Report

Data Evaluation Report

Inline Solids in Basins M-1 and 18

Prepared for

City of Portland Bureau of Environmental Services Portland Harbor Source Control Pilot Project

December 2005

Prepared by CH2MHILL

Printed on Recycled and Recyclable Paper

Contents

Section Page				
Abbreviations and Acronymsv				
1	Intro 1.1 1.2	oduction	1	
2	Inlir 2.1 2.2	ne Solids Investigation Field Observations2-Basin M-1 Inline Field Observations2-2.1.1 Dry-weather Flow Observations2-2.1.2 Sample Observations2-2.1.3 Deviations from the SAP2-Basin 18 Inline Field Observations2-2.2.1 Dry-weather Flow Observations2-2.2.2 Sample Observations2-2.2.3 Deviations from the SAP2-2.2.4 Dry-weather Flow Observations2-2.2.5 Sample Observations2-	-1 -2 -2 -3 -4 -4	
3	Data 3.1 3.2 3.3 3.4	2.2.2 Sample Observations2-2.2.3 Deviations from the SAP2-a Evaluation3-Data Evaluation Process3-Inline Solids Sample Collection Feasibility3-Sample Representativeness Evaluation3-3.3.1 Basin M-1 Samples3-3.3.2 Basin 18 Samples3-Potential Upland Source Assessment3-3.4.1 Chemicals Identified in Phase 1 of the Pilot Project3-3.4.2 Basin M-1 Results3-	·6 ·1 ·1 ·1 ·2 ·3 ·3	
4	4.1 4.2 4.3	3.4.3 Basin 18 Results 3- ne Solids Sampling Lessons Learned 4- Sample Collection 4- Access 4- Timely Completion 4-	• 1 •1 •1	
5	5.1 5.2 5.3	lings and Recommendations	-1 -2 -3	
U	References			

Appendices

- A Field Data Sheets
- B Field Notes
- C Site Photographs
- D Daily Rainfall for Portland, Oregon
- E Laboratory Data Sheets
- F Data Validation Report

Tables

- 2-1 Basin M-1 Summary of Sample Locations
- 2-2 Basin M-1 Summary of Flow Observations at Attempted Sample Locations
- 2-3 Basin 18 Summary of Sample Locations
- 2-4 Basin 18 Manhole ID Summary
- 2-5 Basin 18 Summary of Flow Observations at Attempted Sample Locations
- 3-1 Analytical Results from Inline Solids Sampling in Basin M-1
- 3-2 Analytical Results from Inline Solids Sampling in Basin 18

Figures

- 2-1 Outfall M-1 Inline Sampling Locations and Associated Subbasins
- 2-2 Overview of Outfall 18 Subbasins
- 2-3 Outfall 18 Inline Sampling Locations and Associated Subbasins
- 3-1 Chromium Concentrations Inline Solids
- 3-2 Lead Concentrations Inline Solids
- 3-3 Mercury Concentrations Inline Solids
- 3-4 Zinc Concentrations Inline Solids
- 3-5 Bis(2-ethylhexyl)Phthalate Concentrations Inline Solids
- 3-6 Total PCB Concentrations Inline Solids
- 3-7 Total DDT Concentrations Inline Solids
- 3-8 LPAH Concentrations Inline Solids
- 3-9 HPAH Concentrations Inline Solids

Abbreviations and Acronyms

BES	Bureau of Environmental Services
BEHP	bis(2-ethylhexyl)phthalate
BNSF	Burlington Northern Santa Fe
DDT	dichlorodiphenyltrichloroethane
DEQ	Oregon Department of Environmental Quality
gpm	gallons per minute
HPAH	high molecular weight polynuclear aromatic hydrocarbon
ID	identification
ISA	initial study area
JSCS	Joint Source Control Strategy
LPAH	low molecular weight polynuclear aromatic hydrocarbon
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PAHs	polynuclear aromatic hydrocarbons
PCBs	polychlorinated biphenyls
RI	remedial investigation
RI/FS	remedial investigation/feasibility study
SAP	Sampling and Analysis Plan
SVOCs	semivolatile organic compounds
TMP	truck manufacturing plant
TOC	total organic carbon
TPH	total petroleum hydrocarbon

section 1 Introduction

The City of Portland (City) is investigating the nature and extent of contamination from upland areas that may enter the City's stormwater conveyance system and discharge into the Willamette River, resulting in contamination of river sediments. The Oregon Department of Environmental Quality (DEQ), which is responsible for upland investigations relating to the Portland Harbor Superfund site, is overseeing this investigation.

1.1 Background

The City and DEQ are working together to develop an effective streamlined process for investigating and evaluating City stormwater outfalls within the Portland Harbor Initial Study Area (ISA). In August 2002, the City developed the *Source Control Pilot Project for the City of Portland Outfalls Work Plan* (CH2M HILL, 2002) to coordinate the City and DEQ investigation and source control efforts. The Work Plan identified one east side and one west side City outfall drainage basin to implement the Pilot Projects: Basins M-1 and 18. The Work Plan identified two key Phase 1 pilot project activities for the City to conduct: (1) sediment sampling offshore of each outfall, and (2) basin assessments focused on identifying potential sources of contamination to the stormwater conveyance system, including inspections of industrial facilities. Phase 2 of the pilot project included developing and assessing an inline solids investigation program.

Results of the Phase 1 activities have been summarized in the *Phase 1 Data Evaluation Report and Phase 2 Work Planning for Outfall M*-1 (CH2M HILL, January 2003) and *Phase 1 Data Evaluation Report and Phase 2 Work Planning for Outfall 18* (CH2M HILL, April 2004) reports.

This document presents analytical results from the Phase 2 inline solids investigation conducted in August 2003 by the Bureau of Environmental Services (BES) in outfall drainage basins M-1 and 18. Data collected from this pilot project will be used by the City to focus source control efforts within these outfall basins, as well as by the DEQ Cleanup Program to focus upland site pathway evaluations. Initial investigations in these basins also have been used to develop streamlined processes for investigating and evaluating City outfalls as part of the ongoing *Programmatic Source Control Remedial Investigation Work Plan for the City of Portland Outfalls Project* (CH2M HILL, 2004).

1.2 Purpose

The inline solids investigation sampling was intended to evaluate the nature and extent of environmental contamination that may enter or has entered the City's stormwater conveyance system, and thus potentially affect sediment quality in the Willamette River.

The purpose of this investigation was threefold:

- Evaluate the feasibility of collecting inline solids samples from the stormwater conveyance system.
- Assess whether samples are representative of a source of solids entering the stormwater conveyance system from facilities located within the basin.
- Identify subbasins with substantially higher concentrations of chemicals that indicate further investigation is warranted.

The City and DEQ Cleanup Program will use results from this investigation to guide future source control efforts in upland remedial investigations (RIs).

Inline Solids Investigation Field Observations

This section presents a summary of the August 2003 inline solids investigation field activities and observations within the City's stormwater conveyance system in Basins M-1 and 18. Sampling protocols were followed as described in the *Sampling and Analysis Plan – Inline Solids in Basins M-1 and 18* (SAP) (CH2M HILL, August 2003).

Sample locations were selected to characterize inline solids, which may indicate contaminant releases to the conveyance system upgradient of the sampling point. Each outfall basin was divided into subbasins to facilitate subsequent data evaluation and source control investigation. For both Basin M-1 and Basin 18, Subbasin 1 represents the collective inline contribution of all subbasins upstream of the Subbasin 1 sample. Inline solids samples were collected during no-flow or low-flow conditions, and sampling was not conducted in areas where standing river water (resulting from high river stages) occurred in the conveyance system.

Figure 2-1 shows sampling locations and their associated subbasins for Basin M-1. Six inline solids samples and one duplicate sample were collected from Basin M-1. Figure 2-2 shows an overview of the Basin 18 subbasins and Figure 2-3 shows the developed portion of Basin 18, the sampling locations, and the associated subbasins. Six inline solids samples were collected from Basin 18.

The City collected samples between August 12 and August 20, 2003. Deviations from the SAP are noted in Sections 2.1.3 and 2.2.3. Observations for each sample were recorded by a representative of the City on the field data sheets (Appendix A) and by a representative of CH2M HILL in a field notebook (Appendix B). Site photographs are presented in Appendix C.

Weather during the sampling event was generally sunny, with highs in the low 80s (Fahrenheit) and with no recorded precipitation. Figure D-1 of Appendix D presents the daily rainfall for Portland, Oregon, from August 1–20, 2003.

2.1 Basin M-1 Inline Field Observations

Figure 2-1 of the SAP presented the proposed subbasins to be assessed during the inline solids investigation in Basin M-1, along with proposed manhole locations for collection of representative samples. However, several of the sample locations were moved because sufficient solids were not present at the proposed locations. Figure 2-1 of this report presents the actual sample locations and associated subbasins. Table 2-1 presents the subbasin areas assessed, entrance manhole (nearest manhole where the sample was collected), sample identification (ID) number (if sample collected), solids description, and field observations. These field observations are summarized in the subsections below.

2.1.1 Dry-weather Flow Observations

This subsection presents a summary of dry-weather flow observed during the field investigation. There are no known facilities in Subbasin 1 with nonstormwater-related permits for discharge to the stormwater conveyance system. Dry-weather flow was observed at the sampling point for each subbasin, with the exception of Subbasin 2. Table 2-2 lists locations where flowing or standing water was observed during the field investigation. Features to note from these observations include the following:

- Dry-weather flow was observed entering manhole AAJ933 from the two lines that merge in this manhole. The City line entering from the northeast is shown on Figure 2-1 as draining the northeast section of Subbasin 6. Flow from this line was clear and the pipe was stained an orange-brown color. The second line, entering from the north, is a private lateral and is shown on the *Stormwater Pollution Control Plan, Freightliner Truck Manufacturing Facility Portland, Oregon* (EMCON, 2001). This line drains the southeastern portion of the Freightliner truck manufacturing plant (TMP). This site does not have any permitted nonstormwater discharges to the stormwater conveyance system. Water entering the manhole from this line was slightly cloudy and distinctly different from the other flow entering this manhole.
- Dry-weather flow was observed originating from Subbasin 3, at manhole AAJ831. Manhole AAJ831 is located at the northeast end of N. Fathom Street. Subbasin 3 drains the northwestern portion of the Freightliner TMP; there are no other connections or inlets to this manhole. This site does not have any permitted nonstormwater discharges to the City stormwater conveyance system. Inline water at this location was clear, and no iron oxide staining was observed on the conveyance pipes.
- The lack of dry-weather flow in Subbasin 2 suggests the dry-weather flow within other Basin M-1 subbasins may be the result of other nonpermitted discharges and not solely from groundwater infiltration.

2.1.2 Sample Observations

Six samples and one field duplicate were collected at the manhole farthest downstream within each subbasin. Two distinctly different types of solids were observed in the basin. Sand with little or no silt was observed and sampled at Subbasins 2 and 3. An orange-brown material, suspected to be groundwater precipitate, was observed and sampled at the four other sample locations: Subbasins 1, 4, 5, and 6.

A brief description of each sample is presented below.

Subbasin 1: IL-M1-AAM104-0803-SW

This sample was collected from the downstream (southwest) line exiting manhole AAM104. The sample location is downstream of most of Basin M-1, excluding several properties along the river, among which are Port of Portland Dredge, Fred Devine Diving & Salvage Company, and Foss Environmental. A 0.5-inch-thick layer of orange-brown material was observed in this line and extended about 20 feet downstream of the manhole. No debris, sheen, or odor was noted (see Photographs 1 and 2 in Appendix C).

Subbasin 2: IL-M1-AAM155-0803

This sample was collected from the downstream (northwest) line exiting manhole AAM155. A 3.5-inch-thick layer of well-graded sand with gravel (well rounded) was observed at this manhole and extended in both the upstream and downstream directions. Two inches of standing water was present at the manhole. The upper inch of the sand was dark brown, while the bottom two inches was black. The sample was collected 0 to 1.5 feet downstream of manhole AAM155 in an area with no standing water. A slight petroleum odor and metal debris (nuts and washers) were observed in the vicinity of the sample location during sample collection; however, no debris or odor was observed in the sample. A light sheen was observed on the sample pore water during sample homogenization (see Photographs 7 and 8 in Appendix C).

Subbasin 3: IL-M1-AAJ831-0803 (Field Duplicate IL-M1-XXY101-0803)

These samples were collected at manhole AAJ831. A 6-inch-thick layer of solids was observed at the manhole and extended into the upstream private lateral pipe and down the City storm pipe. The solids consisted of dark gray sand with approximately 1 percent consisting of paint chips. In addition to the paint chips, significant debris was noted in the sand, including small pieces of plastic and metal (washers). During sample collection, a petroleum odor was observed at the manhole and a sheen was observed on the flowing water (see Photographs 11 and 12 in Appendix C).

Subbasin 4: IL-M1-AAM104-0803-NE

This sample was collected from the upstream (northeast) line entering manhole AAM104. A 0.75-inch-thick layer of orange-brown material was observed in this line and extended 6 feet upstream. A faint discontinuous sheen was observed on the sample during homogenization. No debris or odor was noted (see Photographs 3 and 4 in Appendix C).

Subbasin 5: IL-M1-AAJ829-0803

This sample was collected in the downstream (southeast) line exiting manhole AAJ829 at the base of a small lateral that entered the main line 80 feet downstream (southeast) of the manhole. A 4-inch-thick layer of orange-brown material observed on the sides of the main line appeared to be the result of precipitate deposits from groundwater infiltration at the base of the lateral. No odor, sheen, or debris was observed in the sample (see Photographs 9 and 10 in Appendix C).

Subbasin 6: IL-M1-AAJ933-0803

This sample was collected from the downstream (southwest) line exiting manhole AAJ933. A 1-inch-thick layer of orange-brown material was observed in this line and extended about 10 feet downstream of the manhole. No debris, sheen, or odor was noted (see Photographs 5 and 6 in Appendix C).

2.1.3 Deviations from the SAP

Inline solids samples were collected in accordance with the SAP, with one exception. Several sample locations were moved because solids were not present at the manhole location specified in the SAP. Samples were collected at the next upstream location at which solids

were present. Table 2-1 lists the manholes entered as potential sampling locations and the manholes where actual samples were collected.

2.2 Basin 18 Inline Field Observations

Figure 2-2 of the SAP presented the proposed subbasins to be assessed during the inline solids investigation, along with proposed manhole locations for collection of representative samples. Several of the sample locations were moved because (a) the storm sewer line locations did not match the City's storm sewer line maps, or (b) sufficient solids were not present at the proposed sample location. Figure 2-3 presents the actual sample locations and the resulting subbasins. Table 2-3 presents the subbasin areas assessed, entrance manhole, sample ID number (if a sample was collected), solids description, and field observations for each subbasin.

During the field investigation, it was observed that changes had been made to the stormwater conveyance system that were not depicted on the City stormwater conveyance system maps used to determine proposed sampling locations. After the field event, the City stormwater conveyance system maps were updated. As a result, several of the manhole identification numbers in the basin were changed. The new and old manhole identification numbers are shown in Figure 2-3. For clarity, the new manhole identification numbers are referenced in this document. Table 2-4 presents a summary of the old and new manhole identification numbers and the sample IDs for all of the manholes at which samples were collected.

2.2.1 Dry-weather Flow Observations

This section presents a summary of dry-weather flow observed during the field investigation. Table 2-5 lists locations where flowing or standing water was observed during the field investigation. Features to note from these observations include:

- Dry-weather flow was observed from Subbasin 1 in the 72-inch-diameter pipe at manhole AMZ094. The lines at this manhole were stained an orange-brown color. Flow from Subbasin 3 accounted for a large portion of this flow.
- A significant dry-weather flow was observed in Subbasin 3a (see manhole AAT557 in Table 2-5) resulting from the Univar facility (located at 3950 NW Yeon Avenue) discharge of treated groundwater to the stormwater conveyance system under an Individual NPDES permit. Based on subsequent City field investigation, this discharge is estimated at 25 to 40 gallons per minute (gpm) (BES, 2004). Inline water at this location was clear, and minor iron oxide staining was observed on the sewer lines.
- Standing water was observed in manhole AMZ086 (representing Subbasin 4), although it did not appear to be flowing. There are several Forest Park streams that drain into this subbasin.
- Groundwater intrusion was noted downstream of Subbasin 4, suggesting that groundwater may also contribute to dry-weather flow to Outfall 18.

2.2.2 Sample Observations

Six samples were collected at the manholes farthest downstream within each subbasin. Two distinctly different types of solids were observed. Sand with little or no silt was observed and sampled at five locations: Subbasins 1, 2, 3, 3b, and 4. A silt with little or no sand was observed and sampled at one location in Subbasin 3a.

A brief description of each sample is presented below.

Subbasin 1: IL-18-AAT537-0803

This sample was collected downstream of manhole AMZ094 (Gunderson parking lot). Subbasin 1 includes most of Basin 18, excluding the Gunderson facility. A 1-inch-deep, 3foot-long band of sand was observed at the manhole. The sample was collected at the manhole, downstream of the convergence of two lines that enter the manhole. The solids were gray sand with a fine layer of orange-brown deposition on the surface. A sheen was observed on the sample pore water during homogenization of the sample. No odor or debris was noted in the sample (no photographs were taken at this location).

Subbasin 2: IL-18-AAT453-0803

This sample was collected at manhole AMZ096. A 1-inch-deep band of sand started at the base of the manhole and extended upstream (northwest) about 2 feet. The sample was collected from this deposit. The solids were a gray sand with a minor amount of red and black sand grains. A small amount (< 1 percent) of Styrofoam[™] was observed in the sample. No odor or sheen was observed in the sample (see Photographs 15 and 16 in Appendix C).

Subbasin 3: IL-18-AAT465-0803

This sample was collected 50 to 80 feet upstream of manhole AMZ098, from a 0.5-inch-deep band of sand that started 50 feet upstream (southeast) of the manhole and extended 80 feet upstream of the manhole. The solids were black sand with a small amount (< 1 percent) of fine gravel. A minor amount (< 1 percent) of small (1-millimeter-long) metal shavings was observed in the sample. No odor or sheen was noted in the sample (see Photographs 17 through 19 in Appendix C).

Subbasin 3a: IL-18-AAT557-0803

This sample was collected 10 feet upstream of manhole AAT557. The sample was collected from material forming an accreted silt ledge approximately halfway up the walls of the pipe (see Photograph 21 in Appendix C). The solids were light gray silt with stratified layers of orange, black, and gray. No odor or debris was noted in the sample (see Photographs 20 and 21 in Appendix C).

Subbasin 3b: IL-18-AAT558-0803

This sample was collected 20 to 26 feet downstream of manhole AMZ100, from a 1-inchdeep, 6-inch-long band of sand. The solids were black sand with a small amount (< 1 percent) of organic matter (blades of grass and tree twigs). A minor amount (< 1 percent) of green flakes (unknown origin) was present in the sample. No odor or sheen was noted in the sample (see Photographs 22 and 23 in Appendix C).

Subbasin 4: IL-18-AAT463-0803

This sample was collected approximately 30 to 33 feet downstream of manhole AMZ086. A 1- to 2-inch-deep band of gray sand started 10 feet downstream of the manhole and extended at least 100 feet. A light sheen was observed on the sample pore water during homogenization of the sample. A small amount (< 1 percent) of red paint chips was observed in the sample (see Photographs 13 and 14 in Appendix C).

2.2.3 Deviations from the SAP

Inline solids samples were collected in accordance with the SAP, except that several of the sample locations were moved because (a) the storm sewer line locations did not match the City's storm sewer line maps, or (b) sufficient solids were not present. Table 2-3 lists the manholes entered as potential sampling locations and the manholes where actual samples were collected.

Data Evaluation

This section provides an evaluation of the inline sampling results in Basins M-1 and 18.

Inline solids samples were analyzed for selected metals, polynuclear aromatic hydrocarbons (PAHs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), total petroleum hydrocarbon (TPH), pesticides, and total organic carbon (TOC). Results were compared with the Joint Source Control Strategy (JSCS) bioaccumulation and toxicity screening standards for catch basin solids identified in *Portland Harbor Joint Source Control Strategy - Interim Final* (DEQ and U.S. EPA, September 2005).

Data results are summarized in Tables 3-1 and 3-2. Corresponding laboratory data sheets and a data validation report are presented in Appendixes E and F, respectively.

3.1 Data Evaluation Process

The inline solids data evaluation process consisted of a three-step approach to determine potential upland source areas within each basin:

- Field observations were evaluated to assess the feasibility of collecting inline solids samples from the stormwater conveyance system (Section 3.2).
- Field observations were evaluated to assess the representativeness of solids entering the stormwater conveyance system from facilities within each of the subbasins (Section 3.3).
- Analytical results were evaluated to identify subbasins with potential upland sources of contaminants entering the stormwater conveyance system (Section 3.4).

Results of each of these steps are presented below.

3.2 Inline Solids Sample Collection Feasibility

Sampling at the targeted locations was not always successful because of the lack of significant solids deposition in or adjacent to the manholes. Stormwater conveyance systems are typically designed to not accumulate solids so that pipe capacity is maintained for conveying stormwater from upland areas and to prevent flooding of those areas. In a number of cases, the only solids of sufficient quantity were much farther up in a subbasin, which precluded characterizing some potential upland site contributions in that targeted subbasin. In Basin M-1, only two of the six samples collected represented stormwater solids, and both were located at or near the terminus of a storm line.

3.3 Sample Representativeness Evaluation

Field observations were evaluated to assess whether samples are representative of a solids source entering the stormwater conveyance system from facilities located within the basin.

Only solids that appeared to be soil-derived were considered to be representative of solids entering the system from the identified subbasin.

Another issue related to representativeness is what time period of accumulation the solids represent. Because storm lines are designed to not accumulate solids in the pipe, one might assume that the samples represent more recent discharges into the system — but this assumption cannot be tested directly. Especially in areas where there are pipe sags or near the terminus of a storm line where there is reduced flow, inline solids may represent a longer accumulation period. Inline solids may also not represent all solids discharged to the system, as fine materials are more likely to be suspended and transported with storm flow.

This section addresses only whether samples are representative of solids entering the storm system, not whether they are representative of current discharges into the system.

3.3.1 Basin M-1 Samples

As presented in Section 2, four of the six samples collected in Basin M-1 (samples from Subbasins 1, 4, 5, and 6) were an orange-brown material that was scraped from the walls of the stormwater pipe. The origin of this material appears to be the result of mineral precipitation from groundwater that entered the storm sewer system. Photograph 10 in Appendix C shows this precipitate accumulating at a pipe juncture where a small lateral enters the main line. Note that this material is not discharging from the small lateral pipe but, rather, from the joint below the small lateral connection.

The orange-brown color is interpreted to be the result of ferric hydroxide. Iron is relatively soluble in groundwater in a neutral to reducing environment with a pH range of between 6 and 8. This environment is common in shallow groundwater in the Portland Harbor area. Where groundwater enters the stormwater line and is exposed to air, the solubility of iron and other metals decreases; as a result, they precipitate out of solution. This is reflected in the chemical signature of these four samples in which several metals concentrations are substantially elevated and are present in similar proportions.

These four samples are not carried forward in the evaluation of analytical results because the precipitate material is not considered representative of solids entering the stormwater conveyance systems from facilities within each of the subbasins. The analysis of the transport of solids and dissolved contaminants from groundwater into the stormwater conveyance system is beyond the scope of this document.

3.3.2 Basin 18 Samples

All of the six samples collected in Basin 18 appear to be representative of solids entering the stormwater conveyance system from within each identified subbasin. However, it should be noted that, as presented in Section 2, one sample, IL-18-AAT557-0803, was composed of substantially different material than the other five samples. This sample was composed primarily of silt and collected from a ledge of solids located on the side of the stormwater conveyance line. The other five samples were composed primarily of sand and collected from the bottom of the stormwater conveyance line. Differences between the two sample types may be a result of different depositional processes or time periods and should be taken into account when comparing the two sample types.

3.4 Potential Upland Source Assessment

The spatial distribution and relative concentration of contaminants in inline solids are assessed below to determine which subbasins may have contaminant sources entering the stormwater conveyance system.

3.4.1 Chemicals Identified in Phase 1 of the Pilot Project

As part of the Phase 1 Pilot Project, chemical data from sediment sampling conducted in the vicinity of each outfall were compared with DEQ Low, DEQ High, and Willamette River Baseline Sediment Screening Values in order to identify chemicals that may be present at concentrations suggesting historical or ongoing releases to the river (CH2M HILL, January 2003 and April 2004). A summary of these results is presented below. Only those chemicals identified for further investigation in the Phase 1 Pilot Project were carried forward in this assessment.

The Phase 1 data evaluation for Outfall M-1 identified the following chemicals for further source investigation in Basin M-1: chromium, zinc, phthalates, PAHs, and PCBs.

The Phase 1 data evaluation for Outfall 18 identified the following chemicals for further source investigation in Basin 18: lead, mercury, phthalates, PAHs, PCBs, and dichlorodiphenyltrichloroethane (DDT) metabolites.

Figures 3-1 through 3-9 show these chemicals plotted to assist in identifying potential trends and outliers.

3.4.2 Basin M-1 Results

A summary of analytical results for inline solids samples collected from Basin M-1 is presented in Table 3-1. As stated above, chromium, zinc, phthalates, PAHs, and PCBs had been identified for further source investigation work in Basin M-1. Only samples considered to be representative of solids entering the stormwater conveyance system from facilities located within the basin were used in this comparison. Because only two representative samples were collected, limited spatial distribution analysis is possible.

Only Subbasin 2 (at manhole AAM155) and Subbasin 3 (at manhole AAJ831) had samples that could be considered representative of stormwater solids. Both of these sample locations were near the upstream end of the City storm line, with drainage from only a few upland properties. Results from this evaluation are presented below by constituent.

Chromium: Chromium was identified for additional source investigation because elevated concentrations of chromium were detected in the vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, January 2003). The concentration of chromium in river sediment samples collected in the immediate vicinity of the outfall ranged from 11.1 to 148 milligrams per kilogram (mg/kg). The JSCS toxicity screening value for chromium is 111 mg/kg.

Chromium was detected in both of the representative inline solids samples collected (Figure 3-1). For the Subbasin 3 sample, chromium was detected at a concentration of 280 mg/kg (field duplicate was 420 mg/kg). For the Subbasin 2 sample, chromium was detected at 74 mg/kg.

Because chromium was identified for additional source investigation in Basin M-1, was detected at a concentration above its JSCS toxicity screening value in Subbasin 3, and was detected at concentrations above those observed in river sediments adjacent to the outfall, further evaluation of chromium sources and pathways from Subbasin 3 to the stormwater system is warranted.

Zinc: Zinc was identified for additional source investigation because elevated concentrations of zinc were detected in the vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, January 2003). The concentration of zinc in river sediment samples collected in the immediate vicinity of the outfall ranged from 57 to 577 mg/kg. The JSCS toxicity screening value for zinc is 459 mg/kg. The JSCS bioaccumulation screening value for zinc is 3 mg/kg.

Zinc was detected in both of the representative inline solids samples collected (Figure 3-4). For the Subbasin 3 sample, zinc was detected at a concentration of 902 mg/kg (field duplicate was 977 mg/kg). For the Subbasin 2 sample, zinc was detected at 309 mg/kg.

Because zinc was identified for additional source investigation, was detected at a concentration above its JSCS toxicity screening value in Subbasin 3, and was detected in Subbasins 2 and 3 at concentrations above those observed in river sediments adjacent to the outfall, further evaluation of zinc sources and pathways from Subbasins 2 and 3 to the stormwater system is warranted.

Phthalates: Phthalates were identified for additional source investigation because elevated concentrations of phthalates were detected in the vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, January 2003). The concentration of bis(2-ethylhexyl)phthalate (BEHP) in river sediment samples collected adjacent to the outfall ranged from less than 68.4 micrograms per kilogram (μ g/kg) (nondetect) to 39,200 μ g/kg. The JSCS toxicity screening value for BEHP is 800 mg/kg. The concentration of di-n-butyl phthalate in river sediment samples collected adjacent to the outfall ranged from less than 43.3 (nondetect) to an estimated 30,100 μ g/kg. The JSCS toxicity screening value for this phthalate is 100 μ g/kg.

Phthalates were detected in both of the representative inline solids samples collected (see Figure 3-5 for BEHP).

For the Subbasin 3 sample, BEHP was detected at a concentration of 14,800 μ g/kg (field duplicate was 16,500 μ g/kg). Di-n-butyl phthalate was not detected in the normal sample (detection limit was 345 μ g/kg), but the field duplicate had a concentration of 1,020 μ g/kg.

For the Subbasin 2 sample, BEHP was detected at a concentration of 1,340 μ g/kg (di-n-butyl phthalate was not detected).

Because phthalates were identified for additional source investigation and were detected at concentrations above their JSCS toxicity screening values in Subbasins 2 and 3, further evaluation of phthalate sources and pathways from Subbasins 2 and 3 to the stormwater system is warranted.

PAHs: PAHs were identified for additional source investigation because elevated concentrations were detected in the vicinity of the outfall, although no distinguishable

concentration gradient was identified (CH2M HILL, January 2003). PAH ranges detected in river sediment adjacent to the outfalls include:

- Total PAHs: 80 to 2,826 µg/kg (no JSCS screening level)
- 2-Methylnaphthalene: < 2.6 (nondetect) to an estimated 15.4 μg/kg (JSCS screening level = 200 μg/kg)
- Phenanthrene: < 24.6 (nondetect) to an estimated 425 μg/kg (JSCS screening level = 1,170 μg/kg)

LPAHs and HPAHs were detected in both of the representative inline solids samples collected (Figures 3-8 and 3-9).

For the Subbasin 3 sample, 2-methylnaphthalene was detected at a concentration of 2,380 μ g/kg (field duplicate was 3,800 μ g/kg). Phenanthrene was detected at a concentration of 1,290 μ g/kg (field duplicate was 2,640 μ g/kg). These concentrations are greater than the JSCS screening levels.

For the Subbasin 2 sample, 2-methylnaphthalene and phenanthrene were detected at concentrations less than 78 μ g/kg (nondetect) and 94 μ g/kg, respectively, which do not exceed the JSCS screening levels.

Because PAHs were identified for additional source investigation, were detected at a concentration above their JSCS toxicity screening values in Subbasin 3, and were detected at concentrations above those observed in river sediments adjacent to the outfall, further evaluation of PAH sources and pathways from Subbasin 3 to the stormwater system is warranted.

PCBs: PCBs were identified for additional source investigation because Aroclors 1248, 1254, and 1260 were detected in the vicinity of the outfall, although no distinguishable concentration gradient from the outfall was identified (CH2M HILL, January 2003). Total PCB and Aroclor ranges detected in river sediment adjacent to the outfalls include:

- Total PCBs: nondetect to 347 μ g/kg (JSCS toxicity screening level = 676 μ g/kg)
- Aroclor 1248: < 2.33 to 106 μg/kg (JSCS toxicity screening level = 1,500 μg/kg and JSCS bioaccumulation screening level = 4 μg/kg)
- Aroclor 1254: < 2.07 to 99.5 μg/kg (JSCS toxicity screening level = 300 μg/kg and JSCS bioaccumulation screening level = 10 μg/kg)
- Aroclor 1260: < 3.31 to 141 µg/kg (JSCS toxicity screening level = 200 µg/kg)

PCBs were detected in both representative inline solids samples collected (Figure 3-6). Only Aroclors 1254 and 1260 were detected.

For the Subbasin 3 sample, Aroclor 1254 was detected at a concentration of 276 μ g/kg (field duplicate was 378 μ g/kg). The field duplicate exceeds the JSCS toxicity screening value, and both the normal and duplicate exceed the JSCS bioaccumulation screening level. Aroclor 1260 was detected at a concentration of 129 μ g/kg (field duplicate was 123 μ g/kg), which does not exceed the JSCS screening level.

For the Subbasin 2 sample, Aroclor 1254 was detected at a concentration of 29 μ g/kg. This exceeds the JSCS bioaccumulation screening value but not the toxicity screening level. Aroclor 1260 was detected at a concentration of 28 μ g/kg, which does not exceed the JSCS screening level.

Because PCBs were identified for additional source investigation, were detected at a concentration above their JSCS bioaccumulation and toxicity screening value in Subbasin 3, and were detected in Subbasin 3 at concentrations above those observed in river sediments adjacent to the outfall, further evaluation of PCB sources and pathways from Subbasin 3 to the stormwater system is warranted. Further evaluation of PCB sources in Subbasin 2 is also warranted based on the observed exceedance of the JSCS bioaccumulation screening value; however, because of the relatively low concentration, further evaluation of PCB sources in Subbasin 2 should be considered a lower priority.

Other Analytes: Several other analytes had concentrations greater than JSCS screening levels in the representative inline solid samples. These include lead (Figure 3-2), cadmium, copper, and DDTs.

For Subbasin 3, cadmium and lead had substantially higher concentrations than the Subbasin 2 sample and the JSCS screening levels. Copper was only slightly higher than the JSCS screening level and was lower than what was detected in Subbasin 2. 4-4' DDE and total DDT were greater than the JSCS bioaccumulative screening level in the normal sample but were not detected in the field duplicate. The absence of the chemical in stormwater solids discharging to the conveyance system should be confirmed. Although there are no JSCS screening levels for TPH, it should be noted that No. 6 fuel oil and motor oil were detected at relatively high concentrations in the normal and duplicate samples.

For Subbasin 2, cadmium and lead were below the JSCS toxicity screening levels, but cadmium exceeded the JSCS bioaccumulation screening level. In contrast, copper was higher than in Subbasin 3 and exceeded the JSCS toxicity screening level.

Further evaluation of sources and pathways to the stormwater system from Subbasins 2 and 3 has been recommended above. It is also recommended that lead, cadmium, and copper be included in the subbasins where they exceeded the screening levels.

3.4.3 Basin 18 Results

A summary of analytical results for inline solids samples collected from Basin 18 is presented in Table 3-2. The spatial distribution and relative concentrations in inline solids and in river sediment samples are assessed below to determine subbasins that may be sources entering the stormwater conveyance system. As stated above, lead, mercury, phthalates, PAHs, PCBs, and DDT metabolites had been identified for further source investigation work. Results from this evaluation for Basin 18 are presented below by constituent.

Lead: Lead was identified for further source investigation work because elevated concentrations of lead were detected in river sediment samples collected adjacent to the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, April 2004). Concentrations of lead in river sediment ranged from 60.6 to 210 mg/kg, with

an upstream sample concentration of 67.3 μ g/kg (CH2M HILL, April 2004). The JSCS screening level is 128 mg/kg.

In Subbasin 1, which represents nearly all of Outfall 18 basin excluding a small portion of the Gunderson facility, lead was detected at a concentration below the JSCS screening value. In fact, lead was below the JSCS level at all of the inline sample locations, with one exception (Figure 3-2).

Lead was detected at 636 mg/kg in the Subbasin 3a sample (manhole AAT557). As stated in Section 2-2, this sample was composed primarily of silt and collected from a ledge of solids located on the side of the stormwater conveyance line (see Photographs 20 and 21 in Appendix C). This material appears to have been deposited during a backup event. It is unclear how long ago this event may have occurred and if this sample is representative of solids currently entering the stormwater conveyance system. No inline solids samples were collected upstream of this location. Lead concentrations were substantially lower in the three inline solids samples collected downstream, suggesting this material is not contributing significantly to downstream solids concentrations.

Further evaluation of current or historical upland sources of lead entering the City stormwater conveyance system in Subbasin 3a is recommended, even though there were lower downstream concentrations and the depositional timeframe of the sample is questionable.

Mercury: Mercury was selected for further source investigation work because some mercury concentrations were above DEQ's baseline values in sediment samples collected in the vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, April 2004). Concentrations of mercury in river sediment adjacent to Outfall 18 ranged from less than 0.010 (nondetect) to 0.453 mg/kg, while the upstream sample was less than 0.128 (nondetect) mg/kg. These concentrations are below the JSCS screening value of 1.06 mg/kg.

All inline solids samples collected in Basin 18 were below the JSCS screening level; concentrations ranged from 0.057 to 0.32 mg/kg (Figure 3-3).

Because mercury concentrations were below the JSCS toxicity screening value at all inline solids sample locations, no further evaluation of upland sources of mercury within Basin 18 is recommended at this time.

Phthalates: Phthalates were previously identified for additional source investigation work because elevated levels were detected in sediment samples collected in the vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, April 2004). Detected phthalate concentration ranges in river sediment adjacent to the outfall include:

- BEHP: < 62.7 to 2,700 μg/kg, upstream sample was estimated at 166 μg/kg (JSCS toxicity screening level = 800 μg/kg and JSCS bioaccumulation screening level = 330 μg/kg)
- Butyl Benzyl Phthalate: < 31 to 385 μg/kg, upstream sample was < 43 μg/kg (no JSCS screening levels)

- Di-n-Butyl Phthalate: One detected value at an estimated 185 μ g/kg, with detection limits ranging from 133 to 185 μ g/kg (JSCS toxicity screening level = 100 μ g/kg)
- Di-n-Octyl Phthalate: One detected value at 190 μ g/kg, with detection limits ranging from 40.9 to 58.9 μ g/kg (no JSCS screening levels)

BEHP was detected in five of the six samples collected (Figure 3-5).

For the sample closest to the outfall (representing Subbasin 1), BEHP had the highest concentration at 1,640 μ g/kg, with detected concentrations within the other subbasins ranging from 576 to 1,020 μ g/kg.

Di-n-butyl phthalate was also detected in the Subbasin 1 sample at 558 μ g/kg, but it was not detected in any of the other subbasins.

The only other detected phthalate in any of the subbasin samples was butyl benzyl phthalate, which was detected at an estimated $1,040 \ \mu g/kg$ in Subbasin 3b.

Because phthalates were detected at concentrations above JSCS bioaccumulation and toxicity screening values, further investigation of upland sources within Basin 18 is warranted.

PAHs: PAHs were identified for further source investigation work because river sediment concentrations of LPAHs and HPAHs, along with two individual PAHs (2-methylnaphthalene and indeno[1,2,3-cd]pyrene), exceeded their respective DEQ High sediment screening values, although no distinguishable concentration gradient from the outfall was identified (CH2M HILL, April 2004). PAH ranges detected in river sediment adjacent to the outfall (CH2M HILL, April 2004) include:

- Total PAHs: 1,509 to 4,335 μg/kg, upstream sample was 1,509 μg/kg (no JSCS screening level)
- 2-Methylnaphthalene: < 2.8 (nondetect) to 210 μg/kg, upstream sample was
 < 3.53 μg/kg (JSCS screening level = 200 μg/kg)
- Acenaphthylene: < 6.85 (nondetect) to 51 μg/kg, upstream sample was < 9.87 μg/kg (JSCS screening level = 200 μg/kg)
- Benzo[g,h,i]perylene: < 2.52 (nondetect) to 256 μg/kg, upstream sample was
 < 3.74 μg/kg (JSCS screening level = 300 μg/kg)
- Indeno(1,2,3-cd)pyrene: < 3.56 (nondetect) to 118 µg/kg, upstream sample was < 5.28 µg/kg (JSCS screening level = 100 µg/kg)

LPAHs and HPAHs were detected in the inline solids samples collected (Figures 3-8 and 3-9).

For Subbasin 1, benzo(g,h,i)perylene was detected above its JSCS screening value of 300 μ g/kg with an estimated value of 338 μ g/kg. Benzo(g,h,i)perylene was also detected in the samples representing Subbasins 3a and 3b, at estimated values of 1,560 and 338 μ g/kg, respectively, although it was not detected in the Subbasin 3 sample (which is supposed to

represent a composite of Subbasins 3a and 3b). The Subbasin 3a sample was collected from a ledge on the side of the storm pipe so may not be representative of recent solids in the line.

No other PAHs exceeded JSCS screening levels in Subbasin 1 (the sample location closest to the outfall). But there were several other exceedances, within Subbasins 3a and 3b. JSCS screening levels were exceeded for 2-methylnaphthalene and acenaphthylene in Subbasin 3a and for indeno(1,2,3-cd)pyrene in Subbasins 3a and 3b. For all three of these PAHs, concentrations were highest in the shelf sample collected in Subbasin 3a.

The spatial distribution of PAHs within the stormwater network suggests potential sources of PAHs in Subbasins 1, 3a, and 3b. The estimated total PAH concentration in the Subbasin 1 sample was 2,444 mg/kg. Three samples were collected directly upstream of this sample location and were representative of solids emanating from Subbasins 2, 3, and 4 (see Figure 2-3). PAHs did not exceed the JSCS screening value in any of these upstream samples, and the total estimated PAH concentrations were substantially lower; the total estimated PAH concentration in each of these subbasins is as follows: Subbasin 2–329 μ g/kg; Subbasin 3–less than 87 μ g/kg (nondetect); and Subbasin 4–595 μ g/kg.

The PAH distribution may indicate a source of PAHs within Subbasin 1 downstream of sampling locations for Subbasins 2, 3, and 4. The Burlington Northern Santa Fe (BNSF) rail yard is located between these sample locations and has been identified as a potential source of PAHs (CH2M HILL, April 2004). Additionally, during the collection of inline solids from manhole AMZ086, groundwater infiltration was noted entering the stormwater system. This observation suggests the possibility of a potential groundwater pathway for PAHs, between manhole AMZ086 and the downgradient manhole AMZ094, to enter the City stormwater system.

Because PAHs were detected above their respective JSCS toxicity screening levels, further investigation of PAH sources and pathways to the City stormwater system is warranted in Subbasins 1 and 3. As stated above, sources of PAHs and pathways in the area of the rail yard should be evaluated as part of the DEQ remedial investigation/feasibility study (RI/FS) site investigation. Additionally, PAH-contaminated groundwater at sites within Basin 18 should be evaluated as part of upland site investigations to determine whether it is entering the City conveyance system and affecting inline solid concentrations.

PCBs: PCBs were identified for further source investigation work because elevated levels were detected in sediment samples collected in the immediate vicinity of the outfall, although no distinguishable concentration gradient was identified (CH2M HILL, April 2004). Total PCB and detected aroclor concentration ranges in river sediment adjacent to the outfalls include:

- Total PCBs: 647 to 6,400 μg/kg, upstream sample was 93.3 μg/kg (JSCS toxicity screening level = 676 μg/kg)
- Aroclor 1248: 32.6 to 407 μg/kg, upstream sample was 54.5 μg/kg (JSCS toxicity screening level = 1,500 μg/kg and JSCS bioaccumulation screening level = 4 μg/kg)
- Aroclor 1254: 18.7 to 159 μ g/kg, upstream sample was 24.5 μ g/kg (JSCS toxicity screening level = 300 μ g/kg and JSCS bioaccumulation screening level = 10 μ g/kg)

Aroclor 1260: < 3.21 to 52.1 μg/kg, upstream sample was 14.3 μg/kg (JSCS toxicity screening level = 200 μg/kg)

PCBs were detected in three of the six samples collected (Figure 3-6). Only Aroclors 1254 and 1260 were detected in any of these samples.

The sample closest to the outfall (representing Subbasin 1) had only one Aroclor (Aroclor 1254) detected at 130 μ g/kg. Only one other sample had a detection of Aroclor 1254; that was in Subbasin 4 at 187 μ g/kg. This suggests a potential source of PCBs in Subbasin 4 (and potentially in the area between the sample locations for Subbasins 1 and 4).

In Subbasin 3a (see Figure 2-3), Aroclor 1260 was detected at $624 \mu g/kg$, which is above the JSCS toxicity screening level, but was not detected in downstream samples. As stated above in Section 2-2, the Subbasin 3a sample was collected from a ledge of solids located on the side of the stormwater conveyance line (see Photographs 20 and 21 in Appendix C). This material appears to have been deposited during a backup event. It is unclear how long ago this event may have occurred and whether this sample is representative of solids currently entering the stormwater conveyance system.

Because Aroclor 1254 was detected at a concentration above the JSCS bioaccumulation screening value and a slight concentration gradient was observed in the downstream sample, further investigation of upland sources within Subbasin 4 and in the area between Subbasin 4 and the river is warranted.

Further evaluation of current or historical upland sources of PCBs entering the City stormwater conveyance in Subbasin 3a is also recommended, even though the depositional timeframe of the sample is questionable and Aroclor 1260 was not detected in downstream samples.

DDT: DDT metabolites were identified for further source investigation because elevated levels were detected in sediment samples collected in the vicinity of the outfall. No apparent concentration gradient exists around the outfall (CH2M HILL, April 2004). Total DDT and metabolite concentration ranges in river sediment adjacent to the outfalls include:

- Total DDTs: 20.1 to 178.5 μ g/kg, upstream sample was 79.2 μ g/kg (JSCS bioaccumulation screening level = 0.3 μ g/kg)
- 4-4'-DDD: 7.13 to 82.7 μg/kg, upstream sample was 14.1 μg/kg (JSCS toxicity screening level = 28 μg/kg and JSCS bioaccumulation screening level = 0.3 μg/kg)
- 4-4'-DDE: 13 to 124 μ g/kg, upstream sample was 65.1 μ g/kg (JSCS toxicity screening level = 31.3 μ g/kg and JSCS bioaccumulation screening level = 0.3 μ g/kg)
- 4-4'-DDT: Not detected, with detection limits approximately less than 0.7 μg/kg (JSCS toxicity screening level = 62.9 μg/kg and JSCS bioaccumulation screening level = 0.3 μg/kg)

DDTs were detected in two of the six samples collected (Figure 3-7). For the sample closest to the outfall (representing Subbasin 1), all DDT metabolites were below detection levels.

Low levels of DDT metabolites were detected in Subbasin 4. 4,4' DDE and 4,4' DDD were detected at 12 and 21 μ g/kg, respectively, which are above the JSCS bioaccumulation screening values but below the JSCS toxicity screening values. Concentrations of DDT metabolites in this sample were below the maximum concentration observed in river sediment samples collected adjacent to the outfall.

The highest concentrations of DDT metabolites were in Subbasin 3a: 4,4' DDD, 4,4' DDE, and 4,4' DDT were detected at 80, 21, and 284 μ g/kg, respectively, which are above JSCS screening values. As stated above, the Subbasin 3a sample was collected from a ledge of solids located on the side of the stormwater conveyance line (see Photographs 20 and 21 in Appendix C). It is unclear whether this sample is representative of solids currently entering the stormwater conveyance system.

Because 4,4' DDE and 4,4' DDD were detected at concentrations above their respective JSCS bioaccumulative screening values, further investigation of upland sources within Subbasin 4 is warranted.

Further evaluation of current or historical upland sources of DDTs entering the City stormwater conveyance in Subbasin 3a is also recommended.

Other Analytes: Several other analytes had concentrations greater than JSCS screening levels in the representative inline solid samples. These include cadmium, chromium, copper, zinc, and chlordane.

All six samples exceeded the JSCS bioaccumulation screening level (0.003 mg/kg) for cadmium; however, only the sample from Subbasin 3a exceeded the JSCS toxicity screening level (4.98 mg/kg). This sample was an order of magnitude higher than the other samples, suggesting a source within the subbasin. This sample also exceeded the JSCS toxicity screening levels for chromium and copper. All samples exceeded the JSCS bioaccumulation screening levels for copper and zinc. Subbasin 2 also exceeded the copper JSCS toxicity screening level.

The Subbasin 3a sample concentration for chlordane was 512 μ g/kg. The JSCS toxicity screening level for chlordane is 17.6 μ g/kg.

Although there are no JSCS screening levels for TPH, it should be noted that motor oil was detected at relatively high concentrations in the Subbasin 3a sample, as well.

Further evaluation of sources and pathways to the stormwater system of targeted contaminants from each subbasin has been recommended above. It is also recommended that cadmium, chromium, copper, zinc, and chlordane be included in the subbasins where they exceeded the screening levels.

4.1 Sample Collection

Overall, collection of representative samples was a success in Basin 18. Samples representative of stormwater solids were collected in all of the proposed subbasins with only minor modifications to the original sample locations.

However, the successful collection of samples in Basin M-1 was severely limited because of the lack of soil-derived inline solids material. There was only one proposed sample location in Basin M-1 that had representative stormwater solids. Field reconnaissance showed that there were very little representative soil-derived solids within any of the lines; only one other alternate location was found that had representative solids. At the four remaining locations (of a total of six) in Basin M-1, the inline solids were determined to be precipitate from groundwater intrusion into the stormwater conveyance system and were not representative of solids entering the stormwater system from facilities located in the subbasin.

Three distinctly different sample types were observed during the inline solids investigation in Basins M-1 and 18:

- Medium- to fine-grained sand was observed at seven sample locations.
- Orange-brown groundwater precipitate was observed at four sample locations.
- Gray silt with little to no sand was observed at one location.

Of these sample types, only the soil-derived material (sand and silt) was determined to be representative of solids entering the stormwater conveyance system from facilities located in the subbasin. The samples were successfully collected using methods outlined in the work plan.

4.2 Access

Access to sample locations was limited by the following factors:

- High traffic flow on streets and in front of large sites limited the times at which some of the manholes could be accessed. Traffic control issues need to be planned ahead of time in areas of high traffic flow and should be considered part of the site reconnaissance.
- In areas of high traffic flow, nighttime sampling may be required to prevent congestion.

4.3 Timely Completion

Timely collection of samples was limited by the following factors:

- Presence or absence of solids at the primary manhole locations. Mobilization and setup at each manhole took one to two hours, depending on traffic control.
- Accuracy of City stormwater sewer line maps. Verification of the accuracy of the City's stormwater sewer line maps should be part of the site reconnaissance.

Findings and Recommendations

As stated in Section 1, the inline sampling described in this report was intended to identify subbasins where contamination may have entered the City's stormwater conveyance system. While elevated levels of chemicals in inline solids can provide evidence that chemicals have been released into the stormwater conveyance system, the absence of inline solids or the absence of chemicals in solids does not provide evidence that such releases have not occurred or that those subbasins do not require further investigation. Factors such as slope of storm lines, water velocity, particle sizes and densities, organic content of solids, the frequency and timing of releases to the stormwater system, and other considerations affect the presence and composition of inline solids.

Inline sampling data can provide useful information on the presence of chemicals in the stormwater system and possible transport to the Willamette River. It should be noted, however, that they may not correlate with concentrations of contaminants in river sediments because of fate and transport and river processes (deposition and erosion) occurring in the river.

The results of this pilot project will assist the City in focusing source control efforts within a basin and are intended to assist the DEQ Cleanup Program project managers as they evaluate the stormwater pathways at upland sites with a City Outfall Basin.

5.1 General Investigation Findings

General findings of the inline solids sampling investigations in Basins M-1 and 18 are summarized below:

- Pre-designated sampling locations may not always contain inline solid materials. At several locations, solids were not present at the preferred sample location but were collected at alternative sample locations.
- Inline solids samples collected may not always be representative of sources of solids entering the stormwater conveyance system from facilities located within the basin. Several of the samples collected in Basin M-1 appear to be the result of metals precipitating out of solution from groundwater intrusion in the stormwater conveyance system.
- Differences in the composition of representative inline solids samples, such as the amount of silt versus sand or the varying amounts of different particulate types (e.g. paint chips, plastic fragments, or metal), can affect the analytical results for some constituents. These variations in sample composition result in uncertainty when evaluating the spatial distribution or concentration gradients of contaminants within a basin.

- Contaminants were detected in several subbasins in both Basins M-1 and 18. Concentrations varied considerably among subbasins, and several subbasins were identified as potential source subbasins within each basin.
- Concentrations of cadmium, copper, and zinc exceeded JSCS bioaccumulative screening values in various subbasins within Basins M-1 and 18. The bioaccumulative screening values for cadmium and zinc, and to a lesser degree copper, are likely greater than the natural background for soils.

5.2 Basin M-1 Findings and Recommendations

Inline solids sample results indicated that within Basin M-1, potential upland sources of contaminants are present in Subbasins 2 and 3.

Subbasin 2

For Subbasin 2, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

- Copper
- Phthalates (BEHP)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

- Cadmium
- Zinc
- PCBs (Aroclor 1254)

Exceedances of JSCS screening values suggest sources within the subbasin. These detections were significantly lower than the maximum concentration observed in river sediment samples collected adjacent to the outfall, indicating that Subbasin 2 is not a substantial upland source.

The Subbasin 2 sample was collected close to the terminus of the City storm line, and there are no adjacent sites that are in DEQ's Cleanup Program. The City will evaluate site connections and activities in this subbasin to determine whether additional source control work is warranted.

Subbasin 3

For Subbasin 3, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

- Cadmium
- Chromium
- Copper
- Lead
- Zinc
- Phthalates (BEHP and Di-n-Butyl Phthalate)

- PCBs (Aroclor 1254)
- PAHs (2-Methylnapthalene and Phenanthrene)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

• DDT

Additionally, TPH (No. 6 fuel oil and motor oil) was relatively high in the Subbasin 3 sample. While there are no JSCS screening levels for this contaminant, further analysis may assist with subsequent source control investigations.

Subbasin 3 is located in the northern end of Basin M-1 and drains the western portion of the Freightliner TMP. On the basis of City records, there are no other inlets or connections to the manhole sampled for Subbasin 3. This facility has been identified as a potential source of PAHs, metals, and phthalates in past evaluations conducted by the City (CH2M HILL, January 2003). The site is currently in the RI/FS investigation process under the oversight of DEQ. Further evaluation of potential sources of these contaminants and pathways to the City stormwater system from the Freightliner TMP site is warranted based on results of the inline solids sampling results. Because of the number of contaminants detected above the JSCS screening values and the magnitude of the detections, further evaluation should be conducted as part of DEQ's RI/FS site investigation.

It is not possible to identify other sources to the Basin M-1 stormwater system based on the inline sampling because of the lack of stormwater-derived solids in the other subbasins. Additional evaluation of sources in other subbasins may be required to be protective of sediment and water quality. Based on the dry-weather flow observations, a more thorough evaluation of liquids entering the stormwater system may assist with subsequent source control investigations.

5.3 Basin 18 Findings and Recommendations

Inline solids sample results indicated that within Basin 18, potential upland sources of contaminants are present in Subbasins 1, 2, 3a, 3b, and 4.

Subbasin 1

For Subbasin 1, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

- Phthalates (BEHP and Di-n-Butyl Phthalate)
- PAHs (Benzo(g,h,i) perylene)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

- Cadmium
- Copper
- Zinc
- PCBs (Aroclor 1254)

In addition to source investigations in the other subbasins, as discussed below, potential sources of these contaminants and pathways from the area of the BNSF rail yard should be evaluated.

Subbasin 2

For Subbasin 2, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

• Copper

Concentrations greater than the JSCS Bioaccumulative Screening Levels

- Cadmium
- Zinc
- Phthalates (BEHP)

Subbasin 3a

For Subbasin 3a, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

- Cadmium
- Chromium
- Copper
- Lead
- PCBs (Aroclor 1260)
- DDTs
- Chlordanes
- PAHs (2-Methylnapthalene, Acenapthalene, Benzo(g,h,i) perylene, and Indeno(1,2,3-cd) pyrene)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

• Zinc

Additionally, the TPH (motor oil) concentration was relatively high in the Subbasin 3a sample. While there are no JSCS screening levels for this contaminant, further analysis may assist with subsequent source control investigations. As stated above, this sample was composed primarily of silt and collected from a ledge of solids located on the side of the stormwater conveyance line (see Photographs 20 and 21 in Appendix C). This material appears to have been deposited during a backup event. It is unclear how long ago this event may have occurred and whether this sample is representative of solids currently entering the stormwater conveyance system. Additionally, concentrations of all these chemicals were not detected above their screening values in the sample collected immediately downstream of this location. Therefore, while further evaluation of sources of these chemicals and pathways to the City stormwater system is warranted in Subbasin 3a, sources of these contaminants may be historical.

Subbasin 3b

For Subbasin 3b, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

- Phthalates (BEHP)
- PAHs (Benzo(g,h,i) perylene and Indeno(1,2,3-cd) pyrene)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

- Cadmium
- Copper
- Zinc

The PAH detection was lower than the maximum concentration observed in river sediment collected adjacent to the outfall, and no PAHs were detected in the inline solids sample collected immediately downstream of this location.

Subbasin 4

For Subbasin 4, the following contaminants warrant further evaluation because they exceed either the JSCS toxicity or bioaccumulative screening levels:

Concentrations greater than the JSCS Toxicity Screening Levels

• Phthalates (BEHP)

Concentrations greater than the JSCS Bioaccumulative Screening Levels

- Cadmium
- Copper
- Zinc
- PCBs (Aroclor 1254)
- DDTs

Additionally, during the collection of inline solids from manhole AMZ086 (representing Subbasin 4), groundwater intrusion was noted entering the stormwater system. This indicates that a potential groundwater pathway for contaminants entering the City stormwater system may be present.

References

Bureau of Environmental Services (BES), City of Portland. February 2002. Field Operations Standard Operating Procedure 5.01a "Sampling of Soil and Sediment." Portland, OR.

Bureau of Environmental Services (BES), City of Portland. October 11, 2004. Personal communications between Dawn Sanders and Aaron Wieting regarding a site visit with DEQ and UNIVAR site personnel on the estimated discharge flow to the City stormwater system.

CH2M HILL. August 2002. *Source Control Pilot Project for the City of Portland Outfalls Work Plan.* Prepared for the Bureau of Environmental Services, City of Portland, Portland, OR.

CH2M HILL. January 2003. *Phase 1 Data Evaluation Report and Phase 2 Work Planning for City of Portland Outfall M-1*. Prepared for the Bureau of Environmental Services, City of Portland, Portland, OR.

CH2M HILLCH2M HILL. August 2003. *Sampling and Analysis Plan--Inline Solids in Basins M- 1 and 18*. Prepared for the Bureau of Environmental Services, City of Portland, Portland, OR.

CH2M HILL. March 2004. *Programmatic Source Control Remedial Investigation Work Plan for the City of Portland Outfalls Project*. Prepared for the Bureau of Environmental Services, City of Portland, Portland, OR.

CH2M HILL. April 2004. *Phase 1 Data Evaluation Report and Phase 2 Work Planning for City of Portland Outfall 18.* Prepared for the Bureau of Environmental Services, City of Portland, Portland, OR.

EMCON. 2001. *Stormwater Pollution Control Plan, Freightliner Truck Manufacturing Facility Portland, Oregon.* Portland, OR.

Oregon Department of Environmental Quality and U.S. Environmental Protection Agency, September 2005. *Portland Harbor Joint Source Control Strategy - Interim Final*.

Tables

			TABLE 2-1 Basin M-1—Summary of San Source Control Pilot	
Subbasin Assessed	Entrance Manhole	Sample Collected	Solids Description	Field Observations
Subbasin 1	AAM107	No solids present.		
	AAM104	IL-M1-AAM104-0803-SW	Groundwater precipitate with 5	Closest upstream manhole to AAM107.
	AAM104 IL-M1-AAM104-0803-SW Groundwater precipitate with 5 percent sand		percent sand	• Sample collected 0 to 20 feet downstream (southwest) of manhole AAM 104, in the 60-inch pipe.
				No debris.
Subbasin 4	AAM104	IL-M1-AAM104-0803-NE	Groundwater precipitate	• Sample collected 0 to 6 feet upstream (northeast) of manhole AAM 104, in the 54-inch pipe.
				No debris.
Subbasin 6	AAJ933	IL-M1-AAJ933-0803	Groundwater precipitate	• Sample collected 0 to 10 feet downstream of manhole AAJ 933, in the 54-inch pipe.
				• Unidentified lateral joins the main line at this manhole from the north. A review of facility stormwater control plans indicated that this lateral drains a portion of the Freightliner truck manufacturing plant (TMP).
				No debris.
Subbasin 2	AAM 105	No solids present.		
	AAJ 144	No solids present.		Closest upstream manhole to AAM105.
	AAJ 155	IL-M1-AAJ155-0803	WELL GRADED SAND, black	Second closest upstream manhole to AAM105.
			and brown, medium grain	• Sample collected downstream of manhole, in 24-inch line.
				• Solids appeared brown in the upper 1 inch and black in the lower 2 inches. Faint petroleum odor observed during collection and a moderate sheen observed on sample pore water. Metal debris (nuts and washers) observed at manhole, but not in sample.

	TABLE 2-1 Basin M-1—Summary of Sample Locations Source Control Pilot Project Subbasin Entrance											
Subbasin Assessed	Field Observations											
Subbasin 5	AAJ 810	No solids present.										
	AAJ 817	No solids present.		Closest upstream manhole to AAJ810.								
	AAJ 829	IL-M1-AAJ829-0803	Groundwater precipitate	Second closest upstream manhole to AAM810.								
				• Sample collected 80 feet downstream of manhole (in the 36-inch pipe) directly below lateral junction, on the side of the pipe. Appears to be the result of precipitation from groundwater intrusion.								
				No debris.								
Subbasin 3	AAJ 831	IL-M1-AAJ831-0803 IL-M1-XXY101-0803 (field duplicate)	POORLY GRADED SAND, dark gray, fine to medium grain	• Sample collected at manhole which is located at the end of the City system; private lateral from Freightliner TMP enters the manhole from the northeast.								
				Large amount of paint chips observed in sample (1 percent).								

	Basin M-1—S		LE 2-2 bservations at Attempted Sample Locations I Pilot Project								
Entrance Manhole	Upstream Subbasins	Approximate Depth of Dry- Weather Flow in Bottom of Pipe	Comments								
AAM107	Subbasin 1 (includes subbasins 2, 3, 4, 5, and 6)	0.5 to 1 inch	Iron oxide staining in upstream and downstream lines.								
AAM104	Subbasin 1	1 inch	Iron oxide staining and deposits in downstream line.								
	Subbasins 4 and 6	1 inch	Iron oxide staining and deposits in upstream line.								
	Subbasins 3 and 5	0.5 inch	Iron oxide staining in upstream line.								
	Subbasin 2	No flow	Minor iron oxide staining in line.								
AAJ933	Subbasin 6	1 inch	 Two lines enter at manhole AAJ933: City line enters from the northeast and drains subbasin 6. Water in this line was clear, and was approximately 0.5 inch deep. This line had heavy iron oxide staining. A private lateral line enters from the north and drains a portion of the Freightliner TMP site . Water in this line was cloudy and was approximately 0.5 inch deep. No iron oxide staining was observed in this line. 								
AAM 105	Subbasin 2	No flow	Bottom of line moist with minor iron oxide staining.								
AAJ 144	Subbasin 2	No flow	Bottom of line moist with minor iron oxide staining.								
AAJ 155	Subbasin 2	No flow	Two inches of standing water at manhole location.								
AAJ 810	Subbasins 3 and 5	0.5 inch	No iron oxide staining.								
AAJ817	Subbasins 3 and 5		Minor iron oxide staining.								
AAJ829	Subbasins 3 and 5	0.5 inch	Two City lines enter at manhole AAJ 829, one from the northeast and one from the northwest. Dry-weather flow from the line entering from the northeast was approximately 0.5 inch deep and clear. No flow was observed in the line entering from the northwest, which runs along Basin Avenue.								
AAJ 831	Subbasin 3	0.8 inch	No iron oxide staining in line.								

			TABLE 2-3 Basin 18—Summary of Sa Source Control Pilot	
Subbasin Assessed	Entrance Manhole	Sample ID	Solid Description	Field Observations
Subbasin 1 (includes subbasins	AMZ094 (AAT537)	IL-18-AAT537-0803	WELL GRADED SAND, gray (with thin layer of orange on surface), medium grain	Proposed sample location not sampled because line configuration different from City drawings. Moved sample location to next downstream manhole, at junctions of 72-inch pipes
2, 3, and 4)				Manhole ID unknown at time of sampling.
				• Solids at manhole 3 feet long by 1 inch deep; no solids upstream or downstream of this area.
				Sheen observed on pore water.
Subbasin 2	AAT452	No sample collected		Proposed sample location could not be located because line configuration different from City drawings.
	AMZ096 (AAT453)	IL-18-AAT453-0803	WELL GRADED SAND, gray (red and black grains),	Line configuration different from City drawings; manhole ID unknown at time of sampling.
			medium grain	• Sample collected 0 to 2 feet upstream of manhole AMZ096 in the 12-inch pipe.
				• Small amount of organic material (blades of grass, tree bark).
				• Small pieces of Styrofoam™.
Subbasin 3	AMZ098 (AAT465)	IL-18-AAT465-0803	POORLY GRADED SAND, black, fine to medium grain	Line configuration different from City drawings; manhole ID unknown at time of sampling.
				• Sample collected 60 to 80 feet upstream of manhole AMZ098, in the 48-inch pipe.
				• Small amount (< 1 percent) of small (1-millimeter) metal shavings.
	AMZ099 (AAT556)	No solids		Line configuration different from City drawings.
Subbasin 3a	AAT557	IL-18-AAT557-0803	SILT, gray (stratified with black, gray, orange layers)	• Sample collected from side of pipe 10 feet upstream of manhole AAT557, in the 42-inch pipe.
				No debris observed.

