STRUCTURAL CALCULATIONS

FOR

SEISMIC BRACING OF FIXTURES

WILLIAMS SONOMA – BREWERY BLOCKS PORTLAND, OR AST PROJECT #OR 1050

PERMIT SUBMITTAL JULY 8, 2022

PREPARED BY:

7301 Ohms Lane – Suite 215 Edina, MN 55439

> Phone: 952-854-9302 Toll-free: 844-854-9302 WWW.ASTENG.COM

TABLE OF CONTENTS

Section Description	Page #
Interior free-standing fixtures	
Seismic Loads	1
Floor anchorage	4
Interior fixtures supported by light-ga walls	
Seismic Loads	10
Floor anchorage	10
Wall anchorage	12
Perimeter Fixtures (supported at floor and added beam above)	
Seismic Loads	13
Floor anchorage	13
Beam anchorage	13
Steel Design	15

Updated: 03/01/21 By: SM

1

DESCRIPTION >	\ r	Williams Sor	ioma a fiuture			
	ľ	-ree-standin	g fixture			
			PROJECT INFORM	ATION		
				SITE NAME:	TBD	
CITY:		TBD		SITE ADDRESS:	TBD	
COUNTY:		TBD		LATITUDE:	TBD	
STATE:		TBD		LONGITUDE:	TBD	
			SEISMIC LOAD AN	AYLSIS		
OCCUPANCY CATEGORY:		Ш		(Table 1.5-1)		
SITE CLASS:		D-default				
SHORT PERIOD ACCELERATION:	S _s =	0.885		(From USGS Website or I	Figure 22-1 to 22-18)	
-SECOND PERIOD ACCELERATION:	S ₁ =	0.396		(From USGS Website or I	Figure 22-1 to 22-18)	
IMPORATANCE FACTOR:	=	1		(Table 1.5-2)		
SITE	$F_a = 1.2$ (Table 11.4-1)					
COEFICIENTS:	COEFICIENTS: F _v = 1.9			(Table 11.4-2)		
NOTE: scroll down to i	nput of	ther seismic	coefficients (ap, Rp, z a	nd h)		
			RESPONSE SPECT	RUM		
	S _{MS} =	1.062	$S_{MS} = F_a \times S_s$	(EQN 11.4-1)		
	S _{M1} =	0.754	$S_{M1} = F_v \times S_1$	(EQN 11.4-2)		
	$S_{DS} =$	0.708	$S_{DS} = (2/3)S_{MS}$	(EQN 11.4-3)		
	$S_{D1} =$	0.503	$S_{D1} = (2/3)S_{M1}$	(EQN 11.4-4)		
			Earthquake Design	Criteria		
SEISMIC DESIGN	V CATE	GORY				
	S _{DS} =	D		(Table 11.6-1)		
	S _{D1} =	D		(Table 11.6-2)		
SDC FOR DES	IGN =	D				
			Seismic Weig	ht		
Self Weight of Fixi	ture =	2000	Lbs.	(Fixture weight will be di	stributed to shelves)	

Self Weight of Fixture = Number of Shelves =

2000 1

(Fixture weight will be distributed to shelves)

	Shelf	Weight of Contents (LBS)	Shelf Height Above Base (IN)	Total Weight	F_p Coefficient	Seismic Force
4	SHELF #1	2000	61.50	2000	21.20%	424
<eu< th=""><th>SHELF #2</th><th>0</th><th>0.00</th><th>0</th><th>21.20%</th><th>0</th></eu<>	SHELF #2	0	0.00	0	21.20%	0
AAI	SHELF #3	0	0.00	0	21.20%	0
L L	SHELF #4	0	0.00	0	21.20%	0
NEN	CONTENT #1	0	0.00	0	21.20%	0
DO	CONTENT #2	0	0.00	0	21.20%	0
WO	CONTENT #3	0	0.00	0	21.20%	0
ð	CONTENT #4	0	0.00	0	21.20%	0
				2000		424
				W _p		Fp

