

Seattle	1011 Western Avenue, Suite 810 Seattle, WA 98104 206.292.5076
Tacoma	1250 Pacific Avenue, Suite 701 Tacoma, WA 98402 253.383.2797
Portland	101 SW Main Street, Suite 280 Portland, OR 97204 503.232.3746
	www.pcs-structural.com

STRUCTURAL CALCULATIONS

FOR

1341 N KILLINGSWORTH APARTMENTS REV 8 - ROOF FRAMING REVISION & BALCONY BRACKETS 1341 NORTH KILLINGSWORTH STREET PORTLAND, OR 97217

PREPARED BY PCS STRUCTURAL SOLUTIONS

DECEMBER 7, 2023 21-330 RECEIVED By BDS at 2:35 pm, Dec 20, 2023

Loads: (ASCE 7-16)

Per previously submitted calculations

 $q_{\rm h} = q_z = 0.00256 K_z K_z K_{\rm e} K_{\rm d} V^2 = (0.00256)(0.835)(1.0)(1.0)(0.85)(100)^2 = 18.2 \; \text{psf}$

Wind on Rooftop Structure (ASCE 7-16 29.4.1)

 $\begin{array}{ll} F_{h} = q_{h}(GC_{r})A_{r} & (EQ.\ 29.4\text{-}1) \\ q_{h} = 18.2 \ \text{psf} \\ GC_{r} = 1.9 \\ A_{f} = 170 \ \text{ft}^{2} \\ F_{h} = (18.2 \ \text{psf})(1.9)(156 \ \text{ft}^{2}) = 5.4 \ \text{kips} \ (\text{SD}) \ \text{total load, over } 13'\text{-}0'' = 415 \ \text{plf} \ (\text{SD}) = 250 \ \text{plf} \ \text{ASD} \end{array}$

<u>Beam Design:</u>

L = 13'-0" maximum

 $R = \frac{(250 \text{ plf})(13'-0'')}{2} = 1.6 \text{ kips each end of beam.}$

 $M = \frac{(250 \text{ plf})(13'-0'')^2}{8} = 5.3 \text{ ft-kips} = 63 \text{ in kips}$

<u>51/2x12 24F-V4 glulam check:</u>

Fb = 1450 psi C_{D} =1.6 C_{L} = 0.99(controls) C_{v} = 3.05 C_{fu} = 1.09

F'_b = (1450 psi)(1.6)(0.99(1.09) = 2500 psi

 $f_{b} = \frac{M}{S_{y}} = \frac{63 \text{ in-kips}}{60.50 \text{ in}^{3}} = 1045 \text{ psi} < 2500 \text{ psi} \text{ -ok-}$

Deflection:

 $\frac{5\text{wl}^2}{384\text{El}_v} = \frac{(5)(250/12)(13'-0"x12)^4}{(384)(1.6x10^6)(166.4\text{ in}^4)} = 0.60 \text{ in } = 258 > 240 \text{ -ok-}$

5¹/₂x12 24F-V4 glulam capable of resisting out of plane wind loads.

Structural and General Fastening

SDWS TIMBER Screw (Exterior Grade)

Structural Wood-to-Wood Connections Including Ledgers, Indoor/Outdoor Projects

Designed to provide an easy-to-install, high-strength alternative to through-bolting and traditional lag screws. The Strong-Drive SDWS Timber screws are ideal for the contractor and do-it-yourselfer alike. *Double-barrier coating provides corrosion resistance equivalent to hot-dip galvanization, making it suitable for certain exterior and preservative-treated wood applications, as described in the evaluation report.*

Codes/Standards: IAPMO UES ER-192, State of Florida FL13975

US Patent 9,523,383

For more information, see p. 59, C-F-2023 Fastening Systems catalog

SDWS Timber Screw — Allowable Shear Loads -Douglas Fir–Larch and Southern Pine Lumber

