Table CT3. Total End-Use Energy Consumption Estimates, Selected Years, 1960-2020, Oregon | | | | Petroleum | | | | | | | Hydro-
electric | Biomass | | | | Electricity
Retail | | | | |--------------|------------------------|-----------------------------|-------------------------------------|------------------|--------------------------|--------------------------------|----------------------|--------------------|-------------------------------|-------------------------------------|---------------------------------|------------------------------|----------------------|-------------------------------|------------------------------|---|----------------------|--| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil ^b | HGL [©] | Jet
Fuel ^d | Motor
Gasoline ^e | Residual
Fuel Oil | Other ^f | Total | Power ^{g,h} | | | | | Sales | | Electrical | | | Year | Thousand
Short Tons | Billion
Cubic Feet | Thousand Barrels | | | | | | Million
Kilowatt-
hours | Wood
and
Waste ^{h,i} | Losses
and Co-
products j | Geo-
thermal ^h | Solar ^{h,k} | Million
Kilowatt-
hours | Net
Energy ^{h,l} | System
Energy
Losses ^m | Total ^{h,l} | | | 1960 | 381 | 30 | 10,966 | 1,164 | 384 | 16,361 | 5,558 | 3,430 | 37,863 | 77 | | | | | 13,593 | | | | | 1970 | 140 | 94 | 12,904 | 1,251 | 2,086 | 24,958 | 6,614 | 4,833 | 52,646 | 77 | | | | | 25,648 | | | | | 1980 | 230 | 78 | 16,655 | 1,354 | 2,465 | 30,511 | 4,511 | 4,649 | 60,144 | 28 | | | | | 37,848 | | | | | 1990 | 84
0 | 102
155 | 15,846 | 1,384 | 3,319 | 31,728 | 4,430 | 5,582 | 62,289 | 0 | | | | | 42,977 | | | | | 2000
2001 | 0 | 147 | 18,414
17,231 | 1,320
1,009 | 6,277
5,217 | 35,989
36,157 | 1,468
1,360 | 5,583
3,614 | 69,052
64,589 | 0 | | | | | 50,330
45,885 | | | | | 2002 | 50 | 146 | 17,748 | 1,307 | 5,175 | 36,898 | 1,758 | 4,492 | 67,378 | 0 | | | | | 45,255 | | | | | 2003 | 65 | 138 | 15,911 | 1,335 | 5,589 | 36,527 | 1,942 | 4,403 | 65,708 | 0 | | | | | 45,195 | | | | | 2004 | 64 | 146 | 17,752 | 1,022 | 5,097 | 36,818 | 2,069 | 4,707 | 67,466 | 0 | | | | | 45,636 | | | | | 2005
2006 | 9
109 | 145
147 | 17,760
18,575 | 1,278
1.092 | 5,402
5,764 | 37,488
37,956 | 2,186
2,069 | 4,787
4,863 | 68,900
70,320 | 0 | | | | | 46,419
48,069 | | | | | 2006 | 95 | 150 | 18,838 | 1,092 | 5,630 | 37,810 | 2,539 | 3,914 | 69,798 | 0 | | | | | 48,697 | | | | | 2008 | 69 | 152 | 18,666 | 1,774 | 5,464 | 36,410 | 1,746 | 3,689 | 67,748 | 0 | | | | | 49,187 | | | | | 2009 | 79 | 140 | 18,468 | 1,794 | _ 6,525 | 36,902 | 968 | 2,650 | 67,307 | 0 | | | | | 47,567 | | | | | 2010 | 77 | 130 | 19,089 | 1,594 | R 4,466 | 36,523 | 1,696 | 2,451 | R 65,818 | 0 | | | | | 46,026 | | | | | 2011
2012 | 77
75 | 139
134 | 19,057
18,757 | 1,691
1,508 | R 4,435
R 4,495 | 35,307
34,508 | 1,115