			TABLE 2-3 Basin 18—Summary of Sa Source Control Pilot	
Subbasin Assessed	Entrance Manhole	Sample ID	Field Observations	
Subbasin 3b	AMZ100 (AAT558)	IL-18-AAT558-0803	POORLY GRADED SAND, black, medium to fine grain	Line configuration different from City drawings; manhole ID unknown at time of sampling.
				• Sample collected 20 to 26 feet downstream of manhole AMZ100, in the 36-inch pipe.
				• Small amount (< 1 percent) of organic matter (blades of grass, twigs)
				Small amount (< 1 percent) of green flakes (unknown).
Subbasin 4	AMZ086 (AAT463)	IL-18-AAT463-0803	WELL GRADED SAND, gray, medium to fine grain	Line configuration different from City drawings; manhole ID unknown at time of sampling.
				• Sample collected 30 to 33 feet downstream of manhole AMZ086, in the 42-inch pipe.
				Small amount (< 1 percent) red paint chips.
				Slight sheen observed on pore water.

	TABLE 2-4 Basin 18—Manhole ID Summary Source Control Pilot Project											
New Manhole ID	New Manhole ID Old Manhole ID Sample ID											
AMZ094	AAT537	IL-18-AAT537-0803	1									
AMZ096	AAT453	IL-18-AAT493-0803	2									
AMZ098	AAT465	IL-18-AAT465-0803	3									
AAT557	AAT557	IL-18-AAT557-0803	3а									
AMZ100	AAT558	IL-18-AAT558-0803	3b									
AMZ086	AAT463	IL-18-AAT463-0803	4									

	Basin 18—Sı	TABL Immary of Dry-Weather Flow Ob Source Control	servations at Attempted Sample Locations
Entrance Manhole	Upstream Subbasins	Approximate Depth of Dry- Weather Flow in Bottom of Pipe	Comments
AMZ094 (AAT537)	Subbasin 1 (includes subbasins 2, 3, and 4)	2 inch	Iron oxide staining in upstream and downstream lines.
AMZ096 (AAT453)	Subbasin 2	No flow	Bottom of line moist. Iron oxide staining.
AMZ098 (AAT465)	Subbasin 3 (includes subbasins 3a and 3b)	1 inch	Minor iron oxide staining in line.
AAT557	Subbasin 3a	2 inch	Minor iron oxide staining in line.
AMZ099 (AAT556)	Subbasins 3a and 3b	3 inch	Minor iron oxide staining in line.
AMZ 100 (AAT558)	Subbasin 3b	Minimal flow	Minor iron oxide staining in line.
AMZ086 (AAT463)	Subbasin 4	No flow	Six inches of standing water in line. Groundwater intrusion observed downstream of manhole AMZ086.

Table 3-1
Analytical Results from Inline Solids Sampling in Basin M-1
Source Control Pilot Project

				Subbasins												
				1	2	3	3	4	6							
Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-M1-AAM104-0803-SW 08/12/2003	IL-M1-AAM155-0803 08/13/2003	IL-M1-AAJ831-0803 08/12/2003	IL-M1-XXY101-0803 08/12/2003 (Field Duplicate [®])	IL-M1-AAM104-0803-NE 08/12/2003	IL-M1-AAJ933-0803 08/12/2003							
General Chemistry:																
Total Organic Carbon			mg/kg	23,200	10,500	21,000	32,100	29,700	31,900							
Aetals:				40	47			47	44							
Arsenic	0.000	33	mg/kg	40	4.7	3.4	3.4	47	41							
Cadmium	0.003	4.98	mg/kg	5.3	3.3	28	39	6.1	5.1							
Chromium	4200	111	mg/kg	51	74	280	420	69	260							
Copper	10	149	mg/kg	116	331	176	171	80	290							
Lead	128	128	mg/kg	31	106	645	863	43	21							
Mercury		1.06	mg/kg	0.057	0.060	0.064	0.065	0.073	0.068							
Zinc	3	459	mg/kg	1,500	309	902	977	1,810	1,450							
CBs:																
Aroclor-1016	420	530	µg/kg	27 L		13 U	12 U	35 U	36							
Aroclor-1221			µg/kg	53 L			25 U	69 U	71							
Aroclor-1232			µg/kg	27 L			12 U	35 U	36							
Aroclor-1242	2		µg/kg	27 L			12 U	35 U	36							
Aroclor-1248	4	1,500	µg/kg	27 L			12 U	35 U	36							
Aroclor-1254	10	300	µg/kg	27 L	29	276	378	35 U	36							
Aroclor-1260		200	µg/kg	27 L		129	123	35 U	36							
Estimated Total PCBs ^{a,e}		676	µg/kg		57	405	501									
esticides:																
4,4'-DDD	0.3	28	µg/kg	5.2 L	2.3 U	2.6 U	2.5 U	7.1 U	7.7							
4,4'-DDE	0.3	31.3	µg/kg	5.2 L			2.5 U	7.1 U	7.7							
4,4'-DDT	0.3	62.9	µg/kg	5.2 L	2.3 U	2.6 U	2.5 U	7.1 U	7.7							
Estimated Total DDTs ^{a,f}	0.3		µg/kg			7.6										
4,4'-Methoxychlor			µg/kg	26 L	12 U	13 U	13 U	35 U	38							
Aldrin		40	µg/kg	2.6 L	1.2 U	8.1	1.3 U	3.5 U	3.8							
Alpha-BHC			µg/kg	2.6 L	1.2 U	1.3 U	1.3 U	3.5 U	3.8							
beta-BHC			µg/kg	2.6 L	1.2 U	7.2	1.3 U	3.5 U	3.8							
Alpha Chlordane		17.6	µg/kg	2.6 L	1.2 U	1.3 U	1.3 U	3.5 U	3.8							
Chlordane		17.6	µg/kg	2.6 L	1.2 U	1.3 U	1.3 U	3.5 U	3.8							
delta-BHC			µg/kg	2.6 L	1.2 U	1.3 U	1.3 U	3.5 U	3.8							
Dieldrin		61.8	µg/kg	5.2 L	2.3 U	2.6 U	2.5 U	7.1 U	7.7							
Endosulfan I			µg/kg	2.6 L		1.3 U	1.3 U	3.5 U	3.8							
Endosulfan II			µg/kg	5.2 L			2.5 U	7.1 U	7.7							
Endosulfan Sulfate			µg/kg	5.2 L			2.5 U	7.1 U	7.7							
Endrin		207	µg/kg	5.2 L	2.3 U	17	2.5 U	7.1 U	7.7							
Endrin Aldehyde			µg/kg	5.2 L	2.3 U	17	2.5 U	7.1 U	7.7							
Endrin Ketone			µg/kg	5.2 L	2.3 U	2.6 U	2.5 U	7.1 U	7.7							
Heptachlor		10	µg/kg	2.6 L			1.3 U	3.5 U	3.8							
Heptachlor Epoxide		16	µg/kg	2.6 L			1.3 U	3.5 U	3.8							
Lindane		4.99	µg/kg	2.6 L			1.3 U	3.5 U	3.8							
Toxaphene			µg/kg	260 L	115 U		127 U	353 U	384							
emivolatile Organic Compounds:				-	1				1							
1,2,4-Trichlorobenzene		9,200	µg/kg	697 L	313 U	345 U	337 U	976 U	997							
1,2-Dichlorobenzene		1,700	µg/kg	697 L			337 U	976 U	997							
1,3-Dichlorobenzene		300	μg/kg μg/kg	697 L			337 U	976 U	997							
1,4-Dichlorobenzene		300	μg/kg μg/kg	697 L			337 U	976 U	997 997							
2,4,5-Trichlorophenol		500	µg/kg µg/kg	697 L			337 U	976 U	997							
2,4,5-Trichlorophenol				697 L			337 U	976 U	997							
			µg/kg													
2,4-Dichlorophenol			µg/kg	697 L	313 U	345 U	337 U	976 U	997							

Table 3-1
Analytical Results from Inline Solids Sampling in Basin M-1
Source Control Pilot Project

				Subb						bbasins						
				1		2		3		3		4		6		
Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-M1-AAM104-0803-SW 08/12/2003		IL-M1-AAM155-0803 08/13/2003		IL-M1-AAJ831-0803 08/12/2003		IL-M1-XXY101-0803 08/12/2003	(Field Duplicate ^g)	IL-M1-AAM104-0803-NE 08/12/2003		IL-M1-AAJ933-0803 08/12/2003		
2,4-Dimethylphenol			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2,4-Dinitrophenol			µg/kg	3,490	U	1,560	U	1,730	U	1,680	U	4,880	U	4,980 U		
2,4-Dinitrotoluene			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2,6-Dinitrotoluene			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2-Chloronaphthalene			µg/kg	174	U	78	U	86	U	84	U	244	U	249 U		
2-Chlorophenol			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2-Methylphenol			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2-Nitroaniline			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
2-Nitrophenol			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
3&4-Methylphenol			µg/kg	1,390	U	625	U	690	U	674	U	1,950	U	1,990 U		
3,3'-Dichlorobenzidine			µg/kg	1,390	U	625	U	690	U	674	U	1,950	U	1,990 U		
3-Nitroaniline			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4,6-Dinitro-2-Methylphenol			µg/kg	3,490	U	1,560	U	1,730	U	1,680	U	4,880	U	4,980 U		
4-Bromophenyl Phenyl Ether			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4-Chloro-3-Methylphenol			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4-Chloroaniline			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4-Chlorophenyl Phenyl Ether			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4-Nitroaniline			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
4-Nitrophenol			µg/kg	1,740	U	782	U	863	U	842	U	2,440	U	2,490 U		
Benzoic Acid			µg/kg	3,480	U	1,560	U	1,730	U	1,680	U	4,880	U	4,980 U		
Benzyl Alcohol			µg/kg	871	U	391	U	431	U	421	U	1,220	U	1,250 U		
Bis(2-Chloroethoxy) Methane			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Bis(2-Chloroethyl) Ether			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Bis(2-Chloroisopropyl) Ether			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Bis(2-Ethylhexyl) Phthalate	330	800	µg/kg	1,000		1,340	J	14,800		16,500		1,330		997 U		
Butyl Benzyl Phthalate			µg/kg	871	U	391	U	431	U	421	U	1,220	U	1,250 U		
Di-n-Butyl Phthalate		100	µg/kg	697	U	313	U	345	U	1,020		976	U	997 U		
Di-n-Octyl Phthalate			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Dibenzofuran			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Diethyl Phthalate		600	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Dimethyl Phthalate			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Hexachlorobenzene		100	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Hexachlorobutadiene		600	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Hexachlorocyclopentadiene		400	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Hexachloroethane			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Isophorone			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
n-Nitrosodi-n-Propylamine			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
n-Nitrosodiphenylamine			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Nitrobenzene			µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Pentachlorophenol		1,000	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Phenol		50	µg/kg	697	U	313	U	345	U	337	U	976	U	997 U		
Polycyclic Aromatic Hydrocarbons:																
2-Methylnaphthalene		200	µg/kg	174	U	78	U	2,380		3,800		244	U	249 U		
Acenaphthene		300	µg/kg	174	U	78	U	86	U	84	U	244	U	249 U		
Acenaphthylene		200	µg/kg	174	U	78	U	86	U	84	U	244	U	249 U		
Anthracene		845	µg/kg	174	U	85	J	86	U	84	U	244	U	249 U		
Fluorene		536	µg/kg	174	U	78	U	86	U	84	U	244	U	249 U		
Naphthalene		561	µg/kg	174	U	78	U	368		510		244	U	249 U		
Phenanthrene		1,170	µg/kg	174	U	94	J	1,290		2,640		244	U	249 U		
					U	01	· ·	1,200		2,040		244	0	210 0		

Table 3-1 Analytical Results from Inline Solids Sampling in Basin M-1 Source Control Pilot Project

								S	ubb	asins					
				1		2		3		3		4		6	
Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-M1-AAM104-0803-SW 08/12/2003		IL-M1-AAM155-0803 08/13/2003		IL-M1-AAJ831-0803 08/12/2003		IL-M1-XXY101-0803 08/12/2003	(Field Duplicate ^g)	IL-M1-AAM104-0803-NE	000777100	IL-M1-AAJ933-0803 08/12/2003	0001515000
Benzo (a) anthracene		1,050	µg/kg	174	U	87	J	86	U	84	U	244	U	249	U
Benzo (a) pyrene		1,450	µg/kg	174	U	78	U	86	U	84	U	244	U	249	U
Benzo [g,h,i] perylene		300	µg/kg	174	U	78	U	86	U	84	U	244	U	249	U
Benzofluoranthenes		13,000	µg/kg	174	U	78	U	86	U	84	U	244	U	249	U
Dibenzo (a,h) anthracene		1,300	µg/kg	174	U	78	U	86	U	84	U	244	U	249	U
Fluoranthene		2,230	µg/kg	174	U	217	J	292		900		244	U	249	U
Indeno (1,2,3-cd) pyrene		100	µg/kg	174	U	78	U	86	U	84	U	244	U	249	U
Pyrene		1,520	µg/kg	174	U	252	J	602		1,030		244	U	249	U
Chrysene		1,290	µg/kg	174	U	142	J	86	U	84	U	244	U	249	U
Estimated Total HPAHs ^{a,c}			µg/kg			698		894		1,930					
Estimated Total PAHs ^{a,d}			µg/kg			877		4,932		8,880					
TPH - HCID:															
Diesel by Dx			mg/kg	50	U	50	U	50	J	50	J	50	U	50	U
Gas by HCID			mg/kg	20	U	20	С	20	J	20	J	20	С	20	U
Heavy Oil by HCID			mg/kg	100	U	100	С	100	J	100	J	100	С	100	U
Oil, Lube			mg/kg	100		100		100	J	100	J	100		100	
Other			mg/kg	100	U	100	С	100	UJ	100	UJ	100	С	100	U
TPH - Dx:															
Diesel by Dx			mg/kg	25	U	250	U	250	U	250	U	25	U	25	U
Fuel Oil, No. 6			mg/kg	234		919		7,240		5,300		162		314	
Kerosene			mg/kg	25	U	250	U	250	U	250	U	25	U	25	U
Motor Oil			mg/kg	1,420		2,130		11,700		9,230		1,210		2,310	
TPH - Gx: Gasoline by Gx			mg/kg	N	^	NA		221	J	285	J	N	^	N	^

Notes:

^a Total parameters (LPAHs, HPAHs, PAHs, PCBs, and DDTs) were calculated based on detections only. Qualifiers are not included on total parameters as it is implied that these are estimated quantities.

^b Total LPAHs: Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and 2-methylnaphthalene.

^c Total HPAHs: Includes fluoranthene, pyrene, benz[a]anthracene, chrysene, benzofluoranthenes, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, and benzo[ghi]perylene.

^d Total PAHs: Represents the sum of Total LPAHs and HPAHs.

^e Total PCBs: Includes all aroclors.

^f Total DDTs: Sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT.

^g Sample IL-M1-XXY101-0803 is a field duplicate of IL-M1-AAJ831-0803.

Abbreviations/Definitions:

-- = Not available or applicable

HPAH = high molecular weight polynuclear aromatic hydrocarbons

LPAH = low molecular weight polynuclear aromatic hydrocarbons

µg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

NA = Not analyzed

PAH = polynuclear aromatic hydrocarbon

PCB = polychlorinated biphenyl

TPH = total petroleum hydrocarbon

Bold = Value greater than JSCS bioaccumulation screening level.

Shading = Value greater than JSCS toxicity screening level.

Qualifiers:

 J_{-} The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

 $\,$ U $\,$ The analyte was not detected above the reported sample quantitation limit.

Table 3-2
Analytical Results from Inline Solids Sampling in Basin 18
Source Control Pilot Project

Total Organic Carbon Image Image S.7 Image S.300 S.300 B.300 Image S.300 Arsonic 33 mg/kg S.7 Image S.1					Subbasins					
Generation Data					1	2	3	3a	3b	4
Total Organic Carbon r mg/n 13.000 0.700 5.530 6.300 8.330 13.301 Arsonic 33 mg/ng 6.57 13 5.1 1 4.2 3.0 Cardmin 0.003 114 mg/ng 6.57 6.54 6.54 6.54 6.54 6.54 6.54 6.54 7.5<	Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-18-AAT537-0803 08/20/2003 Manhole AMZ094	IL-18-AAT453-0803 08/20/2003 Manhole AMZ096	IL-18-AAT465-0803 08/19/2003 Manhole AMZ098	IL-18-AAT557-0803 08/19/2003 Manhole AAT557	IL-18-AAT558-0803 08/19/2003 Manhole AMZ100	IL-18-AAT463-0803 08/19/2003 Manhole AMZ086
Meanis maynic S. maynic 0.63 0.54 0.51 11 14.2 3.0 Caromixum 4.00 maynic 0.63 0.63 0.64 0.93 188 0.47 0.43 Coromixum 4.00 111 maynic 101 186 0.77 0.43 188 0.44 0.77 0.43 188 0.44 0.03 188 0.44 0.031 0.15 0.222 0.76 0.44 0.031 0.15 0.222 0.04 0.031 0.16 0.022 0.04 0.031 0.15 0.222 0.04 0.031 0.15 0.222 0.04 0.031 0.15 0.122 0.04 0.031 0.15 0.122 0.044 0.031 0.122 0.044 0.031 0.122 0.022 0.014 0.014 0.022 0.014 0.014 0.014 0.014 0.014 0.0122 0.017 0.132 0.127 0.132 0.127 0.132 0.127 0.1	General Chemistry: Total Organic Carbon			mg/kg	13,000	6,700	5,530	52,900	8,030	13,300
Cardinism 0.003 4.98 mg/kg 0.63 0.63 0.93 0.94 0.77 0.43 Copner 100 149 mg/kg 101 195 139 188 104 77 Copner 128 mg/kg 72 78 139 556 0.22 78 Merouy 106 mg/kg 229 281 0.22 0.74 0.031 0.14 0.15 1.05	Metals:									
Cromum 4200 110 mgkg 55 60 63 188 194 77 Capper 10 128 128 mgkg 72 78 19 636 22 73 Mecury 3 459 mgkg 72 78 19 636 0.021 0.051 0.021 0.051 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.022 0.017 0 132 0		0.000								
Copper 10 149 mgkg 101 185 185 185 187 187 187 187 Laad 128 128 mgkg 227 78 0.042 0.032 0.64 0.031 0.15 Zor. 3 450 mgkg 228 2011 228 0.042 0.032 0.64 0.031 0.15 Arochr-1016 420 630 µgkg 121 0 122 0 107 0 122 0 107 0 122 0 107 132 0 127 1 122 0 107 132 0 127 1 122 0 107 132 0 127 1 122 0 107 132 0 127 122 0 102 127 122 0 127 132 0 127 132 0 127 132 0 127 132 132 127<										
Lead 128 128 128 128 128 128 128 128 128 002 0.02 0.02 0.02 0.02 0.02 0.03										
Mecury Index mg/kg 0.042 0.032 0.04 0.031 0.15 Zinc 3 459 mg/kg 229 201 286 374 416 193 PCBs: Anodor-1016 420 530 µg/kg 121 1 127 1 122 1 132 1 127 1 122 1 122 1 127 1 122 1 132 1 132 1										
Zinc 3 499 mg/kg 229 291 268 374 416 193 PCBs: Arador-1015 420 530 µg/kg 121 U 127 U 122 U 107 U 132 U 127 L Arador-121 - µg/kg 121 U 127 U 132 U 132 U 127 L Arador-1242 2 µg/kg 121 U 127 U 132 U 122 U 133 U 132 U 123 U 124 U 132 U 124 U 132 U 133		120								
PCBs: 420 530 µg/kg 121 U 122 U 107 U 132 U 127 U Arodor-1221 µg/kg 121 U 127 U 122 U 107 U 132 U 127 L Arodor-1242 2 µg/kg 121 U 127 U 132		3								
Ancoln 1016 420 130 up/gkg 121 U 127 U 122 U 132 U 124 U 125 U 127 U 122 U 107 U 132 U 127 U Anodon-1242 2 1 1 U 127 U 122 U 107 U 132 U 127 U Anodon-1264 4 1 100 Up/gkg 121 U 127 U 122 U 107 U 132 U 132 U 132 U 132 U 125 U	PCBs:				-				-	
Anodor-1322 Image of the state of the stat		420	530	µg/kg	121 U	127 U	122 U	107 U	132 U	127 U
Anodor-1242 2 μg/kg 121 10 122 107 10 132 10 127 1 Anodor-1284 10 300 µg/kg 121 10 122 107 10 132 10 127 10 Anodor-1264 10 300 µg/kg 121 10 122 107 10 132 10 127 10 122 107 10 132 10 127 10 122 10 624 127 10 122 10 624 127 10 127 10 122 10 624 128 10 127 11 12 12 147 147 112 14 130 11 12 12 14 44 100 13 11 11 12 12 14 44 410 140 13 11 11 11 11 11 11 11 11 11	Aroclor-1221				241 U	253 U	244 U	213 U	265 U	254 U
Arochor-1228 4 1,500 µg/kg 121 U 122 U 122 U 132 U 133 U	Aroclor-1232			µg/kg						
Arodor-1254 10 300 µµkg 130 127 U 122 U 132 U 127 U 122 U 123 U 127 U 122 U 265 U 255 U 265 U				µg/kg						
Arackor-1280 200 μg/kg 127 U 127 U 122 U 624 132 U 127 L Estimated Total PCBs ^{MA} 676 μg/kg 130 - - 624 - 137 L 4.4-DDD 0.3 28 μg/kg 2.5 U 2.5 U 2.5 U 2.6 U 2.6 U 2.6 U 2.6 U 2.6 U 2.5 U 2.6 U 2.6			1,500	µg/kg	121 U	-				-
Estimated Total PCBs ³⁶ implysion 130 624 187 Pesticlos: 0.3 28 µg/kg 2.5 U 2.5 U 2.5 U 2.6 U 127 12 2.6 U 2.6 U <t< td=""><td></td><td>10</td><td>300</td><td>µg/kg</td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>		10	300	µg/kg		-				
Pesticides: 0.3 28 µg/kg 2.5 U 2.5 U 2.5 U 2.5 U 2.6				µg/kg						
4.4'-DDD 0.3 2.8 μg/kg 2.5 U 2.6 U 2.5 U 2.5 U 2.6 U 2.6 U <td></td> <td></td> <td>676</td> <td>µg/kg</td> <td>130</td> <td></td> <td></td> <td>624</td> <td></td> <td>187</td>			676	µg/kg	130			624		187
4.4-DDE 0.3 31.3 μg/kg 2.5 U 2.5 U 2.5 U 2.6 U 1.2 U 1.3 U <td></td>										
4.4-DDT 0.3 62.9 μg/kg 25 U 25 U 26 U 13 U 112 U 130 U 130 U 13 U 14 14 14 14 13 U 1										
Estimated Total DDTs ^M 0.3 µg/kg <td></td>										
4.4'Methoxychlor mg/kg 123 U 125 U 127 U 112 U 130 U 124 U Alpha-BHC mg/kg 1.2 U 1.3 U			62.9							
Aldrin 40 µg/kg 6.7 1.3 U 1.3 U 3.6 1.3 U 9.1 Alpha-BHC µg/kg 1.2 U 1.3 U 2.5 U </td <td></td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0.5								
Alpha-BHC jugkg 1.2 U 1.3 U 1.1 U 1.3 U 1.3 U 1.1 U 1.3 U 1.1 U 1.3			40							
beta-BHC pg/kg 1.2 U 1.3 U 1.1 U 1.3 U 1.2 U Dithin in i										
Alpha Chlordane 17.6 µg/kg 1.4 1.3 U 1.3 U 152 1.3 U 9.1 Chlordane 17.6 µg/kg 2.3 1.3 U 1.3 U 512 1.3 U 1.0 0 delta-BHC µg/kg 1.2 U 1.3 U 2.6 1.3 U 3.5 Diektrin 61.8 µg/kg 1.2 U 1.3 U 2.6 U 2.6 U 2.5 U 2.5 U 2.6 U 2.5 U 2.5 U 2.0 2.6 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 <td></td>										
Chlordane 17.6 µg/kg 2.3 1.3 U 1.3 U 512 1.3 U 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.3 U 2.6 U 2.5 U 2.5 U 2.6 U 2.5 U 2.6 U 2.5 U 2.6 U 2.5 U 2.2	Alpha Chlordane		17.6		1.4			152		9.1
Dieldrin 61.8 µg/kg 6.4 4.8 2.5 U 4.6 2.6 U 14 Endosulfan I µg/kg 1.2 U 1.3 U 1.3 U 5.8 1.3 U 1.2 U Endosulfan II µg/kg 2.5 U 2.5 U 2.5 U 2.5 U 2.6 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U<	Chlordane		17.6		2.3	1.3 U	1.3 U	512	1.3 U	10.0
Endosulfan I μg/kg 1.2 U 1.3 U 1.3 U 5.8 1.3 U 1.2 L Endosulfan II μg/kg 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U 2.5 U 2.6 U 2.6 U 2.5 U	delta-BHC			µg/kg	1.2 U	1.3 U	1.3 U	26	1.3 U	3.5
Endosulfan II μg/kg 2.5 U 2.5 U 2.5 U 2.6 U 2.6 U 2.5 U 2.5 U 2.6 U 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U 2.6 U 2.6 U 2.5 U 2.5 U 2.5 U 2.5 U 2.6 U 2.6 U 2.6	Dieldrin		61.8	µg/kg	6.4	4.8	2.5 U	46	2.6 U	14
Endosulfan Sulfate μg/kg 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U Endrin 207 μg/kg 2.5 U 2.5 U 2.5 U 7.0 2.6 U 2.5 U Endrin Aldehyde μg/kg 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 <td< td=""><td>Endosulfan I</td><td></td><td></td><td>µg/kg</td><td>1.2 U</td><td>1.3 U</td><td>1.3 U</td><td>5.8</td><td>1.3 U</td><td></td></td<>	Endosulfan I			µg/kg	1.2 U	1.3 U	1.3 U	5.8	1.3 U	
Endrin 207 μg/kg 2.5 U 2.5 U 7.0 2.6 U 2.5 U Endrin Aldehyde μg/kg 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.6 U 2.5 U Endrin Aldehyde 10 μg/kg 3.3 1.3 U 1.3 U 3.0 1.3 U 1.2 U 2.6 U 2.5 U Heptachlor 10 μg/kg 3.3 1.3 U 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.2 U 1.3 U 1.2 U 1.2 U 1.3 U 1.2 U 1.2 U 1.2	Endosulfan II			µg/kg						
Endrin Aldehyde μg/kg 2.5 U 2.5 U 2.5 U 2.5 U 198 J 2.6 U 2.5 U Endrin Ketone μg/kg 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.2 U 2.6 U 2.5 U Heptachlor 10 μg/kg 3.3 1.3 U 1.2 U 1.2 L L L L L L L L L L L				µg/kg						
Endrin Ketone μg/kg 2.5 U 2.5 U 2.2 U 2.6 U 2.5 U 2.6 U 2.5 U 2.2 U 2.6 U 2.5 U 2.5 U 2.5 U 2.6 U 1.3 U 1.1 U 1.3 U 1.2 U 1.3 U 1.2 U 1.3 U 1.2 U 1.3 U 1.2 U 1.3			207							
Heptachlor 10 µg/kg 3.3 1.3 U 1.3 U 3.0 1.3 U 1.2 U Heptachlor Epoxide 16 µg/kg 1.2 U 1.3 U 1.2 U 1.3 U 1.3 U 1.3 U 1.2 U 1.3 U 1.3 U 1.2 U 1.3 U 1.3 U 1.2 U 1.2 U 1.3 U 1.2 U										
Heptachlor Epoxide 16 µg/kg 1.2 U 1.3 U 1.1 U 1.3 U 1.1 U 1.3 U 1.1 U 1.3 U 1.2 U Lindane 4.99 µg/kg 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.2 U Toxaphene µg/kg 123 U 125 U 127 U 112 U 130 U 124 U Semivolatile Organic Compounds: 338 U 347 U 298 U 354 U 328 U 1,2-Dichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg <										
Lindane 4.99 µg/kg 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.2 L Toxaphene µg/kg 123 U 125 U 127 U 112 U 130 U 124 L Semivolatile Organic Compounds: 9,200 µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 1,2-Dichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347										
Toxaphene μg/kg 123 U 125 U 127 U 112 U 130 U 124 U Semivolatile Organic Compounds: μg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,2,4-Trichlorobenzene 1,700 μg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,2-Dichlorobenzene 300 μg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,3-Dichlorobenzene 300 μg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,4-Dichlorobenzene 300 μg/kg 327 U 338 U 347 U 298 U 354 U 328 U 327 U										
Semivolatile Organic Compounds: 9,200 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,2.4-Trichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,2-Dichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U<		1	4.99							
1,2,4-Trichlorobenzene 9,200 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,2-Dichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol 1 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 29				pg/kg	120 0	120 0	127 0	112 0	130 0	124 0
1,2-Dichlorobenzene 1,700 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 </td <td></td> <td></td> <td>9.200</td> <td>ua/ka</td> <td>327 U</td> <td>338 U</td> <td>347 U</td> <td>298 U</td> <td>354 U</td> <td>328 U</td>			9.200	ua/ka	327 U	338 U	347 U	298 U	354 U	328 U
1,3-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dinitrophenol µg/kg 327 U 338 U 347 U 298 U 354 U										
1,4-Dichlorobenzene 300 µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dinhtylphenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dinitrophenol µg/kg 1,640 U 1,690 U 1,730 U 1,490 U 1,640 U	1,3-Dichlorobenzene									
2,4,5-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4,6-Trichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dimethylphenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dinitrophenol µg/kg 327 U 338 U 347 U 298 U 1,640 U 2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,6-Dinitro	1,4-Dichlorobenzene		300	µg/kg	327 U	338 U	347 U	298 U	354 U	328 U
2,4-Dichlorophenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dimethylphenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dimethylphenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,4-Dinitrophenol µg/kg 1,640 U 1,690 U 1,730 U 1,490 U 1,770 U 1,640 U 2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,6-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 U	2,4,5-Trichlorophenol			µg/kg	327 U	338 U	347 U	298 U	354 U	
2,4-Dimethylphenol µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 2,4-Dinitrophenol µg/kg 1,640 U 1,690 U 1,730 U 1,490 U 1,770 U 1,640 L 2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 L 2,6-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 L	2,4,6-Trichlorophenol			µg/kg	327 U	338 U	347 U	298 U	354 U	
2,4-Dinitrophenol µg/kg 1,640 U 1,690 U 1,490 U 1,770 U 1,640 L 2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 328 L 2,6-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 328 L	2,4-Dichlorophenol			µg/kg						
2,4-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 U 2,6-Dinitrotoluene µg/kg 327 U 338 U 347 U 298 U 354 U 328 U				µg/kg						
2,6-Dinitrotoluene										

Table 3-2
Analytical Results from Inline Solids Sampling in Basin 18
Source Control Pilot Project

				Subbasins									
				1		2	3		3a		3b		4
Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-18-AAT537-0803 08/20/2003 Manhole AMZ094		IL-18-AAT453-0803 08/20/2003 Manhole AMZ096	IL-18-AAT465-0803 08/19/2003 Manhole AMZ098		IL-18-AAT557-0803 08/19/2003 Manhole AAT557		IL-18-AAT558-0803 08/19/2003 Manhole AMZ100		IL-18-AAT463-0803 08/19/2003 Manhole AMZ086
2-Chlorophenol			µg/kg		U	338 U	347	U	298	С	354	U	328 U
2-Methylphenol			µg/kg		U	338 U	347	U	298	U	354	U	328 U
2-Nitroaniline			µg/kg		U	338 U	347	U	298	U	354	U	328 U
2-Nitrophenol			µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
3&4-Methylphenol			µg/kg		U U	676 U 676 U	823	J U	596	U	708	U U	655 U
3,3'-Dichlorobenzidine			µg/kg		U		694	U	596	U	707	U	
3-Nitroaniline 4,6-Dinitro-2-Methylphenol			μg/kg μg/kg		U	338 U 1,690 U	347 1,730	U	298 1,490	U	354 1,770	U	328 U 1,640 U
4-Bromophenyl Phenyl Ether			µg/kg µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
4-Chloro-3-Methylphenol			μg/kg μg/kg	327	U	338 U	347	U	298	υ	354	U	328 U
4-Chloroaniline			μg/kg		U	338 U	347	U	298	U	354	U	328 U
4-Chlorophenyl Phenyl Ether			µg/kg		U	338 U	347	U	298	U	354	U	328 U
4-Nitroaniline			µg/kg		U	338 U	347	U	298	U	354	U	328 U
4-Nitrophenol			µg/kg	818	U	845 U		U	745	U	884	U	819 U
Benzoic Acid			µg/kg	1,640	U	1,690 U	1,730	U	1,990	J	1,770	U	1,640 U
Benzyl Alcohol			µg/kg	409	U	422 U	434	U	373	U	442	U	410 U
Bis(2-Chloroethoxy) Methane			µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Bis(2-Chloroethyl) Ether			µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Bis(2-Chloroisopropyl) Ether			µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Bis(2-Ethylhexyl) Phthalate	330	800	µg/kg	1,640	J	576 J	990	J	298	U	917	J	1,020 J
Butyl Benzyl Phthalate			µg/kg	409	U	422 U	434	U	373	U	1,040	J	410 U
Di-n-Butyl Phthalate		100	µg/kg	558	J	338 U	347	U	298	U	354	U	328 U
Di-n-Octyl Phthalate		-	µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Dibenzofuran		-	µg/kg		U	338 U		U	298	U	354	U	328 U
Diethyl Phthalate		600	µg/kg		U	338 U		U	298	U	354	U	328 U
Dimethyl Phthalate			µg/kg		U	338 U	347	U	298	U	354	U	328 U
Hexachlorobenzene		100	µg/kg		U	338 U	347	U	298	U	354	U	328 U
Hexachlorobutadiene		600 400	µg/kg	327 327	U U	338 U 338 U	347 347	U U	298 298	U U	354 354	U U	328 U 328 U
Hexachlorocyclopentadiene Hexachloroethane		400	µg/kg		U	338 U	347	U	298	U	354	U	328 U
Isophorone			μg/kg μg/kg		U	338 U	347	U	298	υ	354	U	328 U
n-Nitrosodi-n-Propylamine			μg/kg		U	338 U	347	U	298	U	354	U	328 U
n-Nitrosodiphenylamine			µg/kg		U	338 U	347	U	298	U	354	U	328 U
Nitrobenzene			µg/kg		U	338 U	347	U	298	U	354	U	328 U
Pentachlorophenol		1,000	µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Phenol		50	µg/kg	327	U	338 U	347	U	298	U	354	U	328 U
Polycyclic Aromatic Hydrocarbons:													
2-Methylnaphthalene		200	µg/kg	82	U	85 U	87	U	355	J	88	U	82 U
Acenaphthene		300	µg/kg	82	U	85 U	87	U	75	U	88	U	82 U
Acenaphthylene		200	µg/kg	82	U	85 U	87	U	478	J	88	U	82 U
Anthracene		845	µg/kg		U	85 U	87	U	260	J	88	U	82 U
Fluorene		536	µg/kg	82	U	85 U	87	U	75	U	88	U	82 U
Naphthalene		561	µg/kg		U	85 U	87	U	147	J	88	U	82 U
Phenanthrene		1,170	µg/kg	261	J	85 U	87	U	445	J	143	J	168 J
Estimated Total LPAHs ^{a,b}		4 050	µg/kg	261					1,685		143		168
Benzo (a) anthracene		1,050	µg/kg	82	U	85 U	87	U	75	U	88	U	82 U
Benzo (a) pyrene		1,450	µg/kg	408	J	85 U	87	U	545	J	217	J	82 U 82 U
Benzo [g,h,i] perylene Benzofluoranthenes		300	µg/kg	338	J	85 U 85 U	87	U U	1,560	J	338	J	
		13,000 1,300	µg/kg	577 82	J	85 U 85 U	87 87	U	796 75	J	323 88	J	82 U 82 U
Dibenzo (a,h) anthracene Fluoranthene		2,230	μg/kg μg/kg	339	J	134 J	87	U	656	J	218	J	196 J
Indeno (1,2,3-cd) pyrene		2,230	μg/kg μg/kg	82	J	85 U	87 87	U	1,030	J	218	J	196 J 82 U
Pyrene		1,520	μg/kg μg/kg	521	J	195 J	87	U	964	J	190	J	231 J
Chrysene		1,320	μg/kg μg/kg	82	J	85 U		U	904 75	J	88	J	82 U

Table 3-2 Analytical Results from Inline Solids Sampling in Basin 18 Source Control Pilot Project

	-	1								
				Subbasins						
				1	2	3	3a	3b	4	
Class/Analyte	JSCS (Bioaccumulation)	JSCS (Toxicity)	Units	IL-18-AAT537-0803 08/20/2003 Manhole AMZ094	IL-18-AAT453-0803 08/20/2003 Manhole AMZ096	IL-18-AAT465-0803 08/19/2003 Manhole AMZ098	IL-18-AAT557-0803 08/19/2003 Manhole AAT557	IL-18-AAT558-0803 08/19/2003 Manhole AMZ100	IL-18-AAT463-0803 08/19/2003 Manhole AMZ086	
Estimated Total HPAHs ^{a,c}			µg/kg	2,183	329		5,551	1,487	427	
Estimated Total PAHs ^{a,d}			µg/kg	2,444	329		7,236	1,630	595	
TPH - HCID:										
Diesel by Dx			mg/kg	NA	NA	NA	NA	NA	NA	
Gas by HCID			mg/kg	NA	NA	NA	NA	NA	NA	
Heavy Oil by HCID			mg/kg	NA	NA	NA	NA	NA	NA	
Oil, Lube			mg/kg	NA	NA	NA	NA	NA	NA	
Other			mg/kg	NA	NA	NA	NA	NA	NA	
TPH - Dx:										
Diesel by Dx			mg/kg	250 U	125 U	125 U	250 U	125 U	125 l	
Fuel Oil, No. 6			mg/kg	500 U	250 U	250 U	555	250 U	250 l	
Kerosene			mg/kg	250 U	125 U	125 U	250 U	125 U	125 L	
Motor Oil			mg/kg	1,410	442	679	3,490	786	1,330	
TPH - Gx: Gasoline by Gx			mg/kg	NA	NA	NA	NA	NA	NA	

Notes:

^a Total parameters (LPAHs, HPAHs, PAHs, PCBs, and DDTs) were calculated based on detections only. Qualifiers are not included on total parameters as it is implied that these are estimated quantities.

^b Total LPAHs: Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and 2-methylnaphthalene.

^c Total HPAHs: Includes fluoranthene, pyrene, benz[a]anthracene, chrysene, benzofluoranthenes, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, and benzo[ghi]perylene.

^d Total PAHs: Represents the sum of Total LPAHs and HPAHs.

e Total PCBs: Includes all aroclors.

^f Total DDTs: Sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT.

⁹ Sample IL-M1-XXY101-0803 is a field duplicate of IL-M1-AAJ831-0803.

Abbreviations/Definitions:

-- = Not available or applicable

HPAH = high molecular weight polynuclear aromatic hydrocarbons

LPAH = low molecular weight polynuclear aromatic hydrocarbons

µg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

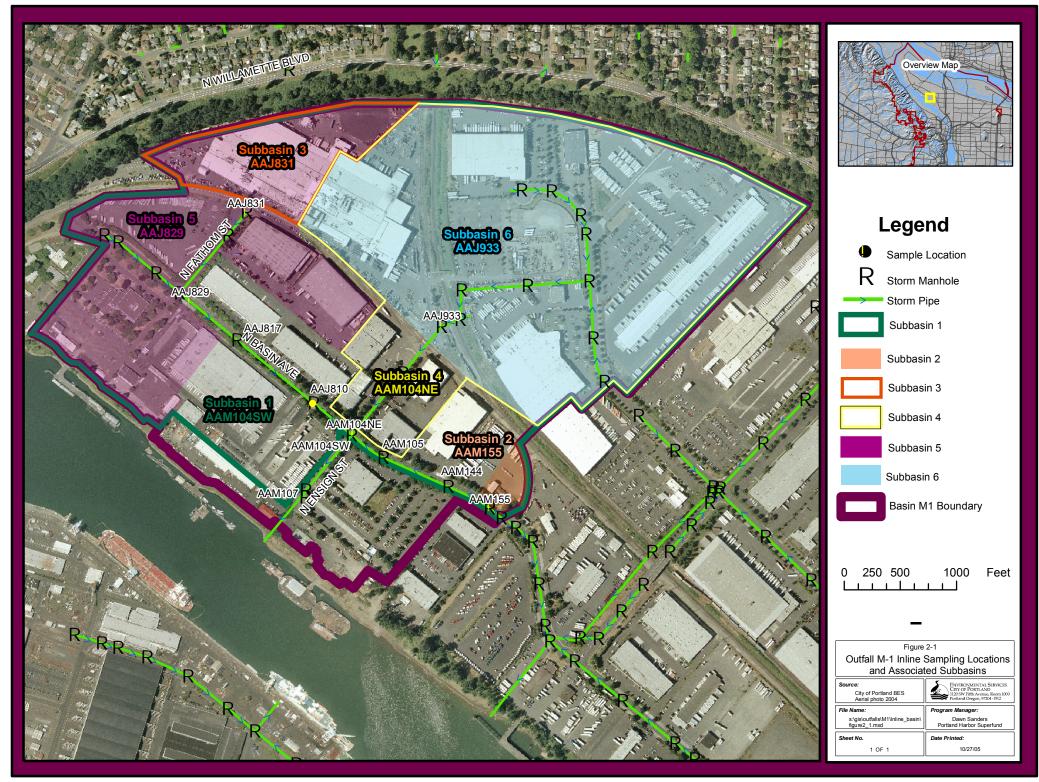
NA = Not analyzed

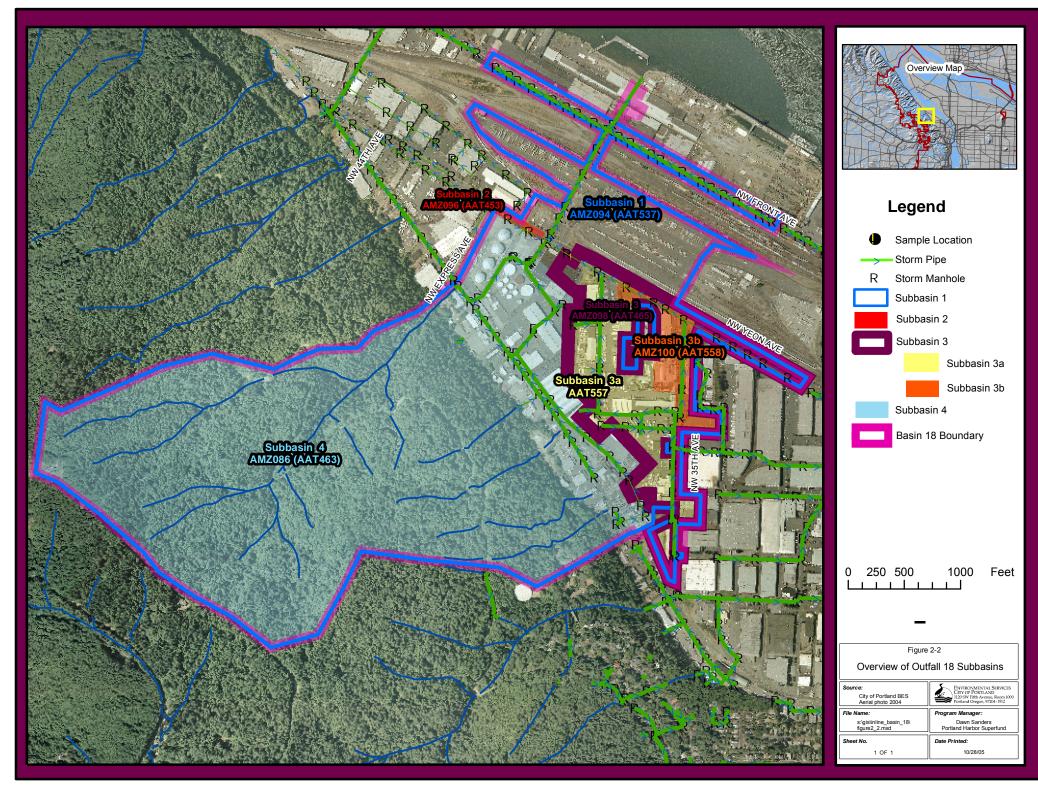
PAH = polynuclear aromatic hydrocarbon

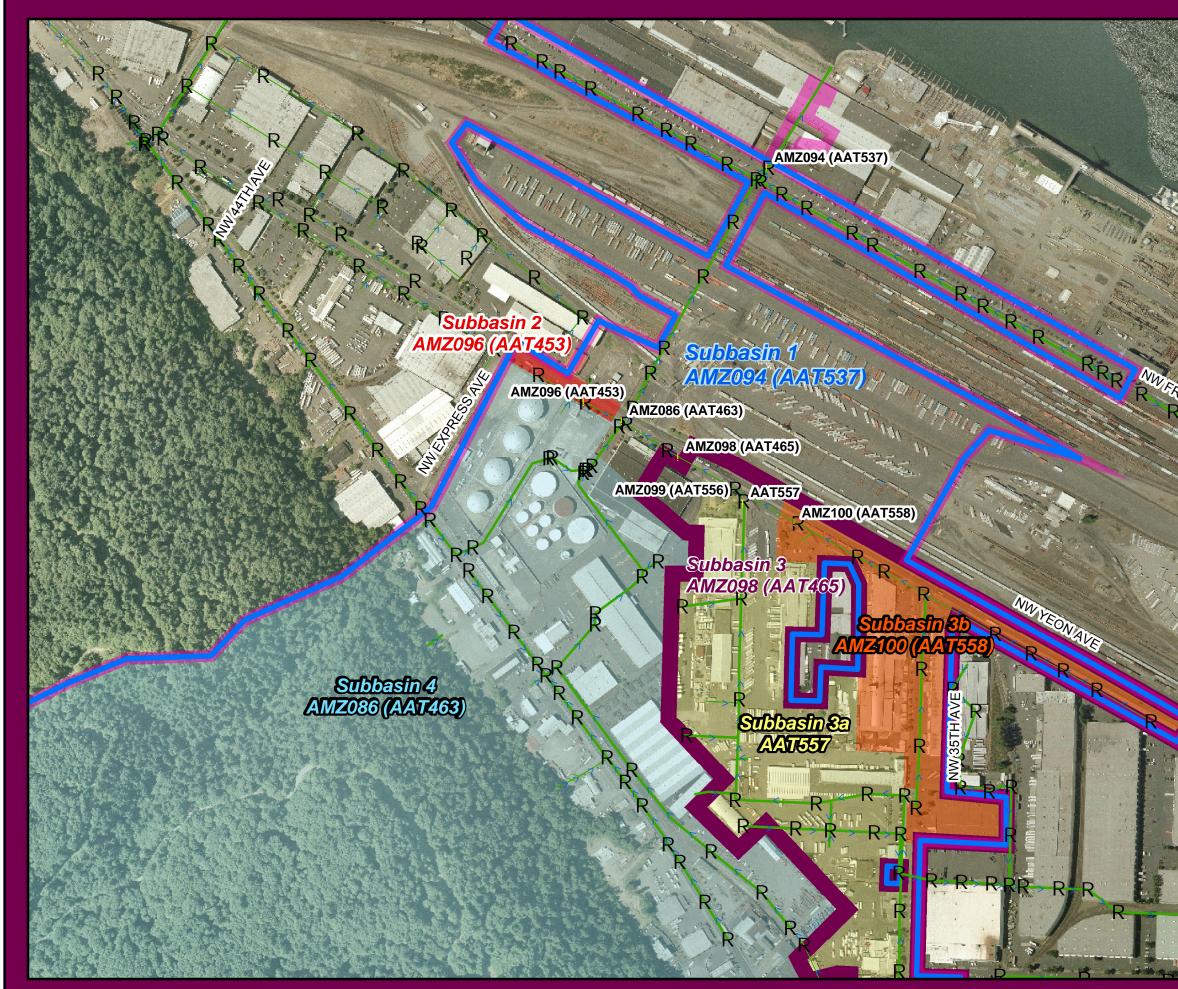
PCB = polychlorinated biphenyl

TPH = total petroleum hydrocarbon

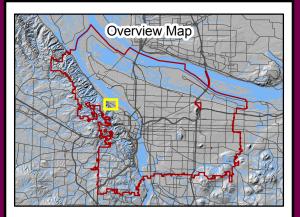
Bold = Value greater than JSCS bioaccumulation screening level.

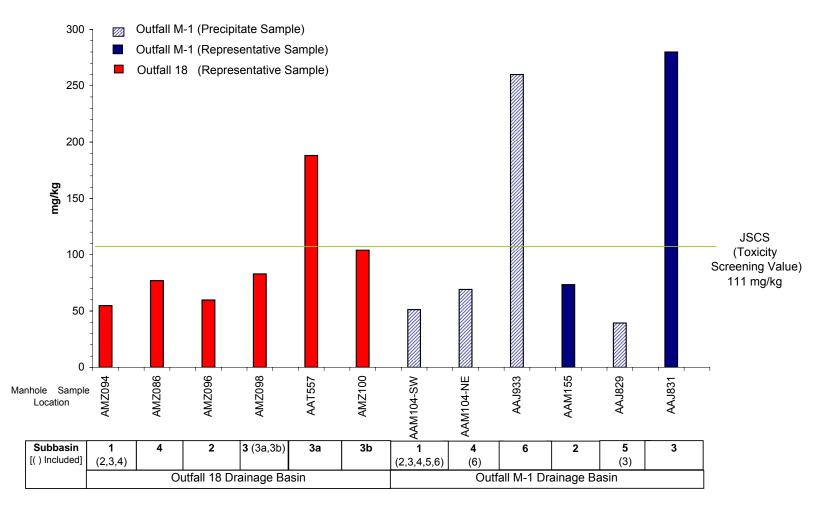

Shading = Value greater than JSCS toxicity screening level.

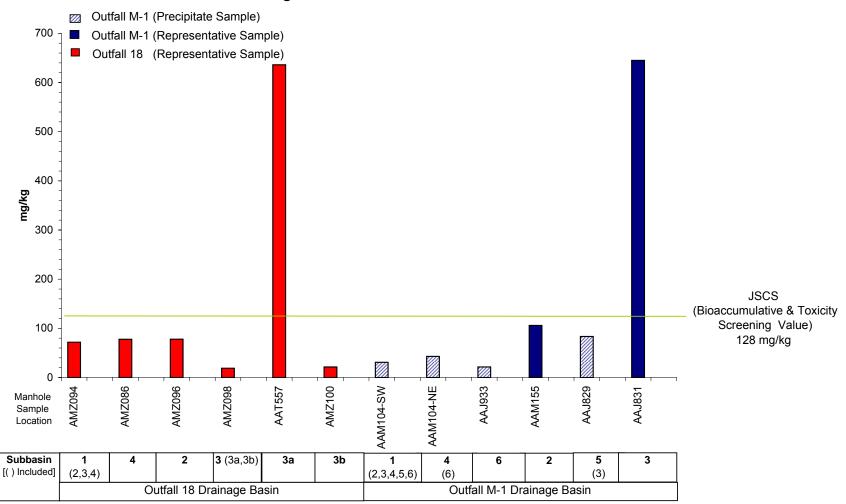

Qualifiers:


J The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

U The analyte was not detected above the reported sample quantitation limit.


Figures





Legend

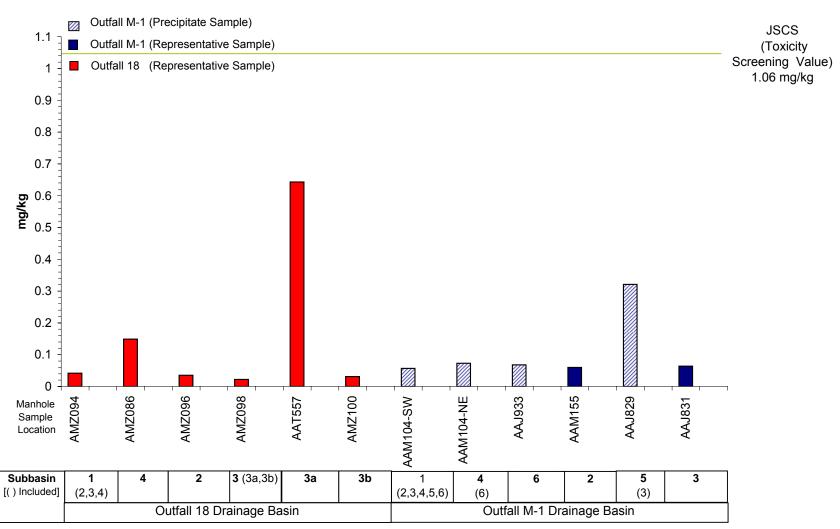
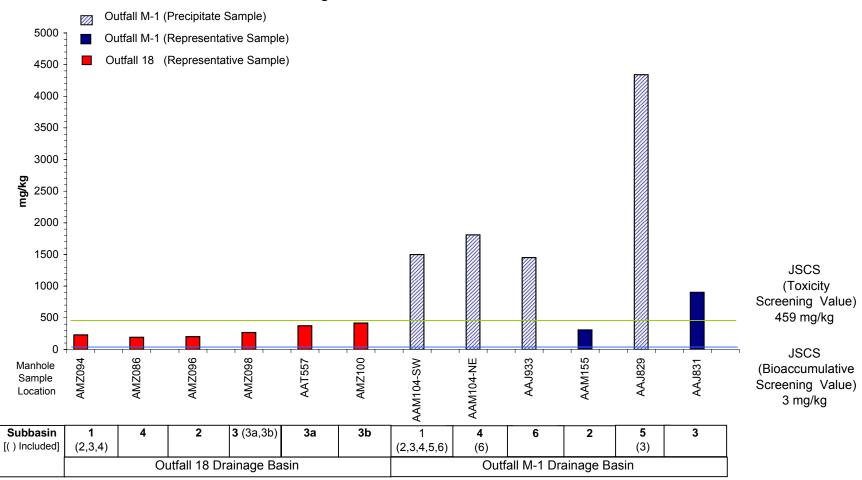
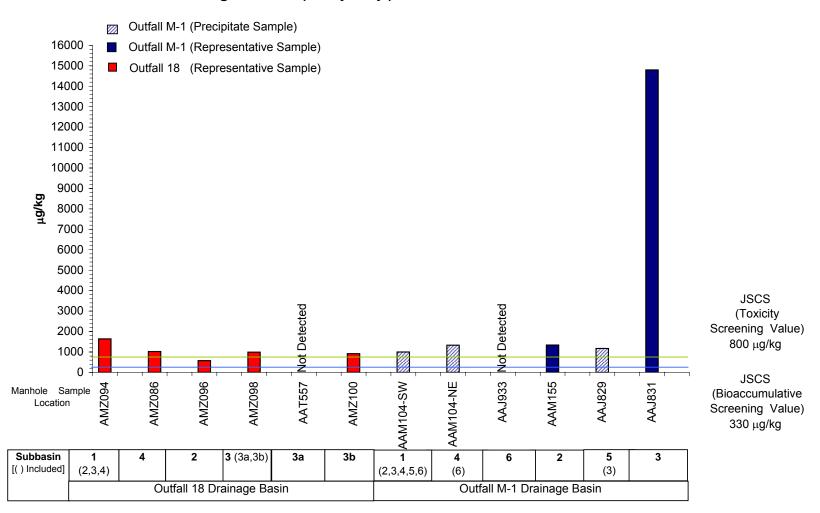