		Reference DFL/SP Allowable Shear Loads (lb.)									
Length (in.)	Model No.	Length	Wood Side Member Thickness (in.)								
		(m.)	1.5	2	2.5	3	3.5	4	4.5	6	8
3	SDWS22300DB	1½	255								—
4	SDWS22400DB	2%	405	405	305	_	_	_	_	_	—
5	SDWS22500DB	3	405	405	360	360	325			_	_
6	SDWS22600DB	3	405	405	405	405	365	365	355	_	—
8	SDWS22800DB	3	405	405	405	405	395	395	395	395	—
10	SDWS221000DB	3	405	405	405	405	395	395	395	395	395

Typical Post Design

<u>Typical Balcony Loads</u> 60 psf LL 15 psf DL (Maximum per General Notes) 25 psf SL (Live Load Controls by Inspection)

Max. Total Load = (4')(8'-3'')(15 DL + 60 LL) = 2.5 kipsLoad per Support = 2.5k/4 = 625 lbs

Project Title: Engineer: Project ID: Project Descr:

Wood Column

LIC# : KW-06014122, Build:20.23.07.20

DESCRIPTION: Typical Balcony Post

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

oral Information G

seneral inform	ation								
Analysis Method Allowable Stress Design End Fixities Top & Bottom Pinned			10 ft	Wood Section Name Wood Grading/Manu Wood Mombor Type	6x6 Graded Lumber				
(Used for not	n-slender calculat	tions)	10 11	Exact Width	5.50 in Al	low Stress Modification Facto	ors		
Wood Species Wood Grade	Douglas Fir-La No.1	arch		Exact Depth	5.50 in	Cf or Cv for Bending	1.0 1.0		
Fb +	1,200.0 psi	Fv	170.0 psi	Area Ix	30.250 In^2 76.255 in^4	Cf or Cv for Tension	1.0		
Fb - Fc - Prll	1,200.0 psi 1,000.0 psi	Ft Density	825.0 psi 31.210 pcf	ly	76.255 in^4	Cm : Wet Use Factor	1.0 1.0		
Fc - Perp	625.0 psi	x x Bonding	y y Bonding	Avial		Cfu : Flat Use Factor	1.0		
E : Modulus of El	Basic	1,600.0	1,600.0	1,600.0 ksi		Kf : Built-up columns Use Cr : Repetitive ?	1.0 No		
	Minimum	580.0	580.0	Column Buckling Condition: ABOUT X-X Axi ABOUT Y-Y Axi	s: Lux = 10 ft, s: Luy = 10 ft,	Kx = 1.0 Ky = 1.0			
				Comise lesde	-	Feature will be expliced for as	laulationa		

PCS STRUCTURAL SOLUTIONS

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Column self weight included : 65.56	3 lb	s * Dea	ad Lo	ad Fa	ctor	
AXIAL LOADS						
Reactions Floors Above: Axial L	oad	at 10.0) ft, E	0 = 0.5	0, L =	= 2.0 k
FV1: Axial Load at 10.0 ft, Xecc	={7.	750 in,	D =	0.1250), L =	0.50 k
BENDING LOADS	Lu	uuui	3			
			-	0 405	· · ·	0 50

FH1: Lat. Point Load at 4.0 ft creating My-y, D = 0.1250, L = 0.50 k

DESIGN SUMMARY

Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.5597 :	1 Maximum SERVICE Lateral Load Reactions
Load Combination +D+L	Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k
Governing NDS Forumla Comp + Myy, NDS Eq. 3.9-3	Top along X-X 0.2904 k Bottom along X-X 0.3346 k
Location of max.above base 4.027 f	Maximum SERVICE Load Lateral Deflections
At maximum location values are . Applied Axial 3.191 k	Along Y-Y 0.0 in at 0.0 ft above base for load combination : n/a
Applied My 1.331 k Fc : Allowable 691.51 g	-ft Along X-X 0.1418 in at 4.564 ft above base si for load combination : +D+L
·	Other Factors used to calculate allowable stresses
PASS Maximum Shear Stress Ratio = 0.09761 : Load Combination +D+L Location of max.above base 3.960 f Applied Design Shear 24.890 p Allowable Shear 170.0 p	1 <u>Bending Compression Tension</u> si si

Project File: Killingsworth.ec6

(c) ENERCALC INC 1983-2023

Project Title: Engineer: Project ID: Project Descr:

