration testing. Drainage Area 1 consists of the western section of the road and sidewalk (31,840 square feet [SF]) and Drainage Area 2 consists of the central and eastern section of the road and sidewalk (82,828 SF).

INFILTRATION RATES

Infiltration tests were conducted at three locations within the footprint of the proposed infiltration facility. Infiltration tests were conducted on the in-situ soils along the side of the road using the encased falling head infiltration test method. The design infiltration rates (infiltration rate measured in the field divided by the SWMM-recommended factor of safety) were found to be 6.25 inches per hour in the western section of the road (Drainage Area 1), and 25 inches per hour at the central section of the road (Drainage Area 2). The infiltration test along the eastern section of the road showed minimal measured infiltration; however, the soil profile from adjacent borings logged similar sandy fill material as the remainder of the road. Although, the conceptual design conservatively assumed that stormwater would not be infiltrated along the east section of the road, it is recommended that this assumption be re-evaluated during the final design with additional infiltration tests.

The Geotechnical Engineering Report (Attachment 4) shows the infiltration test results.

DEPTH TO GROUNDWATER

The depth to groundwater is approximately 8 feet below ground surface (bgs). The bottom of the infiltration planter will be 2 feet bgs; therefore, the planters meet the SWMM-defined minimum separation between the bottom of the infiltration planter and groundwater (5 feet).

INFILTRATION FACILITIES

The infiltration planters were sized based on a design ponding depth of 18 inches. Infiltration Planter 1 (infiltrates runoff from Drainage Area 1) requires a minimum footprint of 1,110 SF and Infiltration Planter 2 (infiltrates runoff from Drainage Area 2) requires a minimum footprint of 1,310 SF. These footprints will require that the area between the proposed road and the proposed sidewalk or properties north of the road be utilized for infiltration. Based on a conceptual review of the area (aerial photographs and visual observations), there is sufficient space in this area to accommodate infiltration. The attached figure depicts the conceptual-level design footprints of the paved areas (sidewalk, curb and roadway) and the vegetated infiltration planters.

Suttle Road Property Owners August 16, 2017 Page 3

Each planter would consist of the following components:

- Vertical reinforced concrete walls with curb cuts and piped inlets.
- An 18-inch deep layer of compost-amended soil to filter stormwater and provide a growing medium for vegetation.
- Water-tolerant vegetation to provide water-uptake and erosion control.

A typical cross-section of an infiltration planter is shown below (no overflow or drain layer would be necessary in the N Suttle Road planters).

Suttle Road Property Owners August 16, 2017 Page 4

CONCEPTUAL DESIGN ASSUMPTIONS AND FINAL DESIGN CONSIDERATIONS

The conceptual design was based on the following assumptions, which should be evaluated further during the final design phase:

- The subgrade soils and groundwater in the areas proposed for infiltration are not contaminated by past activities and/or releases of pollutants. Although several properties along N Suttle Road have documented historical releases of contaminants and have entered into the Oregon Department of Environmental Quality (DEQ) Voluntary Cleanup Program (VCP), MFA's conceptual-level review did not identify releases in the areas proposed for infiltration. A more detailed review of the VCP files and/or communications with the DEQ project manager(s) should be conducted to confirm this assumption.
- In the event that soil and/or groundwater contamination in the areas proposed for infiltration is identified, the final design phase may include:
 - Soil sampling to evaluate contaminant leaching potential and the potential for stormwater infiltration to exacerbate existing contamination.
 - Evaluation of groundwater gradients to determine whether stormwater infiltration has the potential to exacerbate existing plume(s).
 - Excavation of contaminated soils to remove the source of contamination from the areas proposed for stormwater infiltration.
 - Lining portions of the stormwater facilities to minimize the potential for exacerbation of contamination and conveyance to infiltration facilities located in areas that are not contaminated.
- The area between the proposed road and proposed sidewalk or properties north of the road is available for infiltration. Final design should include the following steps to confirm this assumption:
 - Topographical and property line survey to outline boundaries and ownership.
 - Development of easements and/or similar legal agreements to facilitate construction of infiltration facilities on private property, if necessary.
 - Development of Operation and Maintenance Plans.
 - An assessment of below- and aboveground infrastructure in the areas proposed for infiltration that may require relocation (e.g., utility poles).

