MICRO

Alder Geotechnical Services

3910 NE 10th Avenue Portland, Oregon 97212 (503) 282-7482 Fax (503) 282-7402 <u>aldergeo@teleport.com</u>

July 24, 2008 Project No 568-2

Ms Terri Silvis, Ph D Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

GEOTECHNICAL INVESTIGATION REPORT CATHOLIC CHARITIES SERVICES CENTER 2740 SE POWELL BOULEVARD PORTLAND, OREGON

Dear Ms Silvis

This report presents the results of a geotechnical investigation for your proposed services center building at 2740 SE Powell Boulevard (Figure 1) The purpose of the investigation was to evaluate soil and groundwater conditions on the site and provide design and construction recommendations for site excavating and shoring, foundations, retaining walls, and seismic ground shaking Our scope of services included performing field explorations, laboratory and field tests, and engineering analyses

This work was performed in general accordance with our agreement dated September 23, 2005

PROJECT DESCRIPTION

The project consists of demolishing a two-story commercial building with a basement on the 17,740 square-foot site and building a new, four-story commercial building with basement parking level. The new building will be concrete construction with some CMU block and steel framing. Maximum dead plus live column loads are anticipated to range between about 325 and 400 kips. Maximum dead plus live loads on perimeter wall footings are anticipated to be about 14 to 17 kips per lineal foot. Maximum dead plus live loads on interior core wall footings are anticipated to be about 22 to 26 kips per lineal foot. Horizontal seismic forces will be resisted by concrete shear walls arranged around north and south elevator and stairwell shafts.

The proposed 12,000 square foot footprint is approximately 4,000 square feet larger than the existing building footprint All of the old building will be demolished except for the north basement wall, which will be incorporated into the shoring scheme along SE Powell Boulevard Excavations up to a maximum of about 12 to 15 feet deep are anticipated along SE Powell Boulevard and SE 28th Avenue The design finish floor of the new parking level is 99 feet

Stormwater will be collected and discharged into several drywells installed south of the building

.

FIELD AND LABORATORY INVESTIGATIONS

The field investigation was performed in October and November 2005 as part of a larger investigation of former St Vincent de Paul property located south of SE Powell Boulevard between SE 26th and SE 28th Avenues The complete results of that investigation were presented in a report titled "Preliminary Geotechnical Report, Proposed Housing and Office Development, St Vincent de Paul Site, Between SE 26th and 28th Avenues on SE Powell Boulevard, Portland, Oregon," dated December 15, 2005

Three soil borings were drilled on and near the subject parcel The borings were advanced $11\frac{1}{2}$ and $36\frac{1}{2}$ feet deep Soil samples were collected from the borings at regular intervals for examination and laboratory testing The approximate locations of the explorations are shown on Figure 2

The field investigation is described in Appendix A Final logs of the Borings 8, 9 and 16 are presented in Appendix A The descriptions on the logs are based on field logs, sample inspection and laboratory testing Results of laboratory moisture content tests and percent passing the No 200 sieve are shown at the corresponding sample locations on the exploration logs

SITE CONDITIONS

Surface Conditions

The trapezoidal-shape property is approximately 108 feet wide and 160 feet to 206 feet long A two-story commercial building with a basement currently occupies the east two-thirds of the property and an asphalt paved parking lot occupies the west third The existing basement floor is located at about elevation 99 75 feet. The ground surface outside the building slopes down to the south, with elevations ranging from about 112 feet in the northeast corner to 95 feet in the southwest corner.

Subsurface Conditions

١

Fine- and coarse-grained flood deposits underlie the site These silty, sandy and gravelly sediments were deposits at least 13,000 years ago during repeated, massive glacial flooding of the ancient Columbia River A generalize geologic cross-section drawn north-south and looking east is shown in Figure 3

The near surface soils are primarily brown, interlayered, silts and fine sandy silts With increasing depth, the silty soils become increasingly gray and sandy The deeper layers are typically fine silty sands Dense to very dense gravelly soils were encountered in Boring 8 at a depth of 36 feet below the existing ground surface and in Boring 9 at a depth of 28 feet

Standard penetration test blow counts (N-values) recorded in the silty and sandy soils ranged from 9 to 23, and averaged about 13 blows per foot The N-values indicate relative densities ranging from loose to medium dense and averaging medium dense Measured moisture contents ranged from 11 to 29 percent, and averaged 20 percent

Dense to very dense gravels interlayered with fine sands and silts are present 28 to 36 feet below the existing ground surface at elevations of 68 to 70 feet

Groundwater

Groundwater was encountered in Boring 9 at a depth of 24 feet below the ground surface and at elevation of approximately 72 feet

CONCLUSIONS AND RECOMMENDATIONS

General

field and laboratory investigations indicate that the site is mantled with 28 to 36 feet of moderately compressible silts, sandy silts and silty fine sands Strong gravel layers with low compressibility underlie the finer grained soils Groundwater was found 24 feet below the ground surface and at about elevation 72 feet in October 2005

Recommendations are provided in the following sections for supporting the building on shallow wall and column footings bearing on undisturbed silts and sands

Where space allows, the excavation for the building's parking level may be sloped using the guidelines presented in this report The excavation will need to be properly shored where space is not available for construction slopes

Site Liquefaction Potential

Our field exploration program and review of available geotechnical information indicates that the site is not subject to liquefaction damage and possess a low potential for soil densification and ground surface settlement during strong seismic shaking. The soil profile consists of at least 28 feet of loose to medium dense silts and sands. The upper 24 feet of these soils are located above the water table and not subject to liquefaction. Dense to very dense gravels are present below 28 feet which also are not subject to liquefaction. Medium dense silty sands located between a depth of 24 feet and 28 feet are potentially liquefiable, but are located at such a depth that they will not cause shallow foundations to lose bearing capacity. The potential for significant ground surface settlement resulting from the liquefaction of this thin layer is low.

Site Preparation and Earthwork

Building Pad Excavation and Slopes

The surface elevation of the parking level floor slab is anticipated to be about 99 feet. The soil subgrade will be excavated at least 1 to 1½ feet lower, assuming an approximately 5 inch thick concrete floor slab and 6 inches to 12 inches of gravel base rock. Given the existing site grades, the maximum depth of excavation will range from 10 to 14 feet deep along the north property line. Digging footings will increase the maximum excavation depth to 12 to 16 feet. The proposed depth of excavation along the south property line ranges from 0 to 5 feet. The southwest corner of the building will actually require up to 3 feet of structural fill.

Temporary construction slopes and/or shoring will be necessary to construct the parking level The owner and the Contractor should be familiar with applicable local, state and federal regulations for both temporary construction slopes, and shoring, including the current OSHA Excavation and Trench Safety Standards The Contractor should be solely responsible for the design, construction and performance of temporary shoring

Temporary excavations should be designed assuming Type "B" soils will be exposed in the side slopes OSHA requires that Type "C" soil slopes be excavated no steeper than 1 horizontal to 1 vertical The on-site soils are classified as Type "B" because of their silty and sandy composition and moderate strength

All excavated slopes must be protected with plastic sheeting during wet weather Surface water runoff must be directed way from the top of slopes

Construction Shoring

Unsupported, temporary construction slopes should not be excavated in areas where adjacent improvements are located within a horizontal distance less than or equal to half the depth of the excavation (measured from the top of the excavation) Excavation shoring will be required when the recommended maximum excavation slope inclination cannot be maintained, particularly in areas adjacent to existing improvements, including structures, roadways, and underground utilities

The contract should select a shoring system appropriate for the site and soil conditions Suitable shoring systems include (1) bracing and using the north basement wall of the existing building, (2) combining 1H 1V construction slopes with temporary walls constructed using 2-foot square, pre-cast concrete blocks and (3) installing steel H-pile and timber lagging walls

The geotechnical engineer should be consulted for specific design recommendations and parameters when selecting and designing the appropriate shoring systems

Structural Fill

ş

Imported crushed gravel should be used to construct all structural fills in the building pad and behind the basement walls The fill should consist of 1-inch minus crushed gravel or similar size gravel product

Structural fill for the building pad should be placed in horizontal lifts that are no more than 9 inches thick before compaction Each lift should be compacted to at least 90 percent of the maximum dry density determined in accordance with ASTM Test Method D 1557 (Modified Proctor)

Wall backfill should be placed in horizontal lifts that are no more than 12 inches thick before compaction Each lift should be compacted while at or above the optimum moisture content and to 90 percent of the maximum dry density determined in accordance with ASTM Test Method D

1557 Only manually guided compactors should be used within 3 feet of retaining walls Over compaction of the wall backfill should be avoided, especially behind tall walls

Foundations

The proposed building can be supported on conventional foundations bearing on native silty and sandy soils The bottom of the footing excavations should be protected from disturbance during wet weather by 2 to 3 inches of compacted crushed gravel

Spread and continuous footings should be designed for a maximum allowable soil bearing pressure of 3,000 psf (dead plus live loads) A one-third increase in the allowable bearing pressure is allowed for loading conditions that include wind and seismic forces

The bottoms of all footings should be located at least 18 inches below lowest adjacent grade and the basement floor slab Continuous and spread footings should have minimum widths of 24 inches All footings should be reinforced as specified by the structural engineer

A geotechnical engineer should review the foundation plans to verify that these recommendations have been properly interpreted and incorporated into the project documents

In addition, a geotechnical engineer should observe all footing excavations before the contractor places reinforcing steel or concrete The purpose of this work is to evaluate whether actual soil conditions are similar to those encountered in the borings and backhoe test pits or whether different conditions are present that require design changes

Seismic Site Coefficient

Based on our interpretation of site geology, the soil conditions at this site are most similar to 2007 OSSC Site Class D