OTM at

	illiams Sonoma				
DESCRIPTION >	DESCRIPTION > Free-standing fixture				
Seismic Design	Requirements for Non-Structural Comp	oonents	(ASCE 7	'-16, Chapter 13)	
	10	10	n 12	2)	
I _p =	1.0	(Sectio	n 13.1.	3)	
F =	$0.4 * a_p * S_{DS} * W_p = [1 + 2 / 7/b]$)] (FO	N 13 3	-1)	
· p	(R_p / I_p)	,, (LC	10.0	, 2)	
F _{p,max} = F =	$1.0^{\circ} S_{DS}^{\circ} I_p^{\circ} W_p$ 0.3 * S _{DS} * I_ * W_	(EC (FO	IN 13.3	-2) -3)	
• p,min -	- u- y- p	(20		- /	
a _p =	1.0	(Tab	le 13.5	-1)	
R _p =	2.5 0 IN	(Tab	le 13.5	-1)	
z = h =	102 IN				
				1	
	Table 13.5-1 Coefficients for Architectura	al Compone	ints		
	Architectural Component	a _p * R _p	Ω ₀ ^b		
	Interior nonstructural walls and partitions ^c Plain (unreinforced) masonry walls	1 15	11/2		
	All other walls and partitions Cantilever elements (unbraced or braced to structural	1 21/2	2		
	frame below its center of mass) Parapets and cantilever interior nonstructural walls	21/2 21/2	2		
	Chimneys where laterally braced or supported by the structural frame	21/2 21/2	2		
	Cantilever elements (braced to structural frame above				
	Parapets	1 21/2	2		
	Chimneys Exterior nonstructural walls ^c	1 2½ 1 ^b 2½	2 2		
	Exterior nonstructural wall elements and connections ^{b}				
	Wall element Body of wall panel connections	1 2½ 1 2½	NA NA		
	Fasteners of the connecting system Veneer	11/4 1	1		
	Limited deformability elements and attachments	1 21/2	2		
	Penthouses (except where framed by an extension of	1 1½ 2½ 3½	2		
	the building frame) Ceilings				
	All Cabinets	1 21/2	2		
	Permanent floor-supported storage cabinets more than 6 ft (1,829 mm) tall, including contents	1 21/2	2		
	Permanent floor-supported library shelving, book stacks, and bookshelves more than 6.6./1.820 areas	1 2½	2		
	tall, including contents	1 ***	2		
	Access floors	1 21/2	2		
	Special access floors (designed in accordance with Section 13.5.7.2)	1 21/2	2		
	All other Appendages and ornamentations	1 1½ 2½ 2½	1½ 2		
	Signs and Billboards Other rigid components	21/2 3	2		
	High-deformability elements and attachments Limited-deformability elements and attachments	1 3½ 1 2½	2 2		
	Low-deformability materials and attachments Other flexible components	1 11/2	11/2		
	High-deformability elements and attachments	2½ 3½ 2½ 2℃	2½ 214		
	Low-deformability materials and attachments	272 2½ 2½ 1½	272 11/2		
	Egress stairways not part of the building seismic force-resisting system	1 21/2	2		
	Egress stairs and ramp fasteners and attachments	21/2 21/2	21/2	1	
F ₂ =	0.113 *W "	(EQN 1	3.3-1)		
F _{p.max} =	1.133 * W _p	(EQN 1	3.3-2)		
F _{p,min} =	0.212 * W _p	(EQN 1	, 3.3-3)		
F .	0.212 * 14/				
r _p = W ₂ =	0.212 VV p 2000.0 LBS	(Assem	bled fiv	<pre>sture + attachments)</pre>	
•• p		1. 33011	2.cu ii)		
F _p =	424.0 LBS shear capacit	ty per	anch	or = 245# (see	
	following pag	es)			
	Required # a	nchors	s = 1.	73	
	Per detail 4-5	i/S310	l, a m	in. of 6 anchors are	
	provided per	fixture	9 1		

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point:

| Concrete - Jul 8, 2022 Page: Specifier: E-Mail: Date:

7/8/2022

1

Specifier's comments:

1 Input data

Anchor type and diameter:	HDI-P TZ 3/8
Item number:	not available
Effective embedment depth:	h _{ef} = 0.750 in., h _{nom} = 0.750 in.
Material:	ASTM A 36
Evaluation Service Report:	ESR-4236
Issued I Valid:	7/1/2021 7/1/2023
Proof:	Design Method ACI 318 / AC193
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^R :	$I_x \times I_y \times t = 3.000$ in. x 3.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	no profile
Base material:	cracked concrete, 2500, $f_c' = 2,500$ psi; h = 8.000 in.
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan The second second

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Jul 8, 2022	Date:		7/8/2022
Fastening point:				
1.1 Design result	ts			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 0; V_y = 245;$	no	99
		$M_x = 0; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [Ib] Tension force: (+Tension, -Compression)							
Anchor	Tension force	Shear force	Shear force x	Shear force y			
1	0	245	0	245			
max. concrete c max. concrete c resulting tensior resulting compre	ompressive strain: ompressive stress: n force in (x/y)=(0.00 ession force in (x/y)=	- - 0/0.000): 0 =(0.000/0.000): 0	[‰] [psi] [lb] [lb]				

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status	
Steel Strength*	N/A	N/A	N/A	N/A	
Pullout Strength*	N/A	N/A	N/A	N/A	
Concrete Breakout Failure**	N/A	N/A	N/A	N/A	

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 8, 2022	Date:	7/8/2022
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity ¢ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	245	585	42	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	245	248	99	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V _{sa}	= ESR value	refer to ICC-ES ESR-4236
φ V _{steel}	$\geq V_{ua}$	ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{ m V,seis}$	
0.07	58,000	1.000	
Calculations			
V _{sa} [lb]			
975			
Results			
V _{sa} [lb]	ϕ_{steel}	φ V _{sa} [lb]	V _{ua} [lb]
975	0.600	585	245

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 8, 2022	Date:	7/8/2022
Fastening point:			

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-30)
$\phi V_{cp} \ge V_{ua}$	ACI 318-08 Eq. (D-2)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}}\right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = K_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$	
1	0.750	×	1.000	-
c _{ac} [in.]	k _c	λ	f _c [psi]	
6.500	17	1	2,500	-
Calculations				
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
5.06	5.06	1 000	1 000	552

Results

V _{cp} [lb]	ϕ_{concrete}	∲ V _{cp} [lb]	V _{ua} [lb]
552	0.450	248	245

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- · This anchor can only be used for the support of non structural elements
- This anchor can only be used for overhead applications, see figure 3 of ESR-4236

Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company: Address: Phone I Fax: Design: Fastening point:

| Concrete - Jul 8, 2022

6 Installation data

	Anchor type and diameter: HDI-P TZ 3/8
Profile: no profile	Item number: not available
Hole diameter in the fixture: $d_f = 0.438$ in.	Maximum installation torque: -
Plate thickness (input): 0.500 in.	Hole diameter in the base material: 0.562 in.
Recommended plate thickness: not calculated	Hole depth in the base material: 0.750 in.
Drilling method: Hammer drilled Cleaning: Manual cleaning of the drilled hole according to instructions for use is	Minimum thickness of the base material: 4.000 in.
required.	

Page:

Date:

Specifier: E-Mail:

Hilti HDI flush anchor with 0.75 in embedment, 3/8, Carbon steel, installation per ESR-4236

6.1 Recommended accessories

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 8

5

7/8/2022

www.hilti.com			
Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 8, 2022	Date:	7/8/2022
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