CONCLUSION

Based on the conceptual design outlined in this memorandum, infiltration of 100 percent of stormwater runoff generated from the proposed road and sidewalk is feasible. Managing stormwater

Project No. 0106.24.01

Suttle Road Property Owners August 16, 2017 Page 5

via infiltration is the preferred disposal method (per SWMM discharge hierarchy). Infiltration is also likely to be the most economical method of managing stormwater, as discharge to the municipal storm sewer would require installation of an extensive pipe network and potentially require pumping. Furthermore, stormwater infiltration replenishes groundwater aquifers and keeps stormwater pollutants out of receiving surface waters, protecting Oregon's lakes and rivers.

Summary for Subcatchment DA1: West Suttle Rd

Runoff = 0.75 cfs @ 7.94 hrs, Volume= 0.253 af, Depth> 4.16"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type IA 24-hr 100-yr Rainfall=4.40"

	A	rea (sf)	CN	Description				
*		31,840	98	B Pavement and sidewalk				
		31,840	98	100.00% In	npervious A	rea		
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
	6.0					Direct Entry,		
				• •				

Subcatchment DA1: West Suttle Rd

Summary for Subcatchment DA2: East and Central Suttle Rd

Runoff = 1.95 cfs @ 7.94 hrs, Volume= 0.659 af, Depth> 4.16"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type IA 24-hr 100-yr Rainfall=4.40"

-	rea (sf) 82,828		escription	and sidewa	lk
-	82,828			npervious A	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,
		Sı	ubcatchr	nent DA2	2: East and Central Suttle Rd
				Hydro	
2-			1.95	cfs	- Runoff
 - 1					Type IA 24-hr 100-yr Rainfall=4.40" Runoff Area=82,828 sf Runoff Volume=0.659 af Runoff Depth>4.16"
LL .					Tc=6.0 min CN=0/98
- 0- - 0	1 2		6 7 8	9 10 11	I 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hours)

Summary for Pond IP1: West Planter

Inflow Area =	0.731 ac,100.00% Impervious, Inflow	Depth > 4.16" for 100-yr event
Inflow =	0.75 cfs @ 7.94 hrs, Volume=	0.253 af
Outflow =	0.21 cfs @ 9.21 hrs, Volume=	0.253 af, Atten= 72%, Lag= 76.4 min
Discarded =	0.21 cfs @ 9.21 hrs, Volume=	0.253 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Peak Elev= 1.49' @ 9.21 hrs Surf.Area= 1,110 sf Storage= 1,659 cf

Plug-Flow detention time= 50.0 min calculated for 0.252 af (100% of inflow) Center-of-Mass det. time= 49.2 min (708.7 - 659.5)

Volume	Inve	ert Avail.S	Storage	Storage	Description		
#1	0.0	0' 2	,220 cf	Custom	Stage Data (Co	onic)Listed below	/ (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.s (cubic-	Store feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
0.0	00	1,110		0	0	1,110	
2.0	00	1,110	2	2,220	2,220	1,346	
Device	Routing	Inve	rt Outlet	Device	S		
#1	Discarde	d 0.0			o Groundwater E		כ'

Discarded OutFlow Max=0.21 cfs @ 9.21 hrs HW=1.49' (Free Discharge) **1=Exfiltration** (Controls 0.21 cfs)

Pond IP1: West Planter

Summary for Pond IP2: Central Planter

Inflow Area =	1.901 ac,100	0.00% Impervious, Inflow D	epth > 4.16" for 100-yr event
Inflow =	1.95 cfs @	7.94 hrs, Volume=	0.659 af
Outflow =	0.99 cfs @	8.35 hrs, Volume=	0.658 af, Atten= 49%, Lag= 24.8 min
Discarded =	0.99 cfs @	8.35 hrs, Volume=	0.658 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Peak Elev= 1.49' @ 8.35 hrs Surf.Area= 1,310 sf Storage= 1,954 cf

Plug-Flow detention time= 6.5 min calculated for 0.656 af (100% of inflow) Center-of-Mass det. time= 6.3 min (665.8 - 659.5)

Volume	In	vert Av	ail.Stora	ge Storag	ge Description		
#1	C	.00'	2,620	ocf Custo	om Stage Data (Co	nic)Listed below	(Recalc)
Elevatio		Surf.Area (sq-ft	-	Inc.Store cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
0.0		1,310		0	0	1,310	
2.0	00	1,310)	2,620	2,620	1,567	
Device	Routing	9	Invert (Outlet Devid	ces		
#1	Discard	ded			r Exfiltration over / to Groundwater E		

Discarded OutFlow Max=0.99 cfs @ 8.35 hrs HW=1.49' (Free Discharge) **1=Exfiltration** (Controls 0.99 cfs) Prepared by Microsoft HydroCAD® 10.00-19 s/n 01682 © 2016 HydroCAD Software Solutions LLC

Pond IP2: Central Planter