929 | R 2,445
R 2,377 | R 64,050
R 62,574 | 0 | | | | | 47,171
46,689 | | | | | 2012 | 75
85 | 138 | 18,241 | 1,586 | R 4,794 | 35,040 | 730 | R 2,410 | R 62,801 | 0 | | | | | 47,641 | | | | | 2014 | 109 | 130 | 19,166 | 1,712 | R 4.727 | 35,472 | 174 | 2,429 | R 63,680 | 0 | | | | | 47,335 | | | | | 2015 | 100 | 121 | 17,643 | 1,586 | R _{4,895} | 36,831 | 315 | R _{2,487} | R 63,757 | 0 | | | | | 47,264 | | | | | 2016 | 0 | 129 | 17,358 | 1,661 | R 5,079 | 37,952 | 120 | R 2,762 | R 64,933 | 0 | | | | | 47,349 | | | | | 2017
2018 | 41
61 | 143
132 | 17,550
17,953 | 2,098
2,201 | R 5,435
R 6.038 | 38,635
38,758 | 21 | R 2,757 | R 66,495
R 67,336 | 0 | | | | | 50,044
49.326 | | | | | 2018 | 52 | 132 | 17,953 | 2,329 | R 6,088 | R 37,949 | 14
343 | 2,371
R 2,346 | R 66,298 | 0 | | | | | 50,404 | | | | | 2020 | 35 | 137 | 17,779 | 2,076 | 3,820 | 32,895 | 576 | 2,261 | 59,407 | 0 | | | | | 51,019 | | | | | | | | | | | | | | Trillion B | u | | | | | | | | | | 1960 | 8.9 | 31.2 | 63.9 | 4.4 | 2.1 | 85.9 | 34.9 | 21.1 | 212.4 | 0.8 | 56.1 | NA | NA | NA | 46.4 | 355.9 | 114.7 | 470.6 | | 1970 | 3.0 | 98.5 | 75.2 | 4.8 | 11.8 | 131.1 | 41.6 | 30.0 | 294.4 | 0.8 | 57.0 | NA | | NA | 87.5 | 541.2 | 211.7 | 752.9 | | 1980 | 4.2 | 82.0 | 97.0 | 5.0 | 13.9 | 160.3 | 28.4 | 29.1 | 333.7 | 0.3 | 85.5 | NA | NA | NA | 129.1 | 634.8 | 310.2 | 945.0 | | 1990
2000 | 1.5
0.0 | 104.1
160.3 | 92.3
107.2 | 5.0
4.9 | 18.8
35.6 | 166.7
187.2 | 27.9
9.2 | 35.3
35.3 | 345.9
379.3 | 0.0
0.0 | 50.6
39.6 | 0.0 | | 0.3
0.6 | 146.6
171.7 | 649.4
752.4 | 343.7
383.1 | 993.0
1,135.5 | | 2001 | 0.0 | 151.4 | 100.3 | 3.8 | 29.6 | 188.1 | 8.6 | 22.7 | 353.0 | 0.0 | 46.1 | 0.0 | | 0.7 | 156.6 | 708.5 | 334.9 | 1,043.4 | | 2002 | 1.1 | 150.0 | 103.3 | 4.9 | 29.3 | 191.8 | 11.1 | 28.7 | 369.1 | 0.0 | 40.9 | 0.0 | 0.9 | 0.7 | 154.4 | 717.1 | 321.6 | 1,038.7 | | 2003 | 1.5 | 139.1 | 92.6 | 5.1 | 31.7 | 189.8 | 12.2 | 28.3 | 359.7 | 0.0 | 35.9 | 0.0 | | 0.7 | 154.2 | 692.0 | 325.2 | 1,017.2 | | 2004 | 1.4 | 147.5
149.8 | 103.3
103.3 | 3.7
4.8 | 28.9
30.6 | 191.3
194.6 | 13.0
13.7 | 30.3
30.8 | 370.5
378.0 | 0.0 | 44.2
38.4 | 0.0 | | 0.7
0.7 | 155.7
158.4 | 721.0 | 291.9 | 1,012.9
1,043.0 | | 2005
2006 | 0.2
2.7 | 152.7 | 103.3 | 4.8
4.1 | 30.6 | 194.6 | 13.7 | 30.8 | 378.0 | 0.0
0.0 | 38.4 | 0.0 | | 0.7 | 164.0 | 726.7
746.5 | 316.3
331.1 | 1,043.0 | | 2007 | 2.3 | 155.4 | 109.0 | 4.0 | 31.9 | 194.4 | 16.0 | 25.0 | 380.2 | 0.0 | 41.8 | 0.8 | | 1.1 | 166.2 | 749.6 | 313.2 | 1,062.8 | | 2008 | 1.7 | 155.6 | 107.9 | 6.6 | 31.0 | 185.9 | 11.0 | 23.5 | 365.8 | 0.0 | 38.9 | 4.2 | | 1.3 | 167.8 | 737.0 | 310.2 | 1,047.2 | | 2009 | 1.9 | 143.7 | 106.7 | 6.6 | 37.0 | 187.8 | 6.1 | 16.8 | _ 361.0 | 0.0 | 43.8 | 3.2 | | 1.4 | 162.3 | 718.4 | 294.4 | 1,012.8 | | 2010 | 1.9 | 131.5 | 110.2 | 6.1 | R 25.3 | 185.1 | 10.7 | 15.5 | R 352.9 | 0.0 | 49.5 | 2.0 | | 1.6 | 157.0 | R 697.5 | 284.3 | R 981.8 | | 2011