Project		TC.
Date	7/8/2022	
Ву	DB	
Sheet	of	

Updated:	03/	01/	21
Bv:		sм	

DESCRIPTION >		Williams Son	oma			
Interior fixture (bar-glassware) - laterally braced at floor and light-ga wall						
			PROJECT INFORM		TBD	
CITY		TRD			TBD	
COUNTY		TRD			TBD	
STATE		TBD			TBD	
51712.				Longinobel		
			SEISMIC LOAD AN	NAYLSIS		
OCCUPANCY CATEGORY:		П		(Table 1.5-1)		
SITE CLASS:		D-default				
SHORT PERIOD ACCELERATION:	S _s =	0.885		(From USGS Website or I	Figure 22-1 to 22-18)	
-SECOND PERIOD ACCELERATION:	S ₁ =	0.396		(From USGS Website or I	Figure 22-1 to 22-18)	
IMPORATANCE FACTOR:	I =	1		(Table 1.5-2)		
SITE	F _a =	1.2		(Table 11.4-1)		
COEFICIENTS:	$F_v =$	1.9		(Table 11.4-2)		
NOTE: scroll down to	o input o	ther seismic o	coefficients (ap, Rp, z	and h)		
			RESPONSE SPEC	TRUM		
	S _{MS} =	1.062	$S_{MS} = F_a \times S_s$	(EQN 11.4-1)		
	S _{M1} =	0.754	$S_{M1} = F_v \times S_1$	(EQN 11.4-2)		
	$S_{DS} =$	0.708	$S_{DS} = (2/3)S_{MS}$	(EQN 11.4-3)		
	S _{D1} =	0.503	$S_{D1} = (2/3)S_{M1}$	(EQN 11.4-4)		
			Earthquake Desigr	n Criteria		
SEISMIC DESI	GN CATE	GORY				
	S _{DS} =	D		(Table 11.6-1)		
	S _{D1} =	D		(Table 11.6-2)		
SDC FOR D	ESIGN =	D				

Seismic Weight

Self Weight of Fixture = Number of Shelves =

ure = 3800 ves = 1 3000 self wt. of fixture + 800 pounds product

 $\mathbf{F}_{\mathbf{p}}$

	Shelf	Weight of Contents (LBS)	Shelf Height Above Base (IN)	Total Weight	F _p Coefficient	Seismic Force
<u>م</u>	SHELF #1	3800	72.00	3800	21.20%	806
(EU	SHELF #2	0	0.00	0	21.20%	0
MAI	SHELF #3	0	0.00	0	21.20%	0
Ę	SHELF #4	0	0.00	0	21.20%	0
NEN	CONTENT #1	0	0.00	0	21.20%	0
Q	CONTENT #2	0	0.00	0	21.20%	0
M	CONTENT #3	0	0.00	0	21.20%	0
ð	CONTENT #4	0	0.00	0	21.20%	0
				3800		806

Lbs.

W_p

Apply 0.6(806#) = 483# at base and top of fixture

required # floor anchors = 483/245 = 1.97 2 are provided each bay (see previous pages for floor anchor capcity calc)

Fixture header connection to wall (using a S.F. = 8.0) T/all per screw = 800#/8 = 100# (2) screws per stud = 200#/stud

o.k. by inspection (studs are spaced at 24" o.c. max)

DESCRIPTION >	Williams Sonoma	har	eed -	+ 61	wand light an wall
	interior jixture (par-glassware) - laterally	ora	iea a	c 1100	n unu nynt-ga wan
Seismic Desi	gn Requirements for Non-Structural Comp	one	nts (ASCE	7-16, Chapter 13)
I _p =	1.0	(Se	ectior	n 13.1	3)
	0.4 * a . * S _{ra} * W				
F _p =	$\frac{1}{(R_{\rm p}/I_{\rm p})} = \frac{1}{(R_{\rm p}/I_$]	(EQI	N 13.	3-1)
F _{p,max} =	1.6 * S _{DS} * I _p * W _p		(EQI	N 13.	3-2)
F _{p,min} =	0.3 * S _{DS} * I _p * W _p		(EQI	N 13.	3-3)
a _p =	1.0		(Tabl	e 13.	5-1)
R _p =	2.5		(Tabl	e 13.	5-1)
z =	0 IN				
h =	120 IN				
	Table 12 E-1 Coefficients for Architecture	ol Cor	nnonor	ate.	7
			nponer		:
	Architectural Component	a _p "	R _p	£	
	Interior nonstructural walls and partitions ^c Plain (unreinforced) masonry walls	1	1½	11/2	
	All other walls and partitions Cantilever elements (unbraced or braced to structural	1	21/2	2	
	frame below its center of mass) Paranets and cantilever interior nonstructural walls	21/2	21/2	2	
	Chimneys where laterally braced or supported by	21/2	21/2	2	
	Cantilever elements (braced to structural frame above				
	Parapets	1	21/2	2	
	Exterior nonstructural walls ^c	1 ^b	21/2	2	
	Exterior nonstructural wall elements and connections ^b				
	Wall element Body of wall panel connections	1 1	21/2 21/2	NA NA	
	Fasteners of the connecting system Veneer	11/4	1	1	
	Limited deformability elements and attachments Low-deformability elements and attachments	1	2½ 1½	2	
	Penthouses (except where framed by an extension of the building frame)	21/2	31/2	2	
	Ceilings	1	21/2	2	
	Cabinets	,	214	2	
	than 6 ft (1,829 mm) tall, including contents	÷.	272	2	
	stacks, and bookshelves more than 6 ft (1,829 mm)	1	272	2	
	tall, including contents Laboratory equipment	1	21/2	2	
	Access floors Special access floors (designed in accordance with	1	21/2	2	
	Section 13.5.7.2) All other	1	11/2	11/2	
	Appendages and ornamentations Signs and Billboards	2½ 2½	2½ 3	2 2	
	Other rigid components High-deformability elements and attachments	1	31/2	2	
	Limited-deformability elements and attachments Low-deformability materials and attachments	1	21/2 11/2	2	
	Other flexible components High-deformability elements and attachments	21/2	31/2	21/2	
	Limited-deformability elements and attachments	21/2	21/2	21/2	
	Egress statiways not part of the building seismic	1	21/2	2	
	Egress stairs and ramp fasteners and attachments	21/2	21/2	21/2	
F _p =	0.113 * W _p	(EC	QN 13	3.3-1)	1
F _{p,max} =	1.133 * W _p	(EC	QN 13	3.3-2)	
F _{p,min} =	0.212 * W _p	(EC	2N 13	3.3-3)	
F _p =	$0.212 * W_p$				
W _p =	3800.0 LBS	(As	sem	bled f	fixture + attachments)
F _	805 C LDC				
F _p =	805.6 LBS				

Withdrawal:

Tables 3 and 4 present average ultimate withdrawal loads for wood and sheet metal screws in plywood-and-metal joints, based on analysis of test results. Wood screws have a tapered shank and are threaded for only 2/3 of their length. Sheet metal screws typically have higher ultimate load than wood screws in the smaller gages, because of their uniform shank diameter and full-length thread. The difference is not as apparent in the larger gages and lengths because the taper is not as significant.

Values shown in Table 3 for wood screws are based on 1/4-in. protrusion of the wood screw from the back of the panel. This was to assure measurable length of thread embedment in the wood, since the tip of the tapered wood screw may be smaller than the pilot hole. This was not a factor for sheet metal screws due to their uniform shanks.

TABLE 3

WOOD AND SHEET METAL SCREWS: METAL-TO-PLYWOOD CONNECTIONS(a)

Depth of		Average	Ultimate W	/ithdrawal	Load (lbf)	
I hreaded Penetration			Screv	v Size		
(in.)	#6	#8	#10	#12	#14	#16
3/8	150	180	205	_		_
1/2	200	240	275	315	350	_
5/8	250	295	345	390	440	_
3/4	300	355	415	470	525	-
1	-	_	_	625	700	775
1-1/8	_	-	_	705	790	875
2-1/4	_	_	_	_	1580	

TABLE 4

SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS(a)

	Dhave ad		Ultimate Withdrawal Load (lbf) ^(b)							
	Thickness		Screv	1/4"-20 Self						
Framing	(in.)	#8 #10 #12		#14	Tapping Screw					
0.080-in. Aluminum	1/4 1/2 3/4	130 350 660	150 470 680	170 500 790	180 520 850*	220 500 790*				
0.078-in. Galvanized Steel (14 gage)	1/4 1/2 3/4	130 350 660	150 470 680	170 500 800	180 520 900	220 500 850				

(a) Plywood was A-C EXT (all plies Group 1).