٩	Sample Location									
~~~	Storm Pipe									
R	Storm Manhole									
	Subbasin 1									
	Subbasin 2									
	Subbasin	13								
		Subbasin 3a	l							
		Subbasin 3t	C							
	Subbasin	14								
	Basin 18	Boundary								
0 250 L L L) 500 	1000 F	⁼ eet							
	_									
Figure 2-3 Outfall 18 Inline Sampling Locations and Associated Sub-Basins										
Source: C A	ty of Portland BES erial photo 2004	ENVIRONMENTAL SERVIC CITY OF PORTLAND 1120 SW Fifth Avenue, Room Portland Oregon, 97204-1912	'ES 1000							
File Name s:\gis figure	e: isiiniine_basin_18\ re2-3.mxd Dawn Sanders Portland Harbor Superfund									
Sheet No.										

Figure 3-1 Chromium Concentrations Inline Solids




Figure 3-2 Lead Concentrations Inline Solids

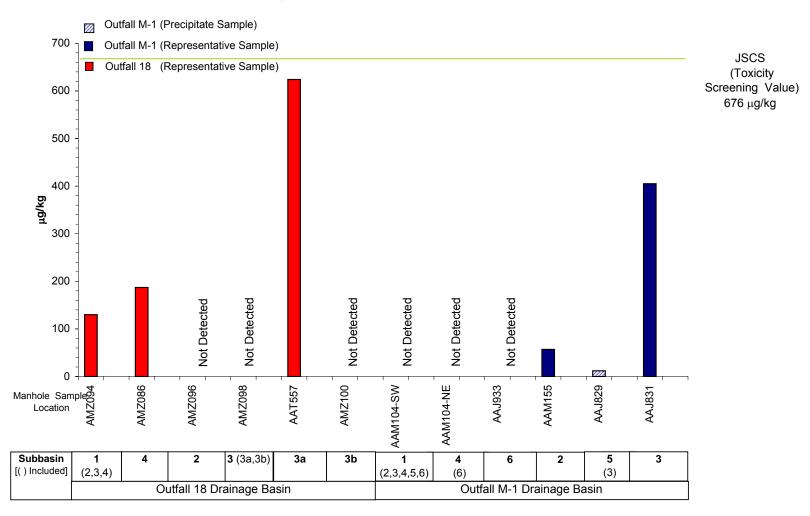
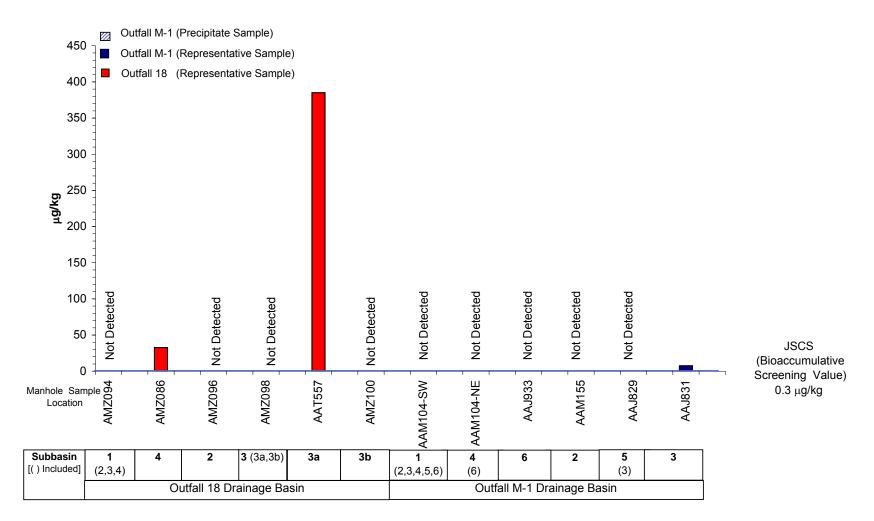

Figure 3-3 Mercury Concentrations Inline Solids

Figure 3-4 Zinc Concentrations Inline Solids



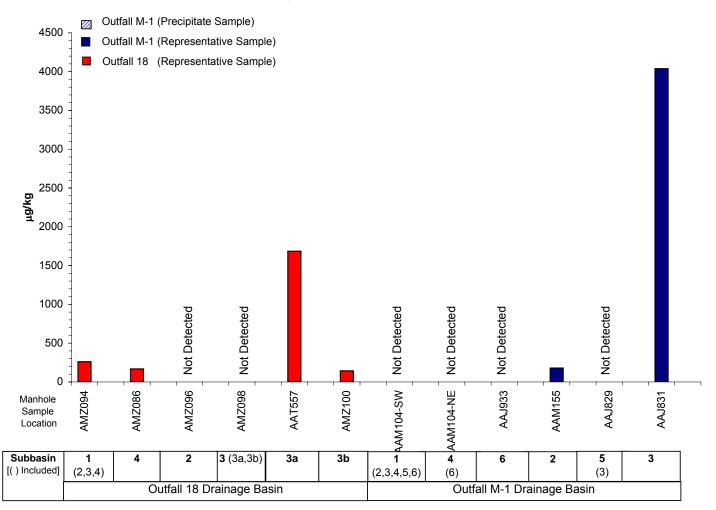

Figure 3-5 Bis(2-ethylhexyl)Phthalate Concentrations Inline Solids

Figure 3-6 Total PCB Concentrations Inline Solids

Figure 3-8 LPAH Concentrations Inline Solids

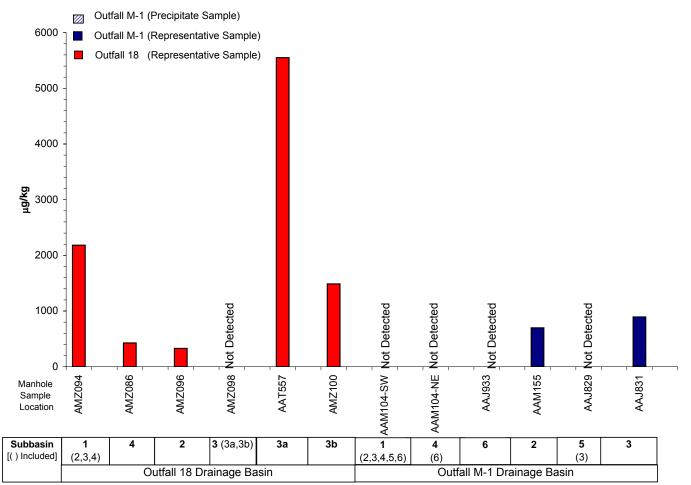


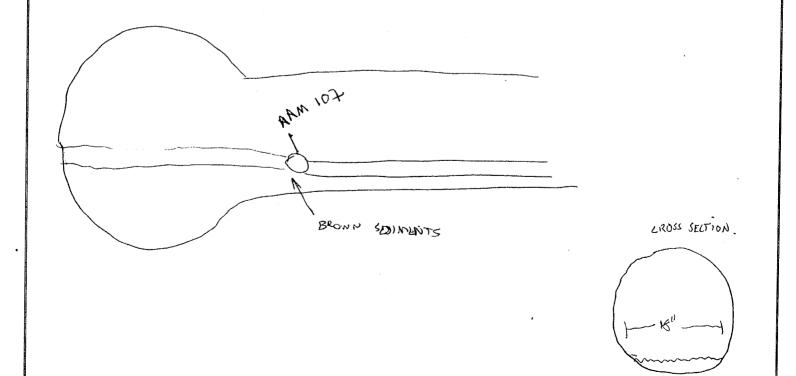
Figure 3-9 HPAH Concentrations Inline Solids

APPENDIX A Field Data Sheets

·····	
ENVIR	CITY OF PORTLAND ONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452
	ITFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET
Date: BIJ63 Time: OQ 40 Sampling Team Present: DOUG- If Court	Current Weather conditions: SUNY, CAM, 470°F
Basin: M-1 Node	AAMISS Subbasin:
Address: 6235 N. BASIN	
SECTION 1 - PRE- Describe any flowing or standing water observed in the line?	SAMPLING VISUAL OBSERVATION REPORT
Does river appear to back up to this location? Describe rate/color/odor of flow;	
Are sediments observed in the line?	NIA YES
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	AT LEAST 20' UP + DOWN FROM M.H.
SITE DIAGRAM: Include street intersections/lat	erals/MH's/driveways cuts and extent of solids accumulation
18"	UP 24" DOWN
AN SEDIM	IENT KT LEAST 20' UP/DOWN
FRom	M.U.
N. BASIN	
E-24"	Lauter Seo more
	LB 47141155 18.
	Page 1 of 2

SEC	TION 2 - SAMPLE CC	LLECTION REPORT	Node: AAM 155
Sampling Equipment:	STAINLESS	BUCKET + St	Alt SPage
Equipment Decontamination process.	PERSSO	27.01A	
Sarchadate: 813 03	Sampletime: 095	0	
Sample Identification: (IL-XX-NIMMER)	myy)	- AAM155-0	5803
Sampe location:	0-18,000	JNSTREAM	
(number of feet from node of entry)	Contraction of the second		
Sample collecting technique:	w/ srs. s	ipoan	
Color of sample:	BLACK		
Texture Particle size:	POORLY SORTAD S GRAVEL, ROUN	ANDY GRAVEL WC	OARSE
Visual or olfactory evidence of contamination:		CARBON ODOR	
Depth of solds in area where cample	31/2 "		· .
Amount and type of debris:	71% SCREWS +	washings	
Compositing notes:	REMOVED GRAVEL	7 3/4 " \$	
	Sample Jars Colle	ected	
f not enough sample to fill all of the jars, the	en fill Metals	One 4oz glass jar	V
ars in this order: 🗥 🍋 🗛 🐗	PAHS/SVOCs	One 4oz glass jar	V
	PCIS / with	One 4oz glass jar	V
	TPH (two jars)	Two 4oz glass jars	
	TOC	One 4oz glass jar	
Duplicate sample collected?	NO		
Duplicate sample fictitious identification # or	n COC:		
Samples placed in chilled cooler? (VN			
Sample Relivered to lab?	Lab ID Number:	FO 030813	
	edures: NOIF		

	SECTION 3 - I	PHOTOGRAPH LOG	
Photograph Log	In-Pipe sample location	\checkmark	ne no con a conservativa e accessiva e a conservativa e a conservativa e a conservativa e a conservativa e a co
	Homogenized sample	V	


CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452
LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET
Date: 8-13-03 Time: 1127 Current Weather conditions: SUMNY 7013
Sampling Team Present: 277) (VTH)
Basin: M) Node: A A 829 Subbasin:
Address: INTINSECTION OF IN BASIN + FATLOM
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line? FREIGPTLINER
Does river appear to back up to this location? Describe rate/color/odor of flow:
Are sediments observed in the line? Yes MT & DOWN FROM ANT 829
Are sample-able quantities of sediments YES - BROWN SONTHER OBSERDED WHERE LATERAL FROM DUTH present in the line? - Promanly MINORAL ACCUMULATION WHERE
Describe lateral extent of sample-able Limit D to Aler AROUND CHERKEL
SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation STRENDED LINEA SUMPLY: cullectul (NYRE
A SEDS OBSERVED BELOW LATERAL, NOT OBSERVED IN LATERAL, PRESERVER POSSIGLY DUE TO GLU INFILTRATION AND PRECIPITION AS MINREALS,

SE	CTION 2	2 - SAMPLE CO	DLLECTION REPORT	Node: NAT 829		
Sampling Equipment:	SPOO	N→ SS BOW)				
Equipment Decontamination process:	Per	Por 50P 7.01a				
Sample date: 8-13-03	Samp	ole time:	142			
Sample Identification: (IL-XX-NNNNN-	mmyy)	12-MA - AA	5829 -0803			
Sample location: (number of feet from node of entry)	80'	DONON STROAM SW	P28 244 MES			
Sample collection technique:	SED PLACE	STOR CEPODIZ MALE OTHIC	BOW, DOMOGIA TO TO	n of sweepice of		
Color of sample:	B20	woo y Biden		······		
Texture/Particle size:	Fin	Ś		· · · · · · · · · · · · · · · · · · ·		
Visual or olfactory evidence of contamination:	NO	NONE				
Depth of solids in area where sample collected:	UP 7	UP TO AN TINCE ON WALL.				
Amount and type of debris:		n				
Compositing notes:						
		Sample Jars Coll	ected			
If not enough sample to fill all of the jars, t	hen fill	Metals	One 4oz glass jar			
jars in this order:		PAHs/SVOCs	One 4oz glass jar			
		PCBs	One 4oz glass jar	·		
		TPH (two jars) TOC	Two 4oz glass jars			
		100	One 4oz glass jar			
Duplicate sample collected?		NO				
Duplicate sample fictitious identification #	on COC:					
Samples placed in chilled cooler? Y/N			FO 030814			
Samples delivered to lab? Y/N		Lab ID Number:				
Describe any deviations from standard pro	cedures:					

	SECTION 3 - PH	OTOGRAPH LOG	
Photograph Log	In-Pipe sample location		annan ann a' shannan ann an ann an ann ann ann ann ann
	Homogenized sample		

ENVIF	CITY OF PORTLAND SONMENTAL SER' Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	VICES		
LOWER HARBOR O	UTFALL SEDIMENT SA FIELD DATA SHEET	AMPLING	- 1020.001	
Date: 8-12-03 Time: 0911	Current Weather conditions:	SUNNY	60's	· ·
Sampling Team Present: Mike HAUSE	M/ DOUG HUTCHINSON			
Basin: m -) No	de: ppm 107	Subbasin	: m)	
Address: 6208 N. ENSIG	s st			

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT				
Describe any flowing or standing water observed in the line?	3-1" CLONING WATER IN LINE. FREIGHT LINKE			
Does river appear to back up to this location? Describe rate/color/odor of flow:	NOT RIGHT NOW OTTALL VIGABLE,			
Are sediments observed in the line?	DINER BROWN SEDIMENT DESCRIED . NOT MACH SEDS GATEND FROM ADDIE INPRENT WATER LEVEL, TO THE INVERT.			
Are sample-able quantities of sediments				
Describe lateral extent of sample-able sediments present in the line:				

SECTION :	2 - SAMPLE COL	LECTION REPORT	Node: AMM 107
Sampling Equipment:	a - in internet the - in internet of the end of the		
Equipment Decontamination process:			
Sample date: Samp	ole time:		
Sample Identification: (IL-XX-NNNNNN-mmy))			
	·		
Sample location:	AN		
(number of feet from node of entry)			
Sample collection technique:	\backslash		
Color of sample:		\	en e
Texture/Particle size:			
Visual or olfactory evidence of contamination:			
Depth of solids in area where sample collected:			
Amount and type of debris:			
Compositing notes:			
	Sample Jars Collec	ted	
If not enough sample to fill all of the jars, then fill	Metals	One 4oz glass jar	
jars in this order:	PAHs/SVOCs	One 4oz glass jar	
	PCBs	One 4oz glass jar	
	TPH (two jars)	Two 4oz glass jars	
	тос	One 4oz glass jar	
Duplicate sample collected?			
Duplicate sample fictitious identification # on COC:			
Samples placed in chilled cooler? Y/N		***************************************	
Samples delivered to lab? Y/N	Lab ID Number:		
Describe any deviations from standard procedures	· · · · · · · · · · · · · · · · · · ·		

	SECTION 3 - PH	IOTOGRAPH LOG	
Photograph Log	In-Pipe sample location		
	Homogenized sample		

ENVIRO	CITY OF PORTLAND DNMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452
	TFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET
Date: 8-1203 Time: 0452	Current Weather conditions: SINNY 60
Sampling Team Present: MJH (リンフィ	
Basin: M Node	: AAM 104 . Subbasin: 4+1
Address: N BASIN 1 N. ENG	SIGN
	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Fromspie WATER is LINE
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	YES DEANLE BROWN SILT.
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	MAJDRITH SEDS DEPOSITED UPSTREAM IL MIL, ALTPOULL TREM ARE DEPOSITED GATENSIVELY
SITE DIAGRAM: Include street intersections/late	erals/MH's/driveways cuts and extent of solids accumulation $\sqrt{2}$
2" WATER 36" S CLOM (S) NO BY	No. BASIN 28 11 oc WATER IN IT 11 oc WATER IN IT 11 oc WATER IN IT 11 oc WATER IN IT 11 oc WATER IN IT N. BASIN N. BASIN 28 5 5 5 5 5 5 5 5 5 5 5 5 5

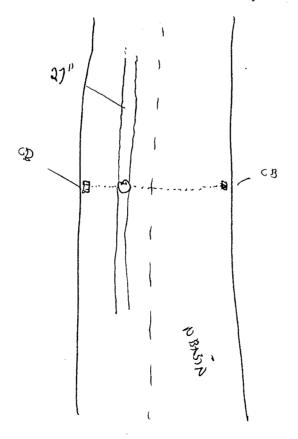
·...,

SEC	TION 2	2 - SAMPLE COL	LECTION REPORT	Node: AAM 101	
Sampling Equipment:	55	SPOONST S	S BULIET	und 💽	
Equipment Decontamination process:	Per 7.01a				
Sample date: 8-12 - 03	Samp	ole time:	158		
Sample Identification: (IL-XX-NNNNN-I	nmyy)	1L - m) - AT	1m104-0803 -	- NE	
Sample location: (number of feet from node of entry)	*	Star upstel	am from Node	•	
Sample collection technique:	55.1	SS BROON USED TO COLLECT SEDIMENT FROM PIPE INTO SS. BULKET. BULKET RUSSED TO SURFACE. SAMPLE NOMOGINIZED AND PZACED INTO SAMPLE JARS			
Color of sample:	823c)	K TU ORANCE			
Texture/Particle size:	VERY SING, HONOR LARGE ALLRETICUS OF HARDENED SEDIMENT			PROBADO SEDIMENT	
Visual or olfactory evidence of contamination:	N			e.	
Depth of solids in area where sample collected:	3,4"				
Amount and type of debris:	NO				
Compositing notes:	Removi	ED , SOUGAL OF TH	E LARVE ACCRETIONS	MAMERIC GUARDAU 10	
		Sample Jars Collec	ted		
If not enough sample to fill all of the jars, t jars in this order:	nen fill	Metals PAHs/SVOCs	One 4oz glass jar One 4oz glass jar	ン ン	
		PCBs	One 4oz glass jar		
		TPH (two jars) TOC	Two 4oz glass jars One 4oz glass jar		
Duplicate sample collected?		· · · · ·	Une 402 glass jai		
Duplicate sample fictitious identification #	on COC.	No			
Samples placed in chilled cooler? Y/N		<u> </u>			
Samples delivered to lab? Y/N		Lab ID Number:	EO 03000		
Describe any deviations from standard pro	cedures:	· · · · · · · · · · · · · · · · · · ·	FO 030809		

	SECTION 3 - PH	IOTOGRAPH LOG
Photograph Log	In-Pipe sample location	\sim
	Homogenized sample	

CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	
LOWER HARBOR OUTFALL SEDIMENT SAMPLING FIELD DATA SHEET	- 1020.001
Date: 8-12-03 Time: 10 4.8 Current Weather conditions: 50 MNY 60	, <u>, , .</u> .
Sampling Team Present: MJU DJH	
Basin: m) Node: AAM 104 Subbasin	: 4+1
Address: N BASIN - N. ENSIGN	
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION	PEPOPT

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	5-LOWING WATER
Does river appear to back up to this location? Describe rate/color/odor of flow:	N Ö
Are sediments observed in the line?	ует
Are sample-able quantities of sediments present in the line?	YES
Describe lateral extent of sample-able sediments present in the line:	DOWN STREAM AT LOSS 20)


ļ

SEC	TION	2 - SAMPLE COL	LECTION REPORT	Node: AAM 104
Sampling Equipment:		SPOONS + 55		104
Equipment Decontamination process:	- ·	r SOP 7,01,		
Sample date: &-12-03		ple time: 1054	`	
Sample Identification: (IL-XX-NNNNNN-r	nmyy)		04 - 0803 - SW	
Sample location: (number of feet from node of entry)	FRO	m o to 20	>' DONNSTREAM OC	NODE.
Sample collection technique:	ss Samf		BUCKET BUCKER RAIS AND DET INTO SAM	
Color of sample:	ß	rown		
Texture/Particle size:	CI	ર્પ્ય		
Visual or olfactory evidence of contamination:	n	01	· ·	
Depth of solids in area where sample collected:	١°)		
Amount and type of debris:		NONE		
Compositing notes:				
	_1	Sample Jars Collec	ted	
If not enough sample to fill all of the jars, then fill jars in this order:		Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	7 7 7 7 7 7
Duplicate sample collected?		NO		-
Duplicate sample fictitious identification # of	on COC:			
Samples placed in chilled cooler? Y/N		Yes		
Samples delivered to lab? Y/N		Lab ID Number: FO 030810		
Describe any deviations from standard pro	cedures	: DOWNO ST	NEAN SAMPLE M	VT ORIGINALLY

	SECTION 3 - PH	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	\sim
	Homogenized sample	

	EN	CITY OF PORTLAND /IRONMENTAL SERV Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	'ICES
LO	WER HARBOI	R OUTFALL SEDIMENT SA FIELD DATA SHEET	MPLING - 1020.001
Date: 8-12-03	Time: 1120	Current Weather conditions:	50400 70 ² 5
Sampling Team Pres	ent: mor Do	77	· · · ·
Basin: m)		Node: PAM 105	Subbasin:
Address: 633	S N APSIN		

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT		
Describe any flowing or standing water observed in the line?	NO	
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO	
Are sediments observed in the line?	NO-LINE is CLEAN	
Are sample-able quantities of sediments present in the line?	NO	
Describe lateral extent of sample-able sediments present in the line:		

ENVIRO	CITY OF PORTLAND DNMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	
	TFALL SEDIMENT SAMPLING FIELD DATA SHEET	- 1020.001
Date:8-12-03 Time: 1157	Current Weather conditions: 5, 89 7	γઌ૽^ϛ .
Sampling Team Present: HEC (HECM)		
Basin: m) Node	AFT&O Subbasin	ר:
Address: 6707 N BA	SIN AVE	
	SAMPLING VISUAL OBSERVATION Ιαρεταφαν - Α επαιε φαρα τζε εφωτειρίε + Ροσει	
Describe any flowing or standing water observed in the line?	DO WA STRUM - 12". OF RO,D - VERY CINEDE	
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO	i.
Are sediments observed in the line?	NO AT LOAST DOWN 2.5' NO ATLEAST 25' UP	
Are sample-able quantities of sediments present in the line?	NO	
Describe lateral extent of sample-able sediments present in the line:	NONE	1
SITE DIAGRAM: Include street intersections/lat	erals/MH's/driveways cuts and extent of solids	accumulation
	Å.	
	36" Dia	
	*0	
	SEDS A SED	5
	2 or From	,
	राक्षर भ	
	N> SOS	

Ĺ

CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N, Burlington Ave., Portland, OR 97203-5452
LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET
Date: 81203 Time: 1320 Current Weather conditions: SUNNY, 754F 5 Mit- 10 M
Sampling Team Present: DOLL HUTCHINSON MIKE HAUSOR
Basin: M1 Node: AA 3 831 Subbasin: 3
Address: 6936 N. FATHOM
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?
Does river appear to back up to this location? PNO Describe rate/color/odor of flow: PETROLLUN -LIKE Operal SLIGHT SHOP
Describe rate/color/odor of flow: PERPLEUN ~LIKE GDER SLIGHT SHEEN Are sediments observed in the line? YES, ~C" DEEP
Are sample-able quantities of sediments YES, C"
Describe lateral extent of sample-able "AS FAR AS CAN SEE" = AF LEAST sediments present in the line: 30' UP + Dow, J FROM NODE
SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation FREIGHTLINEK
AASES 1
m.H.
SEDIMENT SEDIMENT
30 UP + DOWP
30 01 1 0 1
) (Freque Mill.

SEC	TION 2 - SAMPLE COLLECTION REPORT
Sampling Equipment:	S.S. BUCKET + S.S. BOWL
Equipment Decontamination process:	PER SOP 7.01A
Sample date: 8/12/03	Sample time: 1345
Sample Identification: (IL-XX-NNNNN-m	ITL-M1-AAJ831-0803
Sample location: (number of feet from node of entry)	\$ IN MH CHAMBER
Sample collection technique:	S.S. SPON
Color of sample:	BLACK W/ COLDEDD PAINT CHIPS
Texture/Particle size:	MOSTLY F. SAND (WELL-GRADD) WI SOME PAINE CHIPS + SI
Visual or olfactory evidence of contamination:	YES, ATOROLARDON LIVE OPOR, SLIGHT
Depth of solids in area where sample collected:	C"
Amount and type of debris:	SCREWS, BOLTS, PAINT CHIPS, BCC. GRAVEZ
Compositing notes:	COLLECTED DUPE HERE
	Sample Jars Collected G SAMPLE G DURE
If not enough sample to fill all of the jars, th ars in this order:	
Duplicate sample collected?	YES FO 030815
Duplicate sample fictitious identification # o	n COC: 1L-M1 - XXY101-0803 30815
Samples placed in chilled cooler?	
Samples delivered to lab?	Lab ID Number: FO 030811
Describe any deviations from standard proc	redures: NONE

	SECTION 3 - PH	IOTOGRAPH LOG
Photograph Log	In-Pipe sample location	YES
	Homogenized sample	YES

ENVIRO	CITY OF PORTLAND DNMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	
	TFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET	
Date: 8 12 03 Time: 1410	Current Weather conditions: SUNNY 50, CA	t LM
Sampling Team Present: DOUG HUTCH	with how with	. <u> </u>
	: AAS 993 973 Subbasin: 1	20.000
SECTION 1 - DRE	SAMPLING VISUAL OBSERVATION REPORT	
Describe any flowing or standing water observed in the line?	18" IN FROM EAST = 0.5" CLEAR FLOW 36" IN FROM WW = 0.5" PRAY TURES FLOW	
Does river appear to back up to this location? Describe rate/color/odor of flow:	L)/A	
Are sediments observed in the line?	YES = 1" IN 54" OUTLES, NONE IN 30" LAN 48" = FILM ONLY IN CRUSTS ABOVE WA	Red D-n
Are sample-able quantities of sediments present in the line?		
Describe lateral extent of sample-able sediments present in the line:	1" IN 54", NONE IN 30" LATERAL 48" = FILM ONLY UNDER WATER W/ CRUS-	. A.G. 155
SITE DIAGRAM: Include street intersections/late	erals/MH's/driveways cuts and extent of solids accumulation	WARZ
TURBID O.S"	HASQQ3+ + + + + + + + + + + + + + + + + + +	

N FLICILLE

,

Page 1 of 2

	214 933
SEC	TION 2 - SAMPLE COLLECTION REPORT
Sampling Equipment:	S.S. BUCKER + SPOQL
Equipment Decontamination process:	PER SOP 7.01A
Sample date: 81203	Sample time: 1440
Sample Identification: (IL-XX-NNNNNN-m	myy) 1L-XX-AAJ993-0803
Sample location:	0-10 DOWN
(number of feet from node of entry)	
Sample collection technique:	S.S. SPOON
Color of sample:	ORMUSE - RROWL
Texture/Particle size:	ORANGE - BROWN SILT SIZED + SMALLED FILM LIKE SEDIMATE
Visual or olfactory evidence of contamination:	NQUE
Depth of solids in area where sample collected:	1" TO FILM (NODE TO 10' DOWNS)
Amount and type of debris:	B ONLY DRIED FILM CRUST (NOSE)
Compositing notes:	USED ALL MATORIAL
	Sample Jars Collected
If not enough sample to fill all of the jars, th	en fill Metals One 4oz glass jar
jars in this order:	PAHs/SVOCs One 4oz glass jar
	PCBs One 4oz glass jar V
	TPH (two jars) Two 4oz glass jars
	TOC One 4oz glass jar
Duplicate sample collected?	NO,
Duplicate sample fictitious identification # of	$n \operatorname{COC}: \mathbf{N} \mathbf{A}$
Samples placed in chilled cooler?	
Samples delivered to lab?	Lab ID Number: FO 030812
Describe any deviations from standard proc	

+

	SECTION 3 - I	PHOTOGRAPH LOG	
Photograph Log	In-Pipe sample location		, , , , , , , , , , , , , , , , , , ,
	Homogenized sample	V	· · ·
		nie z zana od za na od miest i klub i potrzeni klub z za od obywa po za za za za od za na od klub potrzeckiej Na od klub i potrzeni klub i potrzeni klub i potrzeni klub i potrzeni potrzeni potrzeni potrzeni potrzeni klub i	n a fan fan fan de genere fer fan in de fan in de fan d

CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452
LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET
Date: 8-20-03 Time: 1936 Current Weather conditions: געועאיז אלא איז איז איז איז איז איז איז איז איז אי
Sampling Team Present: mJH/MAC) JJM/ AC
Basin: 18 Node: ANT 537 (AAT537) Subbasin:
Address: CUNDERSON
Describe any flowing or standing water
observed in the line?
Does river appear to back up to this location?
Are sediments observed in the line? Wes. At Join of 70+72" LINES
Are sample-able quantities of sediments YES present in the line?
Describe lateral extent of sample-able SEDS OBSERVED JUST AT THE JOIN, P44 LINES NEE sediments present in the line:
SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation
CUNDERSON BUILDING
PARMINIC LOT NO
- 70"
CRONT WE
ATT 537
- CONCRETE PLUG
Page 1 of 2

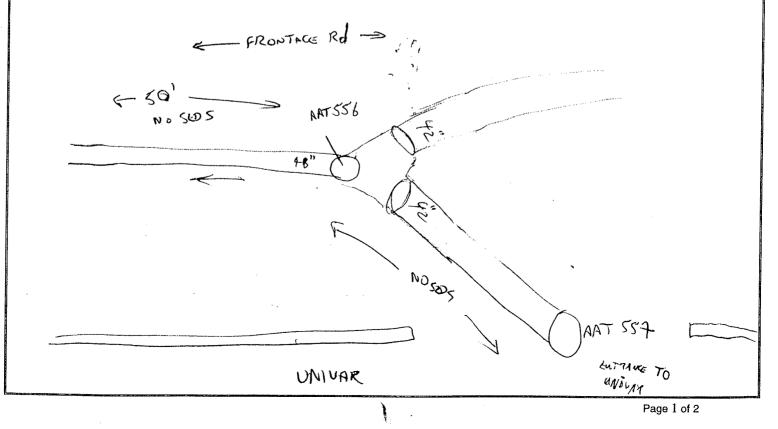
SEC1	ION 2	- SAMPLE COL	LECTION REPORT	Node: XXX	7537
Sampling Equipment:	STAINLESS STEEL STORN + BOW)				
Equipment Decontamination process:	Per	50P 7.010			
Sample date: 8-20-03	Sampl	e time:) ¶ : 4	45		
Sample Identification: (IL-XX-NNNNNN-mi	myy) Ja	L-18-AATS37	-0803		
Sample location:	M	VIDE OF GNTR	- CONFLUENCE O	∈ 72" f	SPE AND
(number of feet from node of entry)	i	PIPE			
Sample collection technique:	SEDIMENT SPOONED INTO BULLET. BULLET BROUGHT TO SWEGALE SAMPLE DOMOGINIZED AND PUT INTO LAS SUPPLIED CONTAINERS				
Color of sample:	BLA	EIL			
Texture/Particle size:	SAN	\$			
Visual or olfactory evidence of contamination:	NO	,			
Depth of solids in area where sample collected:)''				
Amount and type of debris:	-				
Compositing notes:	~				
		Sample Jars Collec	ted		
If not enough sample to fill all of the jars, the	en fill	Metals	One 4oz glass jar	7	
jars in this order:		PAHs/SVOCs	One 4oz glass jar	->	
		PCBs	One 4oz glass jar	- s	
		TPH (two jars)	Two 4oz glass jars	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
		тос	One 4oz glass jar	12	ļ
Duplicate sample collected?		No			
Duplicate sample fictitious identification # o	n COC:				
Samples placed in chilled cooler? 🕅 N					
Samples delivered to lab?		Lab ID Number:	FO 030838	·····	
Describe any deviations from standard proc	edures:				

	SECTION 3 - PHOTOGRAPH LOG
Photograph Log	In-Pipe sample location
	Homogenized sample

City of Portland Environmental Services

DAILY FIELD REPORT

K


	Page of
Project LOWER PARISON COTFALL SED SAMPLING	Project No. 1020.001
Location Besin 18	Date 8-20-03
Subject <u>GIGD NOTES</u>	By777
18:00 LADVE UPCL	
1830 MET DAVE LACEN AT KITTRIDGE	BRIDIE + PROLED TO
SAMPLING SITZE	
1900 SET UP TRASFIC LOWTROL + LANE L	LOSURE TO CAIN NELLESS
TO BRATE MODE.	
1900 GO DOWN ANT 537. I ORSERVE	A LARKE 70" PIPE.
DEM. Some BROWN STLINED AROS	FROM GW SELF,
THE PIPE HAS BEEN COMPLETELY	EMENTED SHUT UTSTELAM
OF NODE. THE ENTIRE 70' PIPE	is BLOULED.
to DOWN STREAM AS FAR AS POSS & BUE, MINKS	2 Sens. Pire is mon. Theres
PRE THE LATERALS COMINING INTO -	This NODE PARALLEL TO
FRONT AVE.	· · · · · · · · · · · · · · · · · · ·
AND DISCOVERS MY DOWN STREAM.	DECIDE TO TAKE A LOOK
DOWN THAT.	
1940 NO NODE NUMBER FOR TUSS DUNN STRAM	MA. IT IS IN THE
LUNDLRSON P-LOT.	
GNOR NOTE: IT is THE CONTINUATION	OF THE 70" PINE, LOOK
DOWN STREAM AND ONE I CAN SEE	THE ONTFALL DAYLIGHT
AT THIS NODE THERE IS A 72"	PIPE COMING IN FROM
THE SIDE THERE I' of GW	PLOW IN It. SEDIMENTS
OBSORVED OF CONFLUENCE, NO	SDIMETS GOSERVED ANY
with ase,	
SAMPLED 'En SEE FOS FOR DET	20105
Attachments	

ţ

	EN	CITY OF PORTLAN VIRONMENTAL S Water Pollution control Labor 6543 N. Burlington Ave Portland, OR 97203-545	SERVICES	
LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET				
Date: 8-19-03	Time: OY2=	Current Weather cond	itions: PACTIALLY CLOUTY	
Sampling Team Present: mJ) DAC MKS				
Basin: 18		Node: AAT 556	Subbasin: 3 (T.	1 aren)
Address: 3950	NEN YEON	1.		

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT		
Describe any flowing or standing water observed in the line?	its 3" OC FLOWING WATER AT AA	
Does river appear to back up to this location? Describe rate/color/odor of flow:	би	
Are sediments observed in the line?	YES	
Are sample-able quantities of sediments present in the line?	NO - MINOR SIED THAT MAY WINATER	
Describe lateral extent of sample-able sediments present in the line:	A.	

THIS MPINE DIAGRAM DOES NOT MATCH OUR MOPS. WE OBSCRUD ANTSSE DIRECTLY CONNECTED TO APT 557.

SECTIC	N 2 - SAMPLE COL	LECTION REPORT	Node: ANT SJY
Sampling Equipment:		adende et derroter	
Equipment Decontamination process:			
Sample date: S	ample time:		
Sample Identification: (IL-XX-NNNNNN-mmy	/)		
Sample location: (number of feet from node of entry)		· ,	
Sample collection technique:			· ·
Color of sample:			
Texture/Particle size:			
Visual or olfactory evidence of contamination:		·	
Depth of solids in area where sample collected:			
Amount and type of debris:		\ \	
Compositing notes:			
	Sample Jars Collec	sted	
If not enough sample to fill all of the jars, then fi jars in this order:	Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jars	
Duplicate sample collected?		\	
Duplicate sample fictitious identification # on CO	DC:		
Samples placed in chilled cooler? Y/N			
Samples delivered to lab? Y/N	Lab ID Number:		
Describe any deviations from standard procedu	res:		

s.:

	SECTION 3 - PHO	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

ENVIR	CITY OF PORTLAND ONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	
	JTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET	
Date: g~19~03 Time: (0/0	Current Weather conditions: SUNNY 70'S	
Sampling Team Present: msh mks D	201111 703	
Basin: 18 Node	· · · · · · · · · · · · · · · · · · ·	
Address: 3950 NW YEC		
CECTION 4 DDE		
SECTION 1 - PRE- Describe any flowing or standing water	-SAMPLING VISUAL OBSERVATION REPORT	
observed in the line?	2" FLOWING WATER	
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO	· ,
Are sediments observed in the line?	Yes	
Are sample-able quantities of sediments present in the line?	YES	
Describe lateral extent of sample-able sediments present in the line:		M AATSS) AL EXTENT
SITE DIAGRAM: Include street intersections/lat	terals/MH's/driveways cuts and extent of solids accumulation	
Nb	W YEON	
	FRONTAGE RU	
PAT 556		
	priss7	
	UNIVAR I SAMPHE COLLECTED	S Here
	Page 1 c	of 2

SEC	TION 2 - SAMPLE COLLECTION REPORT	
Sampling Equipment:	35 SPOON + SS BOW	
Equipment Decontamination process:	PER SOP 7.01a	
Sample date: g-19-03	Sample time: 1020	
Sample Identification: (IL-XX-NNNNNN-n	12-18-ART557-0803	
Sample location: (number of feet from node of entry)	EDINIENT SPELF OBSERVED 10' UP FROM NODE ON SIDE OF PIPE.	
Sample collection technique:	A 16" x 9" CIJUNIX WAS BROXEN OCH AND BRONCHT TO SUREACE ACTUA OBSORVATION, CUNNX WAS DOMOGNIZED IN SS BOW AND PLACED IN LAS SURVICE SAMPLE JAXS.	
Color of sample:	68427	
Texture/Particle size:	MINE CLAY	
Visual or olfactory evidence of contamination:	No	
Depth of solids in area where sample collected:	B" SAMPLE FOUND ON SIDE QU PIPLE B" NO SEDS AT INVERT	
Amount and type of debris:	-	
Compositing notes:		
	Sample Jars Collected	
If not enough sample to fill all of the jars, th jars in this order:		
Duplicate sample collected?	No	
Duplicate sample fictitious identification # c		
Samples placed in chilled cooler?		
Samples delivered to lab?	Lab ID Number: FO 030833	
Describe any deviations from standard pro	cedures: SAMPLE WAS A SOLID CHUNK FOUND ON SIDE OF PIPE	

	SECTION 3 - PH	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

CITY OF PORTLAND ENVIRONMENTAL SERVICES Vater Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452 LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET Current Weather conditions: Sunny, 705 Date: 5/19/03 Time: Sampling Team Present: MTH MKS 9-1MKS4/25 Subbasin: UNK. NOT LISTED IN SAP. Basin: OF Node: 18 4033 Address: enn SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Describe any flowing or standing water ~ 1" of floring water observed in the line? Does river appear to back up to this location? No Describe rate/color/odor of flow: Upstream; Up about 80, then sand layer about Are sediments observed in the line? Are sample-able quantities of sediments YCS => 1/2 - 1" deep present in the line? 50-80.4 upstream of NH Describe lateral extent of sample-able sediments present in the line: SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation K-N Million Ave Frontage Road AAT465 I3"aide 48" \$0 SAMPLE Collected INECC Amenican Steel

SEC	TION 2	- SAMPLE COI	LECTION REPORT	Node: AAT46	5
Sampling Equipment:	Sł	Stainless steel bucket is spoon			
Equipment Decontamination process:	Se	e 50P 7	.0(a		
Sample date: 8-14-03	Samp	ole time: 1136			
Sample Identification: (IL-XX-NNNNN-r	nmyy)	12-18-A	E_080_21474		
Sample location: (number of feet from node of entry)	60-4	80 ft. up	stream		
Sample collection technique:		SPOONT SS FLE ROMOCINIZ	, TOXOLS CMA BJADSVL TA CO:	AJT in LAS SUPPLIE	, 915
Color of sample:	F	Hack-			
Texture/Particle size:	FI	he, poorly	graded sand i	with no sich	
Visual or olfactory evidence of contamination:	NO-no sheen or odor				
Depth of solids in area where sample collected:	1/2"				
Amount and type of debris:	Feu	, metal shar	ngs		
Compositing notes:		<u> </u>		······	
······································	- I	Sample Jars Collec	ted		
If not enough sample to fill all of the jars, th	on fill	Metals	One 4oz glass jar		
jars in this order:		PAHs/SVOCs	One 4oz glass jar		
		PCBs	One 4oz glass jar		
		TPH (two jars)	Two 4oz glass jars	64	
		тос	One 4oz glass jar	<i>`</i>	
Duplicate sample collected?		NO	•		
Duplicate sample fictitious identification # o	on COC:				
Samples placed in chilled cooler					
Samples delivered to lab?		Lab ID Number:	FO \$ 030834		
Describe any deviations from standard pro	cedures:			· · · · · · · · · · · · · · · · · · ·	

	Homogenized sample	
Photograph Log	In-Pipe sample location	
	SECTION 3 - PHO	OTOGRAPH LOG

CITY OF PORTLAND ENVIRONMENTAL SERVICES Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452					
LOWER HARBOR OUTFALL SEDIMENT SAMPLING - 1020.001 FIELD DATA SHEET					
Date: 8-19-03	Time: 1313	Current Weather conditions: 5v	NNN 70'S		
Sampling Team Present: Dxc, MKS, MJH					
Basin: 18	Node	e: ANT 558	Subbasin: UNK NOT LIS	TED IN SLP	
Address: 390	O NW YEON				

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT				
Describe any flowing or standing water observed in the line?	MINIMA FLOW			
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO			
Are sediments observed in the line?	YES 20'DOWN FROM ANTSS.			
Are sample-able quantities of sediments present in the line?	YES			
Describe lateral extent of sample-able sediments present in the line:	20' DOWN GROM ARTSSE IS A 6'LENS OF SANDY SEDS,			

NW YEON

LISOIN 30" 36" K NAT 558 J0, FRONTACE Rd. SAMPLE (allected MERE ORDEN LIND SCHPED 49294

SEC	FION 2	- SAMPLE COI	LECTION REPORT	Node: ANT 558	
Sampling Equipment:	SS SPOON + BS BOW				
Equipment Decontamination process:	Pr SOP 7.012				
Sample date: & -19-03	Samp	le time: 13: 2	5	· · · · · · · · · · · · · · · · · · ·	
Sample Identification: (IL-XX-NNNNN-m	myy)	1L-18-ANT	558-0803		
Sample location: (number of feet from node of entry)	20) DONN			
Sample collection technique:	SSP SAMA LAR	DUN LUS TO DUE BROUGHT TO SUPPLIED JAC	collect sed into S. S. REACE, COM POSITED	AND PUT INTO	
Color of sample:	1	DARIN GRAM			
Texture/Particle size:	42	NDY			
Visual or olfactory evidence of contamination:	NO, no sheen				
Depth of solids in area where sample collected:) ⁿ				
Amount and type of debris:	N	Э			
Compositing notes:		• · · · · · · · · · · · · · · · · · · ·			
		Sample Jars Collec	cted		
If not enough sample to fill all of the jars, then fill jars in this order:		Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Duplicate sample collected?		No			
Duplicate sample fictitious identification # or	n COC:		· · · · · · · · · · · · · · · · · · ·		
Samples placed in chilled cooler? \Im N		~ 755			
Samples delivered to lab?	•	Lab ID Number: 60030 \$35			
Describe any deviations from standard proc	edures:				

	SECTION 3 - PHO	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

	·			
	ENVIR	CITY OF PORTLAND ONMENTAL SEF Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452	RVICES	
LOWER	HARBOR OL	JTFALL SEDIMENT S FIELD DATA SHEET	AMPLING - 1020.001	
	1824	Current Weather conditions:	SUNNY 80'S	
Sampling Team Present: N	TH)MKS) D	次で	· · · · · · · · · · · · · · · · · · ·	
Basin: 18	Node	ANT 463	Subbasin: 1	
Address:				
SEC	TION 1 - PRE	-SAMPLING VISUAL OB	SERVATION REPORT	
Describe any flowing or stan observed in the line?		6" OL STADDING LA		
Does river appear to back u Describe rate/color/odor of fl		NO NO		
Are sediments observed in th	e line?	Les 20-73 test Do	ww 1/2-2" DERP, w	NTV2 10" DOST
Are sample-able quantitie present in the line?	es of sediments	Yas		
Describe lateral extent sediments present in the line		FROM 25 DOWN TO A	TRAST 1001 DOWN	
	eet intersections/la אר שצטניד גו גער גע	terals/MH's/driveways cuts and NMEM Stymple culleded Have Ko"in Ko"in	d extent of solids accumulation (a) $fred(g') Dia$	

ł

NW Yean ---

SEC	TION 2	2 - SAMPLE CO	LLECTION REPORT	Node: NNT 463		
Sampling Equipment:	555	SS SPOON 7 BOW)				
Equipment Decontamination process:	Pe	- SOP 7.C	la			
Sample date: &-19-03	1	ple time: 1 & 3				
Sample Identification: (IL-XX-NNNNNN-r	nmyy)	12-18-AF	17463-0803			
Sample location: (number of feet from node of entry)	FROM	30-3312	ってて			
Sample collection technique:		in NRO , + Por	BUCHET RASED TO	3-RDACE SAMPLE		
Color of sample:	BL	XX				
Texture/Particle size:	SAI	\mathcal{D}				
Visual or olfactory evidence of contamination:	NO					
Depth of solids in area where sample collected:	12-2"					
Amount and type of debris:	St.	NÐ				
Compositing notes:		>		- · · · · · · · · · · · · · · · · · · ·		
		Sample Jars Colle	cted			
If not enough sample to fill all of the jars, then fill jars in this order:		Metals PAHs/SVOCs PCBs TPH (two jars) TOC	One 4oz glass jar One 4oz glass jar One 4oz glass jar Two 4oz glass jars One 4oz glass jar	2 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9		
Duplicate sample collected?		NO				
Duplicate sample fictitious identification # of	on COC:					
Samples placed in chilled cooler?				·····		
Samples delivered to lab? Y/N		Lab ID Number:	FO 030 836			
Describe any deviations from standard pro	Describe any deviations from standard procedures:					

	SECTION 3 - PHO	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

.

City of Portland Environmental Services

DAILY FIELD REPORT

Page _____ of ____ 2 Project Lower HANBOUR OUTFull Sechinent Sampling Project No. 1020,00) Location Basin 18 - Day 2 Date 8-20-03 Subject Field Notes By______MJH 8:30 Pry at WPCL, Proceed to NW YEON. 100 Meet Dave Lincen UL CHAMHIII M NWYEON. WE DECIDE CLIECK OUT TO THE NODE JUST WEST 02 716 GNTRANOS TO BN. 6940 SET & TRAFFIC CONTROL DAL ENTERS MU TO INSPECT, THESE ARE THE FINDINGS O THIS NODE IN THE REGITIND AND NORTH OF NW YEON WEST OF GUTAKE TO BU IS THE CONFLUENCE OF THE LINE TO THE THE FRONTACE NOLD IND EPST TINT Comes DOWN THE LINE COMING OUT OF THE SOUTH OF INTUSTRY TO THE NW YEON. (This is IN A DISCENDUT LOCATION THAN MADVIDU MAP SUDUS) 「わま 0 かる Del LINE LOMINC FROM TUS WEST DOWN THIS NW YEON NODE 464 NT TOPT NODE . Tins is ALSO DISCOUTES. 1) -TDE STAR DANN LINE SHOWN ON SIDE OF NORTI NIN YEAR IS ACTUALLY ON THE SOUTH This UNE DITADS AS GAR WAT IS BOPRESS NOE. Tris WAS CONFIGMOR 110 LOCATED PAT 453 SET W TRACCIC CONTROL. and Theax is SOUTON IN TONS 500 LOCATION. Ser EDS DETNILS Attachments

ENVIR	CITY OF PORTLAND	CES					
	Water Pollution control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452						
	TFALL SEDIMENT SAM	PLING - 1020.001					
Date: 8 - 20 - 03 Time: 1123	Current Weather conditions: S_U	NNY 70's					
Sampling Team Present: MJH/DAC) JJ	Ĩ						
Basin: 18 Node	: AAT 453	Subbasin:					
Address: 4155 NW YEON							
SECTION 1 - PRE-	SAMPLING VISUAL OBSER	VATION REPORT					
Describe any flowing or standing water observed in the line?	NONE						
Does river appear to back up to this location? Describe rate/color/odor of flow:	NO						
Are sediments observed in the line?	YES - MOSTLY UPSTREAM						

3' UPSTREAM

NW GON

YES

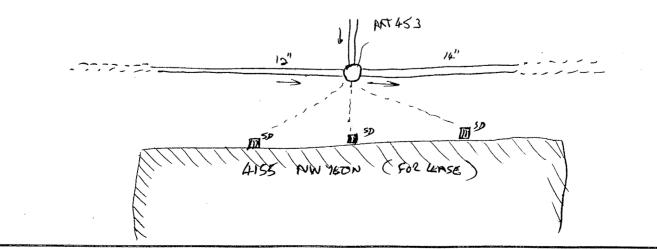
ATLLAST

SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts and extent of solids accumulation

sediments

sample-able

Are sample-able quantities of present in the line?


extent

of

lateral

sediments present in the line:

Describe

SEC	FION 2	- SAMPLE COL	LECTION REPORT	Node: AAT 453	
Sampling Equipment:	STAINLESS STELL SPOON + SS BUCKET				
Equipment Decontamination process:	PET	r 50P 7.01a			
Sample date: 8 - 20 - 03	Samp	le time: () 4 C	>		
Sample Identification: (IL-XX-NNNNN-m	myy)	11-18 - AAT	453-0803		
Sample location:	Dire	IL' UPSTREAM P	NOM NODE		
(number of feet from node of entry)					
Sample collection technique:	TO S		NON INT PUT INTO BU RED INTO PIKED INTO	ULET, BUCKET, BROUGIT D LAB SUPPLIED	
Color of sample:	Dor	K BROWN			
Texture/Particle size:	SAN	DY GRAVEL	wary		
Visual or olfactory evidence of contamination:	SLIGHI PETROLEVM ODOR				
Depth of solids in area where sample collected:	1'	•			
Amount and type of debris:					
Compositing notes:					
		Sample Jars Colled	cted		
If not enough sample to fill all of the jars, the	on fill	Metals	One 4oz glass jar	1	
jars in this order:		PAHs/SVOCs	One 4oz glass jar	7	
		PCBs	One 4oz glass jar	~	
		TPH (two jars)	Two 4oz glass jars	22	
		тос	One 4oz glass jar	2	
Duplicate sample collected?		- ND	l		
Duplicate sample fictitious identification # or	n COC:				
Samples placed in chilled cooler		·			
Samples delivered to lab?		Lab ID Number:	FO 030837		
Describe any deviations from standard proc	edures:		, , , , , , , , , , , , , , , , , , , ,		
		1			

	SECTION 3 - PH	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	7

CITY OF PORTLAND				
ENVIRONMENTAL SE	RVICES			
Water Pollution control Laboratory 6543 N. Burlington Ave.,				
Portland, OR 97203-5452				
LOWER HARBOR OUTFALL SEDIMENT FIELD DATA SHEE				
Date: 8-20-03 Time: 1936 Current Weather conditions	SUNNY JO'S			
Sampling Team Present: moth/mac) JTm/ AC				
Basin: 18 Node: ANT 534	Subbasin:			
Address: CUNDERSON				
SECTION 1 - PRE-SAMPLING VISUAL O				
	rest =			
Does river appear to back up to this location?				
Are sediments observed in the line?	45. AT JON OC 70+72" LINES			
Are sample-able quantities of sediments				
Describe lateral extent of sample-able Sens or BSGRVED JVS sediments present in the line:	T AT THE JOIN, ALL LINES ARE			
SITE DIAGRAM: Include street intersections/laterals/MH's/driveways cuts ar	nd extent of solids accumulation			
CUNDERSAN BUILDING	st#			
CUNDERSON BUILDING				
Spripter a	COLLETTED PERE			
PREMINIC LOT NO				
- 70"				
	CRONT WE			
AT 537				
- CONCRETE	RUC			
	Page 1 of 2			

.

SEC	TION 2	- SAMPLE COL	LECTION REPORT	Node: NAT 537	
Sampling Equipment:	STAINESS STEEL SPORN + BOW)				
Equipment Decontamination process:		50P 7.010			
Sample date: 8-20-03	Sample time:) 9 : 4-5				
Sample Identification: (IL-XX-NNNNN-	nmyy)	L-18-AATS37	J-0803		
Sample location:	AT MODE OF GUTRY - CONFLUENCE OF 72" POPE AND				
(number of feet from node of entry)		70' PIPE			
Sample collection technique:	SEDIMENT SPOOND INTO BULLET. BULLET BUDGET TO SWEGALE BAMPLE DOMOGINIZED AND PUT INTO LAS SUPPLIED CONTAINERS				
Color of sample:		BLRIC			
Texture/Particle size:	SAN	SAND			
Visual or olfactory evidence of contamination:	NO)	· · · · · · · · · · · · · · · · · · ·		
Depth of solids in area where sample collected:)")"			
Amount and type of debris:	nount and type of debris:		•		
Compositing notes:	Compositing notes: ~				
· · · · · · · · · · · · · · · · · · ·		Sample Jars Collec	cted		
If not enough sample to fill all of the jars, then fill		Metals .	One 4oz glass jar	7	
jars in this order:	PAHs/SVOCs	One 4oz glass jar	2		
	PCBs	One 4oz glass jar	`		
		TPH (two jars)	Two 4oz glass jars	44	
		тос	One 4oz glass jar	2	
Duplicate sample collected?		No			
Duplicate sample fictitious identification #	~~~~				
Samples placed in chilled cooler? 🖗N					
Samples delivered to lab?		Lab ID Number: FO 030838			
Describe any deviations from standard pro	cedures:		<u>_</u>		

. ··

	SECTION 3 - PHO	OTOGRAPH LOG
Photograph Log	In-Pipe sample location	
	Homogenized sample	

APPENDIX B Field Notes

LEVEL

All-Weather Maxi-Spiral No. 313-MX

Portland BES - Source Control	
Portland OR	
[H2M HILL (503) 235-5000	
August 12,2003-	

8-12-03 IN live Sampling 900 ON site D. LACEY, Dawn Sonders /BES, Doog Hudrense /BES Objection : Collect In live servicent samples Dostly : Jany 70°F 905 Start Sample Collection at AAM 107 Sewer Diageon No sample collected Sewer Observations. - A small latural carties into the line diretly at the Manhole, approximathe 12" diameter " A medium 36" line enters the main lie approximally 20-feel from the man AAM 107 Flow in the line is approximally 2" dopt and 18" wide approuly 10 gpm to 15 gpm No soills were asserved before the upper. A film was observed above the present water line. This film was an orsuge brown iron oxide color. Field Crew collected a small sample by scrapping the side of the pipe. The sample was Bot of 80% growed. 20% fixes. The fixes at appeared to be from biological activity. Fines are not sitter did Not appeare to be sills or clay

8-12-03 IN-Line Sampling - BES 945 Moved to sample location AAM104 Site Diagram E E 7 36 C 6 Saving Sewer line ENSich ADMOH- HE C E Sample AAM04-SW C 24 20 River E E đ Flow flow from pipe & and @ the majority from B. E Observations - A " layer of arrange brown iver axile color material E located at the bottom of the line (undy 2" to of flowing water). đ The pipe laws out approved by 6-feet from the monhols. Sectiment was abserved up to 3' depthe doep Æ in the targe farred pipe. After the pipe cerams to Œ 57 diamety little sediment was observed. Œ Sample Collected AAmod NE Benioth the lighter sites is a layer of statitical motheral the Œ material is soll, casaly broken apart, orange/brown. The material Œ oppears to be the result of accument ties and deposition of the a lighter nuterial. This material was not harge pieces of This material was not cottected removed from the sample Œ Sample abservations. Œ - A tarit, discontinous sheen was observed on the pore water Œ in the sample bucht Œ - (SILT Like), Orange brown, Wet, Allemorars "4 to 1" worms. Sample Location 0-6 Feat NE of AAMOY Œ a S

8-12-03 BEST In Line Sampling Collected sample from pip @ Sa AAM 04-SW 1040 This sample was an oper kunidy sample colleccited because No sampt was collected at AAM 007. It will not be submitted it to the lab it successful samples are collected AAJ810 & AAM105. SAMPI location - 0 to 20 fort SW of AAMOY. SAMPO Observations: (SILT LIKe), Orange brown, Wet, 5%. SAND. The sample was collected from a slight depression which initally appeared to be sand how ever the sand was only a this layer at the start of the depression , AAMOU Note Observa flow Summary Consvergance of & pipes NE, NW, SE, SW Plow at 10gram NE Flow at Sgpm NW 0-6 Up to 3/4" sochant from 0-20 feat in NE pipe Upto " sedin from 0-20 in Se pipe Flow at 15 gpm 500 Flow at O gran SE No sedient observed in NW - SE pipe Samples collected at AAMOH-SW and AAMOH-NE Mobilized to AAM 105 1110 Nocle Diagnam Basin AAMIOS 0-- -A Am 104 \$ Coten Basen North

8-12-03 In Line Samplorg Node AAMIOS Observations. - Pipe masal at 24" Sample car only be collected within arms reade of the Nocle. No sectional obsent in pipe Two small &" inch pipes ander at the work from catch bezins on other side of the read, Bottom of pipe wat but no standing water Orange / brown station approximatly 2" with how ever No sediment. No other ladera's observed. Doug looked with a Mach light and wall I soce at approximily 20-les upstream Q and down stream Œ No sample collected 0 1140 Mepilice to AD BIO Catch Basin Node Dingram Basin Street Æ Œ AAL 810 AAMION Node Observations Pipe measured to 37". Doing easter to feet inthe the down stream. Morement is deflicatt. 25-feed upstream E Pipe measured No sediment. No film, box tex i Flow & Sypon, clear E " hime is very clean. No Sample collected OFF Site for lunch 1210

8-12-03 For Line Sampling 1300 Mobolizo to AAS831 North Freight Line N AAS 829 Sample F AA1831 个` < Rim AA1831 Vole Observation · Flow - 3/4" of water above sectiment = 5 gpm 6 of sediment which extends at least 20-feel both upstream and clower stream Sectiment appears to be sand with miss laware de pris includry pieces of plastic, metal (washer), paint chips. No sin pipes ascend. Sample was collect at wade loss tion. Field year did not jo up the line. During sample collection a petroleum oder and show was observed. Sample was collected with stainless shoul should No other sampling device was avrible 1355 Sample AAS 831 and duplicate SAND. S.B. Dark gray, West, Median to Fine grain, SP Slight petrolum odor. Sheen absend on at sewer water during collection but Not ou Sampla Lots of ded depris plain chips 1%. Small and 6" depth of sediment sampled. 1400 Mobilice to AAS 933

8-12-03 IN Line SAMp/Kg AASP33 Node Observations Two pipes owter at this woode a 48" From the NE which is shown one the map. A 30" from the North which 6 is Not shown any the map. C · Flow in from the 48" was appropriaty Sgpm. "s" of flow. to water that a slight organ prouver toat. was clear. 6 · Flow in from the 30' was approximatly Sypon to of Slow. 6 The water was cloudy without color " slightly gray. 6 · A thin film of organ/prown sitt like ustand was abound in the 48" pipe. It was not third enough to 0 SAmple. It was similar to AAM 107. Did wat enter pipe 6 . Not No solids were observed in the 30" pipe. Ø Did Not enter the pip -· Flow out from the 54" pipe was appropriatly 10 gpm. 0 and slightly cloudy 0 · Sectional in the 54" was in sapp and ngom formal a Colleviel AAJ933 Œ · Location 0-10 feet downstream of Wale • (Silt &like), Orrange/Brown (Iron Oxide color), Wet, Very e Ð Soft No the sand. · No debris on ola Œ Œ Conten Conversation with Dawn Sanders. Informed her that 1530 No ste sediment was observe observed at ADM/05 æ and AA) 810. Decided to attempt sampling in Œ montholes upstream at inital location. æ Discused with Doig BES. He stated that we will Attempt sample collect tomorrow possedy after bash 18 Œ Samples ble traffic is to bosy today to close Œ Jars on Basin St At this time. E 1535 Œ OFF Site Œ

8-12-03 BES- IN Line Sample Contact & Dawn Sonolos. Decided to attempt Samples at soldition of manholes in Basen MI first thing tomarrow. 1400 Ì

8-13-03 BES- IN Line Sample 900 ON Site : D. LARCY D. Hitchinson Objective : Collect supples in manhales upstrea AAMIOS and AASSIC. Neather: Samary, 70°F. Clam Wind Nocle ANN 144 INtergris Molds 6330 915 Mobilizo 10 AAM144 BASIN Street j 27 6235 Node observations A 12" pipe enters from the North. The pipe and Node below the pipe is moist indicating a potenial past release. No sediment observed in 27" downstream pipe. Bottom of pipe damp. No staining in pipe. No sediment observed in 24" upstream pipe. Bottom of pipe damp. No staining in pipe, Visualy inspected from rode. Size of prope restricted entry. No Cample collected

8-13-03 BES. IN Line Sampling 9:30 Mobilized to AAm 155 SWIFT 275 235 -----Basin Street AAM 144 V Rim 6235 6235 Swaw Island Commerceatur Node Observations: - Standing water in vote entered upser and down stream of Note the area of the manhale and is Approximatly 2" dep. Appeard Sedimut observed in manufile and extend in to the directions for at least 20-fest. The size of the pipes did not allow for access. Extend of sediand based on visual observation from manhole. and is 31/2" deep at the node Sample will be collected from inside the pipe downstream of the manholis, in area with no standing water Sample AAM 155 · Location 0-18" in pipe down stream of woole. bediment appeared to be stained below 1." Black Sediment appeal braces in the upper inch and black belows during collection a sligh retrolow odor observed SAND, EW, Black, Wet, 5% bread up to 3" well rounded. Mediun grain Grand appears to be landscaping rocks. No Sitt. in sample. Mederate sheen observe on pore water. Sheen lightly coveral entine pore water. No odor observe in sample. · Metal depris (for Nuts , washers) obsorid in man hole but not in the SAMple.

8-13-03 BES- IN line Sampline Mobilize to Node AAJ 817 1010 Island Commercal 67210 EZ- AA1 817 Fence Line Fachan UPS Mode descriptions · Flowing water obsored in manhole . Estimated Sym · No sectiment at war hole · Crawled upstream approximily 100-14. No sectionant or other fines entering the main line. · Crewby downstrom approximally 100-44. No sedimit or othe line entering the main line. Two bills and a pipe joint. No Sample Collected. Mobilize to AAS 824 1110 Bacin Street U.S. Coast buard 1P

10

8-13-03 BES- IN Line Sampling Note Observations AAJ829 · Two lives enter ... One line leaves - Flow from NE line (Freight liver Site) + 5 gpm clear Crawed downstream 100-Seet. Small area of Orange/Brown Silt like material approximatly 00-24 at the end of a small lateral, which anders the main live from the South west. The small lateria line does not have any sectionent and is to small to entre. - Can not enter updream line to the North West ble it is to small. No sectiment on flow observed. Did not only apstream line to the Northand. Approximally 5 gpm Now and No sediment was abserved. Contacted Dawn. Devided to collect sample Collected Somple AA 2829 Location BO feet from AAUB29 directly below small beard on the side of the main line Te - Sample Location it 2 Seden A Photograph taken - Soilds appear to be comeing from the the jucture beteen the two lines. Me staining is observed in the small lateral. Soild's appear to be the result of green water flowing through this fucture Soild's similar to the stratified soilds absend at AAMOUNE The sample is orange brown, stratified, moist, Non-cohosine, et crumbles easily. []

8-13-03 BES- IN Line Sampling E **E** 1216 Moblied to Nort marka experies A 143829 Δ^{μ} Did not enter manhole. • ۹. • Not samplable - Minas amount of Scarel Ű. 230 Control Baun Londers, for All Sammery " Intermal her that Doirg will contact her regarding his acadiplity to Seging sampling in Basin 18 E C Œ. 17