Retaining Walls

Geotechnical design recommendations for retaining walls are provided in the following paragraphs The recommended static equivalent fluid weights and seismic resultant thrusts assume that (1) the wall backfill is level and fully drained by a foundation drain system, (2) the recommended earth pressures act horizontally (normal to the wall) because friction between the wall and backfill will be prevented by drainage membranes or impervious wall coatings, and (3) the backfill has a maximum wet, compacted unit weight of 135 pcf and consists of imported crushed gravel

Static Design

Retaining walls that are free to rotate, such as free-standing cantilever or segmental block walls, should be designed to resist static, horizontal earth pressure forces calculated using an equivalent fluid weight of 32 pcf This fluid weight was calculated using the Rankine earth pressure theory

į

Ň

Alder Geotechnical Services

C

Retaining walls that are restrained at the top and bottom, such as basement walls, should be designed to resist static, horizontal earth pressure forces calculated using an equivalent fluid weight of 52 pcf This fluid weight was calculated using the Jaky equation for normally consolidated soils

A friction coefficient of 0.5 times the vertical load may be used to evaluate the frictional resistance along the bottom of concrete foundations in direct contact with either the undisturbed weathered basalt bedrock or at least 3 inches of 1½-inch minus crushed gravel. The structural plans for all retaining wall footings should include a note stating that the foundation subgrade must consist of either undisturbed weathered basalt or 3 inches of imported crushed 1½-inch minus gravel. The structural note should also state that geotechnical special inspection of all retaining wall footing excavations is required before constructing forms.

Passive pressure may be used to resist sliding if the ground in front of the foundation is level for at least 10 feet or three times the height of the surface generating passive resistance. The static horizontal passive resistance may be calculated using an equivalent fluid weight of 500 pcf. This passive equivalent fluid weight was calculated using the Coulomb earth pressure theory with $\delta = \frac{1}{2}\Phi^2$.

Only two-thirds of the passive resistance should be used if friction and passive resistance are combined to resist lateral forces

Seismic Design

Ground accelerations during earthquakes temporarily increase lateral earth pressures on retaining walls The resultant horizontal seismic thrust should be added to the horizontal static force calculated using the equivalent fluid weights listed above Seismic thrusts have been calculated assuming a 2007 Oregon Structural Specialty Code peak ground acceleration a_{max} of 0 3g

Unrestrained walls should be designed to resist a seismically-induced resultant horizontal thrust of $6H^2$ pounds, where H is the height of the wall in feet. The resultant seismic thrust acts 0 6H above the base of the wall. This thrust was calculated using the Mononobe-Okabe method assuming the unrestrained walls are free to displace and assuming a pseudostatic horizontal acceleration equal to $\frac{1}{2}a_{max}$

Restrained basement walls should be designed to resist a seismic resultant horizontal thrust of $13H^2$ pounds, where H is the height of the wall in feet The resultant seismic thrust acts 0 6H above the base of the wall This thrust was calculated using the Mononobe-Okabe method and assuming a pseudostatic horizontal acceleration equal to a_{max}

A friction coefficient of 0.5 times the vertical load may be used to evaluate the frictional resistance along the bottom of concrete foundations in direct contact with either the undisturbed weathered basalt bedrock or at least 3 inches of $1\frac{1}{2}$ -inch minus crushed gravel The structural plans for all retaining wall footings should include a note stating that the foundation subgrade must consist of either undisturbed weathered basalt or 3 inches of imported crushed $1\frac{1}{2}$ -inch

ł

minus gravel The structural note should also state that geotechnical special inspection of all retaining wall footing excavations is required before constructing forms

Passive pressure may be used to resist sliding during seismic loading if the ground in front of the foundation is level for at least 10 feet or three times the height of the surface generating passive resistance. The seismic passive resistance may be calculated using an equivalent fluid weight of 350 pcf. This seismic passive equivalent fluid weight was calculated using the Mononobe-Okabe method with $\delta = \frac{1}{2}\phi'$ and a pseudostatic horizontal acceleration equal to a_{max} .

Only two-thirds of the passive resistance should be used if friction and passive resistance are combined to resist lateral forces

The minimum recommended factors of safety for seismic design of sliding, overturning and bearing capacity are taken as 75% of the values recommended for statically loaded structures Therefore, the minimum static factors of safety for sliding, overturning, and bearing capacity of 1 5, 1 5, and 2 0 are reduced to 1 1, 1 1, and 1 5, respectively, when evaluating seismic stability

Drainage

The entire back (soil face) of basement walls should be covered with appropriate waterproofing Retaining walls must include foundation and backfill drainage provisions Perforated foundation drainpipes should be located below the finish floor elevation of the interior floor slab The perforated drainpipes should be at least 4 inch diameter and surrounded by at least 1-foot of $1\frac{1}{2}$ "-3/4" crushed drain rock that has been completely wrapped in a non-woven geotextile Prefabricated foundation drains such as *ezflow* (www ezflowlp com) may be installed as an alternative to drain rock The *ezflow* system consists of a flexible, perforated pipe surrounded by expanded polystyrene (EPS) aggregate A geotextile wrap holds the lightweight aggregate around the drain pipe The system is sold in 10-foot long lengths that snap together Drainpipes should outlet to an appropriate drainage facility

Floor Slab and Parking Slab

We recommend that the slab-on-grade floor be designed using an allowable modulus of subgrade reaction of up to 150 pci. The subgrade soils must be in a firm, non-yielding condition at the time of slab construction. Any soft areas encountered should be excavated and replaced with structural fill. Concrete slabs supporting car traffic should be at least 5 inches thick. Floor slabs in building areas should be at least 4 inches thick.

A capillary break consisting of at least 6 inches of gravel should be placed underneath the concrete slabs This minimum gravel thickness may need to be increased to 12 inches depending on construction traffic use and whether construction occurs during the wet winter and spring months

If the slab will be covered by moisture-sensitive material, we recommend placing a vapor barrier on top of the gravel capillary break and below the slab

CLOSURE

Geotechnical review is of paramount importance in engineering practice The poor performance of many foundations has been attributed to inadequate construction review On-site grading and earthwork should be observed and, where necessary, tested by a qualified geotechnical engineering firm to verify compliance with the recommendations contained in this report Foundation excavations should also be observed to compare the generalized site conditions assumed in this report with those found on the site at the time of construction If the plans for site development are changed, or if variations or undesirable geotechnical conditions are encountered during construction, the geotechnical engineer should be consulted for further recommendations

Geotechnical engineering is characterized by uncertainty Professional judgments presented are based partly on an understanding of the proposed construction, and partly on general experience The engineering work performed and judgments rendered for this study meet current professional standards ordinarily provided by members of the engineering profession in this area practicing under similar conditions at this time No other warranties, either expressed or implied, are made

Sincerely,

ALDER GEOTECHNICAL SERVICES, LLC

Oregon Geotechnical Engineer No 13,507

(1) Addressee via pdf
 (1) Lundin Cole Architects via pdf
 (1) WDY, Inc via pdf

Job # 568-2 July 2008 Catholic Charities Services Center Figure 1 Portland, OR Vicinity Map

APPENDIX A

FIELD INVESTIGATION

Sixteen soil borings and six backhoe test pits were drilled and excavated on St Vincent de Paul property in October and November 2005 Borings B-8, -9 and 16 were located on the subject site The borings were drilled about 11¹/₂ to 36¹/₂ feet deep

The approximate locations of the explorations are shown on Figure 2

(

The borings were drilled using truck-mounted drill rigs equipped with 8-inch hollow stem augers. Disturbed samples were collected from the power auger borings using a standard split spoon sampler (2" outside diameter, 1 675" inside diameter). The sampler was generally driven 18 inches into the material at the bottom of the boring by a 140-pound hammer falling 30 inches. The collected soil samples were sealed in plastic bags, and brought to our office for examination and testing.

The locations and elevations of the explorations are approximate The location of each exploration was estimated by using the site topographic plan prepared by W B Wells and Associates, Inc

The soils encountered in the explorations were generally described using the Unified Soil Classification System A Key to Logs is presented as Page 1 Final logs of the explorations are attached

BC	DR	ING		Surface Elev Logged By				Dr Dr	ıllıng Illıng	g Date g Metl	nod			
DEPTH	STRATA	GWT	MATERIAL DESCRIPTION		SAMPLE NO	ТҮРЕ	SPT-N	0	1 0 20	I SPT MO 40	', blov STUI 60	w/ft RE % 80	100	MOISTURE
0			STANDARD PENETRATION S Sample with recorded blows pe using a standard split spoon sa inside dia , 2" outside dia) The generally driven into the soil with harnmer falling 30 inches	AMPLER r foot was obtained mpler (1 675" e sampler was h a 140 lb	1-1									
			SHELLBY TUBE SAMPLER Sample was obtained using a S (2 875" inside diamter, 3 0" outs The sampler was generally pus the soil using the exploration ec system	thelby tube sampler side diameter) hed 12" to 30" into guipment hydraulic	1-2			_						
 15			Soil sample not recovered from DISTURBED SAMPLE LOCAT Sample was obtained by collect or backhoe excavated materials	sampler ION ting auger cuttings s in a plastic bag	1-3 1-4									
- - 20— -		1030a	PP = pocket penetration index s tons per square foot Groundwater level and time of r FILL SILT (ML)	strength test, in neasurement	-									
- - 25— -			LEAN CLAY (CL) FAT CLAY (CH) WELL GRADED SAND (SW) POORLY GRADED SAND (SP SILTY SAND (SM))	-									
- - 30 -			CLAYEY SAND (SC) WELL GRADED GRAVEL (GW POORLY GRADED GRAVEL (G SILTY GRAVEL (GM) CLAYEY GRAVEL (GC) ORGANICS / FOREST DUFF/) GP) 	-									
- 35			BEDROCK									 		
					ŀ	KEY	то	LO	GS					

