

TECHNICAL MEMORANDUM No. OF22B-1

City Outfall Basin 22B Upland Source Control Investigation

TO: Chip Humphrey, EPA

FROM: Dawn Sanders, City of Portland, BES Linda Scheffler, City of Portland, BES

COPIES: Kristine Koch, EPA Tom Roick, DEQ, Northwest Region Cleanup & Portland Harbor Section Rod Struck, DEQ, Northwest Region Cleanup & Portland Harbor Section Bruce Brody-Heine, GSI

DATE: November 17, 2005

SUBJECT: Dry-Weather Flow Sampling of the Gould, Inc./NL Industries Stormwater Lateral Line

Introduction

This technical memorandum summarizes the results of the City of Portland (City) Bureau of Environmental Services' (BES) source control investigation of dry-weather flow entering the Outfall Basin 22B stormwater conveyance system. A 2004 camera survey of the City line revealed an undocumented stormwater lateral line originating from the Gould, Inc./NL Industries (Gould) Superfund site. The City is concerned that this flow could be conveying contaminants from upland environmental cleanup sites into the City's stormwater collection system. This investigation, conducted in June 2005, is part of the City's ongoing source control program associated with the Portland Harbor City of Portland Outfalls Project. These investigation results are submitted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between the Oregon Department of Environmental Quality (DEQ) and the City.

Purpose and Objectives

The purpose of this investigation is to evaluate whether dry-weather flow from the Gould lateral line could be contributing contaminants to the Willamette River via the City's conveyance system. Contaminants of Interest (COIs) at the Gould site include pesticides, herbicides, dioxins/furans, semivolatile organic compounds (SVOCs), and volatile organic compounds (VOCs) (AMEC, 2000 and 2003). According to the DEQ Environmental Cleanup Site Information Database (ECSI) Site Summary Report for Gould (ECSI Site

No. 49), contaminants originating at the Rhone Poulenc AG Company (RPAC) DEQ cleanup site have extended to the Gould site soils and groundwater (DEQ, 2003). Sediment samples collected in the Willamette River near Outfall 22B have also contained a similar suite of contaminants (Integral, 2005). As part of our ongoing source control program, the City sampled dry-weather flow from the Gould lateral line and analyzed it for the COIs identified at the upgradient Superfund and DEQ Cleanup sites and in river sediment data near Outfall 22B.

Background

Figure 1 shows the locations of the City Outfall Basin 22B stormwater conveyance system and the Gould lateral line. The City conveyance system at this location consists of a 48-inch-diameter concrete pipe in NW Front Ave., and affiliated catch basins. Metro Rooter Plumbing (MRP) conducted a camera survey of this storm line for AMEC Earth & Environmental (AMEC) in June 2004 (MRP, 2004) as part of an investigation of potential impacts to the City stormwater conveyance system associated with the RPAC groundwater plume (ECSI Site No.155). During the survey, MRP staff observed an 18-inch concrete stormwater lateral entering the west side of the 48-inch City line approximately 65 feet southeast and upstream of manhole AAJ653.

As part of the remedial actions on the Gould site, an Onsite Containment Facility (OCF) was constructed to restrict the migration of contaminants off site. The Gould OCF design included a stormwater collection and piping system. While the City does not have a connection permit on record for this Gould stormwater line, the U.S. Environmental Protection Agency's (EPA) project manager has indicated that the location corresponds to the private line associated with the OCF stormwater collection system (EPA, 2005). According to EPA, the connection of the Gould site stormwater collection system to the City's conveyance system was completed by August 2000.

The MRP survey documented water flowing from the Gould line after an extended dry period of more than 72 hours. The Gould site system is designed to collect and convey stormwater only from the OCF (EPA, 2005). Water flowing from the line during dry-weather periods could represent latent release of captured stormwater, undocumented process discharge, or groundwater infiltration.

Field Activities

The City coordinated with DEQ regarding this source control investigation prior to conducting this work. Flow from the Gould site stormwater lateral was sampled by the BES Field Operations section between approximately 9:00 and 9:45 am on June 21, 2005.

Collection of a dry-weather flow sample requires minimal precipitation in the 24-hour period preceding sample collection (optimally < 0.1 inch of rainfall) to ensure no stormwater is moving through the conveyance system. No measurable precipitation occurred at the Gould site on the day of sampling (June 21, 2005). Approximately 0.01 inch of precipitation was recorded on June 20 at a nearby rain gauge; 0.04 inch fell on

June 19 at this gauge location. Based upon the rainfall information, this sample represents dry-weather flow.

Samples were collected by filling a beaker with water discharging from the Gould line and then decanting the water into sample bottles, in accordance with BES Field Operations Standard Operating Procedures. The sample was clear and had no obvious color or odor. Flow from the Gould line, at the time of sample collection, was estimated to be approximately 0.5 gallon per minute (gpm). Photos of the lateral line are included in Attachment A. Field notes taken during sampling are provided in Attachment B.

Summary of Results

The dry-weather flow sample obtained from the Gould stormwater lateral was analyzed for total metals, chlorinated herbicides, dioxins and furans, pesticides, SVOCs, and VOCs. Nine metals, fifteen chlorinated pesticide compounds, one SVOC compound, and one VOC compound were detected in the sample at concentrations greater than the reporting limit. Individual dioxin/furan compounds and chlorinated herbicide compounds were not detected. Table 1 and Figures 1 and 2 summarize the analytes that were detected in the dry-weather flow sample. The laboratory analytical reports are provided in Attachment C. The results are further summarized below by analyte class.

- Of the nine metal constituents detected, the detected concentrations of arsenic and cadmium were greater than the most stringent Portland Harbor Joint Source Control Strategy (JSCS) (DEQ/EPA, 2005) screening levels.
- Concentrations of seven chlorinated pesticides exceeded the most stringent JSCS screening levels. Four chlorinated pesticides were detected at concentrations below the method reporting limit and were reported as estimated concentrations.
- One SVOC, 4-Chloro-3-methylphenol, was detected; a JSCS screening value has not been established for 4-Chloro-3-methylphenol.
- One VOC, 1,2-Dichlorobenzene, was detected; the concentration of 1,2-Dichlorobenzene was less than the most stringent JSCS screening value.

Conclusions and Recommendations

Analytical results for the dry-weather flow sample collected from the Gould stormwater lateral indicate that contaminants are being discharged to the City stormwater conveyance in NW Front Avenue. Detected contaminants are consistent with the COIs observed at both the Gould Superfund site and RPAC Cleanup site.

The City requests that EPA conduct further upland site investigation to ascertain the source and migration pathway of the Gould stormwater lateral contaminants, and to identify appropriate control mechanisms to address this source.

References

AMEC. 2000. Spreadsheet of the 2000 Rhone Poulenc Groundwater Concentration Data supplied by the Oregon Department of Environmental Quality.

AMEC. 2003. *Final Groundwater Characterization Report, RPAC - Portland Site,* prepared by AMEC Earth & Environmental, Inc., submitted to Oregon Department of Environmental Quality, March 28, 2003.

AMEC. 2004. Spring 2004 Post-Characterization Groundwater Technical Memorandum, prepared by AMEC Earth & Environmental, Inc., submitted to Oregon Department of Environmental Quality, November 1, 2004.

AMEC. 2005. *Draft Outfall 22B Storm Sewer Sampling Report, RP Portland Site,* prepared by AMEC Earth & Environmental, Inc., submitted to Oregon Department of Environmental Quality, March 24, 2005.

DEQ. 2003. DEQ Site Summary Report – Details for ECSI Site No. 49. DEQ Environmental Cleanup Site Information Database (ECSI). Accessed October 27, 2005.

DEQ/EPA. 2005. Portland Harbor Joint Source Control Strategy, Interim Final, dated September 2005.

EPA. 2005. Personal communication between Walter Burt, GSI, and Chip Humphrey, EPA, on October 13, 2005.

GSI. 2005. Review of AMEC Outfall 22 Storm Sewer Sampling Report (3/24/05), Rhone Poulenc Site. Technical memorandum prepared for the City of Portland Bureau of Environmental Services.

Integral. 2005. Portland Harbor RI/FS, Round 2A Sediment Site Characterization Report. Prepared for the Lower Willamette Group.

MRP Services. 2004. *Site Data for AMEC Environmental Project*, prepared by MRP Services for AMEC Environmental, June 24, 2004.

Table

Table 1 – Summary of Detected Constituents, Dry-Weather Flow Water Sample

Figures

Figure 1 - Outfall Basin 22B Dry-Weather Flow Sampling – Pesticides, SVOC & VOC Compounds

Figure 2 - Outfall Basin 22B Dry-Weather Flow Sampling – Total Metals

Attachments

Attachment A – Field Photographs Attachment B - Field Notes Attachment C - Laboratory Results

Table 1Summary of Detected ConstituentsDry-Weather Flow Water Sample

Gould Stormwater Lateral - City Outfall Basin 22B

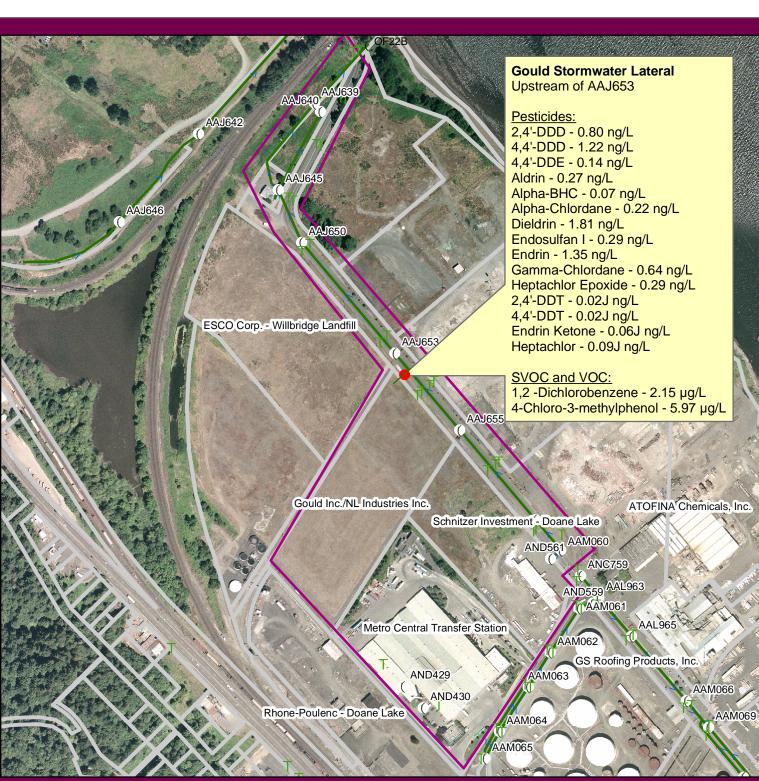
			Lateral Water	JSCS
			IL-22B-AAJ653-0605	Screening Level
Class	Analyte	Units	6/21/2005	(Most Stringent)
Fotal Me	etals (EPA 200.8)			
	Antimony	μg/L	0.58	6 ^(3a)
	Arsenic	μg/L	10.7	0.014 ^(1b, 2b)
	Cadmium	μg/L	0.19	0.094 ^(1c)
	Copper	μg/L	0.66	2.9 ^(1c)
	Lead	μg/L	0.13	0.54 ^(1c)
	Molybdenum	μg/L	110	
	Nickel	μg/L	1.06	16 ^(1c)
	Vanadium	μg/L	2.52	
	Zinc	μg/L	0.51	32.7 ^(2c)
Herbicid	les - Chlorinated (EPA 8151)			
	None Detected			
PCDD/F	CDF (Dioxins and Furans) (EPA 1613B) None Detected			
Pesticid	es (EPA 8081 MOD)			(4 6 7 6)
	2,4'-DDD	ng/L	0.80	$0.31 \stackrel{(1b, 2b)}{(1b, 2b)}$
	2,4'-DDT	ng/L	0.02 J	0.22 (1b, 2b) (1b, 2b)
	4,4'-DDD	ng/L	1.22	0.31 ^(1b, 2b)
	4,4'-DDE	ng/L	0.14	0.22 ^(1b, 2b)
	4,4'-DDT	ng/L	0.02 J	0.22 ^(1b, 2b)
	Aldrin	ng/L	0.27	0.05 ^(1b, 2b)
	Alpha-BHC	ng/L	0.07	4.9 ^(1b, 2b)
	Alpha-Chlordane	ng/L	0.22	0.81 ^(1b, 2b)
	Dieldrin	ng/L	1.81	0.054 ^(1b, 2b)
	Endosulfan I	ng/L	0.29	56 ⁽⁴⁾
	Endrin	ng/L	1.35	6 ^(1b, 2b)
	Endrin Ketone	ng/L	0.06 J	,
	Gamma-Chlordane	ng/L	0.64	0.081 ^(1b, 2b)
	Heptachlor	ng/L	0.09 J	0.0079 ^(1b, 2b)
	Heptachlor Epoxide	ng/L	0.29	0.0039 ^(1b, 2b)
Semi\/o	latile Organics (EPA 8270)			
John VU	1.2-Dichlorobenzene	μg/L	1.25	14 (4)
	4-Chloro-3-methylphenol	μg/L	5.97	17
1-1-11		1.9		
volatile	Organic Compounds (EPA 8260)		0.45	14 (4)
	1,2-Dichlorobenzene	μg/L	2.15	14 1

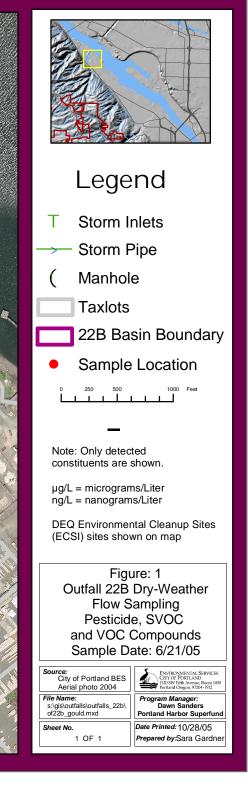
J = The analyte was detected at concentrations below the MRL but above the MDL and is considered is an estimated quantity.

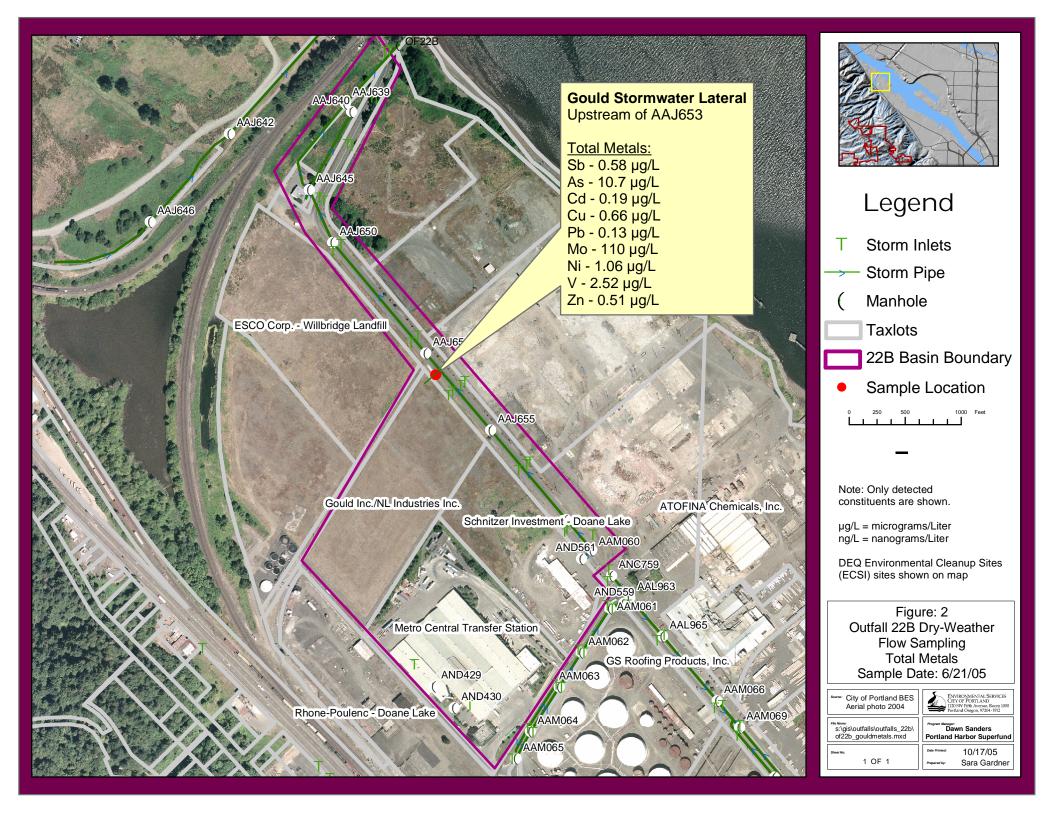
µg/L = Micrograms per Liter; ng/L = Nanograms per Liter

JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Interim Final September 2005)

^(1b) EPA's 2004 NRWQC Screening Level for Water - Fish Consumption: 175 g/day consumption rate (organism only).


^(1c) EPA's 2004 NRWQC Screening Level for Water - Ecological Receptors (Chronic)


^(2b) DEQ's 2004 AWQC Screening Level for Water - Fish Consumption: 175 g/day consumption rate (organism only).


^(2c) DEQ's 2004 AWQC Screening Level for Water - Ecological Receptors (Chronic)

^(3a) Screening Level for Drinking Water - MCL

⁽⁴⁾ Oak Ridge National Laboratory's (Tier II SCV) Screening Level for Water - Ecological Receptors See Attachment C for complete list of analytical results and laboratory sheets

Attachment A Field Photographs

Photo 1 (2005). The Gould stormwater lateral on June 21, 2005. The lateral is located 65 feet up-pipe from manhole AAJ653 on NW Front Avenue. Note that the field crew estimated the flow to be 0.5 gpm.

Photo 2 (2005). Location of the June 21, 2005 dry-weather flow sample from the Gould stormwater lateral.

Technical Memorandum OF22B-1 City Outfall Basin 22B Upland Source Control Investigation

Photo 3 (2004). The Gould stormwater lateral with a slightly higher flow during the June 2004 camera survey of this line.

Attachment B Field Notes

City of Portland Environmental Services

£ . .

DAILY FIELD REPORT

.

	Page of
Project INGINE SEDIMENT SAMPLING	Project No. 1020-00)
Location NW ERGINT AVE	Date 6-21-05
Subject FIELD NOTES	By MJH
7:30 PREPARE EQUIPMENT FOR TOPAYS SA	MPZINZ EVENT
STAINÜESS STEEL SPOONS + BUCKETS	DECONNED Por SOP ,010
BY MISS,	
ASSEMBLE SAMPLE BOTTLES, COC'S	PAPERWOKK, TODAYS
WORK WILL INCLUDE I WATER SAME	Pre + MULTIPLE SED
GAMPLE.	·
Bizo DJU NOTIFIES L. SCUEFFIER THAT W	E ARE PROCEEDING TO
LIRST JAMPLE SITE.	·
9.00 ARRIVE AT SOOD NW 61ST (AAJ 65	3). SET UP TRACENC
CONTROL, MU is in MIDDIE OF	ROND.
9:10 DIH ENTERS MID TO INSPECT 5	AMPLINIC LOCATION.
915. REPORTS PRESENCES OF O'S GPM CON	MING GROM LATERAL
65' UP FROM MU ADJ653.	
0920 DD BEGINS TO COLLECT SAMPLE FRO	M ABOUT JOB AND
USING S.S. BEAKER.	
0945 RELINQUISH EVENER SAMPLE TO PETE. FOR	PETE TO PERINER TO
THE LAB,	1
	* -
0951 MOVE TO AMWO 708, This is A CATCH BI	sur or 'OC Tooth GIZA
CAUSS BIT 20 MASSING	
1000 COLLETTY SOMMENT PROM CATCH BASIN	V
1012 MOVE TO AND 879. WATER IN CATE	BASIN.
Attachments	

city of Portland Environmental S

DAILY FIELD REPORT

2

ironmental Services
Page _ 2 of _ 3
bject <u>NUINE SEDIMENT BAMPLINC</u> Cation <u>NW PDY</u> bject <u>FIED NOTES</u> By <u>MJ</u>
1020 SAMPLE COLLED GROM CATCH BASIN, WATER IN C.B. SAMPT SOMENTS IN C.B. SAMPT SODS OBSCRUD IN MODE PROVIND C.B.
(3) MOVE TO AND 878. This is ANOTHER CB NORTH OF SFRONTANE DO. MD S OF SOME THIN TRACKS. GENTREMAN WALKS UP TO US AND TALKS WILLINDA. LNRRY? 1038 SAMPVE LOLLESTED FROM PATCH BASIN. LOTS OF CRANUEZ
12) NRMINE DT SWAN ISLAND, STATT AT ANGOOD RECENSE 'T HAS AN ARTERINATE, DDY ENTER MN. RIVER BROKED UP. NO SETIMENTS IN DNY OC THE LINES AT THIS LOCATION. 147 MONE TO MH ARQUOZ, DOP LANTERS - WATER SI DUP AT THIS LOCATION, NO SUDS IN THE BOTTOM.
1155 AAQ 118 - COUD NOT GET MD OPDU- DESPITE BEST LET-CONTS
12.0 ANQ OOS - NOT FLOODED, THERE IS MINOR FLOOD ATTIC 400 , AND ENTER Attachments

City of Portland Environmental Services

DAILY FIELD REPORT

11

Page ______ of _ Project INGINE SED SAMP Project No. 1020.001 Date 6-21-05Location _____ By mJ) Subject SILD NOTES BASIN M3 - DUE TO LACK OF SUCCESS WE ARE 1210 SUSPENDING OPS NERE TODAY, WILL RETURN LATER IN THE SUMMER WICH WICH LEVES ARE LOWISR AND JULY ACAIN PETE ENTERS AAQOOS. MINOR CROW, NO SEDIMONT 12.20 48' Dit LINE 1230 LUNCI and a 1:30 ATRIVE AT OREGON STORE MILLS . NODE ANA 171 STADING LATOR IN THE LINE SEDIMENT ALSO PRESENT. SEDIMENT is A CEMENTED FINE SEDS. 14-25 SAMPLES RETURNED TO WPEL + SUBMITTED TO LAB UNDER CLIPIN OF CUSTEDY. SAMPLES PAVE BADN IN CULLO COULD ALL DAY Attachments

,10/13/2005	13:04 503823	36995	ENV	IRONMENTAL	SVCS	PAGE	02/0
		IRONME water Pollut 6543 N Portuario	DE PORTLAND NTAL SE Non control Laboratory Burlington Ave. 1: OR 97203-5452				
PORT		OUR INLIN	E SEDIMEN DATA SHEE	T SAMPLI T	ING - 1020.00)1	
te: 6-21-05	Fime: 0900	Lange Lang	Veather condition	1997 A. 1	scops 60's		_
mpling Team Preser	AHA / HECE IT) MJH		-		• 1007	
isin: 23.B		Node: AA	5653	Subl	basin:		
dress: 5909	NW 615+	Ave					
	SECTION 1 -	PRE-SAMPL	ING VISUAL C	AT OF 1	ATERAL INTO	MAIN LINE	
escribe any flowing coserved in the line?		CLEPR	2 wrthr.				
pes river appear to escribe rate/color/od	back up to this loc or of flow:	ation? N	0				
e sediments observ	ed in the line?	N	10			_	
there enough sedim ample?	nent in the line to co	ollect a	alu				
escribe lateral exte	nt in the line:	~	4/0	A A Malanza			
ITE DIAGRAM: Inc	lude street intersec	tions/laterals/MH	H's/driveways cuts	s and extent of	solids accumulation	n	
	· · · · · · · · · · · · · · · · · · ·	niver					
					2		
			7.2 2			12	
		AFJ653					i.
·····						÷	
	•	\	65'		·····		
NW FRONT A		0	7	T	$\overline{\langle}$		
N (2) 12-12-12							
10-10-01					STATU -	somple colle	ETE?
·	ii	\$-8" Di	18"3		FROM LINE, MAIN LINE,	L 25 T 6	JT WR
		-5			שאוש האיקריז,		
				1000			

1

i.

G

R.

THE PARTY OF A CARD

the states of

SECT	ION 2 - SAMPLE COLLECTION REPORT Node: APJ 653
Sampling Equipment:	SS, BEAKER
Equipment Decontamination process:	Per FOps SOP 70.1a Other (Describe)
Sample date: 6-21-05	Sample time: 0928
Sample Identification: (IL-XX-NNNNN-mr	myy) 1L - 22B-AAJ 653 - 0605
Sample location: (number of feet from node of entry)	SAMPLE CULLERTED FROM LATERAL EMPTHING INTO MAIN LINE 65' UP FROM NUDE AND 653
Sample collection technique:	BEAKER FILLES W/ SAMPLE, THEN DECONTINU INTO BOTTLES
Color of sample:	
Texture/Particle size:	WA
Visual or olfactory evidence of contamination:	NO OBVIOUS OPORS. CLEAR
Depth of solids in area where sample collected:	
Amount and type of debris:	ala
Compositing notes:	NA
	Sample Jars Collected
If not enough sample to fill all of the jars, the jars in this order:	en fill Metals PAHs/SVOCs PCBs TPH (two jars)
	TOC
Duplicate sample collected?	େଏ
Duplicate sample fictitious identification # or	
Samples placed in chilled cooler?	
Samples delivered to lab?	Lab ID Number: FO 050657
Describe any deviations from standard proc	cedures:

	SECTION 3 - PHOTOGRAPH	I LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

Attachment C Laboratory Results

Groundwater Solutions, Inc.

55 SW Yamhill Street, Suite 400 Portland, Oregon 97204 ph: 503.239.8799 fx: 503.239.8940 e: groundwatersolutions.com

Laboratory Data QA/QC Review Upland Source Control Investigation City Outfall Basin 22B

To:FileFrom:Bruce Brody-Heine, RG - GSIDate:October 25, 2005

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated during source control investigation sampling and analyses recently conducted by the City of Portland (City) in Outfall Basin 22B. The results of the sampling and analysis are presented in the November 2005, Technical Memorandum No. OF 22B-1.

The laboratory analysis for these Source Control program samples were completed by the City's BES laboratory and subcontracted laboratories. The following list the analyses conducted by each laboratory.

- BES Laboratory Volatile Organic Compounds (EPA Method 8260) Semivolatile Organic Compounds (EPA Method 8260) Total Metals (EPA Method 200.8)
- North Creek Analytical Hexavalent Chromium (EPA Method 7195) Chlorinated Herbicides (EPA Method 8151A)
- Pace Analytical Services, Inc. PCDDs/PCDFs (EPA Method 1613B)
- GERG Pesticides (EPA Method 8081 Modified)

Attachment C of the Technical Memorandum No. OF 22B-1 presents the BES laboratory LIMS summary report for all analyses associated with this Outfall Basin investigation and the subcontracted laboratory's data reports. Subcontracted laboratories frequently receive batches of samples related to several BES sampling projects. In these cases, only those analytical results (and QA/QC pages) pertinent to this Outfall Basin investigation memorandum are provided with the subcontractor's reports to minimize confusion.

This QA/QC review is based upon the available documentation supplied with each laboratory package. The QA/QC review of the analytical data consisted of reviewing the following for each laboratory report:

- Chain-of-custody complete and correct
- Analysis within holding times
- Chemicals of interest in method blanks
- Surrogate recoveries within accuracy control limits

- Laboratory blank spike recoveries within accuracy control limits
- Laboratory blank spike duplicate results within analytical precision control limits
- Matrix spike recoveries within accuracy control limits
- Matrix spike duplicate results within analytical precision control limits

The results of the laboratory report QA/QC review are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures were adequate and the sample integrity maintained through the sample collection and delivery process.

Analysis Holding Times

Volatile Organic Analyses

All samples were extracted and analyzed within the required holding times.

Semi-Volatile Organic Analyses

All samples were extracted and analyzed within the required holding times.

Total Metal Analyses

All samples were extracted and analyzed within the required holding times.

Chlorinated Herbicides Analyses

All samples were extracted and analyzed within the required holding times.

Dioxins/Furan Analyses

All samples were extracted and analyzed within the required holding times.

Pesticides Analyses

All samples were extracted and analyzed within the required holding times.

Method Blanks

No chemicals were detected in the method blanks.

Surrogate Recoveries

All surrogate recoveries were within laboratory control limits.

Laboratory Duplicates

Laboratory duplicate analysis was completed during the laboratory analysis of hexavalent chromium and herbicides. Both the sample and the laboratory duplicate were non-detect; accordingly, relative percent differences (RPDs) could not be calculated.

Laboratory Control Sample Recoveries

Laboratory control samples were processed during the laboratory analyses of dioxins and furans (PCDD/PCDF), pesticides, herbicides, and hexavalent chromium. All laboratory control spike

recoveries were within laboratory control limits with the exception of the herbicide analysis. North Creek Analytical noted that an LCS sample and/or LCS duplicate was above the method specified criteria, however all sample results were non-detect and therefore the herbicide data quality was not affected.

Laboratory Control Sample Duplicates

Laboratory blank spike duplicates were processed during the laboratory analyses of dioxins and furans (PCDD/PCDF), pesticides, herbicides, and hexavalent chromium. The relative percent difference (RPD) between the laboratory blank spikes and the laboratory blank spike duplicates were within laboratory control limits with the exception of the herbicide analysis (see previous discussion of issue).

Matrix Spike Recoveries

A matrix spike was processed during the laboratory analysis of hexavalent chromium, and herbicides. The matrix spike recovery was within the laboratory control limit.

Other – Daily Calibration Sample

North Creek Analytical noted the herbicide analysis daily calibration sample results as potentially biased high, however further determined that since all the results were non-detect the herbicide data quality is not affected.

			A LAND	ß	С О	itv of	Pol	City of Portland	σ		V		Date: 6-21-05	ک
Water Pollution Control Laboratory	-aboratory	CL		LEON T	ပ်	ain-c	j-ci	Chain-of-Custody	Z			(.	Page: 1 of	
6543 N. Burlington Ave. Portland, Oregon 97203-4552		NOTION.			Bureau of Environmental Services	of Envi	ronme	ental S	ervice	С]] 9		\$	Collected By: NJW DJN	r'n
(503) 823-5696 PORI	ITLAND HARBOR INUI	R INC				_				•		\$		
Project Name: LOWI	LOWER HARBOR OF SED SAMP	D SAM	4								ſ			
File Number: 1020.001	11		Matrix:	GRNDWTR	rr /						Rec	luest	Requested Analyses	
		1		SEDIMENT	L7		General	eral		Ŵ	Metals		Field Comments	
OUTFALL 22B CHAIN-OF-CUSTODY	USTODY									merg				
							· · · · · · · · · · · · · · · · · · ·	susus.		lals (As, Cd, Cr, b, Sb, V, Zn)				
WPCL Sample I.D.	Location	Point Code	Sample Date	Sample Time	Sample Type	Pesticide Herbicide	AOCs SAOCs	l/snixoiQ			иітолАЭ			
FO 050657	IL-22B-AAJ653-0605 5909 NW 61st Ave	22B_1	228-1 6-21-05 0928 G/ Water	8760	G / Water	•	•	•		•	•		INFILTRATE SAMPLE	
	IL-OF22B-AMW708-0605 6400 NW FRONT AVE-N	22R 2			C	•								
		7 777			,							+		
	6400 NW FRONT AVE-M	22B_3			υ	•								
	IL-22B-AND878-0605 6400 NW FRONT AVE-S	22B 4			0	•	1							
	141 - P.J. A										-			
									_			_		
					,									
	×													
Relinquished By: 1.		Relinguish	Shed By: A					Relinquished By	<u>d By:</u> 3				Relinquished By: 4.	
Signature: WD2200	Time:0945	Signature:	MAY AN		Ĩ	тте: 10:19	-	Signature:				Time:		
Printed Name: MICI DEAL HAUSKER	Date:	Printed Name	ELT A	Curry	Date	Date: 6/21/05		Printed Name:				Date:		
L 4	Time: AG & S	Received Signature:	d BV 2.	120	A Time	Time: / 0/9		Received By: Signature:	Г: Г:			Time:	Received By: 4. Signature: Time:	
ST.	Date: C / A/C	Printed Name:	کي ر	3-7	Date	Date: 6/1/0	E V	Printed Name:				Date:	: Printed Name: Date:	
Sileid/1000/1020.00	Sileid/1000/1020.001/Sampdoc/Lower Harbor Sed COC.xls	I COC.xls		115 Nen sea	7 2 6 2	1	5						-	

Sample Date/Time 6/	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AA	J653-060			Page: Date Received: Sample Status:	1 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 22B_1 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
METALS BY ICP-MS (TOTAL) - 9 ANTIMONY	0.58	µg/L	0.1	EPA 200.8
ARSENIC	10.7	µg/∟ µg/L	0.1	EPA 200.8
CADMIUM	0.19		0.1	EPA 200.8 EPA 200.8
CHROMIUM	<0.40	µg/L	0.4	EPA 200.8 EPA 200.8
COPPER	<0.40 0.66	µg/L	0.4	EPA 200.8 EPA 200.8
LEAD	0.00	μg/L μg/L	0.2	EPA 200.8 EPA 200.8
MOLYBDENUM	110		0.1	EPA 200.8 EPA 200.8
NICKEL	1.06	µg/L	0.1	EPA 200.8 EPA 200.8
VANADIUM	2.52	µg/L	0.2	EPA 200.8 EPA 200.8
		µg/L		
ZINC	0.51	µg/L	0.5	EPA 200.8
OUTSIDE				
CHROMIUM VI	<0.0100	mg/L	0.010	EPA 7195
HERBICIDES - CHLORINATED				
2,4,5-T	<1.00	µg/L	1.00	EPA 8151
2,4,5-TP (Silvex)	<1.00	μg/L	1.00	EPA 8151
2,4-D	<1.00	μg/L	1.00	EPA 8151
2,4-DB	<1.00	μg/L	1.00	EPA 8151
Dalapon	<5.00	µg/L	5.00	EPA 8151
Dicamba	<1.00	μg/L	1.00	EPA 8151
Dichlorprop	<1.00	μg/L	1.00	EPA 8151
Dinoseb	<1.00	µg/L	1.00	EPA 8151
MCPA	<300	µg/L	300	EPA 8151
MCPP	<300	µg/L	300	EPA 8151
PCDD/PCDF (DIOXINS AND FURANS))			
1234678-HpCDD	<0.0500	ng/L	0.0500	EPA 1613B
1234678-HpCDF	<0.0500	ng/L	0.0500	EPA 1613B
6543 N. Burlington Ave. / Portland OR	97203 (503) 823-5600	fax (503) 823-5656	Report Date:	8/25/2005

Sample Date/Time 6/	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AAJ	1653-060			Page: Date Received: Sample Status:	2 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT(22B_1 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
1234789-HpCDF	<0.0500	ng/L	0.0500	EPA 1613B
123478-HxCDD	<0.0500	ng/L	0.0500	EPA 1613B
123478-HxCDF	<0.0500	ng/L	0.0500	EPA 1613B
123678-HxCDD	<0.0500	ng/L	0.0500	EPA 1613B
123678-HxCDF	<0.0500	ng/L	0.0500	EPA 1613B
123789-HxCDD	<0.0500	ng/L	0.0500	EPA 1613B
123789-HxCDF	<0.0500	ng/L	0.0500	EPA 1613B
12378-PeCDD	<0.0500	ng/L	0.0500	EPA 1613B
12378-PeCDF	<0.0500	ng/L	0.0500	EPA 1613B
234678-HxCDF	<0.0500	ng/L	0.0500	EPA 1613B
23478-PeCDF	<0.0500	ng/L	0.0500	EPA 1613B
2378-TCDD	<0.0099	ng/L	0.0099	EPA 1613B
2378-TCDF	<0.0099	ng/L	0.0099	EPA 1613B
OCDD	<0.0990	ng/L	0.0990	EPA 1613B
OCDF	<0.0990	ng/L	0.0990	EPA 1613B
TOTAL TEQ CONCENTRATION	0.0496	ng/L		EPA 1613B
PESTICIDES BY EPA 8081MOD				
2,4'-DDD	0.80	ng/L	0.12	EPA 8081M
2,4'-DDE	<0.29	ng/L	0.29	EPA 8081M
2,4'-DDT	EST 0.02	ng/L	0.13	EPA 8081M
4,4'-DDD	1.22	ng/L	0.07	EPA 8081M
4,4'-DDE	0.14	ng/L	0.14	EPA 8081M
4,4'-DDT	EST 0.02	ng/L	0.10	EPA 8081M
Aldrin	0.27	ng/L	0.11	EPA 8081M
Alpha-BHC	0.07	ng/L	0.06	EPA 8081M
Alpha-Chlordane	0.22	ng/L	0.11	EPA 8081M
Beta-BHC	<0.09	ng/L	0.09	EPA 8081M
Delta-BHC	<0.06	ng/L	0.06	EPA 8081M
Dieldrin	1.81	ng/L	0.09	EPA 8081M
6543 N. Burlington Ave. / Portland OR 9	97203 (503) 823-5600	fax (503) 823-5656	Report Date:	8/25/2005