8-19-2003 SES- Source Coatrol IN Line Sampling 355 ON Sie D. Lacar, M.D. BES Mike D/BES, Maggy, Dank Neather: 65°F, Cleady, Wind Claim Objective: Collection of soilde from selected locations in BASIN 18. 9:00 Review sampling couling was as specified by Dawn Sander, Mobilize at abole APT 556 American Steel Yeon Love AAT 55 18" 48" 48" Pril Read Tracks Node observations Three small lines enter at the top of the most hole. These lines appear to lend to catch basias as shown about The now live in is a 42" live from the sho Southeast. The main line out is a 48" line to the North west. A small amount of Sand and silt was observed at the Dase of the marchole. However it was not enough to sample. Magen/BES entered the manhole. Down stream - Approximally ?" of flowing water. & An 18" I sediment was observed at the base of the pipe. The seliment external from 0 1. 100' down stream of the man hole. This sectioned was a "Fire silt" (Megan-BES) and could not be received due to the Mousing water. Toward AATSST Upstron Approximity 3" Howing water No sediment Mpstream Toward MAT 558. Did not enter However, No water and no sediment was obsend visually from the MAN hole. No Sample collectod. 13

8-19-2003 BES. Source Control In Line Sampling Mabilized to AAT 557 10:00 Contracted Dawn Sanders The accident seaver line layout is different from the map. It appears that the two lines merge at BAT 556 Not at THAT AT Apr 465 as shown on the city map. Decided to app strengt sample collection at AAT 464 / AAT 465. Note AAT 555 WAS Not observal in the field. A sample will also be attempted at AAT 550. Inivar AAT 557 American Stel AAT 557 (SIDE WALK 1 Park Tracke Node Observation One small line extresut the top of the meable which appears to deain catch basis in an adjacent parking lot **.** . . A 42" pipe entres the annihete from the southwest A 47" pipe exits the marked to the North west which leads to AAT- 556. Approximatly 3" of flowing water was observed. No sediment was obsorred at the merhole or in the clown stream A "shelt" (photo taken) of strakitiand solds was account approximatly half way up the sides of the pipe Sortell stud to the side of the pip 14

8-19-2003 BES- Source Control - Ja line Sampley The "shalf" of soilds was approximally 6" thick, 6" wirds and three feet long A large piece of this shelf " was collected as a sample MAT 557 Sample Collected Samph Observations SILT, (MH), Dry, Gowy (Stratilid with Black, gray and enangen/ Brown (Fe and) layers). No costion or destining observed after addrary water. oder or stationing. 14 No dobriz Mobilize to ADT 491 and ADT 465 1045 Sumerin American Sheet Parking LA Yeon ATHOS TH Spande Looptin AAT 491 Observations Two small lines enter this manhole one drains a street eatch Easter approximity 5.44 away. The other drains a catch Easin in the American steel parting lot one small live (12") exits at this manh he and leads to AAT 465 No water was observed at this Node location No sample was collected

15

8-19-2003 BES- Source Control IN line sampling AAT 465 Observations - Your small lives outer at the top of the man hole and appear to lead to street catch basins in the area, one of the small lines leads to Ast 4191 " 118" line enters the machde from the South West. 3 of Howing water observed. 1-inch thill layer of same observe approximatly Bofet upstream of the monthsh No lives extend the main line a the up stream or decen stream. Mille encestignter 80-let in both directions. Sample will be collected. Sand board appears matty one inch wide and 12" dipter deep. The sample was called from 80 to 60-tes from the man hale . The band was land at the center of the pipe 136 AAT 465 Cheevertiens No Oda, No shoen SAND (5P), Wet, Black, Fine to Medium grain. Small amout (<11) dive grave. No silt. Many small red Warms in sma sample. Small amount (611.) of small (1mm) metal shavings C C 1240 Mobiling to AAT 558 C Sewer live layout appears to be different then lits maps. Ē MAN holes AAT 558 and AAT 560 are shown to be instort C of Containin Recovery Ine 3900 Year as & shown below Ĉ 3100 Yeon G ---- MT 558 C AAT 560 How every only one was observed in the fields This somether Node lecation is refereded to as AAT 558. It is the first man hole in all of all set C C MAN held up stream of AAT 356. 16

8-19-2003 BES- Source Control In line Sampling 1AT 558 3500 Year AAT 557 AATSSB SAmpl AAT 556 r Tr 1TT Manhale Observations Three small know on ter at the top of this mouthole which appear to desire throw catch bagins in the area from the shoet the flowing on standing and and at manhole a 4/9pm No spliment at manihole. One # 36" pipe ends the man hade to the North tasking! Door walk up down the 38 pipe. A small shall deposition observed 20-Love from the man hole Investigned 100-but up the 30" pipe. No Sediend. Sample will be collected tim area 20-6.20 down stream of man hole. Sout Lend 1/2 drops 6. Loud long No oday a Oda "" Mousing water our sample. SAMple AAX 558 Observations Sample collected a 20-26 feel from manhole No ocher, No sheen A this black visgues layor observed before the send fayor. The bottom of the pipe was scraped for this layer. SAND, (SP), Black, West, Medius to Fire grain. Small procent (+11) of organice matter (gress, twings), Small amount (11) of green Hats. No sitt. ノフ

8-19-03 BES- Source Control IN Line Sampling 1400 Mobilice at AAT 463 # 38 American Stoel - AAT463 Side Walk 6 Ycon AAT 464 Manhole Observations 6" of standing water at base of mandale, brownduster incall Protion observed by Sarth. Sort Sand absent apparimatly 30 - down from markets E in 40" pipe. " standing acarter · Investigated apprear apprearing OD-feat. No sectionent e but the arater a orage brown color. · Collect spape from 40" down show pipe. · ONE small pipe (12 " cates at the top of the manhale and drains a street which basis the feet a way E - A 38" pipe cutoy the max hole from the south west 1 A 40" pipe exils the marked to the work east. æ Note the size diameters are senalies then thise Indicated on the city maps. However, the Œ man hole is in approximate the right place E and both of the lines appear to 60 Œ going in the right direction one other marholo is in the area bat appears to C be Node AST 464. SAMPLE AAT 463 Observations C Somple locations 30-33 downstream of mental SAND, SW, Gray, Wet, Medium to Fine. No silt, Œ No organic matter. No odor, No Theon Slight Sheen Small amount of debris (11) red point dup.

18

8-19-2003 BES- Source Control IN Line Sampling " After sample collect Invostigated 100-feet down stream of man hole A lateral joins with the main live appreximally four feet past the maxiam extent of the fall line. fed Soilds are observed along the cartire leagh of the downstream live. - The lateral appoint to enter from the right (South east) Alter the lateral joined the size a grand to be a larger Stameter. Speared AAT 464 . Did Not carter. Appens to have line entery fin the South cat and exiting to the North as shown and the aly map. However, it appears that a line may also be entend from the North west (paraican star parking lot. Pipes appeared to be in the 24-30" name. 1500 OFF Site 19

8-20-2003 BES- Source Control In Line Sampling 900 On Ste D. Locary, Mittelses, Dersk/BES Manter: Cloudy, 65°F, Clan Objective: Collect Samples from AAT: 452 & AAT 537. e Mobilize to manhole across the strond from AAT 463 in order to continue seven line layout e E Ē -0- -E E Ē 1270 C Œ S. Node Observations Devik/BES - Confirmed that this woode (AAT ?? 1) is coverted M to AAY463 as noted yesterday. Note is also corrected E to AAT 464, which is different them as shown E on City MAP. The Node (AAT??!) is a large Chamber (10'x 18' Ê E. Soilds were observed in all three main lines. Souds were mostly "" to rounded gravel. Ċ The sub basin 2 line was not observed. The E Chy MAP showed this line entering approxime E 10 feet to the southwest of this rode however This liace was not observed in either of the C two lives entuing this Node. G C

C

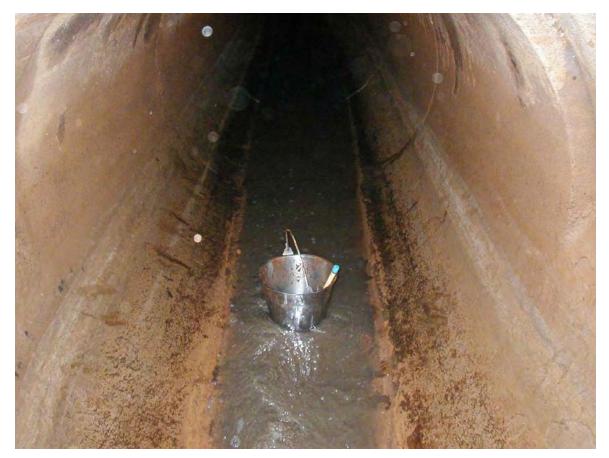
8-20-2003 BES- Source Constrol In Line Sampling Mobilize to Node AAT BOE AAT - ?? Z 1000 AAT ??? is a sanilary line. · It is unclear were the sub Basin 2 liars extens into the Basin line Mobilies to AAT 452 1030 City map is incorrect. The storm sewer live runs down the south west side of the road. The marpole layout is also diffet. Live is show Delon. AAT 452 Sher MAF No Line Observed AAT 453 Observed in freld. Mobiliee to Manhole farthest South East. This Node appear 1100 to b: AAT 453 4155 YEON <u>111---/177-</u> Node Observation Two small lines enter at the top of the manhole and appear to drain catch tasing on bothe sides of the street. A 12" live enters the montole from the North West. A I band of sand airs lacated stanting at the base of the monthole And extending = Z-Seat up the 12" line. It was covered with a this lugar of crange Brown silt like matteral 21

8-20-2003 BES- Source Control In Line Sampling Ē A 14" live exits the manpale to the south east. Ê a thin layer of (< Imm) mange breen solk- 5.14 like makeral covered the same of the marke on the bottom E of this pipe. È " A small amount of (<1) of standing water was absend in the 12° pipe. The Ease of the mass hele eras Ŭ most as was the 14" pipe. This appears to te the result of minine ground water in fro time at the base of the manhole or catche basins. E A sample was collected. E Ē SAMple AAT 453 Collected Ē SAMple Observation C SAND, (SW), Gray (Red sul Black grains), Wet Medium. Ē Misson amounts of grass, tree back, and what appears to be small preces of Styro form. <u>.</u> Sand is differed from that observed at the other <u>B</u> SAmple locations in this basin. It is more E graine and not a unitern color. No Oclay, No Sheen E. Lift markole the cover upstream of AAT 453. This monthole in 1200 Ø., Approvimity 50-feet SE of the Express Way & Year in forsection. <u>C</u> 4000 Nole Observations 31... · Two small Vieres eater at the base of the mawhole, which appear Œ to drain catch basins on either side of the stratt. No other lines exten the manhole E. NS... small line (= 12") exits the manhole to the southwest li. 19.5 17

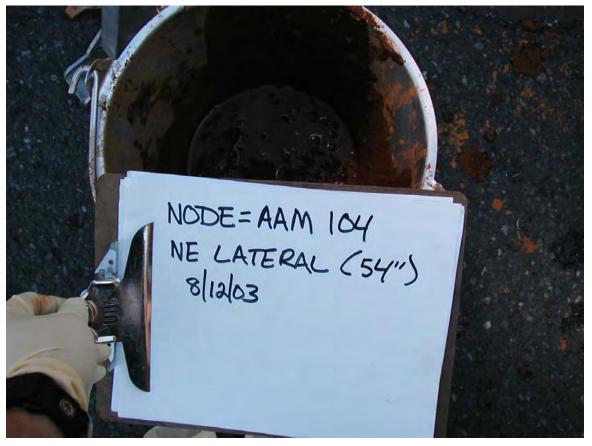
8-20-2003 BES- Source Control In Line Sampling North Nole Lingran K Surtace (Year Straut The · Litted manpale of intersection of Express way and Year. Three small lives enter of this to markele, which appen to drain three catch boxins as Shown a love. - No other lives enju the manhale - one = 12" live exity the mented to the North west. Note: Express way appears to be a topographial high forface water flow appears to be Yourand the South east and North west Also, as shown above the sever lives appear to flow in two soparte directes. This May indicate that , Yean streat North west of express way depines to basin 19, Not to basin 18. Contaited Dawn Sanduri. Informed her of the difference between the City map and the observed storm water The layout, and the successful sample collection at AAT 455. 1230 OFF Site. -># 23

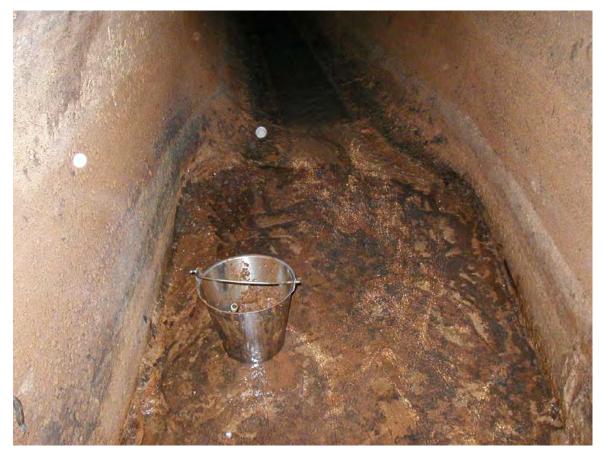
8-20-03 BES Source Control IN Line inpling 615 ON Sile B. Lacoy letter, Mithe/BES, Berith/BES, Viola/ BES Weather: Swany, 80% Wird Colum Objective: Collect sample from AAT 537 1 630 Mapilize to NAT 557 R.R. Tracks line Sonled 9 Front due e e Parking 6- + 6 Gunders ŧ Ē AAT 537 Observation · Three lives enter at this manhale & 24" from the Ø Norther West. A48" from the Souther east. A 70" from the e South west. The 70" from the South west has hear abandon . A large concret seal has been C installal. C - A small amount of flow was (</gpn) was absorned from the 24" pipe E A small amount of flow was (< 19pm) was observed Œ from the 48" pipe. A lager of soils and absent to apter pipe arroximaly 50-Sene from the marhole in the To" pipe. Mebilies to Counderson Pau King Lot Man hole. Two large lines easter at this manhate. A 70" which concerts to AAT 537. A 70° that jogs to the North to a second manhole in the gunderson Parking Lot and then Appears to run the southwest across the Rail yard.

, M


24

· A longe (70") pipe exils the manholo. The out fall and river can be observed at this location. " No sediment in the downstream pipe. Sectiment at manshele st the continance of the three pipes. - Collected Sample No sediment in the New TO" line from the North. A small (12") line exters from the south east at the Los's in the quarkeson lat. - A small 8" pipe enters into the TO" downstream line benits the Gunderson facility. Sample GN-01 Collected at this lacation Sample Chreaustiens. SAND, Sw), Wet, bray (with fine layer of Fe oxide deposition) Medium quain. Sheen ebrend on pore water. three into of flowing make in the pipe Section & layer 3 ford long, I" doop Z


APPENDIX C Site Photographs


Photograph 1 – Basin M-1: Sample IL-M1-AAM104-0803-SW

Photograph 2 – Basin M-1: Sample IL-M1-AAM104-0803-SW

Photograph 3 – Basin M-1: Sample IL-M1-AAM104-0803-NE

Photograph 4 – Basin M-1: Sample IL-M1-AAM104-0803-NE.

Photograph 5 – Basin M-1: Sample IL-M1-AAJ933-0803

Photograph 6 – Basin M-1: Sample IL-M1-AAJ933-0803

Photograph 7 – Basin M-1: Sample IL-M1-AAM155-0803

Photograph 8 – Basin M-1: Sample IL-M1-AAM155-0803

Photograph 9 – Basin M-1: Sample IL-M1-AAJ829-0803

Photograph 10 – Basin M-1: Sample IL-M1-AAJ829-0803

Photograph 11 – Basin M-1: Sample IL-M1-AAJ831-0803

Photograph 12 – Basin M-1: Sample IL-M1-AAJ831-0803

Photograph 13 – Basin 18: Sample IL-18-AAT463-0803

Photograph 14 – Basin 18: Sample IL-18-AAT463-0803

Photograph 15 – Basin 18: Sample IL-18-AAT453-0803

Photograph 16 – Basin 18: Node AAT 453

Photograph 17 – Basin 18: Sample IL-18-AAT465-0803

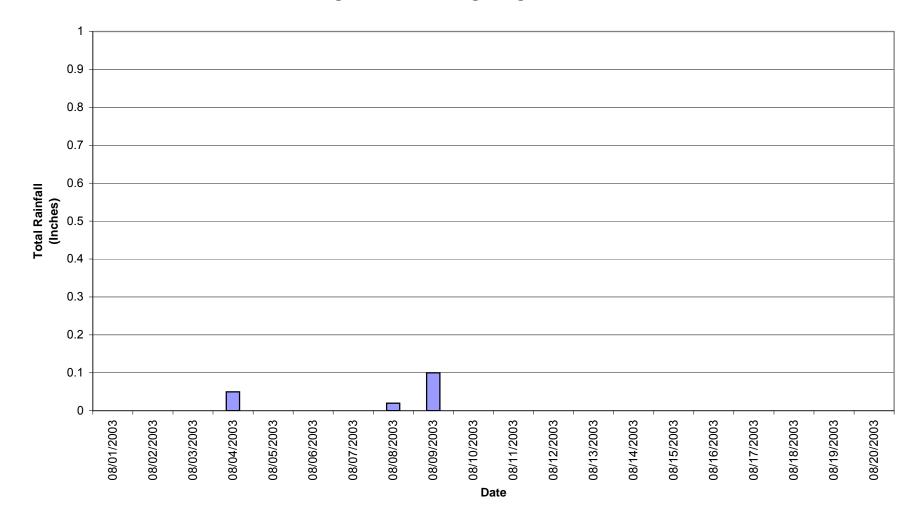
Photograph 18 – Basin 18: Sample IL-18-AAT465-0803

Photograph 19 – Basin 18: Sample IL-18-AAT465-0803

Photograph 20 – Basin 18: Sample IL-18-AAT557-0803

Photograph 21 – Basin 18: Sample IL-18-AAT557-0803

NODE: AAT 558 ADDRESS: 3900 NW Yean Collected ~20' down pipe 8/19/03


Photograph 22 – Basin 18: Sample IL-18-AAT558-0803

Photograph 23 – Basin 18: Sample IL-18-AAT558-0803

APPENDIX D Daily Rainfall for Portland, Oregon

Figure D-1 Daily Precipitation Portland, Oregon August 1, 2003 through August 20, 2003

APPENDIX E Laboratory Data Sheets

Date: $\frac{8/3}{1/03}$	alvses	Field Comments											Reilinguished B <u>y:</u> 4, Signature:	Here and Andreas		<u>Received By:</u> 4, Signature: Time:	Printed Name: Date:
	Requested Analyses	Metals	ils - EPA 6020 d, Cr, Hg, Pb, Zn) d, Cr, Pb, Z00.8 d, Cr, Pb, Z00.8	O ,UO ,8A) Tetal Meta O ,UO ,8A)		•	•	•	•	•			The			Time:	Date:
City of Portland Chain-of-Custody Bureau of Environmental Services		General		MMTPH-D TOC*	•	•	•	•	•	•			Relinguished By: 3. Signature:	Printed Name:		<u>Received By:</u> 3, Signature:	Printed Name:
City Chair Bureau of E	SEDIMENT ~			Sample Sample	1020 C	1136 C	1325 C ●	1439 C	1140 C	1945 C			Time.	Dale:		The:	Date:
	atrix:		erforemd by Severn 1	Sample Date	19-Aug-03	19-Aug-03	19-Aug-03	19-Aug-03	20-Aug-03	20-Aug-03			Relinquished By: 2. Signature:	Name:		<u>Hecelyed by:</u> 2. Signature:	Name:
antrol Laboratory 33-4552 1 OWER HARADR OF SED SAMD			*PCB/Pesticide, Semi-volatiles, and TOC analyses will be perforemd by Severn Trent Laboratory, routed through Northcreek.	Point Location Code	IL-18-AAT557-0803 3950 NW Yeon/Univar 18_1	IL-18-AAT465-0803 4033 NW Yeon 18_2	IL WAAT558-0803 7 1 1 57 3900 NW Yeon/Owens C. 18_3	iL-18-AAT463-0803 NWofWestern Wire Works 18_4	IL-18-AAT453-0803 • 4155 NW Yeon 18_5	IL-18-AAT537-0803: 4700 NW Front Ave. 18_6				/ In. C. Oalg. Phinted Name	10-17-5		Date:
Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5596 (503) Protiect Name: I OWER HARF			*PCB/Pesticide, Semi-volatiles, and TOC Laboratory, routed through Northcreek.	WPCL Sample I.D.	FO 030833	FO 030834	FO 030835	FO 030836	FO 030837	FO 030838			Relinquished By: 1. Signature: ////////////////////////////////////			Signature () () ()	Printed Name: K. K. Wele Service K. K. Wele ServiceMellomstsampling/File

19/03 10	:20 Syste	m ID	AH06904	Sample ID	FO030833
				Page:	
		LL SED	SAMP		8/21/03
				Sample Status:	COMPLETE AND VALIDATED
REGULATOR	Y PLAN & E	/AL		Sample Type:	COMPOSITE
18 _1				Sample Matrix:	SEDIMENT
1020.001				Collected By:	MJH
2	LOWER HAR IL-18-AAT557 3950 NW YEG REGULATOR 18 _1	LOWER HARBOR OUTFA IL-18-AAT557-0803 3950 NW YEON / UNIVAR REGULATORY PLAN & EV 18 _1	LOWER HARBOR OUTFALL SED IL-18-AAT557-0803 3950 NW YEON / UNIVAR REGULATORY PLAN & EVAL 18 _1	LOWER HARBOR OUTFALL SED SAMP IL-18-AAT557-0803 3950 NW YEON / UNIVAR REGULATORY PLAN & EVAL 18 _1	LOWER HARBOR OUTFALL SED SAMP IL-18-AAT557-0803 3950 NW YEON / UNIVAR REGULATORY PLAN & EVAL 18_1 Sample Type: Sample Matrix:

comments: CACCC: Except as follows, all analytical CACCC citeria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Duplicate precision was outside the acceptance range for NWTPH-Dx analysis due to the non-homogeneous matrix. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
METALS				
COPPER	151	mg/Kg	0.25	EPA 6020
ZINC	374	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	10.5	mg/Kg	0.50	EPA 6020
CADMIUM	14.9	mg/Kg	0.10	EPA 6020
CHROMIUM	188	mg/Kg	0.50	EPA 6020
LEAD	636	mg/Kg	0.10	EPA 6020
MERCURY	0.643	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	555	mg/Kg	500	NWTPH-Dx
DIESEL	<250	mg/Kg	250	NWTPH-Dx
KEROSENE	<250	mg/Kg	250	NWTPH-Dx
MOTOR OIL	3490	mg/Kg	500	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	52900	mg/Kg	127	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	80.4	µg/Kg	2.24	EPA 8081
4,4'-DDE	20.7	µg/Kg	2.24	EPA 8081
4,4'-DDT	284	µg/Kg	22.4	EPA 8081
Aldrin	35.8	µg/Kg	1.12	EPA 8081
Alpha-BHC	<1.12	µg/Kg	1.12	EPA 8081
Alpha-Chlordane	152	µg/Kg	1.12	EPA 8081
Beta-BHC	<1.12	µg/Kg	1.12	EPA 8081
Delta-BHC	25.9	µg/Kg	1.12	EPA 8081
Dieldrin	45.7	µg/Kg	2.24	EPA 8081
Endosulfan I	5.82	µg/Kg	1.12	EPA 8081
6543 N. Burlington Ave. / Portland OR 97	7203 (503) 823-5600	fax (503) 823-5656	Report Date:	9/16/03

Sample Date/Time 8	/19/03	10:20	System ID	AH06904	Sample ID	FO030833
Proj./Company Name Address/Location:	: LOWER F IL-18-AAT 3950 NW	557-0803	5	D SAMP	Page: Date Received: Sample Status:	2 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 18 _1 1020.001	ORY PL/	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH
	nks, laboratory	control sam	ple recoveries, d	uplicate precis	this sample including h ion, matrix spike recov	eries, and surrogate

Comments: CAQC. Except as follows, all analytical CAQC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Duplicate precision was outside the acceptance range for NWTPH-Dx analysis due to the non-homogeneous matrix. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
Endosulfan II	<2.24	µg/Kg	2.24	EPA 8081
Endosulfan Sulfate	<2.24	µg/Kg	2.24	EPA 8081
Endrin	70.4	µg/Kg	2.24	EPA 8081
Endrin Aldehyde	EST 198	µg/Kg	2.24	EPA 8081
Endrin Ketone	<2.24	µg/Kg	2.24	EPA 8081
Gamma-BHC(Lindane)	1.87	µg/Kg	1.12	EPA 8081
Gamma-Chlordane	512	µg/Kg	1.12	EPA 8081
Heptachlor	3.03	µg/Kg	1.12	EPA 8081
Heptachlor Epoxide	<1.12	µg/Kg	1.12	EPA 8081
Methoxychlor	<112	µg/Kg	112	EPA 8081
PCB 1016	<107	µg/Kg	107	EPA 8081
PCB 1221	<213	µg/Kg	213	EPA 8081
PCB 1232	<107	µg/Kg	107	EPA 8081
PCB 1242	<107	µg/Kg	107	EPA 8081
PCB 1248	<107	µg/Kg	107	EPA 8081
PCB 1254	<107	µg/Kg	107	EPA 8081
PCB 1260	624	µg/Kg	107	EPA 8081
Toxaphene	<112	µg/Kg	112	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<298	µg/Kg	298	EPA 8270 - S
1,2-Dichlorobenzene	<298	µg/Kg	298	EPA 8270 - S
1,3-Dichlorobenzene	<298	µg/Kg	298	EPA 8270 - S
1,4-Dichlorobenzene	<298	µg/Kg	298	EPA 8270 - S
2,4,5-Trichlorophenol	<298	µg/Kg	298	EPA 8270 - S
2,4,6-Trichlorophenol	<298	µg/Kg	298	EPA 8270 - S
2,4-Dichlorophenol	<298	µg/Kg	298	EPA 8270 - S
2,4-Dimethylphenol	<298	µg/Kg	298	EPA 8270 - S
2,4-Dinitrophenol	<1490	µg/Kg	1490	EPA 8270 - S
2,4-Dinitrotoluene	<298	µg/Kg	298	EPA 8270 - S
6543 N. Burlington Ave. / Portland, OP	07202 (502) 922 5600 6	(503) 003 5555	Demant D	-

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time	8/19/03	10:20	System ID	AH06904	Sample ID	FO030833
Proj./Company Nam Address/Location:	IL-18-A	R HARBOR AT557-0803 W YEON / I	3	D SAMP	Page: Date Received: Sample Status:	3 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:			AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH
recoveries non-homog	anks, laborato , as applicabl geneous mat chromatograp	ory control san e. Duplicate p rix. Some Serr	nple recoveries, d recision was outs ii-volatile Organic	uplicate precis ide the accepta s surrogate rec	ion, matrix spike recov ance range for NWTPF coveries were high due	

Test Parameter	Result	Units	MRL	Method
2,6-Dinitrotoluene	<298	µg/Kg	298	EPA 8270 - S
2-Chloronaphthalene	<74.5	µg/Kg	74.5	EPA 8270 - S
2-Chlorophenol	<298	µg/Kg	298	EPA 8270 - S
2-Methylnaphthalene	355	µg/Kg	74.5	EPA 8270 - S
2-Methylphenol	<298	µg/Kg	298	EPA 8270 - S
2-Nitroaniline	<298	µg/Kg	298	EPA 8270 - S
2-Nitrophenol	<298	µg/Kg	298	EPA 8270 - S
3,3'-Dichlorobenzidine	<596	µg/Kg	596	EPA 8270 - S
3- & 4-Methylphenol	<596	µg/Kg	596	EPA 8270 - S
3-Nitroaniline	<298	µg/Kg	298	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1490	µg/Kg	1490	EPA 8270 - S
4-Bromophenylphenyl ether	<298	µg/Kg	298	EPA 8270 - S
4-Chloro-3-methyiphenol	<298	µg/Kg	298	EPA 8270 - S
4-Chloroaniline	<298	µg/Kg	298	EPA 8270 - S
4-Chlorophenyiphenyl ether	<298	µg/Kg	298	EPA 8270 - S
4-Nitroaniline	<298	µg/Kg	298	EPA 8270 - S
4-Nitrophenol	<745	µg/Kg	745	EPA 8270 - S
Acenaphthene	<74.5	µg/Kg	74.5	EPA 8270 - S
Acenaphthylene	478	µg/Kg	74.5	EPA 8270 - S
Anthracene	260	µg/Kg	74.5	EPA 8270 - S
Benzo(a)anthracene	<74.5	µg/Kg	74.5	EPA 8270 - S
Benzo(a)pyrene	545	µg/Kg	74.5	EPA 8270 - S
Benzo(g,h,i)perylene	1560	µg/Kg	74.5	EPA 8270 - S
Benzofluoranthenes	796	µg/Kg	74.5	EPA 8270 - S
Benzoic acid	1990	µg/Kg	1490	EPA 8270 - S
Benzyi alcohol	<373	µg/Kg	373	EPA 8270 - S
Benzyl butyl phthalate	<373	µg/Kg	373	EPA 8270 - S
Bis(2-chloroethoxy) methane	<298	µg/Kg	298	EPA 8270 - S
Bis(2-chloroethyl) ether	<298	µg/Kg	298	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8	/19/03	10:20	System ID	AH06904	Sample ID	FO030833
na mangan na mangan kanang se nangang perubah i na ming kutakan ing kutakan ing kutakan sebutah sebutah sebutah	THE REPORT OF THE PARTY OF THE REPORT OF	W house at the fact of himse factors where	in is president to a subsequence of	n na an	Page:	4
Proj./Company Name	: LOWER	HARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:		T557-0803 / YEON / L			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULA		AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 _1				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH

method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Duplicate precision was outside the acceptance range for NWTPH-Dx analysis due to the non-homogeneous matrix. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroisopropyl) ether	<298	μg/Kg	298	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<298	µg/Kg	298	EPA 8270 - S
Chrysene	<74.5	μg/Kg	74.5	EPA 8270 - S
Di-n-butyl phthalate	<298	µg/Kg	298	EPA 8270 - S
Di-n-octyl phthalate	<298	µg/Kg	298	EPA 8270 - S
Dibenzo(a,h)anthracene	<74.5	μg/Kg	74.5	EPA 8270 - S
Dibenzofuran	<298	μg/Kg	298	EPA 8270 - S
Diethyl phthalate	<298	µg/Kg	298	EPA 8270 - S
Dimethyl phthalate	<298	µg/Kg	298	EPA 8270 - S
Fluoranthene	656	µg/Kg	74.5	EPA 8270 - S
Fluorene	<74.5	µg/Kg	74.5	EPA 8270 - S
Hexachlorobenzene	<298	µg/Kg	298	EPA 8270 - S
Hexachlorobutadiene	<298	µg/Kg	298	EPA 8270 - S
Hexachlorocyclopentadiene	<298	µg/Kg	298	EPA 8270 - S
Hexachloroethane	<298	µg/Kg	298	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	1030	µg/Kg	74.5	EPA 8270 - S
Isophorone	<298	µg/Kg	298	EPA 8270 - S
N-Nitrosodi-n-propylamine	<298	µg/Kg	298	EPA 8270 - S
N-Nitrosodiphenylamine	<298	µg/Kg	298	EPA 8270 - S
Naphthalene	147	µg/Kg	74.5	EPA 8270 - S
Nitrobenzene	<298	µg/Kg	298	EPA 8270 - S
Pentachlorophenol	<298	µg/Kg	298	EPA 8270 - S
Phenanthrene	445	µg/Kg	74.5	EPA 8270 - S
Phenol	<298	µg/Kg	298	EPA 8270 - S
Pyrene	964	µg/Kg	74.5	EPA 8270 - S

End of Report for Sample ID: FO030833

Sample Date/Time 8/	19/03 11:36	System ID	AH06905	Sample ID	FO030834
n naga kapi na ipi banangan yang mana kangkang agrappa kanan pi mulan na banan kan kanan kana kanan k	ин элэгэ чөгэх дэлэг имд - дагч маан тэйн тэмдэ д боо дэлонуу	n na haadan ay oo oo ahaa ahaada ahaa ahaada ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaa ahaa ah	- Sand Manchasoft Antonio State of Main Sales Address (Miran) Antonio	Page:	1
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT465-0803 4033 NW YEON	3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18_2			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to mateix interference.

Test Parameter	Resuit	Units	MRL	Method
METALS				
COPPER	139	mg/Kg	0.25	EPA 6020
ZINC	268	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	5.14	mg/Kg	0.50	EPA 6020
CADMIUM	0.93	mg/Kg	0.10	EPA 6020
CHROMIUM	83.0	mg/Kg	0.50	EPA 6020
LEAD	18.9	mg/Kg	0.10	EPA 6020
MERCURY	0.022	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<250	mg/Kg	250	NWTPH-Dx
DIESEL	<125	mg/Kg	125	NWTPH-Dx
KEROSENE	<125	mg/Kg	125	NWTPH-Dx
MOTOR OIL	679	mg/Kg	250	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	5530	mg/Kg	87.7	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<2.53	µg/Kg	2.53	EPA 8081
4,4'-DDE	<2.53	µg/Kg	2.53	EPA 8081
4,4'-DDT	<25.3	µg/Kg	25.3	EPA 8081
Aldrin	<12.7	µg/Kg	12.7	EPA 8081
Alpha-BHC	<1.27	µg/Kg	1.27	EPA 8081
Alpha-Chlordane	<1.27	µg/Kg	1.27	EPA 8081
Beta-BHC	<1.27	µg/Kg	1.27	EPA 8081
Delta-BHC	<1.27	µg/Kg	1.27	EPA 8081
Dieldrin	<2.53	µg/Kg	2.53	EPA 8081
Endosulfan I	<1.27	µg/Kg	1.27	EPA 8081
6543 N. Burlington Ave. / Portland OR	97203 (503) 823-5600	fax (503) 823-5656	Report Da	te: 9/16/03

Sample Date/Time 8/1	19/03 11:36	System ID	AH06905	Sample ID	FO030834
Proj./Company Name: Address/Location:	LOWER HARBOR (IL-18-AAT465-0803 4033 NW YEON			Page: Date Received: Sample Status:	2 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18 _2 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Endosulfan II	<2.53	µg/Kg	2.53	EPA 8081
Endosulfan Sulfate	<2.53	µg/Kg	2.53	EPA 8081
Endrin	<2.53	µg/Kg	2.53	EPA 8081
Endrin Aldehyde	<2.53	µg/Kg	2.53	EPA 8081
Endrin Ketone	<2.53	µg/Kg	2.53	EPA 8081
Gamma-BHC(Lindane)	<1.27	µg/Kg	1.27	EPA 8081
Gamma-Chlordane	<1.27	µg/Kg	1.27	EPA 8081
Heptachlor	<1.27	µg/Kg	1.27	EPA 8081
Heptachlor Epoxide	<1.27	µg/Kg	1.27	EPA 8081
Methoxychlor	<127	µg/Kg	127	EPA 8081
PCB 1016	<122	µg/Kg	122	EPA 8081
PCB 1221	<244	µg/Kg	244	EPA 8081
PCB 1232	<122	µg/Kg	122	EPA 8081
PCB 1242	<122	µg/Kg	122	EPA 8081
PCB 1248	<122	µg/Kg	122	EPA 8081
PCB 1254	<122	µg/Kg	122	EPA 8081
PCB 1260	<122	µg/Kg	122	EPA 8081
Toxaphene	<127	µg/Kg	127	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<347	µg/Kg	347	EPA 8270 - S
1,2-Dichlorobenzene	<347	µg/Kg	347	EPA 8270 - S
1,3-Dichlorobenzene	<347	µg/Kg	347	EPA 8270 - S
1,4-Dichlorobenzene	<347	µg/Kg	347	EPA 8270 - S
2,4,5-Trichlorophenol	<347	µg/Kg	347	EPA 8270 - S
2,4,6-Trichlorophenol	<347	µg/Kg	347	EPA 8270 - S
2,4-Dichlorophenol	<347	µg/Kg	347	EPA 8270 - S
2,4-Dimethylphenol	<347	µg/Kg	347	EPA 8270 - S
2,4-Dinitrophenol	<1730	µg/Kg	1730	EPA 8270 - S
2,4-Dinitrotoluene	<347	µg/Kg	347	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/1	19/03 11:36	System ID	AH06905	Sample ID	FO030834
	LOWER HARBOR (IL-18-AAT465-0803 4033 NW YEON		D SAMP	Page: Date Received: Sample Status:	3 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18_2 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

T (D) (
Test Parameter 2,6-Dinitrotoluene	Result <347	Units	MRL 347	Method EPA 8270 - S
	<86.7	µg/Kg		
2-Chloronaphthalene		µg/Kg	86.7	EPA 8270 - S
2-Chlorophenol	<347	µg/Kg	347	EPA 8270 - S
2-Methylnaphthalene	<86.7	µg/Kg	86.7	EPA 8270 - S
2-Methylphenol	<347	µg/Kg	347	EPA 8270 - S
2-Nitroaniline	<347	µg/Kg	347	EPA 8270 - S
2-Nitrophenol	<347	µg/Kg	347	EPA 8270 - S
3,3'-Dichlorobenzidine	<694	µg/Kg	694	EPA 8270 - S
3- & 4-Methylphenol	823	µg/Kg	694	EPA 8270 - S
3-Nitroaniline	<347	µg/Kg	347	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1730	µg/Kg	1730	EPA 8270 - S
4-Bromophenylphenyl ether	<347	µg/Kg	347	EPA 8270 - S
4-Chloro-3-methylphenol	<347	µg/Kg	347	EPA 8270 - S
4-Chloroaniline	<347	µg/Kg	347	EPA 8270 - S
4-Chlorophenylphenyl ether	<347	µg/Kg	347	EPA 8270 - S
4-Nitroaniline	<347	µg/Kg	347	EPA 8270 - S
4-Nitrophenol	<867	µg/Kg	867	EPA 8270 - S
Acenaphthene	<86.7	µg/Kg	86.8	EPA 8270 - S
Acenaphthylene	<86.7	µg/Kg	86.7	EPA 8270 - S
Anthracene	<86.7	µg/Kg	86.7	EPA 8270 - S
Benzo(a)anthracene	<86.7	µg/Kg	86.7	EPA 8270 - S
Benzo(a)pyrene	<86.7	µg/Kg	86.7	EPA 8270 - S
Benzo(g,h,i)perylene	<86.7	µg/Kg	86.7	EPA 8270 - S
Benzofluoranthenes	<86.7	µg/Kg	86.7	EPA 8270 - S
Benzoic acid	<1730	µg/Kg	1730	EPA 8270 - S
Benzyl alcohol	<434	μg/Kg	434	EPA 8270 - S
Benzyl butyl phthalate	<434	μg/Kg	434	EPA 8270 - S
Bis(2-chloroethoxy) methane	<347	μg/Kg	347	EPA 8270 - S
Bis(2-chloroethyl) ether	<347	µg/Kg	347	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/2	19/03 11:36	System ID	AH06905	Sample ID	FO030834
nin and a substantial and and the substant of the substantial substantial and the substantial substantial subst	NALEN MANY OC SELECTION HELE STREET	n men n - Ter n Maanan na amin'n n Maagaray na senyayaa aa	n han harte tar in a sana an ann a	Page:	4
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT465-080 4033 NW YEON	3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18_2			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	
Bis(2-chloroisopropyl) ether	<347	μg/Kg	347	Method EPA 8270 - S
Bis(2-ethylhexyl) phthalate	990	µg/Kg	347	EPA 8270 - S
Chrysene	<86.7	µg/Kg	86.7	EPA 8270 - S
Di-n-butyl phthalate	<347	µg/Kg	347	EPA 8270 - S
Di-n-octyl phthalate	<347	μg/Kg	347	EPA 8270 - S
Dibenzo(a,h)anthracene	<86.7	µg/Kg	86.7	EPA 8270 - S
Dibenzofuran	<347	μg/Kg	347	EPA 8270 - S
Diethyl phthalate	<347	μg/Kg	347	EPA 8270 - S
Dimethyl phthalate	<347	µg/Kg	347	EPA 8270 - S
Fluoranthene	<86.7	μg/Kg	86.7	EPA 8270 - S
Fluorene	<86.7	μg/Kg	86.7	EPA 8270 - S
Hexachlorobenzene	<347	µg/Kg	347	EPA 8270 - S
Hexachlorobutadiene	<347	μg/Kg	347	EPA 8270 - S
Hexachlorocyclopentadiene	<347	μg/Kg	347	EPA 8270 - S
Hexachloroethane	<347	μg/Kg	347	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<86.7	μg/Kg	86.7	EPA 8270 - S
Isophorone	<347	μg/Kg	347	EPA 8270 - S
N-Nitrosodi-n-propylamine	<347	µg/Kg µg/Kg	347	EPA 8270 - S
N-Nitrosodiphenylamine	<347		347	EPA 8270 - S
Naphthalene	<86.7	µg/Kg		
Nitrobenzene	<00.7 <347	µg/Kg	86.7	EPA 8270 - S
		µg/Kg	347	EPA 8270 - S
Pentachlorophenol	<347	µg/Kg	347	EPA 8270 - S
Phenanthrene	<86.7	µg/Kg	86.7	EPA 8270 - S
Phenol	<347	µg/Kg	347	EPA 8270 - S
Pyrene	<86.7	µg/Kg	86.7	EPA 8270 - S

End of Report for Sample ID: FO030834

Sample Date/Time 8/*	19/03 13:25	System ID	AH06906	Sample ID	FO030835
 Proj./Company Name: Address/Location:	LOWER HARBC IL-18-AAT558-08 3900 NW YEON	303	D SAMP	Page: Date Received: Sample Status:	1 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY I 18 _3 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
METALS				
COPPER	87.6	mg/Kg	0.25	EPA 6020
ZINC	416	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	4.24	mg/Kg	0.50	EPA 6020
CADMIUM	0.77	mg/Kg	0.10	EPA 6020
CHROMIUM	104	mg/Kg	0.50	EPA 6020
LEAD	21.5	mg/Kg	0.10	EPA 6020
MERCURY	0.031	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<250	mg/Kg	250	NWTPH-Dx
DIESEL	<125	mg/Kg	125	NWTPH-Dx
KEROSENE	<125	mg/Kg	125	NWTPH-Dx
MOTOR OIL	786	mg/Kg	250	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	8030	mg/Kg	87.2	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<2.61	µg/Kg	2.61	EPA 8081
4,4'-DDE	<2.61	µg/Kg	2.61	EPA 8081
4,4'-DDT	<26.1	µg/Kg	26.1	EPA 8081
Aldrin	<1.3	µg/Kg	1.3	EPA 8081
Alpha-BHC	<1.3	µg/Kg	1.3	EPA 8081
Alpha-Chlordane	<1.3	µg/Kg	1.3	EPA 8081
Beta-BHC	<1.3	µg/Kg	1.3	EPA 8081
Delta-BHC	<1.3	µg/Kg	1.3	EPA 8081
Dieldrin	<2.61	µg/Kg	2.61	EPA 8081
Endosulfan I	<1.3	µg/Kg	1.3	EPA 8081
6543 N. Burlington Ave. / Portland OR 9	7203 (503) 823-5600) fax (503) 823-5656	Report Da	te: 9/16/03

Sample Date/Time 8	/19/03 13	3:25 System ID	AH06906	Sample ID	FO030835
Proj./Company Name Address/Location:	IL-18-AAT558		ed samp	Page: Date Received: Sample Status:	2 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATOR 18 _3 1020.001	RY PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter Endosulfan II	Result <2.61	Units	MRL	Method
Endosulfan Sulfate	<2.61	µg/Kg ua/Ka	2.61	EPA 8081
Endrin	<2.61	µg/Kg	2.61	EPA 8081
		µg/Kg	2.61	EPA 8081
Endrin Aldehyde	<2.61	µg/Kg	2.61	EPA 8081
Endrin Ketone	<2.61	µg/Kg	2.61	EPA 8081
Gamma-BHC(Lindane)	<1.3	µg/Kg	1.3	EPA 8081
Gamma-Chlordane	<1.3	µg/Kg	1.3	EPA 8081
Heptachlor	<1.3	µg/Kg	1.3	EPA 8081
Heptachlor Epoxide	<1.3	µg/Kg	1.3	EPA 8081
Methoxychlor	<130	µg/Kg	130	EPA 8081
PCB 1016	<132	µg/Kg	132	EPA 8081
PCB 1221	<265	µg/Kg	265	EPA 8081
PCB 1232	<132	µg/Kg	132	EPA 8081
PCB 1242	<132	µg/Kg	132	EPA 8081
PCB 1248	<132	µg/Kg	132	EPA 8081
PCB 1254	<132	µg/Kg	132	EPA 8081
PCB 1260	<132	µg/Kg	132	EPA 8081
Toxaphene	<130	µg/Kg	130	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<354	µg/Kg	354	EPA 8270 - S
1,2-Dichlorobenzene	<354	µg/Kg	354	EPA 8270 - S
1,3-Dichlorobenzene	<354	µg/Kg	354	EPA 8270 - S
1,4-Dichlorobenzene	<354	µg/Kg	354	EPA 8270 - S
2,4,5-Trichlorophenol	<354	µg/Kg	354	EPA 8270 - S
2,4,6-Trichlorophenol	<354	µg/Kg	354	EPA 8270 - S
2,4-Dichlorophenol	<354	µg/Kg	354	EPA 8270 - S
2,4-Dimethylphenol	<354	µg/Kg	354	EPA 8270 - S
2,4-Dinitrophenol	<1770	µg/Kg	1770	EPA 8270 - S
2,4-Dinitrotoluene	<354	µg/Kg	354	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/*	19/03 13:25	System ID	AH06906	Sample ID	FO030835
Proj./Company Name: Address/Location:	LOWER HARBOR IL-18-AAT558-080 3900 NW YEON / (3	D SAMP	Page: Date Received: Sample Status:	3 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PL 18 _3 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
2,6-Dinitrotoluene	<354	µg/Kg	354	EPA 8270 - S
2-Chloronaphthalene	<88.4	µg/Kg	88.4	EPA 8270 - S
2-Chlorophenol	<354	µg/Kg	354	EPA 8270 - S
2-Methylnaphthalene	<88.4	µg/Kg	88.4	EPA 8270 - S
2-Methylphenol	<354	µg/Kg	354	EPA 8270 - S
2-Nitroaniline	<354	µg/Kg	354	EPA 8270 - S
2-Nitrophenol	<354	µg/Kg	354	EPA 8270 - S
3,3'-Dichlorobenzidine	<707	µg/Kg	707	EPA 8270 - S
3- & 4-Methylphenol	<708	µg/Kg	708	EPA 8270 - S
3-Nitroaniline	<354	µg/Kg	354	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1770	µg/Kg	1770	EPA 8270 - S
4-Bromophenylphenyl ether	<354	µg/Kg	354	EPA 8270 - S
4-Chloro-3-methylphenol	<354	µg/Kg	354	EPA 8270 - S
4-Chloroaniline	<354	µg/Kg	354	EPA 8270 - S
4-Chlorophenylphenyl ether	<354	µg/Kg	354	EPA 8270 - S
4-Nitroaniline	<354	µg/Kg	354	EPA 8270 - S
4-Nitrophenol	<884	µg/Kg	884	EPA 8270 - S
Acenaphthene	<88.4	µg/Kg	88.4	EPA 8270 - S
Acenaphthylene	<88.4	µg/Kg	88.4	EPA 8270 - S
Anthracene	<88.4	µg/Kg	88.4	EPA 8270 - S
Benzo(a)anthracene	<88.4	µg/Kg	88.4	EPA 8270 - S
Benzo(a)pyrene	217	µg/Kg	88.4	EPA 8270 - S
Benzo(g,h,i)perylene	338	µg/Kg	88.4	EPA 8270 - S
Benzofluoranthenes	323	µg/Kg	88.4	EPA 8270 - S
Benzoic acid	<1770	µg/Kg	1770	EPA 8270 - S
Benzyl alcohol	<442	µg/Kg	442	EPA 8270 - S
Benzyl butyl phthalate	1040	µg/Kg	442	EPA 8270 - S
Bis(2-chloroethoxy) methane	<354	µg/Kg	354	EPA 8270 - S
Bis(2-chloroethyl) ether	<354	µg/Kg	354	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8	/19/03 13:2	5 System ID	AH06906	Sample ID	FO030835
n an the second second is the second secon	arna fan Ganto anno ann an Sanna ann an Sana	a de de anticipier de la constituir de la c	n an	Page:	4
Proj./Company Name	: LOWER HARB	OR OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT558-0 3900 NW YEON			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY	PLAN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 _3			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH
0	anat an fallouis all and				

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroisopropyl) ether	<354	µg/Kg	354	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	917	µg/Kg	354	EPA 8270 - S
Chrysene	<88.4	µg/Kg	88.4	EPA 8270 - S
Di-n-butyl phthalate	<354	µg/Kg	354	EPA 8270 - S
Di-n-octyl phthalate	<354	µg/Kg	354	EPA 8270 - S
Dibenzo(a,h)anthracene	<88.4	µg/Kg	88.4	EPA 8270 - S
Dibenzofuran	<354	µg/Kg	354	EPA 8270 - S
Diethyl phthalate	<354	μg/Kg	354	EPA 8270 - S
Dimethyl phthalate	<354	µg/Kg	354	EPA 8270 - S
Fluoranthene	218	µg/Kg	88.4	EPA 8270 - S
Fluorene	<88.4	µg/Kg	88.4	EPA 8270 - S
Hexachlorobenzene	<354	µg/Kg	354	EPA 8270 - S
Hexachlorobutadiene	<354	µg/Kg	354	EPA 8270 - S
Hexachlorocyclopentadiene	<354	µg/Kg	354	EPA 8270 - S
Hexachloroethane	<354	µg/Kg	354	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	201	µg/Kg	88.4	EPA 8270 - S
Isophorone	<354	µg/Kg	354	EPA 8270 - S
N-Nitrosodi-n-propylamine	<354	µg/Kg	354	EPA 8270 - S
N-Nitrosodiphenylamine	<354	µg/Kg	354	EPA 8270 - S
Naphthalene	<88.4	µg/Kg	88.4	EPA 8270 - S
Nitrobenzene	<354	µg/Kg	354	EPA 8270 - S
Pentachlorophenol	<354	µg/Kg	354	EPA 8270 - S
Phenanthrene	143	µg/Kg	88.4	EPA 8270 - S
Phenol	<354	µg/Kg	354	EPA 8270 - S
Pyrene	190	µg/Kg	88.4	EPA 8270 - S

End of Report for Sample ID: FO030835

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 8/	19/03 14:39	System ID	AH06907	Sample ID	FO030836
Proj./Company Name: Address/Location:	LOWER HARBOR (IL-18-AAT463-0803 NW OF WESTERN			Page: Date Received: Sample Status:	1 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18 _4 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
METALS				
COPPER	53.5	mg/Kg	0.25	EPA 6020
ZINC	193	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	2.99	mg/Kg	0.50	EPA 6020
CADMIUM	0.43	mg/Kg	0.10	EPA 6020
CHROMIUM	77.0	mg/Kg	0.50	EPA 6020
LEAD	77.8	mg/Kg	0.10	EPA 6020
MERCURY	0.149	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<250	mg/Kg	250	NWTPH-Dx
DIESEL	<125	mg/Kg	125	NWTPH-Dx
KEROSENE	<125	mg/Kg	125	NWTPH-Dx
MOTOR OIL	1330	mg/Kg	250	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	13300	mg/Kg	87.2	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	11.9	µg/Kg	2.47	EPA 8081
4,4'-DDE	20.7	µg/Kg	2.47	EPA 8081
4,4'-DDT	<24.7	µg/Kg	24.7	EPA 8081
Aldrin	9.09	µg/Kg	1.24	EPA 8081
Alpha-BHC	<1.24	µg/Kg	1.24	EPA 8081
Alpha-Chlordane	9.14	µg/Kg	1.24	EPA 8081
Beta-BHC	<1.24	µg/Kg	1.24	EPA 8081
Delta-BHC	3.54	µg/Kg	1.24	EPA 8081
Dieldrin	13.9	µg/Kg	2.47	EPA 8081
Endosulfan I	<1.24	µg/Kg	1.24	EPA 8081
6543 N. Burlington Ave. / Portland OR 9	7203 (503) 823-5600	fax (503) 823-5656	Report Date:	9/16/03

Sample Date/Time 8/	/19/03 14:39	System ID	AH06907	Sample ID	FO030836
	a an an an an an ann an ann ann ann ann	n (f.). A MORRANG AN		Page:	2
Proj./Company Name: Address/Location:	LOWER HARBOR IL-18-AAT463-0803 NW OF WESTERN	5		Date Received: Sample Status:	8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18_4 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter Endosulfan II	Result <2.47	Units µg/Kg	MRL 2.47	Method EPA 8081
Endosulfan Sulfate	<2.47	μg/Kg	2.47	EPA 8081
Endrin	<2.47	μg/Kg	2.47	EPA 8081
Endrin Aldehyde	<2.47	μg/Kg	2.47	EPA 8081
Endrin Ketone	<2.47	μg/Kg	2.47	EPA 8081
Gamma-BHC(Lindane)	<1.24	µg/Kg	1.24	EPA 8081
Gamma-Chlordane	9.95	μg/Kg	1.24	EPA 8081
Heptachlor	<1.24	μg/Kg	1.24	EPA 8081
Heptachlor Epoxide	<1.24	μg/Kg	1.24	EPA 8081
Methoxychlor	<124	μg/Kg	124	EPA 8081
PCB 1016	<127	μg/Kg	127	EPA 8081
PCB 1221	<254	μg/Kg	254	EPA 8081
PCB 1232	<127	μg/Kg	127	EPA 8081
PCB 1242	<127	µg/Kg	127	EPA 8081
PCB 1248	<127	µg/Kg	127	EPA 8081
PCB 1254	187	µg/Kg	127	EPA 8081
PCB 1260	<127	µg/Kg	127	EPA 8081
Toxaphene	<124	µg/Kg	124	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<328	µg/Kg	328	EPA 8270 - S
1,2-Dichlorobenzene	<328	µg/Kg	328	EPA 8270 - S
1,3-Dichlorobenzene	<328	µg/Kg	328	EPA 8270 - S
1,4-Dichlorobenzene	<328	µg/Kg	328	EPA 8270 - S
2,4,5-Trichlorophenol	<328	µg/Kg	328	EPA 8270 - S
2,4,6-Trichlorophenol	<328	µg/Kg	328	EPA 8270 - S
2,4-Dichlorophenol	<328	µg/Kg	328	EPA 8270 - S
2,4-Dimethylphenol	<328	µg/Kg	328	EPA 8270 - S
2,4-Dinitrophenol	<1640	µg/Kg	1640	EPA 8270 - S
2,4-Dinitrotoluene	<328	µg/Kg	328	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/1	19/03 14:39	System ID	AH06907	Sample ID	FO030836	
Proj./Company Name: Address/Location:	LOWER HARBOR (IL-18-AAT463-0803 NW OF WESTERN			Page: Date Received: Sample Status:	3 8/21/03 COMPLETE AND VALIDATED	17 Jan 201 (1997) (1997)
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18_4 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH	

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
2,6-Dinitrotoluene	<328	µg/Kg	328	EPA 8270 - S
2-Chloronaphthalene	<81.9	µg/Kg	81.9	EPA 8270 - S
2-Chlorophenol	<328	µg/Kg	328	EPA 8270 - S
2-Methylnaphthalene	<81.9	µg/Kg	81.9	EPA 8270 - S
2-Methylphenol	<328	µg/Kg	328	EPA 8270 - S
2-Nitroaniline	<328	µg/Kg	328	EPA 8270 - S
2-Nitrophenol	<328	µg/Kg	328	EPA 8270 - S
3,3'-Dichlorobenzidine	<655	µg/Kg	655	EPA 8270 - S
3- & 4-Methylphenol	<655	µg/Kg	655	EPA 8270 - S
3-Nitroaniline	<328	µg/Kg	328	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1640	µg/Kg	1640	EPA 8270 - S
4-Bromophenylphenyl ether	<328	µg/Kg	328	EPA 8270 - S
4-Chloro-3-methylphenol	<328	µg/Kg	328	EPA 8270 - S
4-Chloroaniline	<328	µg/Kg	328	EPA 8270 - S
4-Chlorophenylphenyl ether	<328	µg/Kg	328	EPA 8270 - S
4-Nitroaniline	<328	µg/Kg	328	EPA 8270 - S
4-Nitrophenol	<819	µg/Kg	819	EPA 8270 - S
Acenaphthene	<81.9	µg/Kg	81.9	EPA 8270 - S
Acenaphthylene	<81.9	µg/Kg	81.9	EPA 8270 - S
Anthracene	<81.9	µg/Kg	81.9	EPA 8270 - S
Benzo(a)anthracene	<81.9	µg/Kg	81.9	EPA 8270 - S
Benzo(a)pyrene	<81.9	µg/Kg	81.9	EPA 8270 - S
Benzo(g,h,i)perylene	<81.9	µg/Kg	81.9	EPA 8270 - S
Benzofluoranthenes	<81.9	µg/Kg	81.9	EPA 8270 - S
Benzoic acid	<1640	µg/Kg	1640	EPA 8270 - S
Benzyl alcohol	<410	µg/Kg	410	EPA 8270 - S
Benzyl butyl phthalate	<410	µg/Kg	410	EPA 8270 - S
Bis(2-chloroethoxy) methane	<328	μg/Kg	328	EPA 8270 - S
Bis(2-chloroethyl) ether	<328	μg/Kg	328	EPA 8270 - S
. ,				

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8	3/19/03	14:39	System ID	AH06907	Sample ID	FO030836
na na sa	an an anns ann an an an an an an ann an ann an	an ann a' fhar naoc sonnach ann	 In the set success in users and denote place the local devices advance to a 	dalla fasti ana son a anna astronom na	Page:	4
Proj./Company Name	: LOWER H	IARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT	463-080	3		Sample Status:	COMPLETE AND
	NW OF W	ESTER	WIRE WORI	KS	•	VALIDATED
Proj Subcategory:	REGULA 1	ORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 4				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroisopropyl) ether	<328	µg/Kg	328	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1020	µg/Kg	328	EPA 8270 - S
Chrysene	<81.9	µg/Kg	81.9	EPA 8270 - S
Di-n-butyl phthalate	<328	µg/Kg	328	EPA 8270 - S
Di-n-octyl phthalate	<328	µg/Kg	328	EPA 8270 - S
Dibenzo(a,h)anthracene	<81.9	µg/Kg	81.9	EPA 8270 - S
Dibenzofuran	<328	µg/Kg	328	EPA 8270 - S
Diethyl phthalate	<328	µg/Kg	328	EPA 8270 - S
Dimethyl phthalate	<328	µg/Kg	328	EPA 8270 - S
Fluoranthene	196	µg/Kg	81.9	EPA 8270 - S
Fluorene	<81.9	µg/Kg	81.9	EPA 8270 - S
Hexachlorobenzene	<328	µg/Kg	328	EPA 8270 - S
Hexachlorobutadiene	<328	µg/Kg	328	EPA 8270 - S
Hexachlorocyclopentadiene	<328	µg/Kg	328	EPA 8270 - S
Hexachloroethane	<328	µg/Kg	328	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<81.9	µg/Kg	81.9	EPA 8270 - S
Isophorone	<328	µg/Kg	328	EPA 8270 - S
N-Nitrosodi-n-propylamine	<328	µg/Kg	328	EPA 8270 - S
N-Nitrosodiphenylamine	<328	µg/Kg	328	EPA 8270 - S
Naphthalene	<81.9	µg/Kg	81.9	EPA 8270 - S
Nitrobenzene	<328	µg/Kg	328	EPA 8270 - S
Pentachlorophenol	<328	µg/Kg	328	EPA 8270 - S
Phenanthrene	168	µg/Kg	81.9	EPA 8270 - S
Phenol	<328	µg/Kg	328	EPA 8270 - S
Pyrene	231	µg/Kg	81.9	EPA 8270 - S

End of Report for Sample ID: FO030836

Sample Date/Time 8/2	20/03 1	1:40 Syste	em ID	AH06908	Sample ID	FO030837
Proj./Company Name: Address/Location:	LOWER HAI IL-18-AAT45 4155 NW YE	3-0803	ALL SEI	D SAMP	Page: Date Received: Sample Status:	1 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATO 18_5 1020.001	RY PLAN & E'	VAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
METALS				
COPPER	185	mg/Kg	0.25	EPA 6020
ZINC	201	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	13.1	mg/Kg	0.50	EPA 6020
CADMIUM	0.54	mg/Kg	0.10	EPA 6020
CHROMIUM	59.8	mg/Kg	0.50	EPA 6020
LEAD	77.9	mg/Kg	0.10	EPA 6020
MERCURY	0.035	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<250	mg/Kg	250	NWTPH-Dx
DIESEL	<125	mg/Kg	125	NWTPH-Dx
KEROSENE	<125	mg/Kg	125	NWTPH-Dx
MOTOR OIL	442	mg/Kg	250	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	6700	mg/Kg	93.2	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<2.5	µg/Kg	2.5	EPA 8081
4,4'-DDE	<2.5	µg/Kg	2.5	EPA 8081
4,4'-DDT	<25	µg/Kg	25	EPA 8081
Aldrin	<1.25	µg/Kg	1.25	EPA 8081
Alpha-BHC	<1.25	µg/Kg	1.25	EPA 8081
Alpha-Chlordane	<1.25	µg/Kg	1.25	EPA 8081
Beta-BHC	<1.25	µg/Kg	1.25	EPA 8081
Delta-BHC	<1.25	µg/Kg	1.25	EPA 8081
Dieldrin	4.77	µg/Kg	2.25	EPA 8081
Endosulfan I	<1.25	µg/Kg	1.25	EPA 8081
6543 N. Burlington Ave. / Portland OR 97	7203 (503) 823-5600	fax (503) 823-5656	Report Date:	9/16/03

Sample Date/Time 8/2	20/03 11:40	System ID	AH06908	Sample ID	FO030837
Proj./Company Name: Address/Location:	: LOWER HARBOR (IL-18-AAT453-0803 4155 NW YEON		D SAMP	Page: Date Received: Sample Status:	2 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA 18 _5 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Endosulfan II	<2.5	μg/Kg	2.5	EPA 8081
Endosulfan Sulfate	<2.5	µg/Kg	2.5	EPA 8081
Endrin	<2.5	µg/Kg	2.5	EPA 8081
Endrin Aldehyde	<2.5	µg/Kg	2.5	EPA 8081
Endrin Ketone	<2.5	µg/Kg	2.5	EPA 8081
Gamma-BHC(Lindane)	<1.25	µg/Kg	1.25	EPA 8081
Gamma-Chlordane	<1.25	µg/Kg	1.25	EPA 8081
Heptachlor	<1.25	µg/Kg	1.25	EPA 8081
Heptachlor Epoxide	<1.25	µg/Kg	1.25	EPA 8081
Methoxychlor	<125	µg/Kg	125	EPA 8081
PCB 1016	<127	µg/Kg	127	EPA 8081
PCB 1221	<253	µg/Kg	253	EPA 8081
PCB 1232	<127	µg/Kg	127	EPA 8081
PCB 1242	<127	µg/Kg	127	EPA 8081
PCB 1248	<127	µg/Kg	127	EPA 8081
PCB 1254	<127	µg/Kg	127	EPA 8081
PCB 1260	<127	µg/Kg	127	EPA 8081
Toxaphene	<125	µg/Kg	125	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<338	µg/Kg	338	EPA 8270 - S
1,2-Dichlorobenzene	<338	µg/Kg	338	EPA 8270 - S
1,3-Dichlorobenzene	<338	µg/Kg	338	EPA 8270 - S
1,4-Dichlorobenzene	<338	µg/Kg	338	EPA 8270 - S
2,4,5-Trichlorophenol	<338	µg/Kg	338	EPA 8270 - S
2,4,6-Trichlorophenol	<338	µg/Kg	338	EPA 8270 - S
2,4-Dichlorophenol	<338	µg/Kg	338	EPA 8270 - S
2,4-Dimethylphenol	<338	µg/Kg	338	EPA 8270 - S
2,4-Dinitrophenol	<1690	µg/Kg	1690	EPA 8270 - S
2,4-Dinitrotoluene	<338	µg/Kg	338	EPA 8270 - S
CE42 N. Dunlington Aug. / Dantiered. Of		6 (FOO) 000 FOFO		

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/	20/03 11:40	System ID	AH06908	Sample ID	FO030837
анын маарил аларуу аларуу аларуу аларуу аларуу тоороо тоороонуу аларуу аларуу аларуу аларуу аларуу аларуу алар	n in 1967 na mainte ann an Annaichte an t-ann an Mhaireann an Annaichte Annaichte Annaichte Annaichte Annaichte	аларыналарын талап аларын жалары жаралар Т		Page:	ана, ч. чала лада маалала ча голандатела или или или или или или или или или и
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT453-0803 4155 NW YEON			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 5			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
2,6-Dinitrotoluene	<338	μg/Kg	338	EPA 8270 - S
2-Chloronaphthalene	<84.5	μg/Kg	84.5	EPA 8270 - S
2-Chlorophenol	<338	μg/Kg	338	EPA 8270 - S
2-Methylnaphthalene	<84.5	µg/Kg	84.5	EPA 8270 - S
2-Methylphenol	<338	µg/Kg	338	EPA 8270 - S
2-Nitroaniline	<338	µg/Kg	338	EPA 8270 - S
2-Nitrophenol	<338	µg/Kg	338	EPA 8270 - S
3,3'-Dichlorobenzidine	<676	µg/Kg	676	EPA 8270 - S
3- & 4-Methylphenol	<676	µg/Kg	676	EPA 8270 - S
3-Nitroaniline	<338	µg/Kg	338	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1690	µg/Kg	1690	EPA 8270 - S
4-Bromophenylphenyl ether	<338	µg/Kg	338	EPA 8270 - S
4-Chloro-3-methylphenol	<338	µg/Kg	338	EPA 8270 - S
4-Chloroaniline	<338	µg/Kg	338	EPA 8270 - S
4-Chlorophenylphenyl ether	<338	µg/Kg	338	EPA 8270 - S
4-Nitroaniline	<338	µg/Kg	338	EPA 8270 - S
4-Nitrophenol	<845	µg/Kg	845	EPA 8270 - S
Acenaphthene	<84.5	µg/Kg	84.5	EPA 8270 - S
Acenaphthylene	<84.5	µg/Kg	84.5	EPA 8270 - S
Anthracene	<84.5	µg/Kg	84.5	EPA 8270 - S
Benzo(a)anthracene	<84.5	µg/Kg	84.5	EPA 8270 - S
Benzo(a)pyrene	<84.5	µg/Kg	84.5	EPA 8270 - S
Benzo(g,h,i)perylene	<84.5	µg/Kg	84.5	EPA 8270 - S
Benzofluoranthenes	<84.5	µg/Kg	84.5	EPA 8270 - S
Benzoic acid	<1690	µg/Kg	1690	EPA 8270 - S
Benzyl alcohol	<422	µg/Kg	422	EPA 8270 - S
Benzyl butyl phthalate	<422	µg/Kg	422	EPA 8270 - S
Bis(2-chloroethoxy) methane	<338	µg/Kg	338	EPA 8270 - S
Bis(2-chloroethyl) ether	<338	µg/Kg	338	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/2	20/03 11:40	System ID	AH06908	Sample ID	FO030837
n name watan menangi akan kata dan dala dari dalam nami ini nangin minan ana angi	¹ · σ στη στη που προκεία στη στο πολογηθού το δημικά του που του το ματορική τη στημοποληγοριατία το τρομου τους	and the statement of the cost of the mean and strang	1.00 ° 1.000 for "No. 200 and an and a second s	Page:	4
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/21/03