2012 | 1.8
1.7 | 142.3
137.4 | 110.0
108.2 | 6.5
5.8 | R 25.1
R 25.5 | 178.8
174.7 | 7.0
5.8 | 15.5
15.2 | R 342.9
R 335.1 | 0.0 | 47.2
49.8 | 1.9
1.8 | | 1.7
1.9 | 160.9
159.3 | R 700.0
R 688.4 | 307.2
289.6 | ^R 1,007.2
^R 978.0 | | 2012 | 2.0 | 139.7 | 105.1 | 6.1 | R 27.2 | 174.7 | 4.6 | 15.2 | R 335.4 | 0.0 | 58.9 | 2.0 | | 1.9 | 162.6 | R 703.7 | 293.5 | R 997.3 | | 2014 | 2.5 | 133.7 | 110.5 | 6.6 | R 26.8 | 179.5 | 1.1 | 15.2 | R 339.6 | 0.0 | 58.1 | 2.3 | | 2.1 | 161.5 | R 701.2 | 292.5 | R 993.6 | | 2015 | 2.4 | 127.6 | 101.7 | 6.1 | R 27.8 | 186.3 | 2.0 | 15.6 | R 339.4 | 0.0 | 67.1 | 2.1 | 1.2 | 2.2 | 161.3 | R 703.2 | 268.5 | R 971.8 | | 2016 | 0.0 | 138.1 | 99.9 | 6.4 | R 28.8 | 191.8 | 0.8 | 17.5 | R 345.2 | 0.0 | 63.6 | 2.0 | | 2.8 | 161.6 | R 714.5 | 273.7 | R 988.2 | | 2017 | 1.0 | 152.8 | 101.0 | 8.1 | R 30.8
R 34.2 | 195.2 | 0.1 | 17.5 | R 352.7
R 357.0 | 0.0 | 70.4 | R 2.2 | | 3.0 | 170.7 | R 754.2
R 745.8 | 287.2 | R 1,041.3
R 1,021.5 | | 2018
2019 | 1.4
1.2 | 141.3
R 150.8 | 103.4
99.3 | 8.5
8.9 | R 34.5 | 195.9
191.7 | 0.1
2.2 | 14.9
14.8 | R 351.4 | 0.0 | 71.0
R 72.4 | 2.2
R 2.0 | | 3.3
3.4 | 168.3
172.0 | R 754.4 | 275.7
273.2 | R 1,021.5 | | 2020 | 0.8 | 144.7 | 102.3 | 8.0 | 21.7 | 166.2 | 3.6 | 14.3 | 316.1 | 0.0 | 68.0 | 1.8 | | 3.4 | 174.1 | 710.3 | 273.2 | 983.0 | ^a Includes supplemental gaseous fuels that are commingled with natural gas. b Beginning in 2009, includes biodiesel blended into distillate fuel oil. ^c Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. d Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." e Beginning in 1993, includes fuel ethanol blended into motor gasoline. f Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, petroleum coke, and the "other petroleum products" category. See Technical Notes. Section 4. ⁹ Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. h There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste J Losses and co-products from the production of biodiesel and fuel ethanol. k Solar thermal and photovoltaic energy. ¹ Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2009, includes a small amount of wind energy consumed by the commercial and industrial sectors. m Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ^{— =} Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Total end-use consumption estimates are the sum of the consumption estimates for the residential, commercial, industrial, and transportation sectors. Totals may not equal sum of components due to independent rounding. The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes.