

STRUCTURAL CALCULATIONS

NWNRC Stairs and Ladder 2600 SE 29th Avenue, Portland, OR Superior West Engineering

> March 6, 2023 Project No. 230211 16 pages

Principal Checked: _

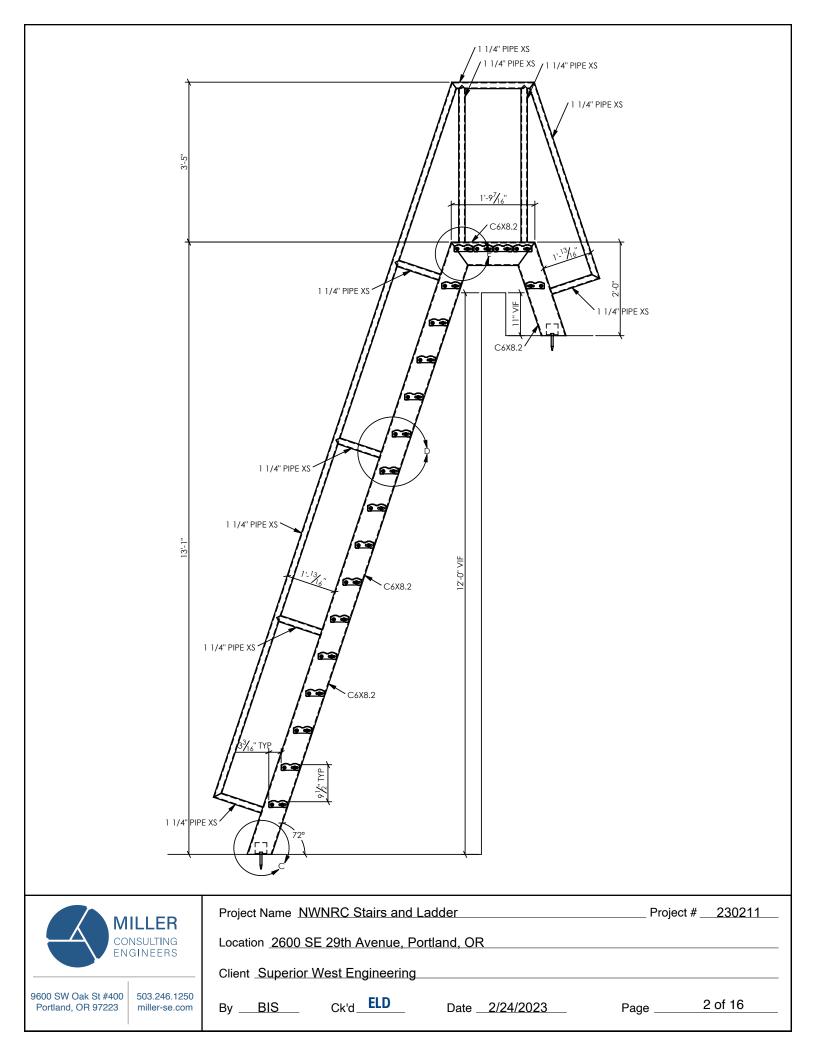
Project Design Cr	itoria													
Structural System In	formation													
Building Code:	2019 Oregoi	n Structural S	pecialty Code											
Risk Category:	IV													
Structural System:	Component													
Importance Factors:	I _S =	1.20	I _i =	1.25	I _w =	1.00	I _p =	1.50						
Gravity System:	Wood Frame	ed Construction	on											
Seismic System:	Architectura	l Component	s											
	Egress Stairv	vays Not Part	of Building Se	eismic Force	-Resisting Sy	vstem								
		ap =	1	Rp =	2.5	Ωo =	2							
Loading Information	<u>1</u>			Deflectior	n Criteria									
Dead	Live	Live Point			Dead	Live/Wind								

	Dead	Live	Live Point
Stairs	3 5 psf	100 psf	300 lbs
Ladder	2 5 psf	100 psf	300 lbs

_	Dead	Live/Win
Roof	L/360	L/240
Floor	L/360	L/240

Seismic Loading

Seismic design criteria per EoR.


Scope of Work

The scope of work is for the structural design of the ships ladder, stairs, and their attachment to the building.

Table of Contents

Ships Ladder	3 - 9
Stairs	10 - 16

MILLER	Project Name NWNRC Stairs and Ladder	Project # <u>230211</u>
	Location 2600 SE 29th Avenue, Portland, OR	
	Client Superior West Engineering	
9600 SW Oak St #400 Portland, OR 97223 503.246.1250 miller-se.com	By <u>BIS</u> Ck'd ELD Date <u>2/24/2023</u>	Page 1 of 16

ASCE 7-16: SEISMIC DESIGN FORCE, SECTION 13.3

0.2S_{DS}W_p =

Elements of Structures, Nonstructural Components, and Equipment Supported by Structures