Sample Date/Time 6	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AAJ	653-0605			Page: Date Received: Sample Status:	3 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT(22B_1 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
Endosulfan I	0.29	ng/L	0.25	EPA 8081M
Endosulfan II	<0.25	ng/L	0.25	EPA 8081M
Endrin	1.35	ng/L	0.12	EPA 8081M
Endrin aldehyde	<0.12	ng/L	0.12	EPA 8081M
Endrin ketone	EST 0.06	ng/L	0.12	EPA 8081M
Gamma-BHC	<0.10	ng/L	0.10	EPA 8081M
Gamma-Chlordane	0.64	ng/L	0.09	EPA 8081M
Heptachlor	EST 0.09	ng/L	0.12	EPA 8081M
Heptachlor epoxide	0.29	ng/L	0.11	EPA 8081M
Methoxychlor	<0.29	ng/L	0.29	EPA 8081M
Toxaphene	<10.0	ng/L	10	EPA 8081M
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<1.00	µg/L	1.00	EPA 8270
1,2-Dichlorobenzene	1.25	µg/L	1.00	EPA 8270
1,3-Dichlorobenzene	<1.00	µg/L	1.00	EPA 8270
1,4-Dichlorobenzene	<1.00	µg/L	1.00	EPA 8270
2,3,4,6-Tetrachlorophenol	<2.00	µg/L	2.00	EPA 8270
2,4,5-Trichlorophenol	<1.00	µg/L	1.00	EPA 8270
2,4,6-Trichlorophenol	<1.00	µg/L	1.00	EPA 8270
2,4-Dichlorophenol	<1.00	µg/L	1.00	EPA 8270
2,4-Dimethylphenol	<2.00	µg/L	2.00	EPA 8270
2,4-Dinitrophenol	<4.00	µg/L	4.00	EPA 8270
2,4-Dinitrotoluene	<1.00	µg/L	1.00	EPA 8270
2,6-Dichlorophenol	<1.00	µg/L	1.00	EPA 8270
2,6-Dinitrotoluene	<1.00	µg/L	1.00	EPA 8270
2-Chloronaphthalene	<1.00	µg/L	1.00	EPA 8270
2-Chlorophenol	<1.00	µg/L	1.00	EPA 8270
2-Methylnaphthalene	<2.00	µg/L	2.00	EPA 8270
2-Methylphenol	<2.00	µg/L	2.00	EPA 8270
6543 N. Burlington Ave. / Portland C	OR 97203 (503) 823-5600		Report I	Date: 8/25/2005

Sample Date/Time 6	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AA	J653-060			Page: Date Received: Sample Status:	4 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 22B_1 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
2-Nitroaniline	<1.00	µg/L	1.00	EPA 8270
2-Nitrophenol	<1.00	µg/L	1.00	EPA 8270
3,3'-Dichlorobenzidine	<1.00	µg/L	1.00	EPA 8270
3-,4-Methylphenol	<2.00	µg/L	2.00	EPA 8270
3-Nitroaniline	<1.00	µg/L	1.00	EPA 8270
4,6-Dinitro-2-methylphenol	<2.00	µg/L	2.00	EPA 8270
4-Bromophenylphenyl ether	<1.00	µg/L	1.00	EPA 8270
4-Chloro-3-methylphenol	5.97	µg/L	1.00	EPA 8270
4-Chloroaniline	<2.00	µg/L	2.00	EPA 8270
4-Chlorophenylphenyl ether	<1.00	µg/L	1.00	EPA 8270
4-Nitroaniline	<2.00	µg/L	2.00	EPA 8270
4-Nitrophenol	<4.00	µg/L	4.00	EPA 8270
Acenaphthene	<1.00	µg/L	1.00	EPA 8270
Acenaphthylene	<1.00	µg/L	1.00	EPA 8270
Anthracene	<1.00	µg/L	1.00	EPA 8270
Benzo(a)anthracene	<1.00	µg/L	1.00	EPA 8270
Benzo(a)pyrene	<1.00	µg/L	1.00	EPA 8270
Benzo(b)fluoranthene	<1.00	µg/L	1.00	EPA 8270
Benzo(g,h,i)perylene	<1.00	µg/L	1.00	EPA 8270
Benzo(k)fluoranthene	<1.00	µg/L	1.00	EPA 8270
Benzoic acid	<4.00	µg/L	4.00	EPA 8270
Benzyl alcohol	<2.00	µg/L	2.00	EPA 8270
Bis(2-chloroethoxy) methane	<2.00	µg/L	2.00	EPA 8270
Bis(2-chloroethyl) ether	<1.00	µg/L	1.00	EPA 8270
Bis(2-chloroisopropyl) ether	<2.00	µg/L	2.00	EPA 8270
Bis(2-ethylhexyl) phthalate	<2.00	µg/L	2.00	EPA 8270
Butyl benzyl phthalate	<2.00	µg/L	2.00	EPA 8270
Chrysene	<1.00	µg/L	1.00	EPA 8270
Dibenzo(a,h)anthracene	<1.00	µg/L	1.00	EPA 8270

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 8/25/2005

Sample Date/Time 6	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AA	1653-0605			Page: Date Received: Sample Status:	5 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 22B_1 1020.001	ory pla	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
Dibenzofuran	<2.00	µg/L	2.00	EPA 8270
Diethyl phthalate	<1.00	µg/L	1.00	EPA 8270
Dimethyl phthalate	<1.00	µg/L	1.00	EPA 8270
Di-n-butyl phthalate	<2.00	µg/L	2.00	EPA 8270
Di-n-octyl phthalate	<1.00	µg/L	1.00	EPA 8270
Fluoranthene	<1.00	µg/L	1.00	EPA 8270
Fluorene	<1.00	µg/L	1.00	EPA 8270
Hexachlorobenzene	<1.00	µg/L	1.00	EPA 8270
Hexachlorobutadiene	<2.00	µg/L	2.00	EPA 8270
Hexachlorocyclopentadiene	<2.00	µg/L	2.00	EPA 8270
Hexachloroethane	<2.00	µg/L	2.00	EPA 8270
Indeno(1,2,3-cd)pyrene	<1.00	µg/L	1.00	EPA 8270
Isophorone	<1.00	µg/L	1.00	EPA 8270
Naphthalene	<1.00	µg/L	1.00	EPA 8270
Nitrobenzene	<1.00	µg/L	1.00	EPA 8270
N-Nitrosodi-n-propylamine	<2.00	µg/L	2.00	EPA 8270
N-Nitrosodiphenylamine	<1.00	µg/L	1.00	EPA 8270
Pentachlorophenol	<2.00	µg/L	2.00	EPA 8270
Phenanthrene	<1.00	µg/L	1.00	EPA 8270
Phenol	<1.00	µg/L	1.00	EPA 8270
Pyrene	<1.00	µg/L	1.00	EPA 8270
VOLATILE ORGANIC COMPOUNDS				
1,1,1,2-Tetrachloroethane	<1.0	µg/L	1.00	EPA 8260
1,1,1-Trichloroethane	<2.0	µg/L	2.00	EPA 8260
1,1,2,2-Tetrachloroethane	<1.0	µg/L	1.00	EPA 8260
1,1,2-Trichloroethane	<1.0	µg/L	1.00	EPA 8260
1,1,2-Trichlorotrifluoroethane	<2.0	µg/L	2.00	EPA 8260
1,1-Dichloroethane	<1.0	µg/L	1.00	EPA 8260
1,1-Dichloroethene	<2.0	µg/L	2.00	EPA 8260
6543 N. Burlington Ave. / Portland OR	8 97203 (503) 823-560	0 fax (503) 823-5656	Report Date:	8/25/2005

Sample Date/Time 6/	/21/2005	9:28	System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AA	J653-060			Page: Date Received: Sample Status:	6 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 22B_1 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
1,1-Dichloropropene	<1.0	µg/L	1.00	EPA 8260
1,2,3-Trichlorobenzene	<1.0	µg/L	1.00	EPA 8260
1,2,3-Trichloropropane	<1.0	µg/L	1.00	EPA 8260
1,2,4-Trichlorobenzene	<1.0	µg/L	1.00	EPA 8260
1,2,4-Trimethylbenzene	<1.0	µg/L	1.00	EPA 8260
1,2-Dibromo-3-chloropropane	<1.0	µg/L	1.00	EPA 8260
1,2-Dibromoethane	<1.0	µg/L	1.00	EPA 8260
1,2-Dichlorobenzene	2.15	µg/L	1.00	EPA 8260
1,2-Dichloroethane	<1.0	µg/L	1.00	EPA 8260
1,2-Dichloropropane	<1.0	µg/L	1.00	EPA 8260
1,3,5-Trimethylbenzene	<1.0	µg/L	1.00	EPA 8260
1,3-Dichlorobenzene	<1.0	µg/L	1.00	EPA 8260
1,3-Dichloropropane	<1.0	µg/L	1.00	EPA 8260
1,4-Dichlorobenzene	<1.0	µg/L	1.00	EPA 8260
2,2-Dichloropropane	<1.0	µg/L	1.00	EPA 8260
2-Butanone	<10.0	µg/L	10.0	EPA 8260
2-Chlorotoluene	<1.0	µg/L	1.00	EPA 8260
2-Hexanone	<10.0	µg/L	10.0	EPA 8260
4-Chlorotoluene	<1.0	µg/L	1.00	EPA 8260
4-Isopropyltoluene	<1.0	µg/L	1.00	EPA 8260
4-Methyl-2-pentanone (MIBK)	<10.0	µg/L	10.0	EPA 8260
Acetone	<20.0	µg/L	20.0	EPA 8260
Benzene	<1.0	µg/L	1.00	EPA 8260
Bromobenzene	<1.0	µg/L	1.00	EPA 8260
Bromochloromethane	<1.0	µg/L	1.00	EPA 8260
Bromodichloromethane	<1.0	µg/L	1.00	EPA 8260
Bromoform	<1.0	µg/L	1.00	EPA 8260
Bromomethane	<1.0	µg/L	1.00	EPA 8260
Carbon disulfide	<5.0	µg/L	5.00	EPA 8260

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 8/25/2005

Sample Date/Time 6/	/21/2005 9:	28 System ID	AJ05976	Sample ID	FO050657
Proj./Company Name Address/Location:	IL-22B-AAJ6		AMP E S	Page: Date Received: Sample Status:	7 6/21/2005 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATOF 22B_1 1020.001	RY PLAN & EVAL	S	Sample Type: Sample Matrix: Collected By:	GRAB OTHER MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
Carbon tetrachloride	<1.0	µg/L	1.00	EPA 8260
Chlorobenzene	<1.0	µg/L	1.00	EPA 8260
Chloroethane	<2.0	µg/L	2.00	EPA 8260
Chloroform	<1.0	µg/L	1.00	EPA 8260
Chloromethane	<2.0	µg/L	2.00	EPA 8260
cis-1,2-Dichloroethene	<1.0	µg/L	1.00	EPA 8260
cis-1,3-Dichloropropene	<1.0	µg/L	1.00	EPA 8260
Dibromochloromethane	<1.0	µg/L	1.00	EPA 8260
Dibromomethane	<1.0	µg/L	1.00	EPA 8260
Dichlorodifluoromethane	<2.0	µg/L	2.00	EPA 8260
Ethylbenzene	<1.0	µg/L	1.00	EPA 8260
Hexachlorobutadiene	<1.0	µg/L	1.00	EPA 8260
Isopropylbenzene	<1.0	µg/L	1.00	EPA 8260
m,p-Xylene	<2.0	µg/L	2.00	EPA 8260
Methylene chloride	<2.0	µg/L	2.00	EPA 8260
Naphthalene	<1.0	µg/L	1.00	EPA 8260
n-Butylbenzene	<1.0	µg/L	1.00	EPA 8260
n-Propylbenzene	<1.0	µg/L	1.00	EPA 8260
o-Xylene	<1.0	µg/L	1.00	EPA 8260
sec-Butylbenzene	<1.0	µg/L	1.00	EPA 8260
Styrene	<1.0	µg/L	1.00	EPA 8260
tert-Butylbenzene	<1.0	µg/L	1.00	EPA 8260
Tetrachloroethene	<1.0	µg/L	1.00	EPA 8260
Toluene	<1.0	µg/L	1.00	EPA 8260
trans-1,2-Dichloroethene	<1.0	µg/L	1.00	EPA 8260
trans-1,3-Dichloropropene	<1.0	µg/L	1.00	EPA 8260
trans-1,4-Dichloro-2-butene	<1.0	µg/L	1.00	EPA 8260
Trichloroethene	<1.0	µg/L	1.00	EPA 8260
Trichlorofluoromethane	<1.0	µg/L	1.00	EPA 8260

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 8/25/2005

Proj./Company Name:PORTLAND HARBOR INLINE SAMPPage:8Address/Location:IL-22B-AAJ653-0605Date Received:6/21/2COMPL VALIDACOMPL VALIDACOMPL VALIDA	57
	PLETE AND
5909 NW 61ST AVE - INFILTRATE Proj Subcategory: REGULATORY PLAN & EVAL Sample Type: GRAE Sample Point Code: 22B_1 Sample Matrix: OTHE IMS File/Invoice #: 1020.001 Collected By: MJH/E	ER

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. NOTE: Pesticide results flagged as estimates are at concentrations below the method reporting limit.