(b) Loads denoted by an asterisk(*) were limited by screw-to-framing strength; others were limited by plywood strength.

Form No. E830D = © 2005 APA – The Engineered Wood Association = www.apawood.org

	I \
Project	
Date	7/8/2022
Ву	DB
Sheet	of

	Williams Son	oma					
DESCRIPTION >	Cutlery/CT Bin - laterally braced at floor and added beam above						
		PROJECT INFORMAT	FION				
			SITE NAME:	TBD			
CITY:	TBD		SITE ADDRESS:	TBD			
COUNTY:	TBD		LATITUDE:	TBD			
STATE:	TBD		LONGITUDE:	TBD			
		SEISMIC LOAD ANA	/LSIS				
OCCUPANCY CATEGORY:	П		(Table 1.5-1)				
SITE CLASS:	D-default						
SHORT PERIOD ACCELERATION: S _s =	0.885		(From USGS Website or F	Figure 22-1 to 22-18)			
SECOND PERIOD ACCELERATION: $S_1 =$	0.396		(From USGS Website or I	Figure 22-1 to 22-18)			
IMPORATANCE FACTOR: I =	1		(Table 1.5-2)				
SITE F _a =	1.2		(Table 11.4-1)				
COEFICIENTS: $F_v =$	1.9		(Table 11.4-2)				
NOTE: scroll down to input o	other seismic	coefficients (ap, Rp, z and	dh)				
		RESPONSE SPECTR	UM				
S _{MS} =	1.062	$S_{MS} = F_a \times S_s$	(EQN 11.4-1)				
S _{M1} =	0.754	$S_{M1} = F_v \times S_1$	(EQN 11.4-2)				
S _{DS} =	0.708	$S_{DS} = (2/3)S_{MS}$	(EQN 11.4-3)				
S _{D1} =	0.503	$S_{D1} = (2/3)S_{M1}$	(EQN 11.4-4)				
		Earthquake Design C	riteria				
SEISMIC DESIGN CATE	EGORY	· · · · ·					
S _{DS} =	D		(Table 11.6-1)				
S _{D1} =	D		(Table 11.6-2)				
SDC FOR DESIGN =	D						

Seismic Weight

Self Weight of Fixture = Number of Shelves =

ure = **4000** ves = **1** 3200 self wt. of fixture + 800 pounds product

 $\mathbf{F}_{\mathbf{p}}$

	Shelf	Weight of Contents (LBS)	Shelf Height Above Base (IN)	Total Weight	F _p Coefficient	Seismic Force
<u>م</u>	SHELF #1	4000	72.00	4000	21.20%	848
(EU	SHELF #2	0	0.00	0	21.20%	0
NAI	SHELF #3	0	0.00	0	21.20%	0
Ę	SHELF #4	0	0.00	0	21.20%	0
NEN	CONTENT #1	0	0.00	0	21.20%	0
Q	CONTENT #2	0	0.00	0	21.20%	0
MO	CONTENT #3	0	0.00	0	21.20%	0
ŏ	CONTENT #4	0	0.00	0	21.20%	0
				4000		848

Lbs.

Apply 0.6(848#) = 508# at base and top of fixture

required # floor anchors = 508/245 = 2 2 are provided each bay (see previous pages for floor anchor capcity calc)

Fixture header connection to beam (using a S.F. = 8.0) T/allowable per screw = 800#/8 = 100#

min of (2) acrews per bay x 4 bays = 8 x 100# = 800#

13

Updated: 03/01/21

SM

By:

DESCRIPTION >	Williams Sonoma							
	Cutlery/CT Bin - laterally braced at floor a	ind a	nd added beam above					
Seismic Desi	gn Requirements for Non-Structural Comp	one	nts (ASCE	7-16, Chapter 13)			
		10						
I _p =	1.0	(Se	ctior	13.1	3)			
F _p =	$\frac{0.4 * a_p * S_{DS} * W_p}{(R_p / I_p)} [1 + 2 (z/h)]$]	(EQI	N 13.	3-1)			
F _{p,max} =	$1.6 * S_{DS} * I_{p} * W_{p}$		(EQI	N 13.	3-2)			
F _{p,min} =	0.3 * S _{DS} * I _p * W _p		(EQI	N 13.	3-3)			
			(~	40	5.4)			
a _p =	1.0		(Tabi (Tabi	e 13.	5-1)			
R _p =	2.5		(Tabi	e 13.	5-1)			
Z =	0 IN							
h =	120 IN							
	Table 13.5-1 Coefficients for Architectura	al Con	nponer	nts]			
	Architectural Component	a_p^*	R_p	Ω ₀ ^{, b}				
	Interior nonstructural walls and partitions ^e							
	Plain (unreinforced) masonry walls	1	11/2	11/2				
	Cantilever elements (unbraced or braced to structural	,	2/2	2				
	frame below its center of mass) Parapets and cantilever interior nonstructural walls	21/2	21/2	2				
	Chimneys where laterally braced or supported by the structural frame	21/2	21/2	2				
	Cantilever elements (braced to structural frame above							
	its center of mass) Parapets	1	21/2	2				
	Chimneys	1	21/2	2				
	Exterior nonstructural waits Exterior nonstructural wall elements and	1	272	2				
	connections" Wall element	1	21/2	NA				
	Body of wall panel connections	1	21/2	NA				
	Veneer	1%	1	1				
	Limited deformability elements and attachments Low-deformability elements and attachments	1	21/2 11/2	2				
	Penthouses (except where framed by an extension of	21/2	31/2	2				
	Ceilings							
	All Cabinets	1	21/2	2				
	Permanent floor-supported storage cabinets more	1	21/2	2				
	than 6 ft (1,829 mm) tail, including contents Permanent floor-supported library shelving, book stacks, and bookshelves more than 6 ft (1,829 mm)	1	21/2	2				
	Laboratory equipment	1	21/2	2				
	Access floors Special access floors (designed in accordance with Section 13.5.7.2)	1	21/2	2				
	All other Appendages and organizations	1	11/2	11/2				
	Signs and Billboards	21/2	3	2				
	High-deformability elements and attachments	1	31/2	2				
	Limited-deformability elements and attachments Low-deformability materials and attachments	1	21/2 11/2	2				
	Other flexible components							
	High-deformability elements and attachments Limited-deformability elements and attachments	2½ 2½	3½ 2½	21/2 21/2				
	Low-deformability materials and attachments	21/2	11/2	11/2				
	force-resisting system		272	-				
	Egress stairs and ramp fasteners and attachments	21/2	21/2	21/2]			
F _p =	0.113 * W _p	(EC	QN 13	3.3-1)	1			
F _{p,max} =	1.133 * W _p	(EC	QN 13	3.3-2)	1			
F _{p,min} =	0.212 * W _p	(EC	QN 13	3.3-3)				
F _p =	0.212 * W _p							
W _p =	4000.0 LBS	(As	sem	bled f	ïxture + attachments)			
F _p =	848.0 LBS							

Project_	OR	1050
Date		
By		

Sheet _____ of _____

		esign			16			
	RAM SBeam Licensed to:	v v 3.0 Advanced Structur	al Tech				07/0	08/22 11:04:10
STEEL C	CODE: AISC	LRFD						
SPAN IN Beam Total Mp (1	FORMATIO Size (User S Beam Length kip-ft) =	N (ft): I-End (0.0 elected) = (ft) = 17.98	00,0.00) J HSS4X4X1 16.00	7 -End (16 /4	.00,0.00)	Fy =	= 46.0 ksi	
LINE LC Load 1	DADS (k/ft): Dist (ft) 0.000 16.000	DL LL 0.025 0.000 0.025 0.000						
SHEAR ((Ultimate): N	1ax Vu (1.4DL) =	0.28 kips ().90Vn =	46.30 kips			
MOMEN Span	TS (Ultimate Cond): LoadCombo	Mu kip-ft	@ ft	Lb ft	Cb	Phi	Phi*Mn kip-ft
Center Controllir	Max +	1.4DL 1.4DL	1.1 1.1	8.0 8.0	16.0 16.0	1.14 1.14	0.90 0.90	16.18 16.18
REACTI	ONS (kips):		Laft	Right				
DL re Max	eaction +total reaction	n (factored)	0.20 0.28	0.20 0.28				
DEFLEC Dead	TIONS:	at	8 00 ft	_	-0 163	I/D =	1178	
Live Net T	load (in) Total load (in)	at at	8.00 ft 8.00 ft	=	-0.000 -0.163	L/D =	1178	