Site Class:	С	Section 20.3, Table 20.3-1
Seismic Design Category:	D	Section 11.6
Risk Category:	IV	Table 1.5-1
S _s =	0.662	per EoR
F _a =	1.24	Table 11.4-1 (Linear interpolation is used)
S _{MS} =	0.82	Eqn. 11.4-1
S _{DS} =	0.545	Eqn. 11.4-3
I _p =	1.50	
a _p =	1.0	Table 13.6-1
R _p =	2.5	Table 13.6-1
z =	24.33	ft, Component attachment elevation w/ respect to grade
h =	24.33	ft, Structure roof elevation with respect to grade
F _p =	0.392	* W _p Eqn. 13.3-1
OR	1.308	* W _p Eqn. 13.3-2
Not less than	0.245	* W _p Eqn. 13.3-3
	F _p =	0.392 * W _p

0.109

* W_p

		Proje	ct Name <u>NV</u>	Project #	#230211		
MILLER CONSULTING ENGINEERS		Locat	ion <u>2600 S</u>				
		Client	t Superior	West Engineering			
9600 SW Oak St #400 Portland, OR 97223	503.246.1250 miller-se.com	Ву	BIS	Ck'd_ELD_	Date <u>2/24/2023</u>	Page	3 of 16

Sec. 13.3.1.2

McNICHOLS PLANK GRATING

GRIP STRUT® | 2-DIAMOND | 4-3/4" WIDTH

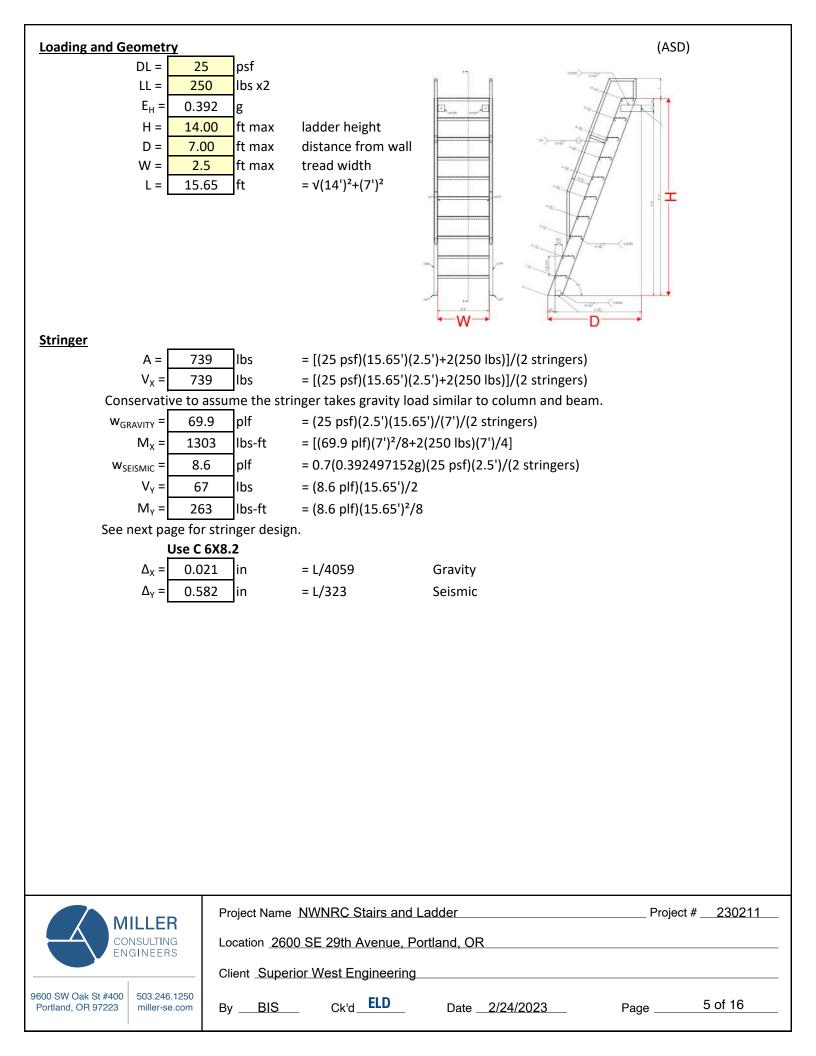
ALUMINUM LOAD TABLE

 $w_{LL} = 100 \text{ psf} < 539 \text{ psf}, \text{ OKAY}$ $P_{LL} = 300 \text{ lbs} < 316 \text{ lbs}, \text{ OKAY}$

PLANK

	DEPTH	LBS./LF	LOAD/						C	LEAR SPAN	J
THICK	(mm)	(kg/m)	DEFL	24"	30"	36"	42"	48"	54"	60"	66"
			U	998	639	443	326	248	196	159	131
	1-1/2"	0.85	D	0.10	0.15	0.22	0.31	0.40	0.51	0.63	0.76
	(38.1)	(1.26)	С	395	316	263	226	197	175	157	143
			D	0.08	0.12	0.18	0.25	0.32	0.41	0.50	0.61
			U	1463	937	650	478	366	289	234	194
.0800"	2"	0.92	D	0.08	0.13	0.18	0.25	0.33	0.42	0.52	0.63
.0000	(50.8)	(1.37)	С	579	463	386	331	290	257	232	211
			D	0.06	0.10	0,15	0.20	0.27	0.34	0.42	0.51
			U	2199	1407	977	718	550	434	352	291
	2-1/2"	1.00	D	0.07	0.10	0.15	0.21	0.28	0.35	0.43	0.53
	(63.5)	(1.48)	С	870	696	580	497	435	387	348	316
			D	0.05	0.08	0.12	0.17	0.22	0.28	0.35	0.42

U - Uniform Load - Lbs. per Square Foot

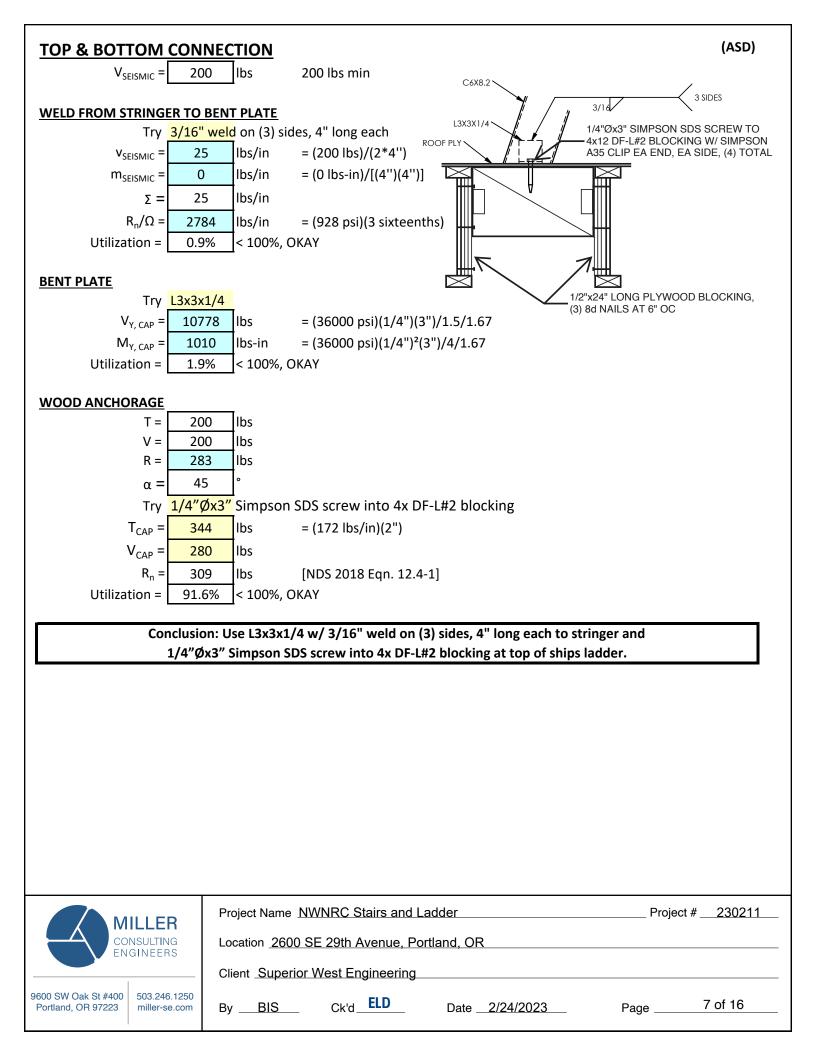

D - Deflection - in Inches

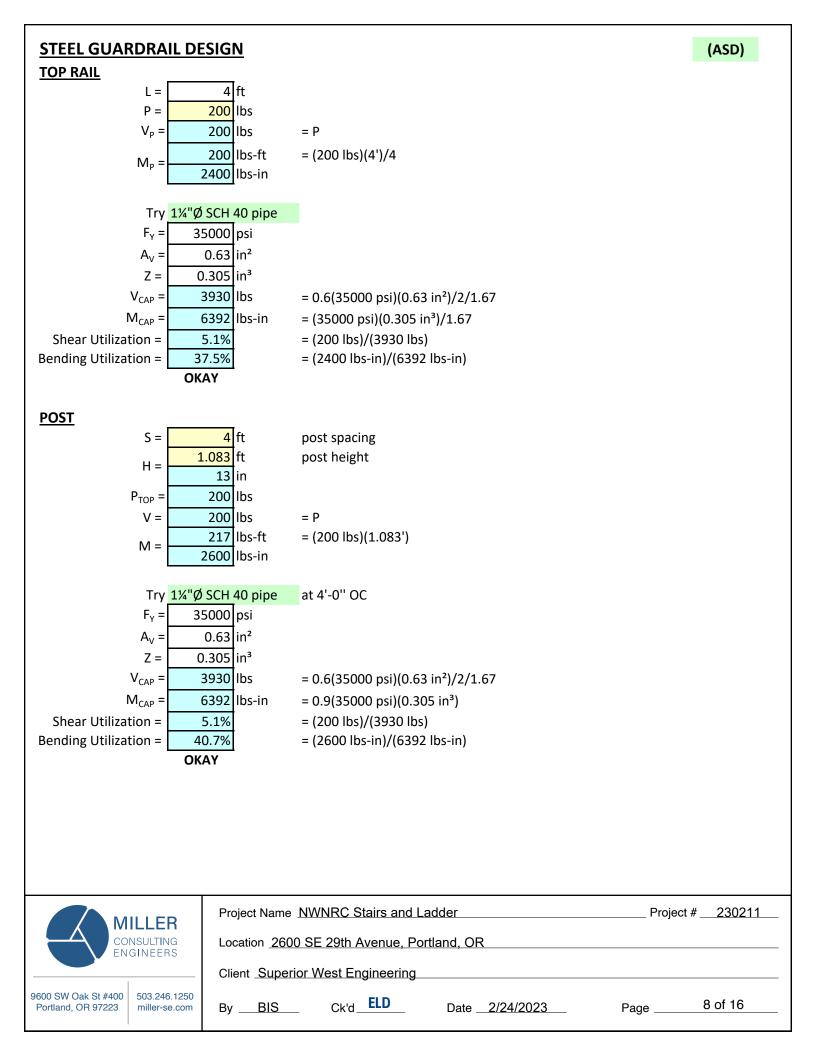
C - Concentrated Load - Lbs. per Square Foot of Width at Mid Span

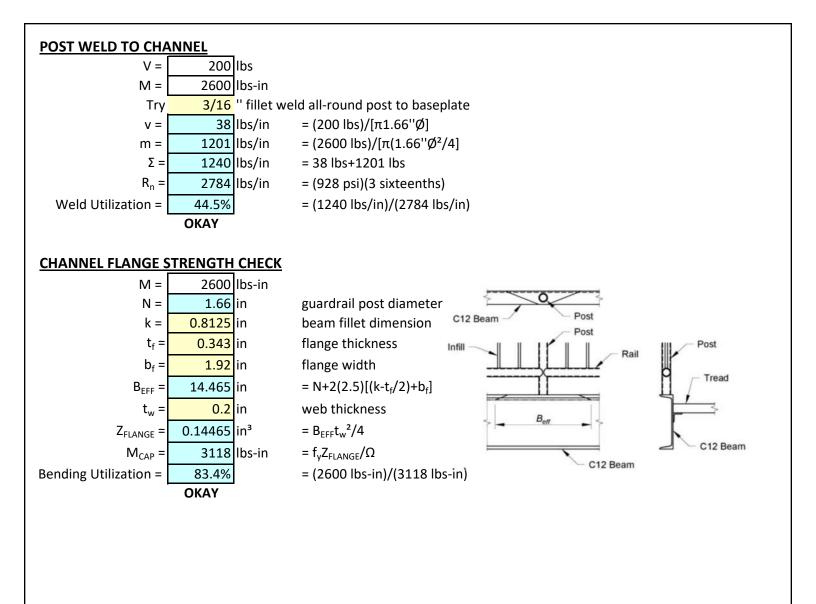
• Span and loading values to the left of the bolded black line produce a deflection of 1/4" or less under a uniform load of 100 lbs. per square foot, allowing for safe pedestrian comfort. Span and loading values to the right of the bolded black line are applicable to other types of loads at the discretion of a licensed engineer.

Technical information provided is theoretical and for evaluation by technically skilled persons, with any use thereof to be at their independent discretion and risk. McNICHOLS
shall have no responsibility or liability for results obtained or damages resulting from improper evaluation or use of Plank Grating.

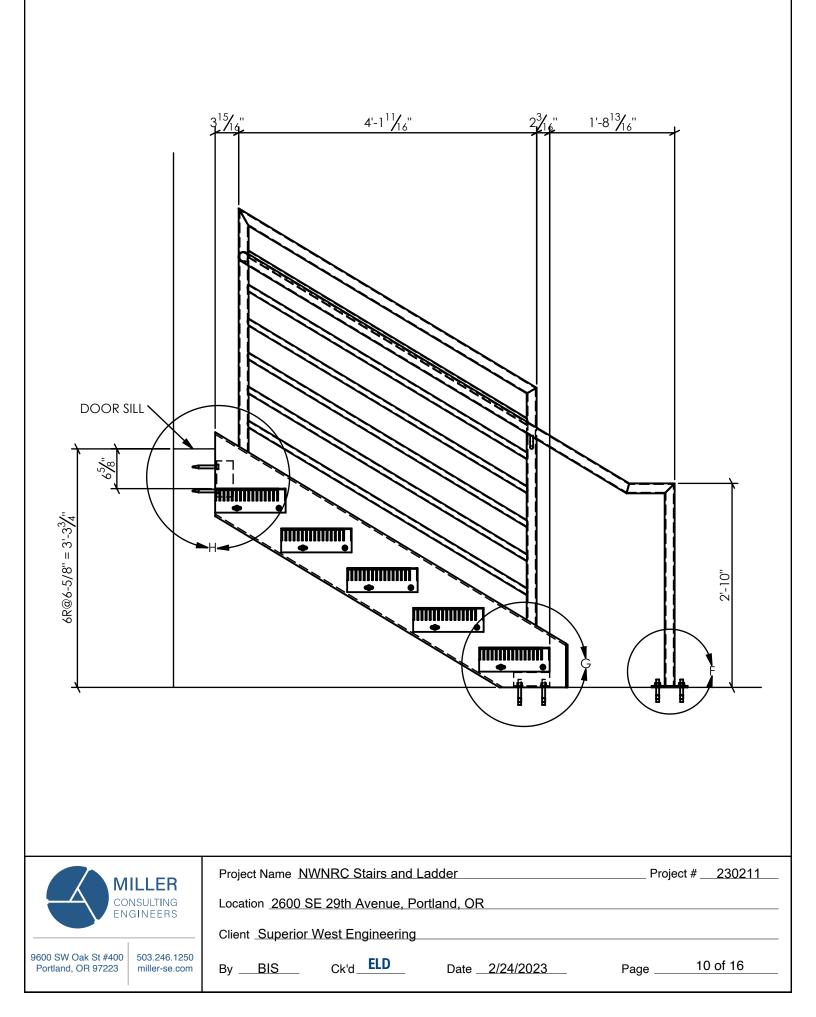
	Proje	ct Name <u>NV</u>	VNRC Stairs	and Ladder	Project	#230211		
MILLER CONSULTING ENGINEERS		Locat	Location 2600 SE 29th Avenue, Portland, OR					
		Clien	t Superior	<u> West Enginee</u>	ering			
9600 SW Oak St #400 Portland, OR 97223	503.246.1250 miller-se.com	Ву _	BIS	Ck'd ELD	Date <u>2/24/2023</u>	Page	4 of 16	




STRINGER


Shape: (Shape Capacity = 0	.75 < 1.0				
Size: 6							
	ASD		Axial Capac				
Weight =	8	plf	Aeff =	2.39	in ²		
Pr =	0.739	k, axial compression load	Q =	1.00	(Da atian 57 m		
Mr _x =	1.303	ft-k, strong axis moment	Qs =	1.00	(Section E7, p	· ,	
Mr _y =	0.263	ft-k, weak axis moment	Qa =	1.00	(Section E7, p	-	
Vr _y =	0.739	k, strong axis shear	Fe _x =	44.4		E3 pg 16.1-33)	
Vr _x =	0.067	k, weak axis shear	Fe _y =	2.3	ksi, (Section E	E3 pg 16.1-33)	
K _x =	1.00	(Table C-C2.2, pg 16.1-240)	Fcr _x =	25.6	ksi, (Section E	E3 pg 16.1-33)	
K _y =	1.00	(Table C-C2.2, pg 16.1-240)	Fcr _y =	2.0	ksi, (Section E	E3 pg 16.1-33)	
Lb _x =	15.65	ft	Pn _x =	61	k, (Section E3	8 pg 16.1-33)	
Lb _y =	15.65	ft	Pn _y =	5	k, (Section E3	8 pg 16.1-33)	
KL/r x =	80.27		Moment Ca	pacity, Cha	apter F		
KL/r y =	350.43	KL/r should not exceed 200	Cb =	1	_		
E =	29000	ksi	Mn _x =	5.8	ft-k, (section F	=2 pg. 16.1-47)	
Fy =	36	ksi	Mn _y =	2.3	ft-k, (section F	⁼ 6 pg. 16.1-54)	
d =	6	in	Shear Capa				
Ag =	2.39	in ²	kv _x =	5	(Section G2, p	og 16.1-65)	
tf =	0.343	in	kv _x =	1.2	(Section G7, p	og 16.1-68)	
bf =	1.92	in	Cv _x =	1.00	(Section G2, p	og 16.1-65)	
tw =	0.2	in	Cv _y =	1.00	(Section G2, p	og 16.1-65)	
hw =	4.38	in	Aw _x =	1.20	in ² , (Section G	95, pg 16.1-68))
Z _x =	5.16	in ³	Aw _y =	1.32	in ² , (Section G	95, pg 16.1-68))
Z _y =	0.987	in ³	Vn _x =	25.9	k, (Section G6	6, pg 16.1-68)	
S _x =	4.35	in ³	Vn _v =	28.4	k, (Section G6	6, pg 16.1-68)	
S _v =	0.488	in ³	Allowable C	apacties:	Rn / Ω (AS	D); Rn *	LR
I _x =	13.1	in ⁴	(ASD)	Pc, k	Mc, ft-k	Vc, k	
l _y =	0.687	in ⁴	x-axis		3.5	17.3	1
r _x =	2.34	in	y-axis		1.4	19.0	1
r _y =	0.536	in	Interaction I	Equations:			
у Ј =	0.0736	in ⁴		•			
Cw =	4.7	in ⁶	Pr/Pc =	0.25	> 0.2, Equa	ation H1-1a	cor
Section is	Compact	in the flange for flexure		0.75	< 1.0	OK	1
Section is	Compact	in the flange for compression					∟ 16.1
Section is	Compact	in the flange for compression Equation H1-1a, AISC 13 ed., pg in the web for flexure Use C 6X8.2					

Stringer KL/r y > 200, OKAY, stringers partially braced by treads at ~12" OC.

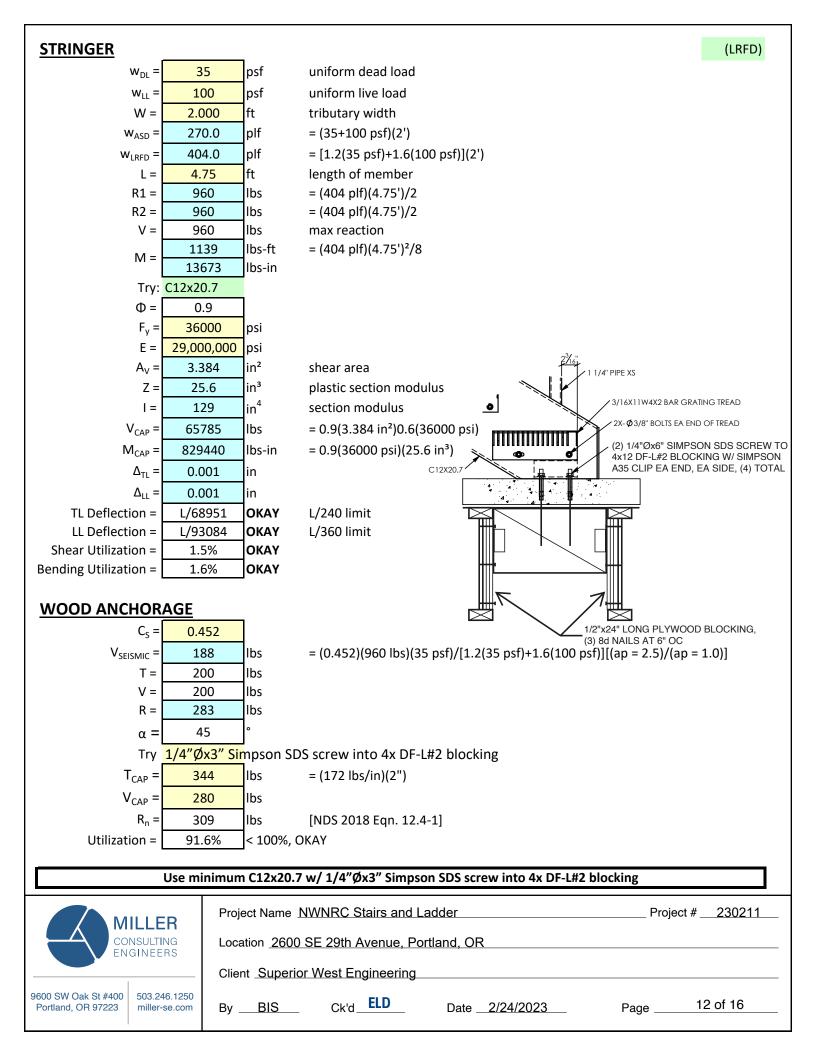

MILLER CONSULTING ENGINEERS		Proje	ct Name <u>NV</u>	VNRC Stair	rs and La	dder	Project	# 230211
		Locat	Location 2600 SE 29th Avenue, Portland, OR					
		Clien	t Superior	<u> West Engin</u>	neering			
	03.246.1250 niller-se.com	Ву _	BIS	Ck'd El	LD	Date <u>2/24/2023</u>	Page	6 of 16

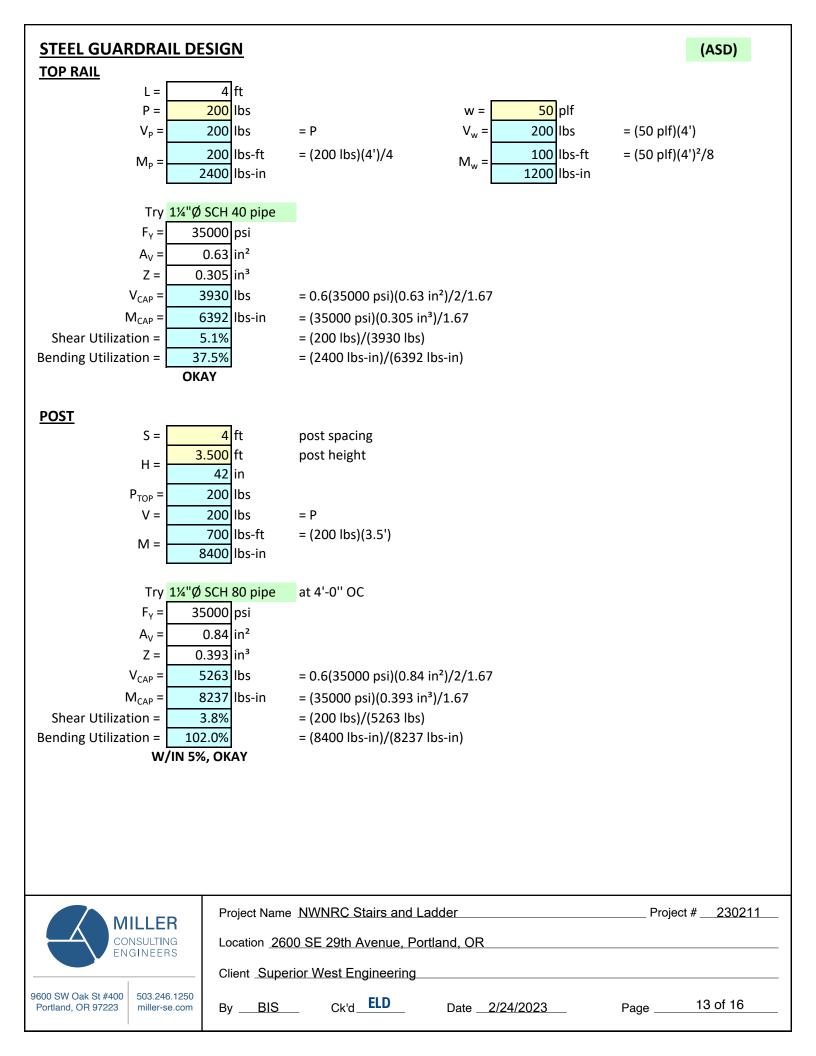
MILLER CONSULTING ENGINEERS		Project Name <u>N</u>	WNRC Stairs and L	Project # _	230211	
		Location 2600 S	ocation 2600 SE 29th Avenue, Portland, OR			
		Client Superior	West Engineering			
9600 SW Oak St #400 Portland, OR 97223	503.246.1250 miller-se.com	By <u>BIS</u>	Ck'd ELD	Date <u>2/24/2023</u>	Page	9 of 16