Test Parameter	Result	Units	MRL	Method
Vinyl Acetate	<2.0	µg/L	2.00	EPA 8260
Vinyl chloride	<1.0	µg/L	1.00	EPA 8260
End of Donort for Comple ID:				

End of Report for Sample ID: FO050657

GERG QC Batch M3340 SDG F6221 . WPCL F() 050657

NCA/City of Portland Case Narrative: Pesticides

I. Background

This report contains the pesticide results of the analyses of 1 water sample. This sample was part of sample delivery group SDG F6221. It was analyzed as one QC batch, M3340. This sample was extracted on 6/28/05 and analyzed on 6/29/05.

II. Analytical Results/Methodology

The water samples were extracted and analyzed following the procedures contained in GERG SOP 9014 and SOP 9810. The analyte concentrations were determined using the surrogate, PCB 103, added to the sample prior to extraction.

III. Quality Control

Calibrations

The instrument calibration is performed using a regression calibration curve because the ECD is a non-linear detector. The regression applied was a quadratic regression:

$$y=b_0 + \Sigma b_i x^i$$

where i has a value of 2 for a quadratic type curve. The calibration allows both the x and y variables to be optionally transformed prior to fitting the calibration curve. The curve is then fitted to the transformed data and the calibration statistics reported apply to the transformed data.

The two calibration statistics calculated are the coefficient of determination (r^2) and the standard error of the y estimate (SE). The standard error of the y estimate provides a measure of the deviation of the calibration curve. It is expressed by the following equation:

$$SE = (RSS / (n-p-1))^{1/2}$$

where RSS is the residual sum of the squares, n is the number of data points in the calibration (including zero if a force through zero is used), and p is the degree of the polynomial fit for the regression.

GERG QC Batch M3340 SDG F6221

The coefficient of determination (r^2) represents the proportion of the variation accounted for by the regression, and is a ratio of the model sum of the squares (MSS) to the corrected sum of squares (CSS):

$$r^2 = MSS/CSS$$

$$r^2 = (CSS-RSS)/CSS$$

where the following definitions apply:

$$RSS = \Sigma (y_i - y_{i,pred})^2$$

 $CSS = \Sigma (y_i - y_{i,mean})^2$

where y is a data point; $y_{i,pred}$ is a data point predicted from the value of y; $(y_i-y_{i,pred})$ is the residual between actual and predicted; $y_{i,mean}$ is the mean value of y; and $(y_i-y_{i,mean})$ is the corrected difference. Calibration data met the calibration criteria with none exceeding the control limits. The average percent deviation was less than 15%, and no analyte had a percent deviation greater than 25%.

Example Calculations

The analytes are calculated using a quadratic equation of the form:

$$y=b_0 + (b_1 * x) + (b_2 * x^2)$$

where:

y = The ratio of the area of the analyte to the area of the internal standard times the amount of the internal standard in micrograms;

 b_0 , b_1 , b_2 = coefficients for the quadratic equation;

x = is the amount of the analyte in micrograms.

The calibration standards analyzed with each set of samples are subjected to the method of least squares for the equation for each analyte. Each analyte has different coefficients (b_0, b_1, b_2) based on the relative response of the analyte compared to the internal standard and as a function of the amount of the analyte. The amount of the internal standard is held constant for the calibration standards.

The sample concentration is calculated using the equation:

concentration = x * df / wt

where:

concentration = the concentration of the analyte (ng/g or ng/L);

x = amount of the analyte as found from solving the quadratic equation;

df = dilution factor;

wt = the sample dry weight in grams or volume in L.

Laboratory Qualifiers

All of the analytical data have been qualified based on the most recent method detection limits determined. Concentrations that were less than the MDL adjusted for sample sizes are qualified "J" and those analytes not detected are qualified "ND". Concentrations that exceeded the calibration limits are qualified "EC". The concentrations that are determined by analyses of a diluted aliquot are qualified "D". If interference is encountered with the quantification of an analyte due to high concentration of another analyte, the concentration is qualified "I" to denote this interference.

Analytical Difficulties

All surrogate recoveries were within the acceptable range. No further action was required. In the procedural blank contained no analytes detected at concentrations greater than 3 times the MDL. No further action was taken. The recoveries of analytes in the laboratory spike blank (LBS) and laboratory spike blank duplicate (LBSD) were all within the acceptable range. There was interference with 2,4-DDE on the GC/ECD analyses. This was shown not to be 2,4-DDE by GC/MS and was not reported. No other variances or difficulties were observed.

IV. Discussion

Care should be taken in interpretation of these water samples pesticide concentrations. Most analytes were only present at low parts per trillion (ng/L or ng/Kg) concentrations. Most concentrations were close to the detection limit.

Reviewed and approved:

Tem Z. Wode 7/12/05

Terry L. Wade, Ph.D. Date Deputy Director, Environmental Sciences

Client Sample ID	P5F0947-01 B		
Sample Descriptor	9:28		
Original Sample			
GERG ID	C46244		
Sample Type	SAMP		
SDG	F6221		
Volume	1.00		
Sample Size Units	Liters		
Matrix	Water		
Reporting Units	ng/L		
Calculation Basis (dry/wet)	Wet		
QC Batch ID	M3340		
Method	GCECD		
Collection Date	6/21/2005		
Receive Date	6/24/2005		
Extraction Date	6/28/2005		
Analysis Date	6/29/2005		
Surrogate Compounds	%Recovery		
DBOFB	108.0		
PCB103*	117.5		
PCB198	117.6		
Totals	Concentration	DL	DB Qual
Toxaphene		10,00	ND
-			
Pesticides	Concentration	DL	2
	Concentration	DL	12 12
Pesticides	Concentration	DL 0.24	42 1
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5			ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5		0.24	ND J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4	0.76	0.24 0,16	
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene	0.76	0.24 0.16 0.19	
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes	0.76 0.10 0.63	0.24 0.16 0.19 0.15	
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene	0.76	0.24 0.16 0.19 0.15 0.06	J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH	0.76 0.10 0.63	0.24 0.16 0.19 0.15 0.06 0.09	J ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH	0.76 0.10 0.63	0.24 0.16 0.19 0.15 0.06 0.09 0.10	J ND ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH	0.76 0.10 0.63	0.24 0.16 0.19 0.15 0.06 0.09	J ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds	0.76 0.10 0.63 0.07	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06	J ND ND ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor	0.76 0.10 0.63 0.07 0.09	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12	J ND ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide	0.76 0.10 0.63 0.07 0.09 0.29	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11	J ND ND J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane	0.76 0.10 0.63 0.07 0.09 0.29 0.08	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09	J ND ND ND
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11	J ND ND J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11	J ND ND J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor Trans-Nonachlor	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01 0.12	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01 0.12 0.27	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.11	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01 0.12 0.27 1.81	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.11 0.11 0.09	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin Endrin	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01 0.12 0.27 1.81 1.35	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.11 0.11 0.09 0.12	J ND ND J J
Pesticides Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin	0.76 0.10 0.63 0.07 0.09 0.29 0.08 0.22 0.64 0.01 0.12 0.27 1.81	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.11 0.11 0.09	J ND ND J J

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference

- Interference B Blank Contamination >3xMDL Dilution EC Exceeds Calibration

Page 1 Printed 7/13/2005

Client Sample ID	P5F0947-01 B		
Sample Descriptor	9:28		
Original Sample			
GERG ID	C46244		
Sample Type	SAMP		
SDG	F6221		
Pesticides	Concentration	DL	
Other Chlorinated Pesticides			
Pentachloroanisole	0.19	0.07	
Chlorpyrifos	1.39	0.35	
Mirex		0.15	ND
Endosulfan I	0.29	0.25	
Endosulfan II		0.25	ND
Methoxychlor		0.29	ND
DDTs and Related Compounds			
2,4' DDE		0.29	ND
4,4' DDE	0.14	0.14	J
2,4' DDD	0.80	0.12	
4,4' DDD	1.22	0.07	
2,4' DDT	0.02	0.13	J.
4,4' DDT	0.02	0.10	J
DDMU	1.42	0.29	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL d Dilution EC Exceeds Calibration

Page 2 Printed 7/13/2005

Client Sample ID Sample Descriptor	Proc Blank		2	Blank Spike		Blank Spike Dup			
Original Sample									
GERG ID	Q22162			Q22163		Q22164			
Sample Type	BLANK			LBS		LBSD			
SDG						- FLINBAL A			
Volume	1.00			1.00		1.00			
Sample Size Units	Liters			Liters		Liters			
Matrix	Water			Water		Water			
Reporting Units	ng/L			%		%			
Calculation Basis (dry/wet)	Wet			Wet		Wet			
QC Batch ID	M3340		£	M3340		M3340			
Method	GCECD			GCECD		GCECD			
Collection Date									
Receive Date									
Extraction Date	38531.0			38531.0		38531.0			
Analysis Date	38532.0			38532.0		38532.0			
Surrogate Compounds	% Recovery			% Recovery		% Recovery			
DBOFB	72.3			63.1		54.7			
PCB103*	79.6			76.5		68.2			
PCB198	77.9			71.7		79.5			
Totals	Concentration	DL	DB Qual	% Recovery	DB Qual	% Recovery	DB Qual	%RPD	DB Qual
Toxaphene	11	10.00	ND		NA		NA		NA
Pesticides	220 B	101-10							
resucides	Concentration	DL		% Recovery		% Recovery		%RPD	
Chlorinated Benzencs	Concentration	DL		% Recovery		% Recovery		%RPD	
	Concentration	DL 0.24	ND	% Recovery 58.9		% Recovery 59.0		%RPD 0.3	
Chlorinated Benzenes	Concentration		ND ND						
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5	Concentration	0.24		58.9		59.0		0.3	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4	Concentration	0.24 0.16	ND	58.9 60.7		59.0 58.4		0.3 3.9	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene	Concentration	0.24 0.16 0.19	ND ND	58.9 60.7 61.6		59.0 58.4 59.6		0.3 3.9 3.3	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene	Concentration	0.24 0.16 0.19	ND ND	58.9 60.7 61.6		59.0 58.4 59.6		0.3 3.9 3.3 2.3	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes	Concentration	0.24 0.16 0.19 0.15	ND ND ND	58.9 60.7 61.6 68.6		59.0 58.4 59.6 67.1 72.0		0.3 3.9 3.3 2.3 9.1	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH	Concentration	0.24 0.16 0.19 0.15 0.06	ND ND ND ND	58.9 60.7 61.6 68.6 78.8		59.0 58.4 59.6 67.1		0.3 3.9 3.3 2.3 9.1 6.2	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH	Concentration	0.24 0.16 0.19 0.15 0.06 0.09	ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9		59.0 58.4 59.6 67.1 72.0 85.4		0.3 3.9 3.3 2.3 9.1	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10	ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1		59.0 58.4 59.6 67.1 72.0 85.4 77.6		0.3 3.9 3.3 2.3 9.1 6.2 9.3	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10	ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1		59.0 58.4 59.6 67.1 72.0 85.4 77.6		0.3 3.9 3.3 2.3 9.1 6.2 9.3	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06	ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09	ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Ohlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11	ND ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09	ND ND ND ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11	ND ND ND ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09	ND ND ND ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11	ND ND ND ND ND ND ND ND ND ND ND ND ND	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7 89.6		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3 91.5		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9 2.0	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Gis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11	ND ND ND ND ND ND ND ND ND ND ND ND ND N	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7 89.6 68.6		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11 0.09	ND ND ND ND ND ND ND ND ND ND ND ND ND N	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7 89.6 68.6 95.2		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3 91.5 67.6 115.3		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9 2.0	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin Endrin	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11 0.09 0.12	ND ND ND ND ND ND ND ND ND ND ND ND ND N	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7 89.6 68.6 95.2 90.8		59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3 91.5 67.6		0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9 2.0 1.5	
Chlorinated Benzenes Tetrachlorobenzene 1,2,4,5 Tetrachlorobenzene 1,2,3,4 Pentachlorobenzene Hexachlorobenzene Hexachlorocyclohexanes Alpha HCH Beta HCH Gamma HCH Delta HCH Chlordane-related Compounds Heptachlor Heptachlor Epoxide Oxychlordane Alpha Chlordane Gamma Chlordane Cis-Nonachlor Trans-Nonachlor Other Cyclodiene Pesticides Aldrin Dieldrin	Concentration	0.24 0.16 0.19 0.15 0.06 0.09 0.10 0.06 0.12 0.11 0.09 0.11 0.09 0.11 0.11 0.09	ND ND ND ND ND ND ND ND ND ND ND ND ND N	58.9 60.7 61.6 68.6 78.8 90.9 85.1 87.0 81.7 95.6 92.7 90.4 88.7 91.7 89.6 68.6 95.2 90.8	NA NA	59.0 58.4 59.6 67.1 72.0 85.4 77.6 79.8 78.2 109.5 94.4 92.4 90.9 100.3 91.5 67.6 115.3	NA NA	0.3 3.9 3.3 2.3 9.1 6.2 9.3 8.7 4.4 13.5 1.8 2.2 2.4 8.9 2.0 1.5 19.1	NA NA

