Intergovernmental Agreement for Remedial Investigation and Source Control Measures

DEQ No. LQVC-NWR-03-10

Outfall Basins 52C and 53 North Lombard Street PCB Source Investigation Report

City of Portland Outfall Project ECSI No. 2425

September 2012

PREPARED BY

Contents

1	Introduction1-1									
2	Bacl	kground.	2-1							
	2.1	Basin 52	C Physical System and Setting2-1							
	2.2	Basins 5	3 Physical System and Setting2-1							
	2.3	Source T	Fracing Contaminants2-1							
3	Prev	vious Basi	in Investigations3-1							
	3.1	2005 Sto	rm Solids Sampling in Basin 52C3-1							
	3.2	2007-200	08 LWG Stormwater and Stormwater Solids Sampling3-1							
	3.3	Evaluati	on of Data3-2							
4	Potential Upland PCB Sources4-1									
5	North Lombard Street PCB Source Investigation5-1									
	5.1	Samplin	g Approach5-1							
	5.2	Summa	ry of Results5-2							
6	Data	a Evaluat	on6-1							
7	Sou	rce Contr	ol Activities7-1							
8	Con	clusions	and Next Steps8-1							
9	Refe	erences	9-1							
Та	bles									
•	gures									
ΑĮ	pend									
	App	endix A	2005 Stormwater, Sediment Trap and Inline Solids Data (on CD only)							
	App	endix B	Supporting Stormwater Data							
	App	endix C	Environmental Data Review							
	App	endix D	2010 - Field Photographs - North Lombard PCB Source Investigation							
	App	endix E	2010 - Field Notes - North Lombard PCB Source Investigation							
	App	endix F	2010 - Laboratory Reports and Data Review Memorandum - North Lombard PCB Source Investigation							

SEPTEMBER 2012 PAGE iii

List of Tables

Table 1 Properties Within or Near Outfall Basins 52C and 53
 Table 2 North Lombard Street PCB Source Investigation Results
 Table 3 North Lombard Street PCB Source Investigation Results - PCB Congeners

List of Figures

Figure 1	Outfall Basin 52C Overview
Figure 2	Outfall Basin 53 Overview
Figure 3	Basins 52C and 53 - Solids Results - Total PCBs
Figure 4	Basins 52C and 53 - Solids Results in Vicinity of N. Lombard Truck Route - Total PCB Congeners
Figure 5	Basins 52C and 53 - BES Stormwater Management – 2011 North Portland Soil Sampling Locations – Total PCB Aroclors

Abbreviations and Acronyms

AOPC area of potential concern

BES City of Portland Bureau of Environmental Services

BIP Burgard Industrial Park

City of Portland

CSO Combined sewer overflow

DEQ Oregon Department of Environmental Quality

ECSI Environmental Cleanup Site Information
EPA U.S. Environmental Protection Agency

FS Feasibility Study

IGA Intergovernmental Agreement

J estimated concentration

μg/L microgram(s) per liter
NPDES National Pollutant Discharge Elimination System

PAH polycyclic aromatic hydrocarbons

PBOT City of Portland Bureau of Transportation

PCB polychlorinated biphenyls

Port Port of Portland

RI remedial investigation

RM river mile

SAP Sampling and Analysis Plan
SCD source control decision
SCE source control evaluation
SLV screening level value
SSI Schnitzer Steel Industries
T4 Port of Portland Terminal 4

TOC total organic carbon

This page intentionally left blank.

SECTION 1

Introduction

This report presents the results of City of Portland (City) Bureau of Environmental Services (BES) source investigation activities conducted along North Lombard Street within and in the vicinity of Outfall Basins 52C and 53. Previously, as part of its 2007-2008 Portland Harbor stormwater screening effort (BES, 2010a), the City determined that further source tracing was warranted in Basins 52C and 53 to identify possible sources of polychlorinated biphenyls (PCBs), which were detected in whole-basin stormwater discharges from these outfalls at concentrations higher than expected, given the absence of identified or suspected PCB sources in either basin. Subsequently, the City conducted source investigation activities to evaluate potential pathways by which PCBs could enter the City conveyance systems and to trace potential sources of PCB concentrations detected in Outfall 52C and 53 stormwater screening samples (BES, 2010a). Results of the North Lombard Street PCB source investigation and data evaluation indicate the following:

- PCBs were detected in loose surface solids (sweepings) and catch basin solids from locations along North Lombard Street, a truck route serving adjacent industrial properties.
- Adjacent industrial properties have higher onsite PCB concentrations compared with those detected along the truck route.
- PCB concentrations along the truck route are highest near properties with known PCB sources and decrease with distance away from these sources.
- Lower and non-detected PCB concentrations on roads away from the truck route support that vehicle drag-out from industrial properties with documented PCB contamination (i.e., detected PCB concentration in onsite media [e.g., soil, stormwater, stormwater solids]) is the likely pathway for PCBs to enter the Basin 52C and 53 conveyance systems.
- Implementation of source control measures at adjacent industrial sites with documented PCB contamination will reduce offsite migration of PCBs to the City's stormwater conveyance system and reduce loading from the outfalls.

This investigation is part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfall Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between the Oregon Department of Environmental Quality (DEQ) and the City. The data collected under this investigation supplement ongoing work by DEQ and the City to identify and control discharges to the Basin 52C and Basin 53 stormwater conveyance systems from upland sites.

This page intentionally left blank.

Background

2.1 Basin 52C Physical System and Setting

Outfall 52C is a 36-inch diameter storm-only pipe that discharges on the east side of the Willamette River at approximately river mile (RM) 4.4. Figure 1 provides an overview of the basin boundary and stormwater conveyance system. The outfall drains approximately 22 acres of light industrial-zoned properties near the Port of Portland's (Port) Terminal 4 (T4). Port-owned properties, located primarily west (riverward) of North Lombard Street, comprise approximately 85 percent of the basin. The Port property is largely comprised of paved parking. The remaining basin area includes drainage from an approximate 0.25 mile stretch of North Lombard Street and runoff from roofs and parking lots at three properties located east of North Lombard.

2.2 Basins 53 Physical System and Setting

Outfall 53 is a 48-inch diameter outfall pipe with a separated stormwater system that discharges on the east side of the Willamette River at approximately RM 5.2. Figure 2 provides an overview of the stormwater basin boundary and conveyance system. The outfall basin drains approximately 21 acres of primarily residentially-zoned properties in the St. Johns area including approximate 0.25 miles of North Lombard Street. Most of the basin drainage is from residential roads. The outfall is also a combined sewer overflow (CSO) point, which was controlled in 1995. Downspout disconnections (i.e., onsite stormwater infiltration) were required for residential properties in the St. Johns Neighborhood as part of the City's CSO Abatement Program to reduce overall stormwater discharge to the basin.

2.3 Source Tracing Contaminants

Outfall 52C discharges to the Willamette River into an area of Portland Harbor identified by the U.S. Environmental Protection Agency (EPA) as an area of potential concern (AOPC 6), based on elevated concentrations of PCBs, metals (cadmium, copper, silver, zinc), polycyclic aromatic hydrocarbons (PAHs), total toxic equivalency, semi-volatile organic compounds (benzyl alcohol, carbazole, phenol), and delta-hexachlorocyclo-hexane detected in inriver sediment (EPA, 2010). In addition to OF 52C, 16 non-City outfalls (13 active and 3 inactive) drain to AOPC 6.

Outfall 53, located approximately 0.5 miles south of Basin 52C, discharges to the Willamette River into an area that is not designated as an AOPC. Eight non-City outfalls (4 active, 3 inactive, 1 unknown) are located in the immediate vicinity of OF 53.

As part of its Portland Harbor stormwater screening effort, the City evaluated stormwater data collected in Basins 52C and 53 in 2007-2008. The stormwater samples were analyzed for a broad suite of chemicals to identify stormwater contaminants potentially warranting further source tracing in the basin. The stormwater sampling activities and results are described in the City's *Stormwater Evaluation Report* (BES, 2010a) and summarized below. Based on statistical analyses of harborwide stormwater data from outfalls discharging to the Willamette River within the

Portland Harbor Study Area, the City determined that further source tracing was warranted in Basins 52C and 53 to identify possible sources of PCBs. Basin 52C and Basin 53 PCB concentrations were higher than would be expected given the absence of identified or suspected PCB sources in either basin (BES, 2010a).

Previous Basin Investigations

Two stormwater and stormwater solids investigations were conducted that indicated slightly elevated PCB concentrations at Outfalls 52C and 53, which prompted this PCB source investigation. These investigations included:

- The Port's 2005 T4 Recontamination Evaluation at Outfall 52C (with City sampling within the basin); and
- Lower Willamette Group (LWG) 2007-2008 Stormwater Loading Evaluation (sampling at Outfalls 52C and 53 conducted by the Port and the City).

The following sections summarize PCB results from stormwater and storm solid investigations conducted in Basins 52C and Basin 53 in 2005 and 2007-2008.

3.1 2005 Storm Solids Sampling in Basin 52C

In June 2005, as part of the Terminal 4 Early Action, the Port collected a sediment trap sample in Outfall 52C; total PCBs were detected at 270 micrograms per kilogram (μ g/Kg) (see Appendix A). Also in 2005, the City collected catch basin and inline solids samples at four locations within the Basin 52C conveyance system including:

- Two inline solids samples along North Roberts Avenue at manholes AAB529 and AAB524; and
- Two catch basin solids samples along North Lombard Street at catch basins ANF064 and ANF065.

Total PCBs were detected at concentrations of 269 μ g/Kg and 390 μ g/Kg in catch basins ANF064 and ANF065, respectively. Total PCBs were not detected in inline solids samples collected from manholes along North Roberts Avenue. Sampling locations and total PCB concentrations for the 2005 sampling events are shown on Figure 3. Analytical laboratory reports for the City's investigation are provided in Appendix A.

3.2 2007-2008 LWG Stormwater and Stormwater Solids Sampling

The LWG conducted stormwater sampling (including water and sediment traps) in 2007 and 2008 to determine land use loading rates for a recontamination analysis in Portland Harbor (Anchor QEA, 2011). As part of that effort, the Port collected stormwater and sediment trap samples from several drainage basins discharging within Terminal 4 in 2007, including Basin 52C and Basin 53. In 2008, the City collected additional stormwater samples from Outfall 53 to develop a more robust data set. Results are documented in the LWG's Stormwater Loading Calculation Methods report (Anchor QEA, 2011).

Total PCB congeners in stormwater samples collected at Outfall 52C and Outfall 53 were detected at average concentrations of 0.049 micrograms per liter (μ g/L) and 0.051 μ g/L, respectively. The 2007-2008 stormwater sampling locations and PCB results for stormwater

samples collected by the Port and LWG, from both City and non-City outfalls within the vicinity of the North Lombard truck route are presented in Appendix B and shown on Figure B-1.

Total PCB congener results from the sediment traps at Outfall 52C and Outfall 53 were 661 μ g/Kg and 377 μ g/Kg, respectively (Anchor QEA, 2011). The 2007-2008 sediment trap sampling locations and PCB results for samples collected by the Port and LWG, from both City and non-City outfalls within the vicinity of the North Lombard truck route are presented on Figures 3 and 4.

3.3 Evaluation of Data

In 2010, the City evaluated stormwater data collected from stormwater outfalls discharging to the Willamette River within the Portland Harbor Study Area and presented the results in the *Stormwater Evaluation Report*¹ (BES, 2010a). Ranked stormwater PCB data collected in 2007-2008 by the City, the LWG, and the Port are shown in Figure B-2 of Appendix B². This figure shows that PCB concentrations at Outfalls 52C and 53 fall within the middle range of concentrations detected. The City determined that further source tracing was warranted in Basins 52C and 53 because PCB concentrations in stormwater were higher than would be expected given the land use in the basins and there were no identified or suspected industrial PCB sources located within either basin. The PCB concentrations fall within the lower range of PCB concentrations using DEQ's reference concentration range for industrial sites in Portland Harbor (DEQ, 2010a).

SEPTEMBER 2012 PAGE 3-2

_

Note that the City's evaluation used one value that was later rejected by the LWG as an outlier during data processing because the Relative Percent Difference for the normal and duplicate values did not meet quality assurance goals (see Table 4-2 in Anchor QEA, 2011). Therefore, the mean and geomean of total PCB congeners was higher in the City's evaluation compared with the LWG evaluation.

² Total PCB stormwater concentrations in City and non-City stormwater outfall basins are ranked by the geometric mean data collected in 2007-2008 (BES, 2010a).

Potential Upland PCB Sources

Potential upland PCB sources that could account for or contribute to the detected concentrations in stormwater and stormwater solid samples collected from Basins 52C and 53 were identified by reviewing available environmental information on properties located within and in the vicinity of these basins. Information reviewed included:

- Oregon DEQ Environmental Cleanup Site Information (ECSI) database to track sites in Oregon with known or potential contamination from hazardous substances, and to document sites where DEQ has determined that no further action is required.
- DEQ's Facility Profiler which includes permitted air and water discharges, hazardous
 and solid waste sites, cleanup sites, and leaking and underground storage tanks. This
 database contains information on closed facilities, completed cleanups, and past
 operations as well as data on current operations and activities.
- Facilities permitted by DEQ under the National Pollutant Discharge Elimination System (NPDES) industrial stormwater discharge program
- Portland Harbor Superfund Remedial Investigation and Feasibility Study (RI/FS) documents.

Table 1 summarizes available information on properties located within and in the vicinity of Basin 52C and Basin 53. Appendix C provides additional information regarding environmental conditions at the identified properties. Based on review of this information, documented PCB sources were not identified at properties directly discharging stormwater to Basins 52C or Basin 53 or on properties contiguous to these basins. However, both basins drain a portion of North Lombard Street which is designated by the City' Bureau of Transportation (PBOT) as a preferred truck route (PBOT, 2008) and is used by trucks and other vehicles serving nearby industrial properties (i.e., facilities) within and adjacent to the Terminal 4 and Burgard Industrial areas. Several facilities in this area have documented PCB contamination including:

- Boydstun Metal Works (ECSI No. 2362)
- Northwest Pipe Company (ECSI No. 138)
- Port of Portland, Terminal 4 Slip 1 (ECSI No. 2356)
- Port of Portland, Terminal 4 Slip 3 (ECSI No. 272)
- RoMar Transportation Systems, Inc. (ECSI No. 2437)
- Schnitzer Burgard Industrial Park (ECSI No. 5324)
- Schnitzer Steel Industries (ECSI No. 2355)
- Union Carbide (ECSI No. 176).

Elevated PCB concentrations have been detected in stormwater and stormwater solids at or near all of these properties (see Table 1, Figure 3, Figure B-1 in Appendix B, and Appendix C). Figure B-2 (Appendix B) presents ranked PCB stormwater concentrations in both City and non-

City outfalls. The highest PCB concentrations were detected in stormwater samples in non-City outfall basins located northwest of Basins 52C and 53 where numerous ECSI sites are located near the N. Lombard truck route. PCB-contaminated solids from these industrial facilities with documented PCB contamination could be migrating offsite via vehicle drag-out and entering catch basins along North Lombard Street that drain to Basins 52C and 53 and thus, the City conducted the North Lombard Street PCB investigation, described in Section 5.

North Lombard Street PCB Source Investigation

5.1 Sampling Approach

The 2010 solids investigation was designed to evaluate whether offsite migration of PCBs may be occurring onto North Lombard Street from industrial properties with documented PCB contamination located northwest of Basin 52C and Basin 53 via vehicle drag-out. If vehicle drag-out has occurred or is occurring, PCB concentrations would be expected to be highest near the source and to decrease with distance from the source.

Sample locations were selected to provide information on the spatial distribution of PCB concentrations along North Lombard Street. Selected locations include North Lombard Street catch basins within and between the two City basins, as well as portions of North Lombard adjacent to industrial properties with known PCBs contamination. Roadway surface solids (sweepings) and catch basin solid samples were collected along the west side of North Lombard Street (i.e., the traffic lane used by traffic traveling south) to assess whether PCBs were being transported from identified properties with documented PCB contamination via vehicle traffic into Basin 52C and Basin 53. The 2010 solids sampling locations are described in the table below and shown on Figure 3.

2010 Solids Investigation Summary

Sample Identification	Location	Sample Type		
N. Sever Road at N. Burgard Road	Loose roadway surface solids (sweepings) on N. Sever Road just before the intersection with N. Burgard Road	Composite		
Schnitzer Access Road at N. Lombard Street	l at intersection of Schnitzer Access Road and			
N-Lombard 1: catch basins ANF066, ANF067, ANF069, ANF072, ANF074 and ANJ736	Catch basin solids - west side of N. Lombard Street, discharging to Outfall 52C	Composite of identified catch basins		
N-Lombard 2: catch basins ANK382, ANK385, ANK394 and ANK400	Catch basin solids - west side of N. Lombard Street between Outfall 52C and Outfall 53, discharging to Columbia Slough	Composite of identified catch basins		
N-Lombard 3: catch basins ANF032, ANF036, ANF037, ANF041, and ANF042	Catch basin solids - west side of N. Lombard, discharging to Outfall 53	Composite of identified catch basins		

The City conducted the solids sampling activities on September 7-8, 2010 in accordance with the *Sampling and Analysis Plan* (SAP) developed in August 2010 (BES, 2010b). Roadway surface solid and catch basin solid samples were analyzed for PCB Aroclors, PCB congeners, total solids, and total organic carbon (TOC). Photographs of the sampling locations taken during sampling activities are provided in Appendix D. Field notes taken during sample collection and processing activities are provided in Appendix E.

5.2 Summary of Results

PCB Aroclors and PCB congeners were detected in all solids samples collected along portions of North Lombard Street. Tables 2 and 3 summarize the laboratory analytical results and include the Portland Harbor Joint Source Control Strategy (JSCS; DEQ and EPA, 2005) screening level values (SLVs) for reference. Total PCB Aroclors and total PCB congener concentrations are displayed on Figure 3. The laboratory reports and data review memoranda are provided in Appendix F. Most total PCB concentrations in the 2010 solid samples are elevated relative to DEQ's industrial PCB reference concentrations (DEQ, 2010a).

Data Evaluation

PCB Aroclor and PCB congener data were collected during the North Lombard PCB investigation. While both Aroclor and congener data provide useful information regarding the magnitude and types of PCBs present, this memorandum focuses on the magnitude and distribution of the total PCB congener concentrations (i.e., concentration gradients) to identify major source areas and/or pathways for PCBs entering Basins 52C and 53. PCB congener analyses are considered to be more accurate for estimating total PCB concentrations, because congener analysis relies on the identification and quantification of all 209 individual PCB congeners while PCB Aroclor analyses rely on the identification of only a few "characteristic chromatograph peaks" (Bernhard and Petron, 2001).

For contaminants that preferentially partition to organic material, such as PCBs, concentration gradients may be more easily observed when the data are normalized to organic carbon content than when they are presented in dry weight (WDOE, 1992). The following table presents TOC-normalized total PCB concentrations.

Summary of 2010 Solids Investigation Results

Sample Location	J	TOC (%)	Total PCB Congeners (µg/Kg)	TOC- normalized Total PCB Congeners (µg/Kg)	Total PCB Aroclors (µg/Kg)	TOC- normalized Total PCB Aroclors (μg/Kg)
Intersection of N. Sever Road and N. Burgard Rd.	North	5.6	377	6,732	155	2,768
Intersection of Schnitzer Access Road and N. Lombard Street		3.3	1,260	38,182	652	19,758
N. Lombard 1 – Basin 52C catch basins (duplicate)		6.4 (5.7)	1,840 (1,050)	28,750 (18,421)	597 J (1,136 J)	9,328 J (19,930 J)
N. Lombard 2: catch basins between Basins 52C and 53		7.3	440	6,027	641 J	8,781 J
N. Lombard 3: Basin 53 catch basins	South	12.7	340	2,677	246	1,937

Notes: TOC = total organic carbon

J = estimated laboratory concentration. μg/Kg = micrograms per kilogram

The spatial distribution of total PCB congener concentrations in North Lombard source investigation solid samples, shown on Figure 4, indicates PCB source area(s) are located north of Basins 52C and 53. PCB concentrations are generally highest in samples collected closer to facilities with documented PCB contamination and decrease with distance in samples collected further south on North Lombard Street. TOC-normalized total PCB congener concentrations indicate a strong trend of decreasing PCB concentrations from north to south along North Lombard Street (see Table above).

Elevated PCB concentrations detected in stormwater solids (Figure 4) and stormwater (see Appendix B) collected at or near industrial facilities with documented PCB contamination suggest PCB-contaminated solids (e.g., soil, dust, particulates) are available that can be picked up and transported offsite by site stormwater, vehicle traffic (drag-out), or wind erosion. The investigation results show higher concentrations on the truck route and concentrations below laboratory method detection limits (MDLs) on the North Roberts side street, which suggests that offsite migration of PCB-contaminated solids via vehicle tracking from industrial facilities north of Basins 52C and 53 to North Lombard Street is the likely pathway of PCBs observed in the 2007-2008 basin-scale stormwater and sediment trap data collected within the basins.

To confirm that vehicle tracking onto the N Lombard truck route is the source of PCBs, PCB data collected from City stormwater facilities constructed in residential areas were compared to the results of the North Lombard PCB Investigation results. The City's Sustainable Stormwater program collects soil samples from stormwater management facilities to evaluate accumulation of pollutants in these facilities³. In 2011, PCBs were analyzed in storm solids that represent runoff from roadways and parking areas to a number of stormwater facilities. Figure 5 shows the total PCB Aroclor soil concentrations in the North Portland residential roadway facilities; the concentrations range from below MDLs to 28.1 μ g/Kg. The total PCB Aroclor concentration detected at the Basin 53 residential roadway stormwater facility (28.1 μ g/Kg) was an order-of-magnitude lower than total PCB Aroclor concentrations detected from North Lombard catch basin solids. The low concentrations of PCBs in these City stormwater facility samples and those on North Roberts confirm that the Basin 52C and Basin 53 stormwater and stormwater solid results are higher than would be expected based on land use and supports the conclusion that vehicle drag-out from adjacent industrial sources is affecting stormwater quality along the North Lombard Truck route.

³ See http://www.portlandonline.com/bes/index.cfm?c=36055& for the 2010 Stormwater Management Facility Monitoring Report. The 2011 data cited in this report will be included in the biannual 2012 monitoring report expected for completion in December 2012.

Source Control Activities

Table 1 identifies industrial properties that likely utilize the portion of North Lombard Street that passes through Basins 52C and 53 and the current status of these facilities in DEQ's Environmental Cleanup Program. PCB contamination has been documented at some of these facilities DEQ is currently overseeing stormwater source control evaluations (SCEs) and implementation of source control measures (SCMs) at several of the identified facilities including, but not limited to:

- Schnitzer Steel Industries (SSI). In 2010, as part of improvements to its stormwater conveyance system, SSI began paving a portion of its Burgard facility, consolidated outfalls, and installed a stormwater treatment system intended to capture stormwater on operating portions of the scrap processing area (Schnitzer, 2009; Bridgewater, 2009; DEQ, 2010c). In addition to these SCMs, DEQ has requested that SSI evaluate drag out of contaminated solids via truck traffic.
- Schnitzer Burgard Industrial Park (BIP). Schnitzer is conducting a number of onsite SCEs of stormwater conveyance systems at the site(Bridgewater, 2010a; 2011a; 2011b) and SCMs have focused on improving best management practices (DEQ, 2012g).
- Northwest Pipe Company (NW Pipe). In 2009, NW Pipe submitted a plan to DEQ focused on paving the southern half of its site (CH2M Hill, 2009).

Source control activities performed under DEQ oversight at these facilities should reduce PCB concentrations entering Basins 52C and 53. However, a better understanding of the potential vehicle tracking contaminant pathway will aid in selecting, implementing, and documenting the effectiveness of SCMs at industrial facilities. DEQ recently revised its National Pollutant Discharge Elimination System (NPDES) industrial stormwater permits, effective July 1, 2012. The revised permit requires industrial facilities to minimize offsite vehicle tracking, which should also help reduce contaminated solids loading to City basins.

In addition to SCMs being conducted at industrial facilities in the area, the City will begin construction of road improvements at the North Burgard Overpass in Summer 2012, which will include roadway treatment swales and rerouting of this stormwater away from the Willamette River. This project is located in the North Lombard corridor just north of Basin 52C. While this project will not reduce tracking, it will capture and treat some of the pollutants tracked onto the roadway. Pollutant tracking from contaminated sites onto this roadway could cause contamination of the swales. The City will continue to coordinate with DEQ to address vehicle tracking issues.

This page intentionally left blank.

SECTION 8

Conclusions and Next Steps

Evaluation of the 2010 North Lombard solids source investigation data in conjunction with the findings of other stormwater investigations in the area indicates that offsite migration of contaminated solids from nearby facilities with documented PCB contamination appears to be introducing PCBs into the Basin 52C and Basin 53 conveyance systems. High PCB concentrations detected in stormwater solids (see Figure 4 and Appendix C) and stormwater (see Appendix B) collected at facilities north of Basins 52C and 53, suggest that these facilities likely have PCBs available at the land surface that could be transported offsite via vehicle dragout. Vehicle drag-out appears to be the primary contaminant migration pathway by which PCB-contaminated solids are transported from nearby industrial properties into the Basin 52C and Basin 53 conveyance systems. Contaminated solids being transported along North Lombard Street appears to be the primary source of PCB contamination to the two City basins.

Due to elevated concentrations of PCBs detected onsite (e.g., soil, stormwater, stormwater solids), several industrial facilities in the vicinity of Basin 52C and Basin 53 are currently conducting stormwater source investigations and implementing SCMs, under DEQ Cleanup Program oversight. These facilities are also covered by NPDES industrial stormwater 1200-Z permits issued by the DEQ Water Quality Program. With forthcoming work under DEQ's Cleanup and Water Quality authorities, PCB loadings from upland sites to Basins 52C and 53 are expected to decline and to result in decreased concentrations in basin stormwater discharges.

Based on the results of this investigation, the potential sources of PCBs to Basins 52C and 53 have been identified and are in appropriate DEQ programs to select and implement source controls. Therefore, no further City source investigation is needed in the Basin 52C and Basin 53 conveyance systems.

This page intentionally left blank.

References

- Anchor, et al. 2008. Portland Harbor RI/FS, Round 3A and 3B Stormwater Data Report.

 Prepared for the Lower Willamette Group, Portland, OR. Anchor Environmental, L.L.C. and Integral Consulting Inc. September 30, 2008.
- Anchor QEA. 2011. Portland Harbor RI/FS Stormwater Loading Calculation Methods. Prepared for the Lower Willamette Group (LWG) by Anchor QEA LLC. January 31, 2011.
- Anchor QEA, et al. 2012. Portland Harbor RI/FS Draft Feasibility Study. Prepared for the Lower Willamette Group (LWG) by Anchor QEA LLC, Windward Environmental LLC, Kennedy/Jenks Consultants, and Integral Consulting Inc. March 30, 2012.
- Ash Creek. 2009. Field Sampling Procedures Report, Storm Water Sampling Program Terminal 4 Upland Facility. February 2009.
- Bernhard and Petron. 2001. Analysis of PCB Congeners vs. Arcolors (*sic*) in Ecological Risk Assessment. Prepared by Teresa Bernhard, HAVFAC and Steve Petron, CH2M Hill. Issue Papers PCB Congeners in Ecological Risk Assessment. April 9, 2001. 7 pages.
- BES. 2010a. Stormwater Evaluation Report, City of Portland Outfall Project, ECSI No. 2425.

 Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. February 2010.
- BES. 2010b. Subject. City of Portland Outfall Project Source Investigations for Basins 18, 19A, 52, 52C, 53, 53A, and S-1, Summer 2010 Sampling and Analysis Plan. Letter to K. Tarnow (DEQ) from L. Scheffler (BES). August 20, 2010.
- Bridgewater. 2000. Current Site Conditions Assessment. Schnitzer Steel Industries –North Burgard. Prepared for Schnitzer Steel Industries by Bridgewater Group, Inc. Dated November 1, 2000.
- Bridgewater. 2009. Phase 1A Storm Water System Improvements. Schnitzer Steel Industries 12005 North Burgard Road, Portland Oregon. Prepared for Schnitzer Steel Industries by Bridgewater Group, Inc. Dated May 21, 2009.
- Bridgewater. 2010. Source Control Evaluation, Basin 1 Storm Water Sampling and Analysis Data, Burgard Industrial Park, Portland, Oregon. Technical Memorandum from Ross Rieke (Bridgewater Group) to Jim Orr (Oregon DEQ). April 6, 2010.
- Bridgewater. 2011a. Source Control Evaluation, Basin 2 Storm Water Sampling and Analysis Data, Burgard Industrial Park, Portland, Oregon. Technical Memorandum from Ross Rieke (Bridgewater Group) to Jim Orr (Oregon DEQ). March 2, 2011.

- Bridgewater. 2011c. Source Control Evaluation, Basin 22 Storm Water Sampling and Analysis Data, Burgard Industrial Park, Portland, Oregon. Technical Memorandum from Ross Rieke (Bridgewater Group) to Jim Orr (Oregon DEQ). October 10, 2011.
- CH2M Hill. 2005. Remedial Investigation Work Plan, Northwest Pipe Company Portland Facility. Prepared for Northwest Pipe Company. February 2005.
- CH2M Hill. 2009. Focused Paving Plan. Prepared for Northwest Pipe Company. October 2009.
- CH2M Hill. 2010. Interim Report Summarizing Additional Soil and Roof Runoff Investigation Results. Prepared for Northwest Pipe Company Portland Facility. April 2010.
- DEQ. 1995. Recommendation for NFA at KLIX Corporation facility. DEQ Memorandum from Daniel Hafley. December 8, 1995.
- DEQ. 2003. Record of Decision, Selected Remedial Action for Port of Portland Terminal 4, Slip 3, Portland Oregon. ECSI #272. April 2003.
- DEQ. 2004. Letter to Anne Summers, Port of Portland regarding "No Further Action at the Terminal 4 Auto Storage Facility 10400 N. Lombard, Portland Oregon" from Tom Gainer, Oregon Department of Environmental Quality. Dated June 11, 2004.
- DEQ. 2005. Staff Report and Proposal for No Further Action, WMR Property, Union Carbide Site. DEQ Memorandum from Mavis D. Kent, Project Manager. April 15, 2005.
- DEQ and EPA. 2005 (amended 2007). Portland Harbor Joint Source Control Strategy. Prepared by the Oregon Department of Environmental Quality and the U.S. Environmental Protection Agency. December 2005 (Table 3-1 updated July 2007). Available online at http://www.deq.state.or.us/lq/cu/nwr/PortlandHarbor/jointsource.htm.
- DEQ. 2006a. Staff Report, Flint Ink Site. DEQ Memorandum from Mark Pugh to Bruce Gilles. July 13, 2006.
- DEQ. 2006b. Memorandum to Kristine Koch, US EPA from Jim Anderson, ODEQ. Subject: Source Control Decision RoMar Site 9333 N. Time Oil Road, Portland, OR ECSI #2437. Dated May 10, 2006.
- DEQ. 2006c. Letter to Donna Marden, RoMar Realty regarding "No Further Action RoMar Site 9333 N. Time Oil Road, Portland Oregon" from Jim Anderson, Oregon Department of Environmental Quality. Dated May 15, 2006.
- DEQ. 2009. Record of Decision, Selected Remedial Action for Former Union Carbide Facility, Portland, Oregon, ECSI #176. May 2009.
- DEQ. 2010a. "Tool for Evaluating Stormwater Data" Appendix E to Guidance for Evaluating the Stormwater Pathway at Upland Sites. January 2009 (Updated October 2010).

- DEQ. 2010b. Record of Decision, Selected Remedial Action for The Chemcentral (AKA Univar USA, Inc.) Site, ECSI #878, Portland, Oregon. DEQ Memorandum from Nina DeConcini. January 11, 2010.
- DEQ. 2010c. Email from Jim Orr, DEQ to Mat Cusma, Schnitzer Steel regarding "2355 Paving Activities at Schnitzer Steel". Dated June 18, 2010.
- DEQ. 2012a. Portland Harbor Milestone Report. Prepared by the Oregon Department of Environmental Quality. Submitted to the U.S. Environmental Protection Agency Region 10. Dated January 2012.
- DEQ. 2012b. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 1277, Borden Packaging and Industrial Products. Website accessed on March 1, 2012. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1277
- DEQ. 2012c. Oregon DEQ Facility Profiler 2.0. Website accessed on March 1, 2012. http://deq12.deq.state.or.us/fp20/
- DEQ. 2012d. ECSI Database Site Summary Report Details for Site ID 1753, Flint Ink. Website accessed on March 1, 2012. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1753
- DEQ. 2012e. ECSI Database Site Summary Report Details for Site ID 878, Chemcentral Corporation. Website accessed on March 1, 2012. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=878
- DEQ. 2012f. ECSI Database Site Summary Report Details for Site ID 1075, KLIX Corporation. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=1075
- DEQ. 2012g. ECSI Database Site Summary Report Details for Site ID 5324, Schnitzer Burgard Industrial Park. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=5324
- DEQ. 2012h. ECSI Database Site Summary Report Details for Site ID 2355, Schnitzer Steel. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=2355
- DEQ. 2012i. ECSI Database Site Summary Report Details for Site ID 138, Northwest Pipe. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=138
- DEQ. 2012j. ECSI Database Site Summary Report Details for Site ID 2362, Boydstun Metal Works. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=2362
- DEQ. 2012k. ECSI Database Site Summary Report Details for Site ID 2437, RoMar Transportation Systems, Inc. http://www.deg.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=2437
- EPA. 2010. Re: Portland Harbor Superfund Site; Administrative Order on Consent for Remedial Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240. Portland Harbor Feasibility Study Source Tables. Letter from U.S. Environmental Protection Agency

- (EPA), to Mr. Bob Wyatt, Chairman, Lower Willamette Group (LWG). November 23, 2010.
- Environmental Management Solutions (EMS). 1992. Technical Memorandum No. 1: Field Sampling for IT Terminal, Schnitzer Investment Property. Technical Memorandum from Stuart Greenberger, P.E. (EMS) to Dan Saltzman. January 21, 1992.
- Environmental Management Solutions (EMS). 1993. Expanded Environmental Site Assessment and Sampling Study of the IT Terminal Property Lots 1,2,3, & 4. Technical Memorandum from EMS to Tom Zelenka (Schnitzer Investments). March 17, 1993.
- Integral, et al. 2011. Portland Harbor RI/FS Remedial Investigation Report, Draft Final.

 Prepared for the Lower Willamette Group (LWG) by Integral Consulting Inc.,

 Windward Environmental LLC, Kennedy/Jenks Consultants, and Anchor QEA LLC.

 August 29, 2011.
- Jakubiak, Jim. 2008. Confidential Memorandum from Jim Jakubiak to Jamie Wilson, Monica Rodal, Matt Cusma, and John Harrie, Regarding Shredder Excavation Soil Sampling Results at SSI property. January 28, 2008.
- LWG. 2011. Memorandum on Portland Harbor Stormwater Runoff Modeling (City of Portland, 2008) to Portland Harbor RI/FS Remedial Investigation Report. Land use break downs used in model shown Attachment E-2 in Appendix E.
- PBOT. 2008. Portland Truck Map. City of Portland Office of Transportation (now Bureau of Transportation). City of Portland Map C-51A. November, 2008.
- Quality Group, NW (QGNW). 1994. Interim Phase II and Phase III Environmental Site
 Assessment Soil Sampling and Excavation. Parcels 4, 5, & 6. International Terminals
 Property in T2N, R1W, S35 W.M, Portland, Oregon. Prepared for Tom Zelenka
 (Schnitzer Steel Industries, Inc.) by Thomas G. Lindahl, P.E. (QGNW). August 19, 1994.
- Schnitzer. 2009. Memorandum from Mathew Cusma (SSI) to Jim Orr (DEQ), Regarding Burgard Industrial Park Source Control Evaluation. December 4, 2009.
- URS Corporation (URS). 2000. Review of Sampling Data and Materials Usage at 9002 N. Sever Court, Portland, Oregon. Confidential Memorandum from Bryan T. Clode (URS) to Doug Pontifex (Boydstun Metal Works). June 21, 2000.
- WDOE. 1992. Technical Information Memorandum: Organic Carbon Normalization of Sediment Data. Commencement Bay NRDA-390. Prepared by Teresa Michelsen, Ph.D., Washington Department of Ecology, Sediment Management Unit. December 1992.

Table 1: Properties Within or Near Outfall Basins 52C and 53

Property (a, b, c)	DEQ Cleanup Site		Documented PCB Contamination ^(d)	DEQ Cleanup Program Status ^(c, e)	Stormwater Pathway Evaluated Under DEQ Oversight?					
OF52C Properties										
Borden Packaging and Industrial Products/ Momentive Specialty Chemical, Inc. (f)	ECSI 1277	NEC	No	Inactive	No	City's Industrial Stormwater Program notified DEQ that the site is scheduled to decommission a catch basin near the railcar unloading area.				
Pioneer Wiping Cloth / American Rag & Metal	No	No	No							
Port of Portland Property	No	No	No							
Port of Portland T-4 Maintenance	No	No	No							

OF53 Properties

Properties within Basin 53 are residential; there are no identified or suspected sources of PCBs.

Contiguous or Nearby Properties												
Flint Ink Corporation	ECSI 1753	No	No	Inactive	No	Conditional NFA issued in 2006; stormwater pathway not evaluated.						
Harsh Investments (a.k.a., Chemcentral Corporation, Univar USA)	ECSI 878	No	No	Active	No	DEQ selected remedial actions for soil and groundwater in the 2010 ROD. No actions required for stormwater.						
Joseph T. Ryerson & Son, Inc.	ECSI 2441	No	NR	Active	In process	In process						
Klix Corporation	ECSI 1075	No	Yes	Inactive	No	DEQ conditional NFA issued in 1996. Stormwater pathway not evaluated.						
Northwest Container (formerly Union Carbide)	ECSI 176	1200COLS	Yes	Inactive	Yes	DEQ NFA determination. ROD issued in 2009. Focused PCB contaminated soil removal. No actions required for stormwater						
Northwest Pipe Company	ECSI 138	1200Z	Yes	Active	In process	In process. SCMs implemented to date have included partial paving. Installation of a stormwater treatment system planned.						
Port of Portland - Terminal 4 Auto Storage	ECSI 172	MS4/1200Z	No	Inactive	No	No stormwater SCMs implemented, DEQ determined pathway insignificant. DEQ NFA issued in June 2004.						
Port of Portland, Terminal 4 Slip 1	ECSI 2356	MS4	Yes	Active	Yes	In process. Stormwater SCMs implemented include BMPs and line cleanout. Effectiveness monitoring ongoing.						
Port of Portland, Terminal 4 Slip 3	ECSI 272	MS4	No	Active	In process	In process. Stormwater SCMs implemented include BMPs and line cleanout. Effectiveness monitoring ongoing.						
Portland Container Repair Corporation	ECSI 2375	1200Z	Yes	Active	In process	Focused PCB contaminated soil removal conducted in July 1994.						
RoMar Transportation Systems	ECSI 2437	No	Yes	Inactive	Yes	DEQ NFA and SCD determination in May 2006. Focused PCE contaminated soil removal. No source control measures required for stormwater.						
Schnitzer-Burgard Industrial Park includes the following facilities: - Schnitzer Steel Industries (ECSI 2355) - Portland Container Repair Corp (ECSI 2375) - Western Machine Works - Boydston Metal Works/ Portland Blast Media (ECSI 2362)	ECSI 5324	[g]	Yes	Active	In process	In process. SCMs implemented to date include outfall improvements and BMPs. See Schnitzer Steel Industries (ECSI 2355) below.						
Schnitzer Steel Industries	ECSI 2355	1200Z	Yes	Active	In process	In process. SCMs implemented to date include improvements to stormwater conveyance system, stormwater treatment system, partial paving. Ongoing stormwater monitoring.						

Notes
MS4 = Municipal Separate Storm Sewer System [Joint Permit issued to City of Portland and Port of Portland on January 31, 2011.

NA = Not available

NEC = No exposure certification

NFA= No Further Action determination

NPDES Permit #101314.] NPDES = National Dishcharge Elimination System

NR = not reported in ECSI

PCBs = polychlorinated biphenols

ROD = Record of Decision

SCD = Source Control Decision

SCM = Source Control Measure

(a) Properties were identified using Oregon DEQ's Facility Profiler database/mapping tool of DEQ regulated or permitted facilities and sites. Available on DEQ's

website: http://deq12.deq.state.or.us/fp20/ (b) Portland Harbor RI/FS, Remedial Investigation Report, Draft Final. Prepared for The Lower Willamette Group. Prepared by Integral Consulting Inc.,

Windward Environmental LLC, Kennedy/Jenks Consultants, Anchor QEA, LLC. August 29, 2011 $(c) \ DEQ \ Environmental \ Cleanup \ Site \ Information \ (ECSI) \ database \ Site \ Summary \ Reports. \ Available \ on \ DEQ's \ website:$

 $(d)\ \ PCBs\ detected\ in\ onsite\ media\ (e.g.,\ soil,\ stormwater,\ stormwater\ solids).$

(e) DEQ Portland Harbor May 2012 Milestone Report. Available on DEQ's website: http://www.deq.state.or.us/lq/cu/nwr/PortlandHarbor/jointsource.htmf

(f) Property is owned by Borden Chemical Inc. and is currently operated by Momentive Speciality Chemical, Inc. Operations are covered under DEQ's NPDES Industrial Stormwater Program. A "no exposure certification" was issued in April 2011.

(g) see Schnitizer Steel Industries (ECSI 2355) and Portland Container Repair Corp. (ECSI 2375)

SEPTEMBER 2012 PAGE 1 OF 1

Table 3 North Lombard Street PCB Source Investigation Results - PCB Congeners

			North o	Basin 52C	Basin	152C	Between Basins 52C and 53	Basin 53		
			Intersection of N. Sever Rd and N. Burgard Rd	Intersection of Schnitzer Access Rd and N. Lombard	N. Lom Composite of Catch Basins A ANF072, ANF	ANF066, ANF067, ANF069,	N. Lombard-2 Composite of Catch Basins ANK382, ANK385, ANK394, ANK400	N. Lombard-3 Composite of Catch Basins ANF032, ANF036, ANF037, ANF041, ANF042		
			Roadway Solids (Sweepings)	Roadway Solids (Sweepings)	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids		
			FO105874	FO105875	FO105876	Duplicate FO105879	FO105877	FO105878	Screen	JSCS ⁽²⁾ ning Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/8/2010	9/8/2010	Toxicity	Bioaccumulation
Polychlorinated Biphenyl Cong	geners (EPA 1668A)	Cinto							· · · · · · · · · · · · · · · · · · ·	
PCB 1	2-MoCB	μg/Kg		2.26	0.354	0.378	0.122	0.147		
PCB 2 PCB 3	3-MoCB 4-MoCB	μg/Kg μg/Kg	0.0539 0.105	0.170 0.492	0.0634 0.188	0.154 0.340	0.0506 0.113	0.0494 0.108		
PCB 4	2,2'-DiCB	μg/Kg	0.697	2.37	1.83	2.82	1.04	0.566		
PCB 5	2,3-DiCB	μg/Kg	0.0413	0.189	0.112	0.111	0.0540	0.0485		
PCB 6 PCB 7	2,3'-DiCB 2,4-DiCB	μg/Kg μg/Kg	0.409 0.0745	1.75 0.307	1.30 0.180	1.34 0.228	0.566 0.101	0.401 0.0781		
PCB 8	2,4'-DiCB	μg/Kg μg/Kg	2.04	8.29	6.27	6.05	2.61	2.24		
PCB 9	2,5-DiCB	μg/Kg	0.124	0.490	0.282	0.383	0.163	0.120		
PCB 10	2,6-DiCB 3,3'-DiCB	μg/Kg	0.0481	0.178 0.583	0.132 0.768	0.196 1.05	0.0867 1.21	0.0448 1.61		
PCB 11 PCB 12/13	3,4-DiCB + 3,4'-DiCB	μg/Kg μg/Kg	1.08 0.381	1.08	0.704	0.998	0.416	0.411		
PCB 14	3,5-DiCB	μg/Kg	0.0247 U	0.0235 U	0.0244 U	0.0245 U	0.0248 U	0.0246 U		
PCB 15	4,4'-DiCB	μg/Kg	2.69	9.43	6.88	9.91	3.61	2.15		
PCB 16 PCB 17	2,2',3-TriCB 2,2',4-TriCB	μg/Kg	1.64 1.50	7.05 6.22	4.58 4.34	7.28 6.87	2.65 2.31	1.56 1.43		
PCB 17/ PCB 18/30	2,2',5-TriCB + 2,4,6-TriCB	μg/Kg μg/Kg		12.9	9.01	13.9	4.59	2.86		
PCB 19	2,2',6-TriCB	μg/Kg	0.455	1.64	1.49	2.14	0.837	0.543		
PCB 20/28	2,3,3'-TriCB + 2,4,4'-TriCB	μg/Kg		30.3	20.0	31.7	11.1	8.07		
PCB 21/33 PCB 22	2,3,4-TriCB + 2',3,4-TriCB 2,3,4'-TriCB	μg/Kg μg/Kg	3.79 3.27	16.9 12.1	9.19 7.26	16.1 12.0	5.47 4.37	3.74 3.09		
PCB 22 PCB 23	2,3,5-TriCB	μg/Kg μg/Kg	0.0247 U	0.0333	0.0244 U	0.0300	0.0248 U	0.0246 U		
PCB 24	2,3,6-TriCB	μg/Kg	0.0247 U	0.267	0.0244 U	0.0245 U	0.0248 U	0.0246 U		
PCB 25	2,3',4-TriCB	μg/Kg	0.525	2.02	1.42	2.19	0.716	0.529		
PCB 26/29 PCB 27	2,3',5-TriCB + 2,4,5-TriCB 2,3',6-TriCB	μg/Kg μg/Kg	1.25 0.380	4.78 1.37	3.50 1.10	5.25 1.74	1.73 0.639	1.23 0.411		
PCB 31	2,4',5-TriCB	μg/Kg μg/Kg		24.4	17.1	26.9	8.80	6.30		
PCB 32	2,4',6-TriCB	μg/Kg	1.53	5.76	4.53	7.05	2.39	1.66		
PCB 34	2',3,5-TriCB	μg/Kg	0.0247 U	0.0799	0.0522	0.0805	0.0299	0.0246 U		
PCB 35 PCB 36	3,3',4-TriCB 3,3',5-TriCB	μg/Kg μg/Kg	0.258 0.0247 U	0.694 0.0235 U	0.437 0.0244 U	0.713 0.0245 U	0.295 0.0248 U	0.235 0.0246 U		
PCB 37	3,4,4'-TriCB	μg/Kg μg/Kg	4.24	10.6	7.59	11.0	4.85	3.45		
PCB 38	3,4,5-TriCB	μg/Kg	0.0247 U	0.0418	0.0256	0.0355	0.0248 U	0.0246 U		
PCB 39	3,4',5-TriCB 2,2',3,3'-TeCB + 2,2',3,4-TeCB + 2,3',4',6-TeCB	μg/Kg	0.045	0.168	0.101	0.155	0.0564	0.0439		
PCB 40/41/71 PCB 42	2,2',3,4'-TeCB 2,2',3,4'-TeCB	μg/Kg μg/Kg	5.81 2.76	7.1 7.90	15.9 7.66	20.5 9.83	8.98 4.18	6.40 3.03		
PCB 43/73	2,2',3,5-TeCB + 2,3',5',6-TeCB	μg/Kg	0.213	0.854	0.653	0.909	0.343	0.282		
PCB 44/47/65	2,2',3,5'-TeCB + 2,2',4,4'-TeCB + 2,3,5,6-TeCB	μg/Kg	9.87	24.9	43.2	36.2	14.1	10.6		
PCB 45/51 PCB 46	2,2',3,6-TeCB + 2,2',4,6'-TeCB 2,2',3,6'-TeCB	μg/Kg	1.66 0.633	5.17 1.87	4.54 1.66	7.01 2.53	2.99 1.09	2.20 0.795		
PCB 48	2,2',4,5-TeCB	μg/Kg μg/Kg	1.64	5.51	4.89	6.70	2.71	1.98		
PCB 49/69	2,2',4,5'-TeCB + 2,3',4,6-TeCB	μg/Kg	5.13	13.7	22.6	19.4	7.48	5.61		
PCB 50/53	2,2',4,6-TeCB + 2,2',5,6'-TeCB	μg/Kg	1.14	3.34	3.87	4.82	2.00	1.51		
PCB 52 PCB 54	2,2',5,5'-TeCB 2,2',6,6'-TeCB	μg/Kg μg/Kg	11.8 0.0495 U	27.7 0.0520	90.0 0.0489 U	50.7 0.0642	17.3 0.0496 U	13.4 0.0492 U		
PCB 55	2,3,3',4-TeCB	μg/Kg	0.0495 U	0.388	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 56	2,3,3',4'-TeCB	μg/Kg		7.00	10.2	8.50	4.06	3.05		
PCB 57 PCB 58	2,3,3',5-TeCB 2,3,3',5'-TeCB	μg/Kg		0.126 0.0748	0.119 EMPC 0.118 EMPC	0.217 0.0882 EMPC	0.0605 0.0496 U	0.0627 0.0492 U		
PCB 58 PCB 59/62/75	2,3,3',6-TeCB + 2,3,4,6-TeCB + 2,4,4',6-TeCB	μg/Kg μg/Kg		2.51	2.25	3.15	1.43	1.05		
PCB 60	2,3,4,4'-TeCB	μg/Kg		3.85	4.54	4.65	2.12	1.63		
PCB 61/70/74/76	2,3,4,5-TeCB + 2,3',4',5-TeCB + 2,4,4',5-TeCB + 2',3,4,5-TeCB	μg/Kg		29.6	81.4	42.0	17.1	12.4		
PCB 63 PCB 64	2,3,4',5-TeCB 2,3,4',6-TeCB	μg/Kg		0.771 12.4	1.00 15.8	0.941 15.4	0.394 6.39	0.302 4.89		
PCB 64 PCB 66	2,3',4,4'-TeCB	μg/Kg μg/Kg		15.6	26.1	19.7	8.92	6.78		
PCB 67	2,3',4,5-TeCB	μg/Kg		0.716	0.598	0.809	0.337	0.266		
PCB 68	2,3',4,5'-TeCB	μg/Kg		0.0586	0.0559	0.071	0.0496 U	0.0492 U		
PCB 72 PCB 77	2,3',5,5'-TeCB 3,3',4,4'-TeCB	μg/Kg		0.121 1.59	0.115 1.68	0.144 2.08	0.0645 1.11	0.0548 0.847		0.052
PCB 78	3,3',4,5-TeCB	μg/Kg μg/Kg		0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 79	3,3',4,5'-TeCB	μg/Kg	0.101	0.254	1.08	0.331	0.177	0.0600		
PCB 80	3,3',5,5'-TeCB	μg/Kg		0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 81 PCB 82	3,4,4',5-TeCB 2,2',3,3',4-PeCB	μg/Kg μg/Kg		0.0854 4.08	0.103 EMPC 14.2	0.0952 EMPC 6.96	0.0496 U 2.78	0.0492 U 1.86		0.017
PCB 82	2,2',3,3',5-PeCB	μg/Kg μg/Kg		1.83	9.55	3.57	1.47	0.824		
PCB 84	2,2',3,3',6-PeCB	μg/Kg	4.83	9.26	34.2	16.1	5.96	4.4		
PCB 85/116/117	2,2',3,4,4'-PeCB + 2,3,4,5,6-PeCB + 2,3,4',5,6-PeCB	μg/Kg	2.8	4.68	18.4	7.75	2.98	2.35		
PCB 86/87/97/108/119/125	2,2',3,4,5-PeCB + 2,2',3,4,5'-PeCB + 2,2',3',4,5-PeCB + 2,3,3',4,5'-	μg/Kg	12.7	22	88.7	38.8	14.8	10.5		
PCB 88/91	PeCB + 2,3',4,4',6-PeCB + 2',3,4,5,6'-PeCB 2,2',3,4,6-PeCB + 2,2',3,4',6-PeCB	μg/Kg		4.31	15.1	7.10	2.83	2.11		
PCB 89	2,2',3,4,6'-PeCB	μg/Kg μg/Kg		0.426	0.892	0.581	0.252	0.196		
PCB 90/101/113	2,2',3,4',5-PeCB + 2,2',4,5,5'-PeCB + 2,3,3',5',6-PeCB	μg/Kg		33.5	126	52.2	20.0	14.5		

Basin 53

Table 3 North Lombard Street PCB Source Investigation Results - PCB Congeners

Basin 52C

Between Basins 52C and 53

North of Basin 52C

			Nortn o	i Basin 52C	Basir	1520	Between Basins 52C and 53	Basin 53		
			Intersection of N. Sever Rd and N. Burgard Rd	Intersection of Schnitzer Access Rd and N. Lombard	N. Lon Composite of Catch Basins A ANF072, ANI	ANF066, ANF067, ANF069,	N. Lombard-2 Composite of Catch Basins ANK382, ANK385, ANK394, ANK400	N. Lombard-3 Composite of Catch Basins ANF032, ANF036, ANF037, ANF041, ANF042		
			Roadway Solids (Sweepings)	Roadway Solids (Sweepings)	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids		
			FO105874	FO105875	FO105876	Duplicate FO105879	FO105877	FO105878	Scree	JSCS ⁽²⁾ ning Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/8/2010	9/8/2010	Toxicity	Bioaccumulation
PCB 92	2,2',3,5,5'-PeCB	μg/Kg	3.03	6.46	22.8	9.83	3.72	2.72		
PCB 93/98/100/102	2,2',3,5,6-PeCB + 2,2',3',4,6-PeCB + 2,2',4,4',6-PeCB + 2,2',4,5,6'-	100	0.546	1.28	2.82	1.89	0.758	0.539		
	PeCB	μg/Kg								
PCB 94 PCB 95	2,2',3,5,6'-PeCB 2,2',3,5',6-PeCB	μg/Kg μg/Kg	0.0797 14.1	0.174 33.9	0.381	0.258 49.3	0.107 16.8	0.0882 13.1		
PCB 96	2,2',3,6,6'-PeCB	μg/Kg μg/Kg	0.130	0.293	0.575	0.485	0.185	0.135		
PCB 99	2,2',4,4',5-PeCB	μg/Kg	6.12	11.1	43.8	18.0	6.93	5.25		
PCB 103	2,2',4,5',6-PeCB	μg/Kg	0.0782	0.155	0.458	0.246	0.0985	0.0729		
PCB 104 PCB 105	2,2',4,6,6'-PeCB 2,3,3',4,4'-PeCB	μg/Kg μg/Kg	0.0495 U 7.48	0.0469 U 10.4	0.0489 U 43.0	0.0489 U 20.9	0.0496 U 8.38	0.0492 U 5.52		0.17
PCB 106	2,3,3',4,5-PeCB	μg/Kg μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 107/124	2,3,3',4',5-PeCB + 2',3,4,5,5'-PeCB	μg/Kg	0.728	1.07	5.04	2.01	0.764	0.580		
PCB 109	2,3,3',4,6-PeCB	μg/Kg	0.996	1.78	5.88	2.54	1.07	0.792		
PCB 110/115 PCB 111	2,3,3',4',6-PeCB + 2,3,4,4',6-PeCB 2,3,3',5,5'-PeCB	μg/Kg μg/Kg	21.4 0.0495 U	39.5 0.0469 U	137 0.0489 U	58.8 0.0489 U	23.5 0.0496 U	16.7 0.0492 U		
PCB 112	2,3,3',5,6-PeCB	μg/Kg μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 114	2,3,4,4',5-PeCB	μg/Kg	0.414	0.618	2.75	1.24	0.470	0.320		0.17
PCB 118	2,3',4,4',5-PeCB	μg/Kg	16.8	23.5	119	46.5	17.8	12.8		0.12
PCB 120 PCB 121	2,3',4,5,5'-PeCB 2,3',4,5',6-PeCB	μg/Kg μg/Kg	0.0495 U 0.0495 U	0.0469 U 0.0469 U	0.0578 0.0489 U	0.0489 U 0.0489 U	0.0496 U 0.0496 U	0.0492 U 0.0492 U		
PCB 122	2',3,3',4,5-PeCB	μg/Kg μg/Kg	0.0493 0	0.0409 0	1.33	0.517	0.0496 0	0.0492 0		
PCB 123	2',3,4,4',5-PeCB	μg/Kg	0.381	0.414	2.37	0.924	0.247	0.268		0.21
PCB 126	3,3',4,4',5-PeCB	μg/Kg	0.280	0.143 EMPC	0.216 EMPC	0.119 EMPC	0.0853 EMPC	0.137		0.00005
PCB 127 PCB 128/166	3,3',4,5,5'-PeCB 2,2',3,3',4,4'-HxCB + 2,3,4,4',5,6-HxCB	μg/Kg μg/Kg	0.0495 U 3.69	0.0671 7.43	0.201 18.9	0.0735 9.18	0.0496 U 3.99	0.0492 U 2.76		
PCB 129/138/163	2,2',3,3',4,5-HxCB + 2,2',3,4,4',5'-HxCB + 2,3,3',4',5,6-HxCB	μg/Kg	23.2	77.7	118	54.4	24.7	17.5		
PCB 130	2,2',3,3',4,5'-HxCB	μg/Kg	1.54	3.47	8.15	3.92	1.68	1.17		
PCB 131	2,2',3,3',4,6-HxCB	μg/Kg	0.383	0.851	2.31	1.07	0.418	0.320		
PCB 132 PCB 133	2,2',3,3',4,6'-HxCB 2,2',3,3',5,5'-HxCB	μg/Kg μg/Kg	7.42 0.254	23.7 0.948	41.0 1.29	19.4 0.625	8.49 0.274	5.96 0.215		
PCB 134/143	2,2',3,3',5,6-HxCB + 2,2',3,4,5,6'-HxCB	μg/Kg	1.06	3.79	6.84	2.87	1.18	0.840		
PCB 135/151	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-HxCB	μg/Kg	6.19	42.1	23.7	13.3	6.59	5.85		
PCB 136	2,2',3,3',6,6'-HxCB	μg/Kg	2.47	14.1	13.1 8.30	6.58	2.97 1.27	2.31		**
PCB 137 PCB 139/140	2,2',3,4,4',5-HxCB 2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-HxCB	μg/Kg μg/Kg	1.05 0.380	1.36 0.684	2.48	3.11 1.05	0.411	0.903 0.324		
PCB 141	2,2',3,4,5,5'-HxCB	μg/Kg	3.72	20.9	17.3	7.98	3.86	3.01		
PCB 142	2,2',3,4,5,6-HxCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 144 PCB 145	2,2',3,4,5',6-HxCB 2,2',3,4,6,6'-HxCB	μg/Kg μg/Kg	0.745 0.0495 U	6.11 0.0469 U	4.49 0.0489 U	2.22 0.0489 U	0.640 0.0496 U	0.669 0.0492 U		
PCB 146	2,2',3,4',5,5'-HxCB	μg/Kg μg/Kg	2.45	11.9	12.7	5.98	2.74	1.98		
PCB 147/149	2,2',3,4',5,6-HxCB + 2,2',3,4',5',6-HxCB	μg/Kg	15.1	83.2	73.1	32.8	15.9	13.1		
PCB 148	2,2',3,4',5,6'-HxCB	μg/Kg	0.0495 U	0.0469 U	0.0582	0.0489 U	0.0496 U	0.0492 U		
PCB 150 PCB 152	2,2',3,4',6,6'-HxCB 2,2',3,5,6,6'-HxCB	μg/Kg μg/Kg	0.0495 U 0.0495 U	0.0506 0.0469 U	0.0908 0.110	0.0493 0.0539	0.0496 U 0.0496 U	0.0492 U 0.0492 U		
PCB 153/168	2,2',4,4',5,5'-HxCB + 2,3',4,4',5',6-HxCB	μg/Kg μg/Kg	16.5	76.2	77.6	34.3	16.5	13.3		
PCB 154	2,2',4,4',5,6'-HxCB	μg/Kg	0.139	0.297	0.619	0.286	0.134	0.118		
PCB 155	2,2',4,4',6,6'-HxCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 156/157 PCB 158	2,3,3',4,4',5-HxCB + 2,3,3',4,4',5'-HxCB 2,3,3',4,4',6-HxCB	μg/Kg μg/Kg	3.05 2.28	6.01 7.08	17.1 12.1	8.21 5.56	3.75 2.39	2.43 1.65		0.21
PCB 159	2,3,3',4,5,5'-HxCB	μg/Kg μg/Kg	0.0495 U	0.173 EMPC	0.0569 EMPC	0.0489 U	0.0496 U	0.0492 U		
PCB 160	2,3,3',4,5,6-HxCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 161	2,3,3',4,5',6-HxCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 162 PCB 164	2,3,3',4',5,5'-HxCB 2,3,3',4',5',6-HxCB	μg/Kg μg/Kg	0.168 1.51	0.0894 EMPC 5.18	0.578 6.25	0.283 3.25	0.155 1.49	0.134 1.09		
PCB 165	2,3,3',5,5',6-HxCB	μg/Kg μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 167	2,3',4,4',5,5'-HxCB	μg/Kg	0.948	1.89	5.04	2.52	1.08	0.791		0.21
PCB 169	3,3',4,4',5,5'-HxCB	μg/Kg	0.0495 U	0.199	0.0591 EMPC	0.0489 U	0.0496 U	0.0678 EMPC		0.00021
PCB 170 PCB 171/173	2,2',3,3',4,4',5-HpCB 2,2',3,3',4,4',6-HpCB + 2,2',3,3',4,5,6-HpCB	μg/Kg μg/Kg	4.34 1.36	21.4 8.11	12.0 3.97	6.64 2.06	3.92 1.19	2.90 0.998		
PCB 172	2,2',3,3',4,5,5'-HpCB + 2,2',3,3',4,5,5'-HpCB	μg/Kg μg/Kg	0.824	3.58	1.96	1.08	0.705	0.632		
PCB 174	2,2',3,3',4,5,6'-HpCB	μg/Kg	4.06	31.8	10.8	5.15	3.61	3.87		
PCB 175	2,2',3,3',4,5',6-HpCB	μg/Kg	0.202	1.47	0.529	0.285	0.187	0.193		
PCB 176 PCB 177	2,2',3,3',4,6,6'-HpCB 2,2',3,3',4',5,6-HpCB	μg/Kg μg/Kg	0.613 2.68	5.05 17.6	1.67 6.52	0.814 3.34	0.535 2.25	0.585 2.09		
PCB 178	2,2',3,3',5,5',6-HpCB	μg/Kg μg/Kg	0.980	7.37	2.13	1.07	0.780	0.876		
PCB 179	2,2',3,3',5,6,6'-HpCB	μg/Kg	2.02	16.9	4.86	2.21	1.67	2.20		
PCB 180/193	2,2',3,4,4',5,5'-HpCB + 2,3,3',4',5,5',6-HpCB	μg/Kg	9.53	58.4	24.8	11.3	7.99	7.73		
PCB 181 PCB 182	2,2',3,4,4',5,6-HpCB 2,2',3,4,4',5,6'-HpCB	μg/Kg	0.0495 U 0.0495 U	0.0793 0.0469 U	0.199 0.0489 U	0.111 0.0489 U	0.0791 0.0496 U	0.0492 U 0.0492 U		
PCB 182/185	2,2',3,4,4',5',6-HpCB 2,2',3,4,4',5',6-HpCB + 2,2',3,4,5,5',6-HpCB	μg/Kg μg/Kg	3.20	23.0	8.59	4.11	2.88	3.01		
PCB 184	2,2',3,4,4',6,6'-HpCB	μg/Kg μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 186	2,2',3,4,5,6,6'-HpCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 187 PCB 188	2,2',3,4',5,5',6-HpCB 2,2',3,4',5,6,6'-HpCB	μg/Kg μg/Kg	5.31 0.0495 U	37.0 0.0469 U	12.3 0.0489 U	5.76 0.0489 U	4.23 0.0496 U	5.09 0.0492 U		
					HIDDING II	LLIVING LI	U 0496 T	0.0097.11		

Table 3 North Lombard Street PCB Source Investigation Results - PCB Congeners

			North		>South					
		_	North of	North of Basin 52C		in 52C	Between Basins 52C and 53	Basin 53		
			Intersection of N. Sever Rd and N. Intersection of Schnitzer Access Rd Burgard Rd and N. Lombard		N. Lombard-1 Composite of Catch Basins ANF066, ANF067, ANF069, ANF072, ANF074, ANJ736		N. Lombard-2 Composite of Catch Basins ANK382, ANK385, ANK394, ANK400	N. Lombard-3 Composite of Catch Basins ANF032, ANF036, ANF037, ANF041, ANF042		
		-	Roadway Solids (Sweepings)	Roadway Solids (Sweepings)	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids	Catch Basin Solids		
			FO105874	FO105875	FO105876	Duplicate FO105879	FO105877	FO105878		JSCS ⁽²⁾ ning Level Value
IUPAC Number ⁽¹⁾	Chemical Name	Units	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/8/2010	9/8/2010	Toxicity	Bioaccumulation
PCB 189	2,3,3',4,4',5,5'-HpCB	μg/Kg	0.197	0.986	0.573	0.333	0.212	0.190		
PCB 190	2,3,3',4,4',5,6-HpCB	μg/Kg	0.862	4.09	2.17	1.19	0.731	0.630		1.2
PCB 191	2,3,3',4,4',5',6-HpCB	μg/Kg	0.175	0.992	0.484	0.251	0.157	0.117		
PCB 192	2,3,3',4,5,5',6-HpCB	μg/Kg	0.0495 U	0.0469 U	0.0489 U	0.0489 U	0.0496 U	0.0492 U		
PCB 194	2,2',3,3',4,4',5,5'-OcCB	μg/Kg	2.21	12.7	5.6	2.22	1.92	2.56		
PCB 195	2,2',3,3',4,4',5,6-OcCB	μg/Kg	0.840	5.04	1.96	0.789	0.642	0.800		
PCB 196	2,2',3,3',4,4',5,6'-OcCB	μg/Kg	1.23	7.23	2.76	1.22	1.03	1.37		
PCB 197/200	2,2',3,3',4,4',6,6'-OcCB + 2,2',3,3',4,5,6,6'-OcCB	μg/Kg	0.323	2.76	0.946	0.386	0.360	0.461		
PCB 198/199	2,2',3,3',4,5,5',6-OcCB + 2,2',3,3',4,5,5',6'-OcCB	μg/Kg	2.83	13.8	5.31	2.69	2.35	3.77		
PCB 201	2,2',3,3',4,5',6,6'-OcCB	μg/Kg	0.358	2.53	0.744	0.341	0.309	0.559		
PCB 202	2,2',3,3',5,5',6,6'-OcCB	μg/Kg	0.550	3.08	1.01	0.559	0.480	0.994		
PCB 203	2,2',3,4,4',5,5',6-OcCB	μg/Kg	1.66	8.23	3.29	1.63	1.37	2.01		
PCB 204	2,2',3,4,4',5,6,6'-OcCB	μg/Kg	0.0742 U	0.0704 U	0.0733 U	0.0734 U	0.0744 U	0.0738 U		
PCB 205	2,3,3',4,4',5,5',6-OcCB	μg/Kg	0.129	0.799	0.306	0.118	0.108	0.120		
PCB 206	2,2',3,3',4,4',5,5',6-NoCB	μg/Kg	1.41	4.50	2.25	1.93	1.48	2.14		
PCB 207	2,2',3,3',4,4',5,6,6'-NoCB	μg/Kg	0.182	0.563	0.279	0.218	0.179	0.275		
PCB 208	2,2',3,3',4,5,5',6,6'-NoCB	μg/Kg	0.335	0.984	0.496	0.527	0.420	0.644		
PCB 209	Decachlorobiphenyl	μg/Kg	0.540	0.595	0.476	0.652	0.930	0.538		
	Total Monochlorobiphenyls	μg/Kg	0.271	2.92	0.605	0.872	0.286	0.304		
	Total Dichlorobiphenyls	μg/Kg	7.58	24.7	18.5	23.1	9.86	7.67		
	Total Trichlorobiphenyls	μg/Kg	36.3	137	91.7	145	50.8	35.2		
	Total Tetrachlorobiphenyls	μg/Kg	74.0	183	340	257	103	77.2		
	Total Pentachlorobiphenyls	μg/Kg	116	211	798	347	132	95.9		
	Total Hexachlorobiphenyls	μg/Kg	94.2	395	471	219	101	76.4		
	Total Heptachlorobiphenyls	μg/Kg	36.4	238	93.6	45.7	31.1	31.1		
	Total Octachlorobiphenyls	μg/Kg	10.1	56.2	21.9	9.95	8.57	12.6		
	Total Nonachlorobiphenyls	μg/Kg	1.93	6.05	3.02	2.68	2.08	3.06		
	Total Decachlorobiphenyls	μg/Kg	0.540	0.595	0.476	0.652	0.930	0.538		
	Total PCBs ⁽³⁾	μg/Kg	377	1,260	1,840	1,050	440	340	676	0.39

Notes:

MoCB = Monochlorobiphenyl

DiCB = Dichlorobiphenyl

TriCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl

PeCB = Pentachlorobiphenyl

HeCB = Hexachlorobiphenyl

HpCB = Heptachlorobiphenyl

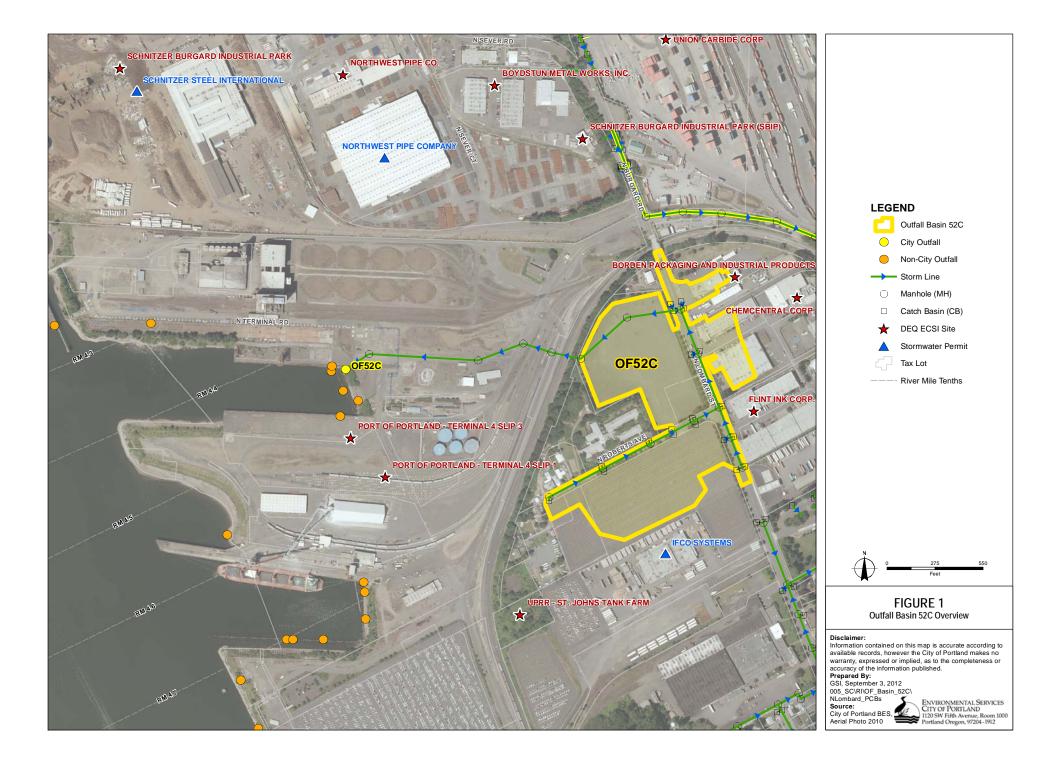
OcCB = Octachlorobiphenyl

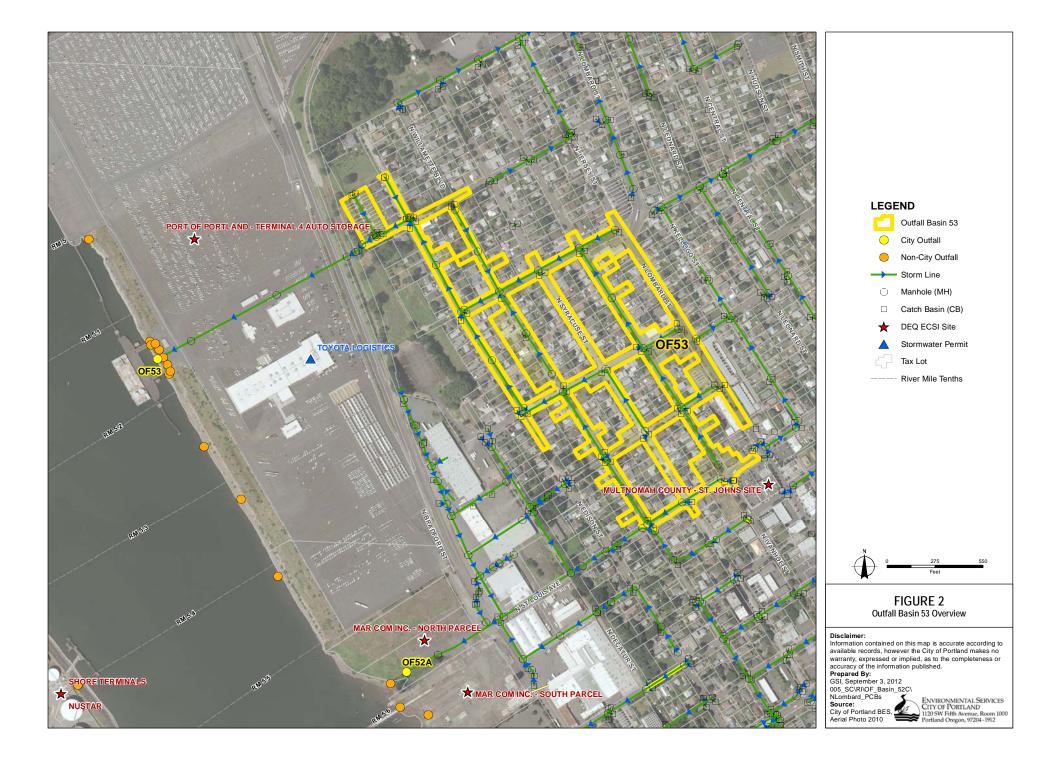
NoCB = Nonachlorobiphenyl

-- No JSCS screening level available.

 $EMPC = Estimated\ Maximum\ Possible\ Concentration.$

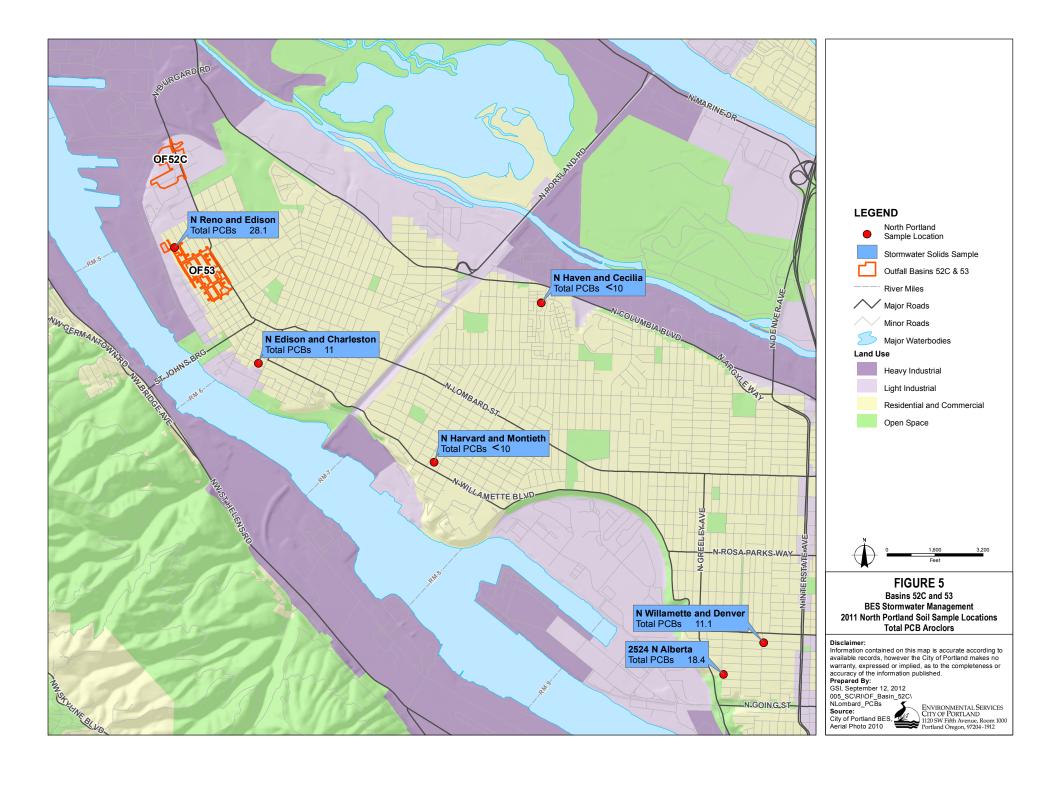
 $U=\mbox{The analyte was not detected above the reported sample quantification limit.} $\mu g/Kg=\mbox{micrograms per kilogram}.$


(1) IUPAC - International Union of Pure and Applied Chemistry.


(2) JSCS SLVs- Portland Harbor Joint Source Control Strategy Screening Level Values (DEQ/EPA Final December 2005, Amended July 2007).

(3) Total homologs and total congener concentrations are calculated by assigning "0" to undetected and EMPC-qualified constituents.

= concentration exceeds JSCS Toxicity Screening Level Value.


bold = concentration exceeds JSCS Bioaccumulation Screening Level Value.

APPENDIX A

2005 STORMWATER, SEDIMENT TRAP AND INLINE SOLIDS DATA

- Port of Portland T4 2005 Stormwater and Sediment Trap Data Summary
- City 2005 Basin 52C Inline Solids Investigation Laboratory Reports

PORT OF PORTLAND T4 2005 STORMWATER AND SEDIMENT TRAP DATA SUMMARY

TABLE N-3 STORMWATER SOURCE DATA FOR ANNUAL MASS LOADING CALCULATIONS

RECONTAMINATION ANALYSIS PORT OF PORTLAND, PORTLAND, OREGON

		Basin		Organi	ics Conce	entration in Soli	ds	Inorganics Concentration in Solids									
Subarea	Drainage Basin	Data Used ^a	TSS (mg/L)	Total PAHs ^{b,c} (mg/kg)	BEP (mg/kg)	Total PCBs ^{b,d} (μg/kg)	Σ DDT ^{b,e} (μg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)
	М	Q	33	13	1.9	0.19	18.4	4.93	0.726	72.9	39.4	73.8	0.083	26.5	0.3	0.167	247
	N	Q	33	13	1.9	0.19	18.4	4.93	0.726	72.9	39.4	73.8	0.083	26.5	0.3	0.167	247
	0	Q/O	73	13	1.9	0.19	18.4	12.8	1.64	63.9	77.2	495	0.304	49.2	23.5	0.496	681
Berth 401	Q	Q	33	13	1.9	0.19	18.4	4.93	0.726	72.9	39.4	73.8	0.083	26.5	0.3	0.167	247
	R	Q	33	13	1.9	0.19	18.4	4.93	0.726	72.9	39.4	73.8	0.083	26.5	0.3	0.167	247
	S	Q	33	13	1.9	0.19	18.4	4.93	0.726	72.9	39.4	73.8	0.083	26.5	0.3	0.167	247
	T	T	23	24	8.3	270	36.3	4.6	1.75	207	124	393	0.206	33.4	0.2	0.62	738
Wheeler Bay	↑ L	L/Q	17	198	1.9	410	22.5	5.85	3.23	57.2	85.9	248	0.041	36.6	1.3	0.621	1380
	D	D/C	6	27	12.0	399	95.6	5.80	1.47	118	82	351	0.083	35.4	0.4	0.221	615
Slip 3	J	L/Q	17	198	1.9	410	22.5	5.85	3.23	57.2	85.9	248	0.041	36.6	1.3	0.621	1380
	K	L/Q	17	198	1.9	410	22.5	5.85	3.23	57.2	85.9	248	0.041	36.6	1.3	0.621	1380
Berth 414	D	D/C	6	27	12.0	399	95.6	5.80	1.47	118	82	351	0.083	35.4	0.4	0.221	615

Notes:

- a. For drainage basins that were not sampled, source term contaminant concentration were assigned from basin with similar land use and other site-specific conditions.
- b. Total concentrations are calculated using the detected concentrations of individual constituents. Non-detects are treated as zeros. If all constituents are non-detect, the total concentration is reported as non-detect using the highest detection level.
- c. Swartz, 1999, which MacDonald et al., 2000a references as the source of the PAH screening levels, describes the total PAH criteria as the sum of the following polycyclic aromatic compounds: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene.
- d. MacDonald et al., 2000b, which MacDonald et al., 2000a references as the source of the PCB screening levels, does not describe which individual Aroclors make up the total PCB criteria. It was assumed that total PCBs consisted of all the Aroclors that were analyzed for (Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1248, Aroclor 1254, Aroclor 1260, Aroclor 1262, and Aroclor 1268).
 e. ΣDDTs criteria represents the sum of the following compounds: 2,4'-DDD, 4,4'-DDE, 4,4'-DDE, 2,4'-DDT.

Note that Basin T is City OF 52C

From: Appendix N- Terminal 4 Recontamination Analysis. Draft Report.

November 2006. Prepared for the Port of Portland by BBL Arcadis.

CITY 2005 BASIN 52C INLINE SOLIDS INVESTIGATION LABORATORY REPORTS

Laboratory Data QA/QC Review Upland Source Control Investigation City Outfall Basin 52C

To: File

From: Eric Collins, RG – GSI

Robyn Cook – GSI

Date: January 3, 2006

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during source control investigation sampling and analyses recently conducted by the City of Portland in Outfall Basin 52C.

The laboratory analysis for these source control program samples were completed by two subcontracted laboratories. The following analyses were conducted by each laboratory:

- STL Laboratory
 - o Metals (EPA Methods 6010B and 7471A)
 - o Polychlorinated Biphenyls (EPA Method 8082)
 - Semivolatile Organics (EPA Method 8270-SIM)
 - o Pesticides (EPA Method 8081A)
- North Creek Analytical
 - Total Petroleum Hydrocarbons Hydrocarbon Identification (NWTPH-HCID Method)
 - o Total Petroleum Hydrocarbons Diesel Range Extended (NWTPH-Dx Method)

Each of the report packages is attached

This QA/QC review is based upon the available documentation supplied from each laboratory. The QA/QC review of the analytical data consisted of reviewing the following for each laboratory report:

- Chain-of-custody complete and correct
- Analysis within holding times

- Chemicals of interest in method blanks
- Surrogate recoveries within accuracy control limits
- Laboratory blank spike recoveries within accuracy control limits
- Laboratory blank spike duplicate results within analytical precision control limits
- Matrix spike recoveries within accuracy control limits
- Matrix spike duplicate results within analytical precision control limits

The results of the laboratory report QA/QC review are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures were adequate and the sample integrity maintained through the sample collection and delivery process.

Analysis Holding Times

Semi-Volatile Organic (SVOCs) Analyses

All samples were extracted and analyzed within the required holding times.

Total Metal Analyses

All samples were extracted and analyzed within the required holding times.

Petroleum Hydrocarbons Analyses

All samples were extracted and analyzed within the required holding times.

Polychlorinated Biphenyls (PCBs) Analyses

All samples were extracted and analyzed within the required holding times.

Pesticides Analyses

All samples were extracted and analyzed within the required holding times.

Method Blanks

Method blanks were processed during the laboratory analysis of SVOCs, PCBs, pesticides, petroleum hydrocarbons and metals. No PCBs, pesticides, petroleum hydrocarbons or metals were detected in the method blanks. A low detection of one analyte, bis(2-ethylhexyl)phthalate was detected in the method blank associated with SVOC analysis. However, the analyte was detected at significantly higher concentrations in each of the samples; therefore, no data are qualified.

Surrogate Recoveries

Surrogate recoveries were completed during the laboratory analysis of SVOCs, PCBs and pesticides. All surrogate recoveries were within laboratory control limits for SVOC and pesticide analyses. Surrogates in two samples, as well as in the matrix spike and matrix spike duplicate associated with PCB analysis were outside of acceptance limits. Therefore, PCB results

are qualified as estimates and flagged with a "J." Reporting limits are also qualified as estimates and are flagged with a "UJ."

Laboratory Control Sample Recoveries

Laboratory control samples were processed during the laboratory analyses of SVOCs, PCBs, pesticides, petroleum hydrocarbons and metals. All laboratory control spike recoveries were within laboratory control limits for the analyses of PCBs, pesticides, total metals and petroleum hydrocarbons. Laboratory control spike recoveries were outside laboratory control limits for five SVOCs (2-methylnaphthalene, flourene, phenanthrene, flouranthene and benzo(g,h,i)perylene). Therefore, detected results for these analytes are qualified as estimates and flagged with a "J."

Laboratory Control Sample Duplicates

Laboratory blank spike duplicates were processed during the laboratory analyses of SVOCs, PCBs, pesticides, and metals. The recoveries of the laboratory blank spike duplicates were within laboratory control limits for the analyses of total metals. The recovery of the laboratory spike duplicate for one SVOC analyte (flouranthene), one pesticide analyte (endrin) and two PCB aroclors (1242 and 1260) were outside laboratory control limits. Therefore, reported results for these analytes are qualified as estimates and flagged with a "J."

Matrix Spike Recoveries

A matrix spike and matrix spike duplicate was processed during the laboratory analysis of PCBs. The matrix spike duplicate recovery was outside of the laboratory control limit for aroclors 1242 and 1260. These data are already qualified as estimates.

Special Note

Mercury was designated as having "LCS, LCSD, MS, MSD, MD or surrogate exceed[ing] the control limit" but the laboratory sheets do not designate which of these were outside of laboratory control limits. The laboratory control spike (LCS) and laboratory control spike duplicate (LCSD) were within acceptable limits. The control limit exceedance appears to be associated with the matrix spike (MS) or duplicate (MSD), method duplicate (MD) or surrogate, but the data are not available. Due to a lack in clarity, the reported results are qualified as estimates and flagged with a "J."

November 18, 2005

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 10/26/05 17:15. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

Seattle

Spokane **Portland**

Bend Anchorage

Amended Report: All results reported here supercede any previously reported results.

<u>Work</u>	Project	ProjectNumber	
P5J1030	Portland Harbor	36238	

Thank You,

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 $503.906.9200 \;\; \text{fax} \; 503.906.9210$

907.563.9200 fax 907.563.9210

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9290 fax: (509) 924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 ghone: (503) 906.9200 fax: (503) 906.9210 ghone: (541) 383.9310 fax: 541.382.7588 anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory Portland Harbor Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IL-52C-AAB520CB1-1005	P5J1030-01	Soil	10/25/05 10:17	10/26/05 17:15
IL-52C-AAB520CB2-1005	P5J1030-02	Soil	10/25/05 10:38	10/26/05 17:15
IL-52C-AAB524-1005	P5J1030-03	Soil	10/25/05 11:08	10/26/05 17:15

North Creek Analytical - Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 **Spokane** East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland

phone: (509) 924.9200 Tax: (509) 924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
phone: (503) 906.9200 fax: (503) 906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
phone: (541) 383.9310 fax: 541.382.7588

orage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
phone: (907) 563.9200 fax: (907) 563.9210 Anchorage

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

Analytical Case Narrative North Creek Analytical - Portland

P5J1030

Amended report

The sample IDs were corrected at the clients request.

North Creek Analytical - Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 **Spokane** East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 ghone: (503) 906.9200 fax: (503) 906.9210 ghone: (541) 383.9310 fax: 541.382.7588 anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 Project Manager: 11/18/05 07:39 Jennifer Shackelford

Hydrocarbon Identification per NW-TPH Methodology

North Creek Analytical - Portland

		North Creek	K Analy	ticai - Port	ana					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5J1030-01 Soil	IL-52C-AAB52	0CB1-1005	S	ampled: 10	0/25/05 1	0:17				
Gasoline Range Hydrocarbons	NWTPH HCID	ND		13.9 m	ng/kg dry	1x	5101312	10/28/05	10/29/05 03:14	
Diesel Range Hydrocarbons	"	DET		34.8	"	"	"	"	"	A-01
Heavy Oil Range Hydrocarbons	"	DET		69.6	"	"	"	"	"	A-01
Surrogate(s): 1-Chlorooctadecane	,	Recovery: 156%		Limits: 5	0 - 150 %	"			"	S-02
P5J1030-02 Soil	IL-52C-AAB52	0CB2-1005	S	ampled: 10	0/25/05 1	0:38				
Gasoline Range Hydrocarbons	NWTPH HCID	ND		19.5 m	ng/kg dry	1x	5101312	10/28/05	10/29/05 05:22	
Diesel Range Hydrocarbons	"	DET		48.7	"	"	"	"	"	A-01
Heavy Oil Range Hydrocarbons	"	DET		97.4	"	"	"	"	"	A-01
Surrogate(s): 1-Chlorooctadecane		Recovery: 54.6%		Limits: 5	0 - 150 %	"			"	
P5J1030-03 Soil	IL-52C-AAB52	4-1005	Samp	led: 10/25/	/05 11:08					
Gasoline Range Hydrocarbons	NWTPH HCID	ND		17.2 m	ng/kg dry	1x	5101312	10/28/05	10/29/05 06:26	
Diesel Range Hydrocarbons	"	DET		42.9	"	"	"	"	"	A-02
Heavy Oil Range Hydrocarbons	"	DET		85.8	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecane		Recovery: 50.2%		Limits: 5	0 - 150 %	"			"	

Surrogate(s): 1-Chlorooctadecane Recovery: 50.2% Limits: 50 - 150 %

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 **Spokane** East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 ghone: (503) 906.9200 fax: (503) 906.9210 ghone: (541) 383.9310 fax: 541.382.7588 anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Portland Harbor

City of Portland Water Pollution Laboratory Project Name:

Project Number: 6543 N. Burlington Ave. 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method with Acid/Silica Gel Cleanup

		North Creek	Analy	tical - Poi	rtland					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5J1030-01 Soil	IL-52C-AAB52	0CB1-1005	S	ampled:	10/25/05 1	0:17				
Diesel Range Organics	NWTPH-Dx	404		142	mg/kg dry	10x	5110231	11/04/05	11/05/05 14:56	A-01
Heavy Oil Range Hydrocarbons	"	1150		283	"	"	"	"	"	A-01
Surrogate(s): 1-Chlorooctadecane		Recovery: NR		Limits:	50 - 150 %	"			"	S-02
P5J1030-02 Soil	IL-52C-AAB52	0CB2-1005	S	ampled:	10/25/05 1	0:38				
Diesel Range Organics	NWTPH-Dx	174		149	mg/kg dry	10x	5110231	11/04/05	11/05/05 14:56	A-01
Heavy Oil Range Hydrocarbons	"	960		299	"	"	"	"	"	A-01
Surrogate(s): 1-Chlorooctadecane		Recovery: 83.0%		Limits:	50 - 150 %	"			"	
P5J1030-03 Soil	IL-52C-AAB52	4-1005	Samp	led: 10/2	5/05 11:08					
Diesel Range Organics	NWTPH-Dx	ND		160	mg/kg dry	10x	5110231	11/04/05	11/05/05 15:30	R-05
Heavy Oil Range Hydrocarbons	"	794		321	"	"	"	"	"	
Surrogate(s): 1-Chlorooctadecane		Recovery: 74.6%		Limits:	50 - 150 %	"			"	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9290 fax: (509) 924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 ghone: (503) 906.9200 fax: (503) 906.9210 ghone: (541) 383.9310 fax: 541.382.7588 anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory Portland Harbor Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

Percent Dry Weight (Solids) per Standard Methods

North Creek Analytical - Portland

			1101111 011	cic i ilitaly ti		*******					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5J1030-01	Soil	IL-52C-AAB520C	CB1-1005	Sa	mpled: 1	0/25/05 1	0:17				
% Solids		NCA SOP	87.5		1.00 %	by Weight	t 1x	5101405	10/31/05	11/01/05 09:59	
P5J1030-02	Soil	IL-52C-AAB520C	CB2-1005	Sa	mpled: 1	0/25/05 1	0:38				
% Solids		NCA SOP	83.5		1.00 %	6 by Weight	t 1x	5101405	10/31/05	11/01/05 09:59	
P5J1030-03	Soil	IL-52C-AAB524-	1005	Sampl	ed: 10/25	/05 11:08					
% Solids		NCA SOP	78.6		1.00 %	by Weight	t 1x	5101405	10/31/05	11/01/05 09:59	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906-9200 fax: (503) 906-9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383-9310 fax: 541-382.7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210 Anchorage

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

Hydrocarbon Identification per NW-TPH Methodology - Laboratory Quality Control Results
North Creek Analytical - Portland

QC Batch: 5101312 **Soil Preparation Method:** EPA 3550 Fuels Spike Source Analyte Method Result MDL* MRL Units (Limits) (Limits) Analyzed Notes Result Blank (5101312-BLK1) 10/28/05 09:00 Extracted: Gasoline Range Hydrocarbons NWTPH HCID ND 20.0 10/28/05 17:36 mg/kg 1xDiesel Range Hydrocarbons ND 50.0 Heavy Oil Range Hydrocarbons ND 100 Surrogate(s): 1-Chlorooctadecane Recovery: 119% Limits: 50-150% 10/28/05 17:36 QC Source: P5J1030-01 10/28/05 09:00 **Duplicate** (5101312-DUP1) **Extracted:** NWTPH HCID ND 16.1 mg/kg dry ND 18.2% (50) 10/29/05 02:10 Gasoline Range Hydrocarbons DET 40.2 588 2.85% A-01 Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons DET 80.4 3040 1.66% A-01 Surrogate(s): 1-Chlorooctadecane Recovery: 152% Limits: 50-150% 10/29/05 02:10 S-02 QC Source: P5J1030-02 10/28/05 09:00 **Duplicate (5101312-DUP2)** Extracted: Gasoline Range Hydrocarbons NWTPH HCID ND 21.7 ND (50)10/29/05 07:31 mg/kg dry 227 Diesel Range Hydrocarbons DET 54.2 24.8% A-01 DET 17.0% A-01 Heavy Oil Range Hydrocarbons 108 886 10/29/05 07:31 Surrogate(s): 1-Chlorooctadecane Recovery: 54.1% Limits: 50-150%

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 **Spokane** East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland

phone: (503) 924-9200 fax: (509) 924-9290 phone: (503) 906.9200 fax: (503) 906.9210 phone: (503) 906.9200 fax: (503) 906.9210 phone: (541) 383.9310 fax: 541.382.7588

Anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Project Manager: Jennifer Shackelford

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method with Acid/Silica Gel Cleanup - Laboratory Quality Control Results North Creek Analytical - Portland

			North C	геек Апа	alytical - Po	rtian	ıa						
QC Batch: 5110231	Soil P	reparation	Method:	EPA 355	50 Fuels								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (L	imits) Analyzed	Notes
Blank (5110231-BLK1)								Ext	racted:	11/04/05	14:00		
Diesel Range Organics	NWTPH-Dx	ND		12.5	mg/kg	1x						11/05/05 10:55	
Heavy Oil Range Hydrocarbons	"	ND		25.0	"	"						"	
Surrogate(s): 1-Chlorooctadecan	ie	Recovery:	102%	Lin	nits: 50-150%	"						11/05/05 10:55	
LCS (5110231-BS1)								Ext	racted:	11/04/05	14:00		
Diesel Range Organics	NWTPH-Dx	138		12.5	mg/kg	1x		125	110%	(50-150)		11/05/05 11:30	
Heavy Oil Range Hydrocarbons	"	75.5		25.0	"	"		75.0	101%	"		"	
Surrogate(s): 1-Chlorooctadecan	іе	Recovery:	113%	Lin	nits: 50-150%	"						11/05/05 11:30	
Duplicate (5110231-DUP1)				QC Sour	ce: P5K0128-	01		Ext	racted:	11/04/05	14:00		
Diesel Range Organics	NWTPH-Dx	ND		505	mg/kg wet	40x	ND				NR (50) 11/05/05 12:04	R-05
Heavy Oil Range Hydrocarbons	"	2690		1010	"	"	2190				20.5% "	"	
Surrogate(s): 1-Chlorooctadecan	іе	Recovery	: NR	Lin	nits: 50-150%	"						11/05/05 12:04	S-0.
Duplicate (5110231-DUP2)				QC Sour	ce: P5K0128-	02		Ext	racted:	11/04/05	14:00		
Diesel Range Organics	NWTPH-Dx	ND		509	mg/kg wet	40x	ND				NR (50) 11/05/05 12:04	R-05
Heavy Oil Range Hydrocarbons	"	1650		1020	"	"	2430				38.2% "	"	
Surrogate(s): 1-Chlorooctadecan	ie	Recovery	: NR	Lin	nits: 50-150%	"						11/05/05 12:04	S-0.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9290 fax: (509) 924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 ghone: (503) 906.9200 fax: (503) 906.9210 ghone: (541) 383.9310 fax: 541.382.7588 anchorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory Portland Harbor Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 11/18/05 07:39 Jennifer Shackelford Project Manager:

Percent Dry Weight (Solids) per Standard Methods - Laboratory Quality Control Results North Creek Analytical - Portland												
QC Batch: 5101405	Soil P	reparation M	ethod:	Dry Weig	ht							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	RPD (Limi	its) Analyzed	Notes
Duplicate (5101405-DUP1)				QC Source	: P5J0986-0)1		Extracted:	10/31/05	11:11		
% Solids	NCA SOP	84.7		1.00 %	by Weight	1x	86.9			2.56% (20)	11/01/05 09:59	
Duplicate (5101405-DUP2)				QC Source	: P5J0986-0)4		Extracted:	10/31/05	11:11		
% Solids	NCA SOP	88.2		1.00 %	by Weight	1x	87.0			1.37% (20)	11/01/05 09:59	

North Creek Analytical - Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210 Anchorage

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203

Portland Harbor Project Name:

Project Number: 36238 Report Created: 11/18/05 07:39 Project Manager: Jennifer Shackelford

Notes and Definitions

Report Specific Notes:

- A-01 Detected hydrocarbons have distinct peaks that have elution patterns similar to that of PAH's.
- A-02 Detected hydrocarbons appear to be due mainly to overlap from the heavy/oil range as well as biogenic interference.
- R-05 Reporting limits raised due to dilution necessary for analysis. Sample contains high levels of reported analyte, non-target analyte, and/or matrix interference.
- S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences
- S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present.

Laboratory Reporting Conventions:

- Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET
 - ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- <u>NR</u> / <u>NA</u> Not Reported / Not Available
 - dry Sample results reported on a dry weight basis. Reporting Limits have been corrected for %Solids.
 - Sample results and reporting limits reported on a wet weight basis (as received). wet
 - Relative Percent Difference. (RPDs calculated using Results, not Percent Recoveries). RPD
- **MRL** METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and limits percent solids, where applicable.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 FAX 924-9290 11922 E 1st Ave, Spokane, WA 99206-5302 509-924-9200 FAX 906-9210 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 503-906-9200 FAX 382-7588 20332 Empire Ave, Ste F1, Bend, OR 97701-5712 541-383-9310 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

	CHAIN O	F CU	J ST (Work Order#	. Po	5.11030	2
NCA CLIENT: City of Pattern REPORT TO: Poter Abrams ADDRESS: 6543 N. Birling to Portland, OR 972	JBES MAIR.				1000 654 Part	3 N.	Borl Borl	PCL Q7	on A 203	υ€ .			•			in E Organic & I	COUND REQUEST Business Days * norganic Analyses	
PHONE: 563.823.5533FAX:	.6/ 3				P.O. N	UMBE	R:			· · · · · · · · · · · · · · · · · · ·							4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 <1
PHONE: 503.823 553 3FAX: PROJECT NAME: Portland Had	bo Inline	ļ	1				PRES	ERVA	TIVE	, T							j 1 [
PROJECT NUMBER:								<u> </u>	<u> </u>						310.		•	
SAMPLED BY: MJH/RCB		<u></u>	لا جُدہ	<u> </u>		RE	QUES1	TED A	NALYS	ES						Turnaround Requests	Specify: less than standard may incor Rush Charges.	
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	METER TOTAL	Tollar-VP	Fallow .				2 to 10 to 1	3.						MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	NCA WO ID
IIL-SZC-AABSZOCBI-100090/ZSJ	05 10:17	X																
2TL-52C-AAB520C82-1005	10:38	X																
3IL-52C-AAB524-1005	11:08	X																
4																		
5																		
6																		
7																		
8														L				
9																		
10														_				
RELEASED BY:	>		L		DATE:	10/	25/0	5	RECE	IVED B	v: 17	Sur	4				DATE: /	0/26/05
PRINT NAME: Peter Alrans RELEASED BY: Sur	FIRM:				TIME:	15	10		PRIN	ГИАМЕ	Bo	b	<u></u>	p 4 9 1	FIR	м: 🔏	DATE: // DATE: (4:45
RELEASED BY: But					DATE:	10/	26/0	5	RECE	IVED B	y: U	vi	1	N	yr	\supset	DATE:	10/24/90
PRINT NAME: BOB F ADDITIONAL REMARKS:	FIRM: N	if	••		TIME:		7:15	<u> </u>	PRIN'	NAME	: (1	ull	(F	11/15	NUZFIR	M: /(1715
DELIGITAD ADMARKS.																		
COC REV 09/04																	0.4 PAG	GE OF

NORTH CREEK ANALYTICAL COOLER RECEIPT FORM

(Army Corp. compliant)

Clie	ent: COP
1.	Please sign for receipt and opening of cooler or other
	By (print) Calle FallSU1012 (sign) Wy
2.	Date samples received 10/20/05 Date opened: Same y or//
3.	Delivered by: VNCA courier FedEx UPS Courier Client Other Airbill # if applicable (Put copy of shipping papers in file)
4.	There were custody seals present, signed by BOB date
5.	Were the custody seals unbroken and intact at the date and time of arrival? YesNo
6. T	Was ice used?
7.	Are custody papers sealed in a plastic bag and taped inside to iid? Yes Ko
8.	Were custody papers filled out properly (ink, signed, etc.)? YesNo If "no" please specify:
9.	Was project identifiable from custody papers? Yes No Name of project (if applicable)
10.	Initial and date for unpacking: (F) (initials) date 10 1301 05
11.	Packing material: LC bubble wrap/bagstyrofoamcardboardother
12.	Were samples in bags?YesYes No
13.	Did all containers indicated on the COC arrive? If "no" please indicate which containers were absent
14.	Were all containers unbroken and labels in good condition? If "no" please indicate which containers
15.	Were all bottle labels complete (ID, date, time, signature, etc.)? Yes X No Do the IDs, times, etc. agree with the COC? If "no" please indicate which containers No clutchia on sum pus
16.	Are containers properly preserved for indicated analysis? Yes No
17.	Is there adequate volume for the test(s) requested? Yes No
18.	If voa vials were submitted, are they free of bubbles? N/A Yes No
19.	Log-in phase: Date samples were logged in: 1012105 Elm Project # P571030
20.	Logged in by (print) <u>Callit FullSU1012</u> (sign) <u>Lu Jugn</u>
	Was the project manager notified of status? (Use back of form as a record) Yes You

ANALYTICAL REPORT

Job Number: 580-331-1

Job Description: Portland Harbor Inline Samp

For:

City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Attention: Peter Abrams

Tom Coyner

Project Manager I

tcoyner@stl-inc.com 11/30/2005

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Case Narrative

Non Conformance Summary for job: 580-J331-1

Client:

City of Portland BES

Date:

11/30/05

Pesticides and PCBs

Effected Final Samples

580-331-A-1-B

580-331-A-1-B

580-331-A-2-D

580-331-A-2-D

580-331-E-3-C

580-331-E-3-C

580-331-A-4-D

580-331-A-4-D

580-296-A-1-E

580-296-A-1-E

Endrin Failed low in the LCS/LCSD.

Effected Final Samples

580-331-A-1-B

580-331-A-1-B

580-331-A-2-D

580-331-A-2-D

580-331-E-3-C

580-331-E-3-C

580-331-A-4-D

580-331-A-4-D 580-296-A-1-E

580-296-A-1-E

Matrix problem (not incuding high analyte content)

CCV failed due to extreme matix of the samples.

METHOD SUMMARY

Client: City of Portland BES Job Number: 580-331-1

Descripti	on	Lab Location	Method	Preparation Method
Matrix:	Solid			· · · · · · · · · · · · · · · · · · ·
Semivolati Monitoring	le Organic Compounds by GC/MS (Selective Ion	STL-SEA	SW846 8270C	
Terorino i i i g	Ultrasonic Extraction (Low Level)	STL-SEA		SW846 3550B
Organochl	orine Pesticides by Gas Chromatography Ultrasonic Extraction (Low Level)	STL-SEA STL-SEA	SW846 8081A	SW846 3550B
Polychlorin	nated Biphenyls (PCBs) by Gas Chromatography Ultrasonic Extraction (Low Level)	STL-SEA STL-SEA	SW846 8082	SW846 3550B
Inductively	Coupled Plasma - Atomic Emission Spectrometry Acid Digestion of Sediments, Sludges, and Soils	STL-SEA STL-SEA	SW846 6010B	SW846 3050B
Mercury in	Solid or Semisolid Waste (Manual Cold Vapor	STL-SEA	SW846 7471A	
,	Mercury in Solid or Semi-Solid Waste (Manual	STL-SEA		SW846 7471A
Percent M	oisture	STL-SEA	EPA 160.3	

LAB REFERENCES:

STL-SEA = STL-Seattle

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: City of Portland BES

Job Number: 580-331-1

Method	Analyst	Analyst ID
SW846 8270C	Frans, Ben	BF
SW846 8081A	Loague, Steve	SL
SW846 8082	Marfiak, Steve T	STM
SW846 6010B	Palmquist, Stan	SP
SW846 7471A	Woo, Fred C	FCW
EPA 160.3	Boardway, Peter A	PAB

SAMPLE SUMMARY

Client: City of Portland BES Job Number: 580-331-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
580-331-1	IL-52C-AAB520CB1-1005	Solid	10/25/2005 1017	10/26/2005 1000
580-331-2	IL-52C-AAB520CB2-1005	Solid	10/25/2005 1038	10/26/2005 1000
580-331-3	IL-52C-AAB524-1005	Solid	10/25/2005 1108	10/26/2005 1000
580-331-4	IL-52C-AAB529-1005	Solid	10/25/2005 1151	10/26/2005 1000

SAMPLE RESULTS

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Client Sample ID: IL-52C-AAB520CB1-100 Lab Sample ID: 580-331-1

Date Sampled: 10/25/2005 1017 Date Received: 10/26/2005 1000

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8270C	Date Prepared:	10/31/2005 1552	Date Analyzed: 11/08/2005	1547
Naphthalene	1300	ug/Kg	- 58	10
2-Methylnaphthalene	770 *	ug/Kg	58	10
1-Methylnaphthalene	410	ug/Kg	58	10
Acenaphthylene	110	ug/Kg	58	10
Acenaphthene	7000	ug/Kg	58	10
Fluorene	2300 *	ug/Kg	58	10
Phenanthrene	29000 *	ug/Kg	58	10
Anthracene	6100	ug/Kg	58	10
Benzo[a]anthracene	43000	ug/Kg	58	10
Chrysene	32000	ug/Kg	58	10
Benzofluoranthene	68000	ug/Kg	120	10
Benzo[a]pyrene	43000	ug/Kg	58	10
Indeno[1,2,3-cd]pyrene	27000	ug/Kg	58	10
Dibenz(a,h)anthracene	5600	ug/Kg	58	10
Benzo[g,h,i]perylene	31000 *	ug/Kg	58	10
Bis(2-ethylhexyl) phthalate	910	ug/Kg	230	10
Butyl benzyl phthalate	330	ug/Kg	120	10
Diethyl phthalate	ND	ug/Kg	120	10
Dimethyl phthalate	ND	ug/Kg	120	10
Di-n-butyl phthalate	1600	ug/Kg	230	10
Di-n-octyl phthalate	ND	ug/Kg	230	10
Surrogate			Acceptance Limits	\$
2-Fluorobiphenyl	91	%	42 - 140	
Nitrobenzene-d5	83	%	38 - 141	
Terphenyl-d14	108	%	42 - 151	
Method: 8270C	Date Prepared:	10/31/2005 1552	Date Analyzed: 11/09/2005	1208
Fluoranthene	56000 *	ug/Kg	580	100
Pyrene	51000	ug/Kg	580	100
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1550
Aldrin	ND	ug/Kg	1.2	1.0
alpha-BHC	ND	ug/Kg	1.2	1.0
beta-BHC	12	ug/Kg	1.2	1.0
delta-BHC	ND	ug/Kg	1.2	1.0
gamma-BHC (Lindane)	ND	ug/Kg	1.2	1.0
4,4'-DDD	ND	ug/Kg	2,3	1.0
4,4'-DDE	11	ug/Kg	2.3	1.0
4,4'-DDT	27	ug/Kg	2.3	1.0
Dieldrin	8.4	ug/Kg	2.3	1.0
Endosulfan I	ND	ug/Kg	1.2	1.0
Endosulfan II	ND	ug/Kg	2.3	1.0
Endosulfan sulfate	ND	ug/Kg	2.3	1.0
			-	

Job Number: 580-331-1

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Client Sample ID: IL-52C-AAB520CB1-100 Lab Sample ID: 580-331-1

Date Sampled: 10/25/2005 1017 Date Received: 10/26/2005 1000

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1550
Endrin	9.6 *	ug/Kg	2.3	1.0
Endrin aldehyde	56	ug/Kg	2.3	1.0
Heptachlor	ND	ug/Kg	1.2	1.0
Heptachlor epoxide	ND	ug/Kg	1.2	1.0
Methoxychlor	ND	ug/Kg	12	1.0
Endrin ketone	ND	ug/Kg	2.3	1.0
Toxaphene	ND	ug/Kg	120	1.0
alpha-Chlordane	3.9	ug/Kg	1.2	1.0
gamma-Chlordane	8.7	ug/Kg	1.2	1.0
ganina-Ciliordane	0.7	ugnig	1.2	1.0
Surrogate	այն մահատանում հասուրա մանչագույներին մաստուլին իրդ վերիկային իրկայացի լերիկայան անգալնա առագացությելներ	anne a cele carrier el malamana a como como como como como como como c	Acceptance Limits	
Tetrachloro-m-xylene	49	%	49 - 123	
DCB Decachlorobiphenyl	66	%	40 - 158	
Method: 8082	Date Prepared:	11/04/2005 1314	Date Analyzed: 11/11/2005	0620
PCB-1016	ND .	mg/Kg	0.058	1.0
PCB-1221	ND	mg/Kg	0.058	1.0
PCB-1232	ND	mg/Kg	0.058	1.0
PCB-1242	ND	mg/Kg	0.058	1.0
PCB-1248	ND ND	mg/Kg	0.058	1.0
PCB-1254	0.089	w •	0.058	1.0
	0.069	mg/Kg		1.0
PCB-1260	0.16	mg/Kg	0.058	1,0
Surrogate	manaka la kangana makgani a kamuladag badi pagandang kahpan		Acceptance Limits	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Tetrachloro-m-xylene	111	%	60 - 123	
DCB Decachlorobiphenyl	140 *	%	65 - 126	
Method: 6010B	Date Prepared:	11/04/2005 1428	Date Analyzed: 11/07/2005	0941
Arsenic	ND	mg/Kg	5.2	1.0
Cadmium	ND	mg/Kg	0.52	1.0
Chromium	200	mg/Kg	2.1	1.0
Copper	170	mg/Kg	2.1	1.0
Lead	110	mg/Kg	2.1	1.0
Nickel	140	mg/Kg	2.1	1.0
Selenium	ND	mg/Kg	10	1.0
Silver	ND	mg/Kg	1.0	1.0
	590	mg/Kg	1.6	1.0
Zinc	290	mg/kg	1.0	1.0
Method: 7471A		11/07/2005 1518	Date Analyzed: 11/08/2005	
Mercury	0.044 *	mg/Kg	0.021	1.0
Method: 160.3	Date Prepared:		Date Analyzed: 11/04/2005	1555
Percent Solids	85	%	0.10	1.0
		• •	· -	

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203 Job Number: 580-331-1

Client Sample ID: IL-52C-AAB520CB1-100 Lab Sample ID: 580-331-1

Date Sampled: 10/25/2005 1017

Date Received: 10/26/2005 1000

 Analyte
 Result/Qualifier
 Unit
 RL
 Dilution

 Method:
 160.3
 Date Prepared:
 Date Analyzed: 11/04/2005 1555

 Percent Moisture
 15
 %
 0.10
 1.0

Job Number: 580-331-1

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Client Sample ID: IL-52C-AAB520CB2-100 Lab Sample ID: 580-331-2 Date Sampled: 10/25/2005 1038

Date Received: 10/26/2005 1000

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8270C	Date Prepared:	10/31/2005 1552	Date Analyzed: 11/08/2005	1616
Naphthalene	440	ug/Kg	59	10
2-Methylnaphthalene	410 *	ug/Kg	59	10
1-Methylnaphthalene	250	ug/Kg	59	10
Acenaphthylene	64	ug/Kg	59	10
Acenaphthene	1600	ug/Kg	59	10
Fluorene	530 *	ug/Kg	59	10
Phenanthrene	6500 *	ug/Kg	59	10
Anthracene	1500	ug/Kg	59	10
Fluoranthene	17000 *	ug/Kg	59	10
Pyrene	16000	ug/Kg	59	10
Benzo[a]anthracene	13000	ug/Kg	59	10
Chrysene	9900	ug/Kg	59	10
Benzofluoranthene	23000	ug/Kg	120	10
Benzo[a]pyrene	15000	ug/Kg	59	10
Indeno[1,2,3-cd]pyrene	10000	ug/Kg	59	10
Dibenz(a,h)anthracene	2200	ug/Kg	59	10
Benzo[g,h,i]perylene	12000 *	ug/Kg	59	10
Bis(2-ethylhexyl) phthalate	1600	ug/Kg	240	10
Butyl benzyl phthalate	750	ug/Kg	120	10
Diethyl phthalate	ND	ug/Kg	120	10
Dimethyl phthalate	560	ug/Kg	120	10
	280	ug/Kg ug/Kg	240	10
Di-n-butyl phthalate	ND		240	10
Di-n-octyl phthalate	ND	ug/Kg	240	10
Surrogate			Acceptance Limit	3
2-Fluorobiphenyl	86	%	42 - 140	
Nitrobenzene-d5	84	%	38 - 141	
Terphenyl-d14	100	%	42 - 151	
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1611
Aldrin	ND	ug/Kg	1.2	1.0
alpha-BHC	ND	ug/Kg	1.2	1.0
beta-BHC	ND	ug/Kg	1.2	1.0
delta-BHC	ND	ug/Kg	1.2	1.0
gamma-BHC (Lindane)	ND	ug/Kg	1.2	1.0
4,4'-DDD	ND	ug/Kg	2.4	1.0
4,4'-DDE	2.4	ug/Kg	2.4	1.0
4,4'-DDT	ND	ug/Kg	2.4	1.0
Dieldrin	ND	ug/Kg	2.4	1.0
Endosulfan I	ND	ug/Kg	1.2	1.0
Endosulfan II	ND ND	ug/Kg	2.4	1.0
Endosulfan sulfate	ND ND	ug/Kg ug/Kg	2.4	1.0
Endosulian sullate Endrin	8.3 *	ug/Kg ug/Kg	2.4	1.0
	6.3 17	ug/Kg ug/Kg	2.4	1.0
Endrin aldehyde	11	ug/Ng	2.4	1.0

Job Number: 580-331-1 Peter Abrams

City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Date Sampled: 10/25/2005 1038 Client Sample ID: IL-52C-AAB520CB2-100 Lab Sample ID: 580-331-2

Date Received: 10/26/2005 1000

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1611
Heptachlor	ND	ug/Kg	1.2	1.0
Heptachlor epoxide	ND	ug/Kg	1.2	1.0
Methoxychlor	ND	ug/Kg	12	1.0
Endrin ketone	ND	ug/Kg	2.4	1.0
Toxaphene	ND	ug/Kg	120	1.0
alpha-Chlordane	ND	ug/Kg	1.2	1.0
gamma-Chlordane	ND	ug/Kg	1.2	1.0
Surrogate			Acceptance Limits	
Tetrachloro-m-xylene	58	%	49 - 123	
DCB Decachlorobiphenyl	45	%	40 - 158	
Method: 8082	Date Prepared:	11/04/2005 1314	Date Analyzed: 11/11/2005	0644
PCB-1016	ND	mg/Kg	0.057	1.0
PCB-1221	ND	mg/Kg	0.057	1.0
PCB-1232	ND	mg/Kg	0.057	1.0
PCB-1242	ND *	mg/Kg	0.057	1.0
PCB-1248	ND	mg/Kg	0.057	1.0
PCB-1254	0.16	mg/Kg	0.057	1.0
PCB-1260	0.23 *	mg/Kg	0.057	1.0
Ourse south			A acceptance t imite	
Surrogate	113	%	Acceptance Limits 60 - 123	
Tetrachloro-m-xylene	147 *	%	65 - 126	
DCB Decachlorobiphenyl	147	70	00 - 120	
Surrogate	montones a tos a trongers to a solutional base (1934). The property of the		Acceptance Limits	pypaganyty propagatokantoky
Tetrachloro-m-xylene	107	%	60 - 123	
DCB Decachlorobiphenyl	122	%	65 - 126	
Method: 6010B	Date Prepared:	11/04/2005 1428	Date Analyzed: 11/07/2005	0945
Arsenic	ND	mg/Kg	4.9	1.0
Cadmium	ND	mg/Kg	0.49	1.0
Chromium	420	mg/Kg	1.9	1.0
Copper	370	mg/Kg	1.9	1.0
Lead	280	mg/Kg	1.9	1.0
Nickel	300	mg/Kg	1.9	1.0
Selenium	ND	mg/Kg	9.7	1.0
Silver	ND	mg/Kg	0.97	1.0
Zinc	650	mg/Kg	1.5	1.0
88-41	Data Dans and	44/07/2005 4549	Data Analysis d. 44/00/2005	4420
Method: 7471A	Date Prepared:		Date Analyzed: 11/08/2005	
Mercury	0.18 *	mg/Kg	0.020	1.0

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Client Sample ID: IL-52C-AAB520CB2-100 Lab Sample ID: 580-331-2

Date Sampled: 10/25/2005 1038

Job Number: 580-331-1

Date Received: 10/26/2005 1000

Analyte	Result/Qualifier	Unit	RL Dilution
Method: 160.3	Date Prepared:		Date Analyzed: 11/04/2005 1555
Percent Solids	83	%	0.10 1.0
Percent Moisture	17	%	0.10 1.0

Job Number: 580-331-1

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8270C	Date Prepared:	10/31/2005 1552	Date Analyzed: 11/08/2005	1645
Naphthalene	93	ug/Kg	61	10
2-Methylnaphthalene	120 *	ug/Kg	61	10
1-Methylnaphthalene	91	ug/Kg	61	10
Acenaphthylene	ND	ug/Kg	61	10
Acenaphthene	64	ug/Kg	61	10
Fluorene	ND	ug/Kg	61	10
Phenanthrene	330 *	ug/Kg	61	10
Anthracene	140	ug/Kg	61	10
Fluoranthene	710 *	ug/Kg	61	10
Pyrene	750	ug/Kg	61	10
Benzo[a]anthracene	470	ug/Kg	61	10
Chrysene	640	ug/Kg	61	10
*	1700	ug/Kg	120	10
Benzofluoranthene			61	10
Benzo[a]pyrene	670	ug/Kg		
Indeno[1,2,3-cd]pyrene	590	ug/Kg	61	10
Dibenz(a,h)anthracene	160	ug/Kg	61	10
Benzo[g,h,i]perylene	000	ug/Kg	61	10
Bis(2-ethylhexyl) phthalate	1500	ug/Kg	250	10
Butyl benzyl phthalate	140	ug/Kg	120	10
Diethyl phthalate	ND	ug/Kg	120	10
Dimethyl phthalate	ND	ug/Kg	120	10
Di-n-butyl phthalate	ND	ug/Kg	250	10
Di-n-octyl phthalate	ND	ug/Kg	250	10
Surrogate			Acceptance Limits	:
2-Fluorobiphenyl	82	%	42 - 140	
Nitrobenzene-d5	76	%	38 - 141	
Terphenyl-d14	92	%	42 - 151	
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1632
Aldrin	ND	ug/Kg	1.2	1.0
alpha-BHC	ND	ug/Kg	1.2	1.0
beta-BHC	ND	ug/Kg	1.2	1.0
	ND	ug/Kg	1.2	1.0
delta-BHC		ug/Kg ug/Kg	1.2	1.0
gamma-BHC (Lindane)	ND			
4,4'-DDD	ND	ug/Kg	2.4	1.0
4,4'-DDE	ND	ug/Kg	2.4	1.0
4,4'-DDT	8.8	ug/Kg	2.4	1.0
Dieldrin	ND	ug/Kg	2.4	1.0
Endosulfan I	ND	ug/Kg	1.2	1.0
Endosulfan II	ND	ug/Kg	2.4	1.0
Endosulfan sulfate	ND	ug/Kg	2.4	1.0
Endrin	9.0 *	ug/Kg	2.4	1.0

Peter Abrams Job Number: 580-331-1

City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Method:

Percent Solids

Percent Moisture

160.3

Client Sample ID: IL-52C-AAB524-1005 Lab Sample ID: 580-331-3 Date Sampled: 10/25/2005 1108 Date Received: 10/26/2005 1000 Analyte Result/Qualifier Unit RL Dilution Date Prepared: 11/07/2005 1158 Date Analyzed: 11/17/2005 1632 8081A Method: ND Heptachlor ug/Kg 1.2 1.0 ND Heptachlor epoxide ug/Kg 1.2 1.0 ND ug/Kg 12 1.0 Methoxychlor Endrin ketone ND ug/Kg 2.4 1.0 ND 120 1.0 Toxaphene ug/Kg ND 1.0 alpha-Chlordane ug/Kg 1.2 ND ug/Kg 1.2 1.0 gamma-Chlordane Acceptance Limits Surrogate Tetrachloro-m-xylene 53 49 - 123 % 51 40 - 158 DCB Decachlorobiphenyl Date Prepared: 11/04/2005 1314 Method: 8082 Date Analyzed: 11/11/2005 0755 ND 1.0 PCB-1016 0.060 mg/Kg ND mg/Kg 0.060 1.0 PCB-1221 ND mg/Kg 0.060 1.0 PCB-1232 PCB-1242 ND mg/Kg 0.060 1.0 PCB-1248 ND mg/Kg 0.060 1.0 PCB-1254 ND mg/Kg 0.060 1.0 PCB-1260 ND mg/Kg 0.060 1.0 Acceptance Limits Surrogate 120 % Tetrachloro-m-xylene 60 - 123 DCB Decachlorobiphenyl % 65 - 126 108 Method: 6010B Date Prepared: 11/04/2005 1428 Date Analyzed: 11/07/2005 0948 Arsenic ND ma/Ka 4.4 1.0 ND 0.44 Cadmium mg/Kg 1.0 81 mg/Kg 1.8 Chromium 1.0 42 mg/Kg 1.8 1.0 Copper Lead 150 mg/Kg 1.8 1.0 Nickel 20 mg/Kg 1.8 1.0 Selenium ND mg/Kg 8.8 1.0 Silver ND mg/Kg 88.0 1.0 Zinc 230 mg/Kg 1.3 1.0 Date Prepared: 11/07/2005 1518 Method: 7471A Date Analyzed: 11/08/2005 1203 ND mg/Kg 0.023 1.0 Mercury

%

%

Date Prepared:

80

20

Date Analyzed: 11/04/2005 1555

0.10

0.10

1.0

1.0

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

 Client Sample ID:
 IL-52C-AAB529-1005
 Lab Sample ID:
 580-331-4
 Date Sampled:
 10/25/2005
 1151

 Date Received:
 10/26/2005
 1000

Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8270C	Date Prepared:	10/31/2005 1552	Date Analyzed: 11/08/2005 1	1715
Naphthalene	160	ug/Kg	79	10
2-Methylnaphthalene	160 *	ug/Kg	79	10
1-Methylnaphthalene	110	ug/Kg	79	10
Acenaphthylene	ND	ug/Kg	79	10
Acenaphthene	150	ug/Kg	79	10
Fluorene	89 *	ug/Kg	79	10
Phenanthrene	960 *	ug/Kg	79	10
Anthracene	210	ug/Kg	79	10
Fluoranthene	2200 *	ug/Kg	79	10
Pyrene	2000	ug/Kg	79	10
Benzo[a]anthracene	1400	ug/Kg	79	10
Chrysene	1500	ug/Kg	79	10
Benzofluoranthene	3800	ug/Kg	160	10
Benzo[a]pyrene	1800	ug/Kg	79	10
Indeno[1,2,3-cd]pyrene	1200	ug/Kg	79	10
Dibenz(a,h)anthracene	410	ug/Kg	79	10
Benzo[g,h,i]perylene	1500 *	ug/Kg	79	10
Bis(2-ethylhexyl) phthalate	4200	ug/Kg	320	10
Butyl benzyl phthalate	220	ug/Kg	160	10
Diethyl phthalate	ND	ug/Kg	160	10
Dimethyl phthalate	ND	ug/Kg	160	10
Di-n-butyl phthalate	ND	ug/Kg	320	10
Di-n-octyl phthalate	ND	ug/Kg	320	10
Di-ri-oxyi pinnalate	,,,,	ug/11g	OL O	
Surrogate			Acceptance Limits	MINITER OF THE PERSON OF T
2-Fluorobiphenyl	83	%	42 - 140	
Nitrobenzene-d5	80	%	38 - 141	
Terphenyl-d14	97	%	42 - 151	
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1653
Aldrin	ND	ug/Kg	1.5	1.0
alpha-BHC	ND	ug/Kg	1.5	1.0
beta-BHC	6.2	ug/Kg	1.5	1.0
delta-BHC	ND	ug/Kg	1.5	1.0
gamma-BHC (Lindane)	ND	ug/Kg	1.5	1.0
4,4'-DDD	ND	ug/Kg	3.0	1.0
4,4'-DDE	9.9	ug/Kg	3.0	1.0
4,4'-DDT	7.2	ug/Kg	3.0	1.0
4,4-DD1 Dieldrin	ND	ug/Kg ug/Kg	3.0	1.0
			3.0 1.5	1.0
Endosulfan I	ND	ug/Kg		
Endosulfan II	ND	ug/Kg	3.0	1.0
Endosulfan sulfate	ND	ug/Kg	3.0	1.0
Endrin	12	ug/Kg	3.0	1.0
Endrin aldehyde	27	ug/Kg	3.0	1.0

Job Number: 580-331-1

Peter Abrams City of Portland BES 6543 N. Burlington Ave Portland, OR 97203

Client Sample ID: IL-52C-AAB529-1005	Lab Sample	ID: 580-331-4	•	2005 1151 2005 1000
Analyte	Result/Qualifier	Unit	RL	Dilution
Method: 8081A	Date Prepared:	11/07/2005 1158	Date Analyzed: 11/17/2005	1653
Heptachlor	ND .	ug/Kg	1.5	1.0
Heptachlor epoxide	ND	ug/Kg	1.5	1.0
Methoxychlor	ND	ug/Kg	15	1.0
Endrin ketone	ND	ug/Kg	3.0	1.0
Toxaphene	ND	ug/Kg	150	1.0
alpha-Chlordane	ND	ug/Kg	1.5	1.0
•	9.4		1.5	1.0
gamma-Chlordane	9.4	ug/Kg	1.0	1.0
Surrogate	or former and a graduative for the contract of	e construction and the declete \$ property and decede construction	Acceptance Limits	
Tetrachloro-m-xylene	64	%	49 - 123	
DCB Decachlorobiphenyl	52	%	40 - 158	
Method: 8082	Date Prepared:	11/04/2005 1314	Date Analyzed: 11/11/2005(0818
PCB-1016	ND	mg/Kg	0.077	1.0
PCB-1221	ND	mg/Kg	0.077	1.0
PCB-1232	ND	mg/Kg	0.077	1.0
PCB-1242	ND	mg/Kg	0.077	1.0
PCB-1248	ND	mg/Kg	0.077	1.0
PCB-1254	ND	mg/Kg	0.077	1.0
PCB-1204 PCB-1260	ND ND	mg/Kg	0.077	1.0
Surramata			Acceptance Limits	
Surrogate Tetrachloro-m-xylene	106	%	Acceptance Limits 60 - 123	
DCB Decachlorobiphenyl	110	%	65 - 126	
Method: 6010B	Date Prepared:	11/04/2005 1428	Date Analyzed: 11/07/2005	n952
Arsenic	ND	mg/Kg	7.6	1.0
Cadmium	ND	mg/Kg	0.76	1.0
	350		3.1	1.0
Chromium	110	mg/Kg	3.1 3.1	1.0
Copper		mg/Kg		
Lead	200	mg/Kg	3.1	1.0
Nickel	150	mg/Kg	3.1	1.0
Selenium	ND	mg/Kg	15	1.0
Silver	ND	mg/Kg	1.5	1.0
Zinc	960	mg/Kg	2.3	1.0
Method: 7471A	Date Prepared:	11/07/2005 1518	Date Analyzed: 11/08/2005	1208
Mercury	0.24 *	mg/Kg	0.028	1.0
Moroury				
·	Date Prepared:		Date Analyzed: 11/04/2005	1555
Method: 160.3 Percent Solids	Date Prepared:	%	Date Analyzed: 11/04/2005	1555 1.0

DATA REPORTING QUALIFIERS

Job Number: 580-331-1

Client: City of Portland BES

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	*	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits
GC Semi VOA		
	*	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits
Metals		
	*	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits

QUALITY CONTROL RESULTS

Client: City of Portland BES

Job Number: 580-331-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS Semi VOA				
Prep Batch: 580-932	THE BENEFIT OF THE SECTION OF THE PROPERTY OF	enterior de la company de la c		$(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \times \mathbb{R}^n $
LCS 580-932/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-932/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-932/1-A	Method Blank	Solid	3550B	
580-331-1	IL-52C-AAB520CB1-1005	Solid	3550B	
580-331-2	IL-52C-AAB520CB2-1005	Solid	3550B	
580-331-3	IL-52C-AAB524-1005	Solid	3550B	
580-331-4	IL-52C-AAB529-1005	Solid	3550B	
Analysis Batch:580-1	224			
LCS 580-932/2-A	Lab Control Spike	Solid	8270C	580-932
_CSD 580-932/3-A	Lab Control Spike Duplicate	Solid	8270C	580-932
VIB 580-932/1-A	Method Blank	Solid	8270C	580-932
580-331-1	IL-52C-AAB520CB1-1005	Solid	8270C	580-932
580-331-2	IL-52C-AAB520CB2-1005	Solid	8270C	580-932
580-331-3	IL-52C-AAB524-1005	Solid	8270C	580-932
580-331-4	IL-52C-AAB529-1005	Solid	8270C	580-932

Client: City of Portland BES Job Number: 580-331-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC Semi VOA				
Prep Batch: 580-1106		nas, mar, in a y a farma a financia financiana manaciana financiana manaciana a manaciana a manaciana a manaciana a	an managana an ang ang ang ang ang ang ang a	ne fra fra a come es a maior es en flore resoltande en
LCS 580-1106/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-1106/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-1106/1-A	Method Blank	Solid	3550B	
580-331-1	IL-52C-AAB520CB1-1005	Solid	3550B	
580-331-2	IL-52C-AAB520CB2-1005	Solid	3550B	
580-331-2MS	Matrix Spike	Solid	3550B	
580-331-2MSD	Matrix Spike Duplicate	Solid	3550B	
580-331-3	IL-52C-AAB524-1005	Solid	3550B	
580-331-4	IL-52C-AAB529-1005	Solid	3550B	
Prep Batch: 580-1147	•			
LCS 580-1147/2-A	Lab Control Spike	Solid	3550B	
LCSD 580-1147/3-A	Lab Control Spike Duplicate	Solid	3550B	
MB 580-1147/1-A	Method Blank	Solid	3550B	
580-331-1	IL-52C-AAB520CB1-1005	Solid	3550B	
580-331-2	IL-52C-AAB520CB2-1005	Solid	3550B	
580-331-3	IL-52C-AAB524-1005	Solid	3550B	
580-331-4	IL-52C-AAB529-1005	Solid	3550B	
Analysis Batch:580-1	519			
LCS 580-1106/2-A	Lab Control Spike	Solid	8082	580-1106
LCSD 580-1106/3-A	Lab Control Spike Duplicate	Solid	8082	580-1106
MB 580-1106/1-A	Method Blank	Solid	8082	580-1106
580-331-1	IL-52C-AAB520CB1-1005	Solid	8082	580-1106
580-331-2	IL-52C-AAB520CB2-1005	Solid	8082	580-1106
580-331-2MS	Matrix Spike	Solid	8082	580-1106
580-331-2MSD	Matrix Spike Duplicate	Solid	8082	580-1106
580-331-3	IL-52C-AAB524-1005	Solid	8082	580-1106
580-331-4	IL-52C-AAB529-1005	Solid	8082	580-1106
Analysis Batch:580-1	808			
LCS 580-1147/2-A	Lab Control Spike	Solid	8081A	580-1147
LCSD 580-1147/3-A	Lab Control Spike Duplicate	Solid	8081A	580-1147
MB 580-1147/1-A	Method Blank	Solid	8081A	580-1147
580-331-1	IL-52C-AAB520CB1-1005	Solid	8081A	580-1147
580-331-2	IL-52C-AAB520CB2-1005	Solid	8081A	580-1147
580-331-3	IL-52C-AAB524-1005	Solid	8081A	580-1147
580-331-4	IL-52C-AAB529-1005	Solid	8081A	580-1147

Client: City of Portland BES Job Number: 580-331-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
Metals				
Prep Batch: 580-1111				
LCS 580-1111/2-A	Lab Control Spike	Solid	3050B	
LCSD 580-1111/3-A	Lab Control Spike Duplicate	Solid	3050B	
MB 580-1111/1-A	Method Blank	Solid	3050B	
580-331-1	IL-52C-AAB520CB1-1005	Solid	3050B	
580-331-2	IL-52C-AAB520CB2-1005	Solid	3050B	
580-331-3	IL-52C-AAB524-1005	Solid	3050B	
580-331-4	IL-52C-AAB529-1005	Solid	3050B	
Prep Batch: 580-1171				
LCS 580-1171/2-A	Lab Control Spike	Solid	7471A	
LCSD 580-1171/3-A	Lab Control Spike Duplicate	Solid	7471A	
MB 580-1171/1-A	Method Blank	Solid	7471A	
580-331-1	IL-52C-AAB520CB1-1005	Solid	7471A	
580-331-2	IL-52C-AAB520CB2-1005	Solid	7471A	
580-331-3	IL-52C-AAB524-1005	Solid	7471A	
580-331-4	IL-52C-AAB529-1005	Solid	7471A	
Analysis Batch:580-1	158			
LCS 580-1111/2-A	Lab Control Spike	Solid	6010B	580-1111
LCSD 580-1111/3-A	Lab Control Spike Duplicate	Solid	6010B	580-1111
MB 580-1111/1-A	Method Blank	Solid	6010B	580-1111
580-331-1	IL-52C-AAB520CB1-1005	Solid	6010B	580-1111
580-331-2	IL-52C-AAB520CB2-1005	Solid	6010B	580-1111
580-331-3	IL-52C-AAB524-1005	Solid	6010B	580-1111
580-331-4	IL-52C-AAB529-1005	Solid	6010B	580-1111
Analysis Batch:580-1	270			
LCS 580-1171/2-A	Lab Control Spike	Solid	7471A	580-1171
LCSD 580-1171/3-A	Lab Control Spike Duplicate	Solid	7471A	580-1171
MB 580-1171/1-A	Method Blank	Solid	7471A	580-1171
580-331-1	IL-52C-AAB520CB1-1005	Solid	7471A	580-1171
580-331-2	IL-52C-AAB520CB2-1005	Solid	7471A	580-1171
580-331-3	IL-52C-AAB524-1005	Solid	7471A	580-1171
580-331-4	IL-52C-AAB529-1005	Solid	7471A	580-1171
Concret Chamicter				
General Chemistry		is the section to the little section of a section of the first consist and and the section of particular for the		el jeljejeg jeg espektera promografi napopromp konkry krydonok y kolejšed Modelekkid istoriet i i konstru in c
Analysis Batch:580-1		Solid	160.3	
580-331-1	IL-52C-AAB520CB1-1005			
580-331-2	IL-52C-AAB520CB2-1005	Solid	160.3	
580-331-3	IL-52C-AAB524-1005	Solid	160.3	
580-331-4	IL-52C-AAB529-1005	Solid	160.3	

Client: City of Portland BES

Job Number: 580-331-1

Surrogate Recovery Report

8270C Semivolatile Organic Compounds by GC/MS (Selective Ion Monitoring)

Client Matrix: Solid

Lab Sample ID		Client Sample	(FBP) (%Rec)	(NBZ) (%Rec)	(TPH) (%Rec)
580-331-1		IL-52C-AAB520CB1-1005	91	83	108
580-331-2		IL-52C-AAB520CB2-1005	86	84	100
580-331-3		IL-52C-AAB524-1005	82	76	92
580-331-4		IL-52C-AAB529-1005	83	80	97
LCS 580-932/2-A	A	LCS	94	91	107
LCSD 580-932/3	-A	LCSD	90	84	100
MB 580-932/1-A		МВ	97	92	106
Surrogate				Acceptance	Limits
(FBP) 2-Fluorobiphenyl (NBZ) Nitrobenzene-d5 (TPH) Terphenyl-d14			42 - 140 38 - 141 42 - 151		

Client: City of Portland BES

Job Number: 580-331-1

Surrogate Recovery Report

8081A Organochlorine Pesticides by Gas Chromatography

Client Matrix: Solid

Lab Sample ID		Client Sample	(DCB 1) (%Rec)	(TCX 1) (%Rec)
580-331-1		IL-52C-AAB520CB1-1005	66	49
580-331-2		IL-52C-AAB520CB2-1005	45	58
580-331-3		IL-52C-AAB524-1005	51	53
580-331-4		IL-52C-AAB529-1005	52	64
LCS 580-1147	/2-A	LCS	81	78
LCSD 580-114	17/3-A	LCSD	78	76
MB 580-1147/	1-A	МВ	95	93
Surrogate				Acceptance Limits
(DCB 1)		cachlorobiphenyl		40 - 158 49 - 123

(DCB 1)	DCB Decachlorobiphenyl	40 - 158
(TCX 1)	Tetrachloro-m-xylene	49 - 123

Client: City of Portland BES Job Number: 580-331-1

Surrogate Recovery Report

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Matrix: Solid

Lab Sample ID	Client Sample	(DCB 1) (%Rec)	(DCB 2) (%Rec)	(TCX 1) (%Rec)	(TCX 2) (%Rec)
580-331-1	IL-52C-AAB520CB1-1005	140 *		111	
580-331-2	IL-52C-AAB520CB2-1005	147 *	122	113	107
580-331-3	IL-52C-AAB524-1005	108		120	
580-331-4	IL-52C-AAB529-1005	110		106	
580-331-2MS	IL-52C-AAB520CB2-1005	168 *		114	
580-331-2MSD	IL-52C-AAB520CB2-1005	161 *		93	
LCS 580-1106/2-A	LCS	113		112	
LCSD 580-1106/3-A	LCSD	125		116	
MB 580-1106/1-A	MB	106		104	
Surrogate			Acceptance	Limits	
•	cachlorobiphenyl oro-m-xylene		65 - 126 60 - 123		

Client: City of Portland BES Job Number: 580-331-1

Method Blank - Batch: 580-932

Method: 8270C Preparation: 3550B

Lab Sample ID: MB 580-932/1-A

Client Matrix: Solid

Dilution:

1.0

Date Analyzed: 11/08/2005 1250

Date Prepared: 10/31/2005 1552

Analysis Batch: 580-1224

Prep Batch: 580-932

Units: ug/Kg

Instrument ID: 5973N

Lab File ID: HP001273.D Initial Weight/Volume: 20 g Final Weight/Volume: 20 mL

Injection Volume:

Analyte	Result	Qual	RL
Naphthalene	ND		5.0
2-Methylnaphthalene	ND		5.0
1-Methylnaphthalene	ND		5.0
Acenaphthylene	ND		5.0
Acenaphthene	ND		5.0
Fluorene	ND		5.0
Phenanthrene	ND		5.0
Anthracene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzofluoranthene	ND		10
Benzo[a]pyrene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Bis(2-ethylhexyl) phthalate	24		20
Butyl benzyl phthalate	ND		10
Diethyl phthalate	ND		10
Dimethyl phthalate	ND		10
Di-n-butyl phthalate	ND		20
Di-n-octyl phthalate	ND		20
Surrogate	% Rec	Acceptance Limits	
2-Fluorobiphenyl	97	42 - 140	era wasanan wasanan wasanan sa maganga ay maranga ay basan ay ay ana ay ay ana ay ay ana ay ana ay ana ay ana a
Nitrobenzene-d5	92	38 - 141	
Terphenyl-d14	106	42 - 151	

Client: City of Portland BES Job Number: 580-331-1

Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 580-932

Method: 8270C Preparation: 3550B

LCS Lab Sample ID: LCS 580-932/2-A

Client Matrix: Dilution:

Solid

1.0

Date Analyzed: Date Prepared:

11/08/2005 1319 10/31/2005 1552

Analysis Batch: 580-1224 Prep Batch: 580-932

Units: ug/Kg

Instrument ID: 5973N Lab File ID:

HP001274.D

Initial Weight/Volume: 20 g Final Weight/Volume:

20 mL

Injection Volume:

LCSD Lab Sample ID: LCSD 580-932/3-A

Client Matrix: Dilution:

Solid 1.0

Date Analyzed: Date Prepared: 11/08/2005 1349 10/31/2005 1552 Analysis Batch: 580-1224

Prep Batch: 580-932 Units: ug/Kg

Instrument ID: 5973N Lab File ID: HP001275.D Initial Weight/Volume: 20 g

Final Weight/Volume: 20 mL

Injection Volume:

	<u>9</u>	<u>6 Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Naphthalene	128	118	54 - 131	8	26		
2-Methylnaphthalene	141	129	51 - 138	8	27	*	
1-Methylnaphthalene	147	132	50 - 150	10	30		
Acenaphthylene	120	116	52 - 130	3	28		
Acenaphthene	133	128	50 - 144	4	27		
Fluorene	137	129	50 - 134	6	31	*	
Phenanthrene	138	128	55 - 133	7	28	*	
Anthracene	119	110	52 - 135	8	27		
Fluoranthene	145	136	54 - 135	6	36	*	*
Pyrene	144	136	47 - 152	6	31		
Benzo[a]anthracene	135	120	55 - 135	12	27		
Chrysene	119	115	59 - 133	4	26		
Benzofluoranthene	127	117	43 - 154	9	31		
Benzo[a]pyrene	130	120	54 - 138	8	30		
Indeno[1,2,3-cd]pyrene	137	129	45 - 153	6	29		
Dibenz(a,h)anthracene	132	126	50 - 150	5	30		
Benzo[g,h,i]perylene	149	142	54 - 142	5	28	*	

Job Number: 580-331-1 Client: City of Portland BES

Method Blank - Batch: 580-1147

Method: 8081A Preparation: 3550B

Lab Sample ID: MB 580-1147/1-A

Client Matrix: Solid Dilution:

1.0

Date Analyzed: 11/17/2005 1447 Date Prepared: 11/07/2005 1158 Analysis Batch: 580-1808 Prep Batch: 580-1147

Units: ug/Kg

Instrument ID: 6890N Lab File ID: ECD14755.D Initial Weight/Volume: 10 g

Final Weight/Volume: 10 mL Injection Volume:

Column ID: **PRIMARY**

Analyte	Result	Qual	RL
Aldrin	ND		1.0
alpha-BHC	ND		1.0
beta-BHC	ND		1.0
delta-BHC	ND		1.0
gamma-BHC (Lindane)	ND		1.0
4,4'-DDD	ND		2.0
4,4'-DDE	ND		2.0
4,4'-DDT	ND		2.0
Dieldrin	ND		2.0
Endosulfan I	ND		1.0
Endosulfan II	ND		2.0
Endosulfan sulfate	ND		2.0
Endrin	ND		2.0
Endrin aldehyde	ND		2.0
Heptachlor	ND		1.0
Heptachlor epoxide	ND		1.0
Methoxychlor	ND		10
Endrin ketone	ND		2.0
Toxaphene	ND		100
alpha-Chlordane	ND		1.0
gamma-Chlordane	ND		1.0
Surrogate	% Rec	Acceptance Limits	kulann kalaisin kalain kalain kalaisin kalaisin kalain kalain kalain kalain kalain kalain kalain kalain kalain
Tetrachloro-m-xylene	93	49 - 123	
DCB Decachlorobiphenyl	95	40 - 158	

Job Number: 580-331-1 Client: City of Portland BES

Laboratory Control/ Method: 8081A Laboratory Control Duplicate Recovery Report - Batch: 580-1147 Preparation: 3550B

LCS Lab Sample ID: LCS 580-1147/2-A

Client Matrix:

Solid

Dilution:

1.0

Date Analyzed: Date Prepared:

11/17/2005 1508

11/07/2005 1158

Analysis Batch: 580-1808 Prep Batch: 580-1147

Units: ug/Kg

Instrument ID: 6890N

Lab File ID: ECD14756.D 10 g

Initial Weight/Volume: Final Weight/Volume:

10 mL

Injection Volume:

Column ID:

PRIMARY

LCSD Lab Sample ID: LCSD 580-1147/3-A

Client Matrix:

Dilution:

Solid

Date Analyzed: Date Prepared: 1.0 11/17/2005 1529

11/07/2005 1158

Analysis Batch: 580-1808 Prep Batch: 580-1147

Units: ug/Kg

...

Instrument ID:

6890N Lab File ID: ECD14757.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL

Injection Volume:

Column ID:

PRIMARY

<u>% Rec.</u>							
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Aldrin	78	73	53 - 126	7	24		
alpha-BHC	72	68	41 - 128	6	28		
beta-BHC	74	69	48 - 121	7	32		
delta-BHC	75	69	22 - 153	8	36		
gamma-BHC (Lindane)	74	69	50 - 127	7	29		
4,4'-DDD	76	69	44 - 141	9	41		
4,4'-DDE	76	69	47 - 140	9	40		
4,4'-DDT	48	42	34 - 159	14	47		
Dieldrin	75	68	53 - 134	9	32		
Endosulfan I	69	64	52 - 122	7	31		
Endosulfan II	82	75	53 - 132	9	36		
Endosulfan sulfate	71	64	42 - 128	11	43		
Endrin	46	41	46 - 138	12	36		*
Endrin aldehyde	92	84	12 - 179	9	47		
Heptachlor	69	64	50 - 130	8	31		
Heptachlor epoxide	70	65	49 - 123	8	31		
Methoxychlor	57	49	46 - 154	14	46		
Endrin ketone	75	68	45 - 127	9	45		
alpha-Chlordane	66	61	46 - 118	8	33		
gamma-Chlordane	64	59	49 - 122	8	32		
Surrogate	L	CS % Rec	LCSD %	Rec	Accept	ance Limits	
Tetrachioro-m-xylene	7	8	76		49	- 123	
DCB Decachlorobiphenyl	8	1	78		40	- 158	

Client: City of Portland BES Job Number: 580-331-1

Method Blank - Batch: 580-1106 Method: 8082 Preparation: 3550B

Lab Sample ID: MB 580-1106/1-A

Client Matrix: Solid Dilution:

1.0

Date Analyzed: 11/11/2005 0509 Date Prepared: 11/04/2005 1314 Analysis Batch: 580-1519 Prep Batch: 580-1106

Units: mg/Kg

Instrument ID: 6890N Lab File ID: PCB9084.D Initial Weight/Volume: 10 g

Final Weight/Volume: 10 mL

Injection Volume:

Column ID: **PRIMARY**

Analyte	Result	Qual	RL
PCB-1016	ND		0.050
PCB-1221	ND		0.050
PCB-1232	ND		0.050
PCB-1242	ND		0.050
PCB-1248	ND		0.050
PCB-1254	ND		0.050
PCB-1260	ND		0.050
Surrogate	% Rec	Acceptance Limits	
Tetrachloro-m-xylene	104	60 - 123	
DCB Decachlorobiphenyl	106	65 - 126	

Laboratory Control/ Method: 8082 Laboratory Control Duplicate Recovery Report - Batch: 580-1106 Preparation: 3550B

LCS Lab Sample ID: LCS 580-1106/2-A

Client Matrix: Dilution:

Solid 1.0

Date Analyzed: Date Prepared:

11/11/2005 0533 11/04/2005 1314 Analysis Batch: 580-1519 Prep Batch: 580-1106

Units: mg/Kg

Instrument ID: 6890N Lab File ID: PCB9085.D

10 g Initial Weight/Volume: Final Weight/Volume: 10 mL

Injection Volume:

Column ID:

PRIMARY

6890N

LCSD Lab Sample ID: LCSD 580-1106/3-A

Client Matrix: Dilution:

Solid 1.0

Date Analyzed: Date Prepared: 11/11/2005 0556 11/04/2005 1314 Analysis Batch: 580-1519

Prep Batch: 580-1106

Units:mg/Kg

Instrument ID:

Lab File ID: PCB9086.D Initial Weight/Volume: 10 g Final Weight/Volume: 10 mL

Injection Volume:

Column ID:

PRIMARY

	<u>9</u>	<u> 6 Rec.</u>				
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual LCSD Qual
PCB-1242	99	113	57 - 128	13	8	*
PCB-1260	105	120	65 - 132	13	8	*

Client: City of Portland BES Job Number: 580-331-1

Matrix Spike/ Method: 8082 Matrix Spike Duplicate Recovery Report - Batch: 580-1106 Preparation: 3550B

MS Lab Sample ID: 580-331-2 Client Matrix: Solid Dilution: 1.0

11/11/2005 0707 Date Analyzed:

Date Prepared: 11/04/2005 1314

MSD Lab Sample ID: 580-331-2 Client Matrix: Solid Dilution: 1.0

11/11/2005 0731 Date Analyzed: Date Prepared: 11/04/2005 1314 Analysis Batch: 580-1519 Instrument ID: 6890N Prep Batch: 580-1106 Lab File ID:

PCB9089.D Initial Weight/Volume: 10.2631 g Final Weight/Volume: 10 mL

Injection Volume:

Column ID: **PRIMARY**

Instrument ID: 6890N Lab File ID: PCB9090.D Initial Weight/Volume: 10.4109 g Final Weight/Volume: 10 mL

Injection Volume:

PRIMARY Column ID:

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
PCB-1242	123	371	57 - 128	99	8	*
PCB-1260	114	295	65 - 132	44	8	*

Analysis Batch: 580-1519

Prep Batch: 580-1106

1.5

Client: City of Portland BES Job Number: 580-331-1

Method Blank - Batch: 580-1111 Method: 6010B Preparation: 3050B

·

Lab Sample ID: MB 580-1111/1-A Analysis Batch: 580-1158 Instrument ID: PE Optima 3200 DV Client Matrix: Solid Prep Batch: 580-1111 Lab File ID: N/A

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g
Date Analyzed: 11/07/2005 0852 Final Weight/Volume: 50 mL

Qual RL Result Analyte ND 5.0 Arsenic Cadmium ND 0.50 Chromium ND 2.0 ND 2.0 Copper ND 2.0 Lead 2.0 Nickel ND ND 10 Selenium 1.0 Silver ND

Laboratory Control/
Laboratory Control Duplicate Recovery Report - Batch: 580-1111

Method: 6010B
Preparation: 3050B

ND

LCS Lab Sample ID: LCS 580-1111/2-A Analysis Batch: 580-1158 Instrument ID: PE Optima 3200 DV

Client Matrix: Solid Prep Batch: 580-1111 Lab File ID: N/A
Dilution: 1.0 Units: mg/Kg Initial Weight/Volume:

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g
Date Analyzed: 11/07/2005 0959 Final Weight/Volume: 50 mL
Date Prepared: 11/04/2005 1428

LCSD Lab Sample ID: LCSD 580-1111/3-A Analysis Batch: 580-1158 Instrument ID: PE Optima 3200 DV

Client Matrix: Solid Prep Batch: 580-1111 Lab File ID: N/A

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g

 Date Analyzed:
 11/07/2005 1003
 Final Weight/Volume:
 50 mL

 Date Prepared:
 11/04/2005 1428
 Final Weight/Volume:
 50 mL

% Rec. LCS **RPD RPD Limit** LCS Qual LCSD Qual Analyte LCSD Limit 103 100 80 - 120 3 35 Arsenic 35 98 95 80 - 120 3 Cadmium 35 103 80 - 120 3 Chromium 106 35 99 80 - 120 3 102 99 3 35 102 80 - 120

Copper Lead Nickel 107 104 80 - 120 3 35 35 Selenium 97 94 80 - 120 3 99 96 80 - 120 3 35 Silver 115 107 80 - 120 7 35 Zinc

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared: 11/04/2005 1428

Zinc

Lab File ID:

N/A

Client: City of Portland BES Job Number: 580-331-1

Method Blank - Batch: 580-1171 Method: 7471A Preparation: 7471A

Lab Sample ID: MB 580-1171/1-A Analysis Batch: 580-1270 Instrument ID: Leeman Hydra AA

Client Matrix: Solid Prep Batch: 580-1171
Dilution: 1.0 Units: mg/Kg

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g
Date Analyzed: 11/08/2005 1010 Final Weight/Volume: 50 mL
Date Prepared: 11/07/2005 1518

Analyte Result Qual RL

 Mercury
 ND
 0.020

Laboratory Control/ Method: 7471A
Laboratory Control Duplicate Recovery Report - Batch: 580-1171 Preparation: 7471A

LCS Lab Sample ID: LCS 580-1171/2-A Analysis Batch: 580-1270 Instrument ID: Leeman Hydra AA

Client Matrix: Solid Prep Batch: 580-1171 Lab File ID: N/A

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g
Date Analyzed: 11/08/2005 1015 Final Weight/Volume: 50 mL

Date Analyzed: 11/08/2005 1015 Final Weight/Volume: 50 mL

Date Prepared: 11/07/2005 1518

LCSD Lab Sample ID: LCSD 580-1171/3-A Analysis Batch: 580-1270 Instrument ID: Leeman Hydra AA

Client Matrix: Solid Prep Batch: 580-1171 Lab File ID: N/A

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 0.5 g

Date Analyzed: 11/08/2005 1021 Final Weight/Volume: 50 mL Date Prepared: 11/07/2005 1518

 Manage
 Manage<

LOGIN SAMPLE RECEIPT CHECK LIST

Client: City of Portland BES Job Number: 580-331-1

Login Number: 331

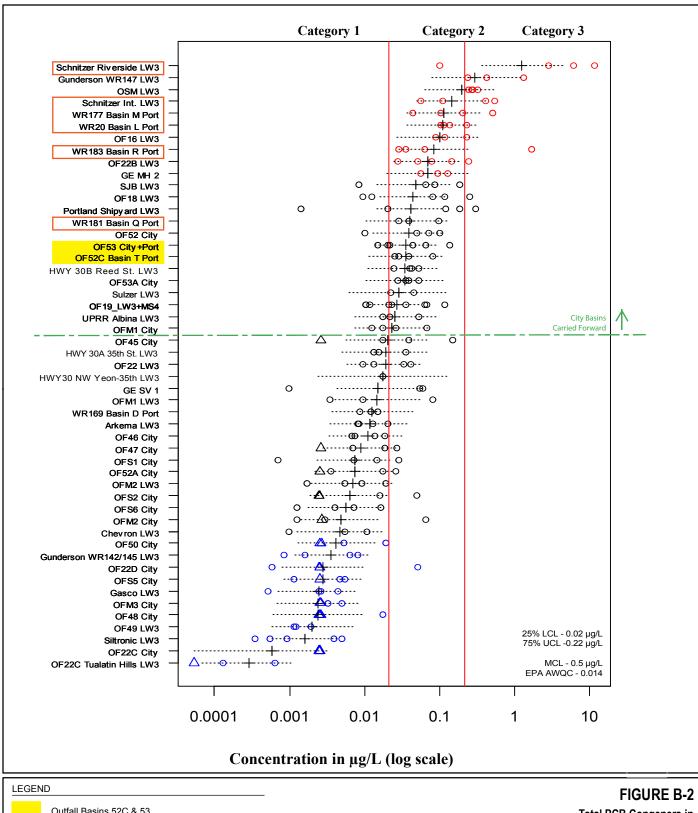
Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present	True	
Samples do not require splitting or compositing	True	

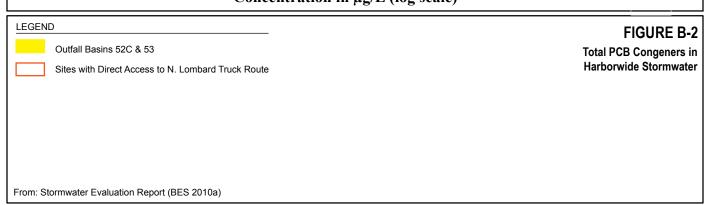
1 (Replinations of By □ ĕs TL-52C-AAB520CB2-1005 Relinquished By Cooler Address 1 Relinquished By Turn Around Time Required (business days) **Custody Record** Chain of Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Project Name and Jocation (State) Contract/Purchase Order/Quote No. L-52C-AAR520CB1-1005 Kar Hand - 52c-AAB524-1005 -526 No Cooler Temp: f ☐ 48 Hours E. BUILTON AUC. 2 AAB529-1005 (astlam) HS Coxbun List - includes ☐ 5 Days State | Zip Code | 7703 BES ○ Non-Hazard Possible Hazard Identification ☐ 10 Days 10/25/05 4 15 Days Date ☐ Flammable STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 13 10:17 www.stl-inc.com 10:58 80:11 Project Manager,

Telephoop Number (Area Code)/Fax Number

| Sold | 823-553
| Lab Contact | Lab Cont Time Date Date Date ☐ Other Carrier/Waybill Number M. Howser 10/25/05 Skin trritant PAHs + phthalates Air Aqueous Matrix Sed. 1505 ime Time lime Soil □ Poison B Unpres 2. Shackle food H2804 2. Received By Received By QC Requirements (Specify) Received By Containers & Preservatives HN03 ☐ Unknown HCI NaOH by SIM wethood ZnAc/ Return To Client Sample Disposal HSCUSTON CAS, Cd, Cr, Cu Ph. Ni, Se, Ag 200 Total Mercury EPA 7471 Analysis attackets ☐ Disposal By Lab
☐ Archive For _____ Date Lab Number SEVERN 10/25/05 TRENT Months Chain of Custody Number VIND Date (A fee may be assessed if samples are retained longer than 1 month) with limited somple what tests can be row Conditions of Receipt Special Instructions/ to 1/1+01 10 lime Time 1696 Time ಲ್ಲ 20/2

DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy


STL8274-580 (12/02)


APPENDIX B

SUPPORTING STORMWATER DATA

APPENDIX C

ENVIRONMENTAL DATA REVIEW

Appendix C

Environmental Data Review

Current environmental conditions of properties located within and near Outfall Basins 52C and 53 were identified by reviewing information on properties (e.g., industrial facilities) within and in the vicinity of these basins. The purpose of this review was to identify properties with a recognized environmental condition¹ that may account for or contribute to the detected polychlorinated biphenyls (PCBs) concentrations in stormwater and stormwater solid samples collected from Basins 52C and 53. Information reviewed included:

- Oregon Department of Environmental Quality's (DEQ) Environmental Cleanup Site Information (ECSI) database to track sites in Oregon with known or potential contamination from hazardous substances, and to document sites where DEQ has determined that no further action is required.
- DEQ's Facility Profiler which includes permitted air and water discharges, hazardous and solid waste sites, cleanup sites, and leaking and underground storage tanks. This site contains information on closed facilities, completed cleanups, and past operations as well as data on current operations and activities.
- Portland Harbor Superfund Remedial Investigation and Feasibility Study documents.
- Other publicly available files including: DEQ project files, DEQ's Portland Harbor Milestone Report (DEQ, 2012a), Portland Harbor Remedial Investigation (Integral, et. al., 2011); and the Portland Harbor Feasibility Study (Anchor QEA, et. al., 2012).

The following sections summarize information on the environmental conditions at properties directly discharging stormwater to Basins 52C or Basin 53 or located in the proximity of these basins. Properties with identified or potential PCB contamination are noted and identified as potential sources of PCB contamination to these basins in Table 1 (see main report).

Properties within Basin 52C

Basin 52C is located in an area zoned for light industrial use. The basin receives stormwater from the following properties:

Port of Portland Property – 10400 N. Lombard Street/N. Roberts Avenue. The Port's paved parking areas, located west of N. Lombard St., comprise a large percentage of the Basin 52C drainage area and have been used primarily for the storage of new cars. PCBs were not detected in 2005 solids samples collected from manholes along N. Roberts St. These results along with the known land use of the Port of Portland paved parking areas do

SEPTEMBER 2012 PAGE C-1

_

¹ For the purpose, of this report a recognized environmental condition is the presence or likely presence of any hazardous substances or petroleum on a property under conditions that indicate an existing release, a past release, or a material threat of release has occurred. Such release may be into the structures on the property, onto the ground (soil) or into the groundwater, stormwater, or surface water of the property.

not indicate that significant sources of PCBs could be draining to Basin 52C west of North Lombard St.

- Borden Packaging & Industrial Products (ECSI No. 1277) 10915 N Lombard St. Basin 52C receives some stormwater drainage (primarily roof drainage) from Borden Packaging & Industrial Products (a.k.a., Momentive Specialty Chemicals, Inc.) while the remaining site stormwater discharges to dry wells on site. Borden, Inc. has manufactured resin and glue products at this facility since 1963, and similar operations were in place at the site before Borden purchased the facility (DEQ, 2012b). Elevated concentrations of chlorinated and alcohol-based solvents have been identified in groundwater, and DEQ has recommended an expanded preliminary site assessment. As of December 2010, the facility is registered with DEQ as a conditionally exempt hazardous waste generator in DEQ's Hazardous Waste Program. A review of DEQ's database files (DEQ, 2012b, 2012c) did not document PCB contamination at this facility.
- Port of Portland Terminal 4 (T-4) Maintenance Facility -10801 N. Lombard St. Basin 52C receives some stormwater drainage from the Port's T-4 Maintenance facility. DEQ identified the facility as a conditionally exempt hazardous waste generator based on cleaning liquids and spent halogenated solvents from flush rinsing parts. The facility does not report having generated any hazardous waste since 1994. A review of DEQ's database files (DEQ, 2012c) did not document PCB contamination at this facility.
- *Pioneer Wiping Cloth* 10707 *N Lombard St.* Basin 52C receives some stormwater drainage from this property. A review of DEQ's database files (DEQ, 2012c) did not identify the property as a hazardous or solid waste site, cleanup site, or has having underground storage tanks and did not document PCB contamination at this facility.

Properties within Basin 53

Basin 53 is located in an area largely zoned for residential properties and does not receive any stormwater from facilities listed in DEQ's database files. No properties within Basin 53 are identified or suspected sources of PCBs.

Properties near Basins 52C and 53

Although no identified sources of PCBs are present within Basin 52C or Basin 53, the basins drain a portion of N. Lombard St. which is utilized by vehicles entering and exiting nearby industrial sites, several of which are documented sources of PCBs. Offsite migration of site solids (e.g., erodible soil, dust, particulates) to catch basins along N. Lombard St. may be contributing PCB contamination to Basins 52C and 53. Truck traffic from these facilities likely use N. Lombard St. for site access and may track PCB- contaminated solids into Basin 52C and Basin 53. DEQ ECSI facilities with recognized environmental conditions are summarized below:

• Flint Ink Corporation (ECSI No. 1753) - 10653 N Lombard St. Flint Ink has manufactured industrial inks at the facility since 1971. In September 1991, a spill of 1,000 gallons of petroleum-based ink occurred in the site's asphalt parking area and subsequently migrated into the site's dry well system. In October 1991, heavy rains caused the dry well system to overflow. A vacuum truck was used to capture the excess runoff.

However, some of the ink-laden runoff entered a City storm drain system on the adjacent property to the east. Ink was noted on surface water and banks of the Columbia Slough near the intersection of North Burgard Road and Columbia Boulevard, approximately 0.75 miles from the site. A fire in 1993 resulted in a release of inks and contaminated water from firefighting (DEQ, 2006a). Contaminated soil was removed and slag was used as backfill at the site. DEQ reports that moderate levels of heavy hydrocarbons and low levels of copper, chromium and zinc remain in shallow soils in some areas of the site, but that remedial actions taken at the site are protective of human health and the environment. DEQ issued a conditional no further action (NFA) for the facility in August 2006. A review of DEQ's database files (DEQ, 2012c; 2012d) does not indicate that the site is a source of PCBs.

- Chemcentral Corporation (a.k.a., Harsh Investments, Univar Corporation) (ECSI No. 878) 10821 N Lombard St. Chemcentral Corporation has been a chemical distributor of solvents (alcohol, ketones, esters, aromatic hydrocarbons, and chlorinated hydrocarbons) since 1965 (DEQ, 2012e). Elevated concentrations of volatile organic compounds have been detected in soil and groundwater, and interim removal actions such as soil vapor extraction (SVE) have been implemented since underground storage tank decommissioning began in 1993. Additional site soil investigations were conducted in 2007 and 2008 to further assess the nature and extent of contamination, and in 2010, DEQ issued a record of decision (ROD) for the site. DEQ's ROD includes continued SVE remediation, enhanced bioremediation, monitored natural attenuation, and institutional controls as selected remedies for the site (DEQ, 2010a). Based on remediation wastes largely comprised of chlorinated solvents, the site was designated as a large quantity generator by DEQ's hazardous waste program. Although the Chemcentral Corp. is currently monitored as a DEQ cleanup site, a review of DEQ's database files (DEQ, 2012c; 2012e) does not indicate that the site is a source of PCBs.
- *KLIX Corporation (ECSI No. 1075) 10771 N Lombard St.* KLIX Corp. manufactured janitorial and other cleaning supplies at the site from 1968 to 1992 and allegedly formulated/repackaged products containing pesticides and herbicides (DEQ, 2012f). Pesticides and VOCs have been identified in soil at concentrations below the DEQ industrial cleanup scenario. Additionally, Aroclor 1254 was detected at a concentration of 1.2 milligrams per kilogram (mg/Kg) in a single soil sample collected beneath the pavement (DEQ, 1995). In 1996, DEQ issued a conditional NFA for the facility contingent upon use of the site remaining industrial. The site is currently vacant and access to the site is restricted. A review of DEQ's database files (DEQ, 2012c; 2012f) show that the site was registered as a large quantity generator of hazardous waste under DEQ's Hazardous Waste Program, based on disposal of isopropyl alcohol. While PCBs have been documented at the site, it does not appear to be a current source of PCBs to stormwater because the identified contamination is capped by pavement.
- Schnitzer-Burgard Industrial Park (ECSI No. 5324) 12005 N Burgard Rd. The 200-acre Burgard Industrial Park (BIP) is located just north/northwest of Basin 52C on the west side of N. Lombard St. before the road veers east and becomes N. Burgard Rd. Originally, the BIP was designated as ECSI No. 2355 but was later changed to ECSI No. 5324 when the Schnitzer Steel Industries (SSI) portion of the BIP was separated into its own ECSI listing. SSI which encompasses the southwestern portion of the industrial

park along the Willamette River retained the ECSI No. 2355. Currently, the boundary of the BIP encompasses several properties with individual ECSI listings including SSI, Boydstun Metal Works, and Portland Container Repair Company (DEQ, 2012g; 2012h; Schnitzer, 2009). An additional ECSI facility, Northwest Pipe Company, is completely surrounded by the BIP but is not a part of the BIP property. In addition to properties with individual ECSI listings, the BIP includes several non-contiguous properties leased by Boydstun Metal Works, Morgan CFS, Northwest Pipe, and SSI. All properties within the BIP are accessed by roads that branch off of N. Lombard St. PCBs have been listed as a stormwater and riverbank erosion COI for several properties within the BIP (Table 4.2-2 from Integral, et al., 2011). More detailed information on individual ECSI facilities within the BIP is provided below.

Schnitzer is conducting a number of onsite stormwater SCEs (Bridgewater, 2010a; 2011a; 2011b) and SCMs have focused on improving best management practices (DEQ, 2012g).

Schnitzer Steel Industries (ECSI No. 2355) - 12005 N Burgard Rd. SSI has operated metals recycling, auto shredding, truck maintenance and repair, and warehousing operations in the southwest portion of BIP since the 1970s. PCBs have been identified as a site COI for the stormwater and riverbank erosion pathways (Integral, et al., 2011; DEQ, 2012a, 2012c, 2012h). PCBs have also been detected in soil, stormwater, and stormwater solids at the site. In 2007, as part of its Round 3A and 3B stormwater and sediment trap sampling, the LWG collected a sediment trap sample from non-city outfall WR384 which drained an area entirely encompassed by SSI's operations; a total PCB congener concentration of 9,900 microgram per kilogram (µg/Kg) was detected in the sediment trap sample (Anchor, et al., 2008). As part of the metal shredder replacement project, SSI excavated an estimated 5,500 cubic yards of soil and stockpiled the material on site. In the summer of 2007, five composite soil samples were collected from the soil stockpile and analyzed for PCBs, PAHs, petroleum hydrocarbons, and metals. Elevated concentrations of Aroclors 1254 and 1260 were detected in all soil composites with total PCB concentrations up to 6,600 µg/Kg (Jakubiak, 2008); the five composite samples have an average total PCB concentration of 4.6 mg/kg. A total PCB congener concentration of 9,902 µg/Kg was detected in a stormwater sediment sample collected at WR-384 by the LWG in 2007 (Anchor, et al., 2008).

In 2010, as part of improvements to its stormwater conveyance system, SSI began paving a portion of its Rivergate facility, consolidated outfalls, and installed a stormwater treatment system intended to capture stormwater on operating portions of the scrap processing area (Schnitzer, 2009; Bridgewater, 2009; DEQ, 2010c). In addition to these SCMs, DEQ has requested that SSI evaluate drag out of contaminated solids via truck traffic.

• Northwest Pipe Company (ECSI No. 138) - 12005 N Burgard Rd. Northwest Pipe Company operates a steel pipe manufacturing plant on a 25-acre parcel completely surrounded by BIP. PCBs have been identified as a stormwater pathway COI for Northwest Pipe (Integral, et al., 2011) and have been detected at elevated concentrations in site soils. PCB Aroclors 1254 and 1260 have been detected in surface soil samples collected around the site at concentrations up to 12,500 μg/Kg (CH2M Hill, 2010; DEQ, 2012i); the average total PCB concentration in these surface soil samples is 2.2 mg/kg. PCB-containing

transformers have been documented at the site, and may have contributed to PCB contamination in some areas. In 1989, an Aroclor 1254 concentration of 31,300 μ g/Kg was detected in a stained soil sample collected in a former transformer storage area (CH2M Hill, 2005). A large portion of the site's stormwater is discharged to non-city outfall WR-123 which also receives some discharges from the Joseph T. Ryerson and Boydstun Metal Works ECSI facilities. Total PCB congener concentrations of 1,423 μ g/Kg and 1,332 μ g/Kg were detected in stormwater sediment samples collected at WR-123 by the LWG in 2007 and 2008 (Anchor, et al., 2008).

In 2009, NW Pipe submitted a plan to DEQ focused on paving the southern half of its site (CH2M Hill, 2009).

- Boydstun Metal Works (ECSI No. 2362). Boydstun Metal Works occupies the southeast portion of BIP along with Western Machine Works and Portland Blast Media. Operations in this portion of the site have included automotive trailer manufacturing, painting, sand blasting, and metal scrap storage. PCBs have been identified as a stormwater pathway COI for Boydstun Metal Works (Integral, et al., 2011). Additionally, PCBs have been detected in some site soil samples (DEQ, 2012j). Aroclor 1260 has been reported at concentrations from 500 to 15,300 μg/Kg in site soils (URS, 2000). Like Northwest Pipe, stormwater from the facility also discharges to outfall WR-123 in the International Slip Area (see above).
- Port of Portland, Terminal 4 Slip 1 (ECSI No. 2356) N. Lombard Street. The Port's T-4, Slip 1 Property is located west of N. Lombard St. just south of the BIP. Access to the Port's T-4 properties is only possible via N. Terminal Rd. which connects to N. Lombard St. directly south of the Schnitzer Access Rd. PCBs have been identified as a stormwater pathway COI for Terminal 4, Slip 1 (Integral, et al., 2011). In 2007-2008, the Port collected sediment trap samples at the outfalls of several drainage basins within the T-4 area. PCBs were detected in all sediment trap samples; the highest concentration (1,400 µg/Kg) was detected in a sample representative of stormwater solids from the T-4, Slip 1 drainage basin (Basin R) directly south of the SSI property (Anchor et al., 2008).
- Port of Portland, Terminal 4 Slip 3 (ECSI No. 272) N. Lombard Street. An interim groundwater remediation system was activated in 1993 to capture free product and contaminated groundwater before it discharged to the river. An upland remediation investigation, risk assessment, and feasibility study were performed and provide the basis for the ROD (DEQ, 2003). The selected remedial action includes removal of non-aqueous phase liquid (NAPL) and contaminated groundwater through extraction wells and removal of contaminated soil at the Slip 3 riverbank. The Port continues NAPL recovery and monitoring as part of the remedy. Additional work is required in the former Quaker State area, areas identified with pencil pitch contamination, and to assess stormwater. PCBs were also detected in sediment trap samples receiving stormwater drainage from basins within the T-4, Slip 3 area.
- Port of Portland, Terminal 4 Auto Storage (ECSI No. 172) 10400 N. Lombard Street. Site investigation data showed low levels of petroleum-related chemicals in soil and groundwater at levels protective of human health and the environment. DEQ issued a NFA letter in June 2004 and determined that the site does not appear to be a current source of contamination to the Willamette River (DEQ, 2004).

- Northwest Container (aka Union Carbide) (ECSI No. 176). The former Union Carbide facility is comprised of three properties located at 11920 N. Burgard Rd., 9707 N. Columbia Blvd, and 9645 N. Columbia Blvd (DEQ, 2009). The facility is located east of N. Lombard St. across from the Boydstun Metal Works facility. WMR, LLC currently owns the westernmost 74 acres of the Union Carbide facility (11920 N. Burgard Rd.) and leases the property to Northwest Container Services which operates a container storage business on the property. Northwest Container vehicle traffic access the site via N. Burgard Rd. Stormwater was identified as a potentially complete pathway to the Willamette River for PCBs at the Union Carbide Facility in the Portland Harbor Remedial Investigation Report (Integral, et al., 2011). In 1999, shallow soils and concrete that had been contaminated with PCBs associated with an on-site electrical substation were removed. Confirmation sampling indicated that residual concentrations of PCBs in soil were below a cleanup criteria of 1,200 µg/Kg for unrestricted land use (DEQ, 2005). In 2005, DEQ issued a notice of no further action for the property, but indicated that the NFA would not be final until a cleanup decision is made for the 9707 and 9645 properties. In 2009, DEQ issued a ROD for selected remedial actions at the three properties (DEQ, 2009; DEQ, 2012c).
- Portland Container Repair Corp. (ECSI No. 2375) 9449 N Burgard Way. The approximate 12-acre property is located in the northern portion of the BIP. The majority of the property, used for the storage of empty intermodal containers, is flat and covered with gravel. However, a roughly 5,600 square foot building is located in the western portion of the property, and the area immediately around the building is paved with concrete. Portland Container receives, inspects, repairs, cleans, and stores empty intermodal shipping containers. Major repairs activities are performed inside the building (Bridgewater, 2000). PCB concentrations up to 8,600 μg/Kg were detected in site soils (EMS, 1992; 1993) and as high as 19,700 μg/Kg in subsequent soil confirmation samples collected from locations previously determined to contain elevated PCB concentrations. In July 1994, approximately 50 tons of contaminated soil was excavated from the areas determined to have elevated PCB concentrations and disposed off-site (QGNW, 1994).
- RoMar Transportation Systems, Inc. (ECSI No. 2437) 9333 N. Time Oil Road. The western portion of the property was developed as a warehouse and trucking operation for general commodities (e.g., clothing, paper, furniture). The eastern portion of the property is currently undeveloped. Prior to 1994, the site was used to store various scrap metal and wood items, some of which reportedly PCBs. Historic storage practices on the site resulted in PCB contamination of shallow soil. In January 2006, approximately 95 tons of PCB contaminated soil were excavated and disposed off-site. Confirmation samples from the perimeter and floor contained up to 570 µg/Kg of total PCBs. In 2006, DEQ issued a notice of no further action for the property (DEQ, 2006b; 2006c; 2012k).

APPENDIX D

FIELD PHOTOGRAPHS

North Lombard PCB Source Investigation

September 2010 N. Lombard Solids Sampling

Photo 1 (**September 7, 2010**). Location of surface sediment sample collected on N. Sever Rd. just west of intersection with N. Burgard Rd.

Photo 2 (September 7, 2010). Sweeping of sediments along N. Sever Rd. at subsample area 1.

Photo 3 (September 7, 2010). Sweeping of sediments from cracks and depressions on N. Sever Rd. at subsample area 2.

Photo 4 (September 7, 2010). Sweeping of sediments from cracks and depressions on N. Sever Rd. at subsample area 3.

Photo 5 (September 7, 2010). Accumulated solids on N. Sever Rd near intersection with N. Burgard at subsample area 4.

Photo 6 (September 7, 2010). Final homogenized composite sweepings sample (comprised of sub-samples areas 1-4) from N. Sever Rd. near intersection with N. Burgard Rd.

Photo 7 (September 7, 2010). Location of surface sediment sample collected on N. Lombard St. at intersection with Schnitzer Access Rd.

Photo 8 (September 7, 2010). Surface sediments sampled from cracks and depressions in N. Lombard at intersection with Schnitzer Access Rd.

Photo 9 (September 7, 2010). Final homogenized composite surface sweepings sample from intersection of Schnitzer Access Rd. with N. Lombard St.

Photo 10 (September 7, 2010). Catch basin ANF066 before sampling for Basin 52C catch basin composite sample (North Lombard-1).

Photo 11 (September 7, 2010). Catch basin ANF067 with filter fabric before sampling for Basin 52C catch basin composite sample (North Lombard-1).

Photo 12 (September 7, 2010). Catch basin ANF069 before sampling for Basin 52C catch basin composite sample (N. Lombard-1).

Photo 13 (**September 7, 2010**). Sampling of catch basin ANJ736 for Basin 52C catch basin composite sample (N. Lombard-1).

Photo 14 (September 7, 2010). Sampling of catch basin ANF072 for Basin 52C catch basin composite sample (N. Lombard-1).

Photo 15 (September 7, 2010). Catch basin ANF074 before sampling for Basin 52C catch basin composite sample (N. Lombard-1).

Photo 16 (September 7, 2010). Final homogenized composite sample (N. Lombard-1) from N. Lombard St. catch basins (ANF066, ANF067, ANF069, ANF072, ANF074, ANJ736) within Basin 52C.

Photo 17 (September 8, 2010). Catch basin ANK400 before sampling for composite sample from catch basins between Basin 52C and Basin 53 (N. Lombard-2).

Photo 18 (September 8, 2010). Catch basin ANK394 before sampling for composite sample from catch basins between Basin 52C and Basin 53 (N. Lombard-2).

Photo 19 (September 8, 2010). Catch basin ANK382 before sampling for composite sample from catch basins between Basin 52C and Basin 53 (N. Lombard-2).

Photo 20 (September 8, 2010). Catch basin ANK385 before sampling for composite sample from catch basins between Basin 52C and Basin 53 (N. Lombard-2).

Photo 21 (September 8, 2010). Final homogenized composite sample (N. Lombard-2) from catch basins (ANK382, ANK385, ANK394, ANK400) between Basin 52C and Basin 53.

Photo 22 (September 8, 2010). Catch basin ANF032, before sampling for Basin 53 catch basin composite sample (N. Lombard-3).

Photo 23 (September 8, 2010). Catch basin ANF036, before sampling for Basin 53 catch basin composite sample (N. Lombard-3).

Photo 24 (September 8, 2010). Catch basin ANF037, before sampling for Basin 53 catch basin composite sample (N. Lombard-3).

Photo 25 (September 8, 2010). Catch basin ANF041, before sampling for Basin 53 catch basin composite sample (N. Lombard-3).

Photo 26 (September 8, 2010). Catch basin ANF042, before sampling for Basin 53 catch basin composite sample (N. Lombard-3).

Photo 27 (September 8, 2010). Final homogenized composite sample (N. Lombard-3) from catch basins (ANF032, ANF036, ANF037, ANF041, ANF042) within Basin 53.

APPENDIX E

FIELD NOTES

North Lombard PCB Source Investigation

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 9/8/10
Page: 1 of 1
Collected By: .ASA, PVS

	Requested Analyses	Field Comments															Relinquished By: 4.	Signature: Time:	Printed Name: · Date:	Received By: 4. Signature:	Printed Name; Date:
· -/.	luested /	slis			. ·									·		·		Time:	Date:	Time:	Date:
	Red	General Metals			sip	loS lsi	oT •	•	•	•	•	•				•	i <u>y:</u> 3.			ઌ૽	
		Organics															Relinquished By	Signature:	Printed Name:	Received By: Signature:	Printed Name:
		Orc	_	- LL rs (All 209))	•	•	•	•				•					
	L					Ø		ပ	O	O	O	O				Ċ	-	Time:	Date:	Пте:	Date:
	SEDIMENT			,	,	0)		1404	1452	1539	1122	1235	·						.· .		
۸MP	Matrix:					Sample	Date	9/7/10	9/7/10	9/7/10	9/8/10	9/8/10				9/7/10	ned By: 2.			B <u>y:</u> 2.	
ILINE S/		ı	3 Inline		. :	Point	ego Code	52C_1	52C_2	52C_3	CS54_1	53_1				DUP	Relinquished By:	Signature:	Printed Name:	Received By Signature:	Printed Name:
AND HARBOR IN			Basin 52C & 53 Inline				Location IL-52C-BURGARD1-0910	N SEVER & BURGARD	IL-52C-BURGARD2-0910 LOMBARD AT SCHNITZER	IL-52C-LOMARD1-0910 CATCH BASIN COMP1	IL-CSS4-LOMBARD2-0910 CATCH BASIN COMP2	IL-53-LOMBARD3-0910 CATCH BASIN COMP3			-	DUPLICATE	0001	Time: 1655	erg Date:9/8/10		Date:
Project Name: PORTLAND HARBOR INLINE SAMP	File Number: 1020.001						WPCL Sample I.D. FO105874		FO105875	FO105876	FO105877	FO105878				6/8c0104	Relinquished By: 1.	Signature: Limb	Printed Name: Araspera	Received By: 1. Signature:	Printed Name:

Portland Harbor Inline Samp COC - OF 52C & 53 (9-7&8-10) xls

DAILY FIELD REPORT

Page __ Project FORTHAND HARBOR INLINE SAMP Project No. 1320-001 Location BASIN 52CH53 Date 9/7//0 subject Suffice & CB sampling 5 BY MUS, JJM, PTB 1345 Amre on-site at N Burgard & N Sever. Meet up with Andrew Davidson, GSI, who provides direction for sampling locations. Locations chosen to avoid runoff from N Burgard I to sample N Sever sediment that may be coming up the hill transported by truchs o 1404 Collected sample to ensure sediment collected was transfer most likely to have been transported up the hill. This included seds on the downhill side of the traffix median as well as seds in cracks in the asphalt on N Sever and seds accomplated on downhill side of crown up against gidewalk curb. Filled samplesurs. Gare point code 525-1 1430 Arrive on-site N Lambard & Schnitzer Access road. Set up TE for sofe work zore. Seds seem to be accomulated in the asphalt cracks mostly Crucks & spoks were sampled where located in public right of way. 1452 Sample jors filled. Given point code 52C-2 1506 Began sampling Lombard 1539 Collected last sub-sample for Lombard 1, Composited, Filled DUP jars here. Gare sample point code tomBARDI. 526_3 Attachments

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: POLTLAND	HARBOR IN	INE SAMP	Project Number: 1020	. oel
Sampling Team: JJM(MJS, PT/3	Date: 9/7/10	Arrival Time:	Current Weather Condition O verast / This	
Basin: 52C	Node: NA		Subbasin: NA)

Sampling Location Description/Address: N Sever at intersection with N Buguet

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Describe any flowing or standing water AV observed in the line? Does river appear to back up to this AN location? Describe rate/color/odor of flow: Yes, pochets along triangle as well as seds accomplated Are sediments observed in the line? on street and along forested edge. Are sample-able quantities of sediments Yes present in the line? Trace solids on street by sidewalk as well as Describe lateral extent of sample-able sediments present in the line: pochets SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation. N BURGARRD **←** ≥ SUB-SAMPLES FROM THESE PILES N SEVER SUB-SAMPLEY SWEPT AREAS

Date: 9 1 10	Date: 9 7 1 0 SECTION 2 - SAMPLE COLLECTION REPORT Node: N Sever + 1								
Sampling Equipmen	t:		oStainless steel spoon & stainless steel bucket & Corn Whish Broom Other (Describe)						
Equipment Deconta	mination p	rocess:	Per SOP7.01a (except for Broom, which had no decon OK'd per Other (Describe) Customer communication / Linda Scheffler)						
Sample date: ๆไวไไ๋ง	Sample ti	4	Sample Iden	Sample Identification: (IL-XX-NNNNN-mmyy) 1L- 52C - BURGARD I - 0910					
Sample location description: (number of feet from node of entry) 508-5 AMPLES TAKEN FROM IN SEVER									
Sample collection te	chnique:		WHERE END WHERE TRAK	WIGH SEDS A DIRECT SCOOP WAS TAKEN. KE SEDS A BROOM WAS USED TO MAKEA PILE THAT WAS THEN SCOOPED INTO THE BUCKET.					
Describe Color of sa	mple:		Repun	DARK					
Describe Texture/Pa	rticle size:		60% FIN	JES+ DEComposed ORBANICS, 10% course gravel					
Describe visual or old bulk sediment sample				None					
Describe depth of so	lids in area	a where sam	ple collected:	Truce to 0.5"					
Describe amount and	d type of de	ebris in sam	ple:	Leaves, glass + asphaltat20% of bulk sample					
Amount and type of o	debris rem	oved from fi	nal sample:	20% excluded including loves, glasstasphull					
Compositing notes:	tomogu	enized i	a sample	bucket					
Sample Jars Collecte	ed (number	r, size, full o	r partial)? 5	full 4 02. jars					
If not enough sample collected and related analyte priority list in	analytes s	sampled (as							
FO10	507 <i>1</i>								
Lab ID	13014		Duplic	cate sample collected? YM Dupe ID					
Duplicate sample ide	ntification #	# on COC:							
Any deviations from s	standard pr	rocedures: \	les, sweepi	ings taken using corn husle brown.					

SECTION 3 - PHOTOGRAPH LOG					
Overview of node showing drainage area	23				
Plan view of sediments inline	12-14 new triangle, 15-19 sweeping,				
Homogenized sample (sediment in bowl)	20-22				
Other?					

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Parawa	- HARBOR INLINE	= Samp	Project Number: /o20.001
Sampling Team: 11 M, M15, PtB	Date: 9/7/10	Arrival Time:	Current Weather Conditions/Last Rain: Overcast/this moning
Basin: 52C	Node: NA		Subbasin: NA

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT						
Describe any flowing or standing water observed in the line?	NA					
Does river appear to back up to this location? Describe rate/color/odor of flow:	AN					
Are sediments observed in the line?	Ves, in crucks in the asphalt.					
Are sample-able quantities of sediments present in the line?	Yes					
Describe lateral extent of sample-able sediments present in the line:	Trice amounts					

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

N Lombard

Schmitzer acce 45

Access to Terminal 4

Date: 9 7 10	SEC	TION 2 - SAM	MPLE COLLECTION REPORT Node: N Lombard at Schnitzer access						
Sampling Equipme	nt:	I □ Other /Describe	Stainless steel spoon & stainless steel bucket + Win whish brown □ Other (Describe)						
Equipment Deconta	amination process:	Per SOP7.01a	Aper SOP7.01a (Broom not deconned as approved by custo energinda other (Describe)						
Sample date:	Sample time:		Sample Identification: (IL-XX-NNNNN-mmyy) IL-526-BURGARO2-0910						
		fentry) cracks with seds along edge of right							
Sample location description: (number of feet from node of entry) cracks with seds along edge of right									
Sample collection to	echnique:	IV(WING) 5000	Manual scoops taken with spoon and sweeps taken with broom						
Describe Color of s	ample:	Brown							
Describe Texture/P	article size:	40% grave	rel, 20% sand, 25% decomposed organics, 5% organics						
	olfactory evidence of coole (odor, sheen, disco	ontamination in	None						
Describe depth of s	olids in area where sa	mple collected:	Trace						
Describe amount a	nd type of debris in sai	mple:	5% metal chunks excluded						
Amount and type of	debris removed from	final sample:	5% metal chinks excluded						
Compositing notes:	Homogenized	d in sam	iple bucket						
+	ted (number, size, full		Tfill Yoz. jers						
	le to fill all of the jars, I d analytes sampled (a n work order).	ist jars							
	·								
FO1	05875								
Lab ID		Duplica	cate sample collected? Y Dupe ID						
Duplicate sample id	entification # on COC								
Any deviations from	standard procedures:	Yes, corn b	broom used to sweep into travel then transfered						
			to buche						
	SE	CTION 3 - F	PHOTOGRAPH LOG						
Overview of node s	howing drainage area		24,25						
Plan view of sedime	ents inline	·	27+28						
Homogenized samp	ole (sediment in bowl)		26						
Other?									

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Por 272AND HARBO	e W	-INE Same		Project Number:
Sampling Team: JM, WS, PTB	Date:	9/7/10	Arrival 7	
Basin: 52C	Node:	ANFOLT, ANFOLG, ANFOLG, ANFOTZ, ANFOLG, ANTO-26	Address	N LOMBARD / CATCH BASIN
Current weather and last known rainfall:	Ove	reast, this mor		+ during sampling
SECTION 1	DDE	CARADI INC VICUAL	ODCE	DVATION DEPORT
Describe potential solids or contaminant sources that could impact catch basin (contactivities, erosion, vehicles, material storage, processes, etc.):	onst. onsite	area and sees heavy ANJT36 had creosote	ajor rov from p	te to/from Riveryate industrial Affic bleodjacent to CBrunning onto asphall
Describe debris and/or clogging around catch basin grate/cover:	l, or in	HAVEO 14-1672		
Is there standing water in catch basin?		ANF067-NO, ANF066-NO	ANFOGT	NO. AN1736-NO, ANFOIZ-NO, NOVEY-
Describe visual or olfactory observati contamination at catch basin if any sheen, discoloration, etc.)		ANFO72-No, ANFO66-No ANFO72-No, AN	, ANFO64 F074	1-NO, ANS 736-NO
Describe depth of sediments present in basin and the total depth of the catch b sump:		ANFOLT-12 deep in Nithilf, ANFOLG-5" deep in NE con ANFOTO - NE con new	ANFOGG- iner, Al	3" on Estale, 0", 11 w stale NJ-736 - 13-4" N ~10, ANFO74-2" decp
ANFOCT- 16" times x 32" long x 192" deep of seep with the	w/ 10° 10°0√t(:	outlet ANFOGG- 28" ANJ736 -	10'0 wide	"longx31"dep w/ 10" inlot at 10" outlet E3" ex 32" long x 48" cleep w/ in a sallet
4" 10" onlet actived	e dec	ANFO74-11 Sed S	e "wide	x32" long x deep whon withet suped c"atlet
ANTOLO ANTOLE	N F069	N LOMBARI) ST	SANTON SANFOM

Date: 9 7 10 SECTIO	N 2 - SAMPLE COLLECTION RE	PORT	Node: LOMBARD				
Sampling Equipment: 🌾 🦼 "	★Stainless steel spoon & stainles's steel bucket □ OTHER (DESCRIBE)						
Equipment decontamination procedure:	♥ Per SOP7.01a □ OTHER (DESCRIBE)						
Sample date: 9/7/10	Sample time: 1539						
Sample Identification Code: \L-S2C-LomeARDI-0910	Sample collection technique and if/how overlying water was removed:						
Subsample number and location:	6 sub-samples, 1 @ each	6 Sub-samples, 1 @ each CB.					
Color of sample:	Very dark brown						
Texture/particle size:	50% decomposed organics, 30% course gravel, 20% sunc						
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None						
Amount and type of debris in bulk sample:	Very coarse gravel + leaves 20%						
Amount and type of debris removed from final sample:	All debris removed						
Compositing notes: Homogenized ?	n sample bucket						
Sample jars collected (number, size, full or p	artial)? 5 full 4 oz- jars						
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).							
FO105876							
Lab ID	Duplicate sample collected? N	FO1058	79				
Duplicate sample identification # on COC:	•						
Any deviations from standard procedures:	lone		P •				

SECTION 3 - PHOTOGRAPH LOG						
Overview of CB showing drainage area						
Catch basin plan view prior to sampling showing solids	ANFOGT-19,30,31,32, ANFOGG-33, ANFOGG-34, AND 736-35,36, ANFO7Z-37, ANFO74-38					
Lateral connections to/from CB						
Homogenized sample (sediment in bowl)	39,40					

City of Portland Environmental Services

DAILY FIELD REPORT

Page lof l

Project PORTLAND HARBER LWLINE SAMP	Project No. 1070:00[
▲ 1000 体内 医动物 1000 阿尔 医皮肤病 1000 医200 医200 医400 医400 网络自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自	"我们的,我们就是一个我们,我们就是一个我们的,我们就是一个人,我们就是这个人的,我们就是一个人,不是一个人。"
Location BASIN 52C, Col. Slough 54) 53	Date 9 6/10
Subject CB samplings	BY <u>434, PTB</u>
1037 Arrive on-site Lombard 2, composite of 4	CBS ANKYOO, ANK394,
ANK382, ANK385. No solids on CB Floors. Sp.	ohe of Linda Schettler
regarding collection of seds from lip of CB d in gro	te covery Approved
regarding collection of sods from lip of CB d in gro collection of whatever solids appeared to have pot	ential of entering CB
where assendy associated with it (i.e. on lips in grate).	
	<u> </u>
1/22 Finished solids collection. Filled jars and gard tocation code 1L-CSSY-LOMBARDZ-0910.	e point code CS54-1
+ location code 11-CSSY-LOMBARDZ-0910.	
■이 그렇게 되었으면 뭐. 이 집안되다. 그는 그렇게 하면 이 그는 뭐 이 뭐 그 때문에 되어 있는 것도 많아 나를 하는데 된다.	
1142 Amve on-site Lambard 3, composite of 5 Cl ANFO37, ANFOYI, ANFOYZ.	S AWF032, ANFO3C,
ANFO37, ANFOYI, ANFOYZ,	
1235 Finished solids collection. Filled jurs and gave point code 11-53-Lombard3-0910	code 53-14 10 cation
eode 11-53-Lombard3-0910	
마스트 - 프로마스 (1985년 - 1985년 - 1 - 1985년 - 1985	
- 사람이 보고 있는데 그리는데 아들은 사람들이 되었습니다. 그리고 있는데 그리고 	
Attachments	

YWK1100

CORK FACTOR

NLOMBARD

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

PORTLAND HARS	BOR INLINE SAMP	1020 Oui
Sampling Team:	Date: 9/8/10	Arrival Time: 1037
Basin: CS54	Node: MKYS, ANK394, ANK382, ANK395	Address: N Lambure / CATCH BASIN
Current weather and last known rainfall:	y/ Yesterday afterno	N A 75
1 44/14 3 444	91 resterding actives rose	· · · · · · · · · · · · · · · · · · ·
SECTION 1 -	PRE-SAMPLING VISUAL	OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (continuities, erosion, vehicles, material storage, processes, etc.):	onsite industrial area.	affic both to and from Rivergate
Describe debris and/or clogging around catch basin grate/cover:	AUK382-60%-leaves	
Is there standing water in catch basin?	ank385 - No	ANK394-NO ANK395-No
Describe visual or olfactory observat contamination at catch basin if any sheen, discoloration, etc.)		AUK394-None AUK385-None
Describe depth of sediments present in basin and the total depth of the catch but sump:	n catch ANKUOD-cily along live 12 tin CB grade its and KUK38Z-Noseids on both could in grate ta	of CB "deep ANK 394 - only in grate and on 110 elf. of CB omof CB omof CB omof CB omog adge ANK 385 - Only in grate + adhaged to wall
SITE DIAGRAM: Include street intersect AVIK 400 10"outlet 10"outlet	tions, inlets and outlets, catch ba	asin dimensions, etc. 394 - Car parked on to paces sible but moderately accessible 32" 10" attet
ANV362 5015 10 veribe 7 32" 32" 1 32"	N VETERHOSER	35 seds seds 12" oxtle+8 F-16"
	N Longaro	4

ANK 394

ANK385

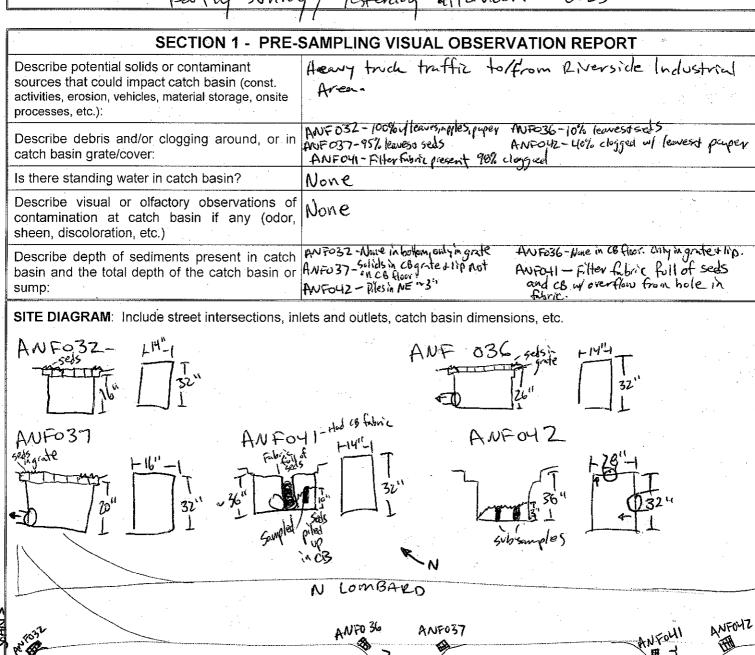
ANK 302

0354-1

Date: 9/8/10	SECTION 2 - SAMPLE COLLECTION REPORT Node: ANK 40.0, MANK 39 ANK 382, ANK 38			
Sampling Equipment:		Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)		
Equipment decontamination procedure:		≪Per SOP7.01a □ OTHER (DESCRIBE)		
Sample date: q/g	/10	Sample time: 1/22		
Sample Identification	Code:	Sample collection technique and if/how overlying	g water was removed:	
1L-C554-10	MBAR02-0910	Per 508 5.01a.		
Subsample number and location:		one Subsample taken from each CB grate/lip.		
Color of sample:		Dark brown		
Texture/particle size:		80% fines, 15% organics, 3% sands, 2% fine gravels		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)		None	J	
Amount and type of debris in bulk sample:		<1% plastics	·.	
Amount and type of debris removed from final sample:		All debris encountered was removed		
Compositing notes: Homogenized in sample bucket				
Sample jars collected (number, size, full or partial)? 5 foll 4 oz. jors				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).				
FO105877				
Lab ID	,0011	Duplicate sample collected? YN Dupe ID		
Duplicate sample identification # on COC:				
Any deviations from standard procedures: Nowe				

SECTION 3 - PHOTOGRAPH LOG				
Overview of CB showing drainage area	ANK400-53-55 ANK394-56-57 ANK382-58 ANK385-59			
Catch basin plan view prior to sampling showing solids				
Lateral connections to/from CB				
Homogenized sample (sediment in bowl)	60-62			

ENVIRONMENTAL SERVICES


Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Page of 2

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Basin: 53 Node: AVF 032, ANFOUL, ANFOUL Node: AVF 037, ANFOUL, ANFOUL Current weather and last known rainfall: Party Sunny / Yesterday afternoon ~0.25"	Project Name: ORTZAND HARB	OR WLINE SAMP	Project Number:
Current weather and last known rainfall:	Sampling Team: みりみ, ぐてB	Date: 9/8/10	Arrival Time: 1142
	Basin: 63	Node: ANF 032/ANF036, ANF 037, ANFOIL, ANFOH	Address: N Low bard CATCH BASIN comp 3

Date: 9/8/10 SECTION	ON 2 - SAMPLE COLLECTION REPORT	Node: ANFO32, ANFO36, ANFO37, ANFO41, ANFO42		
Sampling Equipment:	©Stainless steel spoon & stainless steel bucket			
Equipment decontamination procedure:	ÇPer SOP7.01a □ OTHER (DESCRIBE)			
Sample date: 9/8/10	Sample time: 1235	Sample time: 1235		
Sample Identification Code: 1L-53-Lombard 3-0910	Sample collection technique and if/how overlying when sop 5.0 la	Sample collection technique and if/how overlying water was removed:		
Subsample number and location:	One each con each co			
Color of sample:	Durkbrown			
Texture/particle size:	90% fines, 5% coarse organics, 4% san	90% fines, 5% coarse organics, 4% sand, 1% garbage		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None			
Amount and type of debris in bulk sample:	5% coorse organics, 1% gorborge			
Amount and type of debris removed from final sample:	lemoved the logest of the organics of the garbage			
Compositing notes: Homogenized in sample collection bucket				
Sample jars collected (number, size, full or partial)? 5 full 4 oz- jars				
If not enough sample to fill all of the jars, li jars collected and related analytes sample (as per analyte priority list in work order).				
FO105878		· · · · · · · · · · · · · · · · · · ·		
Lab ID	Duplicate sample collected? YM Dupe ID			
Duplicate sample identification # on COC:				
Any deviations from standard procedures: Nove				

SECTION 3 - PHOTOGRAPH LOG			
Overview of CB showing drainage area	ANFO32 - 70 269 3 73 ANFO36 - 63 ANFO37-64		
Catch basin plan view prior to sampling showing solids	ANFOY1-066,67 ANFOYZ-68		
Lateral connections to/from CB			
Homogenized sample (sediment in bowl)	71-72		

APPENDIX F

LABORATORY REPORTS AND DATA REVIEW MEMORANDUM

North Lombard PCB Source Investigation

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Source Investigation City Outfall Basins 52C and 53

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: April 7, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in and adjacent to Outfall Basins 52C and 53 on September 7 and 8, 2010. Two composited surface solids (sweeping) samples (FO105874 and FO105875), three composited catch basin solids samples (FO105876, FO105877, and FO105878), and one duplicate composited catch basin sample (FO105879) were collected and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed on all samples:

- BES WPCL
 - Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Pace Analytical Services (Pace)
 - o PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Methods blanks were processed during the subcontracted laboratory analyses of PCB congeners and TOC. No analytes were detected in either method blank.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. Internal standard recoveries are within control limits with three exceptions in the QC samples, which are flagged "R" in the subcontracted laboratory report. All internal standards analyzed with the field samples were recovered within control criteria, and the data are not qualified further.

Interfering background constituents impacted the measurement of some PCB congeners and an internal standard. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. These values are qualified as estimated maximum possible concentrations (EMPCs). Because the EMPC value(s) are not significant relative to the total PCB concentration (i.e. <1%), total homolog and total PCB concentrations are considered only slightly biased.

Laboratory Control Samples

Two sets of LC/DLC samples were processed during the laboratory analysis of PCB congeners. All LC and DLC recoveries and RPDs for native spiked analytes are within laboratory control limits. A LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit.

Other

The Pace laboratory report states that, "in some cases, small amounts of congeners 15 and 44 eluted outside of the acquisition window. This resulted in slightly reduced concentrations for these congeners. However, these congeners represented a very small contribution to the overall PCB level determined." Accordingly, the data are not qualified further.

For analysis of PCB Aroclors WPCL reports the following

- Reporting limits were raised in samples FO105875, FO105876, FO105877, and FO105879 due to high levels of target analytes. Samples FO105876, FO105877, and FO105879 required dilution to resolve target analytes.
- The laboratory reports on the sample chromatograms that Aroclor 1254 may be present in sample FO105874 and FO105875.
- In sample FO105876, quantification of Aroclor 1016/1242 is based on only 2 chromotagraphic peaks due to matrix interferences, and total PCB Aroclor results should be considered estimates.
- In sample FO105877, quantification of Aroclor 1248 is based on only 2 chromatographic peaks due to matrix interference, and overlapping components in the Aroclors may have affected the precision of quantifications.
- In sample FO105878, overlapping components in the Aroclors may have affected the precision of quantifications.
- In sample FO105879, quantification of Aroclor 1248 is based on only 2 chromatographic peaks due to matrix interferences. Additionally, some Aroclor 1260 may be present in the sample.

Affected values are labeled EST in the WPCL report.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 9/8/10
Page: 1 of 1
Collected By: ASA, PTPS

		Field Comments													4,	Time:	Date;		Tine:	Date:	
	Analyses	Field (Relinquished By:	Signature:	Printed Name:	Received By: 4	Signature:	Printed Name:	
	Requested Analyses	Metals				r	A 24100.	. r , ñ.								Time:	Date:		Time:	Date	
		General		siplo	otal Sc	L •	•	•	•	•				•	By: 3.			3,			
		Organics		· · ·	20				•	•					Relinquished By	Signature:	Printed Name:	Received By:	Signature:	Printed Name:	
		О	- LL (All 209)			. ●	•	•	•	•											
					Sample	O	O	Ų	S	o	÷		7	၁		Time:	Date:		Time:	Date:	
	SEDIMENT				Sample	1404	1452	1539	1122	1235					-						
_ ₩	Matrix:				Sample	9/7/10	9/7/10	9/7/10	9/8/10	9/8/10				9/7/10	ed By: 2.			<u>Y:</u> 2.			,
LINE SA			Inline		Point	52C_1	52C_2	52C_3	CS54_1	53_1				DUP	Relinquished By:	Signature:	Printed Name:	Received By	Signature:	Printed Name:	9-7&8-10).xl
LAND HARBOR IN			Basin 52C & 53 Inline		focation	IL-52C-BURGARD1-0910 N SEVER & BURGARD	IL-52C-BURGARD2-0910 LOMBARD AT SCHNITZER	IL-52C-LOMARD1-0910 CATCH BASIN COMP1	IL-CS54-LOMBARD2-0910 CATCH BASIN COMP2	IL-53-LOMBARD3-0910 CATCH BASIN COMP3				DUPLICATE			herg Date: 9/8/10			(xt- Date: 1/8/10	Portland Harbor Inline Samp COC - OF 52C & 53 (9-7&8-10) xis
Project Name: PORTLAND HARBOR INLINE SAMP	File Number: 1020.001				WPCI Samula I	FO105874	FO105875	FO105876	FO105877	FO105878				FO105879	Relinquished By: 1.	Signature: Cuth Cuthy	Icw Arns	Received By: 1:	olgnature:	Printed Name: Mackann	Portland Harbor Inlin

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105874

Sample Collected: 09/07/10

14:04

Sample Status: COMPLETE AND

Sample Received: 09/08/10

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-52C-BURGARD1-0910

AO08003

SURFACE SOILS FROM NW SEVER X BURGARD

System ID:

Sample Point Code:

52C 1

EID File #:

1020:001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode:

PORTHARI Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	74.8	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (P	CB)				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	91	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	64	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS		•	•		
TOTAL ORGANIC CARBON	56200	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL COI	NGENERS -PACE			w.	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105874

Validated By: Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105875

Sample Collected: 09/07/10 Sample Received: 09/08/10

SURFACE SOILS FROM SCHNITZER X N LOMBARD

14:52

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-52C-BURGARD2-0910

System ID:

AO08004

Sample Point Code:

52C 2

EID File #:

1020.001

Sample Type:

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: For PCB analysis, some Aroclor 1254 may be present in addition to the 1248 and 1260 reported. Reporting limits are raised for PCB due to the high concentration of target analytes.