Date 12/12/2005 tings\John\My Documents\0500\0568 02\B logs1 16BH logs 1 6 log File C \Documents an SuperLog V2 6 CivilTech Software USA www civiltech com

3910 NE 10th Avenue Portland, Oregon 97212 **Phone 503 282 7482** Fax 503 282 7402 aldergeo@teleport.com

August 25, 2008 Project No 568-2

Ms Susan Lind Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

FINAL DRYWELL SIZE RECOMMENDATIONS FOR INFILTRATION OF ROOF RUNOFF PROPOSED CATHOLIC CHARITIES SERVICE CENTER BUILDING 2740 SE POWELL BOULEVARD, PORTLAND, OREGON

Dear Ms Lind

As requested by Lundin Cole Architects, I am providing the project team with final recommendations for the size and number of drywells needed to infiltrate the roof runoff from the proposed Service Center building My final recommendations are based on combining conventional hydrology analyses with site-specific infiltration data obtained from three dry well tests performed for the adjacent Esperanza Court apartment project in 2007

SIZE RECOMMENDATIONS

Based on my analyses, I recommend constructing three drywells on the south side of the building The drywells should have the following minimum dimensions, volume of drain rock, and center-to-center spacing

٠	Depth of excavation	14 feet
٠	Width of excavation	11 feet square
٠	Thickness of drain rock on bottom of excavation	2 feet
•	Inside diameter of perforated concrete pipe	4 feet
•	Height of perforated concrete pipe	10 feet
•	Approximate volume of drain rock	47 cubic yards
٠	Minimum edge-to-edge spacing between drywells	28 feet

Each drywell has been sized to infiltrate runoff from 4,500 ft² of impervious surface

DESIGN ASSUMPTIONS

The following assumptions were used to estimate the required size of the drywells

- Service Center roof area of 12,000 ft²
- Design rainfall is 3 9 inches (25-year, 24-hour storm)
- Drain rock porosity is 40 percent

- Seasonal high groundwater level is at least 24 feet below the existing ground surface The 2008 City of Portland Stormwater Manual includes a map showing the estimated depth to groundwater on the site at 40 to 50 feet
- The soil infiltration rate varies with the height of water in the drywell and is based on average values measured from three drywell tests performed for Esperanza Court apartments on October 19 and 26, 2007
- A factor of safety of 2 0 was used to reduce the measured soil infiltration rates to design infiltration rates

DESIGN METHOD AND RESULTS

The capacity of the drywell to infiltrate the Portland-area 25-year, 24-hour design storm (3 9 inches) was evaluated using a spreadsheet incorporating the Santa Barbara Urban Hydrograph method, the proposed dimensions and volumes of the drywell and drain rock, the contributing roof runoff area, and the measured soil infiltration rates (cfs of infiltration flow per t^2 of infiltration surface area, expressed in units of inches/hour) from three tests on nearby drywells in the same type of soils

The spreadsheet calculations and graphs are attached The calculations indicate that when a factor of safety of 2 0 is applied to the soil infiltration rates, three drywells of the proposed size are required Each drywell can drain about 4,500 ft² of roof area. The predicted maximum height of water in each drywell is approximately 10 feet, essentially at the top of the perforated concrete pipe. In my analysis, the soil infiltration rate varies with the height of water in the drywells. At low head, the minimum design infiltration rate is 0.05 inch per hour. At high head, the maximum design infiltration rate is $1\frac{1}{4}$ inches per hour.

I hope this information meets your needs at this time Please call if you have questions

Sincerely,

ALDER GEOTECHNICAL SERVICES, LLC OREGON CUN 12-31-09 EXP

John Cunningham, P E, G E Oregon Registered Geotechnical Engineer No 13,507

- (1) Addressee
- (1) Scott Rimmer, Lundin Cole Architects
- (1) Cole Presthus, WDY Cıvıl-Structural Engineers

Drzwell Dry, rbe

Catholic Charities Service Center Drywell Design 2740 SE Powell Boulevard

DRYWELL DIMENSIONS AND PROPERTIES

-

Height of Perforated Drywell Pipes Thickness of drain rock on bottom Width of excavation Inside diameter of drywell pipe Outside diameter of drywell pipe	, `` 10_0 feet , '2 0'feet 11 0;feet `` _4 0;feet ', + '50 feet	square		
Porosity of drain rock	* 040 [°]			
DRYWELL VOLUME AND AREA CALCUI	LATIONS			
Storage volume in drywell				
Total	627 9 ft3			
Pipe	125 7 ft3			
Drainrock sides	405 5 ft3			
Drainrock bottom	96 8 ft3	Storage vol per unit height		
Infiltration surface area		of drywell above bottom	53 1 ft3/foot	(drainrock vol +pipe vol)
Total	649 0 ft2			
Sides	528 0 ft2	Side area per unit of height		
Bottom	121 0 ft2	of drywell	44 0 ft2/foot	

-

ø

r

	٨	0	<u> </u>		E F	L C	C C	<u>г и</u>	1		V V	T 1	N4	N 1	0	Б	0		c	7		V V	1 14/
	A	0			<u> </u>	F	9		ļ	JJ	<u> </u>	L	197		<u> </u>	F	<u>v</u>	<u> </u>	3		U	v	
1	ALDER	GEOTECH	INICAL SER	VICES							1	Project	Catholic Ch	narities Servi	س Center (· * ~							
2											1	Project #	568-2	1		1.5 1		1 1					1 1
3						1			1			1	1	1	1 -	1							
۲ř.	C		Distanting 1	Destinant Inc	 	10.000	····· •·**	50.324.2.6		č		5.~	L										
4	Comme	ni –	Determine	KUNON IN	rittration an	ia Reg Soa	kage i renc	n you for z	5-yr 24-nr	storm /	7	1.	·····										
5				1										i i									
6																							
7	CANTA	PADDADA		VDBOCBA	DU METUO	D DEVE	24 HOUR	EVENT		DADOVICI	ALAL PAIELI	DATION											
Ľ/	SANTA	DAKDAKA	A UKBAN H	TURUGRA	PHMEIHO	U 25 TK	24 HOUR	EAEWI		DARCTOL	AW INFILI	RATION											
8	(King Cou	nty WA Surfac	ace Water Des gi	n Manual)	1				1														
9																							
10				1	DEDVIOUS AS	DE A	IL DE DUACHIE	ADEA									1						
10					PERVIOUS AF	REA	IMPERVIOUS	AREA						,									
11				1		_ 0	ft2	2, 4500	ft2	DESIGN FACT	OR OF SAFET	Y ON INFILTRAT	ION RATE	_ ' <u>`</u> 20	1								
12	Ranfall D	stribution	IA	1	Area	0	Area	0 103305785	Acre	MAX ALLOWE	DINFIL RATE	WHEN DRYWE	LL IS FULL -	13 5	in /hr	1							
13	Tretal Ares	(Acres)	0 103305785	1	CN	2 85	CN	່ ~ ິ ~ 98				1		1						1			
1.0	TVIII FUGE	(1000)	55	L	-	1		1	· · · · · ·		*		CLIMANA A DV	OF DECULT	-				*****				
14	Prec p 10	tal (Pt) (in)	39		s	1 /64/	s	0 2041		1			SUMMART	OF RESULT	<u> </u>								
15	Tc (minute	s)	5		0 25	0 3529	0 25	0 0408	3				Calc Max	Required Sto	orage Vol	626 5	ft3						
16]										Design Sto	rage Vol		627 9	ft3						
17	D .	evan l	t			1			1			1	Excase Sta	rage Vol		1.5	63	casa red av	d in narer	theses when			1
11	E	- (0-(-)	<u>،</u>	L	1			1				+	LACE33 310	age voi		+ 13		- icu an	a in parei	an aca when			
18	Factor	or safety	ຸ (10		L	L		L					Calc Max	Head in Dryw	ven	997	n .	design si	7P IS 100	small			
19	(runoff flor	rate	1					-					Max Alowa	ble Head in I	Drywell	10 00) ft						
20	nto driveva	n l	1		1								Excess Ava	lable Head	1	0.03	lift						
24		ř – – – – – – – – – – – – – – – – – – –	l	1	1			<u> </u>	1			+		1			1						
21				ļ	l							+		1			1						
22			_										Total Runo	ff Volume	J	1371 6	5 113	L					
23			_	1									Total Infiltra	ation Volume	9	634 6	i ft3			1			1
24				:					1			1	Storage at	and of Storm	1	537 (1 #3						
05				1					1			+	Deal Charle	1.flere		0.405	1.6						
25													PEAK Storm	Innow		0 105:	crs						
26										1			Peak Storm	Inflow		47	GPM			;			
27												1	Peak Soil In	filtration Ou	tflow	8	GPM						
20				1	0				1			+		1	1								
20				1	F OI YAJUS AI GA		Tipervicus Avea							1.61			1 (())		7		D	D	
29	Tane	Rantal	Incremental	Accum	Accum	Incremental	Accum	Incremental	I Total	Instant	Design	n Runoff	Head in	infiltration	Infiltration	Innitration	intiltration	Storage	nme		Percolation rest	Results October 2007	
30	Incre	Distrib	Rainfall	Ranfal	Runoff	Runoff	Runoff	Runaf	f Runoff	Hydrograph	Hydrograph	n Volume	Drywell	Area	Rate	Hydrograph	N Volume	Volume	Incre		Esperanza NE N	IW and SW Drywell percent	c tests
31	(dt)	/ of Pi						-			increased by	line drowell	+ bottom		1	01/10	f	in drywell	(dt)		hy BCG Inc		
22					· · · · · ·						Desume EOC					descent	1						
32											Design FOS	<u>`</u>				Ci ywei	1						
33	Minutes		Inches	Inches	Inches	Inches	Inches	Inches	Inches	CFS	CFS	5 CF	FT FT	F12	I IN/HR	CFS	5 CF	CF	Minutes		H2O head (II)	Meas Infil rate (in/hr)	
34								1							1		1				1	01	t
35	10	0.004	0.0156	0.0156	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.00	121.00	0.05	0.000	0.1	0.0	10		2	0 125	51
00		0.004	00100	00700	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	00000		0.00	121.00	0.01	0.000	0.0	0.0	20		-	0.2	
30	20	0 004	0 0156	0 0312	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	00	0.00	12100	0.04	0.000	02	0.0	20		4	u 3	·
37	30	0 004	0 0156	0 0468	0 0000	0 0000	0 0002	0 0002	0 0002	0 0001	0 0001	I) 00	000	121.00	004	0 0001	IJ 02	0.0	30		6	0 62	2
38	40	0 004	0 0156	0 0624	0 0000	0 0000	0 0021	0 0019	0 0019	0 0012	0 0006	04	0 00	121 00	0 04	0 0001	03	0 1	40		8	1	1
30	50	0.004	0.0156	0.0790	0.0000	0.0000	0.0057	0.0017	0.0037	0.0023	0.0017	1 16	0.00	121 11	0.04	0.0001	04	11	50		10	16	5
40		0.004	0.0100	0 0700	0 0000	0 0000	0.003/	0.0037	0 00001	0.0023	0.0017	1	0.00	121.00		0.000			60		44	4 00	
40	60	0 004	0 0156	0 0936	0 0000	0 0000	0 0108	0 0051	0 0051	0 0032	0 0027	31	0.02	121 99	0.04	0.0001	05	21	00		11	188	<u> </u>
41	70	0 004	0 0156	0 1092	0 0000	0 0000	0 0 172	0 0063	0 0063	0 0039	0 0036	5 5 3	0 05	123 42	0 04	0 0001	05	47	70		12	2 2 5	5
42	80	0 004	0 0156	0 1248	0 0000	0 0000	0 0245	0 0073	- 0 0073	0 0046	0 0043	78	0 10	125 29	0 05	0 000 1	06	7 2	80		13	26	5
43	0.0	0.004	0.0156	0 1404	0.0000	0.0000	0.0327	0.0002	0.0092	0.0051	0.0046	107	0.15	127 -5	0.05	0.000	07	10.0	90		14	3	3
1.3	90	0.004	0 0 1 50	0 1404	0 0000	0 0000	0.0327	0.0002	0.0002	0.0051	0.0040	1	0.13	120.11	0.00	0.000		1.00	100				
44	100	0 004	0 0156	0 1560	0 0000	0 0000	0.0416	0 0089	0 0089	0 0056	0 0053	139	0.21	13011	1 0.05	0 0001	08	131	100				
45	110	0 005	0 0195	0 1755	0 0000	0 0000	0 0535	0 0120	0 0120	0 0075	0 0065	5 178	0 27	132 95	0 05	0 0001	09	17 0	110				1
46	120	0.005	0.0195	0 1950	0 0000	0 0000	0 0664	0.0128	0 0128	0 0080	0 0077	22.5	0.35	136 43	0 05	0 0002	10	21.5	120				
47		0.005		0.000		0.0000	0.0700	0.0120	0.000	0.0000	0.000	1	0.44	140 57	0.05	0.000	1 1	26.4	130				
4/	130	0.005	0 0195	0 2145	0.0000	0.0000	0 0799	00135	00135	0.0084	0 0082	2/4	0 44	140 57	1 0.05	0.0002	1	204	130				
48	140	0 005	0 0195	0 2340	0 0000	0 0000	0 0939	0 0141	0 0141	0 0088	0 0086	32 6	0 54	144 97	0 05	0 0002	12	314	140				
49	150	0 005	0 0195	0 2535	0 0000	0 0000	0 1085	0 0146	0 0146	0 0091	0 0090	38 0	0 65	149 57	0 05	0 0002	13	367	150				
50	160	0.005	0.0195	0 2710	0.0000	0.000	0 1236	0.0150	0.0150	0.0004	0.0005	435	0.76	154 36	0.05	0.000	14	421	160				
100	100	0.005	0.0195	01/30	0.0000	0.0000	0 1230	0.0100	0.0150	0.0054	0.0030	43.3	0.07	150.24	1 0.00	0.000		40.3	170				· • · · · · · · · · · · · · · · · · · ·
1 21	170	0 006	0 0234	0 2964	0 0000	0 0000	0 1421	0 0185	0 0185	0 0116	0 0105	498	0.87	159 31	0.06	0 0002	15	483	170				+
52	180	0 006	0 0234	0 3 198	0 0000	0 0000	0 1611	0 0190	0 0 1 90	0 0119	0 0117	56 9	1 00	164 92	0 06	0 0002	16	55 2	180				
53	190	0 006	0 0234	0 3432	0 0000	0 0000	0 1805	0 0194	0 0194	0 0121	0 0120	64 1	1 14	171 20	0 06	0 0002	18	62.3	190				
50	200	0.004	0.0224	0 3666	0.0001	0.0001	0 2003	0.0100	0 0100	0.0124	0.012	71.4	1 20	177 61	0.06	0.000	10	69.5	200				
	200	0.000	0.0234	1 0 3000	0.0001	0 0001	0 2003	00190	00190	0.0124	0.0122	/14	1 23	101.15	0.07	0.0000			210				
55		0 006	0 0234	1 0 3900	0 0008	0 0007	0 2204	0 0201	0 0201	0 0125	0 0 1 25	789	1 4 4	184 15	007	0 000	y <u>21</u>	/68	210			l	+
	210		0 0 0 2 2 4	0 4134	0 0020	0 0012	0 2407	0 0203	0 0203	0 0127	0 0126	6 86 5	1 59	190 79	0 07	0 000	23	84 2	220				
56	210	0 006	0 0234	1																the second state of the local data was a second state of the secon	the second se		
56 57	210	0 006	0 0234	0 4407	0 0042	0 0022	0 2648	0 0240	0 0240	0 0150	0 0139	94.8	1 74	197 51	0.07	0 0003	25	92 3	230				
56 57	220	0 006	0 0273	0 4407	0 0042	0 0022	0 2648	0 0240	0 0240	0 0150	0 0139	9 94 8	1 74	197 51	0.07	0 0003	25	92 3	230				
56 57 58	210 220 230 240	0 006 0 007 0 007	0 0273	0 4407	0 0042	0 0022	0 2648 0 2891	0 0240	0 00240	0 0150 0 0152	0 0139	9 94 8 1 103 8	1 74	197 51 204 90	0 07	0 000	25	92 3 101 1	230 240				
56 57 58 59	220 220 230 240 250	0 006 0 007 0 007 0 007	0 0273	0 4407 0 4680 0 4953	0 0042	0 0022 0 0029 0 0036	0 2648 0 2891 0 3136	0 0240 0 0243 0 0246	0 0 0240 3 0 0243 6 0 0246	0 0150 0 0152 0 0154	0 0139	9 94 8 1 103 8 3 113 0	1 74 1 91 2 08	197 51 204 90 212 60	0 07 0 08 0 08	0 0002	25 27 29	92 3 101 1 110 1	230 240 250				

1

~

~

Γ		A	В	C	D	E	F	G	н		J	к	L	M	N	0	P	Q	RS	т	U	V	W
2	29	Time	Ranfall	Incremental	Accum	Accum	Incremental	Accum	Incremental	Total	Instant	Design	Runoff	Head in	Infiltration	Infiltration	Infiltration	Infiltration	Stornge Time		Percolation Test	Results October 2007	
3	30	Incre	Distrib	Rainfall	Ranfal	Runoff	Runoff	Runoff	Runoff	Runoff	Hydrograph	Hydrograph	Volume	Drywell	Area	Rate	Hydrograph	Volume	Volume Incre		Esperanza NE N	W and SW Drywell perc	c tests
3	31	(dt)	% of PI									increased by	into dryweli	+ bottom			out of		in drywell (dt)		by BCG Inc		
	32	-										Design FOS					drywell						
	33 1	M nutes		Inches	Inches	Inches	Inches	Inches	Inches	Inches	CFS	CFS	CF	F1	F12	IN/HR	CFS	CF	CF Minutes		H2O head (ft)	Meas Intil rate (in/inr)	<u>}</u>
	61	270	0.007	0.0373	0.5400	0.0108	0.0040	0.2624	0.0050	0.0260	0.0155	0.0155	121.6	2.42	227 45	0.00	0.0005	3.5	129 1 270			U	'
F	62	270	0.007	0.0273	0 5435	0.0253	0.0055	0 3885	0.0250	0.0250	0.0157	0 0 155	141.0	2 42	22, 43	0.09	0.0005	38	147.2 280				
	63	290	0.0082	0.03198	0 6092	0.0325	0.0072	0 4182	0.0297	0.0297	0.0185	0.0171	151 3	2 76	242 50	0.10	0.0005	1 11	147.2 290				
le le	64	300	0 0082	0 03198	0 6412	0 0405	0 0080	0 4480	0 0298	0.0298	0 0186	0.0186	162.4	2.95	250 74	0.10	0 0006	44	158.0 300		<u>+</u>		+
le l	65	310	0 0082	0 03198	0 6731	0 0492	0 0087	0 4780	0 0300	0 0300	0 0188	0 0187	173 6	3 15	259 69	0 11	0 0006	48	168.8 310				1
e	66	320	0 0082	0 03198	0 7051	0 0586	0 0094	0 5082	0 0301	0 0301	0 0188	0 0188	184 9	3 36	268 67	0 1 1	0 0007	52	1797 320				
E	67	330	0 0082	0 03198	0 7371	0 0687	0 0101	0 5385	0 0303	0 0303	0 0189	0 0189	196 2	3 56	277 66	0 12	0 0008	57	190.6 330				
e	68	340	0 0082	0 03198	0 7691	0 0794	0 0107	0 5689	0 0304	0 0304	0 0190	0 0190	207 6	3 /7	286 67	0 13	0 0008	62	2014 340				
e	69	350	0 0095	0 03705	0 8061	0 0926	0 0132	0 6042	0 0353	0 0353	0 0221	0 0205	219 9	3 97	295 68	0 13	0 0009	67	213.2 350				
12	70	360	0 0095	0 03705	0 8432	0 1066	0 0140	0 6397	0 0355	0 0355	0 0222	0 0221	233 2	4 19	305 44	0 14	0 0010	73	225 9 360				
Ľ	71	370	0 0095	0 03705	0 8802	0 1213	0 0147	0 6752	0 0356	0 0356	0 0222	0 0222	246 5	4 4 3	315 94	0 15	0 0011	80	238 5 370				
H	72	380	0.0095	0 03705	0 91/3	0 1367	0 0154	0 7109	0 0357	0.0357	0 0223	0 0223	259 9	4 67	320 42	0.10	0.0012	87	2512 380				
H	74	390	0.0095	0 03705	0 9543	0 1529	0.0101	0 740/	0 0358	0.0358	0 0224	0 0223	2/3 3	4 91	3 10 00	017	0.0013	40	203.6 390				
H	75	410	0.0134	0.05226	1 0436	0 1943	0.0247	0.8333	0.0507	0.0507	0.0224	0.0224	303.0	5 38	357 70	0.20	0.0016	114	2915 410				
H	76	420	0 0134	0 05226	1 0959	0 2201	0.0258	0 8841	0.0508	0.0508	0.0318	0.0317	322.0	5.67	370.33	0.21	0.0018	12.5	309.5 420				+
7	77	430	0 0134	0 05226	1 1482	0 2470	0 0269	0 9350	0 0509	0 0509	0 0318	0 0318	341 1	6 00	385 19	0 23	0 0021	13.8	327 3 430				1
	78	440	0 018	0 0702	1 2184	0 2848	0 0377	1 0036	0 0686	0 0686	0 0429	0 0374	363 5	6 34	399 96	0 26	0 0024	15 2	348 3 440				
[7	79	450	0 018	0 0702	1 2886	0 3242	0 0394	1 0723	0 0687	0 0687	0 0430	0 0429	389 2	6 73	417 34	0 29	0 0028	16 9	372.4 450				1
8	80	460	0 034	0 1326	1 4212	0 4028	0 0786	1 2025	0 1302	0 1302	0 0814	0 0622	426 5	7 19	437 28	0 33	0 0031	18 9	407 7 460				
8	81	470	0 054	0 2106	1 6318	0 5373	0 1345	1 4101	0 2075	0 2075	0 1297	0 1055	489 9	7 85	466 54	0.39	0 0042	214	468 5 470				
1	82	480	0 027	0 1053	1 7371	0 6084	0 0711	1 5141	0 1040	0 1040	0 0650	0 0974	548 3	00 C	516 89	0 54	0 0065	25.3	523 0 480				
Le la	83	490	0 0 18	0 0702	1 8073	0 6570	0 0486	1 5835	0 0694	0 0694	0 0434	0 0542	580 8	10.02	562.07	072	0.0093	30.9	549 9 440				
	94	500	0.0134	0.05226	1 8595	0 6938	0 0368	1 6352	0 0517	0.0517	0 0323	0 0379	603 5	10.53	507.62	0.83	0.0124	3/ 0	577 8 510				
	86	520	0.0134	0.05226	1 9640	0 7589	0.0378	1 7387	0.0518	0.0518	0.0323	0.0323	642 3	11.06	607 51	0.96	0.0135	53.1	589.2 \20				
li l	87	530	0 0088	0 03432	1 9984	0 7939	0.0250	1 7727	0 0340	0 0340	0.0213	0.0268	658.4	11 27	616.89	1 02	0.0145	618	596 5 530				
1	88	540	0 0088	0 03432	2 0327	0 8192	0 0252	1 8067	0 0340	0 0340	0 0213	0 0213	671 2	11 4 1	623.01	1 06	0 0152	71.0	600 2 540				1
8	89	550	0 0088	0 03432	2 0670	0 8446	0 0254	1 8408	0 0340	0 0340	0 0213	0 0213	683 9	11 48	62€ 01	1 08	0 0 1 56	80 3	6036 510				
S	90	560	0 0088	0 03432	2 1013	0 8701	0 0256	1 8748	0 0340	0 0340	0 0213	0 0213	696 7	11 54	628 82	1 10	0 0159	89 9	606 8 560				
9	91	570	0 0088	0 03432	2 1356	0 8959	0 0257	1 9089	0 0340	0 0340	0 0213	0 0213	709 4	11 60	63147	1 11	0 0163	997	609.8 570				
9	92	580	0 0088	0 03432	2 1700	0 9218	0 0259	1 9429	0 0341	0 0341	0 0213	0 0213	722 2	11 66	633 95	1 13	0 0 1 66	109 6	612.6 580				
	93	590	0 0088	0 03432	2 2043	0 9478	0 0261	1 9770	0 0341	0 0341	0 0213	0 0213	735 0	11 71	636 28	1 15	0 0169	1198	615 2 590		<u> </u>		
La	94	600	0 0088	0 03432	2 2386	0 9741	0 0262	2 0110	0 0341	0 0341	0 0213	0 0213	747 8	11/6	638 45	1 16	0.0172	1301	61/6 600				
	95	610	0 0088	0.03432	2 2/29	1 0004	0.0264	2 0451	0.0341	0 0341	0.0213	0.0213	/60 5	11.85	642 38	1 10	0.0173	140.0	672 1 620				
	97	630	0 0088	0 03432	2 3416	1 0536	0 0267	2 1133	0 0341	0 0341	0 0213	0 0213	786 1	11 89	644 15	1 21	0 0180	162.0	624 1 630				+
9	98	640	0 0088	0 03432	2 3759	1 0804	0 0268	2 1474	0 0341	0 0341	0 0213	0 0213	798 9	11 93	645 79	1 22	0 0182	173 0	625 9 640				
9	99	650	0 0072	0 02808	2 4040	1 1025	0 0220	2 1753	0 0279	0 0279	0 0174	0 0194	810 5	11 96	647 32	1 23	0 0184	184 0	626 5 650				
1	00	660	0 0072	0 02808	2 4320	1 1246	0 0221	2 2032	0 0279	0 0279	0 0174	0 0174	821 0	11 97	647 78	1 23	0 0185	195 2	625.8 660				
1	01	670	0 0072	0 02808	2 4601	1 1468	0 0222	2 2311	0 0279	0 0279	0 0174	0 0174	831 4	11 96	647 25	1 2 3	0 0 1 8 4	206.2	625.2 670				
1	02	680	0 0072	0 02808	2 4882	1 1691	0 0223	2 2590	0 0279	0 0279	0 0174	0 0174	8419	11 95	646 75	1 23	0 0184	217 2	624 7 680				
. 1	03	690	0 0072	0 02808	2 5163	1 1914	0 0224	2 2869	0 0279	0 0279	0 0174	0 0174	852 4	11 44	646 29	1 22	00183	228 2	624 1 690				
1	04	700	0 0072	0.02808	2 5444	1 2139	0.0225	2 3 140	0.0279	0.0279	0.0174	0.0174	972 3	11 97	645.47	1 22	0.0182	250 1	623.2 710				1
1	06 -	720	0.0072	0.02808	2 6005	1 2590	0.0225	2 3707	0 0279	0.0279	0.0175	0.0175	881.8	11 91	645 11	121	0.0181	261.0	622.8 720				
1	07	730	0 0072	0 02808	2 6286	1 2817	0 0227	2 3986	0 0279	0 0279	0 0175	0 0175	894 2	11 90	644 77	121	0 0181	2718	622 4 730				1
1	08	740	0 0072	0 02808	2 6567	1 3045	0 0228	2 4266	0 0279	0 0279	0 0175	0 0175	904 7	11 90	644 46	1 21	0 0180	282 6	622 1 740				
1	09	750	0 0072	0 02808	2 6848	1 3273	0 0228	2 4545	0 0279	0 0279	0 0175	0 0175	915 2	11 89	644 17	1 2 1	0 0 180	293 4	621 8 750				
1	10	760	0 0072	0 02808	2 7128	1 3502	0 0229	2 4824	0 0279	0 0279	0 0175	0 0175	925 7	11 88	643 90	1 20	0.0180	304 2	621 5 760				ļ
1	11	770	0 0057	0 02223	2 7351	1 3684	0 0182	2 5045	0 0221	0 0221	0 0138	0 0156	935 1	11 88	643 65	1 20	0 0 1 7 9	315.0	620 1 770				ļ
1	12	780	0 0057	0 02223	2 7573	1 3866	0 0182	2 5267	0 0221	0 0221	0 0138	0 0138	943.4	11 85	642 52	1 19	0.0178	325.6	61/7 780				+
1	13	790	0 0057	0 02223	2 7/95	1 4049	0 0183	2 5488	0 0221	0.0221	0 0138	0 0138	951 6	11.81	640 10	1 18	0.01/5	330 7	6135 900				
1	15	810	0.0057	0.02223	2 6018	1 4232	0.0183	2 5/09	0.0221	0.0221	0 0138	0.0138	909.9	11 73	637.04	1 15	0.0170	356 7	611.6 810				1
	16	8201	0 0057	0 02223	2 8462	1 4599	0.0184	2 5950	0 0221	0 0221	0.0138	0.0138	976 5	11 69	635.46	1 14	0.0168	366 7	609.8 820				
1	17	830	0 0057	0 02223	2 8685	1 4784	0.0184	2 6373	0 0221	0 0221	0 0138	0.0138	984 A	11 66	633.98	1 13	0 0166	376 7	608 1 830				
h	18	840	0 0057	0 02223	2 8907	1 4969	0 0185	2 6594	0 0221	0 0221	0 0138	0 0138	993 1	11 63	632 60	1 12	0 0164	386 6	606 6 840				
1	19	850	0 0057	0 02223	2 9129	1 5154	0 0185	2 68 16	0 0221	0 0221	0 0138	0 0138	1001 4	11 60	631 31	1 11	0 0 1 6 3	396 3	605 1 850				
1	20	860	0 0057	0 02223	2 9351	1 5339	0 0185	2 7037	0 0221	0 0221	0 0138	0 0138	1009 7	11 57	630 10	1 10	0 0 1 6 1	406.0	603 7 860				
1	21	870	0 0057	0 02223	2 9574	1 5525	0 0186	2 7258	0 0221	0 0221	0 0138	0 0138	1018 0	11 54	628 97	1 10	0 0 1 6 0	415 6	602 5 870				
1	22	880	0 0057	0 02223	2 9796	1 5711	0 0186	2 7480	0 0221	0 0221	0 0138	0 0138	1026 3	11 52	627 91	1 09	0 0158	425 1	6013 880				
1	23	890	0 005	0 0195	2 9991	1 5875	0 0164	2 7674	0 0194	0 0194	0 0121	0 0130	1034 1	11 50	626 92	1 08	0 0157	434 5	599 6 890				
1	24	900	0 005	0 0195	3 0186	1 6039	0 0164	2 7868	0 0194	0 0194	0 0121	0 0121	1041 4	11 47	625 57	1 07	0.0155	443 8	597.6 900				
1	20	910	0 005	0.0195	3 0381	1 6203	0.0164	2 8062	0 0194	0 0194	0 0121	0 0121	1048 7	1143	622.20	1 06	0.0153	453 0	593.0 910				
1	27	920	0.005	0.0195	3 03/6	1 6532	0.0165	2 0200 2 R451	0 0194	0.0194	0 0121	0 0121	1063 3	11.35	620.80	1.03	0.0150	402 1	592 2 930				
1	28	940	0 005	0 0195	3 0966	1 6697	0 0165	2 8645	0 0194	0 0194	0 0121	0 0121	1070 5	11 33	619 39	1 03	0 0148	479.9	590 6 910				
1	29	950	0 005	0 0 1 95	3 1161	1 6862	0 0165	2 8839	0 0194	0 0194	0 0121	0 0121	1077 8	11 30	618 07	1 02	0 0146	488 7	589 1 950				
1	30	960	0 005	0 0195	3 1356	1 7028	0 0166	2 9033	0 0194	0 0194	0 0121	0 0121	1085 1	11 27	616 83	1 02	0 0145	497 4	587 7 960				
1	31	970	0 005	0 0195	3 1551	1 7194	0 0166	2 9228	0 0194	0 0194	0 0121	0 0121	1092 4	11 24	615 66	1 01	0 0144	506 0	586 3 970				
1	32	980	0 005	0 0195	3 1746	1 7360	0 0166	2 9422	0 0 1 9 4	0 0194	0 0121	0 0121	1099 7	11 22	614 55	1 00	0 0142	514 6	585 1 980				
1	33	990	0 005	0 0195	3 1941	1 7526	0 0166	2 9616	0 0194	0 0194	0 0121	0 0121	1107 0	11 19	613 51	0 99	0 0141	523 1	583 9 990				+
[1	34	1000	0 005	0 0195	3 2136	1 7692	0 0166	2 9810	0 0194	0 0194	0 0121	0 0121	1114 2	11 17	612 52	099	0 0140	5315	582.8] 1000		8	l	1

	A	B	C	D	E	F	G	н	1	J	ĸ	L	M	N	0	Р	Q	R	S	Т	U	V V	w
29	Time	Rainfall	Incremental	Accum	Accum	Incremental	Accum	Incremental	Total	Instant	Design	Runoff	Head in	Infiltration	Infiltration	Infiltration	Infilt: htion	Storage	Time		Percolation Tes	t Results October 2007	
30	Incre	Distrib	Rantall	Ra nfail	Runott	Runoff	Runoff	Runoff	Runoff	Hydrograph	Hydrograph	Volume	Drywell	Area	Rate	Hydrograph	Volume	Volume	Incre		Esperanza NE 1	WW and SW Drywell percent	tests
31	(đi)	% of Pt	i								increased by	into drywell	+ bottom			out of		in drywell	(dl)		by BCG Inc		
32											Design FOS					dryweil							
33	Minutes		Inches	Inches	Inches	Inches	Inches	Inches	Inches	CFS	CFS	CF	FT	FT2	IN/HR	CFS	CF	CF	Minutes		H2O head (ft)	Meas Infil rate (in/hr)	
34																					1	0 1	
135	1010	0 004	0 0156	3 2292	1 7826	0 0133	2 9966	0 0155	0 0155	0 0097	0 0109	1120 8	11 15	611 60	0.98	0 0 1 3 9	539 8	581 0	1010				
136	1020	0 004	0 0156	3 2448	1 7959	0 0134	3 0121	0 0 1 5 5	0 0155	0 0097	0 0097	1126 6	11 12	610 12	0 97	0 0137	548 1	578 6	1020				
137	1030	0 004	0 0156	3 2604	1 8093	0 0134	3 0277	0 0155	0 0155	0 0097	0 0097	1132 5	11 07	608 11	0.06	0 0135	556 2	576 3	1030				
138	1040	0 004	0 0156	3 2760	1 8227	0 0134	3 0432	0 0155	0 0155	0 0097	0 0097	1138 3	11 03	606 22	0 95	0 0 1 3 3	564 2	574 1	1040				
139	1050	0 004	0 0156	3 2916	1 8361	0 0134	3 0588	0 0155	0 0155	0 0097	0 0097	1144 1	10 J9	604 42	0 94	0 0131	572 1	572 1	1050				
140	1060	0 004	0 0156	3 3072	1 8495	0 0134	3 0743	0 0155	0 0155	0 0097	0 0097	1149 9	10.95	602 72	0 93	0 0130	579 8	570 1	1060				
141	1070	0 004	0 0156	3 3228	1 8629	0 0134	3 0898	0 0155	0 0155	0 0097	0 0097	1155 8	10 91	601 11	0 92	0 0128	587 5	568 3	1070				
142	1080	0 004	0 0156	3 3384	1 8763	0 0134	3 1054	0 0155	0 0155	0 0097	0 0097	1161 6	10 88	599 58	0 91	0 0126	595 1	566 5	1080				
143	1090	0 004	0 0156	3 3540	1 8898	0 0135	3 1209	0 0155	0 0155	0 0097	0 0097	1167 4	10 84	598 13	0.90	0 0125	602 6	564 9	1090				
144	1100	0 004	0 0156	3 3696	1 9033	0 0135	3 1365	0 0155	0 0155	0 0097	0 0097	1173 3	10 81	596 75	0 89	0 0124	610.0	563 3	1100				
145	1110	0 004	0 0156	3 3852	1 9168	0 0135	3 1520	0 0155	0 0155	0 0097	0 0097	1179 1	10 78	595 44	0.89	0 0122	617 3	561 8	1110	1			
146	1120	0 004	0 0156	3 4008	1 9302	0 0135	3 1676	0 0155	0 0155	0 0097	0 0097	1164 9	10 75	594 19	0 88	0.0121	624 ь	 560 3 	1120				1
147	1130	0 004	0 0156	3 4 164	1 9438	0 0135	3 1831	0 0155	0 0155	0 0097	0 0097	1190 8	10 73	593.01	0 87	0 0120	6318	5590	1130				
148	1140	0 004	0 0156	3 4320	1 9573	0 0135	3 1987	0 0155	0 0155	0 0097	0 0097	1196.6	10 70	591 88	0.87	0.0119	638 9	557 7	1140				
149	1150	0 004	0 0156	3 4476	1 9708	0 0135	3 2142	0 0155	0 0155	0 0097	0 0097	1202 4	10 68	590 80	0.86	0 0118	646 0	556 4	11.0		1		
150	1160	0 004	0 0156	3 4632	1 9844	0 0135	3 2298	0 0156	0 0156	0 0097	0 0097	1208 3	10 65	589 78	0.86	0 0117	653.0	555 3	1160				
151	1170	0 004	0 0156	3 4788	1 9979	0 0136	3 2453	0 0 1 56	0 0156	0 0097	0 0097	1214 1	10 6 3	588 80	0 85	0 0116	660 0	554 1	1170				
152	1180	0 004	0 0156	3 4944	2 0115	0 0136	3 2609	0 0 1 56	0 0156	0 0097	0 0097	1219.9	10 61	587 87	0.85	0 0115	666 9	ა53 1	1180				
153	1190	0 004	0 0156	3 5100	2 0251	0 0136	3 2764	0 0156	0 0156	0 0097	0 0097	1225 7	10 59	586 98	0.84	0 0114	6737	552.0	1190				
154	1200	0 004	0.0156	3 5256	2 0387	0.0136	3 2920	0.0156	0 0156	0 0097	0.0097	1231.6	10 57	586 13	0.84	0 0113	680 5	5511	1200				
155	1210	0 004	0 0156	3 5412	2 0523	0 0136	3 3075	0 0156	0 0156	0 0097	0 0097	1237.4	10 55	585 32	0.83	0 0113	687 3	550 1	1210				
156	1220	0.004	0.0156	3 5568	2 0659	0.0136	3 3231	0.0156	0.0156	0.0097	0 0097	1243.2	10 54	584 55	0.83	0.0112	694.0	549.2	1220				
157	1230	0 004	0.0156	3 5724	2 0796	0.0136	3 3387	0.0156	0.0156	0 0097	0 0097	1249 1	10 52	583.81	0.82	0.0111	700 7	548.4	1230				
158	1240	0 004	0 0156	3 5880	2 0932	0 0137	3 3542	0.0156	0 0156	0 0097	0 0097	1254.9	10 50	583 11	0.82	0 0111	707 3	547 6	1240				
159	1250	0 004	0 0156	3 6036	2 1069	0 0137	3 3698	0 0156	0 0156	0 0097	0 0097	1260 7	10 49	582 44	0.82	0 0110	7139	546 8	1250				
160	1260	0 004	0.0156	3 6192	2 1206	0.0137	3 3853	0.0156	0.0156	0 0097	0.0097	1266.6	10.47	581 79	0.81	0.0110	720 5	546 1	1260				
161	1270	0.004	0.0156	3 6348	2 1342	0.0137	3 4009	0.0156	0.0156	0.0097	0.0097	1272.4	10.46	581 18	0.81	0.0109	727 1	545.3	1270				
162	1280	0.004	0.0156	3 6504	2 1479	0.0137	3 4 1 6 4	0.0156	0.0156	0.0097	0.0097	1278.2	10.45	580 59	0.81	0.0109	733.6	544 7	1280	1		1	
163	1290	0 004	0 0156	3 6660	2 1617	0 0137	3 4320	0.0156	0.0156	0 0097	0 0097	1284 1	10.43	580.03	0.80	0.0108	740 1	544.0	1290	1			
164	1300	0 004	0 0156	3 6816	2 1754	0 0137	3 4475	0 0156	0 0156	0 0097	0 0097	1289 9	10 42	579 49	0.80	0 0108	746 5	543.4	1300				
165	1310	0 004	0 0156	3 6972	2 1891	0 0137	3 4631	0 0156	0 0156	0 0097	0 0097	1295 7	10 41	578 98	0.80	0 0107	752.9	542.8	1310				
166	1320	0 004	0 0156	3 7 1 28	2 2029	0 0137	3 4786	0 0156	0 0156	0 0097	0 0097	1301.6	10 40	578 48	0 80	0 0107	759 3	542.2	1320				
167	1330	0.004	0.0158	3 7284	2 2166	0 0138	3 4942	0.0156	0.0156	0.0097	0.0097	1307.4	10.39	578 01	0 79	0.0106	765 7	5417	1330				
168	1340	0 004	0 0156	3 7440	2 2304	0 0138	3 5098	0 0156	0 0156	0 0097	0 0097	1313.2	10 38	577 56	0 79	0 0106	772 1	5412	1340				
169	1350	0.004	0.0156	3 7596	2 2442	0.0138	3 5253	0.0156	0.0156	0.0097	0 0097	1319 1	10 37	577 13	0.79	0.0106	778 4	540 7	1350	1			
170	1360	0 004	0 0156	3 7752	2 2579	0.0138	3 5409	0 0156	0 0156	0 0097	0 0097	1324 9	10 36	576 72	0 79	0 0105	784 7	540 2	1360				
171	1370	0 004	0 0156	3 7908	2 2717	0.0138	3 5564	0 0156	0 0156	0 0097	0 0097	1330 7	10 35	576.32	0.79	0 0105	791.0	5397	1370			1	
172	1380	0 004	0 0156	3 8064	2 2856	0 0138	3 5720	0 0156	0 0156	0 0097	0 0097	1336 6	10 34	575 94	0 78	0 0105	797 3	539 3	1 380	1	1		
173	1390	0 004	0 0156	3 8220	2 2994	0.0134	3 5876	0 0156	0 0156	0 0097	0 0097	1342 4	10.33	575 58	0.78	0 0104	803.5	538.9	1390				
174	1400	0 004	0 0156	3 8376	2 3132	0.0138	3 6031	0 0156	0 0156	0 0097	0 0097	1348.2	10 32	575 23	0.78	0 0104	809.8	538 5	1400		1		
175	1410	0 004	0 0156	3 8532	2 3270	0 0138	3 6187	0 0156	0 0156	0 0097	0 0097	1354 1	10 32	574 90	0.78	0 0 104	816.0	538 1	1410		1		
176	1420	0.004	0.0156	3 8688	2 3409	0.0139	3 6347	0.0156	0.0156	0 0097	0.0097	1359 9	10 31	574 58	0 78	0.0103	822 2	537 7	1420		1	1	
177	1430	0.004	0.0156	3 884.4	2 3548	0.0139	3 6409	0.0156	0.0156	0.0007	0.0097	1365.8	10 30	574 27	0.78	0.0103	828.4	537.4	1430		1		
178	1440	0.004	0.0150	3 0000	2 3694	0.0120	3 6654	0.0150	0.0166	0.0007	0.0097	1371 6	10.20	573 08	0.77	0.0103	834 5	537.0	1440				
110	1440	0.004	001301	0 0000	Z 3000 j	00139	3 0004	0 0 (00)	00130	0.0031	0.0097	13710	10 23	210 10	517	00100	0040	<u>_</u>	1 1990	1	- h		

-

•

INFLOW / OUTFLOW HYDROGRAPH Service Center, 10 yr, 24-hr Storm

RUNOFF / INFILTRATION / STORAGE VOLS Service Center, 10 yr , 24-hr Storm

、 、

3910 NE 10th Avenue Portland, Oregon 97212 **Phone 503 282 7482** Fax 503 282 7402 aldergeo@teleport com

September 8, 2008 Project No 568-2

Ms Susan Lind, Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

INFILTRATION RATE FOR PERVIOUS PAVEMENT CLARK FAMILY CENTER BUILDING 2740 SE POWELL BOULEVARD, PORTLAND, OREGON

Dear Ms Lind

I understand that pervious pavers will be used for the entrance to the parking level of the Clark family center In my opinion, the soils on this portion of the site are suitable for infiltrating stormwater from pervious pavement

In November 2005, we drilled at 11¹/₂-foot deep boring in the entrance area The near surface soils encountered in our boring consisted of brown silts with some to much fine sand The NRCS Multinomah County soil survey identifies these soils as "Urban Land 51B" and places them in Hydrologic Group B, with an infiltration rate up to 2 inches per hour

In our opinion, an infiltration rate of 2 inches per hour may be used when designing a pervious pavement for this site. This recommendation assumes that only native soils are present beneath the pervious pavement section. Any fill soils encountered during site grading will need to be over-excavated and replaced with drain rock.

I recommend that the pervious pavers be supported on at least $1\frac{1}{2}$ inches of No 4-minus coarse sand that is underlain by at least 12 inches of AASHTO No 57 aggregated ($1\frac{1}{2}$ "- No 8 gradation)

(

Project No 568-2

I hope this information meets your needs at this time Please contact me if you have further questions

Sincerely,

John Cunningham, P E , G E Oregon Registered Geotechnical Engineer No 13,507

(1) Addressee

- (1) Scott Rimmer, Lundin Cole Architects
- (1) Cole Presthus, WDY Cıvıl-Structural Engineers

3910 NE 10th Avenue Portland, Oregon 97212 **Phone 503 282 7482** Fax 503 282 7402 aldergeo@teleport.com

September 8, 2008 Project No 568-2

i

Ms Susan Lind, Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

INFILTRATION RATE FOR PERVIOUS PAVEMENT CLARK FAMILY CENTER BUILDING 2740 SE POWELL BOULEVARD, PORTLAND, OREGON

Dear Ms Lind

I understand that pervious pavers will be used for the entrance to the parking level of the Clark family center In my opinion, the soils on this portion of the site are suitable for infiltrating stormwater from pervious pavement

In November 2005, we drilled at 11¹/₂-foot deep boring in the entrance area The near surface soils encountered in our boring consisted of brown silts with some to much fine sand The NRCS Multhomah County soil survey identifies these soils as "Urban Land 51B" and places them in Hydrologic Group B, with an infiltration rate up to 2 inches per hour

In our opinion, an infiltration rate of 2 inches per hour may be used when designing a pervious pavement for this site. This recommendation assumes that only native soils are present beneath the pervious pavement section. Any fill soils encountered during site grading will need to be over-excavated and replaced with drain rock.