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL d Dilution

d Dilution EC Exceeds Calibration

Page 3 Printed 7/13/2005

Client Sample ID Sample Descriptor Original Sample	Proc Blank			Blank Spike		- Blank Spike Dup			
GERG ID Sample Type SDG	Q22162 BLANK			Q22163 LBS		Q22164 LBSD			
Pesticides	Concentration	DL	1	% Recovery	1.	% Recovery	1. 10. 10. 10. 10.	%RPD	
Other Chlorinated Pesticides									
Pentachloroanisole	0.14	0.07	<3xMDL	78.7		76.3		3.1	
Chlorpyrifos		0.35	ND	84.6		96.8		13.5	
Mirex		0.15	ND	95.5		105.6		10,0	
Endosulfan I		0.25	ND	80.2		92.5		14.3	
Endosulfan II		0.25	ND		NA		NA		NA
Methoxychlor		0.29	ND		NA		NA		NA
DDTs and Related Compounds									
2,4' DDE		0.29	ND	90.0		90.5		0.6	
4,4' DDE		0.14	ND	82.0		88.3		7.4	
2,4' DDD		0.12	ND	97.4		108.8		11.0	
4,4' DDD		0.07	ND	94.9		108.6		13.5	
2,4' DDT		0.13	ND	94.3		107.6		13.2	
4,4' DDT		0.10	ND	87.1		100.9		14.7	
DDMU		0.29	ND		NA		NA		NA
	Av	erage %	6 Recovery	84.3		88.7		7.8	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL d Dilution EC Exceeds Calibration

Page 4 Printed 7/13/2005

DETERMINATION OF PCDD/PCDF LEVELS

Prepared for: North Creek Analytical - Portland Attn: Howard Holmes 9405 SW Nimbus Avenue Beaverton, OR 97008

This report contains 13 pages.

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Project: Chemical Analysis

Client Project Number: P5F0859

REPORT OF LABORATORY ANALYSIS

PROJECT: PCDD/PCDE ANALYSES

DATE: July 14, 2005

REPORT NO: 05-1015282

ISSUED TO: North Creek Analytical - Portland Attn: Howard Holmes 9405 SW Nimbus Avenue Beaverton, OR 97008

INTRODUCTION

This report presents the results from the analyses performed on one sample submitted by a representative of North Creek Analytical. The sample was analyzed for the presence or absence of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) using a modified version of USEPA Method 1613B.

SAMPLE IDENTIFICATION

Client ID	Sample_Type	Date Received	PACE ID
P5F0859-01 FO 050657	Water	06/22/05	1015282001

DISCUSSION

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 66-97%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix B, show the blank to be free of PCDDs and PCDFs at the reporting limits. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field sample.

REPORT OF LABORATORY ANALYSIS

PROJECT: PCDD/PCDE ANALYSES

DATE: July 14, 2005

REPORT NO: 05-1015282

PAGE: 2

DISCUSSION (Cont.)

Laboratory spike samples were also prepared with the sample batch using clean laboratory water that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 94-118%, with relative percent differences of 0.0-6.8%. These results indicate high degrees of accuracy and precision for these determinations.

REMARKS

The sample extract will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived on magnetic tape for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

Project Manager, HRMS (612) 607-6383

REPORT OF LABORATORY ANALYSIS

Number	Compound(s)	TEF
1	2,3,7,8-TCDD	1.00
2	1,2,3,7,8-PeCDD	0.50
3	1,2,3,6,7,8-HxCDD	0.1
4	1,2,3,7,8,9-HxCDD	0.1
5	1,2,3,4,7,8-HxCDD	0.1
6	1,2,3,4,6,7,8-HpCDD	0.01
7	OCDD	0.001
8	* Total - TCDD	0.0
9	* Total - PeCDD	0.0
10	* Total - HxCDD	0.0
11	* Total - HpCDD	0.0
12	2,3,7,8-TCDF	0.10
13	1,2,3,7,8-PeCDF	0.05
14	2,3,4,7,8-PeCDF	0.5
15	1,2,3,6,7,8-HxCDF	0.1
16	1,2,3,7,8,9-HxCDF	0.1
17	1,2,3,4,7,8-HxCDF	0.1
18	2,3,4,6,7,8-HxCDF	0.1
19	1,2,3,4,6,7,8-HpCDF	0.01
20	1,2,3,4,7,8,9-HpCDF	0.01
21	OCDF .	0.001
22	* Total - TCDF	0.0
23	* Total - PeCDF	0.0
24	* Total - HxCDF	0.0
25	* Total - HpCDF	0.0
101455 99	e 1.2	

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans

*Excluding the 2,3,7,8-substituted congeners.

Reference: 1989 ITEEs

REPORT OF LABORATORY ANALYSIS

APPENDIX A

REPORT OF LABORATORY ANALYSIS

SUBCONTRACT ORDER

North Creek Analytical - Portland

P5F0859

SENDING LABORATORY:

North Creek Analytical - Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210 Project Manager: Howard Holmes

RECEIVING LABORATORY:

Pace Analytical Services- Minneapolis 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700 Fax: (612) 607-6444

1015282

Page 1 of 1

Analysis	Due		Expires	Laboratory ID	Comments	
Sample ID: P5F0859-01 Water		, , , , , , , , , , , , , , , , , , ,			091	
	Water	Samp	led:06/21/05 09:28			
1613 Dioxin	07/06/05 16	5:00	12/18/05 09:28		Dioxins and Furans	
Containers Supplied:				\$ ²		
1L Amber - Unpres. (B)						

City of Partland ID: FO 050657

Femp 5°C 10-10 6-21-05 Released By Released By Received By Date Date

APPENDIX B

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Blank Analysis Results

Client - North Creek Analytical

Lab Sample ID Filename Total Amount Extracted ICAL Date CCal Filename(s)	U50 988 07/0	NK-7476 706A_16 mL 6/2005 706A_10		MatrixWaterDilutionNAExtracted06/30/2005Analyzed07/06/2005Injected BySMT
Native Isomers	Conc ng/L	EMPC ng/L	PRL ng/L	Internal ng's Percent Standards Added Recovery
2,3,7,8-TCDF	ND		0.010	2,3,7,8-TCDF-13C 2.00 51 2,3,7,8-TCDD-13C 2.00 58
2,3,7,8-TCDD	ND	a	0.010	1,2,3,7,8-PeCDF-13C 2.00 66 2,3,4,7,8-PeCDF-13C 2.00 75 1,2,3,7,8-PeCDD-13C 2.00 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND	-9 40 40 70 -9 -9 10 40 70 -9	0.051 0.051	1,2,3,6,7,8-HxCDF-13C 2.00 83 2,3,4,6,7,8-HxCDF-13C 2.00 84 1,2,3,7,8,9-HxCDF-13C 2.00 84
1,2,3,7,8-PeCDD	ND		0.051	1,2,3,4,7,8-HxCDD-13C 2.00 83 1,2,3,6,7,8-HxCDD-13C 2.00 81 1,2,3,4,6,7,8-HpCDF-13C 2.00 80 1,2,3,4,7,8,9-HpCDF-13C 2.00 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.051 0.051 0.051	1,2,3,4,6,7,8-HpCDD-13C 2.00 86 OCDD-13C 4.00 88
1,2,3,7,8,9-HxCDF	ND		0.051	1,2,3,4-TCDD-13C 2.00 NA 1,2,3,7,8,9-HxCDD-13C 2.00 NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND		0.051 0.051 0.051	2,3,7,8-TCDD-37Cl4 0.20 85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND		0.051 0.051	Total 2,3,7,8-TCDD Equivalence: 0.051 ng/L (Using ITE Factors - Using PRL/2 where ND)
1,2,3,4,6,7,8-HpCDD	ND		0.051	n ve
OCDF OCDD	ND ND		0.100 0.100	

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration PRL = Pace Analytical Reporting Limit A = Limit of Detection based on signal to noise P = Recovery outside of method 1613 control limits Na = Volume obtained from additional analysis

Nn = Value obtained from additional analysis

E = PCDE Interference

- ND = Not Detected
- NA = Not Applicable
- NC = Not Calculated
- J = Value below calibration range
- * = See Discussion

Report No.....1015282

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Analysis Results

Client - North Creek Analytical

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL Date CCal Filename(s) Method Blank ID	1018 U50 SMT 1010 NA NA 07/0 U50	0859-01 F 5282001 708B_05 0 mL 6/2005 708A_17 NK-7476	O 050657	MatrixWaterDilutionNACollected06/21/2005Received06/22/2005Extracted06/30/2005Analyzed07/09/200504:53
Native Isomers	Conc ng/L	EMPC ng/L	PRL ng/L	Internal ng's Percent Standards Added Recovery
2,3,7,8-TCDF	ND		0.0099	2,3,7,8-TCDF-13C 2.00 66 2,3,7,8-TCDD-13C 2.00 71
2,3,7,8-TCDD	ND		0.0099	1,2,3,7,8-PeCDF-13C 2.00 79 2,3,4,7,8-PeCDF-13C 2.00 86 1,2,3,7,8-PeCDD-13C 2.00 94 1,2,3,4,7,8-HxCDF-13C 2.00 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND		0.0500 0.0500	1,2,3,6,7,8-HxCDF-13C 2.00 96 2,3,4,6,7,8-HxCDF-13C 2.00 93 1,2,3,7,8,9-HxCDF-13C 2.00 95
1,2,3,7,8-PeCDD	ND		0.0500	1,2,3,4,7,8-HxCDD-13C 2.00 87 1,2,3,6,7,8-HxCDD-13C 2.00 83 1,2,3,4,6,7,8-HpCDF-13C 2.00 83 1,2,3,4,7,8,9-HpCDF-13C 2.00 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.0500 0.0500 0.0500	1,2,3,4,6,7,8-HpCDD-13C 2.00 93 OCDD-13C 4.00 89
1,2,3,7,8,9-HxCDF	ND		0.0500	1,2,3,4-TCDD-13C 2.00 NA 1,2,3,7,8,9-HxCDD-13C 2.00 NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND ND		0.0500 0.0500 0.0500	2,3,7,8-TCDD-37Cl4 0.20 88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND		0.0500 0.0500	Total 2,3,7,8-TCDD Equivalence: 0.050 ng/L (Using ITE Factors - Using PRL/2 where ND)
1,2,3,4,6,7,8-HpCDD	ND		0.0500	
OCDF OCDD	ND ND		0.0990 0.0990	

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

PRL = Pace Analytical Reporting Limit.

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of method 1613 control limits

Nn = Value obtained from additional analysis

I = Interference

E = PCDE Interference

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

- J = Value below calibration range
- * = See Discussion

Report No.....1015282

REPORT OF LABORATORY ANALYSIS

^øace Analytical

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD Toxic Equivalency (TEQ) Calculations Using 1989 ITE Factors

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL Date CCal Filename(s) Method Blank ID	P5F0859-01 FO 1015282001 U50708B_05 SMT 1010 mL NA NA 07/06/2005 U50708A_17 BLANK-7476	050657	Total TE Matrix Dilution Collected Received Extracted Analyzed	Q Conc.: 0.0496 ng/L Water NA 06/21/2005 06/22/2005 06/30/2005 07/09/2005 04:53
Analyte	Conc ng/L	PRL ng/L	TEF Factor	TEQ Conc. ng/L
OCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total PeCDD 1,2,3,7,8-PeCDD Total TCDD 2,3,7,8-TCDD		0.0990 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0010 0.0000 0.0100 0.0000 0.1000 0.1000 0.1000 0.0000 0.5000 0.5000 0.0000 1.0000	0.0000 0.0124 0.0000
OCDF Total HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total PeCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total TCDF 2,3,7,8-TCDF		0.0990 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	$\begin{array}{c} 0.0010\\ 0.0000\\ 0.0100\\ 0.0100\\ 0.1000\\ 0.1000\\ 0.1000\\ 0.1000\\ 0.1000\\ 0.0000\\ 0.0500\\ 0.5000\\ 0.5000\\ 0.0000\\ 0.1000\end{array}$	0.0000 0.0002 0.0002 0.0000 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0000 0.0012 0.0124 0.0000

Final values are valid to only 2 significant figures TEQs for Totals classes include contributions from non 2,3,7,8 isomers only Where "ND", TEQ Conc = (PRL/2) * (TEF Factor)

Report No.....1015282

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Client - North Creek Analytical

Filename Total Amount Extracted ICAL Date CCal Filename	LCS-7477 U50706A_12 963 mL 07/06/2005 U50706A_10 BLANK-7476	Matrix Dilution Extracted Analyzed Injected By	Water NA 06/30/2005 07/06/2005 17:4 SMT	44
--	--	--	---	----

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	11.4 10.2 56.2 52.3 47.0 47.7 53.8 50.4 49.7 53.2 57.1 54.4 56.9 59.1 49.0 101.4 95.9	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0 144.0	114 102 112 105 94 95 108 101 99 106 114 109 114 118 98 101 96
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	8.0 42.3 45.7 57.2 66.9 73.0 83.5 79.9 87.8 86.6 83.9 74.7 78.1 79.8 89.1 194.0	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 22.0 17.0 25.0 21.0 25.0 21.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 166.0 397.0	80 42 46 57 67 73 84 80 88 87 84 75 78 80 89 97

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

X = Background subtracted value

P = Recovery outside of control limits

Nn = Value obtained from additional analysis

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....1015282

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Client - North Creek Analytical

Lab Sample ID Filename Total Amount Extracted ICAL Date CCal Filename Method Blank ID	LCSD-7478 U50706A_13 993 mL 07/06/2005 U50706A_10 BLANK-7476	Matrix Dilution Extracted Analyzed Injected By	Water NA 06/30/2005 07/06/2005 18:35 SMT	
--	---	--	--	--

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	11.4 10.0 56.0 53.4 47.3 48.7 53.0 53.4 53.1 55.9 58.2 57.4 58.2 57.4 58.2 57.4 58.2 59.0 50.5 102.4 94.7	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0 144.0	114 100 112 107 95 97 106 107 106 117 106 112 116 115 116 115 116 118 101 102 95
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	8.4 43.6 47.5 59.1 69.2 76.0 86.1 82.5 86.2 85.0 81.9 75.6 77.9 80.1 87.4 195.2	3.1 22.0 20.0 21.0 13.0 21.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 163.0 166.0 166.0 397.0	84 44 47 59 69 76 86 83 86 85 82 76 78 80 87 98

Cs = Concentration Spiked (ng/mL) Cr = Concentration Recovered (ng/mL) Rec. = Recovery (Expressed as Percent) Control Limit Reference: Method 1613, Table 6, 10/94 Revision X = Background subtracted value P = Recovery outside of control limits Nn = Value obtained from additional analysis * = See Discussion

Report No.....1015282

REPORT OF LABORATORY ANALYSIS

SPIKE RECOVERY RELATIVE PERCENT DIFFERENCE (RPD) RESULTS

Client..... North Creek Analytical

SPIKE 1 ID	LCS-7477
SPIKE 1 Filename	U50706A_12
SPIKE 2 ID	LCSD-7478
SPIKE 2 Filename	U50706A_13

COMPOUND	SPIKE 1 REC,%	SPIKE 2 REC,%	RPD,%	
2378-TCDF	114	114	0.0	
2378-TCDD	102	100	2.0	
12378-PeCDF	112	112	0.0	
23478-PeCDF	105	107	1.9	
12378-PeCDD	94	95	1.1	
123478-HxCDF	95	97	2.1	
123678-HxCDF	108	106	1.9	
234678-HxCDF	101	107	5.8	
123789-HxCDF	99	106	6.8	
123478-HxCDD	106	112	5.5	
123678-HxCDD	114	116	1.7	
123789-HxCDD	109	115	5.4	
1234678-HpCDF	114	116	1.7	
1234789-HpCDF	118	118	0.0	
1234678-HpCDD	98	101	3.0	
OCDF	101	102	1.0	
OCDD	96	95	1.0	

REC = Percent Recovered

RPD = The difference between the two values divided by the average.

NA = Not Applicable

Report No.... 1015282

REPORT OF LABORATORY ANALYSIS

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory 6543 N. Burlington Ave.

Portland, OR 97203

Project Name: Main - 40567

Project Number: Project Manager:

Project name on COC
 Jennifer Shackelford

Report Created: 07/14/05 15:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F0050657	P5F0859-01	Water	06/21/05 09:28	06/21/05 10:55

PORTLAND HARBON INLINE 6/21/05 CHILUMIUM JI NIZEO - DIOXINS /FURANS HIG EPA 1631 - CANCEUSO

North Creek Analytical - Portland

hun

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave.

Portland, OR 97203

Main - 40567

Project Number: Project Project Manager: Jennife

Project name on COC Jennifer Shackelford Report Created: 07/14/05 15:32

		Hexava	lent Chro				od 71	<u>95</u>			
	-		North Cr	eek Analyt	ical - Por	tland					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5F0859-01	Water	F0050657	Sam	pled: 06/21	1/05 09:28	}					
Hexavalent Chroi	mium	EPA 7195	ND		0.0100	mg/l	10x	5060935	06/21/05	07/14/05 06:35	M-01

Project Name:

North Creek Analytical - Portland

Olus

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203

Project Name: Project Number: Project Manager:

Main - 40567 Project name on COC Jennifer Shackelford

Report Created: 07/14/05 15:32

Hexavalent Chromium per EPA Method 7195 - Laboratory Quality Control Results North Creek Analytical - Portland

QC Batch: 5060935	Water	Preparation	Method:	EPA 71	95									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (5060935-BLK1)	or 							Ext	racted:	06/21/05	15:28	1		
Hexavalent Chromium	EPA 7195	ND		0,0100	mg/l	10x		-		-	-		07/14/05 06:02	M-01
LCS (5060935-BS1)								Ext	acted:	06/2 1/05	15:28			
Hexavalent Chromium	EPA 7195	0.942	(0.0100	mg/l	10x	·	1.00	94.2%	(85-115)	100 Aug 100 Aug		07/14/05 06:08	M-01
LCS Dup (5060935-BSD1)			3					Ext	racted:	06/21/05	15:28			
Hexavalent Chromium	EPA 7195	0.949		0.0100	mg/l	10x		1.00	94.9%	(85-115)	0.7409	% (20)	07/14/05 06:28	M-01
Duplicate (5060935-DUP1)				QC Source:	P5F085	9-01		Ext	racted:	06/21/05	15:28			
Hexavalent Chromium	EPA 7195	ND		0.0100	mg/l	10x	ND	1	100	1000	NR	(20)	07/14/05 06:42	M-01
Matrix Spike (5060935-MS1	l)			QC Source:	P5F085	9-01		Ext	racted:	06/21/05	15:28			
Hexavalent Chromium	EPA 7195	1.14		0.0100	mg/l	10x	ND	1.00	114%	(80-120)	1.52	8 <u>242</u>	07/14/05 06:48	M-01

North Creek Analytical - Portland

Haula un

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

> > Page 3 of 4

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Seattle Spokane Phone: (509) 924,9200 fax: (509) 924,9200 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906,9200 fax: (503) 906,9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 Portland Bend phone: (541) 383.9310 fax: 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 Anchorage phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203

Project Name: Project Number: Project Manager:

Main - 40567 Project name on COC Jennifer Shackelford

Report Created: 07/14/05 15:32

Notes and Definitions

Report Specific Notes:

M-01 Analysis performed by EPA 200.8/6020 due to matrix interference or to meet lower reporting limit.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

- Sample results reported on a dry weight basis. Reporting Limits are corrected for %Solids when %Solids are <50%. dry
- Sample results and reporting limits reported on a wet weight basis (as received). wet
- RPD Relative Percent Difference. (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results."
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and limits percent solids, where applicable.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

Howard Holmes, Project Manager

Page 4 of 4

NCA CLENT: CITY OF POIREPORT TO: JENNIFER Sh ADDRESS:	CHAIN OF CUST	F CUST	ODY REPORT		C	277.070
Jennifer	PORTLAND		INVOICE TO:		Work Order #: T (Work Order #: FOFOOO
AUDICESS:	ShedelBrd					in Business Days *
					Organic	Organic & Inorganic Analyses
			P.O. NUMBER: 4056	0567]	rocarbon Analyses
PRUJECT NAME: Portland He	Portland Herbor Inline	-	PRES	PRESERVATIVE		• • •
PROJECT NUMBER:		_			310	0
SAMPLED BY:		5		REQUESTED ANALYSES	OTHER .	Specify:
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	MIXON MIXON AI	1ह 91 द्वम		MATRIX # OF (W, S, O) CONT.	LOCATIC
1 FOOSOGS7 61	6/21/05 0928	$ \times$	х х		3	
2					-	
3						
4		1				
5						
Q						
L						
8						
6	8					
10	2					
RELEASED BY: Jennifer Mechagny	ichegrid		DATE: 6/21/05	RECEIVED BY / RAUDSA	GNAN	DATE: 6- 21 C
PRINT NAME: Jennifer Shackel Bick	Lelfard FIRM: Cop		TIME: 1055	PRINT NAME: VOUNOSA	ALLOSA BUONERN: NIM	NAT TIME: 10.
RELEASED BY:		Vi	DATE:	RECEIVED BY:		DATE
PRINT NAME:	FIRM:		TIME:	PRINT NAME:	FIRM:	TIME:

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

June 30, 2005

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/22/05 14:30. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

Work	Project	ProjectNumber	
P5F0947	Portland Harbor	40567	

Thank You,

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203 Project Name: Project Number: Project Manager:

er: 40567

Jennifer Shackelford

Portland Harbor

Report Created: 06/30/05 21:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F0050657	P5F0947-01	Water	06/21/05 09:28	06/22/05 14:30

North Creek Analytical - Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 977015-711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

<u>City of Portland Water Pollution Laboratory</u>

6543 N. Burlington Ave. Portland, OR 97203 Project Name: Project Number: Project Manager:

umber: 40567 Janager: Jennifer Shackelford

Portland Harbor

Report Created: 06/30/05 21:36

Chlorinated Herbicides per EPA Method 8151A Modified North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5F0947-01	Water	F0050657	Sample	ed: 06/21	/05 09:28						
2,4-D		8151mod	ND		1.00	ug/l	1x	5061151	06/27/05	06/28/05 23:25	J-06
2,4-DB		"	ND		1.00	"	"	"	"	"	J-06
2,4,5-T		"	ND		1.00	"	"	"	"	"	
2,4,5-TP (Silvex)		"	ND		1.00	"	"	"	"	"	
Dalapon		"	ND		5.00	"	"	"	"	"	J-06
Dicamba		"	ND		1.00	"	"	"	"	"	
Dichlorprop		"	ND		1.00	"	"	"	"	"	
Dinoseb		"	ND		1.00	"	"	"	"	"	J-06
MCPA		"	ND		300	"	"	"	"	"	
MCPP		"	ND		300	"	"	"	"	"	

Surrogate(s): 2,4-Dichlorophenylacetic acid

Limits: 20 - 150 % "

North Creek Analytical - Portland

Howard Holmes, Project Manager

Fhe results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Recovery: 93.2%

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203 Project Name: Project Number: Project Manager:

ber: 40567

Portland Harbor

Jennifer Shackelford

Report Created: 06/30/05 21:36

<u>Chlorinated Herbicides per EPA Method 8151A Modified</u> - <u>Laboratory Quality Control Results</u> North Creek Analytical - Portland

QC Batch: 5061151	Wate	er Preparation	n Method:	EPA 3	510/600 \$	Series								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	its) Analyzed	Notes
Blank (5061151-BLK1)								Ext	racted:	06/27/05	10:46			
2,4-D	8151mod	ND		1.00	ug/l	1x							06/28/05 22:04	
2,4-DB	"	ND		1.00		"							"	J-06
2,4,5-T	"	ND		1.00		"							"	
2,4,5-TP (Silvex)	"	ND		1.00		"								
Dalapon	"	ND		5.00		"							"	
Dicamba	"	ND		1.00		"							"	
Dichlorprop	"	ND		1.00	"	"							"	
Dinoseb	"	ND		1.00		"							"	J-06
МСРА	"	ND		300		"							"	
МСРР	"	ND		300		"							"	
Surrogate(s): 2,4-Dichloropher	iylacetic acid	Recovery: 92	2.8%	Limit	s: 20-150%	ó "							06/28/05 22:	04
LCS (5061151-BS1)								Ext	racted:	06/27/05	10:46			
2,4-D	8151mod	21.3		1.00	ug/l	1x		20.0	106%	(40-160)			06/28/05 22:58	J-06. O-28
2,4-DB	"	24.0		1.00	"	"		"	120%	"			"	J-06, Q-28
2,4,5-T	"	23.8		1.00		"		"	119%	"				
2,4,5-TP (Silvex)	"	17.5		1.00		"		"	87.5%	"			"	
Dalapon	"	19.0		5.00		"		"	95.0%	"			"	J-06, Q-28
Dicamba	"	21.3		1.00		"		"	106%	"				v 00, Q 20
Dichlorprop	"	19.1		1.00		"		"	95.5%	"				
Dinoseb	"	32.3		1.00	"	"		"	162%	"			"	J-06, Q-28,
МСРА		1840		300		"		2000	92.0%	"				Q-29
MCPP		1960		300		"		2000	98.0%	"				
Surrogate(s): 2,4-Dichloropher	mlacatic acid	Recovery: 93			s: 40-160%	<i></i>			96.070				06/28/05 22:.	5.8
	-	Recovery. 95	.070	Limu	5. 40-1007	,							00/20/03 22.	
Matrix Spike (5061151-M	S1)			QC Source	e: P5F094	7-01		Ext	racted:	06/27/05	10:46			
2,4-D	8151mod	ND		1.00	ug/l	1x	0.527	20.0	NR	(40-160)			06/28/05 23:53	J-06, Q-28
2,4-DB	"	25.3		1.00	"	"	0.582	"	124%	"			"	J-06, Q-28
2,4,5-T	"	23.6		1.00	"	"	0.372	"	116%	"			"	
2,4,5-TP (Silvex)	"	17.8		1.00		"	0.443	"	86.8%	"			"	
Dalapon	"	19.7		5.00		"	ND	"	98.5%	"			"	J-06, Q-28
Dicamba	"	22.0		1.00	"	"	ND	"	110%	"			"	
Dichlorprop	"	19.6		1.00	"	"	ND	"	98.0%	"			"	
Dinoseb	"	32.1		1.00	"	"	0.368	"	159%	"			"	J-06, Q-28
MCPA	"	1940		300		"	ND	2000	97.0%	"				
МСРР	"	2090		300		"	ND	"	104%	"			"	

North Creek Analytical - Portland

Howard Holmes, Project Manager

of custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave. Portland, OR 97203 Project Name: Project Number: Project Manager:

nber: 40567

Portland Harbor

Jennifer Shackelford

Report Created: 06/30/05 21:36

<u>Chlorinated Herbicides per EPA Method 8151A Modified</u> - <u>Laboratory Quality Control Results</u> North Creek Analytical - Portland

QC Batch: 5061151	Wate	r Preparation	Method:	EPA 3	510/600 \$	Series								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	ts) Analyzed	Notes
Matrix Spike Dup (506115	1-MSD1)			QC Source	e: P5F094	7-01		Ext	racted:	06/27/05	10:46			
2,4-D	8151mod	21.7		1.00	ug/l	1x	0.527	20.0	106%	(40-160)		(40)	06/29/05 00:20	J-06, Q-28
2,4-DB	"	25.6		1.00	"	"	0.582	"	125%	"	1.18%	, "	"	J-06, Q-28
2,4,5-T	"	23.8		1.00	"	"	0.372	"	117%	"	0.844%	6 "	"	
2,4,5-TP (Silvex)	"	18.0		1.00	"	"	0.443	"	87.8%	"	1.12%	, "	"	
Dalapon	"	19.7		5.00	"	"	ND	"	98.5%	"	0.00%	, "	"	J-06, Q-28
Dicamba		22.7		1.00	"	"	ND	"	114%	"	3.13%	, " 0 "	"	
Dichlorprop		19.6		1.00	"	"	ND	"	98.0%	"	0.00%	, " 0 "	"	
Dinoseb		31.5		1.00	"	"	0.368	"	156%	"	1.89%	, " 0 "	"	J-06, Q-28
MCPA		1980		300	"	"	ND	2000	99.0%	"	2.04%	, " 0 "	"	
МСРР	"	2150		300	"	"	ND	"	108%	"	2.83%	, " 0	"	
Surrogate(s): 2,4-Dichloropheny	lacetic acid	Recovery: 94	.8%	Limit	ts: 40-160%	6 "							06/29/05 00:	20

North Creek Analytical - Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20322 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

City of Portland Water Pollution Laboratory	Project Name:	Portland Harbor	
6543 N. Burlington Ave.	Project Number:	40567	Report Created:
Portland, OR 97203	Project Manager:	Jennifer Shackelford	06/30/05 21:36

Notes and Definitions

Report Specific Notes:

- J-06 Daily Calibration Check Sample had recovery above 115% for this analyte. Result may be biased high. All samples were Non-Detect, Data Quality is not impacted.
- Q-28 The recovery for the Daily Continuing Calibration Check sample was above method specified criteria. All samples were Non Detect for this analyte, therefore Data Quality is not affected. Reported results for QC may be biased high.
- Q-29 The recovery for the Laboratory Control Sample, and/or LCS Duplicate, for this analyte was above method specified criteria. All samples were Non Detect for this analyte, therefore Data Quality is not affected.

Laboratory Reporting Conventions:

- <u>DET</u> Analyte <u>DETECTED</u> at or above the Reporting Limit. Qualitative Analyses only.
 - <u>ND</u> Analyte <u>NOT DETECTED</u> at or above the reporting limit (MDL or MRL, as appropriate).
- <u>NR</u> / <u>NA</u> <u>Not Reported</u> / <u>Not Available</u>
 - dry Sample results reported on a dry weight basis. Reporting Limits are corrected for %Solids when %Solids are <50%.
 - wet Sample results and reporting limits reported on a wet weight basis (as received).
 - <u>RPD</u> <u>Relative Percent Difference</u>. (RPDs calculated using Results, not Percent Recoveries).
- <u>MRL</u> <u>METHOD REPORTING LIMIT</u>. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- <u>MDL*</u> <u>METHOD DETECTION LIMIT</u>. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results.
- <u>Dil</u> Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- <u>Reporting</u> Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N Suite 400, Bothen, WA 98011-8244 423-420-9200 1-AA 420-9210 11922 E 1st Ave, Spokane, WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 FAX 906-9210 503-906-9200 20332 Empire Ave, Ste F1, Bend, OR 97701-5712 541-383-9310 FAX 382-7588 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

			(CHAIN O	DF CU	UST	OD	Y RI	EPO	RT								Work Order	· P5	FC947			
NCACLIENT: City of Portland								INVO	DICE T	0: (hav	-125	1.	t le		TURNAROUND REQUEST							
ADDRESS: Jennifer Shuckelford								- Charles Lytle											in Business Days *				
																			Inorganic Analyses				
PHONE:								P.O. N	UMBI	ER:	40	56	7			JK 7 5 4 3 2 1 <1							
PROJECT	PROJECT NAME: Portland Harber					1	1	T	PRE	SERV	ATIVE			5 4 3 2 1 <1									
1	PROJECT NUMBER:																	\$713.			1		
SAMPLED BY:						The REQUESTED ANALYSES											OTHER Specify:						
	JENT SAMPLE		SAMI	PLING	1-1- 808	l's												MATRIX	#OF	LOCATION /			
	ENTIFICATION			/TIME	1:22/1/202	Herb	PCBS 80%24											(W, S, O)	CONT.	COMMENTS	NCA WO ID		
I FOC	50657	6/2	1/05	0928	X	X		ļ	ļ									W	2				
2	674			1350			X											S	2				
3	675			1000	X			<u> </u>										5	ノ				
4	676			1020	X									:				S	X				
5 1	677	1	-	1038	X													S	Z				
6	v /						1																
7		_								ł													
8		-																					
9																							
10	- • •										-												
RELEASED	BY: Mark	tan	-s-cer	ų	_1	I	.l	DATE:	61.	72/	125	RECE	IVED B	Y:	Al C	E		<u></u>		DATE:	122/05		
PRINT NAM	ME: Musha 1	Egica	i.	FIRM: C1L	10-	P.41	inend	TIME:	1.	30		PRINT	NAME		eb)			FIRM	NU	4 тіме:	/22/01		
RELEASED	BY: Ber &	$\overline{}$	8	7	/	-	-4	DATE:	6/2	2/	05	RECE	IVED B	γ: C	A		7	RUS	N	DATE: U	122100		
PRINT NAM	DBY: Mash	\rightarrow		FIRM: N	A			TIME:	14	: <i>3</i> ()	PRINT	NAME	:: C	4111	iFz	ūl 1	SNOFE	M: /\(CA TIME:	1430		
ADDITION	AL REMARKS: Wait	er Pc	sts/PC	Bs are	sent	to	G-ER	G-fi	or a	nalys	sîş.	Soil	Pes	ts/Pc	Bs a	and	PCBS	are se	int to	TEMP:			
COC REV 0	19/04 STL	-Sea	Hle fo	or analys	sīs.	Only	, wa	te-	lter	Ьѕ	are	to b	enn	aly z	ed .	ath	rcA.			(() PAGI	EloF		

NORTH CREEK ANALYTICAL COOLER RECEIPT FORM

	(Army Corp. compliant)
Clie	nt <u>: CCP</u> (
1.	Please sign for receipt and opening of cooler or other
	By (print) <u>(alle Fahshell</u> (sign) <u>UUUUUU</u>
	Date samples received (122105) Date opened: Same <u>×</u> or <u>1</u>
	Delivered by:NCA courier FedExUPSCourierClientOther Airbill # if applicable (Put copy of shipping papers in file)
4.	There were custody seals present, signed by B0B date(2122406).
5.	Were the custody seals unbroken and intact at the date and time of arrival? YesNo
6. Te	Was ice used? <u>yes</u> no Type of ice: <u>blue ice</u> gel ice <u>real ice</u> emperature (degrees C) Raytek thermometer <u>(()</u> Digi-Therm (probe temperature blank)
7.	Are custody papers sealed in a plastic bag and taped inside to lid?YesNo
8.	Were custody papers filled out properly (ink, signed, etc.)? Yes No If "no" please specify:
9.	Was project identifiable from custody papers? <u> </u>
10.	Initial and date for unpacking: <u>E</u> J (initials) date <u>6122105</u>
11.	Packing material: <u>N4</u> bubble wrap/bagstyrofoamcardboardother
12.	Were samples in bags?YesNo
13.	Did all containers indicated on the COC arrive? YesNo If "no" please indicate which containers were absent
14.	Were all containers unbroken and labels in good condition? YesNo If "no" please indicate which containers
15	Were all bottle labels complete (ID, date, time, signature, etc.)? Yes <u>Ves</u> <u>No</u> Do the IDs, times, etc. agree with the COC? <u>Yes</u> <u>No</u> If "no" please indicate which containers <u>no brine (dette on labels</u>
16.	Are containers properly preserved for indicated analysis?YesNo
17	Is there adequate volume for the test(s) requested?
	. If voa vials were submitted, are they free of bubbles?N/AYesNo
	. Log-in phase: Date samples were logged in: <u>しパレルウ</u> Elm Project # P <u>5</u> F092日
20	. Logged in by (print) CMUC JENSEN (sign) Curily for
21	. Was the project manager notified of status? (Use back of form as a record) \YesNo

.