T. 15	Donald.	11-14-	sep.	Bell-All- and	Analysis Date
Test Parameter	Result	Units	MRL	Method	Date
GENERAL			£		
TOTAL SOLIDS	89.5	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (I	PCB)				
Aroclor 1016/1242	· <40	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1221	<80	μg/Kg dry wt	80	EPA 8082	09/10/10
Aroclor 1232	<40	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1248	254	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1254	<40	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1260	398	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1262	<40	μg/Kg dry wt	40	EPA 8082	09/10/10
Aroclor 1268	<40	μg/Kg dry wt	40	EPA 8082	09/10/10
OUTSIDE ANALYSIS	•	4			
TOTAL ORGANIC CARBON	32900	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CO	NGENERS -PACE		•		
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105875

Validated By:

Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO105876

Sample Collected: 09/07/10

15:39

Sample Status: COMPLETE AND

Sample Received: 09/08/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-52C-LOMBARD1-0910

CATCH BASIN SOIL COMP1

Sample Point Code:

52C 3

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

EID File #: LocCode:

System ID:

Report Page:

AO08005

Page 1 of 1

1020.001

PORTHARI Collected By: AJA/PTB

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. PCB matrix spike results indicate non-homogeneous matrix; PCB results should be considered estimates. Additionally, quantification of Aroclor 1016/1242 is based on only 2 chromatographic peaks due to matrix interferences. LAB: For PCB analysis, dilution was required due to high levels of target analytes, resulting in raised reporting limits.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
TOTAL SOLIDS	63.5	% W/W	0.01	SM 2540 G	09/17/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (P	CB)				
Aroclor 1016/1242	EST 157	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1221	<80	μg/Kg dry wt	80	EPA 8082	09/16/10
Aroclor 1232	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1248	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1254	440	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1260	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1262	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1268	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	63600	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL COM	IGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105876

Validated By:

Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105877

Sample Collected: 09/08/10

11:22

Report Page:

Sample Status: COMPLETE AND

Sample Received: 09/08/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-CS54-LOMBARD2-0910 CATCH BASIN SOIL COMP2

System ID:

Page 1 of 1

Sample Point Code:

EID File #:

A008006

Sample Type:

CS54_1

LocCode:

1020.001

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Quantification of PCB Aroclor 1248 is based on only 2 chromatographic peaks due to matrix interferences, and overlapping components in the Aroclors may have affected precision of quantifications. LAB: For PCB analysis, dilution was required due to high levels of target analytes, resulting in raised reporting limits.

				BA-46- and	Analysis Date
Test Parameter	Result	Units	MRL	Method	Date
GENERAL	•		:		
TOTAL SOLIDS	69.4	% W/W	0.01	SM 2540 G	09/17/10
GC ANALYSIS			•	•	
POLYCHLORINATED BIPHENYLS (PO	CB)				
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	09/16/10
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1248	EST 253	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1254	268	µg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1260	120	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	73300	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL COM	IGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105877

Report Date: 10/18/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105878

Sample Collected: 09/08/10 Sample Received: 09/08/10 12:35

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-53-LOMBARD3-0910

CATCH BASIN SOIL COMP3

System ID:

AO08007

Sample Point Code: Sample Type:

53_1

EID File #:

1020.001

Sample Matrix:

COMPOSITE SEDIMENT

LocCode: Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. For PCB analysis, overlapping components in the Aroclors may have affected precision of quantifications.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL		0/ 16404/	0.04	014.05.40.0	00/47/40
TOTAL SOLIDS	51.8	% W/W	0.01	SM 2540 G	09/17/10
GC ANALYSIS.				•	
POLYCHLORINATED BIPHENYLS (PCE	3)				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/16/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1248	118	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1254	81	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1260	47	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	127000	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CONG	ENERS -PACE			•	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105878

Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105879

Sample Collected: 09/07/10 Sample Received: 09/08/10

00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

FIELD DUPLICATE

System ID:

A008008

Sample Point Code:

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Quantification of PCB Aroclor 1248 is based on only 2 chromatographic peaks due to matrix interferences. LAB: For PCB analysis, dilution was required due to high levels of target analytes, resulting in raised reporting limits. In addition to the Aroclors reported, some Aroclor 1260 may be present in the sample.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL				•	
TOTAL SOLIDS	65.7	% W/W	0.01	SM 2540 G	09/17/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PO	CB)				
Aroclor 1016/1242	<100	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1221	<200	μg/Kg dry wt	200	EPA 8082	09/16/10
Aroclor 1232	<100	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1248	EST 549	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1254	587	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1260	<100	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1262	<100	μg/Kg dry wt	100	EPA 8082	09/16/10
Aroclor 1268	<100	μg/Kg dry wt	100	EPA 8082	09/16/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	57700	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL COM	IGENERS -PACE		•		•
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105879

Report Date: 10/18/10

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

September 24, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor Inline

Enclosed are the results of analyses for samples received by the laboratory on 09/09/10 16:05. The following list is a summary of the Work Orders contained in this report, generated on 09/24/10 14:30.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTI0293	Portland Harbor Inline	Basin 52C & 53

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: Basin 52C & 53 Report Created:

Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO105874	PTI0293-01	Soil	09/07/10 14:04	09/09/10 16:05
FO105875	PTI0293-02	Soil	09/07/10 14:52	09/09/10 16:05
FO105876	PTI0293-03	Soil	09/07/10 15:39	09/09/10 16:05
FO105877	PTI0293-04	Soil	09/08/10 11:22	09/09/10 16:05
FO105878	PTI0293-05	Soil	09/08/10 12:35	09/09/10 16:05
FO105879	PTI0293-06	Soil	09/07/10 00:00	09/09/10 16:05

TestAmerica Portland

and W. Smil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: Basin 52C & 53 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:30

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTI0293-01 (FO105874)			Soil			Samj	pled: 09/07	/10 14:04		
Total Organic Carbon - Duplicates	9060	56200	30.0	100	mg/Kg	1x	42822	09/16/10 18:40	09/16/10 18:40	
PTI0293-02 (FO105875)			Soil			Samj	pled: 09/07	/10 14:52		
Total Organic Carbon - Duplicates	9060	32900	30.0	100	mg/Kg	1x	42822	09/16/10 18:58	09/16/10 18:58	
PTI0293-03 (FO105876)			Soil			Samj	pled: 09/07	/10 15:39		
Total Organic Carbon - Duplicates	9060	63600	30.0	100	mg/Kg	1x	42822	09/16/10 19:13	09/16/10 19:13	
PTI0293-04 (FO105877)			Soil			Samj	pled: 09/08	/10 11:22		
Total Organic Carbon - Duplicates	9060	73300	30.0	100	mg/Kg	1x	42822	09/16/10 19:31	09/16/10 19:31	
PTI0293-05 (FO105878)			Soil			Samj	pled: 09/08	/10 12:35		
Total Organic Carbon - Duplicates	9060	127000	30.0	100	mg/Kg	1x	42822	09/16/10 20:08	09/16/10 20:08	
PTI0293-06 (FO105879)			Soil			Samj	pled: 09/07	/10 00:00		
Total Organic Carbon - Duplicates	9060	57700	30.0	100	mg/Kg	1x	42822	09/16/10 20:30	09/16/10 20:30	

TestAmerica Portland

Charle W. Amil

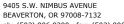
Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor Inline** Project Name:

6543 N. Burlington Ave. Project Number: Basin 52C & 53 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:30


Organic Carbon, Total (TOC) - Laboratory Quality Control Results TestAmerica Connecticut													
QC Batch: 42822	Soil Pro	eparation Met	hod: NA										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (220-42822-6)				QC Source:	1			Extracted:	09/16/10 18:2	5			
Total Organic Carbon - Duplicates	9060	5134	30.0	100	mg/Kg	1x		4110 125%	(28-172)		0	9/16/10 18:25	
Blank (220-42822-7)				QC Source:	:			Extracted:	09/16/10 18:3	2			
Total Organic Carbon - Duplicates	9060	ND	30.0	100	mg/Kg	1x					0	9/16/10 18:32	

TestAmerica Portland

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory

THE LEADER IN ENVIRONMENTAL TESTING

estAmeri

Portland Harbor Inline Project Name:

6543 N. Burlington Ave. Portland, OR 97203

Basin 52C & 53 Project Number: Project Manager: Jennifer Shackelford

Report Created: 09/24/10 14:30

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Signature

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

and W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

CERTIFICATION SUMMARY

Subcontracted Laboratories

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 - Minneapolis, MN 55414

Analysis Performed: 1668 PCB 209 Congeners - SUB

Samples: PTI0293-01, PTI0293-02, PTI0293-03, PTI0293-04, PTI0293-05, PTI0293-06

TestAmerica Connecticut

128 Long Hill Cross Road - Shelton, CT 06484

Method Performed: 9060

Samples: PTI0293-01, PTI0293-02, PTI0293-03, PTI0293-04, PTI0293-05, PTI0293-06

TestAmerica Portland

Whenthe W. Asm

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Dairen Auvii, i lojeet ivianagei

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

125-420-9200 FAX 420-9210

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave,Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

Work Order #:

CHAIN OF CUSTODY REPORT

TA WO ID Turnaround Requests less than standard may incur Rush Charges <1 TURNAROUND REQUEST DATE: , To 5 4 3 2 Petroleum Hydrocarbon Analyses LOCATION/ COMMENTS Organic & Inorganic Analyses in Business Days * Specify: # OF CONT. OTHER N MATRIX (W, S, O) \mathcal{O} PRINT NAME: RECEIVED BY: RECEIVED BY Charles Lythe REQUESTED ANALYSES PRESERVATIVE P.O. NUMBER: 86238 * 200 20000 1735 PROJECT NAME: PORTLAND Harbor INLINE PROJECT NUMBER: BASIN 52C & S3 REPORT TO. JUNNIFER SVACKET FORD SB [452 1404 1127 SAMPLING DATE/TIME CLIENT: City of Portland 9/7/10 9/10 9/7/10 9/3/10 \$ 40105878 F105877 F0105876 46859103 CLIENT SAMPLE IDENTIFICATION PO105879 F0105875 ADDITIONAL REMARK SAMPLED BY: RELEASED BY: 🖊

TestAmerica Portland

Sample Receiving Checklist

	k Ord nt Nar	der #: PT10293 Date/Time Received: Come and Project: City of POrtland	919110 1405									
	Zone; DT/EST		□AK □OTHER									
Co	oler #(: erature		Temperature out of Range: Not enough or No IceIce MeltedW/in 4 Hrs of collectionOther:									
N/A	Yes	No	Initials:									
		1. If ESI client, were temp blanks received? If no, doc										
		2. Cooler Seals intact? (N/A if hand delivered) if no, of										
		☐ 3. Chain of Custody present? If no, document on NO	DD.									
		4. Bottles received intact? If no, document on NOD.										
		5. Sample is not multiphasic? If no, document on NC	DD.									
	4	6. Proper Container and preservatives used? If no, document on NOD.										
		If no, document on NOD.										
		8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.										
		9. HF Dilution required?										
		 10. Sufficient volume provided for all analysis? If no PM before proceeding. 11. Did chain of custody agree with samples received 										
	انگار ا	11. But chain of custody agree with samples received 12. Is the "Sampled by" section of the COC completed										
		13. Were VOA/Oil Syringe samples without headspace										
		☐ 14. Were VOA vials preserved? ☐HCl ☐Sodium Th										
		15. Did samples require preservation with sodium thio										
		16. If yes to #15, was the residual chlorine test negative										
		☐ 17. Are dissolved/field filtered metals bottles sedimer	•									
		18. Is sufficient volume provided for client requested no, document on NOD and contact PM before proceed.	MS/MSD or matrix duplicates? If									
		19. Are analyses with short holding times received in	0									
		20. Was Standard Turn Around (TAT) requested?										
		21. Receipt date(s) < 48 hours past the collection date	(s)? If no, notify PM.									

TestAmerica Portland

Sample Receiving Checklist

Logi	n Ch	ecks	S: Initials M
N/A	Yes	No	
			22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
			23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
			no, document on NOD and contact PM.
			24. Did the chain of custody include "received by" and "relinquished by" signatures,
			dates and times?
Ш			25. Were special log in instructions read and followed?
		Ш	26. Were tests logged checked against the COC?
$Z_{/}$			27. Were rush notices printed and delivered?
			28. Were short hold notices printed and delivered?
			29. Were subcontract COCs printed?
Z			30. Was HF dilution logged?
		-	
Lab	eling :	and	Storage Checks: Initiate: M
N/A	Yes	No	
			31. Were the subcontracted samples/containers put in Sx fridge?
			32. Were sample bottles and COC double checked for dissolved/filtered metals?
			33. Did the sample ID, Date, and Time from label match what was logged?
			34. Were Foreign sample stickers affixed to each container and containers stored in
			foreign fridge?
			35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
			36. Was an NOD for created for noted discrepancies and placed in folder?
Docum form	nent aı (NOD)	1y pi	roblems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10138001

Sample Receipt Date: 09/14/2010

Client Project #: Portland Harb InlineBas

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

October 12, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

October 12, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 42-135%. With three exceptions, flagged "R" on the QC results tables, the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained. Also, in some cases, small amounts of congeners 15 and 144 eluted outside of the acquisition window. This resulted in slightly reduced concentrations for these congeners. However, these congeners represented a very small contribution to the overall PCB level determined.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks be free of PCB congeners at the reporting limits. This indicates that the sample preparation procedures did not significantly contribute to the levels determined for the field samples.

Laboratory spike samples were also prepared with each sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 88-136% with relative percent differences of 0.0-13.2%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the samples.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN000642010A
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
C-MN-01	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 C-MN-01 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan C-MN-01 South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 9909 027-053-137 Wyoming

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTI0293

SENDING LABOR	ΔΤΩΡΥ-

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature: °C

needs Excel EDD

Analysis

Standard TAT is requested unless specific due date is requested. => Due Date:

Comments

Sample ID: PTI0293-01 (FO105874 - Soil)

Units

Sampled: 09/07/10 14:04 03/06/11 14:04 1668 Coplanar PCBs - SUB ug/l

Ice:

Y / N

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0293-02 (FO105875 - Soil)

Sampled: 09/07/10 14:52 03/06/11 14:52 1668 Coplanar PCBs - SUB ug/l

209 Congeners to Pace

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0293-03 (FO105876 - Soil)

Sampled: 09/07/10 15:39

1668 Coplanar PCBs - SUB ug/l

03/06/11 15:39

Expires

209 Congeners to Pace

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0293-04 (FO105877 - Soil)

Sampled: 09/08/10 11:22

1668 Coplanar PCBs - SUB ug/l

03/07/11 11:22

209 Congeners to Pace

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0293-05 (FO105878 - Soil)

Sampled: 09/08/10 12:35

1668 Coplanar PCBs - SUB ug/l

03/07/11 12:35

209 Congeners to Pace

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0293-06 (FO105879 - Soil)

Sampled: 09/07/10 00:00

1668 Coplanar PCBs - SUB ug/l

03/06/11 00:00

209 Congeners

Containers Supplied:

az, iar Amber (A)

eased By

/PaceMs/

Sample Condition Upon Receipt

Pace Analytical Client Name	:	les	<u>t.</u>	America		Project #	10138	001
Courier: Fed Ex UPS USPS Clie Tracking #: 417075261642 Custody Seal on Cooler/Box Present: Yes		Comi		Pace Other		(P),	tional b) Due Date b) Name	
Packing Material: Bubble Wrap Bubble			None	☐ Other		Temp Blank	:Yes	No
Thermometer Used 80344042 or 79425	Туре	of Ice	:(We	b Blue None		Samples on ic	e, cooling proces	s has begun
Cooler Temperature U, U Temp should be above freezing to 6°C	Biolo	ogical	Tissu	e is Frozen: Yes Comments:	No	Date and I contents	nitials of persor : <u>9/14/10</u>	exemining MSP
Chain of Custody Present:	⊠ Ye,s	□No	□n/A	1.				
Chain of Custody Filled Out:	Ľ 3 √196	□No	□N/A	2.				
Chain of Custody Relinquished:	LY Yes	□No	□N/A	3.				
Sampler Name & Signature on COC:	∐Yes	L LINO	□N/A	4.				
Samples Arrived within Hold Time:	₩ es	□Ng/	DNA	5.				
Short Hold Time Analysis (<72hr):	□Yes	DANG/	□N/A	6.				
Rush Turn Around Time Requested:	□Yes	DENO.	□N⁄A	7.				
Sufficient Volume:	⊠ Yes	□No	□N⁄A	8.				
Correct Containers Used:	DV ps	□No	□N⁄A	9.				
-Pace Containers Used:	ΩVe ₃ •	−⊡No	□N⁄A					
Containers Intact:	Yes	□No	□N⁄Ą	10.				
Filtered volume received for Dissolved tests	□Yes	□No	DAVA	11.				
Sample Labels match COC:	i Yes	□No	□n/a	12.			···	
-includes date/time/ID/Analysis Matrix:	SL							
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	DWA	13.	EONH	☐ H2SO4	□ NaOH	☐ HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	ZNA	Samp #				
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	DIN:0		Initial when completed		Lot # of added preservative		
Samples checked for dechlorination:	□Yes	□No	DINA	14.				
Headspace in VOA Vials (>6mm):	□Yes	□No	DAYA	15.				
Trip Blank Present:	□Yes	□No	52 N/A	16.				
Trip Blank Custody Seals Present	□Yes	□No	W N/A					
Pace Trip Blank Lot # (if purchased):								
Client Notification/ Resolution: Person Contacted: \(\sqrt{\chi} \) \(\lambda \)	tív		Date/1	ime: aliali	አ ଜ	Field Data Requ	ilred? Y	/ N
Comments/ Resolution:			<u></u>	-11-311	- V-12			
- 1668-209	' کیسی	l < 0	He	note	<u> </u>	CGC		
- Stan H	215	T.C.	T A	T IS Flo	٥			
				, , , , , , , , , , , , , , , , , , , ,				
						· · · · · · · · · · · · · · · · · · ·		·····
Project Manager Review:		N	44	·		Date:	9/15/10)

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Read Post SEIMMS**, Inc. F-L213Rev.00, 05Aug2009 1700 Eim Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Solid

09/07/2010 14:04

09/14/2010 10:05

10/06/2010 16:40

10/08/2010 20:42

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

Client's Sample ID PTI0293-01 (FO105874)
Lab Sample ID 10138001001
Filename P101008A_08
Injected By BAL
Total Amount Extracted 13.7 g
% Moisture 26.2
Dry Weight Extracted 10.1 g

% Moisture 26.2 Dilution

Dry Weight Extracted 10.1 g Collected

ICAL ID P101008A02 Received

CCal Filename(s) P101008A_01 Extracted

Method Blank ID BLANK-26574 Analyzed

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.426	3.55	2.0	1.21	61
13C-4-MoCB	3	11.781	2.69	2.0	1.48	74
13C-2,2'-DiCB	4	12.104	1.62	2.0	1.31	66
13C-4,4'-DiCB	15	20.179	1.48	2.0	1.38	69
13C-2,2',6-TrCB	19	16.501	1.13	2.0	1.36	68
13C-3,4,4'-TrCB	37	28.444	1.08	2.0	1.64	82
13C-2,2',6,6'-TeCB	54	20.479	0.79	2.0	1.56	78
13C-3,4,4',5-TeCB	81	35.722	0.81	2.0	1.51	76
13C-3,3',4,4'-TeCB	77	36.325	0.81	2.0	1.53	77
13C-2,2',4,6,6'-PeCB	104	26.985	1.62	2.0	1.60	80
13C-2,3,3',4,4'-PeCB	105	39.897	1.61	2.0	1.16	58
13C-2,3,4,4',5-PeCB	114	39.243	1.62	2.0	1.31	65
13C-2,3',4,4',5-PeCB	118	38.706	1.62	2.0	1.31	65
13C-2,3',4,4',5'-PeCB	123	38.354	1.58	2.0	1.35	68
13C-3,3',4,4',5-PeCB	126	43.100	1.59	2.0	1.29	64
13C-2,2',4,4',6,6'-HxCB	155	33.223	1.24	2.0	1.84	92
13C-HxCB (156/157)	156/157	46.118	1.25	4.0	2.64	66
13C-2,3',4,4`,5,5'-HxĆB	167	44.961	1.29	2.0	1.39	70
13C-3,3',4,4',5,5'-HxCB	169	49.472	1.23	2.0	1.27	64
13C-2,2',3,4',5,6,6'-HpCB	188	39.159	1.04	2.0	2.09	105
13C-2,3,3',4,4',5,5'-HpCB	189	51.984	1.03	2.0	1.57	79
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.626	0.91	2.0	1.96	98
13C-2,3,3',4,4',5,5',6-OcCB	205	54.808	0.88	2.0	1.56	78
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.964	0.86	2.0	1.67	84
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.381	0.83	2.0	1.58	79
13CDeCB	209	59.313	0.70	2.0	1.43	72
Ola success Ottana da ada						
Cleanup Standards	00	00.040	4 44	2.0	4.07	00
13C-2,4,4'-TrCB	28	23.849	1.11	2.0	1.67	83
13C-2,3,3',5,5'-PeCB	111	36.342	1.65	2.0	1.47	74
13C-2,2',3,3',5,5',6-HpCB	178	42.295	1.04	2.0	1.67	83
Recovery Standards						
13C-2,5-DiCB	9	14.979	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.979	0.78	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.491	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.859	1.31	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.226	0.88	2.0	ŇA	NA
, ,-,-, , ,-,- 2022	-	-	-	-		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0293-01 (FO105874) 10138001001 P101008A_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		8.450	2.97	112		24.7
2		11.517	3.17	53.9		24.7
3		11.804	3.02	105		24.7
4		12.128	1.59	697		24.7
5		15.950	1.36	41.3		24.7
6		15.578	1.54	409		24.7
7		15.231	1.55	74.5		24.7
8		16.154	1.57	2040		24.7
9		15.003	1.48	124		24.7
10		12.368	1.45	48.1		24.7
11		19.424	1.55	1080		148
12	12/13	19.784	1.54	381		49.5
13	12/13	19.784	1.54	(381)		49.5
14	,			ND		24.7
15		20.167	1.54	2690		24.7
16		20.083	1.05	1640		24.7
17		19.520	1.04	1500		24.7
18	18/30	19.005	1.04	2900		49.5
19	. 0, 00	16.537	1.05	455		24.7
20	20/28	23.883	1.04	8170		49.5
21	21/33	24.134	1.04	3790		49.5
22	21,700	24.604	1.03	3270		24.7
23		21.001		ND		24.7
24				ND		24.7
25		23.145	0.99	525		24.7
26	26/29	22.860	1.05	1250		49.5
27	20/20	19.796	1.03	380		24.7
28	20/28	23.883	1.04	(8170)		49.5
29	26/29	22.860	1.05	(1250)		49.5
30	18/30	19.005	1.04	(2900)		49.5
31	10/30	23.530	1.03	6370		24.7
32		20.764	1.04	1530		24.7
33	21/33	24.134	1.04	(3790)		49.5
34	21/99	Z-1.10-1 		ND		24.7
35		28.008	1.06	258		24.7
36		20.000	1.00	ND		24.7
37		28.477	1.04	4240		24.7
38		20.477	1.04	ND		24.7
39		26.867	1.02	45.0		24.7
40	40/41/71	28.242	0.79	5810		148
41	40/41/71	28.242	0.79	(5810)		148
42	TU/T 1/1 1	27.689	0.79	2760		49.5
43	43/73	26.247	0.79	213		99.0
44	44/47/65	27.102	0.83	9870		148
4 4 45	45/51	23.933	0.79	1660		99.0
46	TU/U I	24.285	0.78	633		49.5
47	44/47/65	27.102	0.79	(9870)		148
48	77/ 7 1/00	26.851	0.73	1640		49.5
+∪		20.001	0.01	1040		70.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-01 (FO105874) 10138001001 P101008A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.549	0.79	5130		99.0
50	50/53	23.162	0.77	1140		99.0
51	45/51	23.933	0.78	(1660)		99.0
52		25.995	0.79	ì180Ó		49.5
53	50/53	23.162	0.77	(1140)		99.0
54				` NĎ		49.5
55				ND		49.5
56		32.368	0.77	3440		49.5
57				ND		49.5
58				ND		49.5
59	59/62/75	27.471	0.80	957		148
60	30,02,13	32.602	0.77	1740		49.5
61	61/70/74/76	31.328	0.77	13600		198
62	59/62/75	27.471	0.80	(957)		148
63	30,02,13	30.942	0.76	287		49.5
64		28.494	0.78	4240		49.5
65	44/47/65	27.102	0.79	(9870)		148
66	1 1, 11, 60	31.680	0.77	7390		49.5
67		30.674	0.73	241		49.5
68				ND		49.5
69	49/69	26.549	0.79	(5130)		99.0
70	61/70/74/76	31.328	0.77	(13600)		198
71	40/41/71	28.242	0.79	(5810)		148
72	40/41/11	29.450	0.73	54.3		49.5
73	43/73	26.247	0.83	(213)		99.0
73 74	61/70/74/76	31.328	0.77	(13600)		198
75	59/62/75	27.471	0.80	(957)		148
76	61/70/74/76	31.328	0.77	(13600)		198
77	01/10/1-/10	36.325	0.78	1260		49.5
77 78				ND		49.5
79		34.632	0.68	101		49.5
80				ND		49.5
81		35.738	0.71	57.9		49.5
82		35.906	1.59	2380		49.5
83		33.994	1.55	1270		49.5
84		31.496	1.57	4830		49.5
85	85/116/117	35.403	1.54	2800		148
86	86/87/97/108/119/125	34.732	1.56	12700		297
87	86/87/97/108/119/125	34.732	1.56	(12700)		297
88	88/91	31.261	1.56	2280		99.0
89	00/91	32.016	1.57	210		49.5
90	90/101/113	33.508	1.57	16700		148
91	88/91	31.261	1.56	(2280)		99.0
92	00/91	32.888	1.57	3030		49.5
93	93/98/100/102	30.708	1.52	546		198
93 94	30/30/100/102	29.852	1.64	79.7		49.5
9 4 95		30.339	1.56	14100		49.5 49.5
96		27.421	1.52	130		49.5
90		Z1.4Z1	1.02	130		+3.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0293-01 (FO105874)
Lab Sample ID 10138001001
Filename P101008A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.732	1.56	(12700)		297
98	93/98/100/102	30.708	1.52	(546)		198
99	33/30/100/102	34.128	1.58	6120		49.5
100	93/98/100/102	30.708	1.52	(546)		198
100	90/101/113	33.508	1.57	(16700)		148
101	93/98/100/102	30.708	1.52	(546)		198
102	93/96/100/102	29.618	1.46	78.2		49.5
103		29.010	1.40	ND		49.5
104		39.914	1.56	7480		49.5
105		39.914	1.56	ND		49.5 49.5
100	107/124	38.019	1.52	728		99.0
107	86/87/97/108/119/125	34.732	1.52	(12700)		99.0 297
108	00/07/97/100/119/125	34.732 38.270	1.56			49.5
	110/115			996		
110	110/115	35.587	1.58	21400 ND		99.0
111				ND ND		49.5
112	00/404/440					49.5
113	90/101/113	33.508	1.57	(16700)		148
114	440/445	39.260	1.61	414		49.5
115	110/115	35.587	1.58	(21400)		99.0
116	85/116/117	35.403	1.54	(2800)		148
117	85/116/117	35.403	1.54	(2800)		148
118	00/07/07/100/1100/100	38.723	1.55	16800		49.5
119	86/87/97/108/119/125	34.732	1.56	(12700)		297
120				ND		49.5
121				ND		49.5
122		39.058	1.47	236		49.5
123		38.371	1.60	381		49.5
124	107/124	38.019	1.52	(728)		99.0
125	86/87/97/108/119/125	34.732	1.56	(12700)		297
126		43.150	1.45	280		49.5
127				ND		49.5
128	128/166	43.167	1.23	3690		99.0
129	129/138/163	41.892	1.24	23200		148
130		41.238	1.25	1540		49.5
131		38.304	1.30	383		49.5
132		38.790	1.24	7420		49.5
133		39.327	1.24	254		49.5
134	134/143	37.700	1.26	1060		99.0
135	135/151	36.543	1.27	6190		99.0
136		33.994	1.27	2470		49.5
137		41.440	1.23	1050		49.5
138	129/138/163	41.892	1.24	(23200)		148
139	139/140	38.103	1.18	380		99.0
140	139/140	38.103	1.18	(380)		99.0
141		40.819	1.26	3720		49.5
142				ND		49.5
143	134/143	37.700	1.26	(1060)		99.0
144		37.113	1.27	745		49.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-01 (FO105874) 10138001001 P101008A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.5
146		39.997	1.26	2450		49.5
147	147/149	37.482	1.25	15100		99.0
148				ND		49.5
149	147/149	37.482	1.25	(15100)		99.0
150				` NĎ		49.5
151	135/151	36.543	1.27	(6190)		99.0
152	/ /			ND		49.5
153	153/168	40.618	1.25	16500		99.0
154		36.795	1.25	139		49.5
155	450/457			ND		49.5
156	156/157	46.118	1.25	3050		99.0
157	156/157	46.118	1.25	(3050)		99.0
158		42.295	1.25	2280		49.5
159 160				ND ND		49.5 49.5
161				ND ND		49.5 49.5
162		44.542	1.23	168		49.5 49.5
163	129/138/163	41.892	1.23	(23200)		49.5 148
164	129/130/103	41.574	1.24	1510		49.5
165		41.574	1.24	ND		49.5
166	128/166	43.167	1.23	(3690)		99.0
167	120/100	44.978	1.23	948		49.5
168	153/168	40.618	1.25	(16500)		99.0
169	155/100			ND		49.5
170		48.784	1.05	4340		49.5
171	171/173	45.179	1.05	1360		99.0
172	,	46.856	1.03	824		49.5
173	171/173	45.179	1.05	(1360)		99.0
174		44.089	1.03	4060		49.5
175		42.966	1.05	202		49.5
176		40.417	1.05	613		49.5
177		44.559	1.04	2680		49.5
178		42.312	1.03	980		49.5
179		39.528	1.06	2020		49.5
180	180/193	47.510	1.03	9530		99.0
181				ND		49.5
182				ND		49.5
183	183/185	43.854	1.03	3200		99.0
184				ND		49.5
185	183/185	43.854	1.03	(3200)		99.0
186				NĎ		49.5
187		43.234	1.06	5310		49.5
188			4.00	ND		49.5
189		52.006	1.08	197		49.5
190		49.338	1.05	862		49.5
191		47.879	1.06	175		49.5
192				ND		49.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-01 (FO105874) 10138001001 P101008A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.510	1.03	(9530)		99.0
194		54.248	0.91	`221Ó		74.2
195		51.704	0.91	840		74.2
196		50.143	0.88	1230		74.2
197	197/200	46.621	0.90	323		148
198	198/199	49.472	0.91	2830		148
199	198/199	49.472	0.91	(2830)		148
200	197/200	46.621	0.90	(323)		148
201		45.582	0.92	`35 8		74.2
202		44.642	0.91	550		74.2
203		50.361	0.88	1660		74.2
204				ND		74.2
205		54.830	0.88	129		74.2
206		57.028	0.77	1410		74.2
207		52.372	0.74	182		74.2
208		51.424	0.75	335		74.2
209		59.313	0.72	540		74.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-01 (FO105874) 10138001001 P101008A_08

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	271	
Total Dichloro Biphenyls	7580	
Total Trichloro Biphenyls	36300	
Total Tetrachloro Biphenyls	74000	
Total Pentachloro Biphenyls	116000	
Total Hexachloro Biphenyls	94200	
Total Heptachloro Biphenyls	36400	
Total Octachloro Biphenyls	10100	
Total Nonachloro Biphenyls	1930	
Decachloro Biphenyls	540	
Total PCBs	377000	
	Total Monochloro Biphenyls Total Dichloro Biphenyls Total Trichloro Biphenyls Total Tetrachloro Biphenyls Total Pentachloro Biphenyls Total Hexachloro Biphenyls Total Heptachloro Biphenyls Total Octachloro Biphenyls Total Octachloro Biphenyls Decachloro Biphenyls	Total Monochloro Biphenyls Total Dichloro Biphenyls Total Trichloro Biphenyls Total Trichloro Biphenyls Total Tetrachloro Biphenyls Total Pentachloro Biphenyls Total Hexachloro Biphenyls Total Hexachloro Biphenyls Total Heptachloro Biphenyls Total Octachloro Biphenyls Total Octachloro Biphenyls Total Nonachloro Biphenyls Decachloro Biphenyls 540

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0293-02 (FO105875)
Lab Sample ID 10138001002
Filename P101001A_05
Injected By BAL
Total Amount Extracted 11.8 g
% Moisture 10.1
Dry Weight Extracted 10.7 g
ICAL ID P101001A02

ICAL ID P101001A02
CCal Filename(s) P101001A_01
Method Blank ID BLANK-26482

Matrix Solid
Dilution 5
Collected 09/07/2010 14:52

Received 09/14/2010 10:05 Extracted 09/29/2010 14:40 Analyzed 10/01/2010 07:40

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.085	3.44	2.0	1.10	55
13C-4-MoCB	3	12.511	2.76	2.0	1.34	67
13C-2,2'-DiCB	4	12.871	1.60	2.0	1.34	67
13C-4,4'-DiCB	15	21.055	1.57	2.0	1.23	61
13C-2,2',6-TrCB	19	17.316	1.11	2.0	1.33	67
13C-3,4,4'-TrCB	37	29.411	1.12	2.0	1.35	67
13C-2,2',6,6'-TeCB	54	21.362	0.83	2.0	1.43	72
13C-3,4,4',5-TeCB	81	36.722	0.80	2.0	1.22	61
13C-3,3',4,4'-TeCB	77	37.309	0.81	2.0	1.25	62
13C-2,2',4,6,6'-PeCB	104	27.919	1.56	2.0	1.48	74
13C-2,3,3',4,4'-PeCB	105	40.915	1.61	2.0	1.02	51
13C-2,3,4,4',5-PeCB	114	40.244	1.61	2.0	1.06	53
13C-2,3',4,4',5-PeCB	118	39.691	1.58	2.0	0.958	48
13C-2,3',4,4',5'-PeCB	123	39.372	1.56	2.0	1.07	53
13C-3,3',4,4',5-PeCB	126	44.117	1.56	2.0	0.850	42
13C-2,2',4,4',6,6'-HxCB	155	34.140	1.24	2.0	2.29	115
13C-HxCB (156/157)	156/157	47.136	1.22	4.0	2.02	50
13C-2,3',4,4',5,5'-HxCB	167	45.962	1.23	2.0	1.15	57
13C-3,3',4,4',5,5'-HxCB	169	50.540	1.25	2.0	0.910	46
13C-2,2',3,4',5,6,6'-HpCB	188	40.143	1.02	2.0	2.69	135
13C-2,3,3',4,4',5,5'-HpCB	189	53.094	1.08	2.0	1.31	65
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.610	0.88	2.0	1.92	96
13C-2,3,3',4,4',5,5',6-OcCB	205	56.090	0.91	2.0	1.50	75
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.461	0.78	2.0	1.68	84
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.447	0.78	2.0	1.33	67
13CDeCB	209	60.961	0.69	2.0	1.48	74
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.749	1.13	2.0	1.89	94
13C-2,3,3',5,5'-PeCB	111	37.293	1.58	2.0	1.72	86
13C-2,2',3,3',5,5',6-HpCB	178	43.296	1.05	2.0	2.10	105
Recovery Standards						
13C-2,5-DiCB	9	15.782	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.879	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.459	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.860	1.28	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.465	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-02 (FO105875) 10138001002 P101001A_05

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC ng/Kg	EML ng/Kg
IUPAC	Co-elutions		Ralio	ng/Kg	ilg/Kg	ilg/Ng
1		9.097	3.14	2260		23.5
2		12.260	3.09	170		23.5
3		12.535	3.06	492		23.5
4		12.883	1.57	2370		23.5
5		16.789	1.45	189		23.5
6		16.370	1.49	1750		23.5
7		16.034	1.33	307		23.5
8		16.969	1.53	8290		23.5
9		15.794	1.39	490		23.5
10		13.146	1.41	178		23.5
11		20.276	1.47	583		141
12	12/13	20.648	1.48	1080		46.9
13	12/13	20.648	1.48	(1080)		46.9
14				` NĎ		23.5
15		21.079	1.54	9430		23.5
16		20.959	1.05	7050		23.5
17		20.384	1.05	6220		23.5
18	18/30	19.857	1.04	12900		46.9
19		17.352	1.04	1640		23.5
20	20/28	24.783	1.04	30300		46.9
21	21/33	25.051	1.05	16900		46.9
22		25.521	1.03	12100		23.5
23		23.391	1.01	33.3		23.5
24		20.792	1.06	267		23.5
25		24.062	1.04	2020		23.5
26	26/29	23.777	1.03	4780		46.9
27	_0,_0	20.660	1.02	1370		23.5
28	20/28	24.783	1.04	(30300)		46.9
29	26/29	23.777	1.03	(4780)		46.9
30	18/30	19.857	1.04	(12900)		46.9
31	. 0, 00	24.431	1.05	24400		23.5
32		21.647	1.04	5760		23.5
33	21/33	25.051	1.05	(16900)		46.9
34	21,700	23.207	1.04	79.9		23.5
35		28.958	1.02	694		23.5
36				ND		23.5
37		29.411	1.03	10600		23.5
38		28.388	1.05	41.8		23.5
39		27.768	0.94	168		23.5
40	40/41/71	29.176	0.78	17100		141
41	40/41/71	29.176	0.78	(17100)		141
42	10/11/11	28.623	0.78	7900		46.9
43	43/73	27.164	0.79	854		93.9
44	44/47/65	28.036	0.78	24900		141
45	45/51	24.850	0.78	5170		93.9
46	1 0/01	25.219	0.78	1870		46.9
47	44/47/65	28.036	0.78	(24900)		141
48	TT/T//00	27.768	0.78	5510		46.9
40		21.100	0.70	3310		40.3

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0293-02 (FO105875) 10138001002 P101001A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.466	0.78	13700		93.9
50	50/53	24.062	0.78	3340		93.9
51	45/51	24.850	0.78	(5170)		93.9
52		26.913	0.78	27700		46.9
53	50/53	24.062	0.78	(3340)		93.9
54		21.396	0.78	52.0		46.9
55		32.799	0.79	388		46.9
56		33.335	0.79	7000		46.9
57		31.155	0.77	126		46.9
58		31.424	0.77	74.8		46.9
59	59/62/75	28.405	0.78	2510		141
60	00,02,.0	33.570	0.78	3850		46.9
61	61/70/74/76	32.279	0.78	29600		188
62	59/62/75	28.405	0.78	(2510)		141
63	00,02,.0	31.910	0.79	771		46.9
64		29.428	0.78	12400		46.9
65	44/47/65	28.036	0.78	(24900)		141
66	,,	32.631	0.79	15600		46.9
67		31.625	0.79	716		46.9
68		30.736	0.76	58.6		46.9
69	49/69	27.466	0.78	(13700)		93.9
70	61/70/74/76	32.279	0.78	(29600)		188
71	40/41/71	29.176	0.78	(17100)		141
72	,	30.401	0.78	121		46.9
73	43/73	27.164	0.79	(854)		93.9
74	61/70/74/76	32.279	0.78	(29600)		188
75	59/62/75	28.405	0.78	(2510)		141
76	61/70/74/76	32.279	0.78	(29600)		188
77		37.343	0.79	1590		46.9
78				ND		46.9
79		35.599	0.73	254		46.9
80				ND		46.9
81		36.723	0.78	85.4		46.9
82		36.890	1.55	4080		46.9
83		34.945	1.53	1830		46.9
84		32.463	1.55	9260		46.9
85	85/116/117	36.387	1.55	4680		141
86	86/87/97/108/119/125	35.716	1.56	22000		282
87	86/87/97/108/119/125	35.716	1.56	(22000)		282
88	88/91	32.228	1.56	` 431Ó		93.9
89		32.966	1.55	426		46.9
90	90/101/113	34.475	1.57	33500		141
91	88/91	32.228	1.56	(4310)		93.9
92		33.838	1.56	`646Ó		46.9
93	93/98/100/102	31.675	1.53	1280		188
94		30.803	1.63	174		46.9
95		31.289	1.56	33900		46.9
96		28.371	1.59	293		46.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Page 18 of 70

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-02 (FO105875) 10138001002 P101001A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.716	1.56	(22000)		282
98	93/98/100/102	31.675	1.53	(1280)		188
99		35.096	1.56	Ì110Ó		46.9
100	93/98/100/102	31.675	1.53	(1280)		188
101	90/101/113	34.475	1.57	(33500)		141
102	93/98/100/102	31.675	1.53	(1280)		188
103		30.568	1.59	15 5		46.9
104				ND		46.9
105		40.931	1.55	10400		46.9
106				ND		46.9
107	107/124	39.003	1.54	1070		93.9
108	86/87/97/108/119/125	35.716	1.56	(22000)		282
109		39.271	1.56	` 178Ó		46.9
110	110/115	36.555	1.57	39500		93.9
111				ND		46.9
112				ND		46.9
113	90/101/113	34.475	1.57	(33500)		141
114		40.278	1.55	618		46.9
115	110/115	36.555	1.57	(39500)		93.9
116	85/116/117	36.387	1.55	(4680)		141
117	85/116/117	36.387	1.55	(4680)		141
118		39.724	1.57	23500		46.9
119	86/87/97/108/119/125	35.716	1.56	(22000)		282
120				ND		46.9
121				ND		46.9
122		40.060	1.70	347		46.9
123	407/404	39.389	1.51	414		46.9
124	107/124	39.003	1.54 1.56	(1070)		93.9
125	86/87/97/108/119/125	35.716 44.151	1.56 1.91 l	(22000)	440	282 46.9
126 127		44.151 42.457	1.37	 67.1	143	46.9 46.9
127	128/166	42.457 44.201	1.37	7430		93.9
128	129/138/163	42.893	1.24	7430 77700		93.9 141
130	129/130/103	42.223	1.23	3470		46.9
131		39.305	1.24	851		46.9
132		39.791	1.25	23700		46.9
133		40.311	1.27	948		46.9
134	134/143	38.685	1.26	3790		93.9
135	135/151	37.511	1.26	42100		93.9
136	100/101	34.962	1.24	14100		46.9
137		42.424	1.25	1360		46.9
138	129/138/163	42.893	1.25	(77700)		141
139	139/140	39.087	1.22	684		93.9
140	139/140	39.087	1.22	(684)		93.9
141		41.803	1.26	20900		46.9
142				ND		46.9
143	134/143	38.685	1.26	(3790)		93.9
144		38.098	1.25	6110		46.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses Results reported on a dry weight basis NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-02 (FO105875) 10138001002 P101001A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		46.9
146		40.965	1.25	11900		46.9
147	147/149	38.467	1.25	83200		93.9
148				ND		46.9
149	147/149	38.467	1.25	(83200)		93.9
150		34.576	1.27	50.6		46.9
151	135/151	37.511	1.26	(42100)		93.9
152				` NĎ		46.9
153	153/168	41.602	1.25	76200		93.9
154		37.746	1.32	297		46.9
155				ND		46.9
156	156/157	47.153	1.26	6010		93.9
157	156/157	47.153	1.26	(6010)		93.9
158		43.296	1.25	`708Ó		46.9
159		45.191	0.82 I		173	46.9
160				ND		46.9
161				ND		46.9
162		45.459	0.73 I		89.4	46.9
163	129/138/163	42.893	1.25	(77700)		141
164		42.575	1.25	5180		46.9
165				ND		46.9
166	128/166	44.201	1.24	(7430)		93.9
167	150/100	45.996	1.26	1890		46.9
168	153/168	41.602	1.25	(76200)		93.9
169		50.540	1.22	199		46.9
170	474/470	49.836	1.04	21400		46.9
171	171/173	46.197	1.01	8110		93.9
172	474/470	47.874	1.04	3580		46.9
173	171/173	46.197	1.01 1.05	(8110) 31800		93.9 46.9
174 175		45.107 43.967	1.05	1470		46.9 46.9
175		43.967	1.03	5050		46.9 46.9
176		45.560	1.05	17600		46.9
178		43.313	1.03	7370		46.9
179		40.529	1.05	16900		46.9
180	180/193	48.545	1.05	58400		93.9
181	100/193	45.962	1.00	79.3		46.9
182				ND		46.9
183	183/185	44.872	1.04	23000		93.9
184	103/103		1.04	ND		46.9
185	183/185	44.872	1.04	(23000)		93.9
186	100/100			ND		46.9
187		44.235	1.04	37000		46.9
188				ND		46.9
189		53.094	0.98	986		46.9
190		50.406	1.03	4090		46.9
191		48.897	1.07	992		46.9
192				ND		46.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-02 (FO105875) 10138001002 P101001A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.545	1.05	(58400)		93.9
194		55.486	0.88	`1270Ó		70.4
195		52.770	0.90	5040		70.4
196		51.177	0.90	7230		70.4
197	197/200	47.622	0.89	2760		141
198	198/199	50.523	0.89	13800		141
199	198/199	50.523	0.89	(13800)		141
200	197/200	47.622	0.89	`(2760)		141
201		46.583	0.89	`253Ó		70.4
202		45.644	0.89	3080		70.4
203		51.395	0.89	8230		70.4
204				ND		70.4
205		56.133	0.87	799		70.4
206		58.504	0.78	4500		70.4
207		53.460	0.80	563		70.4
208		52.468	0.78	984		70.4
209		61.004	0.67	595		70.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-02 (FO105875) 10138001002 P101001A_05

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	2920	
Total Dichloro Biphenyls	24700	
Total Trichloro Biphenyls	137000	
Total Tetrachloro Biphenyls	183000	
Total Pentachloro Biphenyls	211000	
Total Hexachloro Biphenyls	395000	
Total Heptachloro Biphenyls	238000	
Total Octachloro Biphenyls	56200	
Total Nonachloro Biphenyls	6050	
Decachloro Biphenyls	595	
Total PCBs	1260000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0293-03 (FO105876) Lab Sample ID 10138001003 P101008A_06 Filename Injected By BAL Total Amount Extracted 16.9 g % Moisture 39.3

10.2 g Dry Weight Extracted ICAL ID P101008A02 CCal Filename(s) P101008A 01 Method Blank ID

Dilution Collected 09/07/2010 15:39 Received 09/14/2010 10:05 10/06/2010 16:40 Extracted BLANK-26574 Analyzed 10/08/2010 18:33

Matrix

Solid

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.390	2.93	2.0	1.17	59
13C-4-MoCB	3	11.745	2.77	2.0	1.36	68
13C-2,2'-DiCB	4	12.069	1.54	2.0	1.37	68
13C-4,4'-DiCB	15	20.132	1.58	2.0	1.51	76
13C-2,2',6-TrCB	19	16.442	1.09	2.0	1.96	98
13C-3,4,4'-TrCB	37	28.395	1.04	2.0	1.50	75
13C-2,2',6,6'-TeCB	54	20.430	0.76	2.0	1.43	71
13C-3,4,4',5-TeCB	81	35.689	0.82	2.0	1.39	69
13C-3,3',4,4'-TeCB	77	36.259	0.81	2.0	1.25	63
13C-2,2',4,6,6'-PeCB	104	26.952	1.63	2.0	1.69	85
13C-2,3,3',4,4'-PeCB	105	39.848	1.49	2.0	1.54	77
13C-2,3,4,4',5-PeCB	114	39.194	1.64	2.0	1.41	71
13C-2,3',4,4',5-PeCB	118	38.657	1.58	2.0	1.41	70
13C-2,3',4,4',5'-PeCB	123	38.322	1.60	2.0	1.36	68
13C-3,3',4,4',5-PeCB	126	43.050	1.53	2.0	1.33	67
13C-2,2',4,4',6,6'-HxCB	155	33.174	1.28	2.0	1.72	86
13C-HxCB (156/157)	156/157	46.052	1.25	4.0	2.64	66
13C-2,3',4,4 5,5'-HxĆB	167	44.895	1.24	2.0	1.36	68
13C-3,3',4,4',5,5'-HxCB	169	49.423	1.29	2.0	1.26	63
13C-2,2',3,4',5,6,6'-HpCB	188	39.127	1.02	2.0	2.00	100
13C-2,3,3',4,4',5,5'-HpCB	189	51.943	1.01	2.0	1.44	72
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.576	0.88	2.0	1.88	94
13C-2,3,3',4,4',5,5',6-OcCB	205	54.723	0.92	2.0	1.57	78
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.900	0.79	2.0	1.84	92
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.361	0.79	2.0	1.42	71
13CDeCB	209	59.228	0.71	2.0	1.51	75
Cleanup Standards						
13C-2,4,4'-TrCB	20	23.800	1.11	2.0	1.47	70
	28 111	23.600 36.293	1.11	2.0	1.47	73 68
13C-2,3,3',5,5'-PeCB				2.0		
13C-2,2',3,3',5,5',6-HpCB	178	42.246	1.06	2.0	1.69	85
Recovery Standards						
13C-2,5-DiCB	9	14.920	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.930	0.78	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.459	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.810	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.163	0.91	2.0	ŇA	NA
, - , - , - , - , - , - , - , - , -						

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-03 (FO105876) 10138001003 P101008A_06

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		8.414	3.08	354		24.4
2		11.481	2.95	63.4		24.4
3		11.757	3.10	188		24.4
4		12.092	1.54	1830		24.4
5		15.879	1.42	112		24.4
4 5 6 7		15.519	1.55	1300		24.4
7		15.196	1.47	180		24.4
8		16.095	1.55	6270		24.4
9		14.944	1.51	282		24.4
10		12.332	1.54	132		24.4
11		19.366	1.55	768		147
12	12/13	19.737	1.55	704		48.9
13	12/13	19.737	1.55	(704)		48.9
14	, . 0			ND		24.4
15		20.156	1.57	6880		24.4
16		20.037	1.06	4580		24.4
17		19.485	1.04	4340		24.4
18	18/30	18.946	1.04	9010		48.9
19		16.478	1.07	1490		24.4
20	20/28	23.834	1.04	20000		48.9
21	21/33	24.102	1.04	9190		48.9
22	21,700	24.555	1.03	7260		24.4
23				ND		24.4
24				ND		24.4
25		23.113	1.05	1420		24.4
26	26/29	22.827	1.03	3500		48.9
27		19.749	1.07	1100		24.4
28	20/28	23.834	1.04	(20000)		48.9
29	26/29	22.827	1.03	(3500)		48.9
30	18/30	18.946	1.04	(9010)		48.9
31		23.481	1.04	17100		24.4
32		20.715	1.03	4530		24.4
33	21/33	24.102	1.04	(9190)		48.9
34		22.291	1.09	` 52.Ź		24.4
35		27.975	1.03	437		24.4
36				ND		24.4
37		28.428	1.03	7590		24.4
38		27.422	0.99	25.6		24.4
39		26.802	0.94	101		24.4
40	40/41/71	28.210	0.80	15900		147
41	40/41/71	28.210	0.80	(15900)		147
42		27.657	0.79	` 766Ó		48.9
43	43/73	26.215	0.80	653		97.7
44	44/47/65	27.053	0.78	43200		147
45	45/51	23.884	0.77	4540		97.7
46		24.253	0.77	1660		48.9
47	44/47/65	27.053	0.78	(43200)		147
48		26.818	0.80	` 489Ó		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-03 (FO105876) 10138001003 P101008A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.500	0.79	22600		97.7
50	50/53	23.113	0.80	3870		97.7
51	45/51	23.884	0.77	(4540)		97.7
52		25.963	0.79	90000		48.9
53	50/53	23.113	0.80	(3870)		97.7
54				` NĎ		48.9
55				ND		48.9
56		32.335	0.77	10200		48.9
57		30.189	1.26 I		119	48.9
58		30.407	1.19 I		118	48.9
59	59/62/75	27.439	0.78	2250		147
60		32.570	0.77	4540		48.9
61	61/70/74/76	31.279	0.77	81400		195
62	59/62/75	27.439	0.78	(2250)		147
63		30.910	0.77	`100Ó		48.9
64		28.462	0.79	15800		48.9
65	44/47/65	27.053	0.78	(43200)		147
66		31.648	0.77	26100		48.9
67		30.625	0.80	598		48.9
68		29.736	0.76	55.9		48.9
69	49/69	26.500	0.79	(22600)		97.7
70	61/70/74/76	31.279	0.77	(81400)		195
71	40/41/71	28.210	0.80	(15900)		147
72		29.418	0.80	115		48.9
73	43/73	26.215	0.80	(653)		97.7
74	61/70/74/76	31.279	0.77	(81400)		195
75	59/62/75	27.439	0.78	(2250)		147
76	61/70/74/76	31.279	0.77	(81400)		195
77		36.293	0.79	1680		48.9
78 70				ND		48.9
79		34.599	0.72	1080		48.9
80 81		25.672	 0	ND 	102	48.9 48.9
82		35.672 35.873	0.56 I 1.55	14200	103	48.9
83		33.962	1.55	9550		48.9
84		31.463	1.55	34200		48.9
85	85/116/117	35.370	1.56	18400		147
86	86/87/97/108/119/125	34.700	1.58	88700		293
87	86/87/97/108/119/125	34.700	1.58	(88700)		293
88	88/91	31.228	1.57	15100		97.7
89	00/91	31.983	1.57	892		48.9
90	90/101/113	33.475	1.58	126000		147
91	88/91	31.228	1.57	(15100)		97.7
92	33,01	32.855	1.56	22800		48.9
93	93/98/100/102	30.692	1.64	2820		195
94	22.25, .00, .02	29.803	1.55	381		48.9
95		30.306	1.56	103000		48.9
96		27.388	1.61	575		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI02 Lab Sample ID 10138 Filename P1010

PTI0293-03 (FO105876) 10138001003 P101008A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.700	1.58	(88700)		293
98	93/98/100/102	30.692	1.64	(2820)		195
99	93/96/100/102	34.096	1.58	43800		48.9
100	93/98/100/102	30.692	1.64	(2820)		195
100	90/101/113	33.475	1.58	(126000)		147
101	93/98/100/102	30.692	1.64	(2820)		195
102	93/96/100/102	29.568	1.58	458		48.9
103		29.500	1.56	ND		48.9
104		39.881	1.56	43000		48.9
106		39.001	1.56	43000 ND		48.9
107	107/124	37.969	1.56	5040		97.7
107	86/87/97/108/119/125	34.700	1.58	(88700)		293
108	00/07/97/100/119/125	34.700	1.56	5880		48.9
110	110/115	38.221 35.538	1.56	137000		46.9 97.7
	110/115		1.57			97.7
111 112				ND ND		48.9 48.9
	00/101/112			(4.00000)		46.9 147
113	90/101/113	33.475	1.58	(126000)		147
114	110/115	39.227	1.58	2750		48.9
115	110/115	35.538	1.57	(137000)		97.7
116	85/116/117	35.370	1.56	(18400)		147
117	85/116/117	35.370	1.56	(18400)		147
118	00/07/07/400/440/405	38.691	1.56	119000		48.9
119	86/87/97/108/119/125	34.700	1.58	(88700)		293
120		36.779	1.57	57.8		48.9
121			4.50	ND		48.9
122		39.009	1.53	1330		48.9
123	407/404	38.322	1.63	2370		48.9
124	107/124	37.969	1.56	(5040)		97.7
125	86/87/97/108/119/125	34.700	1.58	(88700)		293
126		43.050	1.01 I		216	48.9
127	100/100	41.424	1.38	201		48.9
128	128/166	43.117	1.23	18900		97.7
129	129/138/163	41.843	1.24	118000		147
130		41.189	1.26	8150		48.9
131		38.271	1.29	2310		48.9
132		38.741	1.23	41000		48.9
133	10.1/1.10	39.294	1.23	1290		48.9
134	134/143	37.651	1.24	6840		97.7
135	135/151	36.511	1.27	23700		97.7
136		33.962	1.26	13100		48.9
137	400/400/400	41.424	1.25	8300		48.9
138	129/138/163	41.843	1.24	(118000)		147
139	139/140	38.070	1.18	2480		97.7
140	139/140	38.070	1.18	(2480)		97.7
141		40.770	1.25	17300		48.9
142				ND		48.9
143	134/143	37.651	1.24	(6840)		97.7
144		37.081	1.26	4490		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0293-03 (FO105876) 10138001003 P101008A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.9
146		39.948	1.25	12700		48.9
147	147/149	37.450	1.25	73100		97.7
148		35.873	1.25	58.2		48.9
149	147/149	37.450	1.25	(73100)		97.7
150		33.593	1.28	90.8		48.9
151	135/151	36.511	1.27	(23700)		97.7
152		33.375	1.26	110		48.9
153	153/168	40.585	1.25	77600		97.7
154		36.762	1.25	619		48.9
155				ND		48.9
156	156/157	46.069	1.25	17100		97.7
157	156/157	46.069	1.25	(17100)		97.7
158		42.246	1.24	12100		48.9
159		44.140	0.78 I		56.9	48.9
160				ND		48.9
161				ND		48.9
162		44.476	1.24	578		48.9
163	129/138/163	41.843	1.24	(118000)		147
164		41.524	1.26	6250		48.9
165				ND		48.9
166	128/166	43.117	1.23	(18900)		97.7
167		44.929	1.22	5040		48.9
168	153/168	40.585	1.25	(77600)		97.7
169		49.439	1.78 I		59.1	48.9
170		48.735	1.05	12000		48.9
171	171/173	45.147	1.04	3970		97.7
172		46.790	1.06	1960		48.9
173	171/173	45.147	1.04	(3970)		97.7
174		44.057	1.05	1080Ó		48.9
175		42.933	1.07	529		48.9
176		40.401	1.06	1670		48.9
177		44.493	1.05	6520		48.9
178		42.296	1.04	2130		48.9
179		39.495	1.05	4860		48.9
180	180/193	47.461	1.06	24800		97.7
181		44.929	1.05	199		48.9
182				ND		48.9
183	183/185	43.822	1.05	8590		97.7
184				ND		48.9
185	183/185	43.822	1.05	(8590)		97.7
186				` NĎ		48.9
187		43.201	1.04	12300		48.9
188				ND		48.9
189		51.943	1.02	573		48.9
190		49.288	1.05	2170		48.9
191		47.830	1.07	484		48.9
192				ND		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-03 (FO105876) 10138001003 P101008A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.461	1.06	(24800)		97.7
194		54.184	0.90	` 560Ó		73.3
195		51.662	0.90	1960		73.3
196		50.093	0.89	2760		73.3
197	197/200	46.555	0.91	946		147
198	198/199	49.439	0.89	5310		147
199	198/199	49.439	0.89	(5310)		147
200	197/200	46.555	0.91	(946)		147
201		45.549	0.88	744		73.3
202		44.593	0.88	1010		73.3
203		50.295	0.90	3290		73.3
204				ND		73.3
205		54.766	0.91	306		73.3
206		56.943	0.78	2250		73.3
207		52.331	0.80	279		73.3
208		51.382	0.77	496		73.3
209		59.228	0.72	476		73.3

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-03 (FO105876) 10138001003 P101008A_06

Congoner Croup	Concentration	
 Congener Group	ng/Kg	
Total Monochloro Biphenyls	605	
Total Dichloro Biphenyls	18500	
Total Trichloro Biphenyls	91700	
Total Tetrachloro Biphenyls	340000	
Total Pentachloro Biphenyls	798000	
Total Hexachloro Biphenyls	471000	
Total Heptachloro Biphenyls	93600	
Total Octachloro Biphenyls	21900	
Total Nonachloro Biphenyls	3020	
Decachloro Biphenyls	476	
Total PCBs	1840000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Matrix Dilution

Client - Test America

Client's Sample ID PTI0293-04 (FO105877)
Lab Sample ID 10138001004
Filename P101008A_07
Injected By BAL
Total Amount Extracted 16.0 g
% Moisture 36.8

10.1 g Dry Weight Extracted Collected 09/08/2010 11:22 ICAL ID P101008A02 Received 09/14/2010 10:05 10/06/2010 16:40 CCal Filename(s) P101008A 01 Extracted Method Blank ID BLANK-26574 Analyzed 10/08/2010 19:37

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.414	2.88	2.0	1.16	58
13C-4-MoCB	3	11.756	2.19	2.0	1.43	79 I
13C-2,2'-DiCB	4	12.080	1.58	2.0	1.39	70
13C-4,4'-DiCB	15	20.167	1.61	2.0	1.22	61
13C-2,2',6-TrCB	19	16.489	1.16	2.0	1.42	71
13C-3,4,4'-TrCB	37	28.460	1.06	2.0	1.51	75
13C-2,2 ['] ,6,6'-TeCB	54	20.478	0.79	2.0	1.58	79
13C-3,4,4',5-TeCB	81	35.755	0.81	2.0	1.23	62
13C-3,3',4,4'-TeCB	77	36.342	0.81	2.0	1.24	62
13C-2,2',4,6,6'-PeCB	104	26.984	1.55	2.0	1.77	88
13C-2,3,3',4,4'-PeCB	105	39.930	1.50	2.0	1.10	55
13C-2,3,4,4',5-PeCB	114	39.276	1.54	2.0	1.13	56
13C-2,3',4,4',5-PeCB	118	38.740	1.54	2.0	1.15	57
13C-2,3',4,4',5'-PeCB	123	38.388	1.61	2.0	1.17	58
13C-3,3',4,4',5-PeCB	126	43.167	1.54	2.0	1.02	51
13C-2,2',4,4',6,6'-HxCB	155	33.223	1.27	2.0	2.17	108
13C-HxCB (156/157)	156/157	46.168	1.27	4.0	2.41	60
13C-2,3',4,4',5,5'-HxCB	167	45.011	1.27	2.0	1.30	65
13C-3,3',4,4',5,5'-HxCB	169	49.556	1.23	2.0	1.16	58
13C-2,2',3,4',5,6,6'-HpCB	188	39.192	1.04	2.0	2.32	116
13C-2,3,3',4,4',5,5'-HpCB	189	52.071	0.98	2.0	1.51	75
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.676	0.86	2.0	1.95	98
13C-2,3,3',4,4',5,5',6-OcCB	205	54.873	0.92	2.0	1.56	78
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.093	0.83	2.0	1.83	92
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.446	0.78	2.0	1.49	74
13CDeCB	209	59.378	0.73	2.0	1.48	74
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.849	1.07	2.0	1.63	82
13C-2,3,3',5,5'-PeCB	111	36.358	1.55	2.0	1.37	68
13C-2,2',3,3',5,5',6-HpCB	178	42.345	1.06	2.0	1.60	80
Recovery Standards						
13C-2,5-DiCB	9	14.955	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.962	0.77	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.491	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.909	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.312	0.91	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

TVII = Value obtained from additional analys

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-04 (FO105877) 10138001004 P101008A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		8.426	3.02	122		24.8
2		11.493	3.01	50.6		24.8
3		11.780	3.04	113		24.8
4		12.116	1.56	1040		24.8
5		15.938	1.62	54.0		24.8
6		15.542	1.54	566		24.8
7		15.207	1.54	101		24.8
8		16.129	1.56	2610		24.8
9		14.979	1.47	163		24.8
10		12.367	1.45	86.7		24.8
11		19.400	1.55	1210		149
12	12/13	19.760	1.55	416		49.6
13	12/13	19.760	1.55	(416)		49.6
14				` NĎ		24.8
15		20.191	1.55	3610		24.8
16		20.071	1.03	2650		24.8
17		19.508	1.04	2310		24.8
18	18/30	18.981	1.05	4590		49.6
19		16.513	1.08	837		24.8
20	20/28	23.866	1.03	11100		49.6
21	21/33	24.134	1.03	5470		49.6
22		24.587	1.03	4370		24.8
23				ND		24.8
24				ND		24.8
25		23.144	1.02	716		24.8
26	26/29	22.859	1.02	1730		49.6
27		19.784	1.06	639		24.8
28	20/28	23.866	1.03	(11100)		49.6
29	26/29	22.859	1.02	(1730)		49.6
30	18/30	18.981	1.05	(4590)		49.6
31		23.513	1.04	8800		24.8
32		20.747	1.04	2390		24.8
33	21/33	24.134	1.03	(5470)		49.6
34		22.289	0.98	29.9		24.8
35		28.007	0.97	295		24.8
36				ND		24.8
37		28.460	1.02	4850		24.8
38				ND		24.8
39		26.850	0.92	56.4		24.8
40	40/41/71	28.225	0.78	8980		149
41	40/41/71	28.225	0.78	(8980)		149
42		27.689	0.79	`418Ó		49.6
43	43/73	26.263	0.75	343		99.2
44	44/47/65	27.102	0.78	14100		149
45	45/51	23.933	0.78	2990		99.2
46		24.302	0.77	1090		49.6
47	44/47/65	27.102	0.78	(14100)		149
48		26.834	0.78	2710		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated
* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-04 (FO105877) 10138001004 P101008A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.549	0.77	7480		99.2
50	50/53	23.144	0.79	2000		99.2
51	45/51	23.933	0.78	(2990)		99.2
52		25.995	0.79	ì730Ó		49.6
53	50/53	23.144	0.79	(2000)		99.2
54				NĎ		49.6
55				ND		49.6
56		32.384	0.79	4060		49.6
57		30.204	0.77	60.5		49.6
58				ND		49.6
59	59/62/75	27.471	0.78	1430		149
60	30,02,13	32.619	0.75	2120		49.6
61	61/70/74/76	31.328	0.77	17100		198
62	59/62/75	27.471	0.78	(1430)		149
63	30,32,13	30.959	0.80	394		49.6
64		28.494	0.81	6390		49.6
65	44/47/65	27.102	0.78	(14100)		149
66	11,11766	31.680	0.77	8920		49.6
67		30.674	0.75	337		49.6
68				ND		49.6
69	49/69	26.549	0.77	(7480)		99.2
70	61/70/74/76	31.328	0.77	(17100)		198
71 71	40/41/71	28.225	0.78	(8980)		149
72	40/41/11	29.466	0.78	64.5		49.6
73	43/73	26.263	0.75	(343)		99.2
73 74	61/70/74/76	31.328	0.77	(17100)		198
7 5	59/62/75	27.471	0.78	(1430)		149
76	61/70/74/76	31.328	0.77	(17100)		198
77	01/10/14/10	36.375	0.77	1110		49.6
78				ND		49.6
79		34.665	0.74	177		49.6
80				ND		49.6
81				ND		49.6
82		35.922	1.56	2780		49.6
83		33.994	1.55	1470		49.6
84		31.495	1.57	5960		49.6
85	85/116/117	35.402	1.69	2980		149
86	86/87/97/108/119/125	34.749	1.56	14800		298
87	86/87/97/108/119/125	34.749	1.56	(14800)		298
88	88/91	31.277	1.56	2830		99.2
89	00/91	32.015	1.66	252		49.6
90	90/101/113	33.524	1.57	20000		149
91	88/91	31.277	1.56	(2830)		99.2
92	00/3 I	32.904	1.57	3720		49.6
93	93/98/100/102	30.724	1.72	758		198
93 94	33/30/100/102	29.835	1.72	107		49.6
9 4 95		30.338	1.51	16800		49.6
96		27.437	1.61	185		49.6
90		21.431	1.01	100		+3.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0293-04 (FO105877) 10138001004 P101008A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.749	1.56	(14800)		298
98	93/98/100/102	30.724	1.72	(758)		198
99		34.145	1.57	6930		49.6
100	93/98/100/102	30.724	1.72	(758)		198
101	90/101/113	33.524	1.57	(20000)		149
102	93/98/100/102	30.724	1.72	(758)		198
103		29.600	1.54	98.5		49.6
104				ND		49.6
105		39.964	1.54	8380		49.6
106				ND		49.6
107	107/124	38.052	1.57	764		99.2
108	86/87/97/108/119/125	34.749	1.56	(14800)		298
109		38.304	1.56	107 0		49.6
110	110/115	35.604	1.59	23500		99.2
111				ND		49.6
112				ND		49.6
113	90/101/113	33.524	1.57	(20000)		149
114		39.293	1.60	` 47Ó		49.6
115	110/115	35.604	1.59	(23500)		99.2
116	85/116/117	35.402	1.69	(2980)		149
117	85/116/117	35.402	1.69	(2980)		149
118		38.773	1.54	17800		49.6
119	86/87/97/108/119/125	34.749	1.56	(14800)		298
120				ND		49.6
121				ND		49.6
122		39.092	1.35	232		49.6
123		38.404	1.56	247		49.6
124	107/124	38.052	1.57	(764)		99.2
125	86/87/97/108/119/125	34.749	1.56	(14800)		298
126		43.150	1.14 I		85.3	49.6
127	100/100			ND		49.6
128	128/166	43.217	1.14	3990		99.2
129	129/138/163	41.926	1.24	24700		149
130		41.272	1.24	1680		49.6
131		38.354 38.807	1.16 1.24	418 8490		49.6
132 133		39.360	1.24	274		49.6 49.6
134	134/143	37.734	1.10	1180		99.2
134	135/151	36.560	1.07	6590		99.2
136	133/131	33.994	1.25	2970		49.6
137		41.490	1.24	1270		49.6
138	129/138/163	41.926	1.24	(24700)		149
139	139/140	38.136	1.26	(24700) 411		99.2
140	139/140	38.136	1.26	(411)		99.2
141	100/140	40.853	1.26	3860		49.6
142		40.000	1.20	ND		49.6
143	134/143	37.734	1.07	(1180)		99.2
144		37.113	1.23	640		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-04 (FO105877) 10138001004 P101008A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.6
146		40.031	1.23	2740		49.6
147	147/149	37.516	1.25	15900		99.2
148				ND		49.6
149	147/149	37.516	1.25	(15900)		99.2
150				` NĎ		49.6
151	135/151	36.560	1.25	(6590)		99.2
152				` NĎ		49.6
153	153/168	40.651	1.23	16500		99.2
154		36.828	1.10	134		49.6
155				ND		49.6
156	156/157	46.168	1.24	3750		99.2
157	156/157	46.168	1.24	(3750)		99.2
158		42.345	1.24	`239Ó		49.6
159				ND		49.6
160				ND		49.6
161				ND		49.6
162		44.592	1.27	155		49.6
163	129/138/163	41.926	1.24	(24700)		149
164		41.607	1.23	` 149Ó		49.6
165				ND		49.6
166	128/166	43.217	1.14	(3990)		99.2
167		45.028	1.29	`108Ó		49.6
168	153/168	40.651	1.23	(16500)		99.2
169				ND		49.6
170		48.851	1.05	3920		49.6
171	171/173	45.229	1.05	1190		99.2
172		46.906	1.06	705		49.6
173	171/173	45.229	1.05	(1190)		99.2
174		44.139	1.04	`361Ó		49.6
175		43.016	0.94	187		49.6
176		40.467	1.03	535		49.6
177		44.592	1.05	2250		49.6
178		42.378	1.05	780		49.6
179		39.561	1.03	1670		49.6
180	180/193	47.577	1.05	7990		99.2
181		45.028	1.07	79.1		49.6
182				ND		49.6
183	183/185	43.921	1.04	2880		99.2
184				ND		49.6
185	183/185	43.921	1.04	(2880)		99.2
186				` NĎ		49.6
187		43.284	1.04	4230		49.6
188				ND		49.6
189		52.114	1.04	212		49.6
190		49.405	1.05	731		49.6
191		47.929	1.07	157		49.6
192				ND		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-04 (FO105877) 10138001004 P101008A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.577	1.05	(7990)		99.2
194		54.334	0.89	`192Ó		74.4
195		51.791	0.92	642		74.4
196		50.210	0.90	1030		74.4
197	197/200	46.655	0.92	360		149
198	198/199	49.556	0.90	2350		149
199	198/199	49.556	0.90	(2350)		149
200	197/200	46.655	0.92	`(360)		149
201		45.632	0.90	`309		74.4
202		44.693	0.89	480		74.4
203		50.411	0.89	1370		74.4
204				ND		74.4
205		54.937	0.93	108		74.4
206		57.114	0.76	1480		74.4
207		52.459	0.79	179		74.4
208		51.489	0.82	420		74.4
209		59.442	0.69	930		74.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-04 (FO105877) 10138001004 P101008A_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	286	
Total Dichloro Biphenyls	9860	
Total Trichloro Biphenyls	50800	
Total Tetrachloro Biphenyls	103000	
Total Pentachloro Biphenyls	132000	
Total Hexachloro Biphenyls	101000	
Total Heptachloro Biphenyls	31100	
Total Octachloro Biphenyls	8570	
Total Nonachloro Biphenyls	2080	
Decachloro Biphenyls	930	
Total PCBs	440000	

ND = Not Detected
Results reported on a dry weight basis

Solid

09/08/2010 12:35

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0293-05 (FO105878) Lab Sample ID 10138001005 P101008A_09 Filename Injected By BAL Total Amount Extracted 21.3 g Matrix 52.3 Dilution % Moisture 10.2 g Dry Weight Extracted Collected ICAL ID P101008A02

 ICÁL ID
 P101008A02
 Received
 09/14/2010
 10:05

 CCal Filename(s)
 P101008A_01
 Extracted
 10/06/2010
 16:40

 Method Blank ID
 BLANK-26574
 Analyzed
 10/08/2010
 21:46

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.426	3.12	2.0	1.20	60
13C-4-MoCB	3	11.781	2.89	2.0	1.48	74
13C-2,2'-DiCB	4	12.105	1.64	2.0	1.46	73
13C-4,4'-DiCB	15	20.168	1.57	2.0	1.21	61
13C-2,2',6-TrCB	19	16.526	1.16	2.0	1.77	89
13C-3,4,4'-TrCB	37	28.512	1.11	2.0	1.66	83
13C-2,2',6,6'-TeCB	54	20.496	0.79	2.0	1.55	78
13C-3,4,4',5-TeCB	81	35.806	0.79	2.0	1.30	65
13C-3,3',4,4'-TeCB	77	36.410	0.81	2.0	1.36	68
13C-2,2',4,6,6'-PeCB	104	27.036	1.60	2.0	1.77	89
13C-2,3,3',4,4'-PeCB	105	40.015	1.63	2.0	1.11	55
13C-2,3,4,4',5-PeCB	114	39.361	1.54	2.0	1.26	63
13C-2,3',4,4',5-PeCB	118	38.808	1.56	2.0	1.21	61
13C-2,3',4,4',5'-PeCB	123	38.473	1.54	2.0	1.30	65
13C-3,3',4,4',5-PeCB	126	43.269	1.57	2.0	1.07	53
13C-2,2',4,4',6,6'-HxCB	155	33.257	1.29	2.0	2.14	107
13C-HxCB (156/157)	156/157	46.271	1.29	4.0	2.33	58
13C-2,3',4,4',5,5'-HxCB	167	45.113	1.27	2.0	1.27	64
13C-3,3',4,4',5,5'-HxCB	169	49.641	1.28	2.0	1.07	54
13C-2,2',3,4',5,6,6'-HpCB	188	39.261	1.09	2.0	2.63	132
13C-2,3,3',4,4',5,5'-HpCB	189	52.202	0.99	2.0	1.54	77
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.745	0.88	2.0	2.03	101
13C-2,3,3',4,4',5,5',6-OcCB	205	55.025	0.96	2.0	1.60	80
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.224	0.79	2.0	1.80	90
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.577	0.88	2.0	1.45	72
13CDeCB	209	59.552	0.75	2.0	1.47	73
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.867	1.07	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	36.427	1.59	2.0	1.49	75
13C-2,2',3,3',5,5',6-HpCB	178	42.430	1.01	2.0	1.50	75
Recovery Standards						
13C-2,5-DiCB	9	14.980	1.68	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.996	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.543	1.65	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.994	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.443	0.97	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-05 (FO105878) 10138001005 P101008A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		8.462	3.22	147		24.6
2		11.529	3.31	49.4		24.6
3		11.793	3.34	108		24.6
4		12.141	1.53	566		24.6
4 5		15.975	1.50	48.5		24.6
6		15.591	1.52	401		24.6
7		15.244	1.52	78.1		24.6
8		16.166	1.60	2240		24.6
9		15.004	1.57	120		24.6
10		12.380	1.41	44.8		24.6
11		19.437	1.55	1610		148
12	12/13	19.797	1.54	411		49.2
13	12/13	19.797	1.54	(411)		49.2
14				` NĎ		24.6
15		20.180	1.54	2150		24.6
16		20.108	1.08	1560		24.6
17		19.545	1.06	1430		24.6
18	18/30	19.018	1.04	2860		49.2
19		16.550	1.04	543		24.6
20	20/28	23.900	1.02	8070		49.2
21	21/33	24.169	1.06	3740		49.2
22		24.621	1.04	3090		24.6
23				ND		24.6
24				ND		24.6
25		23.179	1.06	529		24.6
26	26/29	22.894	1.03	1230		49.2
27	00/00	19.820	1.06 1.02	411		24.6
28	20/28	23.900	1.02	(8070)		49.2
29	26/29	22.894	1.03	(1230)		49.2
30	18/30	19.018	1.04	(2860)		49.2
31		23.548	1.04	`630Ó		24.6
32	04/00	20.781	1.03	1660		24.6
33	21/33	24.169	1.06	(3740)		49.2
34				ND		24.6
35		28.059	0.98	235 ND		24.6
36			 1.02	ND		24.6
37 38		28.512		3450 ND		24.6
38 39		 26.885	 1.10	43.9		24.6 24.6
39 40	40/41/71	26.885 28.277	0.79	43.9 6400		24.6 148
41	40/41/71	28.277	0.79	(6400)		148
42	40/41/71	20.277 27.740	0.79	3030		49.2
42	43/73	26.281	0.79	282		49.2 49.2
43 44	43/73 44/47/65	27.137	0.81	10600		49.2 148
44 45	45/51	23.951	0.79	2200		98.4
45 46	45/51	24.320	0.77	795		49.2
40 47	44/47/65	24.320 27.137	0.79	(10600)		49.2 148
48	TT/11/00	26.885	0.79	1980		49.2
40		20.000	0.70	1900		43.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0293-05 (FO105878) 10138001005 P101008A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
101 AC	CO-ciulions				iig/itg	
49	49/69	26.583	0.79	5610		98.4
50	50/53	23.179	0.79	1510		98.4
51	45/51	23.951	0.77	(2200)		98.4
52		26.047	0.78	Ì340Ó		49.2
53	50/53	23.179	0.79	(1510)		98.4
54				ND		49.2
55				ND		49.2
56		32.436	0.77	3050		49.2
57		30.273	0.73	62.7		49.2
58				ND		49.2
59	59/62/75	27.506	0.78	1050		148
60		32.671	0.80	1630		49.2
61	61/70/74/76	31.379	0.77	12400		197
62	59/62/75	27.506	0.78	(1050)		148
63		31.010	0.75	302		49.2
64		28.529	0.79	4890		49.2
65	44/47/65	27.137	0.79	(10600)		148
66		31.731	0.78	6780		49.2
67		30.709	0.79	266		49.2
68				ND		49.2
69	49/69	26.583	0.79	(5610)		98.4
70	61/70/74/76	31.379	0.77	(12400)		197
71	40/41/71	28.277	0.79	(6400)		148
72	10/11//1	29.484	0.74	54.8		49.2
73	43/73	26.281	0.81	(282)		49.2
74	61/70/74/76	31.379	0.77	(12400)		197
75	59/62/75	27.506	0.78	(1050)		148
76	61/70/74/76	31.379	0.77	(12400)		197
77	01/10/14/10	36.427	0.79	847		49.2
78			0.73	ND		49.2
79		34.683	0.72	60.0		49.2
80		34.003	0.72	ND		49.2
81				ND		49.2
82		35.974	1.58	1860		49.2
83		34.046	1.58	824		49.2
84		31.547	1.57	4400		49.2
85	85/116/117	35.488	1.55	2350		148
86	86/87/97/108/119/125	34.817	1.56	10500		295
87	86/87/97/108/119/125	34.817	1.56	(10500)		295 295
88	88/91	31.329	1.56	2110		98.4
89	00/91		1.50	196		96. 4 49.2
	90/101/113	32.067	1.59			
90 91	88/91	33.576	1.58	14500		148 98.4
	00/91	31.329	1.50	(2110)		
92	02/09/400/402	32.956	1.58	2720		49.2
93	93/98/100/102	30.759	1.58	539		197
94		29.887	1.59	88.2		49.2
95		30.390	1.57	13100		49.2
96		27.472	1.61	135		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Page 39 of 70

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0293-05 (FO105878)
Lab Sample ID 10138001005
Filename P101008A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.817	1.56	(10500)		295
98	93/98/100/102	30.759	1.58	(539)		197
99	00,00,100,100	34.197	1.58	5250		49.2
100	93/98/100/102	30.759	1.58	(539)		197
101	90/101/113	33.576	1.58	(14500)		148
102	93/98/100/102	30.759	1.58	(539)		197
103	00,00,100,102	29.652	1.48	72.9		49.2
104				ND		49.2
105		40.049	1.57	5520		49.2
106				ND		49.2
107	107/124	38.120	1.56	580		98.4
108	86/87/97/108/119/125	34.817	1.56	(10500)		295
109	00/01/31/100/119/120	38.389	1.59	792		49.2
110	110/115	35.655	1.57	16700		98.4
111	110/113			ND		49.2
112				ND		49.2
113	90/101/113	33.576	1.58	(14500)		148
114	30/101/113	39.378	1.58	320		49.2
115	110/115	35.655	1.57	(16700)		98.4
116	85/116/117	35.488	1.55	(2350)		148
117	85/116/117	35.488	1.55	(2350)		148
117	03/110/117	38.842	1.57	12800		49.2
119	86/87/97/108/119/125	34.817	1.56	(10500)		295
120	80/87/97/108/119/123	34.01 <i>1</i>	1.50	(10300) ND		49.2
120				ND ND		49.2
121		39.177	1.47	166		49.2
122		38.489	1.47	268		49.2
123	107/124	38.120	1.76	(580)		98.4
124	86/87/97/108/119/125	34.817	1.56	(10500)		295
125	00/07/97/100/119/125	43.269	1.58	137		49.2
120		43.209	1.56	ND		49.2
127	128/166	43.302	1.24	2760		98.4
120	129/138/163	42.011	1.24	17500		148
130	129/130/103	41.357	1.24	1170		49.2
130		38.406	1.23	320		49.2
132		38.875	1.21	5960		49.2
		39.462	1.23	215		49.2
133 134	134/143	39.462 37.802	1.22	840		49.2 98.4
134	135/151	36.628	1.25	5850		98.4 98.4
136	133/131	34.046	1.27	2310		96.4 49.2
136		41.575	1.24	903		49.2 49.2
137	129/138/163	42.011	1.23	(17500)		148
			1.24			98.4
139	139/140	38.204	1.31	324		
140	139/140	38.204	1.31	(324)		98.4
141		40.938	1.26	301Ó		49.2
142	124/142	 27 002	 1 0F	ND (840)		49.2
143	134/143	37.802	1.25	(840)		98.4
144		37.232	1.27	669		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-05 (FO105878) 10138001005 P101008A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.2
146		40.116	1.25	1980		49.2
147	147/149	37.584	1.27	13100		98.4
148				ND		49.2
149	147/149	37.584	1.27	(13100)		98.4
150				` NĎ		49.2
151	135/151	36.628	1.27	(5850)		98.4
152				` NĎ		49.2
153	153/168	40.737	1.24	13300		98.4
154		36.896	1.11	118		49.2
155				ND		49.2
156	156/157	46.287	1.26	2430		98.4
157	156/157	46.287	1.26	(2430)		98.4
158		42.413	1.25	`165Ó		49.2
159				ND		49.2
160				ND		49.2
161				ND		49.2
162		44.677	1.18	134		49.2
163	129/138/163	42.011	1.24	(17500)		148
164		41.709	1.22	` 109Ó		49.2
165				ND		49.2
166	128/166	43.302	1.24	(2760)		98.4
167		45.130	1.25	791		49.2
168	153/168	40.737	1.24	(13300)		98.4
169		49.691	1.81 l		67.8	49.2
170		48.970	1.05	2900		49.2
171	171/173	45.315	1.02	998		98.4
172		47.008	1.05	632		49.2
173	171/173	45.315	1.02	(998)		98.4
174		44.225	1.01	3870		49.2
175		43.101	1.03	193		49.2
176		40.552	1.03	585		49.2
177		44.677	1.01	2090		49.2
178		42.464	1.06	876		49.2
179		39.630	1.05	2200		49.2
180	180/193	47.679	1.04	7730		98.4
181				ND		49.2
182				ND		49.2
183	183/185	44.007	1.08	3010		98.4
184				ND		49.2
185	183/185	44.007	1.08	(3010)		98.4
186				`_NĎ		49.2
187		43.369	1.05	5090		49.2
188				ND		49.2
189		52.202	0.98	190		49.2
190		49.524	1.02	630		49.2
191		48.031	1.07	117		49.2
192				ND		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-05 (FO105878) 10138001005 P101008A_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.679	1.04	(7730)		98.4
194		54.465	0.89	`256Ó		73.8
195		51.900	0.91	800		73.8
196		50.312	0.90	1370		73.8
197	197/200	46.757	0.95	461		148
198	198/199	49.658	0.90	3770		148
199	198/199	49.658	0.90	(3770)		148
200	197/200	46.757	0.95	(461)		148
201		45.717	0.94	`559		73.8
202		44.778	0.90	994		73.8
203		50.513	0.90	2010		73.8
204				ND		73.8
205		55.047	0.98	120		73.8
206		57.267	0.79	2140		73.8
207		52.547	0.84	275		73.8
208		51.577	0.79	644		73.8
209		59.595	0.71	538		73.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-05 (FO105878) 10138001005 P101008A_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	304	
Total Dichloro Biphenyls	7670	
Total Trichloro Biphenyls	35200	
Total Tetrachloro Biphenyls	77200	
Total Pentachloro Biphenyls	95900	
Total Hexachloro Biphenyls	76400	
Total Heptachloro Biphenyls	31100	
Total Octachloro Biphenyls	12600	
Total Nonachloro Biphenyls	3060	
Decachloro Biphenyls	538	
Total PCBs	340000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0293-06 (FO105879)
Lab Sample ID 10138001006
Filename P101008A_05
Injected By BAL

Total Amount Extracted 16.3 g Matrix Solid
% Moisture 37.1 Dilution 5
Dry Weight Extracted 10.2 g Collected 09/07/2010

 ICAL ID
 P101008A02
 Received
 09/14/2010
 10:05

 CCal Filename(s)
 P101008A_01
 Extracted
 10/06/2010
 16:40

 Method Blank ID
 BLANK-26574
 Analyzed
 10/08/2010
 17:28

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.378	3.11	2.0	1.01	51
13C-4-MoCB	3	11.696	2.88	2.0	1.13	57
13C-2,2'-DiCB	4	12.056	1.60	2.0	1.48	74
13C-4,4'-DiCB	15	20.108	1.60	2.0	1.61	80
13C-2,2',6-TrCB	19	16.429	1.05	2.0	1.33	67
13C-3,4,4'-TrCB	37	28.377	1.05	2.0	1.30	65
13C-2,2',6,6'-TeCB	54	20.412	0.80	2.0	1.33	66
13C-3,4,4',5-TeCB	81	35.672	0.78	2.0	1.03	51
13C-3,3',4,4'-TeCB	77	36.259	0.80	2.0	1.05	52
13C-2,2',4,6,6'-PeCB	104	26.919	1.56	2.0	1.54	77
13C-2,3,3',4,4'-PeCB	105	39.848	1.58	2.0	1.05	52
13C-2,3,4,4',5-PeCB	114	39.210	1.63	2.0	1.08	54
13C-2,3',4,4',5-PeCB	118	38.640	1.56	2.0	1.05	52
13C-2,3',4,4',5'-PeCB	123	38.322	1.58	2.0	1.06	53
13C-3,3',4,4',5-PeCB	126	43.034	1.57	2.0	1.03	52
13C-2,2',4,4',6,6'-HxCB	155	33.157	1.27	2.0	1.62	81
13C-HxCB (156/157)	156/157	46.086	1.29	4.0	2.23	56
13C-2,3',4,4',5,5'-HxCB	167	44.895	1.24	2.0	1.13	57
13C-3,3',4,4',5,5'-HxCB	169	49.406	1.35	2.0	1.17	59
13C-2,2',3,4',5,6,6'-HpCB	188	39.127	1.06	2.0	1.67	83
13C-2,3,3',4,4',5,5'-HpCB	189	51.964	1.07	2.0	1.29	65
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.577	0.92	2.0	1.55	78
13C-2,3,3',4,4',5,5',6-OcCB	205	54.745	0.86	2.0	1.44	72
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.922	0.77	2.0	1.54	77
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.382	0.83	2.0	1.33	67
13CDeCB	209	59.250	0.72	2.0	1.42	71
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.783	1.06	2.0	1.38	69
13C-2,3,3',5,5'-PeCB	111	36.276	1.56	2.0	1.20	60
13C-2,2',3,3',5,5',6-HpCB	178	42.262	1.07	2.0	1.39	70
Recovery Standards						
13C-2,5-DiCB	9	14.907	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.896	0.78	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.442	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.826	1.31	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.184	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		8.390	3.20	378		24.5
2		11.457	3.08	154		24.5
2 3		11.720	3.11	340		24.5
4		12.068	1.56	2820		24.5
5		15.902	1.54	111		24.5
4 5 6		15.494	1.54	1340		24.5
7		15.147	1.53	228		24.5
8		16.082	1.58	6050		24.5
9		14.931	1.57	383		24.5
10		12.319	1.57	196		24.5
11		19.341	1.55	1050		147
12	12/13	19.700	1.51	998		48.9
13	12/13	19.700	1.51	(998)		48.9
14				NĎ		24.5
15		20.132	1.54	9910		24.5
16		20.024	1.05	7280		24.5
17		19.461	1.05	6870		24.5
18	18/30	18.921	1.04	13900		48.9
19		16.453	1.06	2140		24.5
20	20/28	23.799	1.03	31700		48.9
21	21/33	24.068	1.04	16100		48.9
22		24.537	1.03	12000		24.5
23		22.441	0.99	30.0		24.5
24				ND		24.5
25		23.095	1.04	2190		24.5
26	26/29	22.810	1.03	5250		48.9
27		19.724	1.04	1740		24.5
28	20/28	23.799	1.03	(31700)		48.9
29	26/29	22.810	1.03	(5250)		48.9
30	18/30	18.921	1.04	(13900)		48.9
31		23.464	1.04	26900		24.5
32		20.697	1.03	7050		24.5
33	21/33	24.068	1.04	(16100)		48.9
34		22.257	1.01	80.5		24.5
35		27.941	1.01	713		24.5
36				ND		24.5
37		28.394	1.03	11000		24.5
38		27.422	1.05	35.5		24.5
39		26.801	1.01	155		24.5
40	40/41/71	28.176	0.79	20500		147
41	40/41/71	28.176	0.79	(20500)		147
42		27.623	0.79	9830		48.9
43	43/73	26.181	0.79	909		97.8
44	44/47/65	27.036	0.79	36200		147
45	45/51	23.866	0.79	7010		97.8
46	4.4.4.7.10.7	24.235	0.77	2530		48.9
47	44/47/65	27.036	0.79	(36200)		147
48		26.784	0.79	6700		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.483	0.79	19400		97.8
50	50/53	23.078	0.78	4820		97.8
51	45/51	23.866	0.79	(7010)		97.8
52		25.929	0.79	5070Ó		48.9
53	50/53	23.078	0.78	(4820)		97.8
54		20.429	0.80	` 64.Ź		48.9
55				ND		48.9
56		32.318	0.77	8500		48.9
57		30.155	0.70	217		48.9
58		30.390	0.59 I		88.2	48.9
59	59/62/75	27.405	0.79	3150		147
60		32.553	0.77	4650		48.9
61	61/70/74/76	31.262	0.76	42000		196
62	59/62/75	27.405	0.79	(3150)		147
63		30.893	0.78	941		48.9
64		28.428	0.79	15400		48.9
65	44/47/65	27.036	0.79	(36200)		147
66		31.614	0.79	`1970Ó		48.9
67		30.608	0.76	809		48.9
68		29.702	0.74	71.0		48.9
69	49/69	26.483	0.79	(19400)		97.8
70	61/70/74/76	31.262	0.76	(42000)		196
71	40/41/71	28.176	0.79	(20500)		147
72	40/70	29.383	0.79	144		48.9
73	43/73	26.181	0.79	(909)		97.8
74	61/70/74/76	31.262	0.76	(42000)		196
75 70	59/62/75	27.405	0.79	(3150)		147
76 77	61/70/74/76	31.262	0.76	(42000)		196
77 70		36.292	0.77	2080		48.9
78 70		 24 592		ND		48.9
79 80		34.582	0.71	331 ND		48.9 48.9
81		35.689	0.91 I	ND 	95.2	48.9 48.9
82		35.856	1.56	6960	95.2	48.9
83		33.928	1.59	3570		48.9
84		31.446	1.58	16100		48.9
85	85/116/117	35.337	1.56	7750		147
86	86/87/97/108/119/125	34.683	1.56	38800		293
87	86/87/97/108/119/125	34.683	1.56	(38800)		293
88	88/91	31.211	1.58	7100		97.8
89	00/31	31.949	1.57	581		48.9
90	90/101/113	33.475	1.59	52200		147
91	88/91	31.211	1.58	(7100)		97.8
92		32.838	1.56	9830		48.9
93	93/98/100/102	30.658	1.54	1890		196
94		29.786	1.58	258		48.9
95		30.272	1.57	49300		48.9
96		27.371	1.57	485		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.683	1.56	(38800)		293
98	93/98/100/102	30.658	1.54	(1890)		196
99		34.062	1.57	Ì800Ó		48.9
100	93/98/100/102	30.658	1.54	(1890)		196
101	90/101/113	33.475	1.59	(52200)		147
102	93/98/100/102	30.658	1.54	`(1890)		196
103		29.568	1.54	` 246		48.9
104				ND		48.9
105		39.881	1.52	20900		48.9
106				ND		48.9
107	107/124	37.969	1.56	2010		97.8
108	86/87/97/108/119/125	34.683	1.56	(38800)		293
109		38.221	1.56	2540		48.9
110	110/115	35.538	1.56	58800		97.8
111				ND		48.9
112				ND		48.9
113	90/101/113	33.475	1.59	(52200)		147
114		39.227	1.58	1240		48.9
115	110/115	35.538	1.56	(58800)		97.8
116	85/116/117	35.337	1.56	(7750)		147
117	85/116/117	35.337	1.56	(7750)		147
118		38.674	1.56	46500		48.9
119	86/87/97/108/119/125	34.683	1.56	(38800)		293
120				ND		48.9
121				ND		48.9
122		39.009	1.65	517		48.9
123	407/404	38.322	1.44	924		48.9
124	107/124	37.969	1.56	(2010)		97.8
125	86/87/97/108/119/125	34.683	1.56 2.05 I	(38800)	440	293 48.9
126 127		43.051 41.407	2.05 i 1.44	 73.5	119	48.9
127	128/166	43.118	1.44	73.5 9180		46.9 97.8
128	129/138/163	41.860	1.23	54400		97.6 147
130	129/130/103	41.189	1.23	3920		48.9
131		38.271	1.23	1070		48.9
132		38.741	1.23	19400		48.9
133		39.277	1.25	625		48.9
134	134/143	37.651	1.24	2870		97.8
135	135/151	36.494	1.25	13300		97.8
136	133/131	33.945	1.25	6580		48.9
137		41.407	1.24	3110		48.9
138	129/138/163	41.860	1.23	(54400)		147
139	139/140	38.070	1.22	1050		97.8
140	139/140	38.070	1.22	(1050)		97.8
141	2 - 	40.770	1.22	7980		48.9
142				ND		48.9
143	134/143	37.651	1.24	(2870)		97.8
144		37.081	1.25	2220		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.9
146		39.948	1.25	5980		48.9
147	147/149	37.450	1.25	32800		97.8
148	,			ND		48.9
149	147/149	37.450	1.25	(32800)		97.8
150	1 177 1 10	33.559	1.32	49.3		48.9
151	135/151	36.494	1.25	(13300)		97.8
152	100/101	33.358	1.32	53.9		48.9
153	153/168	40.585	1.23	34300		97.8
154	133/133	36.745	1.43	286		48.9
155				ND		48.9
156	156/157	46.069	1.24	8210		97.8
157	156/157	46.069	1.24	(8210)		97.8
158	130/137	42.246	1.24	5560		48.9
159		42.240	1.24	ND		48.9
160				ND		48.9
161				ND		48.9
162		44.459	1.25	283		48.9
163	129/138/163	41.860	1.23	(54400)		147
164	129/130/103	41.524	1.25	3250		48.9
165		41.524	1.25	ND		48.9
166	128/166	43.118	1.36	(9180)		97.8
167	120/100	44.929	1.26	2520		48.9
168	153/168	40.585	1.23	(34300)		97.8
169	155/166	40.363	1.23	(34300) ND		48.9
170		48.752	1.02	6640		48.9
170	171/173	45.147	1.02	2060		97.8
171	17 1/173	46.807	1.00	1080		48.9
172	171/173	45.147	1.03	(2060)		97.8
173	17 1/173	44.057	1.00	5150		48.9
174		42.916	1.02			48.9
175		40.384	1.03	285 814		48.9
176		44.510	1.02	3340		48.9
		42.279	1.04	1070		48.9
178 179		42.279 39.479	1.02	2210		
	100/102		1.04			48.9
180	180/193	47.478	1.04	11300		97.8
181		44.929		111 ND		48.9
182	100/105	40.000	4.00	ND		48.9
183	183/185	43.822	1.09	4110 ND		97.8
184	102/105	42.022	1.00	ND (4110)		48.9
185	183/185	43.822 	1.09 	(4110) ND		97.8 48.0
186						48.9
187		43.201	1.04	5760		48.9
188		 E4 064	1.02	ND		48.9
189		51.964	1.02	333		48.9
190		49.306	1.02	1190		48.9
191		47.847	1.05	251 ND		48.9
192				ND		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.478	1.04	(11300)		97.8
194		54.206	0.90	· 222Ó		73.4
195		51.684	0.89	789		73.4
196		50.110	0.89	1220		73.4
197	197/200	46.572	0.92	386		147
198	198/199	49.456	0.89	2690		147
199	198/199	49.456	0.89	(2690)		147
200	197/200	46.572	0.92	`(386)		147
201		45.549	0.91	`341		73.4
202		44.610	0.91	559		73.4
203		50.312	0.89	1630		73.4
204				ND		73.4
205		54.766	0.83	118		73.4
206		56.965	0.77	1930		73.4
207		52.352	0.79	218		73.4
208		51.382	0.77	527		73.4
209		59.271	0.69	652		73.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0293-06 (FO105879) 10138001006 P101008A_05

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	872	
Total Dichloro Biphenyls	23100	
Total Trichloro Biphenyls	145000	
Total Tetrachloro Biphenyls	257000	
Total Pentachloro Biphenyls	347000	
Total Hexachloro Biphenyls	219000	
Total Heptachloro Biphenyls	45700	
Total Octachloro Biphenyls	9950	
Total Nonachloro Biphenyls	2680	
Decachloro Biphenyls	652	
Total PCBs	1050000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-26482 Filename P100930B 09 Injected By BAL

Solid Matrix **Total Amount Extracted** 10.4 g Extracted 09/29/2010 14:40

ICAL ID P100930B02 Analyzed 09/30/2010 22:55

CCal Filename(s)	P100930B	_01		Dilution	NA		
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes							_
13C-2-MoCB	1	9.061	3.18	2.0	1.30	65	
13C-4-MoCB	3	12.487	3.06	2.0	1.42	71	
13C-2,2'-DiCB	4	12.834	1.59	2.0	1.62	81	
13C-4,4'-DiCB	15	21.006	1.54	2.0	1.43	71	
13C-2,2',6-TrCB	19	17.279	1.08	2.0	1.67	83	
13C-3,4,4'-TrCB	37	29.359	1.06	2.0	1.49	74	
13C-2,2',6,6'-TeCB	54	21.310	0.79	2.0	1.54	77	
13C-3,4,4',5-TeCB	81	36.837	0.82	2.0	0.553	28	
13C-3,3',4,4'-TeCB	77	37.441	0.80	2.0	0.540	27	
13C-2,2',4,6,6'-PeCB	104	27.883	1.58	2.0	4.44	222 R	₹
13C-2,3,3',4,4'-PeCB	105	41.046	1.60	2.0	1.43	71	•
13C-2,3,4,4',5-PeCB	114	40.375	1.56	2.0	1.37	68	
13C-2,3',4,4',5-PeCB	118	39.839	1.66	2.0	1.26	63	
13C-2,3',4,4',5'-PeCB	123	39.504	1.52	2.0	1.29	65	
13C-3,3',4,4',5-PeCB	126	44.165	1.49	2.0	2.07	103	
13C-2,2',4,4',6,6'-HxCB	155	34.255	1.23	2.0	1.58	79	
13C-HxCB (156/157)	156/157	47.116	1.26	4.0	5.41	135	
13C-2,3',4,4',5,5'-HxCB	167	45.959	1.24	2.0	2.45	122	
13C-3,3',4,4',5,5'-HxCB	169	50.386	1.26	2.0	2.90	145	
13C-2,2',3,4',5,6,6'-HpCB	188	40.275	1.09	2.0	0.770	38	
13C-2,3,3',4,4',5,5'-HpCB	189	52.896	1.06	2.0	1.77	89	
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.641	0.91	2.0	1.58	79	
13C-2,3,3',4,4',5,5',6-OcCB	205	55.827	0.90	2.0	1.82	91	
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.177	0.77	2.0	1.88	94	
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.314	0.79	2.0	1.85	92	
13CDeCB	209	60.634	0.69	2.0	1.77	88	
	_00	00.00	0.00				
Cleanup Standards							
13C-2,4,4'-TrCB	28	24.714	1.05	2.0	1.65	83	
13C-2,3,3',5,5'-PeCB	111	37.458	1.60	2.0	1.34	67	
13C-2,2',3,3',5,5',6-HpCB	178	43.377	1.08	2.0	2.06	103	
Recovery Standards							
13C-2,5-DiCB	9	15.734	1.57	2.0	NA	NA	
13C-2,2',5,5'-TeCB	52	26.844	0.79	2.0	NA	NA	
13C-2,2',4,5,5'-PeCB	101	34.523	1.62	2.0	NA	NA	
13C-2,2',3,4,4',5'-HxCB	138	42.941	1.25	2.0	NA	NA	
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.224	0.91	2.0	NA	NA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.1
2				ND		24.1
3				ND		24.1
3 4 5 6 7				ND		24.1
5				ND		24.1
6				ND		24.1
7				ND		24.1
8				ND		24.1
9				ND		24.1
10				ND		24.1
11				ND		144
12	12/13			ND		48.1
13	12/13			ND		48.1
14	.20			ND		24.1
15				ND		24.1
16				ND		24.1
17				ND		24.1
18	18/30			ND		48.1
19				ND		24.1
20	20/28			ND		48.1
21	21/33			ND		48.1
22				ND		24.1
23				ND		24.1
24				ND		24.1
25				ND		24.1
26	26/29			ND		48.1
27				ND		24.1
28	20/28			ND		48.1
29	26/29			ND		48.1
30	18/30			ND		48.1
31				ND		24.1
32				ND		24.1
33	21/33			ND		48.1
34				ND		24.1
35				ND		24.1
36				ND		24.1
37				ND		24.1
38				ND		24.1
39				ND		24.1
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.1
43	43/73			ND		96.2
44	44/47/65			ND		144
45	45/51			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.1
47	44/47/65			ND		144
48				ND		48.1
49	49/69			ND		96.2
50	50/53			ND		96.2
51	45/51			ND		96.2
52	16/61			ND		48.1
53	50/53			ND		96.2
54	00/00			ND		48.1
55				ND		48.1
56				ND		48.1
57				ND		48.1
58				ND		48.1
59	59/62/75			ND		144
60	00/02/10			ND		48.1
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	33/02/19			ND		48.1
64				ND ND		48.1
65	44/47/65			ND ND		144
66	44/47/03			ND ND		48.1
67				ND ND		48.1
68				ND ND		48.1
69	49/69			ND ND		96.2
70	49/09 61/70/74/76			ND ND		192
70 71	40/41/71			ND ND		144
71 72	40/41/71			ND ND		48.1
	40/70					
73	43/73			ND		96.2
74	61/70/74/76			ND		192
75 70	59/62/75			ND ND		144
76	61/70/74/76			ND		192
77				ND		48.1
78				ND		48.1
79				ND		48.1
80				ND		48.1
81				ND		48.1
82				ND		48.1
83				ND		48.1
84				ND		48.1
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		289
87	86/87/97/108/119/125			ND		289
88	88/91			ND		96.2
89				ND		48.1
90	90/101/113			ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.2
92				ND		48.1
93	93/98/100/102			ND		192
94				ND		48.1
95				ND		48.1
96				ND		48.1
97	86/87/97/108/119/125			ND		289
98	93/98/100/102			ND		192
99	00,00,100,100			ND		48.1
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	00/00/100/102			ND		48.1
103				ND		48.1
105				ND		48.1
106				ND ND		48.1
107	107/124			ND ND		96.2
107	86/87/97/108/119/125			ND ND		289
108	00/07/97/100/119/123			ND ND		48.1
1109	110/115			ND ND		96.2
110	110/115			ND ND		
						48.1
112	00/404/440			ND		48.1
113	90/101/113			ND		144
114	440/445			ND		48.1
115	110/115			ND		96.2
116	85/116/117			ND		144
117	85/116/117			ND		144
118	00/07/07/400/440/407			ND		48.1
119	86/87/97/108/119/125			ND		289
120				ND		48.1
121				ND		48.1
122				ND		48.1
123				ND		48.1
124	107/124			ND		96.2
125	86/87/97/108/119/125			ND		289
126				ND		48.1
127				ND		48.1
128	128/166			ND		96.2
129	129/138/163			ND		144
130				ND		48.1
131				ND		48.1
132				ND		48.1
133				ND		48.1
134	134/143			ND		96.2
135	135/151			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.1
137				ND		48.1
138	129/138/163			ND		144
139	139/140			ND		96.2
140	139/140			ND		96.2
141	100/110			ND		48.1
142				ND		48.1
143	134/143			ND		96.2
144				ND		48.1
145				ND		48.1
146				ND		48.1
147	147/149			ND		96.2
148				ND		48.1
149	147/149			ND		96.2
150				ND		48.1
151	135/151			ND		96.2
152				ND		48.1
153	153/168			ND		96.2
154				ND		48.1
155				ND		48.1
156	156/157			ND		96.2
157	156/157			ND		96.2
158				ND		48.1
159				ND		48.1
160				ND		48.1
161				ND		48.1
162				ND		48.1
163	129/138/163			ND		144
164				ND		48.1
165				ND		48.1
166	128/166			ND		96.2
167				ND		48.1
168	153/168			ND		96.2
169				ND		48.1
170				ND		48.1
171	171/173			ND		96.2
172				ND		48.1
173	171/173			ND		96.2
174				ND		48.1
175				ND		48.1
176				ND		48.1
177				ND		48.1
178				ND		48.1
179				ND		48.1
180	180/193			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		48.1
182				ND		48.1
183	183/185			ND		96.2
184				ND		48.1
185	183/185			ND		96.2
186				ND		48.1
187				ND		48.1
188				ND		48.1
189				ND		48.1
190				ND		48.1
191				ND		48.1
192				ND		48.1
193	180/193			ND		96.2
194				ND		72.2
195				ND		72.2
196				ND		72.2
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.2
202				ND		72.2
203				ND		72.2
204				ND		72.2
205				ND		72.2
206				ND		72.2
207				ND		72.2
208				ND		72.2
209				ND		72.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKNV BLANK-26482 P100930B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-26574 Filename P101008A 04

Injected By Solid BAL Matrix

10/06/2010 16:40 **Total Amount Extracted** 10.4 g Extracted **ICAL ID** P101008A02 Analyzed 10/08/2010 16:25

CCal Filename(s) P101008A 01 Dilution

CCai Filename(s)	P101008A	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.390	3.12	2.0	1.32	66
13C-4-MoCB	3	11.733	3.11	2.0	1.46	73
13C-2,2'-DiCB	4	12.057	1.58	2.0	1.45	73
13C-4,4'-DiCB	15	20.109	1.54	2.0	1.32	66
13C-2,2',6-TrCB	19	16.442	1.04	2.0	1.49	75
13C-3,4,4'-TrCB	37	28.412	1.11	2.0	1.40	70
13C-2,2',6,6'-TeCB	54	20.413	0.79	2.0	1.56	78
13C-3,4,4',5-TeCB	<u>81</u>	35.823	0.83	2.0	0.787	39
13C-3,3',4,4'-TeCB	77	36.410	0.79	2.0	0.808	40
13C-2,2',4,6,6'-PeCB	104	26.953	1.59	2.0	2.87	144
13C-2,3,3',4,4'-PeCB	105	39.999	1.61	2.0	1.42	71
13C-2,3,4,4',5-PeCB	114	39.345	1.57	2.0	1.43	72
13C-2,3',4,4',5-PeCB	118	38.792	1.62	2.0	1.36	68
13C-2,3',4,4',5'-PeCB	123 126	38.473	1.61 1.54	2.0 2.0	1.40 1.79	70 90
13C-3,3',4,4',5-PeCB	155	43.118 33.274	1.54	2.0	1.79 1.55	90 77
13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157)	156/157	33.274 46.086	1.27	4.0	4.10	103
13C-2,3',4,4',5,5'-HxCB	167	44.929	1.24	2.0	1.94	97
13C-3,3',4,4',5,5'-HxCB	169	49.339	1.26	2.0	2.36	118
13C-2,2',3,4',5,6,6'-HpCB	188	39.261	1.07	2.0	0.960	48
13C-2,3,3',4,4',5,5'-HpCB	189	51.835	1.06	2.0	1.64	82
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.627	0.92	2.0	1.37	68
13C-2,3,3',4,4',5,5',6-OcCB	205	54.594	0.87	2.0	1.73	87
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.749	0.80	2.0	1.59	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.275	0.80	2.0	1.63	82
13CDeCB	209	59.013	0.70	2.0	1.44	72
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.784	1.03	2.0	1.61	80
13C-2,3,3',5,5'-PeCB	111	36.461	1.57	2.0	1.39	69
13C-2,2',3,3',5,5',6-HpCB	178	42.363	1.02	2.0	1.80	90
Recovery Standards						
13C-2,5-DiCB	9	14.968	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.913	0.79	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	33.543	1.60	2.0	NA NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	41.927	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.034	0.88	2.0	NA	NA
		3	0.00	2.0		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
IUFAC	CO-ciulions	IX I	Natio	iig/r\g	ng/Ng	ilg/Ng
1				ND		24.0
2				ND		24.0
2 3 4				ND		24.0
4				ND		24.0
5 6				ND		24.0
6				ND		24.0
7				ND		24.0
8				ND		24.0
9				ND		24.0
10				ND		24.0
11				ND		144
12	12/13			ND		48.0
13	12/13			ND		48.0
14				ND		24.0
15				ND		24.0
16				ND		24.0
17				ND		24.0
18	18/30			ND		48.0
19				ND		24.0
20	20/28			ND		48.0
21	21/33			ND		48.0
22				ND		24.0
23				ND		24.0
24				ND		24.0
25				ND		24.0
26	26/29			ND		48.0
27				ND		24.0
28	20/28			ND		48.0
29	26/29			ND		48.0
30	18/30			ND		48.0
31				ND		24.0
32				ND		24.0
33	21/33			ND		48.0
34				ND		24.0
35				ND		24.0
36				ND		24.0
37				ND		24.0
38				ND		24.0
39				ND		24.0
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.0
43	43/73			ND		96.1
44	44/47/65			ND		144
45	45/51			ND		96.1
-				• •=		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.0
47	44/47/65			ND		144
48				ND		48.0
49	49/69			ND		96.1
50	50/53			ND		96.1
51	45/51			ND		96.1
52				ND		48.0
53	50/53			ND		96.1
54				ND		48.0
55				ND		48.0
56				ND		48.0
57				ND		48.0
58				ND		48.0
59	59/62/75			ND		144
60				ND		48.0
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63				ND		48.0
64				ND		48.0
65	44/47/65			ND		144
66				ND		48.0
67				ND		48.0
68	40/00			ND		48.0
69	49/69			ND		96.1
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72	10/70			ND		48.0
73	43/73			ND		96.1
74	61/70/74/76			ND		192
75 70	59/62/75 64/70/74/76			ND ND		144
76 77	61/70/74/76			ND ND		192
77 70				ND ND		48.0
78 70						48.0
79 80				ND ND		48.0 48.0
81				ND ND		48.0 48.0
82				ND ND		48.0
83				ND ND		48.0 48.0
84				ND ND		48.0 48.0
85	85/116/117			ND ND		46.0 144
86	86/87/97/108/119/125			ND ND		288
87	86/87/97/108/119/125			ND ND		288
88	88/91			ND ND		96.1
89	00/31			ND ND		48.0
90	90/101/113			ND ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A_04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.1
92	33,31			ND		48.0
93	93/98/100/102			ND		192
94	00/00/100/102			ND		48.0
95				ND		48.0
96				ND		48.0
97	86/87/97/108/119/125			ND		288
98	93/98/100/102			ND		192
99	00/00/100/102			ND		48.0
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND ND		192
103	93/90/100/102			ND ND		48.0
103				ND ND		48.0
105				ND ND		48.0
106				ND ND		48.0
107	107/124			ND ND		96.1
107	86/87/97/108/119/125			ND ND		288
	00/07/97/100/119/125					
109 110	110/115			ND		48.0
	110/115			ND		96.1
111				ND		48.0
112	00/404/440			ND		48.0
113	90/101/113			ND		144
114	440/445			ND		48.0
115	110/115			ND		96.1
116	85/116/117			ND		144
117	85/116/117			ND		144
118	00/07/07/400/440/407			ND		48.0
119	86/87/97/108/119/125			ND		288
120				ND		48.0
121				ND		48.0
122				ND		48.0
123				ND		48.0
124	107/124			ND		96.1
125	86/87/97/108/119/125			ND		288
126				ND		48.0
127				ND		48.0
128	128/166			ND		96.1
129	129/138/163			ND		144
130				ND		48.0
131				ND		48.0
132				ND		48.0
133				ND		48.0
134	134/143			ND		96.1
135	135/151			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.0
137				ND		48.0
138	129/138/163			ND		144
139	139/140			ND		96.1
140	139/140			ND		96.1
141	100/110			ND		48.0
142				ND		48.0
143	134/143			ND		96.1
144				ND		48.0
145				ND		48.0
146				ND		48.0
147	147/149			ND		96.1
148	,			ND		48.0
149	147/149			ND		96.1
150				ND		48.0
151	135/151			ND		96.1
152				ND		48.0
153	153/168			ND		96.1
154				ND		48.0
155				ND		48.0
156	156/157			ND		96.1
157	156/157			ND		96.1
158				ND		48.0
159				ND		48.0
160				ND		48.0
161				ND		48.0
162				ND		48.0
163	129/138/163			ND		144
164				ND		48.0
165				ND		48.0
166	128/166			ND		96.1
167				ND		48.0
168	153/168			ND		96.1
169				ND		48.0
170				ND		48.0
171	171/173			ND		96.1
172				ND		48.0
173	171/173			ND		96.1
174				ND		48.0
175				ND		48.0
176				ND		48.0
177				ND		48.0
178				ND		48.0
179				ND		48.0
180	180/193			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
181				ND		48.0
182				ND		48.0
183	183/185			ND		96.1
184	100/100			ND		48.0
185	183/185			ND		96.1
186				ND		48.0
187				ND		48.0
188				ND		48.0
189				ND		48.0
190				ND		48.0
191				ND		48.0
192				ND		48.0
193	180/193			ND		96.1
194				ND		72.0
195				ND		72.0
196				ND		72.0
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.0
202				ND		72.0
203				ND		72.0
204				ND		72.0
205				ND		72.0
206				ND		72.0
207				ND		72.0
208				ND		72.0
209				ND		72.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKOO BLANK-26574 P101008A_04

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s)

Method Blank ID

LCS-26483 P100930B_10

10.2 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 00:01

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recover	ry
1	1.0	0.990	99	2.0	1.47	73	
3	1.0	1.06	106	2.0	1.54	77	
4	1.0	0.979	98	2.0	1.72	86	
15	1.0	1.14	114	2.0	1.41	70	
19	1.0	0.876	88	2.0	1.66	83	
37	1.0	0.992	99	2.0	1.52	76	
54	1.0	0.962	96	2.0	1.59	79	
81	1.0	1.06	106	2.0	0.680	34	
77	1.0	0.953	95	2.0	0.663	33	
104	1.0	0.955	96	2.0	3.37	169	R
105	1.0	1.02	102	2.0	1.39	69	
114	1.0	1.09	109	2.0	1.31	66	
118	1.0	1.14	114	2.0	1.24	62	
123	1.0	1.06	106	2.0	1.22	61	
126	1.0	1.01	101	2.0	1.95	97	
155	1.0	0.955	96	2.0	1.66	83	
156/157	2.0	2.11	105	4.0	4.28	107	
167	1.0	1.06	106	2.0	2.11	106	
169	1.0	1.05	105	2.0	2.24	112	
188	1.0	1.02	102	2.0	0.939	47	
189	1.0	1.06	106	2.0	1.66	83	
202	1.0	0.970	97	2.0	1.79	90	
205	1.0	1.01	101	2.0	1.75	88	
206	1.0	0.978	98	2.0	1.80	90	
208	1.0	1.03	103	2.0	1.73	86	
209	1.0	1.32	132	2.0	1.62	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26575 P101009A_04

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 04:14

Injected By BAL

	N	Native Analy	tes	Labeled Analytes		
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.11	111	2.0	1.34	67
3	1.0	1.13	113	2.0	1.52	76
4	1.0	0.992	99	2.0	1.45	72
15	1.0	1.13	113	2.0	1.71	85
19	1.0	1.01	101	2.0	1.36	68
37	1.0	1.07	107	2.0	1.71	85
54	1.0	0.983	98	2.0	1.67	83
81	1.0	1.04	104	2.0	1.01	51
77	1.0	1.01	101	2.0	1.05	53
104	1.0	1.02	102	2.0	2.13	107
105	1.0	1.10	110	2.0	1.42	71
114	1.0	1.03	103	2.0	1.39	69
118	1.0	1.24	124	2.0	1.32	66
123	1.0	1.10	110	2.0	1.36	68
126	1.0	1.04	104	2.0	1.72	86
155	1.0	1.00	100	2.0	1.62	81
156/157	2.0	2.17	109	4.0	3.40	85
167	1.0	1.10	110	2.0	1.70	85
169	1.0	1.03	103	2.0	1.70	85
188	1.0	1.00	100	2.0	1.45	73
189	1.0	1.08	108	2.0	1.70	85
202	1.0	0.979	98	2.0	1.92	96
205	1.0	1.05	105	2.0	1.66	83
206	1.0	1.02	102	2.0	1.77	89
208	1.0	0.983	98	2.0	1.65	82
209	1.0	1.21	121	2.0	1.63	81

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCSD-26484 P100930B_11

10.4 g P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 01:06

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1	1.0	1.04	104	2.0	1.42	71	
3	1.0	1.05	105	2.0	1.53	76	
4	1.0	1.06	106	2.0	1.71	85	
15	1.0	1.11	111	2.0	1.44	72	
19	1.0	0.977	98	2.0	1.58	79	
37	1.0	1.02	102	2.0	1.60	80	
54	1.0	0.984	98	2.0	1.62	81	
81	1.0	1.07	107	2.0	0.736	37	
77	1.0	0.989	99	2.0	0.698	35	
104	1.0	0.943	94	2.0	3.48	174	R
105	1.0	1.09	109	2.0	1.46	73	
114	1.0	1.07	107	2.0	1.37	68	
118	1.0	1.14	114	2.0	1.29	64	
123	1.0	1.09	109	2.0	1.30	65	
126	1.0	1.01	101	2.0	2.02	101	
155	1.0	1.01	101	2.0	1.64	82	
156/157	2.0	2.18	109	4.0	4.30	108	
167	1.0	1.10	110	2.0	2.13	107	
169	1.0	1.06	106	2.0	2.31	115	
188	1.0	1.05	105	2.0	0.981	49	
189	1.0	1.07	107	2.0	1.81	90	
202	1.0	0.960	96	2.0	1.96	98	
205	1.0	1.01	101	2.0	1.86	93	
206	1.0	0.990	99	2.0	1.95	97	
208	1.0	0.976	98	2.0	1.88	94	
209	1.0	1.36	136	2.0	1.78	89	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCSD-26576 P101009A_05

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 05:19

Injected By BAL

	1	Native Analy	tes	Lal	beled Analyt	es
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery
1	1.0	1.14	114	2.0	1.45	73
3	1.0	1.19	119	2.0	1.59	79
4	1.0	1.02	102	2.0	1.53	77
15	1.0	0.991	99	2.0	1.48	74
19	1.0	1.01	101	2.0	1.43	72
37	1.0	1.09	109	2.0	1.62	81
54	1.0	1.01	101	2.0	1.26	63
81	1.0	1.05	105	2.0	0.925	46
77	1.0	1.02	102	2.0	0.957	48
104	1.0	1.01	101	2.0	2.54	127
105	1.0	1.11	111	2.0	1.24	62
114	1.0	1.08	108	2.0	1.34	67
118	1.0	1.19	119	2.0	1.34	67
123	1.0	1.15	115	2.0	1.33	66
126	1.0	1.07	107	2.0	1.26	63
155	1.0	1.01	101	2.0	2.04	102
156/157	2.0	2.21	111	4.0	3.64	91
167	1.0	1.11	111	2.0	1.76	88
169	1.0	1.09	109	2.0	2.14	107
188	1.0	0.994	99	2.0	1.36	68
189	1.0	1.07	107	2.0	1.68	84
202	1.0	1.03	103	2.0	1.23	61
205	1.0	0.997	100	2.0	1.71	85
206	1.0	0.979	98	2.0	1.71	85
208	1.0	1.04	104	2.0	1.56	78
209	1.0	1.28	128	2.0	1.84	92

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26483
 Spike 2 ID
 LCSD-26484

 Spike 1 Filename
 P100930B_10
 Spike 2 Filename
 P100930B_11

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	99	104	4.9	
4-MoCB	3	106	105	0.9	
2,2'-DiCB	4	98	106	7.8	
4,4'-DiCB	15	114	111	2.7	
2,2',6-TrCB	19	88	98	10.8	
3,4,4'-TrCB	37	99	102	3.0	
2,2',6,6'-TeCB	54	96	98	2.1	
3,3',4,4'-TeCB	77	95	99	4.1	
3,4,4',5-TeCB	81	106	107	0.9	
2,2',4,6,6'-PeCB	104	96	94	2.1	
2,3,3',4,4'-PeCB	105	102	109	6.6	
2,3,4,4',5-PeCB	114	109	107	1.9	
2,3',4,4',5-PeCB	118	114	114	0.0	
2,3',4,4',5'-PeCB	123	106	109	2.8	
3,3',4,4',5-PeCB	126	101	101	0.0	
2,2',4,4',6,6'-HxCB	155	96	101	5.1	
(156/157)	156/157	105	109	3.7	
2,3',4,4',5,5'-HxCB	167	106	110	3.7	
3,3',4,4',5,5'-HxCB	169	105	106	0.9	
2,2',3,4',5,6,6'-HpCB	188	102	105	2.9	
2,3,3',4,4',5,5'-HpCB	189	106	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	97	96	1.0	
2,3,3',4,4',5,5',6-OcCB	205	101	101	0.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	99	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	103	98	5.0	
Decachlorobiphenyl	209	132	136	3.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26575
 Spike 2 ID
 LCSD-26576

 Spike 1 Filename
 P101009A_04
 Spike 2 Filename
 P101009A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	111	114	2.7	
4-MoCB	3	113	119	5.2	
2,2'-DiCB	4	99	102	3.0	
4,4'-DiCB	15	113	99	13.2	
2,2',6-TrCB	19	101	101	0.0	
3,4,4'-TrCB	37	107	109	1.9	
2,2',6,6'-TeCB	54	98	101	3.0	
3,3',4,4'-TeCB	77	101	102	1.0	
3,4,4',5-TeCB	81	104	105	1.0	
2,2',4,6,6'-PeCB	104	102	101	1.0	
2,3,3',4,4'-PeCB	105	110	111	0.9	
2,3,4,4',5-PeCB	114	103	108	4.7	
2,3',4,4',5-PeCB	118	124	119	4.1	
2,3',4,4',5'-PeCB	123	110	115	4.4	
3,3',4,4',5-PeCB	126	104	107	2.8	
2,2',4,4',6,6'-HxCB	155	100	101	1.0	
(156/157)	156/157	109	111	1.8	
2,3',4,4',5,5'-HxCB	167	110	111	0.9	
3,3',4,4',5,5'-HxCB	169	103	109	5.7	
2,2',3,4',5,6,6'-HpCB	188	100	99	1.0	
2,3,3',4,4',5,5'-HpCB	189	108	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	98	103	5.0	
2,3,3',4,4',5,5',6-OcCB	205	105	100	4.9	
2,2',3,3',4,4',5,5',6-NoCB	206	102	98	4.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	98	104	5.9	
Decachlorobiphenyl	209	121	128	5.6	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value