I recommend that the pervious pavers be supported on at least $1\frac{1}{2}$ inches of No 4-minus coarse sand that is underlain by at least 12 inches of AASHTO No 57 aggregated ($1\frac{1}{2}$ "- No 8 gradation)

Project No 568-2

I hope this information meets your needs at this time Please contact me if you have further questions

Sincerely,

John Cunningham, P E, G E Oregon Registered Geotechnical Engineer No 13,507

(1) Addressee

(1) Scott Rimmer, Lundin Cole Architects

(1) Cole Presthus, WDY Civil-Structural Engineers

3910 NE 10th Avenue Portland, Oregon 97212 (503) 282-7482 Fax (503) 282-7402 aldergeo@teleport.com

January 31, 2009 Project No 568-2

Ms Terri Silvis Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

ADDENDUM NO. 1 TO JULY 24, 2008 GEOTECHNICAL INVESTIGATION REPORT FOR PROPOSED CATHOLIC CHARITIES CLARK FAMILY CENTER BUILDING 2740 SE POWELL BOULEVARD, PORTLAND, OREGON

Dear Ms Silvis

This letter provides specific foundation design recommendations for a large mat foundation supporting shear walls for the building I understand the mat foundation is about 36 feet wide, 68 feet long and 4 feet thick. It supports interior shear wall associated with elevator and stairwell shafts My July 24, 2008 geotechnical report for the project provided foundation design recommendations only for exterior wall footings up to about 6 feet wide and interior column footings up to about 12 feet square

MAT FOUNDATION DESIGN

The maximum allowable average contact pressure of the mat should be limited to about 1,700 psf when supporting normal dead and long-term live loads This average contact pressure is estimated to limit long term static settlement of the mat to about 1 inch

The average soil contact pressure under the mat is calculated by dividing the total dead and live loads by the surface area of the footing Local contact pressures may exceed this recommended maximum average pressure value if an average soil subgrade modulus value of 12 pci (20 kcf) is used to evaluate bending moments in the mat

The design maximum seismic bearing pressure of 5,000 psf may be used The recommended maximum seismic allowable bearing pressure is about three times larger than the static allowable average bearing pressure This large increase is based on a review of (1) the theoretical ultimate bearing pressure (no factor of safety applied) q_u compared to the settlement-limited static allowable bearing pressure (with a factor of safety) $q_{a \text{ static}}$, and (2) the ratio between the mat area (A) and the minimum area required to support the vertical loads (A_c) Recent research by Kutter

et al $(2006)^1$ indicates that seismic settlements of shear wall footings will be less than a few inches if the real loads transmitted to the foundation during earthquake loading do not exceed ultimate soil capacities Gajan and Kutter $(2008)^2$ conclude that a large footing with A/A_c ratio of 10 or greater possesses a moment capacity that is insensitive to soil properties, does not suffer large permanent settlements, has a self-centering characteristic associated with uplift and gap closure, and dissipates seismic energy that corresponds to about 20% damping ratio The subject mat has a calculated A/A_c of 13

Permanent settlement of the mat foundations under seismic loading conditions is estimated to be about 1inch based on the method of Richards and others $(1993)^3$ and the research of Gajan and Kutter (2008)

CLOSURE

This letter is addendum No 1 to my July 24, 2008 geotechnical investigation report entitled "Catholic Charities Services Center, 2740 SE Powell Boulevard, Portland, Oregon" and is made part of that report by this reference

I hope this information meets your needs at this time Please contact me if you have questions

Oregon Registered Geotechnical Engineer No 13,507

John Cunningham, PE GE My digital signature approved for this document 2009 01 31 15 06 40 -08'00

(1) Addressee
 (1) WDY Engineers, Inc
 (1) Lundin Cole Architects

N

¹ Kutter, B L et al 2006 "Workshop on Modeling of Nonlinear Cyclic Load-Deformation Behavior of Shallow Foundations" *Pacific Earthquake Engineering Research Center Report No 2005/14*, pp 4 and 10

² Gajan, S and Kutter, B (2008) "Capacity, Settlement, and Energy Dissipation of Shallow Footangs Subjected to Rocking" *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol 134, No 8, pp 1129-1141

³ Richards, R, Elms, DG, and Budhu (1993) "Seismic Bearing Capacity and Settlements of Foundations" *Journal of Geotechnical Engineering*, ASCE, Vol 119, No 4, pp 662-674

3910 NE 10th Avenue Portland, Oregon 97212 (503) 282-7482 Fax (503) 282-7402 aldergeo@teleport.com

March 31, 2009 Project No 568-2

Ms Terri Silvis, Ph D Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

APR 0 6 2009

BDS DOCUMENT SERVICES

REVIEW OF CONSTRUCTION SHORING PLAN CLARK FAMILY CENTER 2740 SE POWELL BOULEVARD PORTLAND, OREGON

Dear Ms Silvis

Yesterday I reviewed the proposed shoring plans for the Clark Family Center The purpose of the review was to determine whether the plans were prepared in substantial conformance with my July 24, 2008 geotechnical report for the project As discussed below, it is my opinion that the shoring plan has been properly prepared and meets the project requirements

I was provided with the following documents to review

- Clark Family Center Shoring, plans prepared by Kramer Gehlen Consulting Engineers, Sheets S1-S4, dated March 17, 2009
- Clark Family Center Shoring, calculations prepared by Kramer Gehlen Consulting Engineers, dated March 27, 2009
- Wall Bracing, plans prepared by Kramer Gehlen Consulting Engineers, 2 sheets, dated March 25, 2009
- Clark Family Center Wall Bracing, calculations prepared by Kramer Gehlen Consulting Engineers, dated March 27, 2009

My geotechnical report included recommendations for at-rest, active and passive earth pressures of 52, 32 and 500 pcf These earth pressures were used by Kramer Gehlen in their analyses

I used the soil-structure interaction program *PYWall V3 0* by Ensoft, Inc (2007) to independently check the limit equilibrium approach used by Kramer Gehlen to select soldier pile embedment depths and sizes *PYWall* uses nonlinear soil-resistance-displacement relationships, pile spacing, penetration depths and structural properties to analyze the behavior of flexible retaining walls

My analyses indicates that the selected pile sizes, spacing and embedment depths meet static equilibrium requirements at acceptable bending stress levels Pile head deflections are estimated

to be less than about 1 inch for all piles except Piles 12 through 17 and 22 through 25 These taller piles along the east and west shoring walls could deflect greater than 1 inch if more than about $2/3^{rd}$ of the design active earth pressure mobilizes and pushes against the back of the lagging and piles

In my opinion, the anticipated pile deflections do not adversely affect the stability of the shoring However, pile movements may cause ground surface settlement that may affect underground utilities and surface structures located within 5 to 10 feet behind the subject soldier piles Kramer Gehlen and the shoring contractor should review their shoring plan and determine whether the anticipated soldier pile movements are within tolerable limits for the existing conditions behind the shoring

I hope this information meets your needs at this time Please contact me if you have questions

Sincerely,

ALDER GEOTECHNICAL SERVICES, LLC

ALL A CLANNER RENEWS 12-31-09

John Cunningham, PE, GE My digital signature approv for this document 2009 03 31 13 43 51 -07'00'

John Cunningham, P E, G E Oregon Registered Geotechnical Engineer No 13,507

(1) Addressee via pdf

- (1) Lundin Cole Architects via pdf
- (1) Kramer Gehlen Consulting Engineers via pdf
- (1) R&H Construction via pdf

3910 NE 10th Avenue Portland, Oregon 97212 (503) 282-7482 Fax (503) 282-7402 <u>aldergeo@teleport com</u>

April 9, 2009 Project No 568-2

Ms Terri Silvis, Ph D Project Manager Catholic Charities of Oregon 231 SE 12th Avenue Portland, Oregon 97214

RECEIVE APR 1 4 2009

OCUMENT SERVICES BDS

RESPONSE TO SITE DEVELOPMENT CHECKSHEET ITEM 4 CLARK FAMILY CENTER 2740 SE POWELL BOULEVARD PORTLAND, OREGON

Dear Ms Silvis

I am responding to Item No 4 in the March 23, 2009 Site Development Checksheet from the City of Portland Bureau of Development Services

Item 4—Permeable pavement (pavers) is shown to be located immediately adjacent to the building Stormwater will likely infiltrate into soil within the influence zone of the footing loads, potentially resulting in a saturated subgrade condition

Please submit a memorandum prepared by the geotechnical engineer that verifies that the bearing capacity and settlement estimates are valid for the portions of the foundation adjacent to the permeable pavement during the wet season

The presence of pervious pavers on the south side of the building does not change the recommended bearing pressure or estimated foundation settlements presented in our July 24, 2008 geotechnical investigation report or our Addendum No 1 dated January 31, 2009

The pervious pavers along the south side of the building are designed to infiltrate only the precipitation that falls on them Stormwater from nearby non-pervious areas will not be collected and discharged into the pervious paver area As such, the pervious pavers will infiltrate water the same as bare ground or landscaped areas Water will soak into the ground and slowly migrate down to the ground water table

Shallow, perched groundwater was not encountered in our borings drilled in October 2005 In addition, mottled soils, indicating seasonal saturated soil conditions, were not observed in the borings Groundwater was first encountered about 24 feet below the ground surface and at about elevation 72 feet The proposed new footings will be located between elevations $92\frac{1}{2}$ and $95\frac{1}{2}$ feet

Alder Geotechnical Services

Our opinion that additional infiltration of water will not affect the design of the south wall footings of the building is based on new foundation settlement calculations we performed These settlement calculations indicate that raising the groundwater table from 23 feet below the bottom of the footings to immediately below the bottom of the footings increases predicted foundation settlements under the full design dead and live loads by about 0.2 inch Along the south wall of the building, our settlement estimate for 3-foot wide wall footings increases from 0.6 inch to 0.8 inch Our settlement estimate for 6-foot wide wall footings increases from 0.9 inch to 1.1 inch

The foundation design recommendations presented in our July 24, 2008 geotechnical report are based on limiting foundation movement under the design loads to about 1 inch total settlement and about $\frac{1}{2}$ inch differential settlement. In our opinion, the current foundation design meets these criteria whether saturated soil conditions are present at the bottom of the footings or are present 23 feet below the bottom of footings

I hope this information meets your needs at this time Please contact me if you have questions

Sincerely,

ALDER GEOTECHNICAL SERVICES, LLC

Oregon Registered Geotechnical Engineer No 13,507

HILL HILL A COMMUNICATION A COMUNICATION A C John Cunningham, PE, GE My digital signature approved for this document 2009 04 09 10 21 46 -07'00'

(1) Addressee via pdf

(1) Lundin Cole Architects via pdf

(1) WDY Engineers via pdf

John Cunningham, P E, G E