Gravity	Beam	Design

RAM SBeam v3.0

Licensed to: Advanced Structural Tech

STEEL CODE: AISC LRFD

SPAN IN	FORMATIC	DN (ft): I-H	End (0.0	0,0.00)	J-E1	nd (25.0	0,0.00)			
Bean	n Size (User S	elected)	=	HSS6X4X	(1/4			Fy =	= 46.0 ksi	
Total	l Beam Lengtl	n (ft)	=	25.00						
Mp (kip-ft) =	32.70								
LINE LO	DADS (k/ft):			load	ente	ered as	S			
Load	Dist (ft)	DL ←	LL	— DL si	nce	seism	IIC			
1	0.000	0.025	0.000	is ulti	mat	е				
	25.000	0.025	0.000							
SHEAR	(Ultimate): I	Max Vu (1.4	DL) = (0.44 kips	0.90)Vn = 6	9.45 kips			
MOMEN	NTS (Ultimat	e):	,	-			-			
Span	Cond	LoadCo	ombo	Μ	u	(a)	Lb	Cb	Phi	Phi*Mn
1				kip-1	ft	ft	ft			kip-ft
Center	Max +	1.4DL		2.	7	12.5	25.0	1.14	0.90	29.43
Controllin	ng	1.4DL		2.	7	12.5	25.0	1.14	0.90	29.43
REACTI	ONS (kips):									
	· · · /			Left	Riş	ght				
DL r	eaction			0.31	0	.31				
Max	+total reactio	n (factored)		0.44	0	.44				
DEFLEC	CTIONS:									
Dead	l load (in)		at	12.50	ft =	_(0.363	L/D =	828	
Live	load (in)		at	12.50	ft =	_(0.000			
Net 7	Fotal load (in)		at	12.50	ft =	-(0.363	L/D =	828	

Project_OR_1050¹⁸

Date _____

Ву _____

Sheet _____ of ____

		G	Fravity B	eam D	<u>esign</u>			19
RAM R	AM SBeam	v3.0						
international L	icensed to: A	dvanced Structura	l Tech				07/0	8/22 11:09:38
STEEL CO	DDE: AISC	LRFD						
SPAN INFO Beam S Total B Mp (kip	ORMATION Size (User Se eam Length p-ft) =	N (ft): I-End (0.0 lected) = (ft) = 17.98	0,0.00) J- HSS4X4X1/ 26.50	End (26. 4	50,0.00)	Fy =	46.0 ksi	
POINT LO	ADS (kips):	:						
Dist (ft) 10.000 SHEAR (U	DL 1 0.33 0. Itimate): M	Flange Braci LL Top Bott 00 No N ax Vu (1.4DL) = 0	ng com o).28 kips 0 .	.90Vn = 4	16.30 kips			
Span	S (Onifiate) Cond	LoadCombo	Mu	\widehat{a}	Lb	Ch	Phi	Phi*Mn
opun	Cond	Loudeonnoo	kip-ft	ft	ft	00	1 111	kip-ft
Center	Max +	1.4DL	2.8	10.0	26.5	1.40	0.90	16.18
Controlling		1.4DL	2.8	10.0	26.5	1.40	0.90	16.18
REACTIO	NS (kips):							
			Left I	Right				
DL read	ction		0.20	0.12				
Max +te	otal reaction	(factored)	0.28	0.17				
DEFLECT	IONS:							
Dead lo	oad (in)	at	12.32 ft	= .	-0.888	L/D =	358	
Live loa	ad (in)	at	12.32 ft	= .	-0.000			
Net Tot	al load (in)	at	12.32 ft	= .	-0.888	L/D =	358	