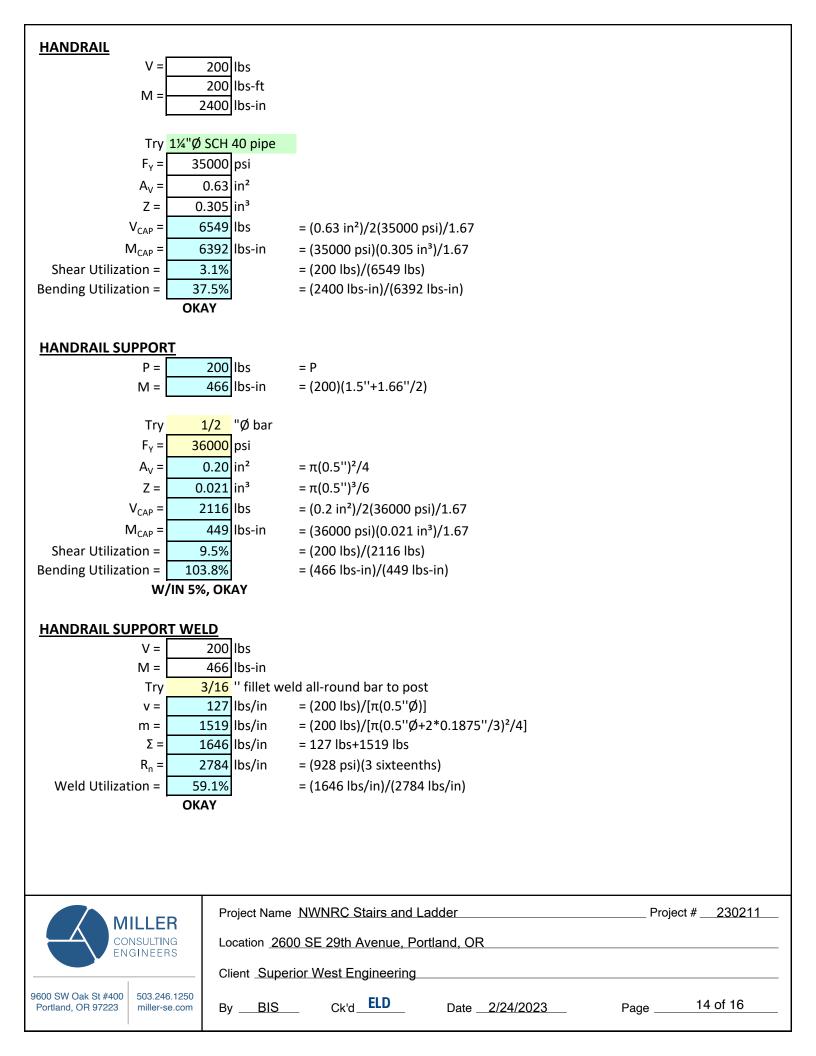
ASCE 7-16: SEISMIC DESIGN FORCE, SECTION 13.3

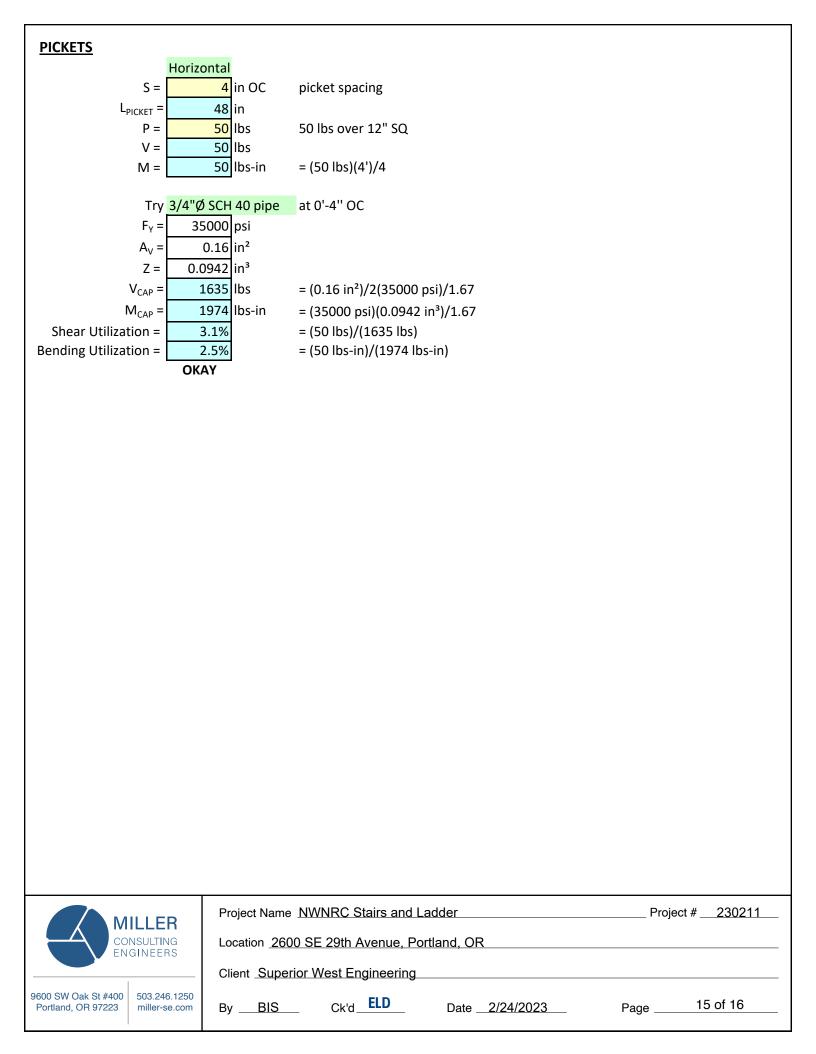
Elements of Structures, Nonstructural Components, and Equipment Supported by Structures

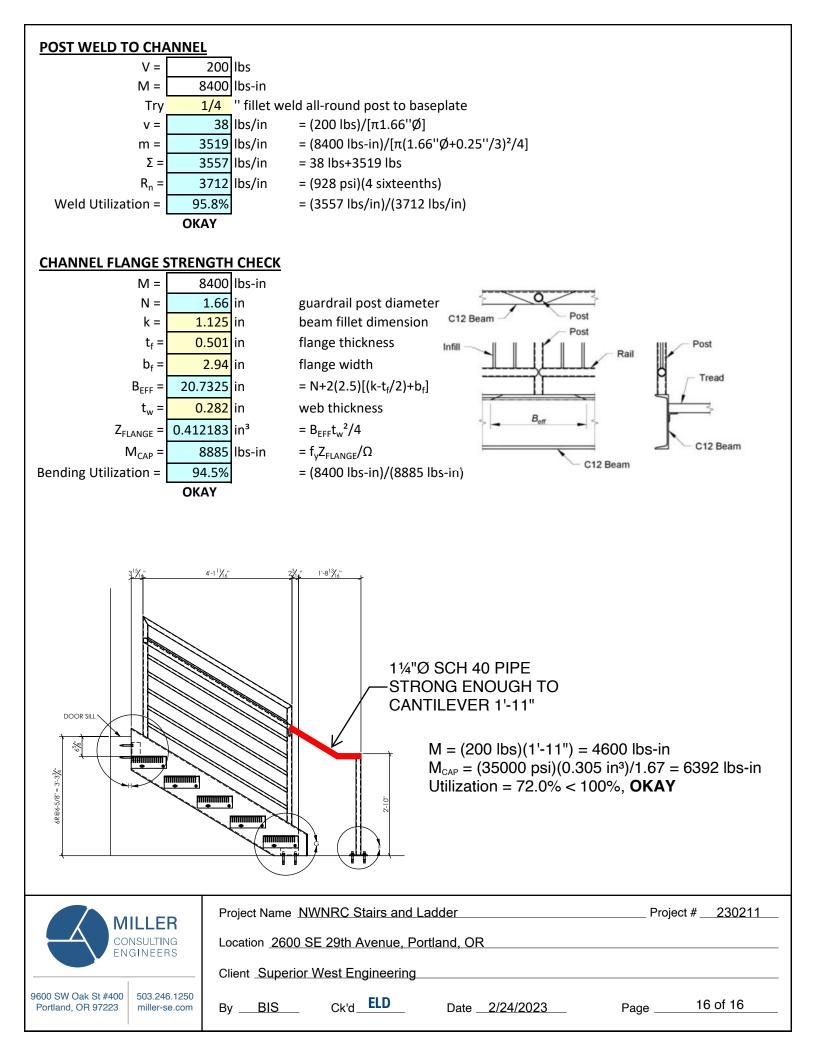
Site Class:	С	Section 20.3, Table 20.3-1
Seismic Design Category:	D	Section 11.6
Risk Category:	IV	Table 1.5-1
S _s =	0.983	per EoR
S ₁ =	0.421	per EoR
S _{DS} =	0.786	Eqn. 11.4-3
I _p =	1.50	*egress stairs
a _p =	1.0	Table 13.6-1
R _p =	2.5	Table 13.6-1
z =	17	ft, Component attachment elevation w/ respect to grade
h =	24.33	ft, Structure roof elevation with respect to grade
F _p =	0.452	* W _p Eqn. 13.3-1
OR	1.887	* W _p Eqn. 13.3-2
Not less than	0.354	* W _p Eqn. 13.3-3
	F _p =	0.452 * W _p


0.157


* W_p


0.2S_{DS}W_p =


MILLER	Project Name <u>NWNRC Stairs and Ladder</u>	Project # <u>230211</u>
	Location 2600 SE 29th Avenue, Portland, OR	
	Client Superior West Engineering	
9600 SW Oak St #400 Portland, OR 97223 miller-se.com	By <u>BIS</u> Ck'd ELD Date <u>2/24/2023</u>	Page 11 of 16


Sec. 13.3.1.2