	IL-18-AAT453-0803 4155 NW YEON	6		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PLA	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 5			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroisopropyl) ether	<338	μg/Kg	338	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	576	µg/Kg	338	EPA 8270 - S
Chrysene	<84.5	μg/Kg	84.5	EPA 8270 - S
Di-n-butyl phthalate	<338	µg/Kg	338	EPA 8270 - S
Di-n-octyl phthalate	<338	μg/Kg	338	EPA 8270 - S
Dibenzo(a,h)anthracene	<84.5	µg/Kg	84.5	EPA 8270 - S
Dibenzofuran	<338	µg/Kg	338	EPA 8270 - S
Diethyl phthalate	<338	µg/Kg	338	EPA 8270 - S
Dimethyl phthalate	<338	µg/Kg	338	EPA 8270 - S
Fluoranthene	134	µg/Kg	84.5	EPA 8270 - S
Fluorene	<84.5	µg/Kg	84.5	EPA 8270 - S
Hexachlorobenzene	<338	µg/Kg	338	EPA 8270 - S
Hexachlorobutadiene	<338	µg/Kg	338	EPA 8270 - S
Hexachlorocyclopentadiene	<338	µg/Kg	338	EPA 8270 - S
Hexachloroethane	<338	µg/Kg	338	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<84.5	µg/Kg	84.5	EPA 8270 - S
Isophorone	<338	µg/Kg	338	EPA 8270 - S
N-Nitrosodi-n-propylamine	<338	µg/Kg	338	EPA 8270 - S
N-Nitrosodiphenylamine	<338	µg/Kg	338	EPA 8270 - S
Naphthalene	<84.5	μg/Kg	84.5	EPA 8270 - S
Nitrobenzene	<338	µg/Kg	338	EPA 8270 - S
Pentachlorophenol	<338	µg/Kg	338	EPA 8270 - S
Phenanthrene	<84.5	µg/Kg	84.5	EPA 8270 - S
Phenol	<338	µg/Kg	338	EPA 8270 - S
Pyrene	195	µg/Kg	84.5	EPA 8270 - S

End of Report for Sample ID: FO030837

Sample Date/Time 8/2	20/03 19:45	System ID	AH06909	Sample ID	FO030838
Proj./Company Name: Address/Location:	LOWER HARBOR IL-18-AAT537-080 4700 NW FRONT	3	D SAMP	Page: Date Received: Sample Status:	1 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PL 18_6 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
METALS				
COPPER	101	mg/Kg	0.25	EPA 6020
ZINC	229	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	5.73	mg/Kg	0.50	EPA 6020
CADMIUM	0.63	mg/Kg	0.10	EPA 6020
CHROMIUM	54.9	mg/Kg	0.50	EPA 6020
LEAD	71.7	mg/Kg	0.10	EPA 6020
MERCURY	0.042	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	<500	mg/Kg	500	NWTPH-Dx
DIESEL	<250	mg/Kg	250	NWTPH-Dx
KEROSENE	<250	mg/Kg	250	NWTPH-Dx
MOTOR OIL	1410	mg/Kg	500	NWTPH-Dx
OUTSIDE				
TOTAL ORGANIC CARBON	13000	mg/Kg	102	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<2.46	µg/Kg	2.46	EPA 8081
4,4'-DDE	<2.46	µg/Kg	2.46	EPA 8081
4,4'-DDT	<24.6	µg/Kg	24.6	EPA 8081
Aldrin	6.7	µg/Kg	1.23	EPA 8081
Alpha-BHC	<1.23	µg/Kg	1.23	EPA 8081
Alpha-Chlordane	1.35	µg/Kg	1.23	EPA 8081
Beta-BHC	<1.23	µg/Kg	1.23	EPA 8081
Delta-BHC	<1.23	µg/Kg	1.23	EPA 8081
Dieldrin	6.39	µg/Kg	2.46	EPA 8081
Endosulfan I	<1.23	µg/Kg	1.23	EPA 8081
6543 N. Burlington Ave. / Portland OR 97	7203 (503) 823-5600	fax (503) 823-5656	Report Date:	9/16/03

Sample Date/Time	8/20/03	19:45	System ID	AH06909	Sample ID	FO030838
Proj./Company Nam Address/Location:	IL-18-A	R HARBOR AT537-0803 W FRONT /	3	D SAMP	Page: Date Received: Sample Status:	2 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:			AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH
Comments: QA/QC: E	Except as follo	ws, all analytic	al QA/QC criteria	were met for	this sample including h	olding times, calibration,

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
Endosulfan II	<2.46	µg/Kg	2.46	EPA 8081
Endosulfan Sulfate	<2.46	µg/Kg	2.46	EPA 8081
Endrin	<2.46	µg/Kg	2.46	EPA 8081
Endrin Aldehyde	<2.46	µg/Kg	2.46	EPA 8081
Endrin Ketone	<2.46	µg/Kg	2.46	EPA 8081
Gamma-BHC(Lindane)	<1.23	µg/Kg	1.23	EPA 8081
Gamma-Chlordane	2.29	µg/Kg	1.23	EPA 8081
Heptachlor	3.29	µg/Kg	1.23	EPA 8081
Heptachlor Epoxide	<1.23	µg/Kg	1.23	EPA 8081
Methoxychlor	<123	µg/Kg	1.23	EPA 8081
PCB 1016	<121	µg/Kg	121	EPA 8081
PCB 1221	<241	µg/Kg	241	EPA 8081
PCB 1232	<121	µg/Kg	121	EPA 8081
PCB 1242	<121	µg/Kg	121	EPA 8081
PCB 1248	<121	µg/Kg	121	EPA 8081
PCB 1254	130	µg/Kg	121	EPA 8081
PCB 1260	<121	µg/Kg	121	EPA 8081
Toxaphene	<123	µg/Kg	1.23	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<327	µg/Kg	327	EPA 8270 - S
1,2-Dichlorobenzene	<327	µg/Kg	327	EPA 8270 - S
1,3-Dichlorobenzene	<327	µg/Kg	327	EPA 8270 - S
1,4-Dichlorobenzene	<327	µg/Kg	327	EPA 8270 - S
2,4,5-Trichlorophenol	<327	µg/Kg	327	EPA 8270 - S
2,4,6-Trichlorophenol	<327	µg/Kg	327	EPA 8270 - S
2,4-Dichlorophenol	<327	µg/Kg	327	EPA 8270 - S
2,4-Dimethylphenol	<327	µg/Kg	327	EPA 8270 - S
2,4-Dinitrophenol	<1640	µg/Kg	1640	EPA 8270 - S
2,4-Dinitrotoluene	<327	µg/Kg	327	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

Sample Date/Time 8/2	20/03 19:45	System ID	AH06909	Sample ID	FO030838
יוקר קוןאר, ואאר אקשיאראור ראון קאווידי ישע ברוייב באין אינאר אברויאר בער ארג איני אייז אייז אייז אייז אייז איי	- 8. 6. 1. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ne ann achdollan ann an Saide a bh an an Abhailtean	n fannen an men ef manne anner i de e a rom. E e men en la de fa	Page:	3
Proj./Company Name:	LOWER HARBOR	DUTFALL SE	D SAMP	Date Received:	8/21/03
Address/Location:	IL-18-AAT537-0803 4700 NW FRONT A			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PLA	N & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	18 6			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter 2,6-Dinitrotoluene	. Result <327	Units	MRL 327	Method EPA 8270 - S
	<81.8	µg/Kg ug/Kg	81.8	EPA 8270 - S
2-Chloronaphthalene	<327	µg/Kg ₩a/Ka	01.0 327	
2-Chlorophenol		µg/Kg		EPA 8270 - S
2-Methylnaphthalene	<81.8	µg/Kg	81.8	EPA 8270 - S
2-Methylphenol	<327	µg/Kg	327	EPA 8270 - S
2-Nitroaniline	<327	µg/Kg	327	EPA 8270 - S
2-Nitrophenol	<327	µg/Kg	327	EPA 8270 - S
3,3'-Dichlorobenzidine	<654	µg/Kg	654	EPA 8270 - S
3- & 4-Methylphenol	<654	µg/Kg	654	EPA 8270 - S
3-Nitroaniline	<327	µg/Kg	327	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1640	µg/Kg	1640	EPA 8270 - S
4-Bromophenylphenyl ether	<327	µg/Kg	327	EPA 8270 - S
4-Chloro-3-methylphenol	<327	µg/Kg	327	EPA 8270 - S
4-Chloroaniline	<327	µg/Kg	327	EPA 8270 - S
4-Chlorophenylphenyl ether	<327	µg/Kg	327	EPA 8270 - S
4-Nitroaniline	<327	µg/Kg	327	EPA 8270 - S
4-Nitrophenol	<818	µg/Kg	818	EPA 8270 - S
Acenaphthene	<81.8	µg/Kg	81.8	EPA 8270 - S
Acenaphthylene	<81.8	µg/Kg	81.8	EPA 8270 - S
Anthracene	<81.8	µg/Kg	81.8	EPA 8270 - S
Benzo(a)anthracene	<81.8	µg/Kg	81.8	EPA 8270 - S
Benzo(a)pyrene	408	µg/Kg	81.8	EPA 8270 - S
Benzo(g,h,i)perylene	338	µg/Kg	81.8	EPA 8270 - S
Benzofluoranthenes	577	μg/Kg	81.8	EPA 8270 - S
Benzoic acid	<1640	μg/Kg	1640	EPA 8270 - S
Benzyl alcohol	<409	μg/Kg	409	EPA 8270 - S
Benzyl butyl phthalate	<409	µg/Kg	409	EPA 8270 - S
Bis(2-chloroethoxy) methane	<327	µg/Kg	327	EPA 8270 - S
Bis(2-chloroethyl) ether	<327	µg/Kg	327	EPA 8270 - S
· · · · · · · · · · · · · · · · · · ·		1.9.1.9		

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/16/03

City of Portland Water Pollution Control Laboratory Laboratory Analysis Report

Sample Date/Time 8/	20/03	19:45	System ID	AH06909	Sample ID	FO030838
Proj./Company Name Address/Location:	: LOWER H IL-18-AAT 4700 NW I	537-0803	6	D SAMP	Page: Date Received: Sample Status:	4 8/21/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT 18 _6 1020.001	ORY PLA	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH

Comments: QAQUC: Except as follows, all analytical QAQUC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Some Semi-volatile Organics surrogate recoveries were high due to matrix interference. Based on chromatographic evaluations, results for Pesticide compounds should be considered estimates due to matrix interferences.

Test Parameter	Result	Units	MRL	Method
Bis(2-chloroisopropyl) ether	<327	μg/Kg	327	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1640	µg/Kg	327	EPA 8270 - S
Chrysene	<81.8	µg/Kg	81.8	EPA 8270 - S
Di-n-butyl phthalate	558	µg/Kg	327	EPA 8270 - S
Di-n-octyl phthalate	<327	µg/Kg	327	EPA 8270 - S
Dibenzo(a,h)anthracene	<81.8	µg/Kg	81.8	EPA 8270 - S
Dibenzofuran	<327	µg/Kg	327	EPA 8270 - S
Diethyl phthalate	<327	µg/Kg	327	EPA 8270 - S
Dimethyl phthalate	<327	µg/Kg	327	EPA 8270 - S
Fluoranthene	339	µg/Kg	81.8	EPA 8270 - S
Fluorene	<81.8	µg/Kg	81.8	EPA 8270 - S
Hexachlorobenzene	<327	µg/Kg	327	EPA 8270 - S
Hexachlorobutadiene	<327	µg/Kg	327	EPA 8270 - S
Hexachlorocyclopentadiene	<327	µg/Kg	327	EPA 8270 - S
Hexachloroethane	<327	µg/Kg	327	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<81.8	µg/Kg	81.8	EPA 8270 - S
Isophorone	<327	µg/Kg	327	EPA 8270 - S
N-Nitrosodi-n-propylamine	<327	µg/Kg	327	EPA 8270 - S
N-Nitrosodiphenylamine	<327	µg/Kg	327	EPA 8270 - S
Naphthalene	<81.8	µg/Kg	81.8	EPA 8270 - S
Nitrobenzene	<327	µg/Kg	327	EPA 8270 - S
Pentachlorophenol	<327	µg/Kg	327	EPA 8270 - S
Phenanthrene	261	µg/Kg	81.8	EPA 8270 - S
Phenol	<327	µg/Kg	327	EPA 8270 - S
Pyrene	521	µg/Kg	81.8	EPA 8270 - S

End of Report for Sample ID: FO030838

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: September 11, 2003

TO: Howard Holmes North Creek Analytical 9405 S. W. Nimbus Ave. Beaverton, OR 97008

PROJECT: Lower Harbor of Sed. Sample

REPORT NUMBER: 115693

TOTAL NUMBER OF PAGES: _____

Enclosed are the test results for six samples received at STL Seattle on August 26, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerel

Tom Watson Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

115693-1 FO 030833 08-19-03 10:20 solid	<u>atrix</u>
115693-2FO 03083408-19-03 11:36solid115693-3FO 03083508-19-03 13:25solid115693-4FO 03083608-19-03 14:39solid115693-5FO 03083708-20-03 11:40solid115693-6FO 03083808-20-03 19:45solid	lid lid lid lid

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

ANALYTICAL NARRATIVE

Client: North Creek Analytical

Project: Lower Harbor of Sed. Sample

Date: September 11, 2003

Lab No.: 115693

Delivered By: Federal Express

<u>Condition of samples upon receipt</u>: Samples were received in good condition. Chain of custody was in order.

Sample Identification:

Lab. No.	Client_ID	Date Sampled	<u>Matrix</u>
115693-1	FO 030833	08-19-03	solid
115693-2	FO 030834	08-19-03	solid
115693-3	FO 030835	08-19-03	solid
115693-4	FO 030836	08-19-03	solid
115693-5	FO 030837	08-20-03	solid
115693-6	FO 030838	08-20-03	solid

SAMPLE PREPARATION AND ANALYSIS

ORGANOCHLORINE Pesticides 8081

Sample 115693-01, 115693-04 and 115693-06 have PCB with similar response times as Some pesticide compounds. Results are considered approximate values. The EOR CCV failed low for DDT and Methoxychlor due to the severe matrix of the sample. The samples were diluted and the DDT and Methoxychlor results were reported from the diluted run.

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Client Name	North Creek Analytical
Client ID:	FO 030833
Lab ID:	115693-01
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
% Solids	88.72
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	210	X9	35	144
Phenol - d5	132		39	140
Nitrobenzene - d5	298	X9	37	156
2 - Fluorobiphenyl	101		39	145
2,4,6 - Tribromophenol	91.9		25	148
p - Terphenyl - d14	363	Х9	39	158

		Result			
Analyte		(ug/kg)	PQL	MRL	Flags
Phenol	ND		298	149	
bis(2-Chloroethyl)ether	ND		298	149	
2-Chlorophenol	ND		298	149	
1,3-Dichlorobenzene	ND		298	149	
1,4-Dichlorobenzene	ND		298	149	
Benzyi Alcohol	ND		373	186	
1,2-Dichlorobenzene	ND		298	149	
2-Methylphenol	ND		298	149	
bis(2-Chloroisopropyl)ether	ND		298	149	
3-&4-Methylphenol	ND		596	298	
N-nitroso-di-n-propylamine	ND		298	149	
Hexachloroethane	ND		298	149	
Nitrobenzene	ND		298	149	
Isophorone	ND		298	149	
2-Nitrophenol	ND		298	149	
2,4-Dimethylphenol	ND		298	149	
Benzoic Acid		1990	1490	745	
bis(2-Chloroethoxy)methane	ND		298	149	
2,4-Dichlorophenol	ND		298	149	
1,2,4-Trichlorobenzene	ND		298	149	
Naphthalene		147	74.5	37.3	
4-Chloroaniline	ND		298	149	
Hexachlorobutadiene	ND		298	149	
4-Chloro-3-methylphenol	ND		298	149	
2-Methylnaphthalene		355	74.5	37.3	
Hexachlorocyclopentadiene	ND		298	149	

Semivolatile Organics by USEPA Method 8270 data for 115693-01 continued...

	Re	esult		
Analyte	(u)	g/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		298	149
2,4,5-Trichlorophenol	ND		298	149
2-Chloronaphthalene	ND		74.5	37.3
2-Nitroaniline	ND		298	149
Dimethylphthalate	ND		298	149
Acenaphthylene		478	74.5	37.3
2,6-Dinitrotoluene	ND		298	149
3-Nitroaniline	ND		298	149
Acenaphthene	ND		74.5	37.3
2,4-Dinitrophenol	ND		1490	745
4-Nitrophenol	ND		745	373
Dibenzofuran	ND		298	149
2,4-Dinitrotoluene	ND		298	149
Diethylphthalate	ND		298	149
4-Chlorophenylphenylether	ND		298	149
Fluorene	NĎ		74.5	37.3
4-Nitroaniline	ND		298	149
4,6-Dinitro-2-methylphenol	ND		1490	745
N-Nitrosodiphenylamine	ND		298	149
4-Bromophenylphenylether	ND		298	149
Hexachlorobenzene	ND		298	149
Pentachlorophenol	ND		298	149
Phenanthrene		445	74.5	37.3
Anthracene		260	74.5	37.3
Di-n-butylphthalate	ND		298	149
Fluoranthene		656	74.5	37.3
Pyrene		964	74.5	37.3
Butylbenzylphthalate	ND		373	186
3,3'-Dichlorobenzidine	ND		596	298
Benzo(a)anthracene	ND		74.5	37.3
Chrysene	ND		74.5	37.3
bis(2-Ethylhexyl)phthalate	ND		298	149
Di-n-octylphthalate	ND		298	149
Benzofluoranthenes		796	74.5	37.3
Benzo(a)pyrene		545	74.5	37.3
Indeno(1,2,3-cd)pyrene		1030	74.5	37.3
Dibenz(a,h)anthracene	ND		74.5	37.3
Benzo(g,h,i)perylene		1560	74.5	37.3

Client Name	North Creek Analytical
Client ID:	FO 030834
Lab ID:	115693-02
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
% Solids	76.85
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
2 - Fluorophenol	234	X9	35	144	
Phenol - d5	214	X9	39	140	
Nitrobenzene - d5	181	X9	37	156	
2 - Fluorobiphenyl	130		39	145	
2,4,6 - Tribromophenol	247	X9	25	148	
p - Terphenyl - d14	107		39	158	

		Result				
Analyte		(ug/kg)		PQL	MRL	Flags
Phenol	ND			347	173	
bis(2-Chloroethyl)ether	ND			347	173	
2-Chlorophenol	ND			347	173	
1,3-Dichlorobenzene	ND			347	173	
1,4-Dichlorobenzene	ND			347	173	
Benzyl Alcohol	ND			434	217	
1,2-Dichlorobenzene	ND			347	173	
2-Methylphenol	ND			347	173	
bis(2-Chloroisopropyl)ether	ND			347	173	
3-&4-Methylphenol		8	323	694	347	
N-nitroso-di-n-propylamine	ND			347	173	
Hexachioroethane	ND			347	173	
Nitrobenzene	ND			347	173	
Isophorone	ND			347	173	
2-Nitrophenol	ND			347	173	
2,4-Dimethylphenol	ND			347	173	
Benzoic Acid	ND			1730	867	
bis(2-Chloroethoxy)methane	ND			347	173	
2,4-Dichlorophenol	ND			347	173	
1,2,4-Trichlorobenzene	ND			347	173	
Naphthalene	ND			86.7	43.4	
4-Chloroaniline	ND			347	173	
Hexachlorobutadiene	ND			347	173	
4-Chloro-3-methylphenol	ND			347	173	
2-Methylnaphthalene	ND			86.7	43.4	
Hexachlorocyclopentadiene	ND			347	173	

Semivolatile Organics by USEPA Method 8270 data for 115693-02 continued...

	Res	sult		
Analyte	(ug/	'kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		347	173
2,4,5-Trichlorophenol	ND		347	173
2-Chloronaphthalene	ND		86.7	43.4
2-Nitroaniline	ND		347	173
Dimethylphthalate	ND		347	173
Acenaphthylene	ND		86.7	43.4
2,6-Dinitrotoluene	ND		347	173
3-Nitroaniline	ND		347	173
Acenaphthene	ND		86.7	43.4
2,4-Dinitrophenol	ND		1730	867
4-Nitrophenol	ND		867	434
Dibenzofuran	ND		347	173
2,4-Dinitrotoluene	ND		347	173
Diethylphthalate	ND		347	173
4-Chlorophenylphenylether	ND		347	173
Fluorene	ND		86.7	43.4
4-Nitroaniline	ND		347	173
4,6-Dinitro-2-methylphenol	ND		1730	867
N-Nitrosodiphenylamine	ND		347	173
4-Bromophenylphenylether	ND		347	173
Hexachlorobenzene	ND		347	173
Pentachlorophenol	ND		347	173
Phenanthrene	ND		86.7	43.4
Anthracene	ND		86.7	43.4
Di-n-butylphthalate	ND		347	173
Fluoranthene	ND		86.7	43.4
Pyrene	ND		86.7	43.4
Butylbenzylphthalate	ND		434	217
3,3'-Dichlorobenzidine	ND		694	347
Benzo(a)anthracene	ND		86.7	43.4
Chrysene	ND		86.7	43.4
bis(2-Ethylhexyl)phthalate		990	347	173
Di-n-octylphthalate	ND		347	173
Benzofluoranthenes	ND		86.7	43.4
Benzo(a)pyrene	ND		86.7	43.4
Indeno(1,2,3-cd)pyrene	ND		86.7	43.4
Dibenz(a,h)anthracene	ND		86.7	43.4
Benzo(g,h,i)perylene	ND		86.7	43.4

Client Name	North Creek Analytical
Client ID:	FO 030835
Lab ID:	115693-03
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
% Solids	73.5
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	126		35	144
Phenol - d5	174	X9	39	140
Nitrobenzene - d5	111		37	156
2 - Fluorobiphenyl	93		39	145
2,4,6 - Tribromophenol	118		25	148
p - Terphenyl - d14	154		39	158

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	354	177
bis(2-Chloroethyl)ether	ND	354	177
2-Chlorophenol	ND	354	177
1,3-Dichlorobenzene	ND	354	177
1,4-Dichlorobenzene	ND	354	177
Benzyl Alcohol	ND	442	221
1,2-Dichlorobenzene	ND	354	177
2-Methylphenol	ND	354	177
bis(2-Chloroisopropyl)ether	ND	354	177
3-&4-Methylphenol	ND	707	354
N-nitroso-di-n-propylamine	ND	354	177
Hexachloroethane	ND	354	177
Nitrobenzene	ND	354	177
Isophorone	ND	354	177
2-Nitrophenol	ND	354	177
2,4-Dimethylphenol	ND	354	177
Benzoic Acid	ND	1770	884
bis(2-Chloroethoxy)methane	ND	354	177
2,4-Dichlorophenol	ND	354	177
1,2,4-Trichlorobenzene	ND	354	177
Naphthalene	ND	88.4	44.2
4-Chloroaniline	ND	354	177
Hexachlorobutadiene	ND	354	177
4-Chloro-3-methylphenol	ND	354	177
2-Methylnaphthalene	ND	88.4	44.2
Hexachlorocyclopentadiene	ND	354	177

Semivolatile Organics by USEPA Method 8270 data for 115693-03 continued...

	R	sult		
Analyte	(u	g/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		354	177
2,4,5-Trichlorophenol	ND		354	177
2-Chloronaphthalene	ND		88.4	44.2
2-Nitroaniline	ND		354	177
Dimethylphthalate	ND		354	177
Acenaphthylene	ND		88.4	44.2
2,6-Dinitrotoluene	ND		354	177
3-Nitroaniline	ND		354	177
Acenaphthene	ND		88.4	44.2
2,4-Dinitrophenol	ND		1770	884
4-Nitrophenol	ND		884	442
Dibenzofuran	ND		354	177
2,4-Dinitrotoluene	ND		354	177
Diethylphthalate	ND		354	177
4-Chlorophenylphenylether	ND		354	177
Fluorene	ND		88.4	44.2
4-Nitroaniline	ND		354	177
4,6-Dinitro-2-methylphenol	ND		1770	884
N-Nitrosodiphenylamine	ND		354	177
4-Bromophenylphenylether	ND		354	177
Hexachlorobenzene	ND		354	177
Pentachlorophenol	ND		354	177
Phenanthrene		143	88.4	44.2
Anthracene		50.9	88.4	44.2
Di-n-butylphthalate	ND		354	177
Fluoranthene		218	88.4	44.2
Pyrene		190	88.4	44.2
Butylbenzylphthalate		1040	442	221
3,3'-Dichlorobenzidine	ND		707	354
Benzo(a)anthracene	ND		88.4	44.2
Chrysene	ND		88.4	44.2
bis(2-Ethylhexyl)phthalate	110	917	354	177
Di-n-octylphthalate	ND	• • • •	354	177
Benzofluoranthenes		323	88.4	44.2
Benzo(a)pyrene		217	88.4	44.2
Indeno(1,2,3-cd)pyrene		201	88.4	44.2
Dibenz(a,h)anthracene	ND		88.4	44.2
Benzo(g,h,i)perylene		338	88.4	44.2
Denzo(8, n, per pere		~~~	50.1	

Client Name	North Creek Analytical
Client 1D:	FO 030836
Lab ID:	115693-04
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
% Solids	78.57
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	111		35	144
Phenol - d5	227	X9	39	140
Nitrobenzene - d5	132		37	156
2 - Fluorobiphenyl	106		39	145
2,4,6 - Tribromophenol	154	X9	25	148
p - Terphenyl - d14	141		39	158
	,	X9		

		Result			
Analyte		(ug/kg)	PQL	MRL	Flags
Phenol	ND		328	164	
bis(2-Chloroethyl)ether	ND		328	164	
2-Chlorophenol	ND		328	164	
1,3-Dichlorobenzene	ND		328	164	
1,4-Dichlorobenzene	ND		328	164	
Benzyl Alcohol	ND		410	205	
1,2-Dichlorobenzene	ND		328	16 4	
2-Methylphenol	ND		328	164	
bis(2-Chloroisopropyl)ether	ND		328	164	
3-&4-Methylphenol		624	655	328	J
N-nitroso-di-n-propylamine	ND		328	164	
Hexachloroethane	ND		328	164	
Nitrobenzene	ND		328	164	
Isophorone	ND		328	164	
2-Nitrophenol	ND		328	164	
2,4-Dimethylphenol	ND		328	164	
Benzoic Acid	ND		1640	819	
bis(2-Chloroethoxy)methane	ND		328	164	
2,4-Dichlorophenol	ND		328	164	
1,2,4-Trichlorobenzene	ND		328	16 4	
Naphthalene	ND		81.9	41	
4-Chloroaniline	ND		328	164	
Hexachlorobutadiene	ND		328	164	
4-Chloro-3-methylphenol	ND		328	164	
2-Methylnaphthalene	ND		81.9	41	
Hexachlorocyclopentadiene	ND		328	164	

Semivolatile Organics by USEPA Method 8270 data for 115693-04 continued...

Analyte(ug/kg)PQLMR2,4,6-TrichlorophenolND3282,4,5-TrichlorophenolND3282-ChloronaphthaleneND81.92-NitroanilineND328DimethylphthalateND328AcenaphthyleneND81.9	L 164 164 164 164 164 164 164 164 41 819
2,4,5-TrichlorophenolND3282-ChloronaphthaleneND81.92-NitroanilineND328DimethylphthalateND328	164 41 164 164 41 164 164 41
2-ChloronaphthaleneND81.92-NitroanilineND328DimethylphthalateND328	41 164 164 41 164 164 41
2-NitroanilineND328DimethylphthalateND328	164 164 41 164 164 41
Dimethylphthalate ND 328	164 41 164 164 41
• •	41 164 164 41
Acenanbtbylene ND 81.9	164 164 41
1100 ULO	164 41
2,6-Dinitrotoluene ND 328	41
3-Nitroaniline ND 328	
Acenaphthene ND 81.9	819
2,4-Dinitrophenol ND 1640	
4-Nitrophenol ND 819	410
Dibenzofuran ND 328	164
2,4-Dinitrotoluene ND 328	164
Diethylphthalate ND 328	164
4-Chlorophenylphenylether ND 328	164
Fluorene ND 81.9	41
4-Nitroaniline ND 328	164
4,6-Dinitro-2-methylphenol ND 1640	819
N-Nitrosodiphenylamine ND 328	164
4-Bromophenylphenylether ND 328	164
Hexachlorobenzene ND 328	164
Pentachlorophenol ND 328	164
Phenanthrene 168 81.9	41
Anthracene ND 81.9	41
Di-n-butylphthalate ND 328	164
Fluoranthene 196 81.9	41
Pyrene 231 81.9	41
Butylbenzylphthalate ND 410	205
3,3'-Dichlorobenzidine ND 655	328
Benzo(a)anthracene ND 81.9	41
Chrysene ND 81.9	41
bis(2-Ethylhexyl)phthalate 1020 328	164
Di-n-octylphthalate ND 328	164
Benzofluoranthenes ND 81.9	41
Benzo(a)pyrene ND 81.9	41
Indeno(1,2,3-cd)pyrene ND 81.9	41
Dibenz(a,h)anthracene ND 81.9	41
Benzo(g,h,i)perylene ND 81.9	41

Client Name	North Creek Analytical
Client ID:	FO 030837
Lab ID:	115693-05
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/28/2003
% Solids	78.09
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	202	X9	35	144
Phenol - d5	187	X9	39	140
Nitrobenzene - d5	162	X9	37	156
2 - Fluorobiphenyl	124		39	145
2,4,6 - Tribromophenol	104		25	148
p - Terphenyl - d14	159	X9	39	158

	Result			
Analyte	(ug/kg)	PQL	MRL F	lags
Phenol	ND	338	169	
bis(2-Chloroethyl)ether	ND	338	169	
2-Chlorophenol	ND	338	169	
1,3-Dichlorobenzene	ND	338	169	
1,4-Dichlorobenzene	ND	338	169	
Benzyl Alcohol	ND	422	211	
1,2-Dichlorobenzene	ND	338	169	
2-Methylphenol	ND	338	169	
bis(2-Chloroisopropyl)ether	ND	338	169	
3-&4-Methylphenol	ND	676	338	
N-nitroso-di-n-propylamine	ND	338	169	
Hexachloroethane	ND	338	169	
Nitrobenzene	ND	338	169	
Isophorone	ND	338	169	
2-Nitrophenol	ND	338	169	
2,4-Dimethylphenol	ND	338	169	
Benzoic Acid	ND	1690	845	
bis(2-Chloroethoxy)methane	ND	338	169	
2,4-Dichlorophenol	ND	338	169	
1,2,4-Trichlorobenzene	ND	338	169	
Naphthalene	ND	84.5	42.2	
4-Chloroaniline	ND	338	169	
Hexachlorobutadiene	ND	338	169	
4-Chloro-3-methylphenol	ND	338	169	
2-Methylnaphthalene	ND	84.5	42.2	
Hexachlorocyclopentadiene	ND	338	169	

Semivolatile Organics by USEPA Method 8270 data for 115693-05 continued...

	Re	esult		
Analyte	(u)	g/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		338	169
2,4,5-Trichlorophenol	ND		338	169
2-Chloronaphthalene	ND		84.5	42.2
2-Nitroaniline	ND		338	169
Dimethylphthalate	ND		338	169
Acenaphthylene	ND		84.5	42.2
2,6-Dinitrotoluene	ND		338	169
3-Nitroaniline	ND		338	169
Acenaphthene	ND		84.5	42.2
2,4-Dinitrophenol	ND		1690	845
4-Nitrophenol	ND		845	422
Dibenzofuran	ND		338	169
2,4-Dinitrotoluene	ND		338	169
Diethylphthalate	ND		338	169
4-Chlorophenylphenylether	ND		338	169
Fluorene		43.2	84.5	42.2
4-Nitroaniline	ND		338	169
4,6-Dinitro-2-methylphenol	ND		1690	845
N-Nitrosodiphenylamine	ND		338	169
4-Bromophenylphenylether	ND		338	169
Hexachlorobenzene	ND		338	169
Pentachlorophenol	ND		338	· 169
Phenanthrene	ND		84.5	42.2
Anthracene	ND		84.5	42.2
Di-n-butyiphthalate	ND		338	169
Fluoranthene		134	84,5	42.2
Pyrene		195	84.5	42.2
Butylbenzylphthalate	ND		422	211
3,3'-Dichlorobenzidine	ND		676	338
Benzo(a)anthracene	ND		84.5	42.2
Chrysene	ND		84.5	42.2
bis(2-Ethylhexyl)phthalate		576	338	169
Di-n-octylphthalate	ND		338	169
Benzofluoranthenes	ND		84.5	42.2
Benzo(a)pyrene	ND		84.5	42.2
Indeno(1,2,3-cd)pyrene	ND		84.5	42.2
Dibenz(a,h)anthracene	ND		84.5	42.2
Benzo(g,h,i)perylene	ND		84.5	42.2

J

Client Name	North Creek Analytical
Client ID:	FO 030838
Lab ID:	115693-06
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	8/28/2003
% Solids	80.39
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	183	X9	35	144
Phenol - d5	238	X9	39	140
Nitrobenzene - d5	188	X9	37	156
2 - Fluorobiphenyl	142		39	145
2,4,6 - Tribromophenol	156	X9	25	148
p - Terphenyl - d14	129		39	158

	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Phenol	ND	327	164	
bis(2-Chloroethyl)ether	ND	327	164	
2-Chlorophenol	ND	327	164	
1,3-Dichlorobenzene	ND	327	164	
1,4-Dichlorobenzene	ND	327	164	
Benzyl Alcohol	ND	409	205	
1,2-Dichlorobenzene	ND	327	164	
2-Methylphenol	ND	327	164	
bis(2-Chloroisopropyl)ether	ND	327	164	
3-&4-Methylphenol	ND	654	327	
N-nitroso-di-n-propylamine	ND	327	164	
Hexachloroethane	ND	327	164	
Nitrobenzene	ND	327	164	
Isophorone	ND	327	164	
2-Nitrophenol	ND	327	164	
2,4-Dimethylphenol	ND	327	164	
Benzoic Acid	ND	1640	818	
bis(2-Chloroethoxy)methane	ND	327	164	
2,4-Dichlorophenol	NĎ	327	164	
1,2,4-Trichlorobenzene	ND	327	164	
Naphthalene	ND	81.8	40.9	
4-Chloroaniline	ND	327	164	
Hexachlorobutadiene	ND	327	164	
4-Chloro-3-methylphenol	ND	327	1 64	
2-Methylnaphthalene	ND	81.8	40.9	
Hexachlorocyclopentadiene	ND	327	164	

Semivolatile Organics by USEPA Method 8270 data for 115693-06 continued...

		Result			
Analyte		(ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	ND		327	164	
2,4,5-Trichlorophenol	ND		327	164	
2-Chloronaphthalene	ND		81.8	40.9	
2-Nitroaniline	ND		327	164	
Dimethylphthalate	ND		327	164	
Acenaphthylene	ND		81.8	40.9	
2,6-Dinitrotoluene	ND		327	164	
3-Nitroaniline	ND		327	164	
Acenaphthene		52.9	81.8	40.9	J
2,4-Dinitrophenol	ND		1640	818	
4-Nitrophenol	ND		818	409	
Dibenzofuran	ND		327	164	
2,4-Dinitrotoluene	ND		327	164	
Diethylphthalate	ND		327	164	
4-Chlorophenylphenylether	ND		327	164	
Fluorene		43.2	81.8	40.9	J
4-Nitroaniline	ND		327	164	
4,6-Dinitro-2-methylphenol	ND		1640	818	
N-Nitrosodiphenylamine	ND		327	164	
4-Bromophenylphenylether	ND		327	164	
Hexachlorobenzene	ND		327	164	
Pentachlorophenol	ND		327	164	
Phenanthrene		261	81.8	40.9	
Anthracene		54	81.8	40.9	J
Di-n-butylphthalate		558	327	164	
Fluoranthene		339	81.8	40.9	
Pyrene		521	81.8	40.9	
Butylbenzylphthalate	ND		409	205	
3,3'-Dichlorobenzidine	ND		654	327	
Benzo(a)anthracene	ND		81.8	40.9	
Chrysene	ND		81.8	40.9	
bis(2-Ethylhexyl)phthalate		1640	327	164	
Di-n-octylphthalate	ND		327	164	
Benzofluoranthenes		577	81.8	40.9	
Benzo(a)pyrene		408	81.8	40.9	
Indeno(1,2,3-cd)pyrene	ND		81.8	40.9	
Dibenz(a,h)anthracene	ND		81.8	40,9	
Benzo(g,h,i)perylene		338	81.8	40.9	
= = /03-134 1.44-					

Client Name	North Creek Analytical
Client ID:	FO 030833
Lab ID:	115693-01
Date Received:	8/26/03
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
% Solids	88.72
Dilution Factor	5

PCBs by USEPA Method 8082

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	77.1		72	114
Decachlorobiphenyl	94.8		55	133

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.107	0.0533	
Aroclor 1221	ND	0.213	0.107	<i>;</i>
Aroclor 1232	ND	0.107	0.0533	
Aroclor 1242	ND	0.107	0.0533	
Aroclor 1248	ND	0.107	0.0533	
Aroclor 1254	ND	0.107	0.0533	
Aroclor 1260	0.624	0.107	0.0533	

Client Name	North Creek Analytical
Client ID:	FO 030834
Lab ID:	115693-02
Date Received:	8/26/03
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
% Solids	76.85
Dilution Factor	5

PCBs by USEPA Method 8082

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	87.8		72	114
Decachlorobiphenyl	98		55	133

	Result			
Analyte	(mg/kg)	PQL	MRL I	Flags
Aroclor 1016	ND	0.122	0.0611	
Aroclor 1221	ND	0.244	0.122	
Aroclor 1232	ND	0.122	0.0611	
Aroclor 1242	ND	0.122	0.0611	
Aroclor 1248	ND	0.122	0.0611	
Aroclor 1254	ND	0.122	0.0611	
Aroclor 1260	ND	0.122	0.0611	

Client Name	North Creek Analytical
Client ID:	FO 030835
Lab ID:	115693-03
Date Received:	8/26/03
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
% Solids	73.5
Dilution Factor	5

PCBs by USEPA Method 8082

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	96.6		72	114
Decachlorobiphenyl	105		55	133

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.132	0.0662	
Aroclor 1221	ND	0.265	0.132	
Aroclor 1232	ND	0.132	0.0662	
Aroclor 1242	ND	0.132	0.0662	
Aroclor 1248	ND	0.132	0.0662	
Aroclor 1254	ND	0.132	0.0662	
Aroclor 1260	ND	0.132	0.0662	

Client Name	North Creek Analytical
Client ID:	FO 030836
Lab ID:	115693-04
Date Received:	8/26/03
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
% Solids	78.57
Dilution Factor	5

PCBs by USEPA Method 8082

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	99.8		72	114
Decachlorobiphenyl	110		55	133

•	R	esult			
Analyte	(m)	ıg/kg)	PQL	MRL.	Flags
Aroclor 1016	ND		0.127	0.0636	
Aroclor 1221	ND		0.254	0.127	
Aroclor 1232	ND		0.127	0.0636	
Aroclor 1242	ND		0.127	0.0636	
Aroclor 1248	ND		0.127	0.0636	
Aroclor 1254		0.187	0.127	0.0636	
Aroclor 1260	ND		0.127	0.0636	

Client Name	North Creek Analytical			
Client ID:	FO 030837			
Lab ID:	115693-05			
Date Received:	8/26/03			
Date Prepared:	8/27/03			
Date Analyzed:	8/28/03			
% Solids	78.09			
Dilution Factor	5			

PCBs by USEPA Method 8082

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	95.2		72	114
Decachlorobiphenyl	102		55	133

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.127	0.0633	
Aroclor 1221	ND	0.253	0.127	
Aroclor 1232	ND	0.127	0.0633	
Aroclor 1242	ND	0.127	0.0633	
Aroclor 1248	ND	0.127	0.0633	
Aroclor 1254	ND	0.127	0.0633	
Aroclor 1260	ND	0.127	0.0633	

Client Name	North Creek Analytical
Client ID:	FO 030838
Lab ID:	115693-06
Date Received:	8/26/03
Date Prepared:	8/27/03
Date Analyzed:	8/29/03
% Solids	80.39
Dilution Factor	5

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	90.3		72	114
Decachlorobiphenyl	100		55	133

	Re	sult			
Analyte	(mg	g/kg)	PQL	MRL	Flags
Aroclor 1016	ND		0.121	0.0604	
Aroclor 1221	ND		0.241	0.121	
Aroclor 1232	ND		0.121	0.0604	
Aroclor 1242	ND		0.121	0.0604	
Aroclor 1248	ND		0.121	0.0604	
Aroclor 1254		0.13	0.121	0.0604	
Aroclor 1260	ND		0.121	0.0604	

Client Name	North Creek Analytical
Client ID:	FO 030833
Lab ID:	115693-01
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
% Solids	88.72
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081A

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	72.4		57	153
Decachlorobiphenyl	65.2		57	145
۶ ⁴				

	Result	t			
Analyte	(ug/kg)	PQL	MRL	Flags
Aldrin		35.8	1.12	0.56	C2,N
alpha-BHC	ND		1.12	0.56	
beta-BHC	ND		1.12	0.56	
delta-BHC		25.9	1.12	0.56	C2,N
gamma-BHC (Lindane)		1.87	1.12	0.56	C1,N
4,4'-DDD		80.4	2.24	1.12	C1,N
4,4'-DDE		20.7	2.24	1.12	C2,N
4,4'-DDT		284	22.4	11.2	C1,D10,N
Dieldrin		45.7	2.24	1.12	C2,N
Endosulfan I		5.82	1.12	0.56	C2,N
Endosulfan II	ND		2.24	1.12	
Endosulfan sulfate	ND		2.24	1.12	
Endrin		70.4	2.24	1.12	C2,N
Endrin aldehyde		198	2.24	1.12	C2,E,N
Heptachlor		3.03	1.12	0.56	C2,N
Heptachlor epoxide	ND		1.12	0.56	
Methoxychlor	ND		112	56	
Endrin ketone	ND		2.24	1.12	
Toxaphene	ND		112	56	
alpha-Chlordane		152	1.12	0.56	C2,D10,N
gamma-Chlordane		512	1.12	0.56	C1,D10,N

Client Name	North Creek Analytical
Client ID:	FO 030834
Lab ID:	115693-02
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
% Solids	76.85
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081A

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	140		57	153
Decachlorobiphenyl	67.3		57	145

Sample results are on a dry weight basis.

	R	esult			
Analyte	(ม	g/kg)	PQL	MRL	Flags
Aldrin	ND	·	12.7	12.7	
alpha-BHC	ND		1.27	1.27	
beta-BHC	ND		1.27	1.27	
delta-BHC	ND		1.27	1.27	
gamma-BHC (Lindane)	ND		1.27	1.27	
4,4'-DDD	ND		2.53	2.53	
4,4'-DDE	ND		2.53	2.53	
4,4'-DDT	ND		25.3	25.3	
Dieldrin	ND		2.53	2.53	
Endosulfan I	ND		1.27	1.27	
Endosulfan II	ND		2.53	2.53	
Endosulfan sulfate	ND		2.53	2.53	
Endrin	ND		2.53	2.53	
Endrin aldehyde	ND		2.53	2.53	
Heptachlor	ND		1.27	1.27	
Heptachlor epoxide	ND		1.27	1.27	
Methoxychlor	ND		127	127	
Endrin ketone	ND		2.53	2.53	
Toxaphene	ND		127	127	
alpha-Chlordane	ND		1.27	1.27	
gamma-Chlordane	ND		1.27	1.27	

.

Client Name	North Creek Analytical
Client ID:	FO 030835
Lab ID:	115693-03
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
% Solids	73.5
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081A

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	78.4		57	153
Decachlorobiphenyl	71.7		57	145

		Result			
Analyte	((ug/kg)	PQL	MRL	Flags
Aldrin	ND		1.3	1.3	
alpha-BHC	ND		1.3	1.3	
beta-BHC	ND		1.3	1.3	
delta-BHC	ND		1.3	1.3	
gamma-BHC (Lindane)	ND		1.3	1.3	
4,4'-DDD	ND		2.61	2.61	
4,4'-DDE	ND		2.61	2.61	
4,4'-DDT	ND		26.1	26.1	
Dieldrin	ND		2.61	2.61	
Endosulfan I	ND		1.3	1.3	
Endosulfan II	ND		2.61	2.61	
Endosulfan sulfate	ND		2.61	2.61	
Endrin	ND		2.61	2.61	
Endrin aldehyde	ND		2.61	2.61	
Heptachlor	ND		1.3	1.3	
Heptachlor epoxide	ND		1.3	1.3	
Methoxychlor	ND		130	130	
Endrin ketone	ND		2.61	2.61	
Toxaphene	ND		130	130	
alpha-Chlordane	ND		1.3	1.3	
gamma-Chlordane	ND		1.3	1.3	

Client Name	North Creek Analytical
Client ID:	FO 030836
Lab ID:	115693-04
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
% Solids	78.57
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081A

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	69.8		57	153
Decachlorobiphenyl	56.3	X9	57	145

	1	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Aldrin		9.09	1.24	1.24	C1,N
alpha-BHC	ND		1.24	1.24	
beta-BHC	ND		1.24	1.24	
delta-BHC		3.54	1.24	1.24	C2,N
gamma-BHC (Lindane)	ND		1.24	1.24	
4,4'-DDD		1 1.9	2.47	2.47	C1,N
4,4'-DDE		20.7	2.47	2.47	C1,N
4,4'-DDT	ND		24.7	24.7	
Dieldrin		13.9	2.47	2.47	C2,N
Endosulfan I	ND		1.24	1.24	
Endosulfan II	ND		2.47	2.47	
Endosulfan sulfate	ND		2.47	2.47	
Endrin	ND		2.47	2.47	
Endrin aldehyde	ND		2.47	2.47	
Heptachlor	ND		1.24	1.24	
Heptachlor epoxide	ND		1.24	1.24	
Methoxychlor	ND		124	124	
Endrin ketone	ND		2.47	2.47	
Toxaphene	ND		124	124	
alpha-Chlordane		9.14	1.24	1.24	C2,N
gamma-Chlordane		9.95	1.24	1.24	C1,N

Client Name	North Creek Analytical
Client ID:	FO 030837
Lab ID:	115693-05
Date Received:	8/26/2003
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
% Solids	78.09
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	69.4		57	153
Decachlorobiphenyl	81		57	145

Sample results are on a dry weight basis.

.

		Result			
Analyte		(ug/kg)	PQL	MRL	Flags
Aldrin	ND		1.25	1.25	
alpha-BHC	ND		1.25	1.25	
beta-BHC	ND		1.25	1.25	
delta-BHC	ND		1.25	1.25	
gamma-BHC (Lindane)	ND		1.25	1.25	
4,4'-DDD	ND		2.5	2.5	
4,4'-DDE	ND		2.5	2.5	
4,4'-DDT	ND		25	25	
Dieldrin		4.77	2.5	2.5	C2
Endosulfan I	ND		1.25	1.25	
Endosulfan II	ND		2.5	2.5	
Endosulfan sulfate	ND		2.5	2.5	
Endrin	ND		2.5	2.5	
Endrin aldehyde	ND		2.5	2.5	
Heptachlor	ND		1.25	1.25	
Heptachlor epoxide	NĎ		1.25	1.25	
Methoxychlor	ND		125	125	
Endrin ketone	ND		2.5	2.5	
Toxaphene	ND		125	125	
alpha-Chlordane	ND		1.25	1.25	
gamma-Chlordane	ND		1.25	1.25	

Client Name	North Creek Analytical		
Client ID:	FO 030838		
Lab ID:	115693-06		
Date Received:	8/26/2003		
Date Prepared:	8/27/2003		
Date Analyzed:	9/6/2003		
% Solids	80.39		
Dilution Factor	1		

Organochlorine Pesticides by USEPA Methods 8081A

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	74.6		57	153
Decachlorobiphenyl	50.5	X9	57	145

	F	Result			
Analyte	(1	ug/kg)	PQL	MRL	Flags
Aldrin		6.7	1.23	1.23	C2,N
alpha-BHC	ND		1.23	1.23	
beta-BHC	ND		1.23	1.23	
delta-BHC	NĎ		1.23	1.23	
gamma-BHC (Lindane)	ND		1.23	1.23	
4,4'-DDD	ND		2.46	2.46	
4,4'-DDE	ND		2.46	2.46	
4,4'-DDT	ND		24.6	24.6	
Dieldrin		6.39	2.46	2.46	C2,N
Endosulfan I	ND		1.23	1.23	
Endosulfan II	ND		2.46	2.46	
Endosulfan sulfate	ND		2.46	2.46	
Endrin	ND		2.46	2.46	
Endrin aldehyde	ND		2.46	2.46	
Heptachlor		3.29	1.23	1.23	C2,N
Heptachlor epoxide	ND		1.23	1.23	
Methoxychlor	ND		123	123	
Endrin ketone	ND		2.46	2.46	
Toxaphene	ND		123	123	
alpha-Chlordane		1.35	1.23	1.23	C1,N
gamma-Chlordane		2.29	1.23	1.23	C2,N

Client Name	North Creek Analytical
Client ID:	FO 030833
Lab ID:	115693-01
Date Received:	8/26/03
Date Prepared:	9/9/03
Date Analyzed:	9/9/03
% Solids	88.72
Dilution Factor	1

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

1

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
тос	52900	127	50.8
•			

1

Client Name	North Creek Analytical
Client ID:	FO 030834
Lab ID:	115693-02
Date Received:	8/26/03
Date Prepared:	9/9/03
Date Analyzed:	9/9/03
% Solids	76.85
Dilution Factor	1

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	5530	87.7	35.1

Client Name	North Creek Analytical
Client ID:	FO 030835
Lab ID:	115693-03
Date Received:	8/26/03
Date Prepared:	9/9/03
Date Analyzed:	9/9/03
% Solids	73.5
Dilution Factor	1

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
тос	8030	87.2	34.9

Client Name	North Creek Analytical
Client ID:	FO 030836
Lab ID:	115693-04
Date Received:	8/26/03
Date Prepared:	9/9/03
Date Analyzed:	9/9/03
% Solids	78.57
Dilution Factor	1

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

Analyte TOC

Result		
(mg/kg)	PQL	
13300	87.2	

٠

Flags

MDL

34.9

Client Name	North Creek Analytical		
Client ID:	FO 030837		
Lab ID:	115693-05		
Date Received:	8/26/03		
Date Prepared:	9/9/03		
Date Analyzed:	9/9/03		
% Solids	78.09		
Dilution Factor	1		

Total Organic Carbon by USEPA Method 9060

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	6700	93.2	37.3

Client Name North Creek Analytical Client ID: FO 030838 Lab ID: 115693-06 Date Received: 8/26/03 Date Prepared: 9/9/03 9/9/03 Date Analyzed: 80.39 % Solids **Dilution Factor**

Total Organic Carbon by USEPA Method 9060

Sample results are on a dry weight basis.

Analyte TOC

Result (mg/kg) 13000

PQL 102

1

MDL Flags 40.8

Lab ID:	Method Blank - SS0917
Date Received:	-
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
% Solids	
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	96.1		35	144
Phenol - d5	103		39	140
Nitrobenzene - d5	96.4		37	156
2 - Fluorobiphenyl	67.9		39	145
2,4,6 - Tribromophenol	84.3		25	148
p - Terphenyl - d14	131		39	158

Sample results are on an as received basis.

	Result		
Analyte	(ug/k g)	PQL	MRL Flags
Phenol	ND	13.3	6.67
bis(2-Chloroethyl)ether	ND	13.3	6.67
2-Chlorophenol	ND	13.3	6.67
1,3-Dichlorobenzene	ND	13.3	6.67
1,4-Dichlorobenzene	ND	13.3	6.67
Benzyl Alcohol	ND	16.7	8.33
1,2-Dichlorobenzene	ND	13.3	6.67
2-Methylphenol	ND	13.3	6.67
bis(2-Chloroisopropyl)ether	ND	13.3	6.67
3-&4-Methylphenol	ND	26.7	13.3
N-nitroso-di-n-propylamine	ND	13.3	6.67
Hexachloroethane	ND	13.3	6.67
Nitrobenzene	ND	13.3	6.67
Isophorone	ND	13.3	6.67
2-Nitrophenol	ND	13.3	6.67
2,4-Dimethylphenol	ND	13.3	6.67
Benzoic Acid	ND	66.7	33.3
bis(2-Chloroethoxy)methane	ND	13.3	6.67
2,4-Dichlorophenol	ND	13.3	6.67
1,2,4-Trichlorobenzene	ND	13.3	6.67
Naphthalene	ND	3.33	1.67
4-Chloroaniline	ND	13.3	6.67
Hexachlorobutadiene	ND	13.3	6.67
4-Chioro-3-methylphenol	ND	13.3	6.67
2-Methylnaphthalene	ND	3.33	1.67
Hexachlorocyclopentadiene	ND	13.3	6.67

Semivolatile Organics by USEPA Method 8270 data for SS0917 continued...

2,4,6-Trichlorophenol ND 13.3 6.67 2,4,5-Trichlorophenol ND 13.3 6.67 2-Chloronaphthalene ND 3.33 1.67 2-Nitroaniline ND 13.3 6.67 Dimethylphthalate ND 13.3 6.67 Dimethylphthalate ND 13.3 6.67 Acenaphthylene ND 13.3 6.67 Acenaphthylene ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 Acenaphthene ND 13.3 6.67 2,4-Dinitrophenol ND 3.33 1.67 2,4-Dinitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67		Result		
2,4,5-Trichlorophenol ND 13.3 6.67 2-Chloronaphthalene ND 3.33 1.67 2-Nitroaniline ND 13.3 6.67 Dimethylphthalate ND 13.3 6.67 Dimethylphthalate ND 13.3 6.67 Acenaphthylene ND 13.3 6.67 2,6-Dinitrotoluene ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 Acenaphthene ND 13.3 6.67 2,4-Dinitrophenol ND 3.33 1.67 2,4-Dinitrophenol ND 3.33 1.67 2,4-Dinitrophenol ND 33.3 1.67 2,4-Dinitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	Analyte	(ug/kg)	PQL	MRL
2-ChloronaphthaleneND3.331.672-NitroanilineND13.36.67DimethylphthalateND13.36.67AcenaphthyleneND3.331.672,6-DinitrotolueneND13.36.673-NitroanilineND13.36.673-NitroanilineND13.36.67AcenaphtheneND13.36.672,4-DinitrophenolND66.733.34-NitrophenolND33.316.7DibenzofuranND13.36.672,4-DinitrotolueneND13.36.67	2,4,6-Trichlorophenol	ND		
2-Nitroaniline ND 13.3 6.67 Dimethylphthalate ND 13.3 6.67 Acenaphthylene ND 13.3 6.67 2,6-Dinitrotoluene ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 Acenaphthene ND 13.3 6.67 2,4-Dinitrophenol ND 3.33 1.67 2,4-Dinitrophenol ND 66.7 33.3 4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	2,4,5-Trichlorophenol	ND		
DimethylphthalateND13.36.67AcenaphthyleneND3.331.672,6-DinitrotolueneND13.36.673-NitroanilineND13.36.67AcenaphtheneND3.331.672,4-DinitrophenolND66.733.34-NitrophenolND33.316.7DibenzofuranND13.36.672,4-DinitrotolueneND13.36.67	2-Chloronaphthalene	ND	3,33	
Acenaphthylene ND 3.33 1.67 2,6-Dinitrotoluene ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 Acenaphthene ND 13.3 1.67 2,4-Dinitrophenol ND 3.33 1.67 2,4-Dinitrophenol ND 66.7 33.3 4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	2-Nitroaniline	ND		
2,6-Dinitrotoluene ND 13.3 6.67 3-Nitroaniline ND 13.3 6.67 Acenaphthene ND 3.33 1.67 2,4-Dinitrophenol ND 66.7 33.3 4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	Dimethylphthalate	ND		
3-Nitroaniline ND 13.3 6.67 3-Nitroaniline ND 3.33 1.67 Acenaphthene ND 3.33 1.67 2,4-Dinitrophenol ND 66.7 33.3 4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	Acenaphthylene	ND		
AcenaphtheneND3.331.672,4-DinitrophenolND66.733.34-NitrophenolND33.316.7DibenzofuranND13.36.672,4-DinitrotolueneND13.36.67	2,6-Dinitrotoluene	ND	13.3	
2,4-Dinitrophenol ND 66.7 33.3 4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	3-Nitroaniline	ND	13.3	
4-Nitrophenol ND 33.3 16.7 Dibenzofuran ND 13.3 6.67 2,4-Dinitrotoluene ND 13.3 6.67	Acenaphthene	ND	3,33	
DibenzofuranND13.36.672,4-DinitrotolueneND13.36.67	2,4-Dinitrophenol	ND	66.7	
2,4-Dinitrotoluene ND 13.3 6.67	4-Nitrophenol	ND		
	Dibenzofuran	ND		
Distribution ND 40.0 C.C.T	2,4-Dinitrotoluene	ND		
	Diethylphthalate	ND	13.3	6.67
4-Chiorophenylphenylether ND 13.3 6.67	4-Chiorophenylphenylether	ND	13.3	6.67
Fluorene ND 3.33 1.67	Fluorene	ND	3.33	
4-Nitroaniline ND 13.3 6.67	4-Nitroaniline	ND	13.3	
4,6-Dinitro-2-methylphenol ND 66.7 33.3	4,6-Dinitro-2-methylphenol	ND	66.7	33.3
N-Nitrosodiphenylamine ND 13.3 6.67	N-Nitrosodiphenylamine	ND	13.3	6.67
4-Bromophenylphenylether ND 13.3 6.67	4-Bromophenylphenylether	ND	13.3	
Hexachlorobenzene ND 13.3 6.67	Hexachlorobenzene	ND	13.3	
Pentachlorophenol ND 13.3 6.67	Pentachlorophenol	ND		
Phenanthrene ND 3.33 1.67	Phenanthrene	ND	3.33	
Anthracene ND 3.33 1.67	Anthracene	ND	3.33	
Di-n-butyiphthalate ND 13.3 6.67	Di-n-butylphthalate	ND	13.3	6.67
Fluoranthene ND 3.33 1.67	Fluoranthene	ND	3.33	
Pyrene ND 3.33 1.67	Pyrene	ND	3.33	1.67
Butylbenzylphthalate ND 16.7 8.33	Butylbenzylphthalate	ND	16.7	
3,3'-Dichlorobenzidine ND 26.7 13.3	3,3'-Dichlorobenzidine	ND	26.7	
Benzo(a)anthracene ND 3.33 1.67	Benzo(a)anthracene	ND	3.33	
Chrysene ND 3.33 1.67	Chrysene	ND	3.33	
bis(2-Ethylhexyl)phthalate ND 13.3 6.67	bis(2-Ethylhexyl)phthalate	ND	13.3	6.67
Di-n-octylphthalate ND 13.3 6.67	Di-n-octylphthalate	ND	13.3	
Benzofluoranthenes ND 3.33 1.67	Benzofluoranthenes	ND	3.33	1.67
Benzo(a)pyrene ND 3.33 1.67	Benzo(a)pyrene	ND	3.33	1.67
Indeno(1,2,3-cd)pyrene ND 3.33 1.67		ND	3.33	1.67
Dibenz(a,h)anthracene ND 3.33 1.67		ND	3.33	
Benzo(g,h,i)perylene ND 3.33 1.67		ND	3.33	1.67

Blank Spike/Blank Spike Duplicate Report

Lab ID:	SS0917
Date Prepared:	8/27/2003
Date Analyzed:	8/27/2003
QC Batch ID:	SS0917

.

.

Semivolatile Organics by USEPA Method 8270

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Phenol	0	100	74.5	74.5	77.3	77.3	3.7	
2-Chlorophenol	0	100	97.5	97.5	88.1	88.1	-10	
1,4-Dichlorobenzene	0	66.7	62.7	94	55.6	83.4	-12	
N-nitroso-di-n-propylamine	0	66.7	55.1	82.7	70.4	106	25	
1,2,4-Trichlorobenzene	0	66.7	51.4	77.1	47.6	71.4	-7.7	
4-Chloro-3-methylphenol	0	100	79.9	79.9	103	103	25	
Acenaphthene	0	66.7	53.1	79.7	53.6	80.4	0.87	
4-Nitrophenol	0	100	142	142	140	140	-1.4	
2,4-Dinitrotoluene	0	66.7	42.2	63.3	49.9	74.8	17	
Pentachlorophenol	0	100	36.4	36.4	42.4	42.4	15	
Pyrene	0	66.7	85.5	128	72.8	109	-16	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

Lab ID:

Date Prepared: Date Analyzed:

QC Batch ID:

SITE #1 SKAGIT RIVER FRESHWATER SEDIMENT

115691-01 8/27/2003 8/27/2003 SS0917

Semivolatile Organics by USEPA Method 8270

Compound Name	Sample Result (ug/kg)	Spike Amount (ug/kg)	MS Result (ug/kg)	MS % Rec.	MSD Result (ug/kg)	MSD % Rec.	RPD	Flag
Phenol	0	136	114	84	142	104	21	
2-Chlorophenol	0	136	120	88.8	153	113	24	
1,4-Dichlorobenzene	0	90.3	86.5	95.8	101	112	16	
N-nitroso-di-n-propylamine	0	90.3	94.5	105	125	138	27	X7
1,2,4-Trichlorobenzene	0	90.3	74.4	82.3	78.5	86.7	5.2	
4-Chloro-3-methylphenol	0	136	155	114	144	106	-7.3	
Acenaphthene	0	90.3	76.9	85.2	87.6	96.8	13	
4-Nitrophenol	0	136	17 9	132	176	130	-1.5	
2,4-Dinitrotoluene	0	90.3	73.6	81.5	52.8	58.4	-33	
Pentachlorophenol	0	136	86.2	63.6	127	93.6	38	
Pyrene	0	90.3	112	124	120	133	7	

Lab ID:	Method Blank - PB0577
Date Received:	-
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
% Solids	
Dilution Factor	5

PCBs by USEPA Method 8082

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Tetrachloro-m-xylene	90.4		72	114	
Decachlorobiphenyl	101		55	133	

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MRL F	lags
Aroclor 1016	ND	0.1	0.05	
Aroclor 1221	ND	0.2	0.1	
Aroclor 1232	ND	0.1	0.05	
Aroclor 1242	ND	0.1	0.05	
Aroclor 1248	ND	0.1	0.05	
Aroclor 1254	ND	0.1	0.05	
Aroclor 1260	ND	0.1	0.05	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	PB0577
Date Prepared:	8/27/03
Date Analyzed:	8/28/03
QC Batch ID:	PB0577

PCBs by USEPA Method 8082

Compound Name	Blank Result (mg/kg)	Spike Amount (mg/kg)	BS Result (mg/kg)	BS % Rec.	BSD Result (mg/kg)	BSD % Rec.	RPD	Flag
Aroclor 1242	0	1	0.913	91.3	0.905	90.5	-0.88	
Aroclor 1260	0	1	0.973	97.3	0.973	97.3	0	

Matrix Spike/Matrix Spike Duplicate Report

 Client Sample ID:
 FO 030833

 Lab ID:
 115693-01

 Date Prepared:
 8/27/03

 Date Analyzed:
 8/28/03

 QC Batch ID:
 PB0577

PCBs by USEPA Method 8082

	Sample	Spike	MS		MSD			
	Result	Amount		MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1242	0	1.1	0.837	76.4	0.841	79	3.3	
Aroclor 1260	0.62	1.1	1.54	83.9	1.53	85.1	1.4	

Lab ID:Method Blank - PE1624Date Received:-Date Prepared:8/27/2003Date Analyzed:9/5/2003% Solids1

Organochlorine Pesticides by USEPA Methods 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	82.7		57	153
Decachlorobiphenyl	86.6		57	145

Sample results are on an as received basis.

		Result			
Analyte		(ug/kg)	PQL	MRL	Flags
Aldrin	ND		1	0.5	
alpha-BHC	ND		1	0.5	
beta-BHC	ND		1	0.5	
delta-BHC	ND		1	0.5	
gamma-BHC (Lindane)	ND		1	0.5	
4,4'-DDD	ND		2	1	
4,4'-DDE	ND		2	1	
4,4'-DDT	ND		2	1	
Dieldrin	ND		2	1	
Endosulfan I	ND		1	0.5	
Endosulfan II	ND		2	1	
Endosulfan sulfate	ND		2	1	
Endrin	ND		2	1	
Endrin aldehyde	ND		2	1	
Heptachlor	ND		1	0.5	
Heptachlor epoxide	ND		1	0.5	
Methoxychlor	ND		10	5	
Endrin ketone	ND		2	1	
Toxaphene	ND		100	50	
alpha-Chiordane	ND		1	0.5	
gamma-Chlordane	ND		1	0.5	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	PE1624
Date Prepared:	8/27/2003
Date Analyzed:	9/6/2003
QC Batch ID:	PE1624

Organochlorine Pesticides by USEPA Methods 8081A

	Blank Result	Spike Amount	BS Result	BS % Dee	BSD Result	BSD	000	Floo
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec .	(ug/kg)	% Rec.	RPD	Flag
Aldrin	0	40	33.6	83.9	32.6	81.5	-2.9	
alpha-BHC	0	40	35	87.6	33.5	83.8	-4.4	
beta-BHC	0	40	30.1	75.2	28.8	72.1	-4.2	
delta-BHC	0	40	32.6	81.5	30.8	77.1	-5.5	
gamma-BHC (Lindane)	0	40	34.5	86.3	32.8	81.9	-5.2	
4,4'-DDD	0	40	34.5	86.2	33.8	84.5	-2	
4,4'-DDE	0	40	33	82.5	32.3	80.8	-2.1	
4,4'-DDT	0	40	35.8	89.4	34.7	86.8	-3	
Dieldrin	0	40	33.6	84	32.9	82.2	-2.2	
Endosulfan I	0	40	32.5	81.3	31.8	79.5	-2.2	
Endosulfan 11	0	40	30.6	76.6	29.5	73.7	-3.9	
Endosulfan sulfate	0	40	21.8	54.6	18.2	45.5	-18	
Endrin	0	40	33.6	84.1	32.5	81.3	-3.4	
Endrin aldehyde	0	40	25.6	63.9	23.1	57.8	-10	
Heptachlor	0	40	35.1	87.7	33	82.4	-6.2	
Heptachlor epoxide	0	40	32	80	31.2	77. 9	-2.7	
Methoxychlor	0	40	35.1	87 <i>.</i> 9	34.6	86.6	-1.5	
Endrin ketone	0	40	26.5	66.4	23.9	59.9	-10	
alpha-Chiordane	0	40	33.4	83.6	32.8	81 <i>.</i> 9	-2.1	
gamma-Chlordane	0	40	34.3	85.8	33.6	83.9	-2.2	

Lab ID: Method Blank - TOC1065 Date Received: -Date Prepared: 9/9/03 Date Analyzed: 9/9/03 % Solids Dilution Factor 1

Total Organic Carbon by USEPA Method 9060

Sample results are on an as received basis.

.

Analyte	Result (mg/kg)	PQL	MDL	Flags
тос	ND	100	40	

· .

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: GHSS-03 115850-01 9/9/03 9/9/03 TOC1065

Total Organic Carbon by USEPA Method 9060

	Sample Result	Spike Amount	MS Result	MS	MSD Result	MSD		
Compound Name TOC	(mg/kg) 14000			% Rec. 106	(mg/kg) 36000		RPD -19	Flag

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 40%.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- C3: Second analysis confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 30\%$.
- C4: Second analysis confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 30%. The original analysis was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- MRL: Method Reporting Limit
- N: See analytical narrative
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be _____.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Pkwy N Suite 400, Bothell, WA 98011-9508 425-420-9200 FAX 420-9210 A ugomery Suite B, Spokane, WA 99206-4776 509-924-9200 FAX 924-9290 FAX 924-9210 FAX 924-9210 FAX 932-7588 FAX 944-758 FAX 944-758 FAX 944-758 FAX 944-758 FAX 944-758 FAX 944-758 FAX 944-758	Work Order #: P 3HOUSIC	TURNAROUND REQUEST	in Business Days *	Organic & Inorganic Analyses	Petroleum Hydrocarbon Analyses	5 4 3 2 1 <1	OTHER Specify:	 Turnaround Requests less than standard may incur Rush Charges. 	MATRIX # 0F LOCATION / NCA (W, S, O) CONT. COMMENTS WO ID	м М	S 	Š	S S	53	53			рате: 8/2//07 - FIRM: 1//Д ТИМЕ: 12 00	LANSMARK NOA TIME (335)	A (D PAGE OF	8/24/2
 J. J. J. L. 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 II.115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Enpire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030 	CHAIN OF CUSTODY REPORT 115693	INVOICE TO: CLONES LYHE			P.O. NUMBER: 40.3.7	PRESE			E 6 4 8									 DATE: 8/21/0.3 RECEIVED BY: 5/20 4/20 TIME: 1.3:06 PRINT NAME: R.1 2		5 8172 (c) 25 (c)	08/25/07 255 00 Russ & hadlen St Jacker
Conca	CHAIN OF CUS	CLIENT: City of Pertlend	0: Rinee	ADDRESS:	PHONE: FAX:			SAMPLED BY:	CLIENT SAMPLE SAMPLING TO BE THE SAMPLING TO BE THE SAMPLE SAMPLING TO BE THE SAMPLING TO	1 FU U308333 \$4963 1020 X X X	2 FO 030834 1 13 X X	3 FU U30835 1 (375 X X	* FU 030836 1 1439 X X	SFO CZOZZZ ZANUJ 140 X X	6 EO 030838 3/2063 1945 X X	8	6	RELEASED BY: K) 1796 Mich T	front of		2180 (- 5)11.5 - 1-2 12451121128 19251 0-5011.5 - 1-2 12451121128 152180 - 1-5011.5 - 1-2 1245112128

Date: 8/13/09 Page: 1 of 1814 Collected By: MJH/DDH			Field Comments												Relinguished By: 4. signature: Time:	Printed Marne: Dete:	<u>Received Br.</u> 4. Signature: Time:	Printed Name: Date:
		Requested Analyses	Metals	tals - EPA 6020 Cd, Ct, Pb, Zn) tals - EPA 200.8 Cd, Ct, Pb, Zn)	(As, Cu, Total Me (As, Cu,	•	•	•	•	•	•	•	•		3. Time:	Dette	3. Time	Date:
 City of Portland Chain-of-Custody Bureau of Environmental Services			General	HCID, P&DCB3	NMLLH-	•	•	• •	•	•	•	• • •	••••		Relinguished By: Signature:	Printed Name:	Received By: signatura:	Printed Name:
		SEDIMENT			Sample Sample Time Type	09 58 G	los4 _G	1345 G	1440 G	0,900 G	1/42 G	1345 G	0 පිදිර		2. Time:	Dete	2 Time	Dete:
	\MP	Matrix:			Point Sample Code Date	0		M1_3 08/12/03	M1_4 08/12/03	M1_5 08/13/03	M1_6 08/13/03	DUP 08/12/03	RINSE 08/12/03	 	Relinguished By: Signature:	Printed Name:	Received By: Signatura:	Printed Name:
boratory	Project Name: LOWER HARBOR OF SED SAMP			Run NWTPH-Dx and NWTPH-Gx if detects on NWTPH-HCID	L ocation	IL-M1-AAM104-0803-NE N BASIN & ENSIGN	IL-M1-AAM104-0803-SW N BASIN & ENSIGN	IL-M1-AAJB31-0803 6936 N FATHOM	IL-M1-AAJ933-0803 N ENSIGN & UPRR	IL-M1-AAM155-0803 6235 N. BASIN	IL-M1-AAJ829-0803 N. BASIN & N. FATHOM	IL-MI-XXY KI-OBO3	RINSATE		1 mm 1603	HOLASER ME 13/03	,	~ 1603 ~ 13/13/03
Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696	Project Name: LOWEI	File Number: 1020.001		¹ Run NWTPH-Dx and NWTPH	WPCL Sample LD.	FO 030809	FO 030810	FO 030811	FO 030812	FO 030813	FO 030814	FO 030815	FO 030816		Helinquished By: 1. Signature: 1, NP, R. M.	1	Received By: 1. Signatum:	Minut Name KATO OFN25

Sample Date/Time 8/	/12/03	9:58	System ID	AH06696	Sample ID	FO030809
Proj./Company Name: Address/Location:	: LOWER H IL-M1-AAN N BASIN 8	1104-080	3-NE	D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT M1_1 1020.001	ORY PLA	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Two of two surrogate compounds and three of 20 MS and MSD analytes for Pesticide analysis had low recoveries due to matrix interference.

Test Parameter	Result	Units	MRL	Method
METALS COPPER ZINC	80.0 1810	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020 ARSENIC CADMIUM CHROMIUM LEAD MERCURY	47.1 6.11 69.2 42.9 0.073	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0.50 0.10 0.50 0.10 0.010	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020
NWTPH-Dx #6 FUEL OIL DIESEL KEROSENE MOTOR OIL	162 <25 <25 1210	mg/Kg mg/Kg mg/Kg mg/Kg	50 25 25 50	NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	<50 <20 <100 DET <100 115	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	50 20 100 100 100	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON PESTICIDES/PCB'S BY EPA 8081 4,4'-DDD 4,4'-DDE	29700 <7.06 <7.06	mg/Kg µg/Kg µg/Kg	48 7.06 7.06	EPA 9060 MO EPA 8081 EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time	8/12/03	9:58	System ID	AH06696	Sample ID	FO030809
анаа алаал талал балуу жану жану жану жану картаа, алу алу актик улу картаа кал ан ажаа т	- loo maana aha ina vaanni Joona aha hoofe	ena nemerine en el la la en entranciano	nar fann an ser a ghlanna an Unaine, ann a na an seo an Annaran an		Page:	2
Proj./Company Nam	e: LOWER	HARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-A	AM104-08 N & ENSIG	03-NE		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGUL	ATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1_1				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.00	1			Collected By:	MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Two of two surrogate compounds and three of 20 MS and MSD analytes for Pesticide analysis had low recoveries due to matrix interference.

Test Parameter	Result	Units	MRL	Method
4,4'-DDT	<7.06	µg/Kg	7.06	EPA 8081
Aldrin	<3.53	µg/Kg	3.53	EPA 8081
Alpha-BHC	<3.53	µg/Kg ⊣	3.53	EPA 8081
Alpha-Chlordane	<3.53	µg/Kg	3.53	EPA 8081
Beta-BHC	<3.53	µg/Kg	3.53	EPA 8081
Delta-BHC	<3.53	µg/Kg	3.53	EPA 8081
Dieldrin	<7.06	µg/Kg	7.06	EPA 8081
Endosulfan I	<3.53	µg/Kg	3.53	EPA 8081
Endosulfan II	<7.06	µg/Kg	7.06	EPA 8081
Endosulfan Sulfate	<7.06	µg/Kg	7.06	EPA 8081
Endrin	<7.06	µg/Kg	7.06	EPA 8081
Endrin Aldehyde	<7.06	µg/Kg	7.06	EPA 8081
Endrin Ketone	<7.06	µg/Kg	7.06	EPA 8081
Gamma-BHC(Lindane)	<3.53	µg/Kg	3.53	EPA 8081
Gamma-Chlordane	<3.53	µg/Kg	3.53	EPA 8081
Heptachlor	<3.53	µg/Kg	3.53	EPA 8081
Heptachlor Epoxide	<3.53	µg/Kg	3.53	EPA 8081
Methoxychlor	<35.3	µg/Kg	35.3	EPA 8081
PCB 1016	<34.6	µg/Kg	34.6	EPA 8081
PCB 1221	<69.1	µg/Kg	69.1	EPA 8081
PCB 1232	<34.6	µg/Kg	34.6	EPA 8081
PCB 1242	<34.6	µg/Kg	34.6	EPA 8081
PCB 1248	<34.6	µg/Kg	34.6	EPA 8081
PCB 1254	<34.6	µg/Kg	34.6	EPA 8081
PCB 1260	<34.6	µg/Kg	34.6	EPA 8081
Toxaphene	<353	µg/Kg	353	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<976	µg/Kg	976	EPA 8270 - S
1,2-Dichlorobenzene	<976	µg/Kg	976	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03	9:58	System ID	AH06696	Sample ID	FO030809
Proj./Company Name: Address/Location:	: Lower F IL-M1-AAN N Basin (M104-08	03-NE	D SAMP	Page: Date Received: Sample Status:	3 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT M1_1 1020.001	ORY PL	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Two of two surrogate compounds and three of 20 MS and MSD analytes for Pesticide analysis had low recoveries due to matrix interference.

Test Parameter	Result	Units	MRL	Method
1,3-Dichlorobenzene	<976	µg/Kg	976	EPA 8270 - S
1,4-Dichlorobenzene	<976	µg/Kg	976	EPA 8270 - S
2,4,5-Trichlorophenol	<976	µg/Kg	976	EPA 8270 - S
2,4,6-Trichlorophenol	<976	µg/Kg	976	EPA 8270 - S
2,4-Dichlorophenol	<976	µg/Kg	976	EPA 8270 - S
2,4-Dimethylphenol	<976	µg/Kg	976	EPA 8270 - S
2,4-Dinitrophenol	<4880	µg/Kg	4880	EPA 8270 - S
2,4-Dinitrotoluene	<976	µg/Kg	976	EPA 8270 - S
2,6-Dinitrotoluene	<976	µg/Kg	976	EPA 8270 - S
2-Chloronaphthalene	<244	µg/Kg	244	EPA 8270 - S
2-Chlorophenol	<976	µg/Kg	976	EPA 8270 - S
2-Methylnaphthalene	<244	µg/Kg	244	EPA 8270 - S
2-Methylphenol	<976	µg/Kg	976	EPA 8270 - S
2-Nitroaniline	<976	µg/Kg	976	EPA 8270 - S
2-Nitrophenol	<976	µg/Kg	976	EPA 8270 - S
3,3'-Dichlorobenzidine	<1950	µg/Kg	1950	EPA 8270 - S
3- & 4-Methylphenol	<1950	µg/Kg	1950	EPA 8270 - S
3-Nitroaniline	<976	µg/Kg	976	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<4880	µg/Kg	4880	EPA 8270 - S
4-Bromophenylphenyl ether	<976	µg/Kg	976	EPA 8270 - S
4-Chloro-3-methylphenol	<976	µg/Kg	976	EPA 8270 - S
4-Chloroaniline	<976	µg/Kg	976	EPA 8270 - S
4-Chlorophenylphenyl ether	<976	µg/Kg	976	EPA 8270 - S
4-Nitroaniline	<976	µg/Kg	976	EPA 8270 - S
4-Nitrophenol	<2440	µg/Kg	2440	EPA 8270 - S
Acenaphthene	<244	µg/Kg	244	EPA 8270 - S
Acenaphthylene	<244	µg/Kg	244	EPA 8270 - S
Anthracene	<244	µg/Kg	244	EPA 8270 - S
Benzo(a)anthracene	<244	µg/Kg	244	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/2	12/03	9:58	System ID	AH06696	Sample ID	FO030809
understander ander ander erkennen besten er sonerten mit standen. Herre er mit standet in	- Anna a the second data and an anna an an an a	and a submitted set of the set of a submitted set	n de la la construire de l'an envention que, l'acteurs, actuerre	e an an loc node there a block a second second second second second	Page:	4, 1.1 × 100- and 1-10 = 1.1 × 1.1 × 1.1 × 1.0 ×
Proj./Company Name:	LOWER H	ARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAI N BASIN				Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULAT		AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 1				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Two of two surrogate compounds and three of 20 MS and MSD analytes for Pesticide analysis had low recoveries due to matrix interference.

Test Parameter	Result	Units	MRL	Method
Benzo(a)pyrene	<244	µg/Kg	244	EPA 8270 - S
Benzo(g,h,i)perylene	<244	µg/Kg	244	EPA 8270 - S
Benzofluoranthenes	<244	µg/Kg	244	EPA 8270 - S
Benzoic acid	<4880	µg/Kg	4880	EPA 8270 - S
Benzyl alcohol	<1220	µg/Kg	1220	EPA 8270 - S
Benzyl butyl phthalate	<1220	µg/Kg	1220	EPA 8270 - S
Bis(2-chloroethoxy) methane	<976	µg/Kg	976	EPA 8270 - S
Bis(2-chloroethyl) ether	<976	µg/Kg	976	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<976	µg/Kg	976	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1330	µg/Kg	976	EPA 8270 - S
Chrysene	<244	µg/Kg	244	EPA 8270 - S
Di-n-butyl phthalate	<976	µg/Kg	976	EPA 8270 - S
Di-n-octyl phthalate	<976	µg/Kg	976	EPA 8270 - S
Dibenzo(a,h)anthracene	<244	µg/Kg	244	EPA 8270 - S
Dibenzofuran	<976	µg/Kg	976	EPA 8270 - S
Diethyl phthalate	<976	µg/Kg	976	EPA 8270 - S
Dimethyl phthalate	<976	µg/Kg	976	EPA 8270 - S
Fluoranthene	<244	µg/Kg	244	EPA 8270 - S
Fluorene	<244	µg/Kg	244	EPA 8270 - S
Hexachlorobenzene	<976	µg/Kg	976	EPA 8270 - S
Hexachlorobutadiene	<976	µg/Kg	976	EPA 8270 - S
Hexachlorocyclopentadiene	<976	µg/Kg	976	EPA 8270 - S
Hexachloroethane	<976	µg/Kg	976	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<244	µg/Kg	244	EPA 8270 - S
Isophorone	<976	µg/Kg	976	EPA 8270 - S
N-Nitrosodi-n-propylamine	<976	µg/Kg	976	EPA 8270 - S
N-Nitrosodiphenylamine	<976	µg/Kg	976	EPA 8270 - S
Naphthalene	<244	µg/Kg	244	EPA 8270 - S
Nitrobenzene	<976	µg/Kg	976	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time	8/12/03	9:58	System ID	AH06696	Sample ID	FO030809
Proj./Company Nam Address/Location:	e: LOWER IL-M1-AA N BASIN	M104-08	03-NE	D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:			AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH
recoveries	anks, laboratory , as applicable.	control sar Two of two	nple recoveries, d	uplicate precis	this sample including h ion, matrix spike recov of 20 MS and MSD ar	eries, and surrogate

Test Parameter Pentachlorophenol	Result <976	Units µg/Kg	MRL 976	Method EPA 8270 - S
Phenanthrene	<244	µg/Kg	244	EPA 8270 - S
Phenol	<976	µg/Kg	976	EPA 8270 - S
Pyrene	<244	µg/Kg	244	EPA 8270 - S

End of Report for Sample ID: FO030809

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 8/	12/03 10:54	System ID	AH06697	Sample ID	FO030810
Proj./Company Name Address/Location:	: LOWER HARBO IL-M1-AAM104- N BASIN & ENS	0803-SW	D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY M1_2 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One of the two surrogate compounds for Pesticide analysis had low recovery.

Test Parameter	Result	Units	MRL	Method
METALS COPPER ZINC	116 1500	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020 ARSENIC CADMIUM CHROMIUM LEAD MERCURY	40.0 5.30 51.3 30.9 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0.50 0.10 0.50 0.10 0.010	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020
NWTPH-Dx #6 FUEL OIL DIESEL KEROSENE MOTOR OIL	234 <25 <25 1420	mg/Kg mg/Kg mg/Kg mg/Kg	50 25 25 50	NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	<50 <20 <100 DET <100 118	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	50 20 100 100 100	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON PESTICIDES/PCB'S BY EPA 8081 4,4'-DDD 4,4'-DDE	23200 <5.2 <5.2	mg/Kg µg/Kg µg/Kg	57.1 5.2 5.2	EPA 9060 MO EPA 8081 EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03	10:54	System ID	AH06697	Sample ID	FO030810
Proj./Company Name: Address/Location:	LOWER H IL-M1-AAN N BASIN &	/104-080)3-SW	D SAMP	Page: Date Received: Sample Status:	2 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT M1_2 1020.001	ORY PL	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One of the two surrogate compounds for Pesticide analysis had low recovery.

Test Parameter	Result	Units	MRL	Method
4,4'-DDT	<5.2	µg/Kg	5.2	EPA 8081
Aldrin	<2.6	µg/Kg	2.6	EPA 8081
Alpha-BHC	<2.6	µg/Kg	2.6	EPA 8081
Alpha-Chlordane	<2.6	µg/Kg	2.6	EPA 8081
Beta-BHC	<2.6	µg/Kg	2.6	EPA 8081
Delta-BHC	<2.6	µg/Kg	2.6	EPA 8081
Dieldrin	<5.2	µg/Kg	5.2	EPA 8081
Endosulfan I	<2.6	µg/Kg	2.6	EPA 8081
Endosulfan II	<5.2	µg/Kg	5.2	EPA 8081
Endosulfan Sulfate	<5.2	µg/Kg	5.2	EPA 8081
Endrin	<5.2	µg/Kg	5.2	EPA 8081
Endrin Aldehyde	<5.2	µg/Kg	5.2	EPA 8081
Endrin Ketone	<5.2	µg/Kg	5.2	EPA 8081
Gamma-BHC(Lindane)	<2.6	µg/Kg	2.6	EPA 8081
Gamma-Chlordane	<2.6	µg/Kg	2.6	EPA 8081
Heptachlor	<2.6	µg/Kg	2.6	EPA 8081
Heptachlor Epoxide	<2.6	µg/Kg	2.6	EPA 8081
Methoxychlor	<26	µg/Kg	26	EPA 8081
PCB 1016	<26.7	µg/Kg	26.7	EPA 8081
PCB 1221	<53.4	µg/Kg	53.4	EPA 8081
PCB 1232	<26.7	µg/Kg	26.7	EPA 8081
PCB 1242	<26.7	µg/Kg	26.7	EPA 8081
PCB 1248	<26.7	µg/Kg	26.7	EPA 8081
PCB 1254	<26.7	µg/Kg	26.7	EPA 8081
PCB 1260	<26.7	µg/Kg	26.7	EPA 8081
Toxaphene	<260	µg/Kg	260	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<697	µg/Kg	697	EPA 8270 - S
1,2-Dichlorobenzene	<697	µg/Kg	697	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/*	12/03 10:54	System ID	AH06697	Sample ID	FO030810
Proj./Company Name: Address/Location:	LOWER HARBOR (IL-M1-AAM104-080 N BASIN & ENSIGN	3-SW) SAMP	Page: Date Received: Sample Status:	3 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PL4 M1_2 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One of the two surrogate compounds for Pesticide analysis had low recovery.

				· -··· ·
Test Parameter	Result	Units	MRL	Method
1,3-Dichlorobenzene	<697	µg/Kg	697	EPA 8270 - S
1,4-Dichlorobenzene	<697	µg/Kg	697	EPA 8270 - S
2,4,5-Trichlorophenol	<697	µg/Kg	697	EPA 8270 - S
2,4,6-Trichlorophenol	<697	µg/Kg	697	EPA 8270 - S
2,4-Dichlorophenol	<697	µg/Kg	697	EPA 8270 - S
2,4-Dimethylphenol	<697	µg/Kg	697	EPA 8270 - S
2,4-Dinitrophenol	<3490	µg/Kg	3490	EPA 8270 - S
2,4-Dinitrotoluene	<697	µg/Kg	697	EPA 8270 - S
2,6-Dinitrotoluene	<697	µg/Kg	697	EPA 8270 - S
2-Chloronaphthalene	<174	µg/Kg	174	EPA 8270 - S
2-Chlorophenol	<697	µg/Kg	697	EPA 8270 - S
2-Methylnaphthalene	<174	µg/Kg	174	EPA 8270 - S
2-Methylphenol	<697	µg/Kg	697	EPA 8270 - S
2-Nitroaniline	<697	µg/Kg	697	EPA 8270 - S
2-Nitrophenol	<697	µg/Kg	697	EPA 8270 - S
3,3'-Dichlorobenzidine	<1390	µg/Kg	1390	EPA 8270 - S
3- & 4-Methylphenol	<1390	µg/Kg	1390	EPA 8270 - S
3-Nitroaniline	<697	µg/Kg	697	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<3490	µg/Kg	3490	EPA 8270 - S
4-Bromophenylphenyl ether	<697	µg/Kg	697	EPA 8270 - S
4-Chloro-3-methylphenol	<697	µg/Kg	697	EPA 8270 - S
4-Chloroaniline	<697	µg/Kg	697	EPA 8270 - S
4-Chlorophenylphenyl ether	<697	µg/Kg	697	EPA 8270 - S
4-Nitroaniline	<697	µg/Kg	697	EPA 8270 - S
4-Nitrophenol	<1740	µg/Kg	1740	EPA 8270 - S
Acenaphthene	<174	µg/Kg	174	EPA 8270 - S
Acenaphthylene	<174	µg/Kg	174	EPA 8270 - S
Anthracene	<174	µg/Kg	174	EPA 8270 - S
Benzo(a)anthracene	<174	µg/Kg	174	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03	10:54	System ID	AH06697	Sample ID	FO030810
- مەرىپارىيە بەرسىرە مەرىپار بەر بەر بەر بەر بەر بەر بەر بەر بەر بە	n mangan pangkang na kang kang na kanana sa san		1, Y ** A AMBAN YAN MAN YAN 🗰 YANAYI AN A YANAYI AN A YANA MA	an a	Page:	4
Proj./Company Name:	LOWER H	ARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAN N BASIN 8				Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULAT	ORY PL/	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 2				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One of the two surrogate compounds for Pesticide analysis had low recovery.

Test Parameter	Result	Units	MRL.	Method
Benzo(a)pyrene	<174	µg/Kg	174	EPA 8270 - S
Benzo(g,h,i)perylene	<174	µg/Kg	174	EPA 8270 - S
Benzofluoranthenes	<174	µg/Kg	174	EPA 8270 - S
Benzoic acid	<3480	µg/Kg	3480	EPA 8270 - S
Benzyl alcohol	<871	µg/Kg	871	EPA 8270 - S
Benzyl butyl phthalate	<871	µg/Kg	871	EPA 8270 - S
Bis(2-chloroethoxy) methane	<697	µg/Kg	697	EPA 8270 - S
Bis(2-chloroethyl) ether	<697	µg/Kg	697	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<697	µg/Kg	697	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1000	µg/Kg	697	EPA 8270 - S
Chrysene	<174	µg/Kg	174	EPA 8270 - S
Di-n-butyl phthalate	<697	µg/Kg	697	EPA 8270 - S
Di-n-octyl phthalate	<697	µg/Kg	697	EPA 8270 - S
Dibenzo(a,h)anthracene	<174	µg/Kg	174	EPA 8270 - S
Dibenzofuran	<697	µg/Kg	697	EPA 8270 - S
Diethyl phthalate	<697	µg/Kg	697	EPA 8270 - S
Dimethyl phthalate	<697	µg/Kg	697	EPA 8270 - S
Fluoranthene	<174	µg/Kg	174	EPA 8270 - S
Fluorene	<174	µg/Kg	174	EPA 8270 - S
Hexachlorobenzene	<697	µg/Kg	697	EPA 8270 - S
Hexachlorobutadiene	<697	µg/Kg	697	EPA 8270 - S
Hexachlorocyclopentadiene	<697	µg/Kg	697	EPA 8270 - S
Hexachloroethane	<697	µg/Kg	697	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<174	µg/Kg	174	EPA 8270 - S
Isophorone	<697	µg/Kg	697	EPA 8270 - S
N-Nitrosodi-n-propylamine	<697	µg/Kg	697	EPA 8270 - S
N-Nitrosodiphenylamine	<697	µg/Kg	697	EPA 8270 - S
Naphthalene	<174	µg/Kg	174	EPA 8270 - S
Nitrobenzene	<697	µg/Kg	697	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 10:54	System ID	AH06697	Sample ID	FO030810
Proj./Company Name: Address/Location:	: LOWER HARBOR (IL-M1-AAM104-080) N BASIN & ENSIGN	3-SW	D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA M1_2 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. One of the two surrogate compounds for Pesticide analysis had low recovery.

Test Parameter Pentachlorophenol	Result <697	Units µg/Kg	MRL 697	Method EPA 8270 - S
Phenanthrene	<174	μg/Kg	174	EPA 8270 - S
Phenol	<697	µg/Kg	697	EPA 8270 - S
Pyrene	<174	µg/Kg	174	EPA 8270 - S

End of Report for Sample ID: FO030810

Sample Date/Time 8/	/12/03 13	3:45 System ID	AH06698	Sample ID	FO030811
аналан нарада и манинан калан калан жана калан кал Калан калан кала	an nampy, and an or see which a second and an or show	an a' sada barra 'i sara anaassa sabbana daa mi daa a		Page:	1
Proj./Company Name:	: LOWER HAR	BOR OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ83 6936 N FATH			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATOF	RY PLAN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 3			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH
					- 1 - 12

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons. For Pesticide analysis, 2nd column confirmation produced results for the detected compounds that differed by >40%.

Test Parameter	Result	Units	MRL	Method
METALS COPPER ZINC	176 902	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020 ARSENIC CADMIUM CHROMIUM LEAD MERCURY	3.36 27.8 280 645 0.064	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0.50 0.10 0.50 0.10 0.010	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020
NWTPH-Dx #6 FUEL OIL DIESEL KEROSENE MOTOR OIL	7240 <250 <250 11700	mg/Kg mg/Kg mg/Kg mg/Kg	500 250 250 500	NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	DET DET DET OET <100 Not Reporta	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ble mg/Kg	50 20 100 100 100	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON	21000	mg/Kg	45.1	EPA 9060 MO
NWTPH-Gx GASOLINE RANGE HYDROCARBONS	221	mg/Kg	5.14	NWTPH-Gx

PESTICIDES/PCB'S BY EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	/12/03 13:45	System ID	AH06698	Sample ID	FO030811
Proj./Company Name			D SAMP	Page: Date Received:	2 8/13/03
Address/Location:	IL-M1-AAJ831-080 6936 N FATHOM	3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code:	REGULATORY PL M1 3	AN & EVAL		Sample Type: Sample Matrix:	COMPOSITE SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons. For Pesticide analysis, 2nd column confirmation produced results for the detected compounds that differed by >40%.

Test Parameter 4,4'-DDD	Result <2.56	Units µg/Kg	MRL 2.56	Method EPA 8081
4,4'-DDE	7.56	μg/Kg	2.56	EPA 8081
4,4'-DDT	<2.56	μg/Kg	2.56	EPA 8081
Aldrin	8.13	μg/Kg	1.28	EPA 8081
Alpha-BHC	<1.28	μg/Kg	1.28	EPA 8081
Alpha-Chlordane	<1.28	μg/Kg	1.28	EPA 8081
Beta-BHC	7.16	μg/Kg	1.28	EPA 8081
Delta-BHC	<1.28	μg/Kg	1.28	EPA 8081
Dieldrin	<2.56	μg/Kg	2.56	EPA 8081
Endosulfan I	<1.28	μg/Kg	1.28	EPA 8081
Endosulfan II	15.7	μg/Kg	2.56	EPA 8081
Endosulfan Sulfate	<2.56	μg/Kg	2.56	EPA 8081
Endrin	16.9	μg/Kg	2.56	EPA 8081
Endrin Aldehyde	17.3	μg/Kg	2.56	EPA 8081
Endrin Ketone	<2.56	μg/Kg	2.56	EPA 8081
Gamma-BHC(Lindane)	<1.28	μg/Kg	1.28	EPA 8081
Gamma-Chlordane	<1.28	μg/Kg	1.28	EPA 8081
Heptachlor	1.66	μg/Kg	1.28	EPA 8081
Heptachlor Epoxide	<1.28	µg/Kg	1.28	EPA 8081
Methoxychlor	<12.8	µg/Kg	12.8	EPA 8081
PCB 1016	<12.9	µg/Kg	12.9	EPA 8081
PCB 1221	<25.7	µg/Kg	25.7	EPA 8081
PCB 1232	<12.9	µg/Kg	12.9	EPA 8081
PCB 1242	<12.9	µg/Kg	12.9	EPA 8081
PCB 1248	<12.9	µg/Kg	12.9	EPA 8081
PCB 1254	276	μg/Kg	12.9	EPA 8081
PCB 1260	129	μg/Kg	12.9	EPA 8081
Toxaphene	<128	μg/Kg	128	EPA 8081
		-33		

SEMI-VOLATILE ORGANICS

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 8	3/12/03 ·	3:45 Syste	em ID	AH06698	Sample ID	FO030811
anna ann ann ann an San	n i - maan zoor akoo i vii a ni si i maanne fiid ku	an a marana tana kana kana kana kana kana kana k			Page:	3
Proj./Company Name	: LOWER HA	RBOR OUTFA	LL SED	SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ8 6936 N FAT				Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATO	RY PLAN & E	VAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 3				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH/DJH
	cont as follows, al		critoria w	oro mot for t	his sampla including h	olding times, calibration

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons. For Pesticide analysis, 2nd column confirmation produced results for the detected compounds that differed by >40%.

Test Parameter	Result	Units	MRL	Method
1,2,4-Trichlorobenzene	<345	µg/Kg	345	EPA 8270 - S
1,2-Dichlorobenzene	<345	µg/Kg	345	EPA 8270 - S
1,3-Dichlorobenzene	<345	µg/Kg	345	EPA 8270 - S
1,4-Dichlorobenzene	<345	µg/Kg	345	EPA 8270 - S
2,4,5-Trichlorophenol	<345	µg/Kg	345	EPA 8270 - S
2,4,6-Trichlorophenol	<345	µg/Kg	345	EPA 8270 - S
2,4-Dichlorophenol	<345	µg/Kg	345	EPA 8270 - S
2,4-Dimethylphenol	<345	µg/Kg	345	EPA 8270 - S
2,4-Dinitrophenol	<1730	µg/Kg	1730	EPA 8270 - S
2,4-Dinitrotoluene	<345	µg/Kg	345	EPA 8270 - S
2,6-Dinitrotoluene	<345	µg/Kg	345	EPA 8270 - S
2-Chloronaphthalene	<86.3	µg/Kg	86.3	EPA 8270 - S
2-Chlorophenol	<345	µg/Kg	345	EPA 8270 - S
2-Methylnaphthalene	2380	µg/Kg	86.3	EPA 8270 - S
2-Methylphenol	<345	µg/Kg	345	EPA 8270 - S
2-Nitroaniline	<345	µg/Kg	345	EPA 8270 - S
2-Nitrophenol	<345	µg/Kg	345	EPA 8270 - S
3,3'-Dichlorobenzidine	<690	µg/Kg	690	EPA 8270 - S
3- & 4-Methylphenol	<690	µg/Kg	690	EPA 8270 - S
3-Nitroaniline	<345	µg/Kg	345	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1730	µg/Kg	1730	EPA 8270 - S
4-Bromophenylphenyl ether	<345	µg/Kg	345	EPA 8270 - S
4-Chloro-3-methylphenol	<345	µg/Kg	345	EPA 8270 - S
4-Chloroaniline	<345	µg/Kg	345	EPA 8270 - S
4-Chlorophenylphenyl ether	<345	µg/Kg	345	EPA 8270 - S
4-Nitroaniline	<345	µg/Kg	345	EPA 8270 - S
4-Nitrophenol	<863	µg/Kg	863	EPA 8270 - S
Acenaphthene	<86.3	µg/Kg	86.3	EPA 8270 - S
Acenaphthylene	<86.3	µg/Kg	86.3	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 13:45	System ID	AH06698	Sample ID	FO030811
Proj./Company Name: Address/Location:	: LOWER HARBOR C IL-M1-AAJ831-0803 6936 N FATHOM		D SAMP	Page: Date Received: Sample Status:	4 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA M1_3 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH
Comments: QA/QC: Exce		QA/QC criteria	were met for t	3	

Comments: QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons. For Pesticide analysis, 2nd column confirmation produced results for the detected compounds that differed by >40%.

· · · · · · · · · · · · · · · · · · ·		•		
Test Parameter	Result	Units	MRL	Method
Anthracene	<86.3	µg/Kg	86.3	EPA 8270 - S
Benzo(a)anthracene	<86.3	µg/Kg	86.3	EPA 8270 - S
Benzo(a)pyrene	<86.3	µg/Kg	86.3	EPA 8270 - S
Benzo(g,h,i)perylene	<86.3	µg/Kg	86.3	EPA 8270 - S
Benzofluoranthenes	<86.3	µg/Kg	86.3	EPA 8270 - S
Benzoic acid	<1730	µg/Kg	1730	EPA 8270 - S
Benzyl alcohol	<431	µg/Kg	431	EPA 8270 - S
Benzyl butyl phthalate	<431	µg/Kg	431	EPA 8270 - S
Bis(2-chloroethoxy) methane	<345	µg/Kg	345	EPA 8270 - S
Bis(2-chloroethyl) ether	<345	µg/Kg	345	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<345	µg/Kg	345	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	14800	µg/Kg	345	EPA 8270 - S
Chrysene	<86.3	µg/Kg	86.3	EPA 8270 - S
Di-n-butyl phthalate	<345	µg/Kg	345	EPA 8270 - S
Di-n-octyl phthalate	<345	µg/Kg	345	EPA 8270 - S
Dibenzo(a,h)anthracene	<86.3	µg/Kg	86.3	EPA 8270 - S
Dibenzofuran	<345	µg/Kg	345	EPA 8270 - S
Diethyl phthalate	<345	µg/Kg	345	EPA 8270 - S
Dimethyl phthalate	<345	µg/Kg	345	EPA 8270 - S
Fluoranthene	292	µg/Kg	86.3	EPA 8270 - S
Fluorene	<86.3	µg/Kg	86.3	EPA 8270 - S
Hexachlorobenzene	<345	µg/Kg	345	EPA 8270 - S
Hexachlorobutadiene	<345	µg/Kg	345	EPA 8270 - S
Hexachlorocyclopentadiene	<345	µg/Kg	345	EPA 8270 - S
Hexachloroethane	<345	µg/Kg	345	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<86.3	µg/Kg	86.3	EPA 8270 - S
Isophorone	<345	µg/Kg	345	EPA 8270 - S
N-Nitrosodi-n-propylamine	<345	µg/Kg	345	EPA 8270 - S
N-Nitrosodiphenylamine	<345	µg/Kg	345	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	/12/03 1	3:45 System II	AH06698	Sample ID	FO030811
Proj./Company Name Address/Location:	: LOWER HA IL-M1-AAJ83 6936 N FAT	31-0803	ED SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATO M1_3 1020.001	RY PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH
recoveries, a the petroleu	nks, laboratory cor as applicable. The	ntrol sample recoveries, e surrogate recovery for For Pesticide analysis, 2	duplicate precisi NWTPH-HCID is	on, matrix spike recov not reportable due to	eries, and surrogate matrix interference from

Test Parameter	Result	Units	MRL	Method
Naphthalene	368	µg/Kg	86.3	EPA 8270 - S
Nitrobenzene	<345	µg/Kg	345	EPA 8270 - S
Pentachlorophenol	<345	µg/Kg	345	EPA 8270 - S
Phenanthrene	1290	µg/Kg	86.3	EPA 8270 - S
Phenol	<345	µg/Kg	345	EPA 8270 - S
Pyrene	602	µg/Kg	86.3	EPA 8270 - S

End of Report for Sample ID: FO030811

Sample Date/Time 8/	12/03 14:40	System ID	AH06699	Sample ID	FO030812
Proj./Company Name: Address/Location:	LOWER HARBO IL-M1-AAJ933-C N ENSIGN & UF	803	D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY M1_4 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
METALS COPPER ZINC	290 1450	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020 ARSENIC CADMIUM CHROMIUM LEAD MERCURY	40.8 5.12 260 21.4 0.068	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0.50 0.10 0.50 0.10 0.010	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020
NWTPH-Dx #6 FUEL OIL DIESEL KEROSENE MOTOR OIL	314 <25 <25 2310	mg/Kg mg/Kg mg/Kg mg/Kg	50 25 25 50	NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	<50 <20 <100 DET <100 132	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	50 20 100 100 100	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON PESTICIDES/PCB'S BY EPA 8081 4,4'-DDD 4,4'-DDE	31900 <7.67 <7.67	mg/Kg μg/Kg μg/Kg	50.4 7.67 7.67	EPA 9060 MO EPA 8081 EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/1	12/03 14:40	System ID	AH06699	Sample ID	FO030812
				Page:	2
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ933-080 N ENSIGN & UPRI	-		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 4			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
4,4'-DDT	<7.67	µg/Kg	7.67	EPA 8081
Aldrin	<3.84	µg/Kg	3.84	EPA 8081
Alpha-BHC	<3.84	µg/Kg	3.84	EPA 8081
Alpha-Chlordane	<3.84	µg/Kg	3.84	EPA 8081
Beta-BHC	<3.84	µg/Kg	3.84	EPA 8081
Delta-BHC	<3.84	µg/Kg	3.84	EPA 8081
Dieldrin	<7.67	µg/Kg	7.67	EPA 8081
Endosulfan I	<3.84	µg/Kg	3.84	EPA 8081
Endosulfan II	<7.67	µg/Kg	7.67	EPA 8081
Endosulfan Sulfate	<7.67	µg/Kg	7.67	EPA 8081
Endrin	<7.67	µg/Kg	7.67	EPA 8081
Endrin Aldehyde	<7.67	µg/Kg	7.67	EPA 8081
Endrin Ketone	<7.67	µg/Kg	7.67	EPA 8081
Gamma-BHC(Lindane)	<3.84	µg/Kg	3.84	EPA 8081
Gamma-Chlordane	<3.84	µg/Kg	3.84	EPA 8081
Heptachlor	<3.84	µg/Kg	3.84	EPA 8081
Heptachlor Epoxide	<3.84	µg/Kg	3.84	EPA 8081
Methoxychlor	<38.4	µg/Kg	38.4	EPA 8081
PCB 1016	<35.5	µg/Kg	35.5	EPA 8081
PCB 1221	<71	µg/Kg	71	EPA 8081
PCB 1232	<35.5	µg/Kg	35.5	EPA 8081
PCB 1242	<35.5	µg/Kg	35.5	EPA 8081
PCB 1248	<35.5	µg/Kg	35.5	EPA 8081
PCB 1254	<35.5	µg/Kg	35.5	EPA 8081
PCB 1260	<35.5	µg/Kg	35.5	EPA 8081
Toxaphene	<384	µg/Kg	384	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<997	μg/Kg	997	EPA 8270 -
1,2-Dichlorobenzene	<997	µg/Kg	997	EPA 8270 -

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03	14:40	System ID	AH06699	Sample ID	FO030812
Proj./Company Name: Address/Location:	LOWER H IL-M1-AAJ N ENSIGN	933-0803		D SAMP	Page: Date Received: Sample Status:	3 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULAT M1_4 1020.001	ORY PLA	N & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
1,3-Dichlorobenzene	<997	µg/Kg	997	EPA 8270 - S
1,4-Dichlorobenzene	<997	µg/Kg	997	EPA 8270 - S
2,4,5-Trichlorophenol	<997	µg/Kg	997	EPA 8270 - S
2,4,6-Trichlorophenol	<997	µg/Kg	997	EPA 8270 - S
2,4-Dichlorophenol	<997	μg/Kg	997	EPA 8270 - S
2,4-Dimethylphenol	<997	µg/Kg	997	EPA 8270 - S
2,4-Dinitrophenol	<4980	µg/Kg	4980	EPA 8270 - S
2,4-Dinitrotoluene	<997	µg/Kg	997	EPA 8270 - S
2,6-Dinitrotoluene	<997	µg/Kg	997	EPA 8270 - S
2-Chloronaphthalene	<249	µg/Kg	249	EPA 8270 - S
2-Chlorophenol	<997	µg/Kg	997	EPA 8270 - S
2-Methylnaphthalene	<249	µg/Kg	249	EPA 8270 - S
2-Methylphenol	<997	µg/Kg	997	EPA 8270 - S
2-Nitroaniline	<997	µg/Kg	997	EPA 8270 - S
2-Nitrophenol	<997	µg/Kg	997	EPA 8270 - S
3,3'-Dichlorobenzidine	<1990	µg/Kg	1990	EPA 8270 - S
3- & 4-Methylphenol	<1990	µg/Kg	1990	EPA 8270 - S
3-Nitroaniline	<997	µg/Kg	997	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<4980	µg/Kg	4980	EPA 8270 - S
4-Bromophenylphenyl ether	<997	µg/Kg	997	EPA 8270 - S
4-Chloro-3-methylphenol	<997	µg/Kg	997	EPA 8270 - S
4-Chloroaniline	<997	µg/Kg	997	EPA 8270 - S
4-Chlorophenylphenyl ether	<997	µg/Kg	997	EPA 8270 - S
4-Nitroaniline	<997	µg/Kg	997	EPA 8270 - S
4-Nitrophenol	<2490	µg/Kg	2490	EPA 8270 - S
Acenaphthene	<249	µg/Kg	249	EPA 8270 - S
Acenaphthylene	<249	µg/Kg	249	EPA 8270 - S
Anthracene	<249	µg/Kg	249	EPA 8270 - S
Benzo(a)anthracene	<249	µg/Kg	249	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 14:40	System ID	AH06699	Sample ID	FO030812
аннай «Уснанностикностики» конструкций, к стартик каке ит чтоки из т. т. чито и чито и чито и на наконали конст	אריבים או איז	er sen ninderson i som en er men versering som en versen som en som som som som en som som en som som som som s	n a saadaan ka	Page:	4
Proj./Company Name:	LOWER HARBO	R OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ933-08			Sample Status:	COMPLETE AND
	N ENSIGN & UP	RR		•	VALIDATED
Proj Subcategory:	REGULATORY F	PLAN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1_4			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
Benzo(a)pyrene	<249	μg/Kg	249	EPA 8270 - S
Benzo(g,h,i)perylene	<249	µg/Kg	249	EPA 8270 - S
Benzofluoranthenes	<249	µg/Kg	249	EPA 8270 - S
Benzoic acid	<4980	µg/Kg	4980	EPA 8270 - S
Benzyl alcohol	<1250	µg/Kg	1250	EPA 8270 - S
Benzyl butyl phthalate	<1250	μg/Kg	1250	EPA 8270 - S
Bis(2-chloroethoxy) methane	<997	μg/Kg	997	EPA 8270 - S
Bis(2-chloroethyl) ether	<997	μg/Kg	997	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<997	μg/Kg	997	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<997	µg/Kg	997	EPA 8270 - S
Chrysene	<249	µg/Kg	249	EPA 8270 - S
Di-n-butyl phthalate	<997	µg/Kg	997	EPA 8270 - S
Di-n-octyl phthalate	<997	µg/Kg	997	EPA 8270 - S
Dibenzo(a,h)anthracene	<249	μg/Kg	249	EPA 8270 - S
Dibenzofuran	<997	µg/Kg	997	EPA 8270 - S
Diethyl phthalate	<997	µg/Kg	997	EPA 8270 - S
Dimethyl phthalate	<997	µg/Kg	997	EPA 8270 - S
Fluoranthene	<249	µg/Kg	249	EPA 8270 - S
Fluorene	<249	µg/Kg	249	EPA 8270 - S
Hexachlorobenzene	<997	µg/Kg	997	EPA 8270 - S
Hexachlorobutadiene	<997	µg/Kg	997	EPA 8270 - S
Hexachlorocyclopentadiene	<997	µg/Kg	997	EPA 8270 - S
Hexachloroethane	<997	µg/Kg	997	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<249	µg/Kg	249	EPA 8270 - S
Isophorone	<997	µg/Kg	997	EPA 8270 - S
N-Nitrosodi-n-propylamine	<997	µg/Kg	997	EPA 8270 - S
N-Nitrosodiphenylamine	<997	µg/Kg	997	EPA 8270 - S
Naphthalene	<249	µg/Kg	249	EPA 8270 - S
Nitrobenzene	<997	µg/Kg	997	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 14	:40 System II	D AH06699	Sample ID	FO030812
				Page:	5
Proj./Company Name:			SED SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ933 N ENSIGN & I			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATOR	Y PLAN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1_4			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
Pentachlorophenol	<997	µg/Kg	997	EPA 8270 - S
Phenanthrene	<249	µg/Kg	249	EPA 8270 - S
Phenol	<997	μg/Kg	997	EPA 8270 - S
Pyrene	<249	µg/Kg	249	EPA 8270 - S

End of Report for Sample ID: FO030812

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample Date/Time 8/	13/03 9:50	System ID	AH06700	Sample ID	FO030813
Proj./Company Name: Address/Location:	LOWER HARBO IL-M1-AAM155- 6235 N BASIN		D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY M1_5 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
METALS COPPER ZINC	331 309	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020 ARSENIC CADMIUM CHROMIUM LEAD MERCURY	4.66 3.30 73.5 106 0.060	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0.50 0.10 0.50 0.10 0.010	EPA 6020 EPA 6020 EPA 6020 EPA 6020 EPA 6020
NWTPH-Dx #6 FUEL OIL DIESEL KEROSENE MOTOR OIL	919 <250 <250 2130	mg/Kg mg/Kg mg/Kg mg/Kg	500 250 250 500	NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	<50 <20 <100 DET <100 119	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	50 20 100 100 100	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON PESTICIDES/PCB'S BY EPA 8081 4,4'-DDD 4,4'-DDE	10500 <2.3 <2.3	mg/Kg μg/Kg μg/Kg	45.5 2.3 2.3	EPA 9060 MO EPA 8081 EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time	8/13/03	9:50	System ID	AH06700	Sample ID	FO030813
na francosana ang ang ang ang ang ang ang ang ang		norganismin and an and a second s	energen all de lander forstere and forster en	ana an	Page:	2
Proj./Company Nam	e: LOWEF		OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:		AM155-08			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGUL	ATORY PI	LAN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 5				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.00)1			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter 4,4'-DDT	Result <2.3	Units µg/Kg	MRL 2.3	Method EPA 8081
Aldrin	<1.15	μg/Kg	1.15	EPA 8081
Alpha-BHC	<1.15	μg/Kg	1.15	EPA 8081
Alpha-Chlordane	<1.15	μg/Kg	1.15	EPA 8081
Beta-BHC	<1.15	μg/Kg	1.15	EPA 8081
Delta-BHC	<1.15	μg/Kg	1.15	EPA 8081
Dieldrin	<2.3	μg/Kg	2.3	EPA 8081
Endosulfan I	<1.15	μg/Kg	1.15	EPA 8081
Endosulfan II	<2.3	μg/Kg	2.3	EPA 8081
Endosulfan Sulfate	<2.3	μg/Kg	2.3	EPA 8081
Endrin	<2.3	μg/Kg	2.3	EPA 8081
Endrin Aldehyde	<2.3	μg/Kg	2.3	EPA 8081
Endrin Ketone	<2.3	μg/Kg	2.3	EPA 8081
Gamma-BHC(Lindane)	<1.15	μg/Kg	1.15	EPA 8081
Gamma-Chlordane	<1.15	μg/Kg	1.15	EPA 8081
Heptachlor	<1.15	μg/Kg	1.15	EPA 8081
Heptachlor Epoxide	<1.15	μg/Kg	1.15	EPA 8081
Methoxychlor	<11.5	μg/Kg	11.5	EPA 8081
PCB 1016	<11.5	μg/Kg	11.4	EPA 8081
PCB 1221	<22.8	μg/Kg	22.8	EPA 8081
PCB 1232	<11.4	μg/Kg	11.4	EPA 8081
PCB 1242	<11.4	μg/Kg	11.4	EPA 8081
PCB 1242	<11.4	μg/Kg	11.4	EPA 8081
PCB 1248 PCB 1254	29.3	μg/Kg	11.4	EPA 8081
PCB 1260	29.5	μg/Kg	11.4	EPA 8081
Toxaphene	<115	μg/Kg	11.4	EPA 8081
	\$115	P9/179	115	
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<313	μg/Kg	313	EPA 8270 - S
1,2-Dichlorobenzene	<313	µg/Kg	313	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	13/03 9:5	50 System ID	AH06700	Sample ID	FO030813
and an anna sain a barran an a	a ang pang pang pang pang nangkawa sang panggara ang	an an air ann ann ann an an threann ann an ann an ann an ann an ann an a		Page:	3
Proj./Company Name:	LOWER HAR	3OR OUTFALL SE	ED SAMP C	Date Received:	8/13/03
Address/Location:	IL-M1-AAM15 6235 N BASIN	5-0803		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATOR	Y PLAN & EVAL	S	Sample Type:	COMPOSITE
Sample Point Code:	M1_5		S	Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001		C	Collected By:	MJH/DJH

. Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
1,3-Dichlorobenzene	<313	μg/Kg	313	EPA 8270 - S
1,4-Dichlorobenzene	<313	µg/Kg	313	EPA 8270 - S
2,4,5-Trichlorophenol	<313	µg/Kg	313	EPA 8270 - S
2,4,6-Trichlorophenol	<313	μg/Kg	313	EPA 8270 - S
2,4-Dichlorophenol	<313	µg/Kg	313	EPA 8270 - S
2,4-Dimethylphenol	<313	μg/Kg	313	EPA 8270 - S
2,4-Dinitrophenol	<1560	µg/Kg	1560	EPA 8270 - S
2,4-Dinitrotoluene	<313	µg/Kg	313	EPA 8270 - S
2,6-Dinitrotoluene	<313	µg/Kg	313	EPA 8270 - S
2-Chloronaphthalene	<78.2	µg/Kg	78.2	EPA 8270 - S
2-Chlorophenol	<313	µg/Kg	313	EPA 8270 - S
2-Methylnaphthalene	<78.2	µg/Kg	78.2	EPA 8270 - S
2-Methylphenol	<313	µg/Kg	313	EPA 8270 - S
2-Nitroaniline	<313	µg/Kg	313	EPA 8270 - S
2-Nitrophenol	<313	µg/Kg	313	EPA 8270 - S
3,3'-Dichlorobenzidine	<625	µg/Kg	625	EPA 8270 - S
3- & 4-Methylphenol	<625	µg/Kg	625	EPA 8270 - S
3-Nitroaniline	<313	µg/Kg	313	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1560	µg/Kg	1560	EPA 8270 - S
4-Bromophenylphenyl ether	<313	µg/Kg	313	EPA 8270 - S
4-Chloro-3-methylphenol	<313	µg/Kg	313	EPA 8270 - S
4-Chloroaniline	<313	µg/Kg	313	EPA 8270 - S
4-Chlorophenylphenyl ether	<313	µg/Kg	313	EPA 8270 - S
4-Nitroaniline	<313	µg/Kg	313	EPA 8270 - S
4-Nitrophenol	<782	µg/Kg	782	EPA 8270 - S
Acenaphthene	<78.2	µg/Kg	78.2	EPA 8270 - S
Acenaphthylene	<78.2	µg/Kg	78.2	EPA 8270 - S
Anthracene	85.2	µg/Kg	78.2	EPA 8270 - S
Benzo(a)anthracene	86.8	µg/Kg	78.2	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time	8/13/03	9:50	System ID	AH06700	Sample ID	FO030813
n that (n a de antice) a strand a strand bard the normalism of a strand of the strand of the strand of the stra		n i a naaraa na araa na baharin taana	na na sa	ang papanggan ang karang nanang mang karang	Page:	4
Proj./Company Nam	e: LOWEF	R HARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:		AM155-08			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGUL	ATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 5				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.00	1			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result <78.2	Units	MRL 78.2	Method EPA 8270 - S
Benzo(a)pyrene		µg/Kg		
Benzo(g,h,i)perylene	<78.2	µg/Kg	78.2	EPA 8270 - S
Benzofluoranthenes	<78.2	µg/Kg	78.2	EPA 8270 - S
Benzoic acid	<1560	µg/Kg	1560	EPA 8270 - S
Benzyl alcohol	<391	µg/Kg	391	EPA 8270 - S
Benzyl butyl phthalate	<391	µg/Kg	391	EPA 8270 - S
Bis(2-chloroethoxy) methane	<313	µg/Kg	313	EPA 8270 - S
Bis(2-chloroethyl) ether	<313	µg/Kg	313	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<313	µg/Kg	313	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1340	µg/Kg	313	EPA 8270 - S
Chrysene	142	µg/Kg	78.2	EPA 8270 - S
Di-n-butyl phthalate	<313	µg/Kg	313	EPA 8270 - S
Di-n-octyl phthalate	<313	µg/Kg	313	EPA 8270 - S
Dibenzo(a,h)anthracene	<78.2	µg/Kg	78.2	EPA 8270 - S
Dibenzofuran	<313	µg/Kg	313	EPA 8270 - S
Diethyl phthalate	<313	µg/Kg	313	EPA 8270 - S
Dimethyl phthalate	<313	µg/Kg	313	EPA 8270 - S
Fluoranthene	217	µg/Kg	78.2	EPA 8270 - S
Fluorene	<78.2	µg/Kg	78.2	EPA 8270 - S
Hexachlorobenzene	<313	µg/Kg	313	EPA 8270 - S
Hexachlorobutadiene	<313	µg/Kg	313	EPA 8270 - S
Hexachlorocyclopentadiene	<313	µg/Kg	313	EPA 8270 - S
Hexachloroethane	<313	µg/Kg	313	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<78.2	µg/Kg	78.2	EPA 8270 - S
Isophorone	<313	µg/Kg	313	EPA 8270 - S
N-Nitrosodi-n-propylamine	<313	µg/Kg	313	EPA 8270 - S
N-Nitrosodiphenylamine	<313	µg/Kg	313	EPA 8270 - S
Naphthalene	<78.2	μg/Kg	78.2	EPA 8270 - S
Nitrobenzene	<313	μg/Kg	313	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/*	13/03 9:50	System ID	AH06700	Sample ID	FO030813
Proj./Company Name: Address/Location:	LOWER HARBOF IL-M1-AAM155-08 6235 N BASIN		D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY P M1_5 1020.001	LAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
Pentachlorophenol	<313	µg/Kg	313	EPA 8270 - S
Phenanthrene	94.1	µg/Kg	78.2	EPA 8270 - S
Phenol	<313	µg/Kg	313	EPA 8270 - S
Pyrene	252	µg/Kg	78.2	EPA 8270 - S

End of Report for Sample ID: FO030813

Sample Date/Time 8/1	13/03 11:42	System ID	AH06701	Sample ID	FO030814
un - una per seur a la subernación densita aponaria sur a sur d'ascretarias de charlensitador do de de	r na milleann ann an 2017. A th' na fhrainn ann 1921 farth ann a' dhair ann anna anna anna anna ann	we have the system superspectra strategies v_{-} , we have the subset $v_{-} \sim -\infty$.	na mangan metri se sta nasan kasar penerakan basi	Page:	1
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
	IL-M1-AAJ829-0803 N BASIN & N FATH	3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 6			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The result for PCB 1254 is an estimated value below the Practical Quantitation Limit.

Test Parameter	Result	Units	MRL	Method
METALS	400		0.05	
COPPER	139	mg/Kg	0.25	EPA 6020
ZINC	4340	mg/Kg	0.50	EPA 6020
RCRA METALS (5) BY EPA 6020				
ARSENIC	120	mg/Kg	0.50	EPA 6020
CADMIUM	24.8	mg/Kg	0.10	EPA 6020
CHROMIUM	39.3	mg/Kg	0.50	EPA 6020
LEAD	83.5	mg/Kg	0.10	EPA 6020
MERCURY	0.321	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	357	mg/Kg	50	NWTPH-Dx
DIESEL	<25	mg/Kg	25	NWTPH-Dx
KEROSENE	<25	mg/Kg	25	NWTPH-Dx
MOTOR OIL	6990	mg/Kg	500	NWTPH-Dx
NWTPH-HCID				
DIESEL	<50	mg/Kg	50	NWTPH-HCID
GASOLINE	<20	mg/Kg	20	NWTPH-HCID
HEAVY FUEL OIL	<100	mg/Kg	100	NWTPH-HCID
LUBE OIL	DET	mg/Kg	100	NWTPH-HCID
OTHER	<100	mg/Kg	100	NWTPH-HCID
Surrogate Recovery (%)	119	mg/Kg		NWTPH-HCID
OUTSIDE				
TOTAL ORGANIC CARBON	31600	mg/Kg	59.4	EPA 9060 MO
PESTICIDES/PCB'S BY EPA 8081				
4,4'-DDD	<3.77	µg/Kg	3.77	EPA 8081
4,4'-DDE	<3.77	µg/Kg	3.77	EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	13/03 11:42	System ID	AH06701	Sample ID	FO030814
	na ann an Anna Anna Anna Anna. Ann Anna			Page:	2010/10/10/10/10/10/10/10/10/10/10/10/10/
Proj./Company Name:	LOWER HARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ829-080 N BASIN & N FATH	3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1_6			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The result for PCB 1254 is an estimated value below the Practical Quantitation Limit.

Test Parameter 4,4'-DDT	Result <3.77	Units µg/Kg	MRL 3.77	Method EPA 8081
Aldrin	<1.89	μg/Kg	1.89	EPA 8081
Alpha-BHC	<1.89	μg/Kg	1.89	EPA 8081
Alpha-Chlordane	<1.89	μg/Kg	1.89	EPA 8081
Beta-BHC	<1.89	μg/Kg	1.89	EPA 8081
Delta-BHC	<1.89	μg/Kg	1.89	EPA 8081
Dieldrin	<3.77	μg/Kg	3.77	EPA 8081
Endosulfan I	<1.89	μg/Kg μg/Kg	1.89	EPA 8081
Endosulfan II	<3.77		3.77	EPA 8081
Endosulfan Sulfate	<3.77	µg/Kg	3.77	EPA 8081 EPA 8081
Endosunan Sullate	<3.77	µg/Kg µg/Kg	3.77	EPA 8081 EPA 8081
Endrin Aldehyde	<3.77		3.77	EPA 8081
Endrin Ketone	<3.77	µg/Kg	3.77	
Gamma-BHC(Lindane)	<1.89	µg/Kg µg/Kg	3.77 1.89	EPA 8081 EPA 8081
Gamma-Chlordane	<1.89	µg/Kg	1.89	
	<1.89	µg/Kg	1.89	EPA 8081
Heptachlor	<1.89 <1.89	µg/Kg	1.89	EPA 8081
Heptachlor Epoxide	<18.9	µg/Kg	1.89	EPA 8081
Methoxychlor		µg/Kg		EPA 8081
PCB 1016	<18.6	µg/Kg	18.6	EPA 8081
PCB 1221	<37.2	µg/Kg	37.2	EPA 8081
PCB 1232	<18.6	µg/Kg	18.6	EPA 8081
PCB 1242	<18.6	µg/Kg	18.6	EPA 8081
PCB 1248	<18.6	µg/Kg	18.6	EPA 8081
PCB 1254	EST 11.9	µg/Kg	18.6	EPA 8081
PCB 1260	<18.6	µg/Kg	18.6	EPA 8081
Toxaphene	<189	µg/Kg	189	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<494	µg/Kg	494	EPA 8270
1,2-Dichlorobenzene	<494	µg/Kg	494	EPA 8270

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	/13/03 1	1:42 System	ID AH06701	Sample ID	FO030814
Annanina formita en la mananare vare unersonna erran franciseur, en annana unen ar en	na o otni na z tanjan na na ina ina na fina ana ina ina kao ana ina ina kao ana ina ina kao ana ina ina kao an	a y w wine and sa analogica in characteria data da ang ang ang ang ang ang ang ang ang an	ning a sharrang an	Page:	3
Proj./Company Name	: LOWER HAP	RBOR OUTFALL	SED SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ82 N BASIN & N			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATO	RY PLAN & EVAL	-	Sample Type:	COMPOSITE
Sample Point Code:	M1_6			Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH
Commente: 04/0C ⁻ Uni	less otherwise not	ed all analytical OA/	C criteria were m	et for this sample inclu	iding holding times

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The result for PCB 1254 is an estimated value below the Practical Quantitation Limit.

	· · · · · · · · · · · · · · · · · · ·			
Test Parameter	Result	Units	MRL	Method
1,3-Dichlorobenzene	<494	µg/Kg	494	EPA 8270 - S
1,4-Dichlorobenzene	<494	µg/Kg	494	EPA 8270 - S
2,4,5-Trichlorophenol	<494	µg/Kg	494	EPA 8270 - S
2,4,6-Trichlorophenol	<494	µg/Kg	494	EPA 8270 - S
2,4-Dichlorophenol	<494	µg/Kg	494	EPA 8270 - S
2,4-Dimethylphenol	<494	µg/Kg	494	EPA 8270 - S
2,4-Dinitrophenol	<2470	µg/Kg	2470	EPA 8270 - S
2,4-Dinitrotoluene	<494	µg/Kg	494	EPA 8270 - S
2,6-Dinitrotoluene	<494	µg/Kg	494	EPA 8270 - S
2-Chloronaphthalene	<124	µg/Kg	124	EPA 8270 - S
2-Chlorophenol	<494	µg/Kg	494	EPA 8270 - S
2-Methylnaphthalene	<124	µg/Kg	124	EPA 8270 - S
2-Methylphenol	<494	µg/Kg	494	EPA 8270 - S
2-Nitroaniline	<494	µg/Kg	494	EPA 8270 - S
2-Nitrophenol	<494	µg/Kg	494	EPA 8270 - S
3,3'-Dichlorobenzidine	<988	µg/Kg	988	EPA 8270 - S
3- & 4-Methylphenol	<988	µg/Kg	988	EPA 8270 - S
3-Nitroaniline	<494	µg/Kg	494	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<2470	µg/Kg	2470	EPA 8270 - S
4-Bromophenylphenyl ether	<494	µg/Kg	494	EPA 8270 - S
4-Chloro-3-methylphenol	<494	µg/Kg	494	EPA 8270 - S
4-Chloroaniline	<494	µg/Kg	494	EPA 8270 - S
4-Chlorophenylphenyl ether	<494	µg/Kg	494	EPA 8270 - S
4-Nitroaniline	<494	µg/Kg	494	EPA 8270 - S
4-Nitrophenol	<1240	µg/Kg	1240	EPA 8270 - S
Acenaphthene	<124	µg/Kg	124	EPA 8270 - S
Acenaphthylene	<124	µg/Kg	124	EPA 8270 - S
Anthracene	<124	µg/Kg	124	EPA 8270 - S
Benzo(a)anthracene	<124	µg/Kg	124	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	(13/03	11:42	System ID	AH06701	Sample ID	FO030814
anna a fa an ann an ann ann ann ann an ann an	ana a' Arna a samaladan ana araba sa basar balanna ba	nanna an stàite inneachtaicte anns an seacha	αιματογιατογίας το Αγγοριατικό το το Υπογιατικό το το το ποριαζά το τ	We all an of the fact of the construction of the definition of the	Page:	4
Proj./Company Name:	: LOWER H	ARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-AAJ	829-0803	3		Sample Status:	COMPLETE AND
	N BASIN 8	N FATH	OM			VALIDATED
Proj Subcategory:	REGULAT	ORY PLA	N & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	M1 6				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The result for PCB 1254 is an estimated value below the Practical Quantitation Limit.

· · · · · · · · · · · · · · · · · · ·				
Test Parameter Benzo(a)pyrene	Result <124	Units µg/Kg	MRL 124	Method EPA 8270 - S
Benzo(g,h,i)perylene	<124	µg/Kg	124	EPA 8270 - S
Benzofluoranthenes	<124	µg/Kg	124	EPA 8270 - S
Benzoic acid	<2470	µg/Kg	2470	EPA 8270 - S
Benzyl alcohol	<618	µg/Kg	618	EPA 8270 - S
Benzyl butyl phthalate	<618	µg/Kg	618	EPA 8270 - S
Bis(2-chloroethoxy) methane	<494	µg/Kg	494	EPA 8270 - S
Bis(2-chloroethyl) ether	<494	µg/Kg	494	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<494	µg/Kg	494	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	1170	µg/Kg	494	EPA 8270 - S
Chrysene	<124	µg/Kg	124	EPA 8270 - S
Di-n-butyl phthalate	<494	µg/Kg	494	EPA 8270 - S
Di-n-octyl phthalate	<494	μg/Kg	494	EPA 8270 - S
Dibenzo(a,h)anthracene	<124	μg/Kg	124	EPA 8270 - S
Dibenzofuran	<494	μg/Kg	494	EPA 8270 - S
Diethyl phthalate	<494	µg/Kg	494	EPA 8270 - S
Dimethyl phthalate	<494	µg/Kg	494	EPA 8270 - S
Fluoranthene	<124	µg/Kg	124	EPA 8270 - S
Fluorene	<124	µg/Kg	124	EPA 8270 - S
Hexachlorobenzene	<494	µg/Kg	494	EPA 8270 - S
Hexachlorobutadiene	<494	µg/Kg	494	EPA 8270 - S
Hexachlorocyclopentadiene	<494	µg/Kg	494	EPA 8270 - S
Hexachloroethane	<494	µg/Kg	494	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<124	µg/Kg	124	EPA 8270 - S
Isophorone	<494	µg/Kg	494	EPA 8270 - S
N-Nitrosodi-n-propylamine	<494	µg/Kg	494	EPA 8270 - S
N-Nitrosodiphenylamine	<494	µg/Kg	494	EPA 8270 - S
Naphthalene	<124	µg/Kg	124	EPA 8270 - S
Nitrobenzene	<494	µg/Kg	494	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time	8/13/03	11:42	System ID	AH06701	Sample ID	FO030814
Proj./Company Nam Address/Location:	IL-M1-A	AJ829-080	3	D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGUL		HOM AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH
	, method blan	ks, laboratory	control sample re	coveries, dupl	licate precision, matrix	

Test Parameter Pentachlorophenol	Result <494	Units μg/Kg	MRL 494	Method EPA 8270 - S
Phenanthrene	<124	µg/Kg	124	EPA 8270 - S
Phenol	<494	µg/Kg	494	EPA 8270 - S
Pyrene	<124	µg/Kg	124	EPA 8270 - S

End of Report for Sample ID: FO030814

Sample Date/Time 8/	12/03 13:45	System ID	AH06702	Sample ID	FO030815
Proj./Company Name: Address/Location:	LOWER HARBOR (IL-M1-XXY101-080) DUPLICATE		D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA DUP 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons.

Test Parameter	Result L	Jnits	MRL	Method
METALS COPPER	171	malka	0.25	
ZINC	171 977	mg/Kg mg/Kg	0.25 0.50	EPA 6020 EPA 6020
RCRA METALS (5) BY EPA 6020		5 5		
ARSENIC	3.38	mg/Kg	0.50	EPA 6020
CADMIUM	38.7	mg/Kg	0.10	EPA 6020
CHROMIUM	420	mg/Kg	0.50	EPA 6020
LEAD	863	mg/Kg	0.10	EPA 6020
MERCURY	0.065	mg/Kg	0.010	EPA 6020
NWTPH-Dx				
#6 FUEL OIL	5300	mg/Kg	500	NWTPH-Dx
DIESEL	<250	mg/Kg	250	NWTPH-Dx
KEROSENE	<250	mg/Kg	250	NWTPH-Dx
MOTOR OIL	9230	mg/Kg	500	NWTPH-Dx
NWTPH-HCID				
DIESEL	DET	mg/Kg	50	NWTPH-HCID
GASOLINE	DET	mg/Kg	20	NWTPH-HCID
HEAVY FUEL OIL	DET	mg/Kg	100	NWTPH-HCID
LUBE OIL	DET	mg/Kg	100	NWTPH-HCID
OTHER	<100	mg/Kg	100	NWTPH-HCID
Surrogate Recovery (%)	Not Reportable	mg/Kg		NWTPH-HCID
OUTSIDE				
TOTAL ORGANIC CARBON	32100	mg/Kg	46.9	EPA 9060 MO
NWTPH-GX GASOLINE RANGE HYDROCARBONS	285	mg/Kg	5.16	NWTPH-Gx

PESTICIDES/PCB'S BY EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	/12/03	13:45	System ID	AH06702	Sample ID	FO030815
	and we have a set of the set of t		allan mennen van de server het is soorten server en een de servere en de servere een de servere een de servere	NOTION I I II III III III III III III III I	Page:	200 Profile Contraction of the c
Proj./Company Name	: LOWER H	IARBOR	OUTFALL SE	D SAMP	Date Received:	8/13/03
Address/Location:	IL-M1-XX DUPLICA		3		Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULAT	ORY PL	AN & EVAL		Sample Type:	COMPOSITE
Sample Point Code:	DUP				Sample Matrix:	SEDIMENT
IMS File/Invoice #:	1020.001				Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons.

Test Parameter 4,4'-DDD	Result <2.54	Units µg/Kg	MRL 2.54	Method EPA 8081
4,4'-DDE	<2.54	µg/Kg	2.54	EPA 8081
4,4'-DDT	<2.54	µg/Kg	2.54	EPA 8081
Aldrin	<1.27	µg/Kg	1.27	EPA 8081
Alpha-BHC	<1.27	µg/Kg	1.27	EPA 8081
Alpha-Chlordane	<1.27	µg/Kg	1.27	EPA 8081
Beta-BHC	<1.27	µg/Kg	1.27	EPA 8081
Delta-BHC	<1.27	µg/Kg	1.27	EPA 8081
Dieldrin	<2.54	µg/Kg	2.54	EPA 8081
Endosulfan I	<1.27	µg/Kg	1.27	EPA 8081
Endosulfan II	<2.54	µg/Kg	2.54	EPA 8081
Endosulfan Sulfate	<2.54	µg/Kg	2.54	EPA 8081
Endrin	<2.54	µg/Kg	2.54	EPA 8081
Endrin Aldehyde	<2.54	µg/Kg	2.54	EPA 8081
Endrin Ketone	<2.54	µg/Kg	2.54	EPA 8081
Gamma-BHC(Lindane)	<1.27	µg/Kg	1.27	EPA 8081
Gamma-Chlordane	<1.27	µg/Kg	1.27	EPA 8081
Heptachlor	<1.27	µg/Kg	1.27	EPA 8081
Heptachlor Epoxide	<1.27	µg/Kg	1.27	EPA 8081
Methoxychlor	<12.7	µg/Kg	12.7	EPA 8081
PCB 1016	<12.3	µg/Kg	12.3	EPA 8081
PCB 1221	<24.6	µg/Kg	24.6	EPA 8081
PCB 1232	<12.3	µg/Kg	12.3	EPA 8081
PCB 1242	<12.3	µg/Kg	12.3	EPA 8081
PCB 1248	<12.3	µg/Kg	12.3	EPA 8081
PCB 1254	378	µg/Kg	12.3	EPA 8081
PCB 1260	123	μg/Kg	12.3	EPA 8081
Toxaphene	<127	µg/Kg	127	EPA 8081

SEMI-VOLATILE ORGANICS

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/1	12/03 13:45	System ID	AH06702	Sample ID	FO030815
Proj./Company Name: Address/Location:	LOWER HARBOR IL-M1-XXY101-080 DUPLICATE		D SAMP	Page: Date Received: Sample Status:	3 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA DUP 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons.

Test Parameter	Result	Units	MRL	Method
1,2,4-Trichlorobenzene	<337	µg/Kg	337	EPA 8270 - S
1,2-Dichlorobenzene	<337	µg/Kg	337	EPA 8270 - S
1,3-Dichlorobenzene	<337	µg/Kg	337	EPA 8270 - S
1,4-Dichlorobenzene	<337	µg/Kg	337	EPA 8270 - S
2,4,5-Trichlorophenol	<337	µg/Kg	337	EPA 8270 - S
2,4,6-Trichlorophenol	<337	µg/Kg	337	EPA 8270 - S
2,4-Dichlorophenol	<337	µg/Kg	337	EPA 8270 - S
2,4-Dimethylphenol	<337	µg/Kg	337	EPA 8270 - S
2,4-Dinitrophenol	<1680	µg/Kg	1680	EPA 8270 - S
2,4-Dinitrotoluene	<337	µg/Kg	337	EPA 8270 - S
2,6-Dinitrotoluene	<337	µg/Kg	337	EPA 8270 - S
2-Chloronaphthalene	<84.2	µg/Kg	84.2	EPA 8270 - S
2-Chlorophenol	<337	µg/Kg	337	EPA 8270 - S
2-Methylnaphthalene	3800	µg/Kg	84.2	EPA 8270 - S
2-Methylphenol	<337	µg/Kg	337	EPA 8270 - S
2-Nitroaniline	<337	µg/Kg	337	EPA 8270 - S
2-Nitrophenol	<337	µg/Kg	337	EPA 8270 - S
3,3'-Dichlorobenzidine	<674	µg/Kg	674	EPA 8270 - S
3- & 4-Methylphenol	<674	µg/Kg	674	EPA 8270 - S
3-Nitroaniline	<337	µg/Kg	337	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<1680	µg/Kg	1680	EPA 8270 - S
4-Bromophenylphenyl ether	<337	µg/Kg	337	EPA 8270 - S
4-Chloro-3-methylphenol	<337	µg/Kg	337	EPA 8270 - S
4-Chloroaniline	<337	µg/Kg	337	EPA 8270 - S
4-Chlorophenylphenyl ether	<337	µg/Kg	337	EPA 8270 - S
4-Nitroaniline	<337	µg/Kg	337	EPA 8270 - S
4-Nitrophenol	<842	µg/Kg	842	EPA 8270 - S
Acenaphthene	<84.2	µg/Kg	84.2	EPA 8270 - S
Acenaphthylene	<84.2	µg/Kg	84.2	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8	/12/03	13:45	System ID	AH06702	Sample ID	FO030815
Proj./Company Name Address/Location:	: Lower H IL-M1-XXY DUPLICAT	101-080		D SAMP	Page: Date Received: Sample Status:	4 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATO DUP 1020.001	ORY PLA	AN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons.

Test Parameter	Result	Units	MRL	Method
Anthracene	<84.2	µg/Kg	84.2	EPA 8270 - S
Benzo(a)anthracene	<84.2	µg/Kg	84.2	EPA 8270 - S
Benzo(a)pyrene	<84.2	µg/Kg	84.2	EPA 8270 - S
Benzo(g,h,i)perylene	<84.2	µg/Kg	84.2	EPA 8270 - S
Benzofluoranthenes	<84.2	µg/Kg	84.2	EPA 8270 - S
Benzoic acid	<1680	µg/Kg	1680	EPA 8270 - S
Benzyl alcohol	<421	µg/Kg	421	EPA 8270 - S
Benzyl butyl phthalate	<421	µg/Kg	421	EPA 8270 - S
Bis(2-chloroethoxy) methane	<337	µg/Kg	337	EPA 8270 - S
Bis(2-chloroethyl) ether	<337	µg/Kg	337	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<337	µg/Kg	337	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	16500	µg/Kg	337	EPA 8270 - S
Chrysene	<84.2	µg/Kg	84.2	EPA 8270 - S
Di-n-butyl phthalate	1020	µg/Kg	337	EPA 8270 - S
Di-n-octyl phthalate	<337	µg/Kg	337	EPA 8270 - S
Dibenzo(a,h)anthracene	<84.2	µg/Kg	84.2	EPA 8270 - S
Dibenzofuran	<337	µg/Kg	337	EPA 8270 - S
Diethyl phthalate	<337	µg/Kg	337	EPA 8270 - S
Dimethyl phthalate	<337	µg/Kg	337	EPA 8270 - S
Fluoranthene	900	µg/Kg	84.2	EPA 8270 - S
Fluorene	<84.2	µg/Kg	84.2	EPA 8270 - S
Hexachlorobenzene	<337	µg/Kg	337	EPA 8270 - S
Hexachlorobutadiene	<337	µg/Kg	337	EPA 8270 - S
Hexachlorocyclopentadiene	<337	µg/Kg	337	EPA 8270 - S
Hexachloroethane	<337	µg/Kg	337	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<84.2	µg/Kg	84.2	EPA 8270 - S
Isophorone	<337	µg/Kg	337	EPA 8270 - S
N-Nitrosodi-n-propylamine	<337	µg/Kg	337	EPA 8270 - S
N-Nitrosodiphenylamine	<337	μg/Kg	337	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/*	12/03 13:45	System ID	AH06702	Sample ID	FO030815
Proj./Company Name: Address/Location:	LOWER HARBC IL-M1-XXY101-0 DUPLICATE		D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY F DUP 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	COMPOSITE SEDIMENT MJH/DJH
Comments: QA/QC: Unle calibration, m	ethod blanks, laborate	ory control sample re	coveries, dupl	et for this sample inclu icate precision, matrix	spike recoveries, and

calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. The surrogate recovery for NWTPH-HCID is not reportable due to matrix interference from the petroleum hydrocarbons.

Test Parameter	Result	Units	MRL	Method
Naphthalene	510	µg/Kg	84.2	EPA 8270 - S
Nitrobenzene	<337	µg/Kg	337	EPA 8270 - S
Pentachlorophenol	<337	µg/Kg	337	EPA 8270 - S
Phenanthrene	2640	µg/Kg	84.2	EPA 8270 - S
Phenol	<337	µg/Kg	337	EPA 8270 - S
Pyrene	1030	µg/Kg	84.2	EPA 8270 - S

End of Report for Sample ID: FO030815

Sample Date/Time 8/	12/03 7:50	System ID	AH06703	Sample ID	FO030816
Proj./Company Name: Address/Location:	LOWER HARBOR (RINSATE SAMPLE	OUTFALL SE	D SAMP	Page: Date Received: Sample Status:	1 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PLA RINSE 1020.001	N & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB DIWTR MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
METALS MERCURY	<0.0050	μg/L	0.005	EPA 200.8
METALS BY ICP-MS (TOTAL) - 6 ARSENIC CADMIUM CHROMIUM COPPER	<0.10 <0.10 <0.40 <0.20	μg/L μg/L μg/L μg/L	0.1 0.1 0.4 0.2	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8
LEAD ZINC	<0.10 <0.50	μg/L μg/L	0.1 0.5	EPA 200.8 EPA 200.8
NWTPH-HCID DIESEL GASOLINE HEAVY FUEL OIL LUBE OIL OTHER Surrogate Recovery (%)	<0.63 <0.25 <0.63 <0.63 <0.63 105	mg/L mg/L mg/L mg/L mg/L	0.63 0.25 0.63 0.63 0.63	NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID
OUTSIDE TOTAL ORGANIC CARBON	0.624	mg/L	0.35	EPA 415.1
NWTPH-Dx DIESEL RANGE HYDROCARBONS HEAVY OIL RANGE HYDROCARBONS	<0.241 <0.482	mg/L mg/L	0.241 0.482	NWTPH-Dx NWTPH-Dx
PESTICIDES/PCB'S BY EPA 8081 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	<0.00384 <0.00384 <0.00384 <0.00192	μg/L μg/L μg/L μg/L	0.00384 0.00384 0.00384 0.00192	EPA 8081 EPA 8081 EPA 8081 EPA 8081

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/1	12/03 7:50	System ID	AH06703	Sample ID	FO030816
Proj./Company Name: Address/Location:	LOWER HARBO RINSATE SAMP		D SAMP	Page: Date Received: Sample Status:	2 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY F RINSE 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB DIWTR MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

			· · ·	
Test Parameter	Result	Units	MRL	Method
Alpha-BHC	<0.00192	µg/L	0.00192	EPA 8081
Alpha-Chlordane	<0.00192	µg/L	0.00192	EPA 8081
Beta-BHC	<0.00384	µg/L	0.00384	EPA 8081
Delta-BHC	<0.00192	µg/L	0.00192	EPA 8081
Dieldrin	<0.00384	µg/L	0.00384	EPA 8081 (
Endosulfan I	<0.00192	µg/L	0.00192	EPA 8081
Endosulfan II	<0.00384	µg/L	0.00384	EPA 8081
Endosulfan Sulfate	<0.00384	µg/L	0.00384	EPA 8081
Endrin	<0.00384	µg/L	0.00384	EPA 8081
Endrin Aldehyde	<0.00384	µg/L	0.00384	EPA 8081
Endrin Ketone	<0.00384	µg/L	0.00384	EPA 8081
Gamma-BHC(Lindane)	<0.00192	µg/L	0.00192	EPA 8081
Gamma-Chlordane	< 0.00192	µg/L	0.00192	EPA 8081
Heptachlor	<0.00192	µg/L	0.00192	EPA 8081
Heptachlor Epoxide	<0.00192	µg/L	0.00192	EPA 8081
Methoxychlor	<0.0192	µg/L	0.0192	EPA 8081
PCB 1016	<0.0192	µg/L	0.0192	EPA 8081
PCB 1221	<0.0384	µg/L	0.0384	EPA 8081
PCB 1232	<0.0192	µg/L	0.0192	EPA 8081
PCB 1242	<0.0192	µg/L	0.0192	EPA 8081
PCB 1248	<0.0192	µg/L	0.0192	EPA 8081
PCB 1254	<0.0192	µg/L	0.0192	EPA 8081
PCB 1260	<0.0192	µg/L	0.0192	EPA 8081
Toxaphene	<0.192	µg/L	0.192	EPA 8081
SEMI-VOLATILE ORGANICS				
1,2,4-Trichlorobenzene	<0.192	µg/L	0.192	EPA 8270 - S
1,2-Dichlorobenzene	<0.192	µg/L	0.192	EPA 8270 - S
1,3-Dichlorobenzene	<0.192	µg/L	0.192	EPA 8270 - S
1,4-Dichlorobenzene	<0.192	µg/L	0.192	EPA 8270 - S
CEA2 N. Durlington Aug. / Doubland, OD	07000 (500) 000 5000 6	(500) 000 505	Devent Dete	0/45/00

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

	Sample Date/Time 8/*	12/03 7:50	System ID	AH06703	Sample ID	FO030816
a 14 14	Proj./Company Name: Address/Location:	LOWER HARBO RINSATE SAMF		D SAMP	Page: Date Received: Sample Status:	3 8/13/03 COMPLETE AND VALIDATED
	Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY RINSE 1020.001	PLAN & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB DIWTR MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
2,4,5-Trichlorophenol	<0.192	μg/L	0.192	EPA 8270 - S
2,4,6-Trichlorophenol	<0.192	µg/L	0.192	EPA 8270 - S
2,4-Dichlorophenol	<0.192	µg/L	0.192	EPA 8270 - S
2,4-Dimethylphenol	<0.961	µg/L	0.961	EPA 8270 - S
2,4-Dinitrophenol	<0.961	µg/L	0.961	EPA 8270 - S
2,4-Dinitrotoluene	<0.192	µg/L	0.192	EPA 8270 - S
2,6-Dinitrotoluene	<0.192	µg/L	0.192	EPA 8270 - S
2-Chloronaphthalene	<0.048	µg/L	0.048	EPA 8270 - S
2-Chlorophenol	<0.192	µg/L	0.192	EPA 8270 - S
2-Methylnaphthalene	<0.048	µg/L	0.048	EPA 8270 - S
2-Methylphenol	<0.192	µg/L	0.192	EPA 8270 - S
2-Nitroaniline	<0.192	µg/Ľ	0.192	EPA 8270 - S
2-Nitrophenol	<0.192	μg/L	0.192	EPA 8270 - S
3,3'-Dichlorobenzidine	<0.961	μg/L	0.961	EPA 8270 - S
3- & 4-Methylphenol	<0.384	μg/L	0.384	EPA 8270 - S
3-Nitroaniline	<0.192	µg/L	0.192	EPA 8270 - S
4,6-Dinitro-2-methylphenol	<0.961	µg/L	0.961	EPA 8270 - S
4-Bromophenylphenyl ether	<0.192	μg/L	0.192	EPA 8270 - S
4-Chloro-3-methylphenol	<0.192	μg/L	0.192	EPA 8270 - S
4-Chloroaniline	<0.288	μg/L	0.288	EPA 8270 - S
4-Chlorophenylphenyl ether	<0.192	µg/L	0.192	EPA 8270 - S
4-Nitroaniline	<0.192	μg/L	0.192	EPA 8270 - S
4-Nitrophenol	<0.961	µg/L	0.961	EPA 8270 - S
Acenaphthene	<0.048	μg/L	0.048	EPA 8270 - S
Acenaphthylene	<0.048	μg/L	0.048	EPA 8270 - S
Anthracene	<0.048	µg/L	0.048	EPA 8270 - S
Benzo(a)anthracene	<0.048	µg/L	0.048	EPA 8270 - S
Benzo(a)pyrene	<0.048	µg/L	0.048	EPA 8270 - S
Benzo(g,h,i)perylene	<0.048	μg/L	0.048	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 7:5	50 System ID	AH06703	Sample ID	FO030816
T THE CONTRACTOR AND AND A CONTRACTOR AND A THE SAME AND A SUBJECT AND A S		ראיז איזא ענוער איז געראינער אונעראינער איז איז איז איז איז איז איז איזא איז איז	HARF SHE . HAR HAR AND THE PART AND THE PART	Page:	4
Proj./Company Name:	LOWER HAR	BOR OUTFALL SI	ED SAMP	Date Received:	8/13/03
Address/Location:	RINSATE SAI			Sample Status:	COMPLETE AND VALIDATED
Proj Subcategory:	REGULATOR	Y PLAN & EVAL		Sample Type:	GRAB
Sample Point Code:	RINSE			Sample Matrix:	DIWTR
IMS File/Invoice #:	1020.001			Collected By:	MJH/DJH

Comments: QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
Benzofluoranthenes	<0.0961	µg/L	0.0961	EPA 8270 - S
Benzoic acid	<0.961	µg/L	0.961	EPA 8270 - S
Benzyl alcohol	<0.192	µg/L	0.192	EPA 8270 - S
Benzyl butyl phthalate	<0.288	µg/L	0.288	EPA 8270 - S
Bis(2-chloroethoxy) methane	<0.192	μg/L	0.192	EPA 8270 - S
Bis(2-chloroethyl) ether	<0.192	µg/L	0.192	EPA 8270 - S
Bis(2-chloroisopropyl) ether	<0.192	µg/L	0.192	EPA 8270 - S
Bis(2-ethylhexyl) phthalate	<1.44	µg/L	1.44	EPA 8270 - S
Chrysene	<0.048	μg/L	0.048	EPA 8270 - S
Di-n-butyl phthalate	<0.192	μg/L	0.192	EPA 8270 - S
Di-n-octyl phthalate	<0.192	µg/L	0.192	EPA 8270 - S
Dibenzo(a,h)anthracene	<0.048	µg/L	0.048	EPA 8270 - S
Dibenzofuran	<0.192	µg/L	0.192	EPA 8270 - S
Diethyl phthalate	<0.192	μg/L	0.192	EPA 8270 - S
Dimethyl phthalate	<0.192	μg/L	0.192	EPA 8270 - S
Fluoranthene	<0.048	µg/L	0.048	EPA 8270 - S
Fluorene	<0.048	µg/L	0.048	EPA 8270 - S
Hexachlorobenzene	<0.192	µg/L	0.192	EPA 8270 - S
Hexachlorobutadiene	<0.192	μg/L	0.192	EPA 8270 - S
Hexachlorocyclopentadiene	<0.961	μg/L	0.961	EPA 8270 - S
Hexachloroethane	<0.192	µg/L	0.192	EPA 8270 - S
Indeno(1,2,3-cd)pyrene	<0.048	μg/L	0.048	EPA 8270 - S
Isophorone	<0.192	μg/L	0.192	EPA 8270 - S
N-Nitrosodi-n-propylamine	<0.192	µg/L	0.192	EPA 8270 - S
N-Nitrosodiphenylamine	<0.192	µg/L	0.192	EPA 8270 - S
Naphthalene	<0.0576	µg/L	0.0576	EPA 8270 - S
Nitrobenzene	<0.192	µg/L	0.192	EPA 8270 - S
Pentachlorophenol	<0.624	μg/L	0.624	EPA 8270 - S
Phenanthrene	<0.048	μg/L	0.048	EPA 8270 - S

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Report Date: 9/15/03

Sample Date/Time 8/	12/03 7:50	System ID	AH06703	Sample ID	FO030816
Proj./Company Name: Address/Location:	LOWER HARBOR RINSATE SAMPLI		D SAMP	Page: Date Received: Sample Status:	5 8/13/03 COMPLETE AND VALIDATED
Proj Subcategory: Sample Point Code: IMS File/Invoice #:	REGULATORY PL RINSE 1020.001	AN & EVAL		Sample Type: Sample Matrix: Collected By:	GRAB DIWTR MJH/DJH
Comments: QA/QC: Unle	ess otherwise noted, all	analytical QA/QC o	criteria were m	et for this sample inclu	iding holding times,

calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method
Phenol	<0.192	μg/L	0.192	EPA 8270 - S
Pyrene	<0.048	μg/L	0.048	EPA 8270 - S
End of Penert for Sample ID: E0030816				

End of Report for Sample ID: FO030816

·

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: September 11, 2003

TO: Howard Holmes North Creek Analytical 9405 S. W. Nimbus Ave. Beaverton, OR 97008

PROJECT: Lower Harbor Sediment Samples WO# P3H0448

REPORT NUMBER: 115555

TOTAL NUMBER OF PAGES: 14-3

Enclosed are the test results for eight samples received at STL Seattle on August 19, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely

Tom Watson Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

Lab. No.	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
115555-1 115555-2 115555-3 115555-4 115555-5 115555-6 115555-7 115555-8	FO 030809 FO 030810 FO 030811 FO 030812 FO 030813 FO 030814 FO 030815 FO 030816	08-12-03 09:58 08-12-03 10:54 08-12-03 13:45 08-12-03 14:40 08-13-03 09:50 08-13-03 11:42 08-12-03 13:45 08-12-03 07:50	solid solid solid solid solid solid solid liguid
10000-0			

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tei: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

ANALYTICAL NARRATIVE

Client: North Creek Analytical

Date: September 10, 2003

Project Lower Harbor Sediment Samples WO# P3H0448

Delivered By: Federal Express

Condition of samples upon receipt: Samples were received in good condition. Chain of custody was in order.

SAMPLE PREPARATION AND ANALYSIS

ORGANOCHLORINE Pesticides 8081

Sample 115555-03, 15555005, and 15555-07 have PCB with similar response times as Some pesticide compounds. Results are considered approximate values.

SEMIVOLATILE ORGANICS 8270

Low detection limits were requested for the all samples. Due to background matrix interference we were unable to achieve the low level detection limits.

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

Lab. No.	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
115555-1	FO 030809	08-12-03 09:58	solid
115555-2	FO 030810	08-12-03 10:54	solid
115555-3	FO 030811	08-12-03 13:45	solid
115555-4	FO 030812	08-12-03 14:40	solid
115555-5	FO 030813	08-13-03 09:50	solid
115555-6	FO 030814	08-13-03 11:42	solid
115555-7	FO 030815	08-12-03 13:45	solid
115555-8	FO 030816	08-12-03 07:50	liquid

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. It you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Client Name	North Creek Analytical
Client ID:	FO 030811
Lab ID:	115555-03
Date Received:	8/1 9/20 03
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	73.74
Dilution Factor	1

Volatile Petroleum Products by WSDOE Method NWTPH-Gx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	69.8		50	150
Bromofluorobenzene	181	X9	50	150
Pentafluorobenzene	71.9		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
Gasoline by NWTPH-G	221	5.14	

.

20000

Client Name	North Creek Analytical
Client ID:	FO 030815
Lab ID:	115555-07
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	76.74
Dilution Factor	1

Volatile Petroleum Products by WSDOE Method NWTPH-Gx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	73.2		50	150
Bromofluorobenzene	207	X9	50	150
Pentafluorobenzene	71.4		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
Gasoline by NWTPH-G	285	5.16	

Client Name	North Creek Analytical
Client ID:	FO 030809
Lab ID:	115555-01
Date Received:	B/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	26.73
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
2 - Fluorophenol	107		35	144
Phenol - d5	126		39	140
Nitrobenzene - d5	117		37	156
2 - Fluorobiphenyl	94.5		39	145
2,4,6 - Tribromophenol	95.1		25	148
p - Terphenyl - d14	120		39	158

Sample results are on a dry weight basis.

	Result	_		
Analyte	(ug/kg)	PQL	MRL Flags	
Phenol	ND	976	488	
bis(2-Chloroethyl)ether	ND	976	488	
2-Chlorophenol	ND	976	488	
1,3-Dichlorobenzene	ND	976	488	
1,4-Dichlorobenzene	ND	976	488	
Benzyi Alcohol	ND	1220	610	
1,2-Dichlorobenzene	ND	976	488	
2-Methylphenol	ND	976	488	
bis (2-Chloroisopropyl) ether	ND	976	488	
3-&4-Methylphenol	ND	1950	976	
N-nitroso-di-n-propylamine	ND	976	488	
Hexachloroethane	ND	976	488	
Nitrobenzene	ND	97 6	488	
Isopharone	ND	976	488	
2-Nitrophenol	ND	976	488	
2,4-Dimethylphenol	ND	976	488	
Benzoic Acid	ND	4880	2440	
bis(2-Chloroethoxy)methane	ND	976	488	
2,4-Dichlorophenol	ND	976	488	
1,2,4-Trichlorobenzene	ND	976	488	
Naphthalene	ND	244	122	
4-Chloroaniline	ND	976	488	
Hexachlorobutadiene	ND	976	488	
4-Chloro-3-methylphenol	ND	976	488	
2-Methylnaphthalene	ND	244	122	
Hexachlorocyclopentadlene	ND	976	488	

•

Semivolatile Organics by USEPA Method 8270 data for 115555-01 continued...

Anatyte (ug/kg) PQL MRL 2,4,5-Trichlorophenol ND 976 488 2,4,5-Trichlorophenol ND 244 122 2-Chitoroaphthalene ND 244 122 2-Nitroaniline ND 976 488 Dimethylphthalate ND 976 488 Acenaphthylene ND 976 488 Acenaphthylene ND 976 488 Acenaphthylene ND 976 488 Acenaphthene ND 976 488 Acenaphthene ND 2444 122 2,4-Dinitrophenol ND 2440 1220 2,4-Dinitrophenol ND 2440 1220 Achitrophenol ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976
And Strike ND 976 488 2-Chloronaphthalene ND 244 122 2-Nitroaniline ND 976 488 Dimethylphthalate ND 976 488 Dimethylphthalate ND 976 488 Acenaphthylene ND 244 122 2,G-Dinitrotoluene ND 976 488 3-Nitroaniline ND 976 488 Acenaphthene ND 976 488 2,4-Dinitrophenol ND 4860 2440 4-Nitrophenol ND 2440 1220 Diberzofuran ND 2440 1220 Diberzofuran ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 Diberzofuran ND 976 48
Process Process <t< td=""></t<>
2-Nitroaniline ND 976 488 Dimethylphthalate ND 976 488 Acenaphthylene ND 244 122 2,6-Dinitrotoluene ND 976 488 3-Nitroaniline ND 976 488 Acenaphthene ND 976 488 Acenaphthene ND 244 122 2,4-Dinitrophenol ND 2440 1220 Diberzofuran ND 2440 1220 Diberzofuran ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 4-Chlorophenylphenylether ND 976 488 4-Chlorophenylphenylether ND 976 488 4-Sonitro-2-methylphenol ND 2444 122 4-Nitrosodiphenylamine ND 976 488 4-Bromophenylphenylether ND 976 488 Pentachlorophenol ND
DimethylphthalateND976488AcenaphthyleneND2441222,6-DinitrotolueneND9764883-NitroanilineND976488AcenaphtheneND2441222,4-DinitrophenolND488024404-NitrophenolND24401220DibenzofuranND9764882,4-DinitrophenolND9764882,4-DinitrophenolND9764882,4-DinitrotolueneND9764882,4-DinitrotolueneND9764882,4-DinitrotolueneND9764882,4-DinitrotolueneND9764884-ChlorophenylphenyletherND976488FluoreneND9764884,6-Dinitro-2-methylphenolND9764884-BromophenylphenyletherND976488HexachlorophenolND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND976488FluorantheneND244122Di-n-butylphthalateND976488FluorantheneND244122Di-n-butylphthalateND976488FluorantheneND976488FluorantheneND976488Fluoranthene
Accenaphthylene ND 244 122 2,6-Dinitrotoluene ND 976 488 3-Nitroaniline ND 976 488 3-Nitroaniline ND 976 488 Acenaphthene ND 244 122 2,4-Dinitrophenol ND 2440 1220 2,4-Dinitrophenol ND 2440 1220 2,4-Dinitrophenol ND 2440 1220 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitro-toluene ND 976 488 4-Chorophenylphenylether ND 976 488 4,6-Dinitro-2-methylphenol ND 4880 2440 N-Nitrosodiphenylamine ND 976 488 4,6-Dinitro-2-methylphenol ND 976 488 Phenarthrene
Action phristic ND 976 488 3-Nitroaniline ND 976 488 3-Nitroaniline ND 976 488 Acenaphthene ND 244 122 2,4-Dinitrophenol ND 4880 2440 4-Nitrophenol ND 4880 2440 4-Nitrophenol ND 2440 1220 Dibenzofuran ND 976 488 2,4-Dinitrotoluene ND 976 488 4-Chlorophenylphenylether ND 976 488 Fluorene ND 976 488 Fluorene ND 976 488 4-Bromophenylphenylether ND 976 488 Pentachlorobenzene ND 976
J-Nitroaniline ND 976 488 Acenaphthene ND 244 122 2,4-Dinitrophenol ND 4880 2440 4-Nitrophenol ND 2440 1220 Dibenzofuran ND 2440 1220 Dibenzofuran ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 2,4-Dinitrotoluene ND 976 488 4-Chlorophenylphenylether ND 976 488 4-Chlorophenylphenylether ND 976 488 Fluorene ND 976 488 4,6-Dinitro-2-methylphenol ND 976 488 4,6-Dinitro-2-methylphenol ND 976 488 4-Bromophenylphenylether ND 976 488 Pentachlorophenol ND 976 488 Phenanthrene N
Accnaphthene ND 244 122 2,4-Dinitrophenol ND 4880 2440 4-Nitrophenol ND 2440 1220 Dibenzofuran ND 2440 1220 Dibenzofuran ND 976 488 2,4-Dinitrotoluene ND 976 488 Diethylphthalate ND 976 488 Chlorophenylphenylether ND 976 488 Fluorene ND 2444 122 4-Nitrosoniline ND 976 488 Fluorene ND 2444 122 4-Nitrosoniline ND 976 488 Fluorene ND 976 488 A,G-Dinitro-2-methylphenol ND 976 488 A,G-Bointro-2-methylphenol ND 976 488 4-Bromophenylphenylether ND 976 488 Pentachlorophenol ND 976 488 Phenanthrene ND 244
AutomaticationND488024402,4-DinitrophenolND24401220DibenzofuranND9764882,4-DinitrotolueneND9764882,4-DinitrotolueneND976488DiethylphthalateND9764884-ChlorophenylphenyletherND976488FluoreneND9764884-ChlorophenylphenyletherND9764884-ChlorophenylphenyletherND9764884-G-Dinitro-2-methylphenolND9764884-BromophenylphenyletherND9764884-BromophenylphenyletherND976488PentachlorophenolND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122ChryseneND12006103,3'-DichlorobenzidineND244122ChryseneND244122ChryseneND244122
A-NitrophenolND24401220DibenzofuranND9764882,4-DinitrotolueneND976488DiethylphthalateND9764884-ChlorophenylphenyletherND976488FluoreneND9764884-ChlorophenylphenyletherND976488FluoreneND9764884,6-Dinitro-2-methylphenolND9764884,6-Dinitro-2-methylphenolND9764884-BromophenylphenyletherND9764884-BromophenylphenyletherND976488PentachlorophenolND976488PentachlorophenolND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122Di-n-butylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122ChryseneND244122
NucNuc976488DibenzofuranND9764882,4-DinitrotolueneND976488DiethylphthalateND9764884-ChlorophenylphenyletherND976488FluoreneND9764884-ChlorophenylphenyletherND9764884-ChitroanilineND9764884-Schintro-2-methylphenolND9764884-BromophenylphenyletherND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND12206103,3'-DichlorobenzidineND244122ChryseneND244122ChryseneND244122ChryseneND244122ChryseneND244122
2,4-DinitrotolueneND976488DiethylphthalateND976488DiethylphthalateND9764884-ChlorophenylphenyletherND976488FluoreneND2441224-NitroanilineND9764884,6-Dinitro-2-methylphenolND9764884-BromophenylphenyletherND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122ChryseneND244122ChryseneND244122
DiethylphthalateND9764884-ChlorophenylphenyletherND976488FluoreneND2441224-NitroanilineND9764884,6-Dinitro-2-methylphenolND9764884,6-Dinitro-2-methylphenolND9764884-BromophenylphenyletherND9764884-BromophenylphenyletherND976488PentachlorobenzeneND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND244122ButylbenzylphthalateND12206103,3-DichlorobenzeineND1950976Benzo(a)anthraceneND244122ChryseneND244122ChryseneND244122ChryseneND244122
A-ChlorophenylphenyletherND976488FluoreneND2441224-NitroanilineND9764884,6-Dinitro-2-methylphenolND48802440N-NitrosodiphenylamineND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12006103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122ChryseneND244122ChryseneND244122
FluoreneND2441224-NitroanilineND9764884,6-Dinitro-2-methylphenolND48802440N-NitrosodiphenylamineND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
A-NitroanilineND9764884-NitroanilineND48802440N-NitrosodiphenylamineND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122ArthraceneND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichkorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
4,6-Dinitro-2-methylphenolND48802440N-NitrosodiphenylamineND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND976488PhenanthreneND244122Di-n-butylphthalateND244122Di-n-butylphthalateND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
N-NitrosodiphenylamineND9764884-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND244122DyreneND244122ButylbenzylphthalateND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
4-BromophenylphenyletherND976488HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND976488FluorantheneND244122DyreneND244122ButylbenzylphthalateND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
HexachlorobenzeneND976488PentachlorophenolND976488PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND976488FluorantheneND244122PyreneND244122ButylbenzylphthalateND14206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
PentachlorophenolND976488PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND976488FluorantheneND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
PhenanthreneND244122AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND244122PyreneND244122ButylbenzylphthalateND14206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
AnthraceneND244122Di-n-butylphthalateND976488FluorantheneND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
Di-n-butylphthalateND976488FluorantheneND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
FluorantheneND244122PyreneND244122ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
PyreneND244122ButylbenzylphthalateND12206103,3'-DichkorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
ButylbenzylphthalateND12206103,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
3,3'-DichlorobenzidineND1950976Benzo(a)anthraceneND244122ChryseneND244122
Benzo(a)anthraceneND244122ChryseneND244122
Chrysene ND 244 122
his (2 Ethydhawd) hddhalafa 1330 976 488
Di-n-octylphthalate ND 976 488
Benzofluoranthenes ND 244 122
Benzo(a)pyrene ND 244 122
Indeno(1,2,3-cd)pyrene ND 244 122
Dibenz(a,h)anthracene ND 244 122
Benzo(g,h,i)perylene ND 244 122

Client Name	North Creek Analytical
Client ID:	FO 030810
Lab ID:	115555-02
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	36.41
Dilution Factor	1

Semivolatlle Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	121		35	144
Phenol - d5	131		39	140
Nitrobenzene - d5	135		37	156
2 - Fluorobiphenyl	91		39	145
2,4,6 - Tribromophenol	108		25	148
p - Terphenyl - d14	119		39	158

Sample results are on a dry weight basis.

	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Phenol	ND	697	349	
bis(2-Chloroethyl)ether	ND	697	349	
2-Chlorophenoi	ND	697	349	
1,3-Dichlorobenzene	ND	697	349	
1,4-Dichlorobenzene	ND	697	349	
Benzyl Alcohol	ND	871	436	
1,2-Dichlorobenzene	ND	697	349	
2-Methylphenol	ND	697	349	
bis(2-Chloroisopropyl)ether	ND	697	349	
3-&4-Methylphenol	ND	1390	697	
N-nitroso-di-n-propylamine	ND	697	349	
Hexachloroethane	ND	697	349	
Nitrobenzene	ND	697	349	
Isophorone	ND	697	349	
2-Nitrophenol	ND	697	349	
2,4-Dimethylphenol	ND	697	349	
Benzoic Acid	ND	3490	1740	
bis(2-Chloroethoxy)methane	ND	697	349	
2,4-Dichlorophenol	ND	697	349	
1,2,4-Trichlorobenzene	ND	6 9 7	34 9	
Naphthalene	ND	174	87.1	
4-Chloroaniline	ND	697	349	
Hexachlorobutadiene	ND	697	349	
4-Chloro-3-methylphenol	ND	697	349	
2-Methylnaphthalene	ND	174	B7.1	
Hexachlorocyclopentadiene	ND	697	349	

Semivolatile Organics by USEPA Method 8270 data for 115555-02 continued...

	Res	ult		
Analyte	(ug/	kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		697	349
2,4,5-Trichlorophenol	ND		697	349
2-Chloronaphthalene	ND		174	87.1
2-Nitroaniline	ND		697	349
Dimethylphthalate	ND		697	349
Acenaphthylene	ND		174	87.1
2,6-Dinitrotoluene	ND		697	349
3-Nitroaniline	ND		697	349
Acenaphthene	ND		174	87.1
2,4-Dinitrophenol	ND		3490	1740
4-Nitrophenol	ND		1740	871
Dibenzofuran	ND		697	349
2,4-Dinitrotoluene	ND		697	349
Diethylphthalate	ND		697	349
4-Chlorophenylphenylether	ND		697	349
Fluorene	ND		174	87.1
4-Nitroaniline	ND		697	349
4,6-Dinitro-2-methylphenol	ND		3490	1740
N-Nitrosodiphenylamine	ND		697	349
4-Bromophenylphenylether	ND		697	349
Hexachlorobenzene	ND		697	349
Pentachlorophenol	ND		697	349
Phenanthrene	ND		174	87.1
Anthracene	ND		174	87.1
Di-n-butylphthalate	ND		697	349
Fluoranthene	ND		174	87.1
Pyrene	ND		174	87.1
Butylbenzylphthalate	ND		871	436
3,3'-Dichlorobenzidine	ND		1390	697
Benzo(a)anthracene	ND		174	87.1
Chrysene	ND		174	87.1
bis(2-Ethylhexyl)phthalate		1000	697	349
Di-n-octylphthalate	ND		697	349
Benzofluoranthenes	ND		174	87.1
Benzo(a)pyrene	ND		174	87.1
Indeno(1,2,3-cd)pyrene	ND		174	87.1
Dibenz(a,h)anthracene	ND		174	87.1
Benzo(g,h,i)perylene	ND		174	87.1
SW /1 - P				

Client Name	North Creek Analytical
Client ID:	FO 030811
Lab ID:	115555-03
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	73.74
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	119		35	144
Phenol - d5	130		39	140
Nitrobenzene - d5	154		37	156
2 - Fluorobiphenyl	105		39	145
2,4,6 - Tribromophenol	44.4		25	148
p - Terphenyl - d14	98.2		39	158

Sample results are on a dry weight basis.

		Result		
Analyte		(ug/kg)	PQL	MRL Flags
Phenol	ND		345	173
bis(2-Chloroethyl)ether	ND		345	173
2-Chlorophenol	ND		345	173
1,3-Dichlorobenzene	ND		345	173
1,4-Dichlorobenzene	ND		345	173
Benzyl Alcohol	ND		431	216
1,2-Dichlorobenzene	ND		345	173
2-Methylphenol	ND		345	173
bis(2-Chloroisopropyl)ether	ND		345	173
3-&4-Methylphenol	ND		690	345
N-nitroso-di-n-propylamine	ND		345	173
Hexachloroethane	ND		345	173
Nitrobenzene	ND		345	173
lsophorone	ND		345	173
2-Nitrophenol	ND		345	173
2,4-Dimethylphenol	ND		345	173
Benzoic Acid	ND		1730	863
bis(2-Chloroethoxy)methane	ND		345	173
2,4-Dichlorophenol	ND		345	173
1,2,4-Trichlorobenzene	ND		345	173
Naphthalene		368	86.3	43.1
4-Chloroaniline	ND		345	173
Hexachlorobutadiene	ND		345	173
4-Chloro-3-methylphenol	ND		345	173
2-Methylnaphthalene		2380	86.3	43.1
Hexachlorocyclopentadiene	ND		345	173

Semivolatile Organics by USEPA Method 8270 data for 115555-03 continued...

	R	lesult		
Analyte	(L	ıg/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		345	173
2,4,5-Trichlorophenol	ND		345	173
2-Chloronaphthalene	ND		86.3	43.1
2-Nitroaniline	ND		345	173
Dimethylphthalate	NÐ		345	173
Acenaphthylene	ND		86.3	43.1
2,6-Dinitrotoluene	ND		345	173
3-Nitroaniline	ND		345	173
Acenaphthene	ND		86.3	43.1
2,4-Dinitrophenol	ND		1730	863
4-Nitrophenol	ND		863	431
Dibenzofuran	ND		345	173
2,4-Dinitrotoluene	ND		345	173
Diethylphthalate	ND		345	173
4-Chlorophenylphenylether	ND		345	173
Fluorene	ND		86.3	43.1
4-Nitroaniline	ND		345	173
4,6-Dinitro-2-methylphenol	ND		1730	863
N-Nitrosodiphenylamine	ND		345	173
4-Bromophenylphenylether	ND		345	173
Hexachlorobenzene	ND		345	173
Pentachlorophenol	ND		345	173
Phenanthrene		1290	86.3	43.1
Anthracene	ND		86.3	43.1
Di-n-butylphthalate	ND		345	173
Fluoranthene		292	86.3	43.1
Pyrene		602	86.3	43.1
Butylbenzylphthalate	ND		431	216
3,3'-Dichlorobenzidine	ND		690	345
Benzo(a)anthracene	ND		86.3	43.1
Chrysene	ND		86.3	43.1
bis(2-Ethylhexyl)phthalate		14800	345	173
Di-n-octylphthalate	ND		345	173
Benzofluoranthenes	ND		86.3	43.1
Benzo(a)pyrene	ND		86.3	43.1
Indeno(1,2,3-cd)pyrene	ND		86.3	43.1
Dibenz(a,h)anthracene	ND		86.3	43.1
Benzo(g,h,i)perylene	ND		86.3	43.1
······				

D10

Client Name	North Creek Analytical
Client ID:	FO 030812
Lab ID:	115555-04
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	25.6
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	115		35	144
Phenol - d5	137		39	140
Nitrobenzene - d5	126		37	156
2 - Fluorobiphenyl	92.1		39	145
2,4,6 - Tribromophenol	106		25	148
p - Terphenyl - d14	114		39	158

Sample results are on a dry weight basis.

	Result			
Analyte	(ug/kg)	PQL	MRL Flag	S
Phenol	ND	997	498	
bis(2-Chloroethyl)ether	ND	997	498	
2-Chlorophenol	ND	997	498	
1,3-Dichlorobenzene	ND	997	498	
1,4-Dichlorobenzene	ND	997	498	
Benzyl Alcohol	ND	1250	623	
1,2-Dichlorobenzene	ND	997	498	
2-Methylphenol	ND	997	498	
bis(2-Chloroisopropyl)ether	ND	997	498	
3-&4-Methylphenol	ND	1990	997	
N-nitroso-di-n-propylamine	ND	997	498	
Hexachloroethane	ND	997	498	
Nitrobenzene	ND	99 7	498	
Isophorone	ND	997	498	
2-Nitrophenol	ND	997	498	
2,4-Dimethylphenol	ND	997	498	
Benzoic Acid	ND	4980	2490	
bis(2-Chloroethoxy)methane	ND	997	498	
2,4-Dichlorophenol	ND	997	498	
1,2,4-Trichlorobenzene	ND	997	498	
Naphthalene	ND	249	125	
4-Chloroaniline	ND	997	498	
Hexachlorobutadiene	ND	997	498	
4-Chloro-3-methylphenol	ND	997	498	
2-Methylnaphthalene	ND	249	125	
Hexachlorocyclopentadiene	ND	997	498	

Semivolatile Organics by USEPA Method 8270 data for 115555-04 continued...

	198 198 125 198
2,4,6-Trichlorophenol ND 997 4	198 125 198
	125 198
	198
2-Chloronaphthalene ND 249	
2-Nitroaniline ND 997 4	
	198
Acenaphthylene ND 249	125
2,6-Dinitrotoluene ND 997	198
3-Nitroaniline ND 997 4	198
Acenaphthene ND 249	125
2,4-Dinitrophenol ND 4980 24	190
4-Nitrophenol ND 2490 12	250
Dibenzofuran ND 997	198
2,4-Dinitrotoluene ND 997 4	198
Diethylphthalate ND 997 4	198
4-Chlorophenylphenylether ND 997	19 8
Fluorene ND 249	125
	198
	190
N-Nitrosodlphenylamine ND 997	198
4-Bromophenyiphenyiether ND 997 4	198
Hexachlorobenzene ND 997	198
Pentachlorophenol ND 997 4	198
Phenanthrene ND 249	125
Anthracene ND 249	125
	198
Fluoranthene ND 249	125
	125
Butylbenzylphthalate ND 1250	623
3,3'-Dichlorobenzidine ND 1990	997
	125
Chrysene ND 249	125
	498
Di-n-octylphthalate ND 997 4	498
Benzofluoranthenes ND 249	125
	125
Indeno(1,2,3-cd)pyrene ND 249	125
Dibenz(a,h)anthracene ND 249	125
Benzo(g,h,i)perylene ND 249	125

Client Name	North Creek Analytical
Client ID:	FO 030813
Lab ID:	115555-05
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	84.79
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	129		35	144
Phenol - d5	155	X9	39	140
Nitrobenzene - d5	120		37	156
2 - Fluorobiphenyl	103		39	145
2,4,6 - Tribromophenol	95.2		25	148
p - Terphenyl - d14	97.6		39	158

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Phenol	ND	313	156
bis(2-Chloroethyl)ether	ND	313	156
2-Chlorophenol	ND	313	156
1,3-Dichlorobenzene	ND	313	156
1,4-Dichlorobenzene	ND	313	156
Benzyl Alcohol	ND	391	195
1,2-Dichlorobenzene	ND	313	156
2-Methylphenol	ND	313	156
bis(2-Chloroisopropyl)ether	ND	313	156
3-&4-Methylphenol	ND	625	313
N-nitroso-di-n-propylamine	ND	313	156
Hexachloroethane	ND	313	156
Nitrobenzene	ND	313	156
Isophorone	ND	313	156
2-Nitrophenol	ND	313	156
2,4-Dimethylphenol	ND	313	156
Benzoic Acid	ND	1560	782
bis(2-Chloroethoxy)methane	ND	313	156
2,4-Dichlorophenol	ND	313	156
1,2,4-Trichlorobenzene	ND	313	156
Naphthalene	ND	78.2	39.1
4-Chloroaniline	ND	313	156
Hexachlorobutadiene	ND	313	156
4-Chloro-3-methylphenol	ND	313	156
2-Methylnaphthalene	ND	78.2	39.1
Hexachlorocyclopentadiene	ND	313	156

Semivolatile Organics by USEPA Method 8270 data for 115555-05 continued...

	Re	sult		
Analyte	(ug	∮/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		313	156
2,4,5-Trichlorophenol	ND		313	156
2-Chloronaphthalene	ND		78.2	39.1
2-Nitroaniline	ND		313	156
Dimethylphthalate	ND		313	156
Acenaphthylene	ND		78.2	39.1
2,6-Dinitrotoluene	ND		313	156
3-Nitroaniline	ND		313	156
Acenaphthene	ND		78.2	39.1
2,4-Dinitrophenol	ND		1560	782
4-Nitrophenol	ND		782	391
Dibenzofuran	ND		313	156
2,4-Dinitrotoluene	ND		313	156
Diethylphthalate	ND		313	156
4-Chlorophenylphenylether	ND		313	156
Fluorene	NÐ		78.2	39.1
4-Nitroaniline	ND		313	156
4,6-Dinitro-2-methylphenol	ND		1560	782
N-Nitrosodiphenylamine	ND		313	156
4-Bromophenylphenylether	ND		313	156
Hexachlorobenzene	ND		313	156
Pentachlorophenol	ND		313	156
Phenanthrene		94.1	78.2	39.1
Anthracene		85.2	78.2	39.1
Di-n-butylphthalate	ND		313	156
Fluoranthene		217	78.2	39.1
Pyrene		252	78.2	39.1
Butylbenzylphthalate	ND		391	195
3,3'-Dichlorobenzidine	ND		625	313
Benzo(a)anthracene		86.8	78.2	39.1
Chrysene		142	78.2	39.1
bis(2-Ethylhexyl)phthalate		1340	313	156
Di-n-octylphthalate	ND		313	156
Benzofluoranthenes	ND		78.2	39.1
Benzo(a)pyrene	ND		78.2	39.1
Indeno(1,2,3-cd)pyrene	ND		78.2	39.1
Dibenz(a,h)anthracene	ND		78.2	39.1
Benzo(g,h,i)perylene	ND		78.2	39.1

•

Client Name	North Creek Analytical
Client ID:	FO 030814
Lab ID:	115555-06
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	52.92
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	129		35	144
Phenol - d5	140		39	140
Nitrobenzene - d5	118		37	156
2 - Fluorobiphenyl	111		39	145
2,4,6 - Tribromophenol	102		25	148
p - Terphenyl - d14	116		39	158

Sample results are on a dry weight basis.

	Result			F 1
Analyte	(ug/kg)	PQL	MRL	Flags
Phenol	ND	494	247	
bis(2-Chloroethyl)ether	ND	494	247	
2-Chlorophenol	ND	494	247	
1,3-Dichlorobenzene	ND	494	247	
1,4-Dichlorobenzene	ND	494	247	
Benzyl Alcohol	ND	618	309	
1,2-Dichlorobenzene	ND	494	247	
2-Methylphenol	ND	494	247	
bis(2-Chloroisopropyl)ether	ND	494	247	
3-&4-Methylphenol	ND	988	494	
N-nitroso-di-n-propylamine	ND	494	247	
Hexachloroethane	ND	494	247	
Nitrobenzene	ND	494	247	
Isophorone	ND	494	247	
2-Nitrophenol	ND	494	247	
2,4-Dimethylphenol	ND	494	247	
Benzoic Acid	ND	2470	1 240	
bis(2-Chloroethoxy)methane	NÐ	494	247	
2,4-Dichlorophenol	ND	494	247	
1,2,4-Trichlorobenzene	ND	494	247	
Naphthalene	ND	124	61.8	
4-Chloroaniline	ND	494	247	
Hexachiorobutadiene	ND	494	247	
4-Chloro-3-methylphenol	ND	494	247	
2-Methyinaphthalene	ND	124	61.8	
Hexachlorocyclopentadiene	ND	494	247	

Semivolatile Organics by USEPA Method 8270 data for 115555-06 continued...

	Res	ult		
Analyte	(ug/	kg)	PQL	MRL
2,4,6-Trichlorophenol	ND		494	247
2,4,5-Trichiorophenol	ND		494	247
2-Chloronaphthalene	ND		124	61.8
2-Nitroaniline	ND		494	247
Dimethylphthalate	ND		494	247
Acenaphthylene	ND		124	61.8
2,6-Dinitrotoluene	ND		494	247
3-Nitroaniline	ND		494	247
Acenaphthene	ND		124	61.8
2,4-Dinitrophenol	ND		2470	1240
4-Nitrophenol	ND		1240	618
Dibenzofuran	ND		494	247
2,4-Dinitrotoluene	ND		494	247
Diethylphthalate	ND		494	247
4-Chlorophenylphenylether	ND		494	247
Fluorene	ND		124	61.8
4-Nitroaniline	ND		494	247
4,6-Dinitro-2-methylphenol	ND		2470	1240
N-Nitrosodiphenylamine	ND		4 94	247
4-Bromophenylphenylether	ND		494	247
Hexachlorobenzene	ND		494	247
Pentachlorophenol	ND		494	247
Phenanthrene	ND		124	61.8
Anthracene	ND		124	61.8
Di-n-butyiphthalate	ND		494	247
Fluoranthene	ND		124	61.8
Pyrene	ND		124	61.8
Butylbenzylphthalate	ND		618	309
3,3'-Dichlorobenzidine	ND		988	494
Benzo(a)anthracene	ND		124	61.8
Chrysene	ND		124	61.8
bis(2-Ethylhexyl)phthalate		1170	494	247
Di-n-octylphthalate	ND		494	247
Benzofluoranthenes	ND		124	61. 8
Benzo(a)pyrene	ND		124	61.8
Indeno(1,2,3-cd)pyrene	ND		124	61.8
Dibenz(a,h)anthracene	ND		124	61.8
Benzo(g,h,i)perylene	ND		124	61.8

Client Name	North Creek Analytical
Client ID:	FO 030815
Lab ID:	115555-07
Date Received:	8/19/2003
Date Prepared:	8/20/2003
Date Analyzed:	8/20/2003
% Solids	76.74
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	123		35	144
Phenol - d5	124		39	140
Nitrobenzene - d5	130		37	156
2 - Fluorobiphenyl	97.6		39	145
2,4,6 - Tribromophenol	41.9		25	148
p - Terphenyl - d14	132		39	158

		Result		
Analyte		(ug/kg)	PQL	MRL Flags
Phenol	ND		337	168
bis(2-Chloroethyl)ether	ND		337	168
2-Chiorophenol	ND		337	168
1,3-Dichlorobenzene	ND		337	168
1,4-Dichlorobenzene	ND		337	168
Benzyl Alcohol	ND		421	211
1,2-Dichlorobenzene	ND		337	168
2-Methylphenol	ND		337	168
bis(2-Chloroisopropyl)ether	ND		337	168
3-&4-Methylphenol	ND		674	337
N-nitroso-di-n-propylamine	ND		337	168
Hexachloroethane	ND		337	168
Nitrobenzene	ND		337	168
lsophorone	ND		337	168
2-Nitrophenol	ND		337	168
2,4-Dimethylphenol	ND		337	168
Benzoic Acid	ND		1680	842
bis(2-Chloroethoxy)methane	ND		337	168
2,4-Dichlorophenol	ND		337	168
1,2,4-Trichlorobenzene	ND		337	168
Naphthalene		510	84.2	42.1
4-Chloroaniline	ND		337	168
Hexachlorobutadiene	ND		337	168
4-Chloro-3-methylphenol	ND		337	168
2-MethyInaphthalene		3800	84.2	42.1
Hexachlorocyclopentadiene	ND		337	168

Semivolatile Organics by USEPA Method 8270 data for 115555-07 continued...

•	F	Result			
Analyte	(1	ug/kg)	PQL	MRL	
2,4,6-Trichlorophenol	NÐ		337	168	
2,4,5-Trichlorophenol	ND		337	168	
2-Chloronaphthalene	ND		84.2	42.1	
2-Nitroaniline	ND		337	168	
Dimethylphthalate	ND		337	168	
Acenaphthylene	ND		84.2	42.1	
2,6-Dinitrotoluene	ND		337	168	
3-Nitroaniline	ND		337	168	
Acenaphthene	ND		84.2	42.1	
2,4-Dinitrophenol	ND		1680	842	
4-Nitrophenol	ND		842	421	
Dibenzofuran	ND		337	168	
2,4-Dinitrotoluene	ND		337	168	
Diethylphthalate	ND		337	168	
4-Chlorophenylphenylether	ND		337	168	
Fluorene	ND		84.2	42.1	
4-Nitroaniline	ND		337	168	
4,6-Dinitro-2-methylphenol	ND		1680	842	
N-Nitrosodiphenylamine	ND		337	168	
4-Bromophenylphenylether	ND		337	168	
Hexachlorobenzene	ND		337	168	
Pentachlorophenol	ND		337	168	
Phenanthrene		2640	84.2	42.1	
Anthracene	ND		84.2	42.1	
Di-n-butylphthalate		1020	337	168	
Fluoranthene		900	84.2	42.1	
Pyrene		1030	84.2	42.1	
Butylbenzylphthalate	ND		421	211	
3,3'-Dichlorobenzidine	ND		674	337	
Benzo(a)anthracene	ND		84.2	42.1	
Chrysene	ND		84.2	42.1	
bis(2-Ethylhexyl)phthalate		16500	337	168	D10
Di-n-octylphthalate	ND		337	168	
Benzofluoranthenes	ND		84.2	42.1	
Benzo(a)pyrene	ND		84.2	42.1	
Indeno(1,2,3-cd)pyrene	ND		84.2	42.1	
Dibenz(a,h)anthracene	ND		84.2	42.1	
Benzo(g,h,i)perylene	ND		84.2	42.1	

Client Name Client ID:	North Creek Analytical FO 030816 115555-08
Lab ID: Date Received:	B/19/2003
Date Prepared:	8/19/2003
Date Analyzed:	8/20/2003
% Solids Dilution Factor	0.1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	57.6		10	112
Phenoi - d5	37.2		10	85
Nitrobenzene - d5	78		41	155
2 - Fluorobiphenyl	64.5		34	14B
2,4,6 - Tribromophenol	81.8		29	15 9
p - Terphenyl - d14	93		33	172

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Phenol	ND	0.192	0.0961
bis(2-Chloroethyl)ether	ND	0.192	0.0961
2-Chlorophenol	ND	0.192	0.0961
1,3-Dichlorobenzene	ND	0.192	0.0961
1,4-Dichlorobenzene	ND	0.192	0.0961
Benzyl Alcohol	ND	0.192	0.0961
1,2-Dichlorobenzene	ND	0.192	0.0961
2-Methylphenol	ND	0.192	0.0961
bis(2-Chloroisopropyl)ether	ND	0.192	0.0961
3-&4-Methylphenol	ND	0.384	0.192
N-nitroso-dl-n-propylamine	ND	0.192	0.0961
Hexachloroethane	ND	0.192	0.0961
Nitrobenzene	ND	0.192	0.0961
Isophorone	ND	0.192	0,0961
2-Nitrophenol	ND	0.192	0.0961
2,4-Dimethylphenol	ND	0.961	0.48
Benzoic Acid	ND	0.961	0.48
bis(2-Chloroethoxy)methane	ND	0.192	0.0961
2,4-Dichlorophenol	ND	0.192	0.0961
1,2,4-Trichlorobenzene	ND	0.192	0.0961
Naphthalene	ND	0.0576	0.0288
4-Chlomaniline	ND	0.288	0.144
Hexachlorobutadiene	ND	0.192	0.0961
4-Chloro-3-methylphenol	ND	0.192	0.0961
2-Methylnaphthalene	ND	0.048	0.024
Hexachlorocyclopentadiene	ND	0.961	0.48

Semivolatile Organics by USEPA Method 8270 data for 115555-08 continued...

	Re	sult		
Analyte	(u)	g/L)	PQL	MRL
2,4,6-Trichlorophenol	ND		0.192	0.0961
2,4,5-Trichlorophenol	ND		0.192	0.0961
2-Chioronaphthaiene	ND		0.048	0.024
2-Nitroaniline	ND		0.192	0.0961
Dimethylphthalate	ND		0.192	0.0961
Acenaphthylene	ND		0.048	0.024
2,6-Dinitrotoluene	ND		0.192	0.0961
3-Nitroaniline	ND		0.192	0.0961
Acenaphthene	ND		0.048	0.024
2,4-Dinitrophenol	ND	•	0,961	0.48
4-Nitrophenol	ND		0.961	0.48
Dibenzofuran	ND		0.192	0.0961
2,4-Dinitrotoluene	ND		0.192	0.0961
Diethylphthalate	ND		0.192	0.0961
4-Chlorophenylphenylether	ND		0.192	0.0961
Fluorene	ND		0.048	0.024
4-Nitroaniline	ND		0.192	0.0961
4,6-Dinitro-2-methylphenol	ND		0.961	0.48
N-Nitrosodiphenylamine	ND		0.192	0.0961
4-Bromophenylphenylether	ND		0.192	0.0961
Hexachlorobenzene	ND		0.192	0.0961
Pentachlorophenol	ND		0.624	0.312
Phenanthrene	ND		0.048	0.024
Anthracene	ND		0.048	0.024
Di-n-butylphthalate		0,108	0.192	0.0961
Fluoranthene	ND		0.048	0.024
Pyrene	ND		0.048	0.024
Butylbenzylphthalate	ND		0.288	0.144
3,3'-Dichlorobenzidine	ND		0.961	0.48
Benzo(a)anthracene	ND		0.048	0.024
Chrysene	ND		0.048	0.024
bis(2-Ethylhexyl)phthalate	ND		1.44	0.72
Di-n-octylphthalate	ND		0.192	0.0961
Benzofluoranthenes	ND		0.0961	0.048
Benzo(a)pyrene	ND		0.048	0.024
Indeno(1,2,3-cd)pyrene	ND		0.048	0.024
Dibenz(a,h)anthracene	ND		0.048	0.024
Benzo(g,h,i)perylene	ND		0.048	0.024

JB1

.

Client Name	North Creek Analytical
Client ID:	FO 030816
Lab ID:	115555-08
Date Received:	8/19/2003
Date Prepared:	8/19/2003
Date Analyzed:	8/21/2003
% Solids	•
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hi gh
o-terphenyl	133		50	150

Analyte	Result (mg/L)	PQL	MRL Flags
#2 Diesel	ND	0.241	0.12
Motor Oil	ND	0.482	0.241

Client Name	North Creek Analylical
••••	FO 030809
Client ID: Lab ID:	115555-01
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	26.73
Dilution Factor	. 1

PCBs by USEPA Method 5082

Surrogate Tetrachloro-m-xylene Decachloroblphenyl	% Recovery 83.4 99.3	Flags	Recov Low 72 55	ery Limits High 114 133
Dececulotophenik				

	Result		MRL Flags	
Analyte	(mg/kg)	PQL	-	
—	ND	0.0346	0.0173	
Aroclor 1016		0,0691	0.0346	
Aroclor 1221	ND	0.0346	0.0173	
Aroclor 1232	ND		0.0173	
Arocior 1242	ND	0.0346		
	ND	0.0346	0.0173	
Aroclor 1248		0.0346	0.0173	
Aroclor 1254	ND	0.0346	0,0173	
Aroclor 1260	ND	0.0040		

Client Name	North Creek Analytical
Client ID:	FO 030810
Lab ID:	115555-02
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	36.41
Dilution Factor	1

PCBs by USEPA Method 8082

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	75.3		72	114
Decachlorobiphenyl	93.9		55	133

	Result		
Analyte	(mg/kg)	PQL	MRL Flags
Arodor 1016	ND	0.0267	0.0134
	ND	0.0534	0.0287
Aroclor 1221	ND	0.0267	0.0134
Aroclor 1232	ND	0.0267	0.0134
Aroclor 1242		0.0267	0,0134
Aroclor 1248	ND	0.0267	0.0134
Aroclor 1254	ND	0.0287	0.0134
Arocior 1260	ND	0.0207	0.0104

Client Name	North Creek Analytical
Client ID:	FO 030811
Lab ID:	115555-03
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	73.74
Dilution Factor	1

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate Tetrachloro-m-xylene Decachlorobiphenyl	% Recovery 62.2 106	Flags X9	Low 72 55	High 114 133

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.0129	0.00643	
	ND	0.0257	0.0129	
Aroclor 1221	ND	0.0129	0.00643	
Aroclor 1232	ND	0.0129	0.00643	
Aroclor 1242	ND	0.0129	0,00643	
Arocior 1248	0.2		0.00643	
Aroclor 1254	0.2		0.00643	
Aroclor 1260	Ų. I	29 0.0123		

Client Name	North Creek Analytical
Client ID:	FO 030812
Lab ID:	1155 55-04
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	25.6
	1
Dilution Factor	

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	76.3		72	114
Decachlorobiphenyl	106		55	133

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	PQL	MRL F 0.0178	-lags
Aroclor 1016	ND	0.0355 0.071	0.0355	
Aroclor 1221 Aroclor 1232	ND ND	0.0355	0.0178	
Arocior 1242	ND	0.0355	0.0178	
Aroclor 1248	ND	0.0355 0.0355	0.0178 0.0178	
Araclor 1254 Arador 1260	ND ND	0.0355	0.0178	

÷

1

4

	Client Name	North Creek Analytical
	Client ID:	FO 030813
	Lab ID:	115555-05
	Date Received:	8/19/03
•	Date Prepared:	8/20/03
	Date Analyzed:	8/21/03
	% Solids	84.79
	Dilution Factor	1

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	73.4		72	114
Decachlorobiphenyl	95.5		55	133

	Result		
Analyte	(mg/kg)	PQL	MRL Flags
Aroclor 1016	ND	0.0114	0.00569
Aroclor 1221	ND	0.0228	0.0114
Arocior 1232	ND	0.0114	0.00569
Arockir 1242	ND	0.0114	0.00569
Aroclor 1248	ND	0.0114	0.00569
Aroclor 1254	0.0293	0.0114	0.00569
Aroclor 1260	0.0276	0.0114	0.00569

Client Name	North Creek Analytical
Client ID:	FO 030814
Lab ID:	11 5 55 5-06
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	52.9 2
Dilution Factor	1

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylenə	72.6		72	114
Decachlorobiphenyl	81		55	133

	Result			
Analyte	(mg/kg)	PQL	MRL	Flags
Aroclor 1016	ND	0.0186	0.00929	
Arocior 1221	ND	0.0372	0,0186	
Arocior 1232	ND	D.0186	0.00929	
Aroclor 1232	ND	0.0186	0.00929	
Arodor 1248	ND	0.0188	D.00929	
	0.0119	0.0186	0.00929	J
Arocior 1254 Aracior 1260	ND	0.0186	0.00929	

Client Name	North Creek Analytical
Client ID:	FO 030815
Lab ID:	115555-07
Date Received:	8/19/03
Date Prepared:	8/20/03
Date Analyzed:	8/21/03
% Solids	76.74
Dilution Factor	1

PCBs by USEPA Method 8082

			Recov	ary Limits
Surrogate Tetrachloro-m-xylene Decachlorobiphenyl	% Recovery 58.8 102	Flags X9	Low 72 55	High 114 133

Sample results are on a dry weight basis.

.

.

	Result		
Analyte	(mg/kg)	PQL	MRL Flags
Arocior 1016	ND	0.0123	0.00615
Arocior 1221	ND	0.0246	0.0123
Aroclor 1232	ND	0.0123	0.00615
Arocior 1242	ND	0.0123	0.00615
Aroclor 1248	ND	0.0123	0.00615
Arocior 1254	0.378	0.0123	0.00615
Aroclor 1260	0.123	0.0123	0.00615

Client Name	North Creek Analytical
Client ID:	FO 030816
Lab ID:	11555 5- 08
Date Received:	8/19/03
Date Prepared:	8/19/03
Date Analyzed:	8/20/03
% Solids	-
Dilution Factor	1

PCBs by USEPA Method 8082

Surrogate Tetrachioro-m-xylene Darachlorobinhenyl	% Recovery 72.1 88	Flags	Recove Low 42 45	ry Limits High 108 136

	Result			
Analyte	(ug/L)	PQL	MRL	Flags
Aroclor 1016	ND	0.0192	0.0096	
-	ND	0.0384	0.0192	
Arocior 1221	ND	0.0192	0.0096	
Aroclor 1232		0.0192	0.0096	
Aroclor 1242	ND	0.0192	0,0096	
Aroclor 1248	ND	0.0192	0.0096	
Aroclor 1254	ND		0.0096	
Araciar 1260	ND	0.0192	0.0000	

Client Name	North Creek Analytical
Client ID:	FO 030816
Lab ID:	115555-08
Date Received:	8/19/2003
Date Prepared:	8/19/2003
Date Analyzed:	8/22/2003
% Solids	-
Dilution Factor	1

Organochiorine Pesticides by USEPA Method 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	98.8		52	130
Decachlorobiphenyl	104		54	146

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Aldrin	ND	0.00192	0.00096
alpha-BHC	ND	0.00192	0,00096
beta-BHC	ND	0.00384	0.00192
delta-BHC	ND	0.00192	0.00096
gamma-BHC (Lindane)	ND	0.00192	0.00096
4,4'-DDD	ND	0.00384	0.00192
4,4'-DDE	ND	0.00384	0.00192
4.4'-DDT	ND	0.00384	0.00192
Dieldrin	ND	0.00384	0.00192
Endosulfan I	ND	0.00192	0.00096
Endosulfan II	ND	0,00384	0.00192
Endosulfan sulfate	ND	0.00384	0.00192
Endrin	ND	0.00384	0.00192
Endrin aldehyde	ND	0.00384	0.00192
Heptachlor	ND	0.00192	0.00096
Heptachlor epoxide	ND	0.00192	0.00096
Methoxychlor	ND	0.0192	0,0096
Endrin ketone	ND	0.00384	0.00192
Toxaphene	ND	0.192	0,096
alpha-Chlordane	ND	0.00192	0,00 096
gamma-Chlordane	ND	0.00192	0.00096

Client Name	North Creek Analytical
Client ID:	FO 030809
Lab ID:	115555-01
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	26.73
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	53.1	X9	57	153
Decachlorobiphenyl	56.4	Х9	57	145

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	PQL	MRL Flags
Aldrin	ND	3.53	1.76
alpha-BHC	ND	3.53	1.76
beta-BHC	ND	3.53	1.76
delta-BHC	ND	3.53	1.76
gamma-BHC (Lindane)	ND	3.53	1.76
4,4'-DDD	ND	7.06	3.53
4,4'-DDE	ND	7.06	3.53
4,4'-DDT	ND	7.06	3.53
Dieldrin	ND	7.06	3.53
Endosulfan I	ND	3.53	1.76
Endosulfan II	ND	7.06	3.53
Endosulfan sulfate	ND	7.06	3.53
Endrin	ND	7.06	3.53
Endrin aldehyde	ND	7.06	3.53
Heptachlor	ND	3.53	1.76
Heptachlor epoxide	ND	3.53	1.76
Methoxychlor	ND	35.3	17.6
Endrin ketone	ND	7.06	3.53
Toxaphene	ND	353	176
alpha-Chlordane	ND	3.53	1.76
gamma-Chlordane	ND	3.53	1.76

.

Client Name	North Creek Analytical
Client ID:	FO 030810
Lab ID:	115555-02
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	36.41
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	58.2		57	153
Decachlorobiphenyl	45.6	X9	57	145

Sample results are on a dry weight basis.

		Result			
Analyte		(ug/kg)	PQL	MRL	Flags
Aldrin	ND		2.6	1.3	
alpha-BHC	ND		2.6	1.3	
beta-BHC	ND		2.6	1.3	
delta-BHC	ND		2.6	1.3	
gamma-BHC (Lindane)	ND		2.6	1.3	
4,4'-DDD	ND		5.2	2.6	
4,4'-DDE	ND		5.2	2.6	
4,4'-DDT	ND		5.2	2.6	
Dieldrin	ND		5.2	2.6	
Endosulfan l	ND		2.6	1.3	
Endosulfan II	ND		5.2	2.6	
Endosulfan sulfate	ND		5.2	2.6	
Endrin	ND		5.2	2.6	
Endrin aldehyde	ND		5.2	2.6	
Heptachlor	ND		2.6	1.3	
Heptachlor epoxide	ND		2.6	1.3	
Methoxychlor	ND		26	13	
Endrin ketone	ND		5.2	2.6	
Toxaphene	ND		260	130	
alpha-Chlordane	ND		2.6	1.3	
gamma-Chlordane	ND		2.6	1.3	

.

Client Name	North Creek Analytical
Client ID:	FO 030811
Lab ID:	115555-03
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	73.74
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachioro-m-xylene	82.5		57	153
Decachlorobiphenyl	89.7		57	145

	ł	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Aldrin		8.13	1.28	1.28	C2,N
alpha-BHC	ND		1.28	1.28	
beta-BHC		7.16	1.28	1.28	C2,N
delta-BHC	ND		1.28	1.28	
gamma-BHC (Lindane)	ND		1.28	1.28	
4,4'-DDD	ND		2,56	2.56	
4,4'-DDE		7.56	2.56	2.56	C1,N
4,4'-DDT	ND		2.56	2.56	
Dieldrin	ND		2.56	2.56	
Endosulfan I	ND		1.28	1.28	
Endosulfan II		15.7	2.56	2.56	C2,N
Endosulfan sulfate	ND		2.56	2.56	
Endrin		16.9	2,56	2.56	C2,N
Endrin aldehyde		17.3	2.56	2.56	C2,N
Heptachior		1.66	1.28	1.28	C1,N
Heptachlor epoxide	ND		1.28	1.28	
Methoxychlor	ND		12.8	12.8	
Endrin ketone	ND		2.56	2.56	
Toxaphene	ND		128	128	
alpha-Chlordane	ND		1.28	1.28	
gamma-Chlordane	ND		1.28	1.28	

Client Name	North Creek Analytical
Client ID:	FO 030812
Lab ID:	115555-04
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	25.6
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	82.2		57	153
Decachlorobiphenyl	65.6		57	145

	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Aldrin	ND	3.84	1.92	
alpha-BHC	ND	3.84	1.92	
beta-BHC	ND	3.84	1.92	
delta-BHC	ND	3.84	1.92	
gamma-BHC (Lindane)	ND	3.84	1.92	
4,4'-DDD	ND	7.67	3.84	
4,4'-DDE	ND	7.67	3.84	
4,4'-DDT	ND	7.67	3.84	
Dieldrin	ND	7.67	3.84	
Endosulfan I	ND	3.84	1.92	
Endosulfan II	ND	7.67	3.84	
Endosulfan sulfate	ND	7.67	3.84	
Endrin	ND	7.67	3.84	
Endrin aldehyde	ND	7.67	3.84	
Heptachlor	ND	3.84	1.92	
Heptachlor epoxide	ND	3.84	1.92	
Methoxychlor	ND	38.4	19.2	
Endrin ketone	ND	7.67	3.84	
Toxaphene	ND	384	192	
alpha-Chlordane	ND	3.84	1.92	
gamma-Chlordane	ND	3.84	1.92	

Client Name	North Creek Analytical
Client ID:	FO 030813
Lab ID:	115555-05
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	84.79
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	79.7		57	153
Decachlorobiphenyl	70.3		57	145

	Result			
Analyte	(ug/kg)	PQL	MRL Flags	ì
Aldrin	ND	1.15	1.15	
alpha-BHC	ND	1.15	1.15	
beta-BHC	ND	1.15	1.15	
delta-BHC	ND	1.15	1.15	
gamma-BHC (Lindane)	ND	1.15	1.15	
4,4'-DDD	ND	2.3	2.3	
4,4'-DDE	ND	2.3	2.3	
4,4'-DDT	ND	2.3	2.3	
Dieldrin	ND	2.3	2.3	
Endosulfan I	ND	1.15	1.15	
Endosulfan II	ND	2.3	2.3	
Endosulfan sulfate	ND	2.3	2.3	
Endrin	ND	2.3	2.3	
Endrin aldehyde	ND	2.3	2.3	
Heptachlor	ND	1.15	1.15	
Heptachlor epoxide	ND	1.15	1.15	
Methoxychlor	ND	11.5	11.5	
Endrin ketone	ND	2.3	2.3	
Toxaphene	ND	115	115	
alpha-Chlordane	ND	1.15	1.15	
gamma-Chlordane	ND	1.15	1.15	

Client Name	North Creek Analytical
Client ID:	FO 030814
Lab ID:	115555-06
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	52.92
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	77.5		57	153
Decachlorobiphenyl	58.7		57	145

Sample results are on a dry weight basis.

	Result			
Analyte	(ug/kg)	PQL	MRL	Flags
Aldrin	ND	1.89	0.943	
alpha-BHC	ND	1.89	0.943	
beta-BHC	ND	1.89	0.943	
delta-BHC	ND	1.89	0.943	
gamma-BHC (Lindane)	ND	1.89	0.943	
4,4'-DDD	ND	3.77	1.89	
4,4'-DDE	ND	3.77	1.89	
4,4'-DDT	ND	3.77	1.89	
Dieldrin	ND	3.77	1.89	
Endosulfan I	ND	1.89	0.943	
Endosulfan II	ND	3.77	1.89	
Endosulfan sulfate	ND	3.77	1.89	
Endrin	ND	3.77	1.89	
Endrin aldehyde	ND	3.77	1.89	
Heptachlor	ND	1.89	0.943	
Heptachlor epoxide	ND	1.89	0.943	
Methoxychlor	ND	18.9	9.43	
Endrin ketone	ND	3.77	1.89	
Toxaphene	ND	189	94.3	
alpha-Chlordane	ND	1.89	0.943	
gamma-Chlordane	ND	1.89	0.943	

.

Client Name	North Creek Analytical
Client ID:	FO 030815
Lab ID:	115555-07
Date Received:	8/19/2003
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	76.74
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

		,	Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	72.4		57	153
Decachlorobiphenyl	75		57	145

	Result			
Analyte	(ug/kg)	PQL	MRL Flag	gs
Aldrin	ND	1.27	1.27	
alpha-BHC	ND	1.27	1.27	
beta-BHC	ND	1.27	1.27	
delta-BHC	ND	1.27	1.27	
gamma-BHC (Lindane)	ND	1.27	1.27	
4,4'-DDD	ND	2.54	2.54	
4,4'-DDE	ND	2.54	2.54	
4,4'-DDT	ND	2.54	2.54	
Dieldrin	ND	2.54	2.54	
Endosulfan I	ND	1.27	1.27	
Endosulfan II	ND	2.54	2.54	
Endosulfan sulfate	ND	2.54	2.54	
Endrin	ND	2.54	2.54	
Endrin aldehyde	ND	2.54	2.54	
Heptachlor	ND	1.27	1.27	
Heptachlor epoxide	ND	1.27	1.27	
Methoxychlor	ND	12.7	12.7	
Endrin ketone	ND	2.54	2.54	
Toxaphene	ND	127	127	
alpha-Chlordane	ND	1.27	1.27	
gamma-Chlordane	ND	1.27	1.27	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor North Creek Analytical FO 030809 115555-01 8/19/03 8/28/03 8/28/03 26.73 1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Analyte	Result (mg/kg)	PQL	MDL	Flags
TOC	29700	120	48	

Client Name	North Creek Analytical
Client ID: Lab ID:	FO 030809 - dup 115555R01
Date Received:	-
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	26.73
Dilution Factor	1

.

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Analyte TOC	Result (mg/kg) 29400	PQL 133	MDL Flags 53.1
		•	

Client Name	North Creek Analytical
Client ID: Lab ID:	115555X01
Date Received:	•
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	26.73
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

	Result			
Analyte TOC	(mg/kg) 30300	PQL 123	MDL 49,2	Flags
100	55000	120	10,22	

Cilent Name	North Creek Analytical
Client ID:	FO 030810
Lab ID:	115555-02
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	36.41
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

	Result		1451	Elana
Analyte	(mg/kg)	PQL	MDL	Flags
TOC	23200	143	57.1	

Client Name	North Creek Analytical
Client ID:	FO 030811
Lab ID:	115555-03
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	73.74
Dilution Factor	1

•

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	21000	113	45.1

Client Name	North Creek Analytical
Client ID:	FO 030812
Lab ID:	115555-04
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	25.6
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Analyte	Result (mg/kg)	PQL	MDL Flags
TOC	31900	126	50.4

Client Name	North Creek Analytical
Client ID:	FO 030813
Lab ID;	115555-05
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	64.79
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
TOC	10500	114	45.5	

Client Name	North Creek Analytical
Client ID:	FO 030814
Lab ID:	115555-06
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	8/28/03
% Solids	52.92
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Sample results are on a dry weight basis.

	Result	5.01		Flores
Analyte (mg/kg) I	PQL	MDL	Flags
тос	31600	1 49	59,4	

.

Client Name	North Creek Analylical
Client ID:	FO 030815
Lab ID:	115555-07
Date Received:	8/19/03
Date Prepared:	8/28/03
Date Analyzed:	B/28/03
% Solids	76.74
Dilution Factor	1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	32100	117	46.9

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor North Creek Analytical FO 030816 115555-08 8/19/03 8/29/03 8/29/03

1

Total Organic Carbon by USEPA Method 9060

Analyte TOC Result (mg/L) 0.624

PQL 0.5

MDL Flags 0.35

Lab ID: Method Blank - GB3540 Date Received: -Date Prepared: 8/20/2003 Date Analyzed: 8/20/2003 % Solids Dilution Factor 1

Volatile Petroleum Products by WSDOE Method NWTPH-Gx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	76.7		5D	150
Bromofluorobenzene	88.3		50	150
Pentafluorobenzene	68.8		50	150

Sample results are on an as received basis.

Analyte	Result (mg/kg)	PQL		Flags	
Gasoline by NWTPH-G	ND			4	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: GB3540 8/20/2003 8/20/2003 GB3540

Volatile Petroleum Products by WSDOE Method NWTPH-Gx Modified

Compound Name Gasoline by NWTPH-G	Blank Result (mg/kg) 0	Spike Amount (mg/kg) 50	BS Result (mg/kg) 44.9	BS % Rec. 89.9	BSD Result (mg/kg) 44.4	BSD % Rec. 88.9	RPD -1.1	Flag	
---	---------------------------------	----------------------------------	---------------------------------	-----------------------------	----------------------------------	------------------------------	--------------------	------	--

Lab ID:Method Blank - DW0478Date Received:-Date Prepared:8/19/2003Date Analyzed:8/21/2003% Solids-Dilution Factor1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	129		50	150

Analyte #2 Diesel Motor Oil	Result (mg/L) ND ND	PQL 0.25 0.5	MRL Flags 0.125 0.25

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

•

.

DW0478 8/19/2003 8/21/2003 DW0478

.

Diesel and Motor Oil by NWTPH-Dx Modified

Compound Name #2 Diesel Motor Oil	Blank Result (mg/L) 0 0	Spike Amount (mg/L) 5 5	BS Result (mg/L) 6.42 4.93	BS % Rec. 128 98.6	BSD Result (mg/L) 6.47 4.88	BSD % Rec. 129 97.6	RPD 0.78 -1	Flag
---	-------------------------------------	-------------------------------------	---	------------------------------------	---	------------------------------	--------------------------	------

Lab ID: Method Blank - SS0909 Date Received: -Date Prepared: 8/20/2003 Date Analyzed: 8/20/2003 % Solids Dilution Factor 1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery Flags 106 116 94.5 93.4 80.5 104	Low	High	
2 - Fluorophenol	106		35	144
Phenol - d5	116		39	140
Nitrobenzene - d5	94.5		37	156
2 - Fluorobiphenyi	93.4		39	145
2,4,6 - Tribromophenol	80.5		25	148
p - Terphenyl - d14			39	158

Sample results are on an as received basis.

	Result	201	MRL	Flags
Analyte	(ug/kg)	PQL	133	1 IQYS
Phenol	ND	267	133	
bis(2-Chloroethyl)ether	ND	267	133	
2-Chlorophenol	ND	267		
1,3-Dichlorobenzene	ND	267	133	
1,4-Dichlorobenzene	ND	267	133	
Benzyl Alcohol	ND	333	167	
1,2-Dichlorobenzene	ND	267	133	
2-Methylphenol	ND	267	133	
bis(2-Chloroisopropyl)ether	ND	. 267	133	
3-&4-Methylphenol	ND	533	267	
N-nitroso-di-n-propylamine	ND	267	133	
Hexachioroethane	ND	267	133	
Nitrobenzene	ND	267	133	
Isophorone	ND	267	133	
2-Nitrophenol	ND	267	133	
2,4-Dimethylphenol	ND	267	133	
Benzoic Acid	ND	1330	667	
bis(2-Chloroethoxy)methane	ND	267	133	
2,4-Dichlorophenol	ND	267	133	
1,2,4-Trichlorobenzene	ND	267	133	
Naphthalene	ND	6 6.7	33.3	
4-Chloroaniline	ND	267	133	
Hexachlorobutadiene	ND	267	133	
4-Chloro-3-methylphenol	ND	267	133	
2-Methylnaphthalene	ND	66.7	33.3	
Hexachlorocyclopentadiene	ND	267	133	

Semivolatile Organics by USEPA Method 8270 data for SS0909 continued...

	Result		
Analyte	(ug/kg)	PQL	MRL
2,4,6-Trichlorophenol	ND	267	133
2,4,5-Trichlorophenol	ND	267	133
2-Chloronaphthalene	ND	66.7	33.3
2-Nitroaniline	ND	267	133
Dimethylphthalate	ND	267	133
Acenaphthylene	ND	66.7	33.3
2,6-Dinitrotoluene	ND	267	133
3-Nitroaniline	ND	267	133
Acenaphthene	ND	66.7	33.3
2,4-Dinitrophenol	ND	1330	667
4-Nitrophenol	ND	667	333
Dibenzofuran	ND	267	133
2,4-Dinitrotoluene	ND	267	133
Diethylphthalate	ND	267	133
4-Chlorophenylphenylether	ND	267	133
Fluorene	ND	66.7	33.3
4-Nitroaniline	ND	267	133
4,6-Dinitro-2-methylphenol	ND	1330	667
N-Nitrosodiphenylamine	ND	267	133
4-Bromophenylphenylether	ND	267	133
Hexachlorobenzene	ND	267	133
Pentachlorophenol	ND	267	133
Phenanthrene	ND	66.7	33.3
Anthracene	ND	66.7	33.3
DI-n-butylphthalate	ND	267	133
Fluoranthene	ND	66.7	33.3
Pyrene	ND	66.7	33.3
Butylbenzylphthalate	ND	333	167
3,3'-Dichlorobenzidine	ND	533	267
Benzo(a)anthracene	ND	66.7	33.3
Chrysene	ND	66.7	33.3
bis(2-Ethylhexyl)phthalate	ND	267	133
Di-n-octylphthalate	ND	267	133
Benzofluoranthenes	ND	66.7	33.3
Benzo(a)pyrene	ND	66.7	33.3
Indeno(1,2,3-cd)pyrene	ND	66.7	33.3
Dibenz(a,h)anthracene	ND	66.7	33.3
Benzo(g,h,i)perylene	ND	66.7	33.3

.

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: \$\$0909 8/20/2003 8/20/2003 \$\$0909

Compound Name	Blank Result (ug/kg)	Spike Amount (ug/kg)	BS Result (ug/kg)	BS % Rec.	BSD Result (ug/kg)	BSD % Rec.	RPD	Flag
Phenol	0	1000	994	99.4	1140	114	14	
2-Chlorophenol	0	1000	998	99.8	1100	110	9.7	
1.4-Dichlorobenzene	0	667	733	110	841	126	14	
N-nitroso-di-n-propylamine	0	667	797	119	712	107	-11	
1,2,4-Trichlorobenzene	0	667	849	127	828	124	-2.4	
4-Chloro-3-methylphenol	0	1000	1090	109	1200	120	9.6	
Acenaphthene	0	667	793	119	888	133	11	
4-Nitrophenol	0	1000	1360	136	1380	138	1.5	
2.4-Dinitrotoluene	0	667	585	87. B	635	95.2	8.1	
Pentachkorophenol	Ō	1000	551	55.1	610	61	10	
Pyrene	0	667	739	111	807	121	8.6	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: FO 030809 115555-01 8/20/2003 8/20/2003 SS0909

Compound Name Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-nitroso-di-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene	Sample Result (ug/kg) 0 0 0 0 0 0 0	Spike Amount (ug/kg) 3660 2440 2440 2440 3660 2440	MS Result (ug/kg) 3500 3700 2680 1080 2530 4220 3020	MS % Rec. 95.5 101 110 44.2 104 115 123	MSD Resuit (ug/kg) 3370 3300 2550 1040 2600 3920 2840 5050	MSD % Rec. 94.8 92.7 108 43.7 110 110 120 142	RPD -0.74 -8.6 -1.8 -1.1 5.6 -4.4 -2.5 -8 8	Flag X7
4-Nitrophenol	0 0 0	2440 3660 2440	5690 2150	123 155 88	5060 2000	142 84.2	-8.8 -4.4	X7
2,4-Dinitrotoluene Pentachlorophenol Pyrene	0 63	3660 2440	2550 3050	69.7 122	2530 2600	71.1 107	2 -13	

00057

Lab ID:	Method Blank - SW0690
Date Received:	-
Date Prepared:	8/19/2003
Date Analyzed:	8/20/2003
% Solids	•
Dilution Factor	0.1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	67.1		10	112
Phenol - d5	51.8		10	85
Nitrobenzene - d5	109		41	155
	84.8		34	148
2 - Fluorobiphenyl	95.5		29	159
2,4,6 - Tribromophenol p - Terphenyl - d14	105		33	172

	Result		MRL Flags
Analyte	(ug/L)	PQL	
Phenol	ND	0.2	
bis(2-Chloroethyl)ether	ND	0.2	0.1
2-Chiorophenol	ND	0.2	0.1
1,3-Dichlorobenzene	ND	0.2	0.1
1,4-Dichlorobenzene	ND	0.2	0.1
Benzyl Alcohol	ND	0.2	0.1
1,2-Dichlorobenzene	ND	0.2	0.1
2-Methylphenol	ND	0.2	0.1
bis(2-Chloroisopropyl)ether	ND	0.2	0.1
3-&4-Methylphenol	ND	0.4	0.2
N-nitroso-di-n-propylamine	ND	0.2	0.1
Hexachloroethane	ND	0.2	0.1
Nitrobenzene	ND	0.2	0.1
isophorone	ND	0.2	0.1
2-Nitrophenol	ND	0.2	0.1
2,4-Dimethylphenol	ND	1	0.5
Benzoic Acid	ND	1	0.5
bis(2-Chloroethoxy)methane	ND	0.2	0.1
2,4-Dichlorophenol	ND	0.2	0.1
1,2,4-Trichlorobenzene	ND	0.2	0.1
Naphthalene	ND	0.06	0.03
4-Chloroaniline	ND	0.3	0.15
Hexachlorobutadiene	ND	0.2	0.1
4-Chloro-3-methylphenol	ND	0.2	0.1
2-Methylnaphthalene	ND	0.05	0.025
Hexachlorocyclopentadiene	ND	1	0.5

Semivolatile Organics by USEPA Method 8270 data for SW0690 continued...

	Res	sult		
Analyte	(ug	٧L)	PQL	MRL
2,4,6-Trichlorophenol	ND		0.2	0.1
2,4,5-Trichlorophenol	ND		0.2	0.1
2-Chloronaphthalene	ND		0.05	0.025
2-Nitroaniline	ND		0.2	0.1
Dimethylphthalate	ND		0.2	0.1
Acenaphthylene	ND		0.05	0.025
2,6-Dinitrotoluene	ND		0.2	0.1
3-Nitroaniline	ND		0.2	0.1
Acenaphthene	ND		0.05	0.025
2,4-Dinitrophenol	ND		1	0.5
4-Nitrophenol	ND		1	0.5
Dibenzofuran	ND		0.2	0.1
2,4-Dinitrotokuene	ND		0.2	0.1
Diethylphthalate	ND		0.2	0.1
4-Chlorophenylphenylether	ND		0.2	0.1
Fluorene	ND		0.05	0.025
4-Nitroaniline	ND		0.2	0.1
4.6-Dinitro-2-methylphenol	ND		1	0.5
N-Nitrosodiphenylamine	ND		0.2	0.1
4-Bromophenylphenylether	ND		0.2	0.1
Hexachlorobenzene	ND		0.2	0.1
Pentachiorophenol	ND		0.65	0.325
Phenanthrene	ND		0.05	0.025
Anthracene	ND		0.05	0.025
Di-n-butylphthalate		0.112	0.2	0.1
Fluoranthene	ND		0.05	0.025
Pyrene	ND		0.05	0.025
Butylbenzylphthalate	ND		0.3	0.15
3,3'-Dichlorobenzidine	ND		1	0.5
Benzo(a)anthracene	ND		0.05	0.025
Chrysene	ND		0.05	0.025
bis(2-Ethylhexyl)phthalate	ND		1.5	0.75
Di-n-octyiphthalate	ND		0.2	0.1
Benzofluoranthenes	ND		0.1	0.05
Benzo(a)pyrene	ND		0.05	0.025
Indeno(1,2,3-cd)pyrene	ND		0.05	0.025
Dibenz(a,h)anthracene	ND		0.05	0.025
Benzo(g,h,i)perylene	ND		0.05	0.025
Touro (Alumbar house				

J

Blank Spike/Blank Spike Duplicate Report

Lab ID:	SW0690
Date Prepared:	8/19/2003
Date Analyzed:	8/20/2003
QC Batch ID:	SW0690

Compound Name Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-nitroso-di-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2 4 Distantolucco	Blank Result (ug/L) 0 0 0 0 0 0 0 0 0 0	Spike Amount (ug/L) 1.5 1.5 1 1 1.5 1 1.5 1.5 1	BS Result (ug/L) 0.605 1.07 0.815 0.924 0.795 1.27 1.02 1.05 0.816	BS % Rec. 40.4 71.1 81.5 92.4 79.5 85 102 70.3 81.6	BSD Result (ug/L) 0.609 1.06 0.793 0.789 0.818 1.11 0.918 0.927 0.748	BSD % Rec. 40.6 70.8 79.3 78.9 81.8 73.9 91.8 61.8 74.8	RPD 0.49 -0.42 -2.7 -16 2.9 -14 -11 -13 -8.7	Flag
•	0 0	1	0,816	81.6	0.748	74.8	-8.7	
Pentachlorophenol Pyrene	0 0	1.5 1	0.909 0.986	60.6 98.6	0.928 0.939	61.9 93.9	2.1 -4.9	

Lab ID:Method Blank - PB0571Date Received:-Date Prepared:8/20/03Date Analyzed:8/20/03% Solids1

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Teirachloro-m-xylene	88.8		72	114
Decachlorobiphenyl	95		55	133

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MRL Flag	gs
Aroclor 1016	ND	0.01	0.005	
Aroclor 1221	ND	0.02	0.01	
Aroclor 1232	ND	0.01	0.005	
Aroclor 1242	ND	0.01	0.005	
Aroclor 1248	ND	0.01	0.005	
Aroclor 1254	ND	0.01	0,005	
Aroclor 1260	ND	0.01	0.005	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	P80571
Date Prepared:	8/20/03
Date Analyzed:	8/20/03
QC Batch ID:	PB0571

PCBs by USEPA Method 8082

Compound Name Aroclor 1242 Aroclor 1260	Blank Result (mg/kg) 0 0	Spike Amount (mg/kg) 0.1 0.1	BS Result (mg/kg) 0.1 0.095	BS % Rec. 100 95	BSD Result (mg/kg) 0.0968 0.0925	BSD % Rec. 96.8 92.5	RPD -3.3 -2.7	Flag
--	--------------------------------------	--	---	----------------------------------	--	--------------------------------------	----------------------------	------

.

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: GHUS-B 115563-04 8/20/03 8/20/03 PB0571

PCBs by USEPA Method 8082

Compound Name Arocior 1242	Sample Result (mg/kg) 0 0	Spike Amount (mg/kg) 0.105 0.105	MS Result (mg/kg) 0.0789 0.0939	MS % Rec. 75.5 89.8	MSD Result (mg/kg) 0.0788 0.0968	MSD % Rec. 74 90.9	RPD -2 1.2	Flag
Arocior 1260	U	0.105	0.0938	00.0	0.0000			

Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor Method Blank - PW0196

8/19/03 8/20/03 -1

PCBs by USEPA Method 8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	84.8		42	108
Decachlorobiphenyl	94.9		45	136

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Aroclor 1016	ND	0.02	0.01
Arodor 1221	ND	0.04	0.02
	ND	0.02	0.01
Aroclor 1232	ND	0.02	0.01
Aroclor 1242	ND	0.02	0.01
Arocior 1248	-	0.02	0.01
Aroclor 1254	ND	0.02	0.01
Aroclor 1260	ND	0.02	0.01

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PW0196 8/19/03 8/20/03 PW0196

PCBs by USEPA Method 8082

Compound Name Arocior 1242	Blank Result (ug/L) 0 0	Spike Amount (ug/L) 0.1 0.1	BS Result (ug/L) 0.0901 0.0928	BS % Rec. 90.1 92.8	BSD Result (ug/L) 0.0956 0.102	BSD % Rec. 95.6 102	RPD 5.9 9.4	Fla
Arocior 1242 Arocior 1260	•	0.1			0.102	102	9.4	

Method Blank - PW0196
-
8/19/2003
8/22/2003
-
1

Organochlorine Pesticides by USEPA Method 8081A

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	102		52	130
Decachlorobiphenyl	111		54	146

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Aldrin	ND	0.002	0.001
alpha-BHC	NÐ	0.002	0.001
beta-BHC	ND	0.004	0.002
delta-BHC	ND	0.002	0.001
gamma-BHC (Lindane)	ND	0.002	0.001
4.4'-DDD	ND	0.004	0.002
4,4'-DDE	ND	0.004	0.002
4,4'-DDT	ND	0.004	0.002
Dieldrin	ND	0.004	0.002
Endosulfan 1	ND	0.002	0.001
Endosulfan II	ND	0.004	0.002
Endosulfan sulfate	ND	0.004	0.002
Endrin	ND	0.004	0.002
Endrin aldehyde	ND	0.004	0.002
Heptachlor	ND	0.002	0.001
Heptachior epoxide	ND	0.002	0.001
Methoxychior	ND	0.02	0.01
Endrin ketone	ND	0.004	0.002
Toxaphene	ND	0.2	0.1
alpha-Chlordane	ND	0.002	0.001
gamma-Chlordane	ND	0.002	0.001

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PW0196 8/19/2003 8/22/2003 PW0196

Organochlorine Pesticides by USEPA Method 8081A

Compound Name Aldrin	Blank Result (ug/L) 0	Spike Amount (ug/L) 0.02	BS Result (ug/L) 0.0177	BS % Rec. 88.3	BSD Result (ug/L) 0.0201	BSD % Rec. 100	RPD 12	Flag
gamma-BHC (Lindane)	0	0.02	0.0186	93	0.0209	104	11	
4,4'-DDT	0	0.02	0.0207	104	0.0228	114	9.2	
Dieldrin	0	0.02	0.0215	107	0.0238	119	11	
Endrin	Ó	0.02	0.0191	95.6	0.0202	101	5. 5	
Heptachlor	Ō	0.02	0.0199	99.5	0.0224	112	12	

Lab ID:	Method Blank - PE1620
Date Received:	-
Date Prepared:	8/22/2003
Date Analyzed:	8/27/2003
% Solids	
Dilution Factor	1

Organochlorine Pesticides by USEPA Methods 8081B

			Recove	ary Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	110		57	153
Decachlorobiphenyl	112		57	145

Sample results are on an as received basis.

	Result		
Analyte	(ug/k g)	PQL	MRL Flags
Aldrin	ND	1	0.5
alpha-BHC	ND	1	0.5
beta-BHC	ND	1	0.5
delta-BHC	ND	1	0.5
gamma-BHC (Lindane)	ND	1	0.5
4,4'-DDD	ND	2	1
4,4'-DDE	ND	2	1
4,4'-DDT	ND	2	1
Diekin	ND	2	1
Endosulfan I	ND	1	0.5
Endosulfan II	ND	2	1
Endosulfan sulfate	ND	2	1
Endrin	ND	2	1
Endrin aldehyde	ND	2	1
Heptachlor	ND	1	0.5
Heptachlor epoxide	ND	1	0.5
Methoxychlor	ND	10	5
Endrin ketone	ND	2	1
alpha-Chlordane	ND	1	0.5
gamma-Chlordane	ND	1	0.5

Lab ID:Method Blank - PE1620\$8Date Received:-Date Prepared:8/22/2003Date Analyzed:8/27/2003% Solids1

Organochlorine Pesticides by USEPA Methods 8081B

			Recovery Limit			
Surrogate	% Recovery	Flags	Low	High		
Tetrachloro-m-xylene	84.9		57	153		
Decachlorobiphenyl	86.1		57	145		

Sample results are on an as received basis.

	Result	5.01	MRL Flags
Analyte	(ug/kg)	PQL	HIKE ENGRS
Aldrin	ND	1	
alpha-BHC	ND	1	
beta-BHC	ND	1	1
delta-BHC	ND	1	1
gamma-BHC (Lindane)	ND	1	1
4,4'-DDD	ND	2	2
4,4'-DDE	ND	2	2
4,4'-DDT	ND	2	2
Dieldrin	ND	2	2
Endosulfan I	ND	1	1
Endosulfan II	ND	2	2
Endosulfan sulfate	ND	2	2
Endrin	ND	2	2
Endrin aldehyde	ND	2	2
Heptachlor	ND	1	1
Heptachlor epoxide	ND	1	1
Methoxychlor	ND	10	10
Endrin ketone	ND	2	2
alpha-Chlordane	ND	1	1
gamma-Chlordane	ND	1	1

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PE1620 8/22/2003 8/27/2003 PE1620

Organochlorine Pesticides by USEPA Methods 8081B

	Blank Result	Spike Amount	BS Result	BŜ	BSD Result	BSD		Floo
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Aldrin	D	20	20,6	103	18.9	94.7	-8.4	
alpha-BHC	0	20	21.1	105	19.6	97.9	-7	
beta-BHC	0	20	20.6	103	19.1	9 5.5	-7.8	
delta-BHC	0	20	18.6	93	17.8	88.8	-4.6	
gamma-BHC (Lindane)	0	20	21.3	107	19 .9	99.7	-7.1	
4,4'-DDD	0	40	45	113	42	105	-7.3	
4.4'-DDE	0	40	42.6	106	39.5	98.7	-7.1	
4,4'-DDT	0	40	45.1	113	41.6	104	-8.3	
Dieldrin	D	40	43.7	109	40,8	102	-6.6	
Endosulfan I	Ō	20	21.3	107	19.8	99.2	-7.6	
Endosulfan II	Ō	40	37.2	93.1	35.8	89.5	-3.9	
Endosulfan sulfate	0	20	18.4	92.1	20.8	104	12	
Endrin	Ð	40	42.1	105	39.2	9 8.1	-6.8	•
Endrin aldehyde	D D	40	23.3	58.1	24.6	61.6	5.8	
Heptachlor	0 0	20	21.4	107	19.7	98.6	-8.2	
Heptachlor epoxide	0	20	20.5	103	19	95.2	-7.9	
• •	0	200	203	101	195	97.5	-3.5	
Methoxychior	0	40	26.3	65.8	27.7	69.3	5.2	
Endrin ketone	0	20	20.5	108	20	99.8	-7.9	
alpha-Chlordane	0	20	21.6	108	20.2	101	-6.7	
gamma-Chlordane	U	20	21.0	100	<u>i</u> .V.2.		÷	

Biank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PE1620SB 8/22/2003 8/27/2003 PE1620SB

Organochlorine Pesticides by USEPA Methods 8081B

Compound Name	Blank Result (ug/kg)	Spike Amount (ug/kg)	BS Result (ug/kg)	BS % Rec.	BSD Result (ug/kg)	BSD % Rec.	RPD	Flag
Aldrin	100 mgr gr 0	20	15.9	79.3	12.1	60.5	-27	-
alpha-BHC	õ	20	8.61	43	7.47	37.4	-14	Ν
beta-BHC	Ō	20	3.36	16.8	3.49	17.5	4.1	N
delta-BHC	D	20	0	0	1.74	8.68	200	N
gamma-BHC (Lindane)	0	20	4.68	24.4	5,54	27.7	13	N
4,4'-DDD	0	40	16.5	41.3	14.4	36.1	-13	
4,4'-DDE	0	40	33.5	83.7	24.3	0 0. 9	-32	
4,4'-DDT	0	40	23.1	57.8	19.4	48.4	-18	N
Dieldrin	0	40	19.5	48.6	17.0	44.8	-8.1	N
Endosulfan I	0	20	12.9	64.5	10.7	53.4	-19	
Endosulfan II	0	40	0	0	4.54	11.4	200	N
Endosulfan sulfate	0	20	0	0	0		. O	N
Endrin	0	40	22.8	57.1	19.3	48.3	-17	N
Endrin aldehyde	0	40	2.57	6.43	Ó	0	-200	N
Heptachlor	0	20	15.8	79	12.1	60.5	-27	N
Heptachlor epoxide	0	20	10.5	52.5	8.66	43.3	-1 9	N
Methoxychlor	0	200	27.6	13.8	31	15.5	12	N
Endrin ketone	0	40	1.47	3.67	1.5	3.75	2.2	N
alpha-Chlordane	0	20	11.8	58.9	9.82	49.1	-18	N
gamma-Chlordane	0	20	11.5	57.3	9.96	49.8	-14	N

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: FO 030809 115555-01 8/22/2003 8/27/2003 PE1620

Organochlorine Pesticides by USEPA Methods 8081B

	Sampie Result	Spike Amount	MS Result	MS	MSD Result	MSD		
Compound Name	(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
Aldrin	0	71.8	74.5	104	79.9	107	2.8	
alpha-BHC	0	71.6	75	105	81.5	109	3.7	
beta-BHC	0	71.6	68.7	96	78. 9	106	9.9	
delta-BHC	0	71.6	52.1	72.7	66.7	89.3	20	
gamma-BHC (Lindane)	0	71.6	73.3	102	82.B	111	8.5	
4.4'-DDD	0	143	159	111	173	116	4.4	
4,4'-DDE	0	143	154	107	165	110	2.8	
4,4'-DDT	D	143	162	113	175	117	3.5	
Dieldrin	0	143	155	108	169	113	4.5	
Endosulfan I	0	71.6	76.5	107	82.4	110	2.8	
Endosulfan II	0	143	89.8	62.7	122	81.6	26	
Endosulfan sulfate	0	143	15.9	11.8	34.1	22.8	64	X7
Endrin	0	143	152	106	166	111	4.6	
Endrin aldehyde	0	143	31	21.6	45.9	30.7	35	X7
Heptachlor	0	71.6	77.8	109	83.3	112	2.7	
Heptachlor epoxide	0	71.6	73.1	102	79.6	107	4,8	
Methoxychlor	0	716	668	93.3	796	106	13	
Endrin ketone	0	143	33.5	23.4	56.6	37.9	47	X7
alpha-Chlordane	Ō	71.6	77.5	108	84	112	3.6	
gamma-Chlordane	Ō	71.6	76.5	107	82.9	111	3.7	

Lab ID:Method Blank ~ TOC1062Date Received:-Date Prepared:8/28/03Date Analyzed:8/28/03% Solids1

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
TOC	ND	100	40

Triplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: FO 030809 115555-01 8/28/03 8/28/03 TOC1062

Total Organic Carbon by Puget Sound Estuary Protocol (PSEP)

Result	Result	Result	RSD % 1.5	Flag
	Result (mg/kg)	Result Result (mg/kg) (mg/kg)	(mg/kg) (mg/kg) (mg/kg)	Result Result Result RSD (mg/kg) (mg/kg) (mg/kg) %

Lab ID:	Method Blank - TOC1063
Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor	8/29/03 8/29/03 - 1

.

Analyte TOC

Total Organic Carbon by USEPA Method 9080

ResultMDLFlags(mg/L)PQLMDLFlagsND0.50.35

•

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:	MW-3
Lab ID:	115676-01
Date Prepared:	8/29/03
Date Analyzed:	8/29/03
QC Batch ID:	TOC1063

Total Organic Carbon by USEPA Method 9060

Compound Name TOC	Sample Result (mg/L) 540	Amount		MS % Rec. 96.6	MSD Result (mg/L) 1490	MSD % Rec. 95.2	RPD -1.5	Flag
-----------------------------	-----------------------------------	--------	--	-----------------------------	---------------------------------	------------------------------	--------------------	------

APPENDIX F Data Validation Report

Review of Quality Assurance/Quality Control (QA/QC) Data for Portland Harbor Inline Solids Sampling, Basins M-1 and 18, August 2003

TO:	Dave Livesay/CH2M HILL/CVO David Lacey/CH2M HILL/PDX
COPIES:	Project File
FROM:	Wendi Gale/CH2M HILL/CVO
DATE:	September 29, 2003

Summary

The majority of the data have met the QA/QC acceptance criteria outlined for the Portland Harbor Inline Solids Sampling study. Nonconformances with QA/QC criteria are discussed, identified, and qualified in this report. The following is a brief summary of the overall quality of the sample results.

All polychlorinated biphenyls (PCBs), pesticides, diesel/lube oil range hydrocarbons (NWTPH-Dx), metals, mercury, and total organic carbon (TOC) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy.

The majority of semivolatile organic compound (SVOC-SIM) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy. Nonconformances with the QA/QC criteria were observed as follows:

• Positive SVOC-SIM results for seven sediment samples were qualified as estimates and flagged with a "J" as a result of surrogate recoveries reported above the upper QC acceptance criteria.

The majority of gasoline range hydrocarbons (NWTPH-Gx) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy. Nonconformances with the QA/QC criteria were observed as follows:

• Positive NWTPH-Gx results for two sediment samples were qualified as estimates and flagged with a "J" as a result of surrogate recoveries reported above the upper QC acceptance criteria.

The majority of hydrocarbon (NWTPH-HCID) results for all samples met all QA/QC criteria for the selected QC parameters. A completeness objective of 95 percent was achieved for all samples analyzed for all parameters based on precision and accuracy. Nonconformances with the QA/QC criteria were observed as follows:

• NWTPH-HCID results for two sediment samples were qualified as estimates and flagged with a "J" for positive results or with a "UJ" for nondetected results as a result of surrogate recoveries not reported due to matrix interference.

Introduction

Twelve sediment samples, one field duplicate, and one rinsate blank samples were collected between August 12 and 20, 2003. Samples submitted for metals, mercury, and NWTPH-HCID analyses were performed by City of Portland Water Pollution Control Laboratory (CITY), located in Portland, Oregon. Samples submitted for SVOC-SIM, pesticides, PCBs, NWTPH-Gx and TOC analyses were performed by Severn Trent Laboratory (STL), located in Tacoma, Washington. Six samples submitted for NWTPH-Dx analysis were performed by CITY, six samples submitted for NWTPH-Dx were performed by STL.

Data Review Criteria

EPA Contract Laboratory Program (CLP) *National Functional Guidelines (NFG) for Organic Data Review* (February 1994) and *National Functional Guidelines (NFG) for Inorganic Data Review* (February 1994) provided guidelines for data qualification, where applicable.

This QA review focuses on criteria for the following QA/QC parameters and their overall effect on the data:

- Sample custody, handling, and preservation
- Holding time compliance
- Summary initial and continuing calibration data
- Method blanks
- Surrogate spike recovery
- Precision and Accuracy (laboratory control samples, spike/spike duplicates, and laboratory duplicates)
- Field QA/QC (rinsate blanks and field duplicates)

Only summary QA/QC information were reviewed for each analytical parameter. Analytical results and QA/QC summary information were provided for all sample analyses.

Analytical Methods

All samples were analyzed by and QA/QC criteria were taken from one of the following sources:

- U.S. EPA. Test Methods for Evaluating Solid Waste (SW 846), April 1998.
- U.S. EPA. Methods for Chemical Analysis of Water and Wastes. 600/4-79-200, March, 1983.
- U.S. EPA. Methods for the Determination of Organic Compounds in Drinking Water. 600/4-88-039, December, 1988. Revised July, 1991.
- Standard Methods for the Examination of Water and Wastewater. 18th Edition. 1992.

- Puget Sound Water Quality Action Team. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Sampling Chapter. April, 1997.
- Oregon D.E.Q. NWTPH Methods (NWTPH-HCID, NWTPH-Gx, and NWTPH-Dx) are based on Oregon's Department of Environmental Quality TPH and Washington's Department of Ecology WTPH methods.

Table 1 lists the analytical method used for each parameter and the number and type of samples analyzed.

Table 1 Summary of Analyses				
Parameter	Method	No. of Field Samples	No. of Field Duplicates	No. of Rinsate Blanks
SVOC-SIM	EPA 8270C-SIM	12 sediment	1 sediment	1 water
Pesticides	SW 8081	12 sediment	1 sediment	1 water
PCBs	SW 8082	12 sediment	1 sediment	1 water
Hydrocarbon	NWTPH-HCID	6 sediment	1 sediment	1 water
NWTPH-Gasoline Range Hydrocarbons	NWTPH-Gx	1 sediment	1 sediment	none
NWTPH- Diesel/Lube Oil Range Hydrocarbons	NWTPH-Dx	12 sediment	1 sediment	1 water
Metals and Mercury	EPA 6020 sediment EPA 200.8 water	12 sediment	1 sediment	1 water
TOC	SW 9060 and PSEP (Puget Sound Estuary Program)	12 sediment	1 sediment	1 water

Qualifiers

The following definitions provide brief explanations of the data qualifiers that were assigned to results in the data review process.

- U The analyte was analyzed for, but the analyte was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

The laboratory may have assigned additional data qualifiers. Laboratory data qualifiers are defined in each laboratory report.

Sample Custody, Handling, and Preservation

Chain-of-custody (COC) forms and the laboratory sample receiving checklists were reviewed to determine if any sample handling procedures might affect the integrity or the quality of the sample results.

All coolers were received by the laboratory at a temperature of $4 \degree C \pm 2 \degree C$, as recommended by EPA. All sample containers were received intact and no bubbles were noted in liquid samples submitted for analysis. All sediment and rinsate blank samples were extracted and/or analyzed within their respective holding time requirements.

The case narrative for CITY lab SDG AH069 describes chromatographic evaluations of PEST results. Due to matrix interference, PEST results should be considered estimates for samples IL-18-AAT557-0803, IL-18-AAT463-0803, and IL-18-AAT537-0803. Chromatograms were not provided by the laboratory, therefore matrix interference could not be verified and results were not qualified.

GC/MS Tune Criteria

Instrument tuning must be performed at the beginning of each twelve-hour instrument sequence, prior to standard and sample analyses. Analysis frequency criteria and ion abundance criteria for each instrument sequence were met.

Initial Calibration

Initial calibration criteria monitor analytical performance and proper compound identification at the start of analysis.

Except for the instance noted below, all acceptance criteria were met according to the case narrative. Initial calibration data were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

According to the case narrative for STL SDG 115555, PCBs for samples IL-M1-AAJ831-0803, IL-M1-AAM155-0803, and IL-M1-XXY101-0803 have similar response times as PEST compounds, and should be considered estimates. Response times data were not provided by the lab, therefore response times could not be verified and results were not qualified.

Continuing Calibration

Continuing calibration criteria monitor analytical performance and proper compound identification on a daily or more frequent basis.

Except for the instance noted below, all acceptance criteria were met according to the case narrative. Continuing calibration data were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

• The case narrative associated with STL SDG 115693 reported pesticide CCV results for DDT and methoxychlor below the QC acceptance criteria. The samples were diluted and DDT and methoxychlor results were reported from the diluted run. No further qualification was required.

Method Blanks

Method blanks monitor contamination that may be introduced during analysis.

A method blank was analyzed with each analytical batch, therefore meeting frequency QC acceptance criteria. Except for the instances noted below, all method blanks were contamination-free, therefore meeting QC acceptance criteria.

• The SVOC-SIM method blank analyzed on August 20, 2003 (SDG 115555) was reported with detectable concentrations of di-n-butylphthalate (0.112 J μ g/L). Rinsate blank results are not qualified based on method blank contamination, therefore no sample results required qualification as a result of the method blank contamination.

Surrogate Spike Recovery

Surrogate compounds are organic compounds which are similar to the analytes of interest in chemical composition, extraction, and chromatography, but are not likely to be found in environmental samples. Every sample and blank analyzed for organic parameters is spiked prior to extraction or analysis with surrogate compounds that are representative of the analysis.

All surrogate spike recoveries should be within the laboratory-established control limits to meet QC acceptance criteria.

EPA Method 8270C-SIM (SVOC-SIM)

Surrogate recoveries should be within the QC control limits of 37 to 156 percent for nitrobenzene-d5, 39 to 145 percent for 2-fluorobiphenyl, 39 to 158 percent for p-terphenyld14, 39 to 140 percent for phenol-d5, 35 to 144 percent for 2-fluorophenol, and 25 to 148 percent for 2,4,6-tribromophenol for sediment samples. Except for the instances noted below, all surrogate recoveries were within the specified QC control limits for sediment samples.

- The surrogate recovery for phenol-d5 was reported above the upper QC control limit for samples IL-M1-AAM155-0803 (155%) and IL-18-AAT558-0803 (174%). Positive SVOC results for samples IL-M1-AAM155-0803 and IL-18-AAT558-0803 were qualified as estimates and flagged with a "J".
- The surrogate recoveries for 2-fluorophenol (210%), nitrobenzene-d5 (298%), and pterphenol-d14 (363%) were reported above the upper QC control limit as a result of matrix interference for sample IL-18-AAT557-0803. Positive SVOC results for sample IL-18-AAT557-0803 were qualified as estimates and flagged with a "J".
- The surrogate recoveries for 2-fluorophenol (234%), phenol-d5 (214%), nitrobenzene-d5 (181%), and 2,4,6-tribromophenol (247%) were reported above the upper QC control limit as a result of matrix interference for sample IL-18-AAT465-0803. Positive SVOC

results for sample IL-18-AAT465-0803 were qualified as estimates and flagged with a "J".

- The surrogate recoveries for phenol-d5 (227%) and 2,4,6-tribromophenol (154%) were reported above the upper QC control for sample IL-18-AAT463-0803. Positive SVOC results for sample IL-18-AAT463-0803 were qualified as estimates and flagged with a "J".
- The surrogate recoveries for 2-fluorophenol (202%), phenol-d5 (187%), nitrobenzene-d5 (162%), and p-terphenol-d14 (159%) were reported above the upper QC control for sample IL-18-AAT453-0803. Positive SVOC results for sample IL-18-AAT453-0803 were qualified as estimates and flagged with a "J".
- The surrogate recoveries for 2-fluorophenol (183%), phenol-d5 (238%), nitrobenzene-d5 (188%), and 2,4,6-tribromophenol (156%) were reported above the upper QC control for sample IL-18-AAT537-0803. Positive SVOC results for sample IL-18-AAT537-0803 were qualified as estimates and flagged with a "J".

Surrogate recoveries should be within the QC control limits of 41 to 155 percent for nitrobenzene-d5, 34 to 148 percent for 2-fluorobiphenyl, 33 to 172 percent for p-terphenyl-d14, 10 to 85 percent for phenol-d5, 10 to 112 percent for 2-fluorophenol, and 29 to 159 percent for 2,4,6-tribromophenol for water samples. All surrogate recoveries were within the specified QC control limits for water samples.

NWTPH-HCID Method (NWTPH-HCID Hydrocarbons)

Except for the instance noted below, all acceptance criteria were met according to the case narrative. Surrogate compounds and QC control limits were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

• The surrogate recovery was not reported as a result of matrix interference in sediment samples IL-M1-AAJ831-0803 and IL-M1-XXY101-0803. NWTPH-HCID results for samples IL-M1-AAJ831-0803 and IL-M1-XXY101-0803 were qualified as estimates and flagged with a "J" for positive results or with a "UJ" for nondetected results.

NWTPH-Gx Method (NWTPH-Gasoline Range Hydrocarbons)

Surrogate recoveries should be within the QC control limits of 50 to 150 percent for trifluorotoluene, bromofluorobenzene, and pentafluorobenzene in sediment samples. Except for the instance noted below, all surrogate recoveries were within the specified QC control limits.

The surrogate recoveries for bromofluorobenzene were reported above the upper QC control limit for samples IL-M1-AAJ831-0803 (181%) and IL-M1-XXY101-0803 (207%). Positive NWTPH-Gx results for samples IL-M1-AAJ831-0803 and IL-M1-XXY101-0803 were qualified as estimates and flagged with a "J".

NWTPH-Dx Method (NWTPH-Diesel/Lube Oil Range Hydrocarbons)

Surrogate recoveries should be within the QC control limits of 50 to 150 percent for oterphenyl in sediment samples. All surrogate recoveries reported by STL were within the specified QC control limits. Surrogate recoveries reported by the CITY lab were met according to the case narrative. Surrogate compounds and control limits were not provided by the laboratory, therefore compliance with QC criteria could not be verified.

EPA Method SW 8081A (Pesticides)

Surrogate recoveries should be within the QC control limits of 57 to 153 percent for tetrachloro-m-xylene and 57 to 145 percent for decachlorobiphenyl in sediment samples. Pesticide results are not qualified based on surrogate results.

Except for the instance noted below, all surrogate recoveries were within the specified QC control limits.

- The surrogate recoveries for dechlorobiphenyl were reported below the lower QC control limit for samples IL-18-AAT463-0803 (56.3%), IL-18-AAT537-0803 (50.5%), and IL-M1-AAM104-0803-SW (45.6%).
- The surrogate recoveries for tetrachloro-m-xylene and dechlorobiphenyl were reported below the lower QC control limit for sample IL-M1-AAM104-0803-NE (53.1% and 56.4%, respectively).

EPA Method SW 8082 (PCBs)

Surrogate recoveries should be within the QC control limits of 72 to 114 percent for tetrachloro-m-xylene and 55 to 133 percent for decachlorobiphenyl in sediment samples. PCB results are not qualified based on surrogate results.

Except for the instance noted below, all surrogate recoveries were within the specified QC control limits.

• The surrogate recoveries for tetrachloro-m-xylene were reported below the lower QC control limit for samples IL-M1-AAJ831-0803 (62.2%) and IL-M1-XXY101-0803 (58.8%).

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicates, and Laboratory Duplicates

Precision and accuracy of laboratory performance are evaluated by the analysis of laboratory control samples (LCS), matrix spike (MS), matrix spike duplicates (MSDs), and laboratory duplicates. LCSs, MS/MSDs, and laboratory duplicates should be performed at a frequency of five percent or once per analytical batch, whichever is more frequent. LCS, MS/MSD, and laboratory duplicate recoveries and relative percent difference (%RPD) results should be within laboratory established control limits to meet precision and accuracy QC acceptance criteria.

LCS, MS/MSD, and laboratory duplicate data were not provided by the CITY laboratory, therefore compliance with QC criteria could not be verified. Except for the instance noted below, all acceptance criteria were met according to the case narrative.

• The laboratory duplicate recovery was reported outside the laboratory-established QC control limits for NWTPH-Dx analysis as a result of matrix interference. Organic sample results cannot be qualified using MS/MSD data alone, but can be used in conjunction with other QC criteria to determine the precision and accuracy of individual samples.

Sample results did not require qualification based on precision or accuracy criteria, therefore NWTPH-Dx results were not qualified based on MS/MSD results.

LCS, MS/MSD, and laboratory duplicate data were provided by the STL laboratory. Frequency criteria were met for all analytical methods. Except for the instances noted below, all LCS, MS/MSD, and laboratory duplicate recoveries and %RPD results were within the laboratory established QC control limits for all samples analyzed. Therefore, the majority of the samples met precision and accuracy QC acceptance criteria.

• Several MS/MSD recoveries and RPD results were reported outside the laboratoryestablished QC control limits for SVOC-SIM and pesticide analysis. Organic sample results cannot be qualified using MS/MSD data alone, but can be used in conjunction with other QC criteria to determine the precision and accuracy of individual samples. Sample results did not require qualification based on precision or accuracy criteria, therefore SVOC-SIM and pesticide results were not qualified based on MS/MSD results.

Field QA/QC

Rinsate Blanks

Rinsate blanks are used primarily to indicate if contamination has occurred as a result of sample collection or handling procedures.

One rinsate blank sample (RINSATE) was analyzed for SVOC-SIM, pesticides, PCBs, NWTPH-HCID, NWTPH-Gx, NWTPH-Dx, metals, mercury, and TOC.

The rinsate blank sample was reported with detectable concentrations of di-nbutylphthalate (0.108 J μ g/L) and TOC (0.624 mg/L). Di-n-butylphthalate and TOC were not detected in any associated samples or were greater than 5 times the detected concentration, therefore sample results were considered unaffected and were not qualified based on equipment blank contamination.

SVOC-SIM were analyzed by STL, and reported by the CITY lab. Di-n-butylphthalate was not reported as a detect in the rinsate blank sample results summary by CITY lab.

Field Duplicates

Field duplicates are another measure of reproducibility by duplicate analysis.

Field duplicate results are used to determine the precision of field sampling and laboratory techniques. There are no criteria or control limits for the %RPD of field duplicates; therefore laboratory duplicate criteria are applied. This allows control limits of ±35 RPD for sediment samples with the provisional control limit of plus or minus the MRL when sample concentrations are less than five times the MRL. These control limits may be too stringent, however, since precision in this case involves both sampling and laboratory precision. There are no specific review criteria used to compare field sample result comparability. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria.

Sample IL-M1-AAJ831-0803 was collected in duplicate and analyzed for SVOC, pesticides, PCBs, NWTPH-HCID, NWTPH-Gx, NWTPH-Dx, metals, mercury, and TOC.